(19) 世界知的所有権機関
国際事務局

(43) 国際公開日
2013年4月4日(04.04.2013)

WO 2013/046250 A 1

所属機関: TOYOTA JIDOSHA KABUSHIKI KAISHA

(12) 特許協力条約に基づいて公開された国際出願

(71) 出願人: TOYOTA JIDOSHA KABUSHIKI KAISHA

(51) 国際特許分類: B60L 3/00 (2006.01)
H02J 7/00 (2006.01)
H01M 10/48 (2006.01)

(52) 国際出願番号: PCT/JP2011/005399

(54) 発表者訳: BATTERY PROCESSING DEVICE, VEHICLE, BATTERY PROCESSING METHOD, AND BATTERY PROCESSING PROGRAM

(57) Abstract: To reduce the processing burden of a battery. [Solution] A battery processing device is characterized by having a controllable battery that is charged when the battery is disconnected from the power supply and discharged for charging the battery when the battery is connected to the power supply.

(58) 要約: バッテリの処理装置は、電源を駆動するモータに供給される電力を蓄電する充電可能バッテリと、前記バッテリの蓄電量が前記バッテリに対する充電が抑制される電力状態において、放電許容容量を受信することにより、前記バッテリから充電装置への充電を許容しない第1の状態から切り替えを許容する第2の状態に切り替えを許容するバッテリ処理装置。
明細書

発明の名称:
バッテリの処理装置、車両、バッテリの処理方法及びバッテリの処理プログラム

技術分野
[0001] 本発明は、過充電に至ったバッテリを処理する処理技術に関するものである。

背景技術
[0002] 電気自動車、ハイブリッド自動車などの駆動電源又は補助電源として複数の単電池を電的に接続した充放電可能なバッテリが知られている。バッテリの充放電を制御するＥＣＵは、バッテリの電圧が上限値よりも高い値にならないようにバッテリの充電を制御しており、その上限値よりも高い充電終止電圧に達した時にＳＭＲをオフすることにより充電を禁止する制御を行う。これにより、バッテリを用いた車両の走行が禁止される。過充電に至ったバッテリは、ディーゼル等において回収される。

[0003] 特許文献１は、バッテリ過充電と判定した時には燃料カット制御が終了するまでオルタネータの発電電圧をバッテリが充放電しない電圧値に下げて回生発電制御を禁止するようオルタネータの発電電圧を制御してバッテリの劣化を抑制する制御方法を開示する。

先行技術文献

特許文献
[0004] 特許文献１:特開2008－255913号公報
特許文献２:特開2004－319304号公報
特許文献３:特開平8－205304号公報

発明の概要

発明が解決しようとする課題
過充電に至ったバッテリは取扱が困難であり、ディーゼル等において処理負担が大きかった。そこで、本願発明は、過充電に至ったバッテリの処理負担を軽減することを目的とする。課題を解決するための手段

上記課題を解決するために、本発明に係るバッテリ処理装置は、一つの観点として、（1）車両に搭載されたバッテリ処理装置であって、車輪を駆動するモータに供給される電力を蓄電する充放電可能なバッテリと、前記バッテリの蓄電量が前記バッテリに対する充電が抑制される過充電状態において、放電許容信号に基づき、前記バッテリから前記負荷への放電を許容しない第2の状態から前記バッテリから前記負荷への放電を許容する第1の状態に切り替える放電許容処理を実行するコントローラと、を有することを特徴とする。

（2）上記（1）の構成において、前記コントローラは、前記第1の状態と前記第2の状態との間で切り替わるスイッチ素子を制御することにより、前記放電許容処理を実行してもよい。

（3）上記（2）の構成において、前記スイッチ素子は、リレーであり、前記コントローラは、前記放電許容信号を受信する前の前記過充電状態において、前記リレーを前記第2の状態に設定することにより、前記バッテリを用いた車両走行を禁止している。 （3）の構成によれば、バッテリの過充電により車両走行が禁止された車両に搭載された前記バッテリを、車両に搭載したまま等の放電処理することができる。

（4）上記（3）の構成において、前記コントローラは、前記放電許容処理を実行するとともに、前記バッテリを放電させることができる。 （4）の構成によれば、放電許容処理とともに、バッテリの放電が実行されるため、バッテリの過充電状態を速やかに解消することができる。

（5）上記（3）の構成において、前記コントローラは、前記放電許容処理を実行した後に、車両のアクセルペダルの操作に応じて前記バッテリを放電させる。 （5）の構成によれば、バッテリを処理する処理者の好きなタイ
ミングで放電処理を行うことができる。

[001] 6) 上記 (2) の構成において、前記バッテリは、前記荷負としての抵抗と、前記スイッチ素子を有する均等化回路を備え、前記コントローラにより前記スイッチ素子が前記第 2 の状態から前記第 1 の状態に切り替わると、前記バッテリの電力が前記均等化回路に放電される。 6) の構成によれば、電池間の蓄電量のバラツキを抑制する均等化回路を用いて、バッテリの過充電状態を解消することができる。

[002] 7) 上記 (1) 〜 (6) の構成において、前記バッテリの蓄電量に関する情報を取得する取得部を有し、前記コントローラは、前記放電許容処理に基づく放電処理中に、蓄電量が所定値以下である場合、放電を抑制することができる。 7) の構成によれば、バッテリの過放電を抑制することができる。

[003] 8) 上記 (1) 〜 (6) の構成において、前記コントローラは、前記放電許容処理に基づく放電処理中に、蓄電量が所定値未満となった場合、放電を停止することができる。 7) の構成によれば、バッテリの過放電を抑制することができる。

[004] 9) 上記 (1) 〜 (8) の構成において、前記コントローラは、前記バッテリの充電時に、前記バッテリの蓄電量が制御上限値よりも高くなると、充電を抑制し、前記バッテリの蓄電量が前記制御上限値よりも高い過充電状態に対応した蓄電量に達すると、充放電を禁止することができる。

[005] 10) 上記 (1) 〜 (9) のうちいずれか一つに記載のバッテリ処理装置が、車両に搭載することができる。

[006] 上記課題を解決するために、本願発明に係るバッテリ処理方法は、車両に搭載されたバッテリであって、車輪を駆動するモータに供給される電力を蓄電する充電可能な前記バッテリを処理するバッテリ処理方法であって、前記バッテリの蓄電量が前記バッテリに対する充電が抑制される過充電状態において、前記バッテリから前記荷負への放電を許容しない第 2 の状態から前記バッテリから前記荷負への放電を許容する第 1 の状態に切り替える放電許
容処理を行うことを特徴とする。

[0017] 上記課題を解決するために、本願発明に係るバッテリ処理プログラムは、車両に搭載されたバッテリであって、車輪を駆動するモータに供給される電力を蓄電する充放電可能な前記バッテリを処理する処理動作をコンピュータに実行させるバッテリ処理プログラムであって、前記バッテリの蓄電量が前記バッテリに対する充電が抑制される過充電状態において、前記バッテリから前記負荷への放電を許容しない第2の状態から前記バッテリから前記負荷への放電を許容する第1の状態に切り替える放電許容処理ステップを有することを特徴とする。

発明の効果

[0018] 本発明によれば、過充電に至ったバッテリの処理負担を軽減することができる。

図面の簡単な説明

[0019] [図1]車両の一部におけるハード構成を示すブロック図である。
[図2]車両の一部における機能ブロック図である。
[図3]高圧バッテリの処理手順を示したフローチャートである。
[図4]均等化回路を含む高圧バッテリの回路図である。
[図5]均等化回路の回路図である。

発明を実施するための形態

[0020] （実施形態1）

以下、本発明の実施の形態について図面を参照しながら詳細に説明する。
図1は、本発明の一実施形態である車両の一部におけるハード構成を示すブロック図である。同図において、実線の矢印は電力の供給方向を示しており、点線の矢印は信号の流れの方向を示している。車両1は、バッテリの出力を用いてモータを駆動する駆動経路とエンジンによる駆動経路を有するハイブリッド自動車である。なお、本発明はバッテリの出力を用いてモータを駆動する駆動経路のみ有する電気自動車にも適用することができる。

[0021] 同図を参照して、車両1は、高圧バッテリ11と、平滑用コンデンサC1
、C 2 と、電圧コンバータ 12 と、インバータ 13 と、モータジェネレータMG 1 と、モータジェネレータMG 2 と、動力分割プラネタリーギャ P 1 と、リダクションプラネタリーギャ P 2 と、減速機りと、エンジン 14 と、リレー 15 と、DC/DC コンバータ 21 と、低圧バッテリ 22 と、エアコン 23 と、補機負荷 24 と、ECU 30 と、監視ユニット 31 と、メモリ 3 2 とを含む。

高圧バッテリ 11 には、複数の二次電池を直列に接続した組電池を用いることができる。二次電池には、例えばニッケル水素電池、リチウムイオン電池等を用いることができる。車両 1 は、さらに、電源ライン P L 1 と、接地ライン S L とを含む。高圧バッテリ 11 は、リレー 15 を構成するシステムメインリレー SMR_ _G 、SMR_ _B 、SMR_ _P とを介して、電圧コンバータ 1 2 に接続されている。

高圧バッテリ 11 のプラス端子には、システムメインリレー SMR_ _G が接続され、高圧バッテリ 11 のマイナス端子には、システムメインリレー SMR_ _B が接続されている。また、システムメインリレー SMR_ _P およびブラチージ抵抗 17 は、システムメインリレー SMR_ _B に対して並列に接続されている。

これらのシステムメインリレー SMR_ _G 、SMR_ _B 、SMR_ _P は、コイルに対して通電したときに接点が開じるリレーである。SMR がオフとは通電状態を意味し、SMR がオフとは非通電状態を意味する。

ECU 3 0 は、電流遮断時、すなわちイダニッションスイッチのポジショ ンが OFF 位置になるときには、全てのシステムメインリレー SMR_ _G 、SMR_ _B 、SMR_ _P をオフする。すなわち、システムメインリレー SMR_ _G 、SMR_ _B 、SMR_ _P のコイルに対する励磁電流をオフにする。なお、イダニッションスイッチのポジションは、OFF 位置→ON 位置の順に切り替わる。ECU 3 0 は、CPU 、MPU であってもよいし、これらのCPU などにおいて実行される処理の少なくとも一部を回路的に実行するASIC 回路を含んでも良い。ECU 3 0 は、低圧バッテリ 22 から電源が供
給されることにより、起動する。

ハイブリッドシステム起動時（メイン電源接続時）、すなわち、たとえば運転者がブレーキペダルを踏み込んでプッシュ式のスタートスイッチを押し込むと、ECU30は、最初にシステムメインリレーSMR—Gをオンにする。次に、ECU30は、システムメインリレーSMR—Pをオンしてプリチャージを実行する。

システムメインリレーSMR—Pにはプリチャージ抵抗17が接続されている。このため、システムメインリレーSMR—Pをオンしてもインバータ13への入力電圧は緩やかに上昇し、突入電流の発生を防止できる。

イダニションスイッチのポジションが0N位置から0FF位置に切り替わると、ECU30は、先ずシステムメインリレーSMR—Bをオフし、続いてシステムメインリレーSMR—Gをオフする。これにより、高圧バッテリ11とインバータ13との間の電気的な接続を遮断され、電源遮断状態となる。システムメインリレーSMR_B、SMR_G、SMR_Pは、ECU30から与えられる制御信号に応じて導通／非導通状態が制御される。

コンデンサC1は、電源ラインPL1と接地ラインSL間に接続され、ライン間電圧を平滑化する。また、電源ラインPL1と接地ラインSL間にDC/DCコンバータ21と、エアコン23とが並列に接続されている。DC/DCコンバータ21は、高圧バッテリ11から供給される電力を降圧して、低圧バッテリ22を充電したり、あるいは補機負荷24に電力を供給する。ここで、補機負荷24には、図示しない車両のランプ、オーディオ機器等の電子機器が含まれる。

電圧コンバータ12は、コンデンサC1の端子間電圧を昇圧する。コンデンサC2は、電圧コンバータ12によって昇圧された電圧を平滑化する。インバータ13は、電圧コンバータ12から与えられる直流電圧を三相交流に変換してモータジェネレータMG2に出力する。リダクションプラネタリーギヤP2は、モータジェネレータMG2で得られた動力を減速機Dに伝達して、車両を駆動する。動力分割プラネタリーギヤP1は、エンジン14で得
られた動力を二経路に分割し、一方は減速機Dを介して車輪に伝達され、他方はモータジェネレータMG1を駆動して発電を行う。

[0031] このモータジェネレータMG1において発電された電力は、モータジェネレータMG2の駆動に用いられることでエンジン14を補助する。また、リプレッシャーMG1レギュラギヤP2は、車両減速時に、減速機Dを介して伝達される動力をモータジェネレータMG2に伝達し、モータジェネレータMG2を発電機として駆動する。このモータジェネレータMG2で得られた電力は、インバータ13において三相交流から直流電圧に変換され、電圧コンバータ12に伝達される。このとき、ECU30は、電圧コンバータ12に降圧回路として動作するように制御する。電圧コンバータ12で降圧された電力は、高圧バッテリ11に蓄電される。

[0032] 監視ユニット31は、高圧バッテリ11の電圧、電流及び温度に関する情報を取得する。監視ユニット31は、高圧バッテリ11とともにユニット化されている。監視ユニット31により取得される電圧値は、高圧バッテリ11を構成する二次電池がリチウムイオン電池である場合、各電池セル（単電池）の電圧値であってもよい。監視ユニット31により検出される電圧値は、高圧バッテリ11を構成する二次電池がニッケル水素電池である場合、各電池モジュール（複数の電池セルを直列に接続した単電池）の電圧値であってもよい。高圧バッテリ11の温度は、図示しないサーモスタを介して取得してもよい。

[0033] メモリ32は、高圧バッテリ11の充放電制御に用いられる、蓄電量の制御上限値及び制御下限値に関する情報を記憶する。ECU30は、高圧バッテリ11の蓄電量を制御上限値及び制御下限値により規定される制御範囲で維持されるように制御する。また、ECU30は、高圧バッテリ11の蓄電量が制御上限値よりも高くなると、充電を抑制する。また、ECU30は、高圧バッテリ11の蓄電量が、制御上限値よりも高い充電終止電圧に対応した蓄電量に達すると、高圧バッテリ11の充放電を禁止する。高圧バッテリ11の蓄電量が、充電終止電圧に達した状態、または充電終止電圧を超えた
状態を、過充電状態という。

ECU30は、高圧バッテリ11の蓄電量が制御下限値よりも低くなると、放電を抑制する。また、ECU30は、高圧バッテリ11の蓄電量が、制御下限値よりも低い放電終止電圧に対応した蓄電量に達すると、高圧バッテリ11の充放電を禁止する。高圧バッテリ11の蓄電量が、放電終止電圧に達した状態、または放電終止電圧を超えた状態を、過放電状態という。

高圧バッテリ11は、過充電状態、或いは過放電状態になると劣化する。そこで、ECU30は、監視ニユーティ31が取得した電圧、電流及び温度に関する情報を基づき、蓄電量を算出し、高圧バッテリ11に含まれる少なくとも一つの単電池が過充電又は過放電状態であると判別した場合には、システムメインリレーSMR—B及びシステムメインリレーSMR—Gをオフすることにより、高圧バッテリ11とインバータ13との間の電気的な接続を遮断する。

ただし、ECU30は、高圧バッテリ11に含まれる少なくとも一つの単電池が過充電又は過放電状態であると判別した場合に、システムメインリレーSMR—B及びシステムメインリレーSMR—Gをオフせずに、インバータ13を制御することにより、高圧バッテリ11の充放電を禁止してもよい。これにより、車両1は、高圧バッテリ11を用いての走行が不可能となる走行不能状態になる。ECU30は、高圧バッテリ11から離間した位置に設けられている。ただし、ECU30及び高圧バッテリ11は、ユニット化されていてもよい。

次に、図2の機能ブロック図を用いて、バッテリ処理装置の構成について説明する。同図において、実線の矢印は電力の供給方向を示しており、点線の矢印は信号の流れる方向を示している。バッテリ処理装置2は、バッテリ81、スイッチ素子82、コントローラ83、負荷84及び取得部85を含む。パッテリ81は、充放電可能であって、車輪を駆動するモータに供給される電力を蓄電する。これで、図1及び図2を比較参照して、バッテリ81は、高圧パッテリ11に相当し、モータは、モータジェネレータMG2に相
当する。スイッチ素子 8 2 は、バッテリ 8 1 から負荷 8 4 への放電を許容する第 1 の状態と、バッテリ 8 1 から負荷 8 4 への放電を許容しない第 2 の状態との間で切り替わる。ここで、図 1 及び図 2 を比較参照して、スイッチ素子 8 2 は、リレー 1 5 に相当する。

[0038] コントローラ 8 3 は、バッテリ 8 1 の過電圧状態において、放電許容信号を受信することにより、スイッチ素子 8 2 を前記第 2 の状態から前記第 1 の状態に切り替える放電許容処理を実行する。ただし、バッテリ 8 1 が過電圧状態に至った際に、コントローラ 8 3 がスイッチ素子 8 2 を第 1 の状態から第 2 の状態に切り替えずに、インバータ 1 3 を制御することによって放電を禁止している場合には、コントローラ 8 3 は、受信した放電許容信号に基づきインバータ 1 3 に対して放電処理を行うコマンド信号を出力することにより、放電許容処理を実行してもよい。ここで、図 1 及び図 2 を比較参照して、コントローラ 8 3 は、ECU 3 0 に相当する。放電許容信号は、ディーラ等において図 1 の外部装置 4 1 を操作することにより生成される。

[0039] コントローラ 8 3 は、放電許容処理を実行するとともに、電圧コンバータ 1 2、インバータ 1 3 を制御することにより、バッテリ 8 1 の電力を負荷 8 4 に供給する。図 1 及び図 2 を比較参照して、負荷 8 4 は、モータージェネレータ MG 2 であってもよい。この場合、モータージェネレータ MG 2 の回転動作に応じてバッテリ 8 1 の蓄電量は低下する。電力消費量の大きなモータージェネレータ MG 2 を負荷 8 4 として選択することにより、バッテリ 8 1 の放電処理を速やかに行うことができる。

[0040] 図 1 及び図 2 を比較参照して、負荷 8 4 は、エアコン 2 3 であってもよい。この場合、エアコン 2 3 による温度調節動作に応じてバッテリ 8 1 の蓄電量は低下する。電力消費量の大きなエアコン 2 3 を負荷 8 4 として選択することにより、バッテリ 8 1 の放電処理を速やかに行うことができる。図 1 及び図 2 を比較参照して、負荷 8 4 は、補機負荷 2 4 であってもよい。この場合、補機負荷 2 4 を構成するオーディオの音声出力動作及び映像出力動作、或いはライトの点灯動作に応じてバッテリ 8 1 の蓄電量は低下する。後述す
るように、負荷84としてモータジェネレータMG2を選択した場合、車両1をジャッキアップした状態でバッテリー81を放電処理させることが好ましい。なお、エアコン23又は補機負荷24が負荷84として選択されることにより、車両1をジャッキアップする手間を省くことができる。

[0041] 取得部85は、バッテリー81から蓄電量に関する情報を取得する。ここで、蓄電量に関する情報とは、バッテリー81の電圧、温度に関する情報のことである。図1及び図2を比較参照して、取得部85は、監視ユニット31に相当する。コントローラ83は、放電処理中における蓄電量の降下の度合いが所定値以下になった場合には、放電処理を抑制する。ここで、蓄電量の降下の度合いは、蓄電量の低下率、蓄電量の変化量、あるいは蓄電量の降下と関係がある他のパラメータ（例えば、電圧）を含む。また、所定値は、予め設計的に定められた固定値、あるいはバッテリの放電処理を行う際に算出した演算値であってもよい。所定値に関する情報は、メモリ32に記憶されており、そのデータ形式はマップ形式であってもよい。

[0042] 次に、図3のフローチャートを参照しながら、過充電状態に至った高圧バッテリー1の放電処理方法について説明する。なお、本フローチャートでは、負荷84としてモータジェネレータMG2が選択されているものとする。また、高圧バッテリー1が過充電状態に至ることにより、リレー15はオフされているものとする。

[0043] 本フローチャートは、過充電状態に至った高圧バッテリー1を搭載した車両1がジャッキアップされた状態で実行してもよい。ステップS101において、ECU30は、外部装置41を操作することによりONされた低圧バッテリー2から電源が供給されることにより、起動する。ステップS102において、ECU30は、外部装置41を操作することにより生成された放電許容信号を受信したか否かを判別し、ECU30が放電許容信号を受信した場合にはステップS103に進み、ECU30が放電許容信号を受信しなかった場合にはステップS101に戻る。なお、外部装置41はディーラ等の専門家が操作してもよいし、あるいは、ユーザが所定のマニュアルに従って操
作してもよい。

[0044] ステップS103において、ECU30は、受信した放電許容信号に基づきリレー15をオフからオンに切り替え、高圧バッテリ11の状態を、放電処理を許容する放電許容状態に設定する。ステップS104において、ECU30は、電圧コンパータ12及びインバータ13を制御することにより、モータジェネレータMG2を駆動する。車両1がジャッキアップされた状態で高圧バッテリ11を放電処理できるため、車両1の走行を停止した状態で高圧バッテリ11の蓄電量を取り扱い容易なレベルにまで引き下げることができる。

[0045] ステップS105において、ECU30は、高圧バッテリ11の蓄電量の降下率が所定値以下であるか否かを判定し、蓄電量の降下率が所定値以下である場合にはステップS106に進み、蓄電量の降下率が所定値以下でない場合にはステップS104に戻り、モータジェネレータMG2の駆動を継続する。なお、高圧バッテリ11の蓄電量は制御下限値に近づくと放電が制限され、蓄電量の降下率が低下する。したがって、蓄電量の降下率に基づき、放電を継続するか否かを決定することにより、高圧バッテリ11の蓄電量が制御下限値よりも低くなることを抑制できる。

[0046] ステップS106において、ECU30は、リレー15をオンからオフに切り換えて、高圧バッテリ11の放電処理を停止する。ステップS107において、ディーラ等の専門家は、車両から高圧バッテリ11を取り外し、新しい高圧バッテリ11に交換する。蓄電量が下がった状態で高圧バッテリ11を回収できるため、高圧バッテリ11の取り扱いが容易化される。また、過充電状態に至った高圧バッテリ11を車両に搭載した状態で放電処理することができる。

[0047] 本フローチャートは、ECU30がメモリ32から当該処理を行う処理プログラムを読み出すことにより実行してもよい。この場合、メモリ32は記憶装置として動作し、ECU30は、記憶装置に記憶された前記処理プログラムを図示しないメモリに読み出して、解読することにより、本フローチャ
ートを実行する。処理プログラムは、予めメモリ3 2 に記憶されていてもよいし、インターネットを介してダウンロードしてもよい。また、コンピュータ読取可能な記録媒体に記憶させ前記処理プログラムをインストールすることにより実装してもよい。

[0048]（変形例 1）

上述の実施形態では、高圧バッテリ1 1 の蓄電量の降下率が所定値以下となるまで放電処理を継続したが、本発明はこれに限られるものではない。例えば、蓄電量が所定値未満となったときに、高圧バッテリ1 1 の放電処理を停止させるように制御してもよい。そこで、所定値とは、高圧バッテリ1 1 に含まれる少なくとも一つの単電池の電圧が放電終止電圧に降下した時の高圧バッテリ1 1 の蓄電量のことである。具体的には、ECU 3 0 は、高圧バッテリ1 1 に含まれる少なくとも一つの単電池の電圧が放電終止電圧に降下したときに（つまり、高圧バッテリ1 1 が過放電状態になったときに）、高圧バッテリ1 1 の蓄電量が所定値未満に低下したとみなして、放電処理を停止する。

[0049]この場合、ECU 3 0 は、リレー1 5 を第1 の状態から第2 の状態に切り替えることにより放電処理を停止してもよいし、あるいはリレー1 5 を第2 の状態に設定したまま高圧バッテリ1 1 の放電処理を禁止する禁止信号をインタータ1 3 に出力することにより放電処理を停止してもよい。また、ECU 3 0 は、放電時間を基準として、一定時間、モータジェネレータMG 2 等を駆動することにより放電処理を実行してもよい。当該一定時間は、予め定められた時間、または過充電状態に至った高圧バッテリ1 1 の状態を調べることにより定められた時間であってもよい。

[0050]（変形例 2）

上述の実施形態では、部品装置4 1 を操作することにより放電許容信号を生成したが、本発明はこれに限られるものではない。例えば、車両要素が特殊な動作をすることにより放電許容信号を生成してもよい。ここで、特殊な操作とは、例えば、車両1 のブレーキを所定時間以上踏みながら、アクセル
の所定時間以上の踏み込みを所定回数以上行う等、通常の運転者が行わないような操作であってもよい。

[0051]（変形例3）

上述の実施形態では、ステップS103において、ECU30が高圧バッテリ11の状態を放電許容状態に設定した後、ステップS104において、ECU30が直ちに高圧バッテリ11に対する放電処理を実行したが、本発明はこれに限られるものではない。例えば、ECU30が高圧バッテリ11の状態を放電許容状態に設定した後、ディーラ等がアクセルを踏むことにより、放電処理を行う方法であってもよい。これにより、任意のタイミングで放電処理を実行することができる。

[0052]つまり、本発明における「放電許容処理」とは、ECU30が、高圧バッテリ11の放電を許容する状態にバッテリ処理装置2全体を制御することを意味しており、実際に放電処理が行われるか否かについては問わない。したがって、例えば、放電許容処理が実行された後、特殊な操作をすることにより高圧バッテリ11の放電処理が行われても良い。ここで、特殊な操作とは、例えば、車両1のブレーキを所定時間以上踏みながら、アクセルの所定時間以上の踏み込みを所定回数以上行う等、通常の運転者が行わないような操作であってもよい。

[0053]（実施形態2）

上述の実施形態では、リレー15及び電圧コンバータ12を介して高圧バッテリ11に接続される負荷84に対して、高圧バッテリ11の電力を放電することにより蓄電量を下げる放電処理を実行したが、本実施形態では高圧バッテリ11に設けられる等化回路に放電することにより放電処理を実行する。

[0054]図4に示すように、高圧バッテリ11は、電気的に直列に接続される複数の単電池1111を有する。単電池1111は、上述の実施形態と同様であるため説明を省略する。また、高圧バッテリ11以外の基本構成は、実施形態1と同様である。
各単電池111には、電圧監視IC（電圧センサ）42が電気的に並列に接続されており、電圧監視IC42は、単電池111の電圧を検出し、検出結果をECU30に出力する。電圧監視IC42は、対応する単電池111からの電力を受けて動作する。なお、電圧監視IC42は、図1の監視ユニット31に含まれている。

また、各単電池111には、均等化回路43が電気的に並列に接続されており、均等化回路43は、複数の単電池111における電圧（又は蓄電量）を均等化するために用いられる。均等化回路43の動作は、ECU30によって制御される。

例えば、ECU30は、電圧監視IC42の出力に基づいて、特定の単電池111の電圧が他の単電池111の電圧よりも高いと判断したときには、特定の単電池111に対応した均等化回路43だけを動作させることにより、特定の単電池111だけを放電させる。これにより、特定の単電池111の電圧が低下し、他の単電池111の電圧と略等しくすることができる。

均等化回路43の具体的な構成（例示）について、図5を用いて説明する。図5は、単電池111および均等化回路43の構成を示す回路図である。

均等化回路43は、抵抗43aおよびスイッチ素子43bを有する。スイッチ素子43bは、ECU30からの制御信号に応じて、オンおよびオフの間で切り替わる。スイッチ素子43bがオフからオンに切り替われば、単電池111の電流が抵抗43aに流れることになり、単電池111の放電を行うことができる。これにより、各単電池111の電圧を調整して、複数の単電池111における電圧を均等化させることができる。

このように均等化回路43は、複数の単電池111における電圧を均等化させるために設けられるが、本実施形態では、この均等化回路43を別の目的、つまり、過充電に至った高圧バッテリ111の蓄電量を下げて、高圧バッテリ111の処理を容易化する目的に兼用している。

すなわち、ECU30は、高圧バッテリ111の蓄電量が高圧バッテリ111に対する充電が抑制される過充電状態において、放電許容信号を受信すること
とにより、スイッチ素子4 3 bをオフ（第2の状態）からオン（第1の状態）に切り替える放電許容処理を実行する。

これにより、単電池1 1 1に蓄電された電力が抵抗4 3 aに放電され、高圧バッテリ1 1の過充電状態を解消する放電処理を実行することができる。
切り替え動作を行うスイッチ素子4 3 bは、過充電と判別された特定の単電池1 1 1に対応するスイッチ素子4 3 bのみであってもよいし、或いは全てのスイッチ素子4 3 bであってもよい。

なお、本実施形態では、各単電池1 1 1に対して均等化回路4 3や電圧監視IC 4 2を設けているが、これに限るものではない。ここで、電気的に直列に接続された複数の単電池1 1 1によって1つの電池ブロックを構成するとともに、複数の電池ブロックを電気的に直列に接続することにより、組電池1 1 0を構成することができる。この場合には、各電池ブロックに対して、均等化回路4 3や電圧監視IC 4 2を設けることができる。電圧監視IC 4 2は、対応する電池ブロックの電圧を検出し、均等化回路4 3は、対応する電池ブロックの放電処理に用いられる。

（変形例4）

上述の実施形態2では、単電池1 1 1に蓄電された電力を均等化回路4 3に放電することにより、高圧バッテリ1 1の過充電状態を解消する放電処理を実行したが、本発明はこれに限られないものではない。例えば、各単電池1 1 1を直列に接続する直列回路と、各単電池1 1 1を並列に接続する並列回路とを切り替える切り替え回路を設けるとともに、高圧バッテリ1 1の放電処理時に高圧バッテリ1 1の接続状態を直列回路から並列回路に切り替えることにより過充電状態を解消してもよい。並列回路の場合、過充電に至った単電池1 1 1から過充電に至っていない他の単電池1 1 1に循環電流が流れることにより、放電処理が実行され、過充電状態が解消される。これにより、高圧バッテリ1 1の処理を容易化することができる。本変形例の構成においては、過充電に至った単電池1 1 1がバッテリ8 1に相当し、循環電流により充電される単電池1 1 1が負荷8 4に相当し、前記切り替え回路がスイ
ツチ素子82に相当する（図2参照）。

（変形例5）

上述の実施形態では、外部装置41において低圧バッテリ22をONした後、ECU30を起動することにより、放電処理を行ったが、本発明はこれら限られるものではなく、例えば、ダイアグ診断ツールを利用してもよい。

この場合、外部装置41を用いて低圧バッテリ22をONし、この低圧バッテリ22から電力を供給することにより、ECU30を起動する。なお、過充電状態において、ECU30は、監視ユニット31から過充電信号を受信し、これをメモリ32に記憶しているものとする。続いて、外部装置41を操作することにより、ECU30によるダイアグ診断ツールを実行する。具体的には、ECU30は、外部装置41からの指令に基づき、ダイアグ診断を開始し、メモリ32に過充電信号を示す情報が記憶されていると判別した場合には、上記放電許容処理を実行する。この場合、メモリ32からECU30に送信される過充電信号を示す情報が、放電許容信号に相当する。

（変形例6）

上述の実施形態では、高圧バッテリ11が充電終止電圧に達した状態、または充電終止電圧を超えた状態を、過充電状態と定義したが、充電終止電圧を設けずに、制御上限値に達した状態あるいは制御上限値よりも蓄電量が高くなった状態を過充電状態としてもよい。また、高圧バッテリ11の充放電が禁止された状態を過充電状態と定義してもよい。過充電状態の設定は、適宜変更してもよい。

上述の実施形態では、高圧バッテリ11が放電終止電圧に達した状態、または放電終止電圧を超えた状態を、過放電状態と定義したが、放電終止電圧を設けずに、制御下限値に達した状態あるいは制御下限値よりも蓄電量が低くなった状態を過放電状態としてもよい。また、高圧バッテリ11の充放電が禁止された状態を過放電状態と定義してもよい。過放電状態の設定は、適宜変更してもよい。

符号の説明
[0067] 車両 2 バッテリ処理装置 1 1 高圧バッテリ
1 2 電圧コンバータ 1 3 インバータ 1 4 エンジン
1 5 リレー M G 1 (M G 2) モータジェネレータ
D 減速機 P 1 動力分割プラネタリーギヤ
P 2 リダクションプラネタリーギヤ 2 1 D C / D C コンバータ
2 2 低圧バッテリ 2 3 エアコン 2 4 補機負荷
3 0 E C U 3 1 監視ユニット 3 2 メモリ
4 1 外部装置 4 2 電圧監視 I C 4 3 均等化回路
8 1 バッテリ 8 2 スイッチ素子 8 3 コントローラ
8 4 負荷 8 5 取得部 1 1 1 単電池
請求の範囲

[請求項1] 車両に搭載されたバッテリ処理装置であって、
車輪を駆動するモータに供給される電力を蓄電する充放電可能なバッテリと、
前記バッテリの蓄電量が前記バッテリに対する充電が抑制される過充電状態において、放電許容信号に基づき、前記バッテリから前記負荷への放電を許容しない第2の状態から前記バッテリから負荷への放電を許容する第1の状態に切り替える放電許容処理を実行するコントローラと、を有することを特徴とするバッテリ処理装置。

[請求項2] 前記コントローラは、前記第1の状態と前記第2の状態との間で切り替わるスイッチ素子を制御することにより、前記放電許容処理を実行することを特徴とする請求項1に記載のバッテリ処理装置。

[請求項3] 前記スイッチ素子は、リレーであり、
前記コントローラは、前記放電許容信号を受信する前の前記過充電状態において、前記リレーを前記第2の状態に設定することにより、前記バッテリを用いた車両走行を禁止することを特徴とする請求項2に記載のバッテリ処理装置。

[請求項4] 前記コントローラは、前記放電許容処理を実行するとともに、前記バッテリを放電させることが許可することを特徴とする請求項3に記載のバッテリ処理装置。

[請求項5] 前記コントローラは、前記放電許容処理を実行した後に、車両のアクセルペダルの操作に応じて前記バッテリを放電させることを特徴とする請求項3に記載のバッテリ処理装置。

[請求項6] 前記バッテリは、前記負荷としての抵抗と、前記スイッチ素子とを有する移動体回路を備え、
前記コントローラにより前記スイッチ素子が前記第2の状態から前記第1の状態に切り替わると、前記バッテリの電力が前記均等化回路に放電されることを特徴とする請求項2に記載のバッテリ処理装置。
[請求項7] 前記バッテリの蓄電量に関する情報を取得する取得部を有し、
前記コントローラは、前記放電許容処理に基づく放電処理中に、蓄電量の降下量の度合いが所定値以下である場合に、放電量を抑制することを特徴とする請求項1乃至6のうちいずれか一つに記載のバッテリ処理装置。

[請求項8] 前記コントローラは、前記放電許容処理に基づく放電処理中に、蓄電量が所定値未満となった場合には、放電を停止することを特徴とする請求項1乃至6のうちいずれか一つに記載のバッテリ処理装置。

[請求項9] 前記コントローラは、前記バッテリの充電時に、前記バッテリの蓄電量が制御上限値よりも高くなると、充電を抑制し、前記バッテリの蓄電量が前記制御上限値よりも高い過充電状態に対応した蓄電量を達すると、充放電を禁止することを特徴とする請求項1乃至8のうちいずれか一つに記載のバッテリ処理装置。

[請求項10] 請求項1乃至9のうちいずれか一つに記載のバッテリ処理装置を備えた車両。

[請求項11] 車両に搭載されたバッテリであって、車輪を駆動するモータに供給される電力を蓄電する充放電可能な前記バッテリを処理するバッテリ処理方法であって、前記バッテリの蓄電量が前記バッテリに対する充電が抑制される過充電状態において、前記バッテリから前記負荷への放電を許容しない第2の状態から前記バッテリから負荷への放電を許容する第1の状態に切り替える放電許容処理を行うことを特徴とするバッテリ処理方法。

[請求項12] 車両に搭載されたバッテリであって、車輪を駆動するモータに供給される電力を蓄電する充放電可能な前記バッテリを処理する処理動作をコンピュータに実行させるバッテリ処理プログラムであって、前記バッテリの蓄電量が前記バッテリに対する充電が抑制される過充電状態において、
前記バッテリから前記負荷への放電を許容しない第2の状態から前記バッテリから負荷への放電を許容する第1の状態に切り替える放電許容処理ステップを有することを特徴とするバッテリ処理プログラム。
[図3]

START

ECU起動

放電許容信号を受信？

Yes S103

放電許容状態に設定

MG2駆動

蓄電量の変化率が所定値以下？

Yes S106

放電停止

高圧バッテリ交換

END

No S102

No S105
INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2011/005399

A. CLASSIFICATION OF SUBJECT MATTER

B 60L3/0 0 (2006.01)i, H01M1 0/4 8 (2006.01)i, H02J7/0 0 (2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
B 60L1/00-3/12, B 60L7/00-13/00, B 60L15/00-15/42, B 60K6/20-6/547,
B 60W10/00-10/30, B 60W20/00, H 01M1 0/48, H 02J7/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Jitsuyo Shinan Koho 1922-1 996 Jitsuyo Shinan Toroku Koho 1996-2011

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2000-152419 A (Toyota Motor Corp.), 30 May 2000 (30.05.2000), paragraph s [0020] to [0037]; fig. 1.4</td>
<td>1-4, 8, 10-12</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2006-67688 A (NEC Lion Energy, Ltd.), 09 March 2006 (09.03.2006), paragraph s [0017] to [0035], [0059]</td>
<td>5, 7, 9</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

Date of the actual completion of the international search 11 October r. 2011 (11.10.11)

Date of mailing of the international search report 25 October r. 2011 (25.10.11)

Name and mailing address of the ISA/ Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.
<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
A. 発明の属する分野の分類（国際特許分類（IPC））
 Int.Cl. B60L3/00 (2006. 01) i , H01M10/48 (2006. 01) i , H02J7/00 (2006. 01) i

B. 調査を行った分野

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する 請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2000-152419 A（トヨタ自動車株式会社）2000. 05. 30 , [0 0 2 0] — [D 0 3 7] , 図 1 , 図 4 （ファミリーなし）</td>
<td>1 — 4 , 8 , 10 — 12</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2006-67688 A（NECラミリオンエンジニア株式会社）2006. 03. 09, [0 0 1 7] — [D 0 3 5] , [0 0 5 9] （ファミリーなし）</td>
<td>5 , 1 , 9</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2011-130551 A（三洋電機株式会社）2011. 06. 30, [0 0 4 3] — [D 0 4 4] （ファミリーなし）</td>
<td>6 — 7 , 9</td>
</tr>
</tbody>
</table>

C？c欄の続きにも文献が列挙されている。リュウ パテントファミリーに関する別紙を参照。

国際調査を完了した日
11.10.2011

国際調査報告の発送日
25.10.2011

国際調査機関の名称及び住所
日本国特許庁（ISA／JP）
郵便番号100－6915
東京都千代田区霞が関3丁目4番3号

特許庁審査官 機関のある職員
菊地 牧子

電話番号 03－3581－1101 内線 3316

様式 PCT／ISA／210（第2ページ）（2009年7月）
<table>
<thead>
<tr>
<th>C (続き)</th>
<th>関連すると認められる文献</th>
<th>関連する 請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2007-212298 A (トヨタ自動車株式会社) 2007. 08. 23.</td>
<td>1, 9</td>
</tr>
</tbody>
</table>