US008473905B1

a2 United States Patent 10) Patent No.: US 8,473,905 B1
Takkallapally et al. 45) Date of Patent: Jun. 25,2013
(54) MANAGING USER INTERFACE 7,631,291 B2 : 122009 Shuklaetal. .....c........ 717/107
CHARACTERISTICSINDISPLAYING DATA ]88 127 43010 Bl L. 71
STORAGE SYSTEMS INFORMATION 7.895.566 B2* 22011 Shenfield etal. .......... 717/107
8,245,189 B2* 82012 Bojjireddy et al. . 717117
(75) Inventors: Anirudh Takkallapally, Natick, MA 8,327,323 B2* 12/2012 Holtzetal. ... 717/108
(US), Scott E. Joyce, Foxborough, MA 8,327,328 B2* 12/2012 Coltonetal. .. . 717/118
823 g’lunishl:)ﬁsais Shrefvi?urysk MQA OTHER PUBLICATIONS
; Sreenath Rajagopal, Natick,
(US) Jagop Vuletic et al, “Enabling unrestricted automated synthesis of portable
hardware accelerators for virtual machines”, ACM CODES, pp. 243-
(73) Assignee: EMC Corporation, Hopkinton, MA 248, 2005 * o ]
(US) Varma et al, “Java through C Compilation: An enabling technology
for Java in embedded systems”, IEEE Date, pp. 1-6, 2004.*
(*) Notice:  Subject to any disclaimer, the term of this pH;nltégRﬁt;Ig%i%V: technology in avionics systems”, ACM JTRES,
patent is extended or adjusted under 35 Teﬁper;) et ’al, “An empricial study of overriding in open source
U.S.C. 154(b) by 932 days. Java”, ACM, pp. 3-12, 2010.%
Fleischmann et al, “A hardware/software prototyping environment
(21) Appl. No.: 12/570,716 for dynamically reconfigurable embedded systems”, IEEE, pp. 1-5,
1998.*
(22) Filed: Sep. 30, 2009
* cited by examiner
(51) Int.ClL
GO6F 9/44 (2006.01) Primary Examiner — Anil Khatri
GO6F 9/45 (2006.01) (74) Attorney, Agent, or Firm — Krishnendu Gupta; Jason A.
(52) US.CL Reyes; Daniel P. McLoughlin
USPC . 717/118; 717/108; 717/116
(58) Field of Classification Search 7 ABSTRACT
USPC e 717/108, 114711.8, 120-122 Managing user interface characteristics in displaying data
See application file for complete search history. storage system information. New functionality may be pro-
(56) Ref Cited vided that can effect look-and-feel skinning for OEM and
eferences Cite

U.S. PATENT DOCUMENTS

client customization. Extensions to conventional Java Synth
Look-and-Feel technology for support of OEM and client
customization may be enabled. Multiple Synth XML files can

6,342,907 B1*  1/2002 Pelly etal. ..o 715/762  bemerged, e.g., on the fly, and form one Synth XML file. One
6,763,343 B1* 7/2004 Brookeetal. .. . 717/115 . .
N primary Synth XML file may be provided and any Style
6,976,020 B2* 12/2005 Anthonyetal. ........ccccccoueenn 1 X R
7,055,132 B2*  5/2006 Bogdan etal. ... 717116 element.s defined in secondaljy XML ﬁles may override cor-
7,076,766 B2* 7/2006 Wirtsetal. .......c......... 717/121 responding Style elements in the primary XML file. For
7,165,239 B2 : 1/2007 Hejlsbergetal. ............. 717/114 example, an OEM customer can define one Button Style in a
7,194,729 B2*  3/2007 Stoneetal. ... 717/108 secondary (customer’s) XML file, and this definition can be
7,194,730 B2*  3/2007 Pramberger ................ 717/120 detected at t d d . XML file’s But
7,200,838 B2*  4/2007 Kodosky etal. .............. 717/116 ctected at runtime and overriaes a primary €'s bul-
7367,014 B2*  4/2008 Griffin ............. 717107 ton Style, resulting in the OEM look and feel.
7451472 B2* 11/2008 Williams ..... .. 725/107
7,565,640 B2* 7/2009 Shuklaetal. ............ 717/105 16 Claims, 6 Drawing Sheets
100~
PROPERTIES
FILE LOOKANDFEEL PRy
LOGIC 105 115
110 - L)
PROPERTIES UIDEFAULTS XML FILE
FILE TABLE LOGIC
135 25
SECONDARY
XML FILE
130




U.S. Patent Jun. 25,2013 Sheet 1 of 6 US 8,473,905 B1

10—~ 12 16
/ 20 /
DATA STORAGE / MANAGEMENT
SYSTEM SYSTEM
18
/
143 14b 14n
/ / /
HOST-1 HOST-2 v HOST-n

FIG. 1



U.S. Patent

100\

Jun. 25, 2013 Sheet 2 of 6
PROPERTIES
FILE _ | LOOKANDFEEL §
LOGIC g 105 B
119 —
A A
Y
PROPERTIES UIDEFAULTS
FILE TABLE
135 120

US 8,473,905 B1

FIG. 2

PRIMARY
XML FILE
115

A

v

XML FILE
LOGIC
125

ﬂl

SECONDARY
XML FILE
130




US 8,473,905 B1

Sheet 3 of 6

Jun. 25, 2013

U.S. Patent

€ Old

obessajy | wejshs | v
] ~% Auenag Aq sualy
QVN_EBSO/\
sysly swa}shg Aewiwng

| speojumog | wog | ueeg | jouep|[ preoqyseg]] [ < | > |

XXX'X  9pojy Jusudojeas( X4

I

—
———

==




US 8,473,905 B1

Sheet 4 of 6

Jun. 25, 2013

U.S. Patent

v 'Old

abessayy | wajshs | v
=]+ Auensg Aq susly
@zwoisnD)
spoly | swalsAg Arewwng

lead | s|ddy | wnid || pieogyseq

<

7

XX'X'X  8pojy juswdojaas x4

——

Bl[=]




US 8,473,905 B1

Sheet 5 of 6

Jun. 25, 2013

U.S. Patent

g Old

vOf  [eJoUdD) - SSLOSIADY [BdIUYda [

Z_ N

B

‘uoneinByuos ws)shs
abelo}s 8y} Jo s)els 8y} suwIsep
diay 0} sy98y0 uonepijen jjeysur-aid

i <ﬁ!1\\||/

sjoo ]|

sunJ pue Aloyisodal uoneunssp @ [(~)

B 0} 8JEM]J0S PBJ03|as SPeojuMO(]

sal4 sepeiBdn NOIYY1O peojumoq

X3

TG0 ] Um0
UID0T WRJSAS

°IfT =1

syse] peojumoq yuiamod || ]Il

SCTRENR)

[~[ 8igeiebap Q] :wajshs

[sBumas [speojum omm_ ulo) | ueag |youed fpieoqyseq| | < | > ]

&=

X XXX 8pojy Juswdojeas(] X4

e —————————
P b — e et —




US 8,473,905 B1

Sheet 6 of 6

Jun. 25, 2013

U.S. Patent

9 9Old

} NN T
. awepN
=9 dIvdlsedA] aivy [ Jor BT ]
v O [eJaUSE) - SALIOSIAPY [edIuyd8 |
¥
] ‘uoijelnBlyuos waysks
—1  9belIo}s 8y} jo Ble}s ay) suiwLs}ap
diay 0} )98y uonepyjen jejsui-aid —
suni pue Aloysodal uoeurisep @ [ s|o0] |
1 B 0] S4eM)OS PaJISIas SPeojuUMO( ~ -
£ JIX3
seli4 sepeiBdn NOIEY1D peojumoq UIBo | JUI[IaMmog
M ................................................................... Ql_qnluﬂ_%
® S)Se| peojumog] yulamod || || suonosuuo))

[~ 8|ge1ebep O] :weishg

| sbunjeg [Speo[umoq] | o) | ueeg|1oue) pieogyseqf | < | > |

XX'X'X  8apojy Juswdojgas(g X4

R




US 8,473,905 B1

1
MANAGING USER INTERFACE
CHARACTERISTICS IN DISPLAYING DATA
STORAGE SYSTEMS INFORMATION

BACKGROUND

1. Field of the Invention

The present invention relates to managing user interface
characteristics in displaying data storage system information.

2. Description of Prior Art

Information services and data processing industries in gen-
eral have rapidly expanded as a result of the need for com-
puter systems to manage and store large amounts of data. As
an example, financial service companies such as banks,
mutual fund companies and the like now, more than ever
before, require access to many hundreds of gigabytes or even
terabytes of data and files stored in high capacity data storage
systems. Other types of service companies have similar needs
for data storage.

Data storage system developers have responded to the
increased need for storage by integrating high capacity data
storage systems, data communications devices (e.g.,
switches), and computer systems (e.g., host computers or
servers) into so-called “storage networks” or “Storage Area
Networks” (SANs.)

In general, a storage area network is a collection of data
storage systems that are networked together via a switching
fabric to a number of host computer systems operating as
servers. The host computers access data stored in the data
storage systems (of a respective storage area network) on
behalf of client computers that request data from the data
storage systems. For example, according to conventional
applications, upon receiving a storage access request, a
respective host computer in the storage area network accesses
a large repository of storage through the switching fabric of
the storage area network on behalf of the requesting client.
Thus, via the host computer (e.g., server), a client has access
to the shared storage system through the host computer. In
many applications, storage area networks support hi-speed
acquisitions of data so that the host servers are able to
promptly retrieve and store data from the data storage system.

Conventional storage area network management applica-
tions typically include a graphical user interface (GUI) that
enables a network manager to graphically manage, control,
and configure various types of hardware and software
resources associated with a corresponding managed storage
area network. For example, one conventional storage man-
agement application generates a graphical user interface uti-
lized by a storage administrator to graphically select, interact
with, and manage local or remote devices and software pro-
cesses associated with the storage area network. Based on use
of the graphical user interface in combination with an input
device such as a hand operated mouse and corresponding
pointer displayed on a viewing screen or other display, a
storage administrator is able to manage hardware and soft-
ware entities such as file systems, databases, storage devices,
volumes, peripherals, network data communications devices,
etc., associated with the storage area network. Consequently,
a storage management station and associated management
software enables a storage administrator (a person respon-
sible for managing the storage network) to manage the stor-
age area network and its resources.

One example of this kind of graphical user interface
includes a screen presentation that may include toolbars with
accompanying menus and menu items as well as displays
such as graphs, tables, maps or trees.

20

25

30

35

40

45

50

55

60

65

2

With respect to the GUI, people today use the World Wide
Web for a variety of different and diverse tasks for example
locating information, ordering and buying goods on-line and
managing their finances. Many users expect that these appli-
cations will operate regardless of what type of computer
platform is used.

Java technology helps provide a solution by allowing the
creation of computer platform independent programs. Java is
a registered trademark of Oracle and/or its affiliates. Other
names used herein may be trademarks of their respective
owners. The Java technology includes an object oriented pro-
gramming language and a platform on which to run the Java
applications. Java is both a compiled and an interpreted lan-
guage. The source code that has been written by the applica-
tion developer is compiled into an intermediate form called a
Java bytecode, which is a platform independent language. At
a client machine, the java bytecodes are interpreted by the
Java platform and the Java interpreter parses and runs each
Java bytecode instruction on the computer. (If the Java byte-
code is run as a applet, it may first be sent over the network to
the client machine.)

The Java platform includes the Application Programming
Interface (API), which is a large collection of ready-made
software components, which provide a variety of capabilities,
and the Java Virtual Machine (JVM) which will be explained
in the paragraph below. Together the JVM and the API sit on
top of the hardware based computer platform and provide a
layer of abstraction between the Java program and the under-
lying hardware.

The JVM is made up of software, which can run a Java
program on a specific computer platform of a client machine.
Before a Java program can be run on a JVM, the Java program
must first be translated into a format that the JVM recognizes,
which is called a Java class file format. The Java class file
format contains all the information needed by a Java runtime
system to define a single Java class.

The creation of Java GUIs is currently implemented with
the Java Swing package. Previously, the Abstract Windows
Toolkit (AWT) library was available for working with graph-
ics. This package contains a simple set of classes such as
Buttons, TextField, Label and others. A more advanced set of
classes is contained in the later introduced library called
Swing. Swing, like AWT, is a package that also includes
buttons, text fields, and other classes for providing window
controls.

In today’s web server environment, many alternatives are
provided for an application provided by a web server to inter-
act with a user at a client machine. One alternative may
include downloading a Java applet from a web server to a
client. The Java applet typically includes library calls from
the Java Platform software development toolkit (SDK). The
Java applet contains computer instructions written in the Java
language which are executed by a JVM resident on the client
machine to interact with a user of the client machine. Execut-
ing such computer instructions on the client machine lowers
the capacity requirements of a web server and the bandwidth
to communicate the results of those instructions from the web
server to the client. When a Java applet renders user interface
screens on a client machine, it typically calls a class named
LookAndFeel to make each user interface screen rendered by
the Java applet consistent with other user interface screens
generated by the same Java applet. Utilizing the LookAnd-
Feel class, for example, a Java applet may readily set the
foreground, background, and font properties for each screen
the Java applet renders to the user.

Each LookAndFeel class has a list of User Interface
Defaults (Ul defaults) used to initialize Java components with



US 8,473,905 B1

3

defaults such as default fonts, colors, icons, and borders. For
the UI defaults, a large hash table UlDefaults is provided
which can be accessed using a getDefaults( ) method. When
initialized, the LookAndFeel class gets its entire definition
from a single XML file config.xml and initially populates the
UlDefaults table based on the contents of the XML file.

A getDefaults( ) method can be called on a LookAndFeel
object. Entries in the hash table use String keys and values of
types such as type Boolean, Integer, String, Border, Color,
Icon, and Font. A generic get( ) method on UIDefaults returns
an Object value. If a new value is put into the table using a
defaults.put method before components are constructed, the
new value can affect how those components are initialized.
Thus, changing a default value in the table only affects future
component construction, and does not affect not components
already built and initialized.

SUMMARY OF THE INVENTION

A method is used in managing user interface characteris-
tics in displaying data storage system information. A user
editable file is provided that includes a definition that affects
alook and feel of a user interface of a Java application. Based
on the user editable file, Java technology is driven to update
only a subset of a Java user interface defaults table for use
with the Java application.

BRIEF DESCRIPTION OF THE DRAWINGS

Features and advantages of the present invention will
become more apparent from the following detailed descrip-
tion of exemplary embodiments thereof taken in conjunction
with the accompanying drawings in which:

FIG. 1 is an example of an embodiment of a system that
may utilize the techniques described herein;

FIG. 2 is an example of components that may be included
in the system for use in performing the techniques herein; and

FIGS. 3-6 are example of graphical user interface screens
for use in performing the techniques herein.

DESCRIPTION OF EMBODIMENT(S)

Described below is a technique for use in managing user
interface characteristics in displaying data storage system
information. In accordance with the technique, new function-
ality may be provided that, in at least one implementation, can
effect look and feel skinning for OEM and client customiza-
tion. In particular, the technique helps enable an extension to
conventional Java Synth Look and Feel technology for sup-
port of OEM and client customization.

Conventionally, as is known in the art, Java Synth uses a
single XML file config.xml which defines how components
should be painted. The XML file includes Style elements
which are bound to individual regions such as Buttons and
TextField. The Style elements define how individual parts of
the component should be painted, including, for example,
background and border.

By contrast, in accordance with the technique herein, mul-
tiple Synth XML files can be merged, e.g., on the fly, and form
one Synth XML file. In at least one implementation, one
primary Synth XML file is provided and any Style elements
defined in secondary XML files override corresponding Style
elements in the primary XML file. For example, an OEM
customer can define one Button Style in a secondary (cus-
tomer’s) XML file, and this definition is detected at runtime
and overrides a primary XML file’s Button Style, resulting in
the OEM look and feel.

20

25

30

35

40

45

50

55

60

65

4

Also in accordance with the technique, OEM customiza-
tion can be achieved through use of a properties file. The
properties file is read, and based on a type of an object and a
value defined in the properties file, a UlDefaults table is
updated which gives the OEM customer the desired look and
feel. An example of definitions in a properties file is provided
below:

Button.Background=<Color>Blue
Table.Border=<Border>4
Table.RowHight=<Integer>20

Referring now to FIG. 1, shown is an example of an
embodiment of a computer system that may be used in con-
nection with performing the technique described herein. The
computer system 10 includes one or more data storage sys-
tems 12 connected to host systems 14a-14#» through commu-
nication medium 18. The system 10 also includes a manage-
ment system 16 connected to one or more data storage
systems 12 through communication medium 20. In this
embodiment of the computer system 10, the management
system 16, and the N servers or hosts 14a 14n may access the
data storage systems 12, for example, in performing input/
output (I/0O) operations, data requests, and other operations.
The communication medium 18 may be any one or more of a
variety of networks or other type of communication connec-
tions as known to those skilled in the art. Each of the com-
munication mediums 18 and 20 may be a network connection,
bus, and/or other type of data link, such as a hardwire or other
connections known in the art. For example, the communica-
tion medium 18 may be the Internet, an intranet, network or
other wireless or other hardwired connection(s) by which the
host systems 14a 14» may access and communicate with the
data storage systems 12, and may also communicate with
other components (not shown) that may be included in the
computer system 10. In one embodiment, the communication
medium 20 may be a LAN connection and the communica-
tion medium 18 may be an iSCSI or fibre channel connection.

Each of the host systems 14a-14» and the data storage
systems 12 included in the computer system 10 may be con-
nected to the communication medium 18 by any one of a
variety of connections as may be provided and supported in
accordance with the type of communication medium 18.
Similarly, the management system 16 may be connected to
the communication medium 20 by any one of variety of
connections in accordance with the type of communication
medium 20. The processors included in the host computer
systems 14a-14r and management system 16 may be any one
of'a variety of proprietary or commercially available single or
multi-processor system, such as an Intel-based processor, or
other type of commercially available processor able to sup-
port traffic in accordance with each particular embodiment
and application.

It should be noted that the particular examples of the hard-
ware and software that may be included in the data storage
systems 12 are described herein in more detail, and may vary
with each particular embodiment. Each of the host computers
14a-14n, the management system 16 and data storage sys-
tems may all be located at the same physical site, or, alterna-
tively, may also be located in different physical locations. In
connection with communication mediums 18 and 20, a vari-
ety of different communication protocols may be used such as
SCSI, Fibre Channel, iSCSI, and the like. Some or all of the
connections by which the hosts, management system, and
data storage system may be connected to their respective
communication medium may pass through other communi-
cation devices, such as a Connectrix or other switching equip-
ment that may exist such as a phone line, a repeater, a multi-
plexer or even a satellite. In one embodiment, the hosts may



US 8,473,905 B1

5

communicate with the data storage systems over an iSCSI or
fibre channel connection and the management system may
communicate with the data storage systems over a separate
network connection using TCP/IP. It should be noted that
although FIG. 1 illustrates communications between the
hosts and data storage systems being over a first connection,
and communications between the management system and
the data storage systems being over a second different con-
nection, an embodiment may also use the same connection.
The particular type and number of connections may vary in
accordance with particulars of each embodiment.

Each of the host computer systems may perform different
types of data operations in accordance with different types of
tasks. In the embodiment of FIG. 1, any one of the host
computers 14a-14n may issue a data request to the data stor-
age systems 12 to perform a data operation. For example, an
application executing on one of the host computers 14a-14n
may perform a read or write operation resulting in one or
more data requests to the data storage systems 12.

The management system 16 may be used in connection
with management of the data storage systems 12. The man-
agement system 16 may include hardware and/or software
components. The management system 16 may include one or
more computer processors connected to one or more 1/O
devices such as, for example, a display or other output device,
and an input device such as, for example, a keyboard, mouse,
and the like. A data storage system manager may, for
example, view information about a current storage volume
configuration on a display device of the management system
16.

An embodiment of the data storage systems 12 may
include one or more data storage systems. Each of the data
storage systems may include one or more data storage
devices, such as disks. One or more data storage systems may
be manufactured by one or more different vendors. Each of
the data storage systems included in 12 may be inter-con-
nected (not shown). Additionally, the data storage systems
may also be connected to the host systems through any one or
more communication connections that may vary with each
particular embodiment and device in accordance with the
different protocols used in a particular embodiment. The type
of communication connection used may vary with certain
system parameters and requirements, such as those related to
bandwidth and throughput required in accordance with a rate
of 1/0 requests as may be issued by the host computer sys-
tems, for example, to the data storage systems 12.

It should be noted that each of the data storage systems may
operate stand-alone, or may also be included as part of a
storage area network (SAN) that includes, for example, other
components such as other data storage systems.

Each ofthe data storage systems of element 12 may include
a plurality of disk devices or volumes. The particular data
storage systems and examples as described herein for pur-
poses of illustration should not be construed as a limitation.
Other types of commercially available data storage systems,
as well as processors and hardware controlling access to these
particular devices, may also be included in an embodiment.

Servers or host systems, such as 14a-14n, provide data and
access control information through channels to the storage
systems, and the storage systems may also provide data to the
host systems also through the channels. The host systems do
not address the disk drives of the storage systems directly, but
rather access to data may be provided to one or more host
systems from what the host systems view as a plurality of
logical devices or logical volumes (LVs). The LVs may or
may not correspond to the actual disk drives. For example,
one or more LVs may reside on a single physical disk drive.

20

25

30

35

40

45

50

55

60

65

6

Data in a single storage system may be accessed by multiple
hosts allowing the hosts to share the data residing therein. An
LV or LUN (logical unit number) may be used to refer to one
of the foregoing logically defined devices or volumes.

Referring now to FIG. 2, shown is an example 100 of
components that may be used in connection with the tech-
nique described herein, particularly in connection with pro-
viding a Java based GUI for use with management system 16.
In at least one implementation, Lookandfeel class 105, pri-
mary XML file 115, and UlDefaults table 120 are conven-
tional Java functionality that are used as described herein. In
accordance with the technique, before class 105 is initiated,
XML file logic 125 may be used to update the contents of file
115 based on secondary XML file 130 as described herein. In
such a case, when class 105 is initiated, it gets its entire
definition from file 115 and populates table 120 based on the
updated contents of file 115.

Also in accordance with the technique, properties file logic
110 may be used to cause Lookandfeel class 105 to update
UlDefaults table 120 based on information from properties
file 135 as described herein. Once logic 110 uses a default-
s.put method of class 105 to put a new value or object into
table 120, the new value or object affects how related com-
ponents are initialized thereafter.

FIGS. 3-4 illustrate an example of using Synth XML ele-
ments of file 115 to change a button font and font size. When
a Java application starts up, before applying the look and feel
using class 105, the application identifies file 115 (e.g., Ecue-
Synth.xml) and checks whether there are any secondary XML
files 130 (e.g., CustomOEM.xml). If file 130 is found, the
application uses logic 125 (which may be included in the
application or in a separate framework) to read files 115, 130
and merge them together to form an updated version of file
115. The updated version is then used by class 105 to create
the look and feel.

During the merge, logic replaces <bind . . . > elements that
are present in file 115 with corresponding new elements that
are present in file 130 and adds a new <style> element to file
115, which is used to change the font and size of the font on
a button.

Ifthere areno files 130, by default file 115 is used as normal
to create the look and feel.

FIG. 3 illustrates an example of output if there are no files
130. As shown in FIG. 3, on a “Customize” button, for
example, the text of the word “Customize” has a standard font
with a medium font size.

The font and font size of the button text can be changed,
e.g., by the OEM customer, by providing an XML code snip-
pet such as the following in file 130.

<synth>
<style id="Button Style”>
<state>
<font name="Arial” size="20"/>
<color type=“FOREGROUND” value="#000000"/>
<color type="BACKGROUND?” value="#FFFFFF”/>
</state>
<state value="DISABLED”>
<color type="TEXT_FOREGROUND”
value="#A0AQ0A0”/>
</state>
</style>
<bind style="Button Style” type="region”
key="Button™/>
</synth>
Once the application starts up, it picks up file 130 and

merges it with file 115. In particular, logic 125 replaces the
<bind style="Button Style” type="region” key="Button”/>



US 8,473,905 B1

7

tag in file 115 with the new one provided and adds the new
<style . . . > tag content provided.
FIG. 4 illustrates that the font and font size have been
changed on the buttons as a result of file 130.
FIGS. 5-6 illustrate an example of using properties file 135
to change output, e.g., an image, based on custom properties.
First the application starts up and applies the look and feel,
and then checks for custom properties in file 135 and uses
logic 110 to replace key value pairs present in the UlDefaults
table. FIGS. 5-6 illustrate results of replacing a collapsed
collapsible pane down arrow image with an ellipses ( . . . )
image.
Without file 135, when the application is run, the collaps-
ible pane has the down arrow image when it is collapsed, as
shown in FIG. 5.
To change the down arrow of the collapsed collapsible pane
to the ellipses image, a CollapsiblePane.downlcon property is
added, e.g., by an OEM or user, in file 135, e.g., as follows:
CollapsiblePane.downlcon=image:/com/emc/ecuelaf/re-
sources/images/Splitter Thumb.gif
In at least one implementation, file 135 is named Custom-
LAF.properties and is expected to be found in a resources
folder or directory as follows:
com/emc/services/lafservice/resources/CustomLAF.proper-
ties
FIG. 6 illustrates a new version of the collapsed collapsible
pane which uses the ellipses image as result oflogic 110 using
the defaults.put method of class 105 to apply file 135.
One or more implementations may have one or more of the
following features. Logic 110 and/or logic 125 may expose
only a limited subset of objects or values of table 120 to
change, to help avoid corruption or other undesirable results.
Logic 110 and/or logic 125 may expose any component of the
application to change, e.g., scroll bar. The properties file may
be structured to be accessed by key and value. Changes to
table 120 may be made in a particular order or priority. For
example, a first set of changes based on file 130 may be made
before a second set of changes based on file 135, so that the
second set can override the first set. In another example, a
second properties file may be provided, e.g., by a customer or
end user, and changes based on the second properties file may
be made after changes based on file 135.
While the invention has been disclosed in connection with
preferred embodiments shown and described in detail, their
modifications and improvements thereon will become readily
apparent to those skilled in the art. Accordingly, the spirit and
scope of the present invention should be limited only by the
following claims.
What is claimed is:
1. A method of executing a Java application by a processor
comprising:
providing a user editable file that includes a definition that
affects a look and feel of a user interface of a the Java
application, wherein the user-editable file is a first Java
Synth configuration XML file;

based on the user editable file, driving Java technology to
update only a subset of a Java user interface defaults
table for use with the Java application, including:

deriving, from the user editable file and second Java Synth
configuration XML file, an updated second Java Synth
configuration XML file, including using Style elements
defined in the user-editable file to override correspond-
ing Style elements in the second Java Synth configura-
tion XML file,

wherein the Java technology uses the updated second Java

Synth configuration XML file to initially populate the
Java user interface defaults table; and

10

20

25

30

35

8

controlling a display of data storage system information
with user interface characteristics affected by the
updated subset.

2. The method of claim 1, further comprising:

based on the user editable file, causing the update to occur
after the Java technology uses a Java Synth configuration
XML file to initially populate the Java user interface
defaults table.

3. The method of claim 1, further comprising:

merging Java Synth configuration XML files to form a new
Java Synth configuration XML file.

4. The method of claim 1, further comprising:

reading a properties file; and

based on a type of an object and a value defined in the
properties file, updating a UlDefaults table is to give a
desired look and feel.

5. The method of claim 1, further comprising:

before applying look and feel, identifying a Java Synth
configuration XML file and checking whether any other
Java Synth configuration XML files are found.

6. The method of claim 1, further comprising:

replacing <bind. .. > elements that are present in a first Java
Synth configuration XML file with corresponding new
elements that are present in a second Java Synth con-
figuration XML file.

7. The method of claim 1, further comprising:

exposing only a limited subset of contents of UlDefaults
table to change.

8. The method of claim 1, further comprising:

based on a properties file, making a first set of changes to a
UlDefaults table before making a second set of changes
to the UlDefaults table.

9. The method of claim 1, further comprising:

after making a first set of changes to a UlDefaults table
based on a first properties file, making a second set of
changes to the UlDefaults table based on a second prop-
erties file.

10. A system for executing a Java application comprising a

40 processor configured with logic to:

45

55

60

65

provide a user editable file that includes a definition that
affects a look and feel of a user interface of a Java
application, wherein the user-editable file is a first Java
Synth configuration XML file;

based on the user editable file, drive Java technology to
update only a subset of a Java user interface defaults
table for use with the Java application, including:

deriving, from the user editable file and second Java Synth
configuration XML file, an updated second Java Synth
configuration XML file, including using Style elements
defined in the user-editable file to override correspond-
ing Style elements in the second Java Synth configura-
tion XML file,

wherein the Java technology uses the updated second Java
Synth configuration XML file to initially populate the
Java user interface defaults table; and

control a display of data storage system information with
user interface characteristics affected by the updated
subset.

11. The system of claim 10, wherein the processor is fur-

ther configured with logic to:

cause, based on the user editable file, the update to occur
after the Java technology uses a Java Synth configuration
XML file to initially populate the Java user interface
defaults table.

12. The system of claim 10, wherein the processor is fur-

ther configured with logic to:



US 8,473,905 B1

9

merge Java Synth configuration XML files to form a new
Java Synth configuration XML file.
13. The system of claim 10, wherein the processor is fur-
ther configured with logic to:
read a properties file; and
update, based on a type of an object and a value defined in
the properties file, a UIDefaults table is to give a desired
look and feel.
14. The system of claim 10, wherein the processor is fur-
ther configured with logic to:
identify, before applying look and feel, a Java Synth con-
figuration XML file and checking whether any other
Java Synth configuration XML files are found.
15. The system of claim 10, wherein the processor is fur-
ther configured with logic to:
replace <bind . . . > elements that are present in a first Java
Synth configuration XML file with corresponding new
elements that are present in a second Java Synth con-
figuration XML file.
16. The system of claim 10, wherein the processor is fur-
ther configured with logic to:
expose only a limited subset of contents of UlDefaults
table to change.

20

10



