PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification © : (11) International Publication Number: WO 98/45782
GO6F 11/00 Al . o
(43) International Publication Date: 15 October 1998 (15.10.98)
(21) International Application Number: PCT/US98/06827 | (81) Designated States: JP, KR, European patent (AT, BE, CH, CY,
DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,
(22) International Filing Date: 7 April 1998 (07.04.98) SE).
(30) Priority Data: Published
60/043,070 8 April 1997 (08.04.97) Us With international search report.
08/992,361 17 December 1997 (17.12.97) US

(71) Applicant: ADVANCED MICRO DEVICES, INC. [US/US];
One AMD Place, Mail Stop 68, Sunnyvale, CA 94088-3453
(US).

(72) Inventor: MANN, Daniel, P.; Apartment 2903, 3816 Lamar,
Austin, TX 78704 (US).

(74) Agent: MILLER, Louise, K.; Advanced Micro Devices, Inc.,
5204 East Ben White Boulevard, M/S 562, Austin, TX
78741 (US).

(54) Title: DEBUG INTERFACE INCLUDING A COMPACT TRACE RECORD STORAGE

IRACE RECORD [20:0)
pATA &2 UDB-DATA[31:0) oy 14
STEERING CPU-DATA-OUT[31:0)| CORE 0EBYG
DEBuG pPoRT LA RECOpE WR-UDB~CN MPS
wacme 2 ey | 1A Ao PENDG
i | || e RD-yDB-CHD—"1
DONE CPU-QUI-SE[5:0),
o cru-FisHED cun. | RENGE 202 [TRA
ARALLEL. PORT COMMAND []| JTAS m STATE MACHINE
STATE 226 DECODE 208
i MACHINE I 1 I
nom‘l -
S JTAG TAP TRACE
I .| CONTROLLER - L—— IN%?F,AGCEZE
lqsm'_"s 24 smcnnomunonﬁ —gHe2 | -
Y- gR| CROUT | cayy PH2 mégfj
R
DEpUG 210
REGISTERS =7
sTE‘_ﬁJo —REC~WRI
RIAL
besg 22
STATE MACHINE
FENDING
| fsaep 24
STATE WACHINE

(57) Abstract

In—circuit emulation (ICE) and software debug facilities are included in a processor via a debug interface that interfaces a target
processor to a host system. The debug interface, located on the target processor, includes a trace controller that monitors signals produced
by the target processor to detect specified conditions and to produce a trace record of the specified conditions including a notification of
the conditions and selected information relating to the conditions. The trace controller formats a trace information record and stores the
trace information record in a trace buffer in a plurality of trace data storage elements. The trace data storage elements have a format that
includes a trace code (TCODE) field indicative of a type of trace information and a trace data (TDATA) field indicative of a type of trace
information data.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CcM
CN
Cu
CZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

ITceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
™D
TG
TJ
™
TR
T
UA
UG
Us
Uz
VN
YU
VA4

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

WO 98/45782 PCT/US98/06827

DEBUG INTERFACE INCLUDING A COMPACT TRACE RECORD STORAGE

RELATED APPLICATIONS

This application claims priority to United States application Serial No. 60/043,070, filed April 8,
1997, which is hereby incorporated by reference.

TECHNICAL FIELD

The present invention relates to computer systems such as microprocessors. More specifically, the

present invention relates to a software debug support system and operating method in processors.

BACKGROUND ART

The growth in software complexity, in combination with increasing processor clock speeds, has
placed an increasing burden on application software developers. The cost of developing and debugging new
software products is now a significant factor in processor selection. A failure to include adequate software
debug functionality in a processor results in longer customer development times and reduces attractiveness of
the processor for use within industry. Software debug support is particularly useful in the embedded products

industry, where specialized on-chip circuitry is often combined with a processor core.

The software debug tool configuration of a processor addresses the needs of several parties in addition
to the software engineer who develops program code for execution on the processor. A “trace” algorithm
developer searches through captured software trace data that reflects instruction execution flow in a processor.
An in-circuit emulator developer deals with problems of signal synchronization, clock frequency and trace
bandwidth. A processor manufacturer seeks a software debug tool solution that avoids an increased processor

cost or design and development complexity.

In the desktop systems, complex multitasking operating systems are currently available to support
software debugging. However, the initial task of getting the operating systems running reliably often calls for
special development equipment. While not standard in the desktop environment, development equipment such
as logic analyzers, read-only memory (ROM) emulators, and in-circuit emulators (ICE) are sometimes used in
the embedded industry. In-circuit emulators have some advantages over other debug environments including
complete control and visibility over memory and register contents, and supplying overlay and trace memory if

system memory is insufficient.

Traditional in-circuit emulators are used by interfacing a custom emulator back-end with a processor
socket to allow communication between emulation equipment and the target system. The custom design of
emulator interfaces in increasingly unrealistic and expensive as product life cycles are reduced and

nonstandard and exotic integrated circuit packages are predominant in present day processor design.

10

15

20

25

30

WO 98/45782 PCT/US98/06827

-2-

Few known processor manufacturing techniques are available that support a suitable full-function in-
circuit emulation functionality. Most processors in personal computer (PC) systems implement emulation
functionality using a multiplexed approach in which existing pins are multiplexed for alternative use in a
software debug application. Multiplexing of pins is not desirable in embedded controllers, which inherently
suffer from overload of pin functionality.

Some advanced processors multiplex debug pins in time, for example by using the address bus to
report software trace information during a Branch Target Address (BTA) cycle. The BTA-cycle is stolen from
regular bus operation cycles. However in debug environments with high branch activity and low cache hit
rates, BTA-cycles are often fully occupied handling branches, resulting in a conflict over access to the address
bus that necessitates processor “throttle back” to prevent a loss of instruction trace information. For example,
software in the communications industry is branch-intensive and suffers poor cache utilization often resulting
in 20% or more throttle back, an unacceptable amount for embedded products which are subject to real-time

constraints.

In another approach, a second “trace” or “slave” processor is combined with a main processor, with
the two processors operating in-step. Only the main processor fetches instructions. The second, slave
processor monitors fetched instructions on the data bus and maintains an internal state in synchronization with
the main processor. The address bus of the slave processor supplies trace information. After power-up, via a
JTAG (Joint Test Action Group) input, the second processor is switched into a slave mode of operation. The
slave processor, freed from instruction fetch duties, uses the slave processor address bus and other pins to

supply trace information.

Another existing debug strategy utilizes implementation of debug support into every processor in a
system, but only bonding-out signal pins in a limited number of packages. The bond-out versions of the
processor are used during debug and replaced with the smaller package for final production. The bond-out
approach suffers from the need to support additional bond pad sites in all fabricated devices, a burden in small
packages and pad limited designs, particularly if a substantial number of extra pins are required by the debug
support variant. Furthermore, the debug capability of specially-packaged processors is unavailable in typical

processor-based production systems.

In yet another approach, specifically the Background Debug Mode (BDM) implemented by Motorola,
Inc., limited on-chip debug circuitry is implemented for basic run control. The BDM approach utilizes a
dedicated serial link having additional pins and allows a debugger to start and stop the target system and apply
basic code breakpoints by inserting special instructions in system memory. Once halted, special commands are
used to inspect memory variables and register contents. The BDM system includes trace support, but not
conveniently using the serial link. Instead the BDM system supplies trace support through additional

dedicated pins and expensive external trace capture hardware that transfer instruction trace data.

10

15

20

25

30

WO 98/45782 PCT/US98/06827

-3-

Accordingly, present day techniques for software debugging suffer from a variety of limitations
including increased packaging and development costs, circuit complexity, processor throttling, and bandwidth
matching difficulties. Furthermore, no adequate low-cost procedure for providing trace information is
currently available. The limitations of the existing solutions are likely to be exacerbated in the future as

internal processor clock frequencies continue to increase.

What is needed is a software debug system and operating procedure that includes an improved trace

capability.

DISCLOSURE OF INVENTION

In-circuit emulation (ICE) and software debug facilities are included in a processor via a debug
interface that interfaces a target processor to a host system. The debug interface includes a trace controller that
monitors signals produced by the target processor to detect specified conditions and produce a trace record of
the specified conditions including a notification of the conditions are selected information relating to the
conditions. The trace controller formats a trace information record and stores the trace information record in a
trace buffer in a plurality of trace data storage elements. The trace data storage elements have a format that

includes a trace code (TCODE) field indicative of a type of trace information and a trace data (TDATA) field
indicative of a type of trace information data.

In accordance with an embodiment of the present invention, a debug interface in a target processor
interfaces the target processor to a host system. The debug interface includes a trace controller for connecting
to the target processor and receiving trace information from the target processor. The trace controller detects
selected trace information and formats samples of the selected trace information. The debug interface also
includes a trace buffer connected to the trace controller. The trace buffer includes a plurality of trace data
storage elements including a trace code (TCODE) field indicative of a type of trace information and a trace
data (TDATA) field indicative of a type of trace information data.

The trace buffer is highly useful in applications controiling field equipment. If an unexpected system
crash occurs, the trace buffer is examined to observe the execution history leading up to the crash event. When
used in portable systems or other environments in which power consumption is a concern, the trace buffer is
disabled by power management circuitry. A trace record is read from the trace buffer that includes a record of
trace events. A trace event is an action that causes trace records to be generated. Trace events are caused, for
example, by x86 instructions, instructions causing an exception, hardware interrupts, trace synchronization

events, activation or deactivation of trace capture, and events that change privilege level.

The described debug interface and associated operation method has many advantages. The compact
TCODE and TDATA formats efficiently store important operational information in a limited storage space.
The TCODE and TDATA formats are defined to produce a highly compressed record but still record a

substantial amount of useful diagnostic information.

10

15

20

25

WO 98/45782 PCT/US98/06827

BRIEF DESCRIPTION OF DRAWINGS

The present invention may be better understood, and its numerous objects, features, and advantages

made apparent to those skilled in the art by referencing the accompanying drawings.

FIGURE 1 is a schematic block diagram showing a software debug environment utilizing a software

debug port according to an embodiment of the present invention.

FIGURE 2 is a schematic block diagram illustrating details of an exemplary embedded processor

product incorporating a software debug port according to the present invention.

FIGURE 3 is a simplified block diagram depicting the relationship between an exemplary instruction

trace buffer and other components of an embedded processor product according to the present invention;

FIGURE 4 is a flowchart illustrating software debug command passing according to one embodiment

of the invention;

FIGURE § is a flowchart illustrating enhanced software port command passing according to a second

embodiment of the invention; and

FIGURES 6A - 6G illustrate the general format of a variety of trace buffer entries for reporting

instruction execution according to the invention.
FIGURE 7 is a state diagram illustrating states of a standard JTAG interface access operation.
FIGURE 8 is a state diagram illustrating states of an enhanced JTAG interface access operation.

FIGURE 9 is a timing diagram showing signal behavior for acquisition and release of a parallel
debug bus.

FIGURE 10 is a flow chart depicting a parallel debug port interface protocol followed by the host

system during communications via the parallel port.

The use of the same reference symbols in different drawings indicates similar or identical items.

MODES FOR CARRYING OUT THE INVENTION

Referring to FIGURE 1, a schematic block diagram illustrates a software debug environment
utilizing a debug port 100. A target system 101 is shown containing an embedded processor device 102
coupled to system memory 106. The embedded processor device 102 is an integrated debug interface for
flexible, high-performance in an embedded hardware/software debug system. The embedded processor device

102 includes a processor core 104 and the debug port 100. In some embodiments, the embedded processor

10

15

20

25

30

WO 98/45782 PCT/US98/06827

-5.

device 102 may incorporate additional circuitry (not shown) for performing application specific functions, or
may take the form of a stand-alone processor or digital signal processor. In the illustrative embodiment, the

debug port 100 includes an IEEE-1149.1-1990 compliant JTAG interface or other similar standardized serial
port interface.

A host system 111 is used to execute debug control software 112 for transferring high-level
commands and controlling the extraction and analysis of debug information generated by the target system
101. The host system 111 and target system 101 of the disclosed embodiment of the invention communicate
via a serial link 110. Most computers are equipped with a serial or parallel interface which can be
inexpensively connected to the debug port 100 by means of a serial connector 108, allowing most computers to

function as a host system 111. In some embodiments, the serial connector 108 is replaced with higher speed

JTAG-to-network conversion equipment,

Referring to FIGURE 2, a schematic block diagram illustrates the embedded processor device 102 in
more detail, including the processor core 104 and various elements of the debug port 100 in an enhanced form.
The embedded processor device 102 includes a plurality of state machines that communicate messages and
data between a serial port of a JTAG TAP controller 204, a trace control circuit 218, and the processor core
104. In some embodiments, the embedded processor device 102 includes a parallel port 214 and the state

machines similarly establish communication between the parallel port 214, the trace control circuit 218, and

the processor core 104.

‘The state machines include a debug port state machine 206, a parallel port state machine 226, a
processor interface state machine 202, and a pending/finished state machine 224. The state machines read the
commands and data from the serial/parallel ports and direct decoding of the commands by a command decode
and processing block 208 logic. Some commands, such as a command for reading data from memory, utilize
processor core 104 intervention and are appropriately sent to the processor core 104, The state machines do
not accept further commands until execution of a previous command is complete. Once the command is

completed, a flag in a Debug Registers 210 block is asserted or an output pin is asserted to indicate command

completion to the host system 111.

A minimal embodiment of the debug port 100 supports only conventional JTAG pins in a fast JTAG
compliant interface that advantageously attains controllability and observability. The JTAG pins are a
transportation mechanism that use existing pins to enter commands for processing by the processor core 104.
Conventional JTAG pins carry conventional JTAG support signals that are well known in the art including a
test clock signal TCK, a test mode select signal TMS, a test data input signal TDI, and a test data output signal
TDO. The conventional JTAG pins are driven by a JTAG Test Access Port (TAP) controller 204.

The JTAG interface is enhanced to improve software debug capabilities and to transfer high-level

commands into the processor core 104, rather than to scan processor pins. The JTAG-compliant serial

10

15

20

25

30

35

WO 98/45782 PCT/US98/06827

-6-

interface is augmented for higher-speed access via supplemental sideband signals and a bond-out parallel
interface with a 16-bit data path. Specifically, four pins are added to an embedded processor device 102 that
supports JTAG functionality in a non-bondout package to fully support the enhanced 10-pin debug port 100
format. The enhanced embodiment of the debug port 100 supports the four additional pins carrying
“sideband” signals including a command acknowledge signal CMDACK, a break request/trace capture signal
BRTC, a stop transmit signal STOPTX, and a trigger signal TRIG to the standard JTAG interface. The
additional sideband signals advantageously enhance performance and functionality of the debug port 100 by
attaining highly precise external breakpoint assertion and monitoring, by triggering external devices in
response to internal breakpoints, and by eliminating status polling of the JTAG serial interface. The sideband
signals offer extra functionality and improve communications speeds for the debug port 100, but are optional
and not utilized in the simplest embodiments of debug port 100 which uses conventional JTAG support
signals. In the illustrative embodiment the sideband signals are used with an optional parallel port 214

provided on special bond-out versions of the embedded processor device 102.

Using conventional JTAG signals, the JTAG TAP controller 204 accepts standard JTAG serial data
and control signals. When public TJAG DEBUG instruction is written to a JTAG instruction register, the
serial debug shifter 212 is connected to a serial interface formed by the JTAG TAP controller 204. A JTAG
test data input signal TDI and a test data output signal TDO are received by the serial debug shifter 212 via the
JTAG TAP controller 204 so that commands and data are loaded into debug registers 210 and read from the
debug registers 210. In the disclosed embodiment, the debug registers 210 include two debug registers for
transmitting (TX_DATA register) and receiving (RX_DATA register) data, an instruction trace configuration
register (ITCR), and a debug control status register (DCSR). Data are typically read from the JTAG TAP
controller 204 using a Capture DR - Update DR sequence in the JTAG TAP controller state machine.

The Instruction Trace Configuration Register (ITCR) is written to control enabling, disabling, and
configuration of Instruction Trace debug functions. The ITCR is accessed through the serial/parallel debug

register write/read commands or by using a reserved instruction LDTRC.

The Debug Control/Status Register (DCSR) indicates when the processor core 104 enters debug mode
and allows the processor core 104 to be forced into debug mode using the enhanced JTAG interface. DCSR
also includes miscellaneous control feature enables bits. DCSR is accessible only through the serial/parallel

debug register write/read commands.

A debug port state machine 206 coordinates loading and reading of data between the serial debug
shifter 212 and the debug registers 210. The debug port state machine 206 interfaces to the JTAG TAP
controller 204 via a parallel port state machine 226. A command decode and processing block 208, and the
processor interface state machine 202, in combination, decode commands and data and dispatch the commands
and data to a data steering circuit 222 which, in turn, communicates with the processor core 104 and trace

control circuit 218. The processor interface state machine 202 communicates directly with the processor core

10

15

20

25

30

WO 98/45782 PCT/US98/06827

-7

104 and a trace control circuit 218. A parallel port 214 communicates with the debug port state machine 206
and the data steering circuit 222 to perform parallel data read and write operations in optional bond-out

versions of the embedded processor device 102.

The trace control circuit 218 generates trace record information for reconstructing instruction
execution flow in the processor core 104. The trace control circuitry 218 interfaces to the processor core 104
and supports tracing either to a trace pad interface port 220, which is also called a DEBUG trace port 220, or
to an internal trace buffer 200 and implements user control for selectively activating and deactivating trace
functionality. The trace control circuitry 218 controls a trace pad interface port 220 which, in the illustrative
embodiment, shares communication lines of the parallel port 214. When utilized, the trace pad interface port
220 supplies trace data while the processor 104 is executing instructions, although clock synchronization and
other difficulties may arise. The trace control circuitry 218 enables other features including programmability

of synchronization address generation and user specified trace records.

The processor core 104 supplies the tracing information that is used to generate trace records. The
debug port interface 100 supplies the commands to enable and disable the trace function, and to turn trace
capture on and off via the ITCR. Commands to read the trace buffer come from the processor core 104. At
reset, tracing is disabled and trace capture is turned off. To begin generating trace records, tracing is enabled
and trace capture turned on. When the processor core 104 enters the debug mode, trace capture is turned off,
When the processor core 104 exits debug mode, trace capture status returns to the state prior to entering debug

mode.

Tracing is enabled by setting the GTEN bit in the ITCR. Tracing is disabled by resetting the GTEN
bit. When tracing is disabled, all trace records are discarded from the trace buffer 200. Trace capture is turned
on by setting the TRON bit in the ITCR. Trace capture is turned off by resetting the TRON bit. The TRON
bit is modified in one of several ways including directly writing to the TRON register, applying the break
request/trace capture signal BRTC if the BTRC is enabled in the DCSR to control trace capture, and via DRO-
DR3 register usage to turn trace capture on/off by enabling the option in the ITCR.

The disabling of trace gathering is advantageously a software option, reducing processor power
consumption and eliminating natural throttle-back tendencies. Trace gathering is enabled both from the host
system 111 and the target system 101. Trace information is not generated when the processor is operating in

Debug mode. All other modes may be "traced" if the appropriate switches are set.

When tracing is disabled, contents of the trace buffer 200 are lost. However, when commands or

trace/breakpoint control registers are used to temporarily stop/start trace accumulation, the trace buffer 200 is
not flushed.

The trace control circuit 218 operates in one of two modes, external trace mode and internal trace

mode, that differ in how the controller handles the trace records associated with trace events. The external

10

15

20

25

WO 98/45782 PCT/US98/06827

-8-

trace mode is available on a bondout chip. In external trace mode, trace records are sent to the trace port 220.
External trace mode is enabled by setting ITM=1 in the ITCR. The internal trace buffer temporarily stores

trace records that cannot be sent to the trace port at the same rate as the records are generated by the processor

core 104,

The internal trace mode is available on both a bondout and a non-bondout integrated circuit. In the
internal trace mode, trace records are stored in the internal trace buffer 200. The internal trace mode is
enabled by setting ITM=0 in the ITCR. The trace buffer 200 contents are accessed either through debug port
commands or through the enhanced x86 instruction STBUF.

The trace buffer 200 improves bandwidth matching and reduces the need to incorporate throttle-back
circuitry in the processor core 104. In one embodiment, the trace buffer 200 is a 256 entry first-in, first-out

(FIFO) circular cache. Increasing the size of the trace buffer 200 increases the amount of software trace

information that is captured.

When the processor core 104 takes a debug trap, the trace buffer might contain trace records. The
processor core 104 will continue to send trace records to the trace port 220 until the buffer is empty. If the
TBUS signals are shared with the parallel debug port 214, the trace port 220 does not switch to the parallel
port 214 until the trace buffer 220 is empty. The trace buffer 220 is functionally used as a circular buffer for
the internal trace mode of operation. Trace records overwrite existing data after 256 records are written into
the trace buffer 200.

The JTAG TAP controller 204 functions as an IEEE-1149.1-1990-compliant serial command port
that serves as a primary mode of communication between a host processor 111 and target processor to a
maximum TCK rate of 25MHz. Before debug information is communicated via the debug port 100 using only
conventional JTAG signals, the port 100 is enabled by writing the public JTAG instruction DEBUG into a
JTAG instruction register contained within the JTAG TAP controller 204. The JTAG instruction register is a
38-bit register including a 32-bit data field debug_data[31:0], a four-bit command field cmd([3:0] to point to
various internal registers and functions provided by the debug port 100, a command pending flag (P), and a
command finished flag (F). Some commands use bits of the debug_data field as a sub-field to extend the
number of available commands. The pending and finished flags are controlled by a pending/finished state

machine 224 that is connected to the JTAG TAP controller 204.

37 5 4 2 110

debug_data[31:0] cmd[3:0] PIF

JTAG Instruction Register

10

15

20

25

30

WO 98/45782 PCT/US98/06827

-9-

This JTAG instruction register is selected by toggling the test mode select signal TMS. The test mode
select signal TMS allows the JTAG clocking path to be changed in the scan path, enabling usage of multiple
paths of varying lengths. Preferably, the JTAG instruction register is accessible via a short path. This register
is configured to include a soft register for holding values to be loading or receiving from specified system

registers.

Referring now to FIGURE 3, a simplified block diagram depicts the relationship between an
exemplary instruction trace buffer 200 and other components of an embedded processor device 102. In one
embodiment, the trace buffer 200 is a 256 entry first-in, first-out (FIFO) circular cache that records the most
recent trace entries. Increasing the size of the trace buffer 200 increases the amount of instruction trace

information that is captured, although the amount of required silicon area may increase.

The trace buffer 200 stores a plurality of 20-bit (or more) trace entries indicative of the order in which
instructions are executed by the processor core 104. Other information, such as task identifiers and trace
capture stop/start information, is also placed in the trace buffer 200. The contents of the trace buffer 200 are
supplied to external hardware, such as the host system 111, via either serial or parallel trace pins 230.

Alternatively, the target system 101 can be configured to examine the contents of the trace buffer 200
internally.

Referring to FIGURE 4, a high-level flow chart illustrates a technique for passing a command when
using a standard JTAG interface. Upon entering debug mode in step 400 the DEBUG instruction is written to
the TAP controller 204 in step 402. In step 404, the 38-bit serial value is shifted in as a whole, with the
command pending flag set and desired data (if applicable, otherwise zero) in the data ficld. Control proceeds
to step 406 where the pending command is loaded/unloaded and the command finished flag checked.
Completion of a command typically involves transferring a value between a data register and a processor
register or memory/IO location. After the command has been completed, the processor 104 clears the
command pending flag and sets the command finished flag, at the same time storing a value in the data field if
applicable. The entire 38-bit register is scanned to monitor the command finished and command pending
flags. If the pending flag is reset to zero and the finished flag is set to one, the previous command has
finished. The status of the flags is captured by the debug port state machine 206. A slave copy of the flag
status is saved internally to determine if the next instruction should be loaded. The slave copy is maintained
due to the possibility of a change in flag status between TAP controller 204 states, allowing the processor 104

to determine if the previous instruction has finished before loading the next instruction.

If the finished flag is not set as determined in step 408, control proceeds to step 410 and the
loading/unloading of the 38-bit command is repeated. The command finished flag is also checked. Control
then returns to step 408. If the finished flag is set as determined in step 408, control returns to step 406 for

processing of the next command. DEBUG mode is exited via a typical JTAG process.

10

15

20

25

30

WO 98/45782 PCT/US98/06827

-10-

Returning to FIGURE 2, the optional sideband signals are utilized in the enhanced debug port 100 to
provide extra functionality. The optional sideband signals include a break request/trace capture signal BRTC
that functions as a break request signal or a trace capture enable signal depending on the status of bit set in the
debug control/status register. If set to function as a break request signal, the break request/trace capture signal
BRTC is asserted to cause the processor 104 to enter debug mode. The processor 100 is also stopped by
scanning in a halt command via the convention JTAG signals. If set to function as a trace capture enable
signal, asserting the break request/trace capture signal BRTC enables trace capture. Deasserting the signal
turns trace capture off. The signal takes effect on the next instruction boundary after the signal is detected and
is synchronized with the internal processor clock. The break request/trace capture signal BRTC is selectively

asserted at any time.

The trigger signal TRIG is configured to pulse whenever an internal processor breakpoint has been
asserted. The trigger signal TRIG may be used to trigger an external capturing device such as a logic
analyzer, and is synchronized with the trace record capture clock signal TRACECLK. When a breakpoint is
generated, the event is synchronized with the trace capture clock signal TRACECLK, after which the trigger
signal TRIG is held active for the duration of trace capture.

The stop transmit signal STOPTX is asserted when the processor 104 has entered DEBUG mode and
is ready for register interrogation/modification, memory or I/O reads and writes through the debug port 100.
In the disclosed embodiment of the invention, the stop transmit signal STOPTX reflects the state of a bit in the

debug control status register (DCSR). The stop transmit signal STOPTX is synchronous with the trace capture
clock signal TRACECLK.

The command acknowledge signal CMDACK is described in conjunction with FIGURE 5, which
shows a simplified command passing operation in the enhanced debug port 100 of FIGURE 2. A DEBUG
instruction is written to the TAP controller 204 in step 502 to place the target system 111 into DEBUG mode.
Control proceeds to step 504 and the command acknowledge signal CMDACK is monitored by the host system
111 to determine command completion status. The CMDACK signal is asserted high by the target system 111
simultaneously with the command finished flag and remains high until the next shift cycle begins. The
command finished flag status is accessible when using the command acknowledge signal CMDACK without
shifting out the JTAG instruction register. The command acknowledge signal CMDACK transitions high on
the next rising edge of the test clock signal TCK after the command finished flag has changed from zero to
one. When using the enhanced JTAG signals, a new shift sequence in step 506 is not started by the host
system 111 until the command acknowledge signal CMDACK pin is asserted high. The command
acknowledge signal CMDACK is synchronous with the test clock signal TCK. The test clock signal TCK is
not necessarily clocked at all times, but is ideally clocked continuously when waiting for a command

acknowledge signal CMDACK response.

WO 98/45782 PCT/US98/06827

-11-

OPERATING SYSTEM/APPLICATION COMMUNICATION VIA THE DEBUG PORT

Also included in debug register block 210 is an instruction trace configuration register (ITCR), a 32-
bit register for enabling/disabling and configuring instruction trace debug functions. Numerous functions are
contemplated including various levels of tracing, trace synchronization force counts, trace initialization,
instruction tracing modes, clock divider ratio information, as well as additional functions shown in the

following table. The ITCR is accessed through a JTAG instruction register write/read command as is the case

with the other registers of the debug register block 210, or via a reserved instruction.

BIT SYMBOL DESCRIPTION/FUNCTION

31:30 Reserved Reserved

29 RXINTEN Enables interrupt when RX bit is set

28 TXINTEN Enables interrupt when TX bit is set

27 X Indicates that the target system 111 is ready to transmit data to the
host system 111 and the data is available in the TX_DATA register

26 RX Indicates that data has been received from the host and placed in the
RX_DATA register ‘

25 DISLITR Disables level 1 tracing

24 DISLOTR Disables level 0 tracing

23 DISCSB Disables current segment base trace record

22:16 TSYNC[6:0] Sets the maximum number of Branch Sequence trace records that
may be output by the trace control block before a synchronizing
address record is forced

15 TSR3 Sets or clears trace mode on DR3 trap

14 TSR2 Sets or clears trace mode on DR2 trap

13 TSR1 Sets or clears trace mode on DR1 trap

12 TSRO Sets or clears trace mode on DRO trap

11 TRACE3 Enables Trace mode toggling using DR3

10 TRACE2 Enables Trace mode toggling using DR2

9 TRACE1 Enables Trace mode toggling using DR1

8 TRACEO Enables Trace mode toggling using DRO

7 TRON Trace on/off

6:4 TCLK][2:0] Encoded divider ratio between internal processor clock and
TRACECLK

3 I™ Sets internal or external (bond-out) instruction tracing mode

2 TINIT Trace initialization
Enables pulsing of external trigger signal TRIG following receipt of

WO 98/45782 PCT/US98/06827

-12-

1 TRIGEN any legacy debug breakpoint; independent of the Debug Trap Enable
function in the DCSR

0 GTEN Global enable for instruction tracing through the internal trace buffer
or via the external (bond-out) interface

Instruction Trace Configuration Register (ITCR)

Another debug register is the debug control/status register (DCSR) that designates when the processor
104 has entered debug mode and allows the processor 104 to be forced into DEBUG mode through the
enhanced JTAG interface. As shown in the following table, the DCSR also enables miscellaneous control
features including forcing a ready signal to the processor 104, controlling memory access space for accesses
initiated through the debug port, disabling cache flush on entry to the DEBUG mode, supplying transmit and
received bits TX and RX, enabling the parallel port 214, forced breaks, forcing a global reset, and other
functions. The ordering or inclusion of the various bits in either the ITCR or DCSR is a design choice that
typically depends on the application and processor implementing the debug system.

BIT SYMBOL DESCRIPTION/FUNCTION

31:12 Reserved Reserved

11 ™ Indicates that the target system 111 is ready to transmit data to the
host system 111 and the data is available in the TX_DATA register

10 RX Indicates that data has been received from the host and placed in the
RX_DATA register

9 DISFLUSH Disables cache flush on entry to DEBUG mode

8 SMMSP Controls memory access space (normal memory space/ system
management mode memory) for accesses initiated through the Debug
Port 100

7 STOP Indicates whether the processor 104 is in DEBUG mode (equivalent

to stop transmit signal STOPTX

6 FRCRDY Forces the ready signal RDY to the processor 104 to be pulsed for one
processor clock; useful when it is apparent that the processor 104 is
stalled waiting for a ready signal from a non-responding device

5 BRKMODE Selects the function of the break request/trace capture signal BRTC
(break request or trace capture on/off)

4 DBTEN Enables entry to debug mode or toggle trace mode enable on a
trap/fault via processor 104 registers DR0O-DR?7 or other legacy debug
trap/fault mechanisms

3 PARENB Enables parallel port 214

2 DSPC Disables stopping of internal processor clocks in the Halt and Stop
Grant states

1 FBRK Forces processor 104 into DEBUG mode at the next instruction

boundary (equivalent to pulsing the external BRTC pin)

10

15

20

25

30

WO 98/45782 PCT/US98/06827

-13 -

0 FRESET Forces global reset]

Debug Control/Status Register (DCSR)

When operating in a cross debug environment such as the environment shown in FIGURE 1, a
parent task running on the target system 111 sends information to the host platform 101 that controls the
target system 101. The information may include, for example, a character stream from a printf() call or
register information from a Task Control Block (TCB). In one technique for transferring the information, an

operating system places the information in a known region then causes DEBUG mode to be entered via a trap

instruction.

The host system 111 uses debug port 100 commands to determine the reason for entering DEBUG
mode and responds by retrieving the information from the reserved region. However, normal processor

execution is stopped while the processor 104 is in DEBUG mode, an undesirable condition for real-time

systems.,

The undesirable condition is addressed in the illustrative system by supplying two debug registers in
the debug port 100 including registers for transmitting data (TX_DATA register) and receiving (RX_DATA
register) data. The TX_DATA and RX_DATA registers are accessed using the soft address and ITAG
instruction register commands. The soft address is auto-incremented to assist data transfer. After the host
system 111 writes a debug instruction to the JTAG instruction register, the serial debug shifter 212 is
connected to the test data input signal TDI line and test data output signal TDO line.

The processor 104 executes code that transmits data by first testing a TX bit in the ITCR. If the TX
bit is set to zero then the processor 104 executes either a memory or /O write instruction to transfer the data to
the TX_DATA register. The debug port 100 sets the TX bit in the DCSR and ITCR, indicating to the host
system 111 a readiness to transmit data, and asserts the STOPTX pin high. After the host system 111
completes reading the transmit data from the TX_DATA register, the TX bit is set to zero. A TXINTEN bit in
the ITCR is then set to generate a signal to interrupt the processor 104. The interrupt is generated only when
the TX bit in the ITCR transitions to zero. When the TXINTEN bit is not set, the processor 104 polls the
ITCR to determine the status of the TX bit to further transmit data.

The host system 111 transmits data by first testing a RX bit in the ITCR. If the RX bit is set to zero,
the host system 111 writes the data to the RX_DATA register and the RX bit is set to one in both the DCSR
and ITCR. A RXINT bit is then set in the ITCR to generate a signal to interrupt the processor 104, This
interrupt is only generated when the RX in the ITCR transitions to one. When the RXINTEN bit is not set, the
processor 104 polls the ITCR to verify the status of the RX bit. If the RX bit is set to one, the processor
instruction is executed to read data from the RX_DATA register. After the data is read by the processor 104
from the RX_DATA register the RX bit is set to zero. The host system 111 continuously reads the ITCR to
determine the status of the RX bit to further send data.

10

15

20

25

30

WO 98/45782 PCT/US98/06827

-14 -

The information transfer technique using the RX_DATA and TX_DATA registers enables an
operating system or application to communicate with the host system 111 without stopping processor 104
execution. Communication is conveniently achieved via the debug port 100 with minimal impact to on-chip
applicaﬁon resources. In some cases it is necessary to disable system interrupts. This requires that the RX and

TX bits be examined by the processor 100. In this situation, the communication link is driven in a polled

mode.

PARALLEL INTERFACE TO DEBUG PORT 100

The serial debug port (SDP) is accessed either with the JTAG-based serial link (JTAG based) or a
somewhat more parallel interface. The parallel port 214 interface supports higher code down-load speeds, but
is included in a bond-out part. Full-function ICE developers are typical users of the bond-out parts.

A full-function In Circuit Emulator (ICE) uses a dual-ported pod-space memory to gain high speed
access to the target system 101 to gain faster down-load speeds than are available with the serial debug port
alone. To avoid a relatively complex dual-port design that is different for various target processors, an
alternative the T/P input pin is implemented in bond-out versions only and used to switch the bond-out pins

from a trace mode to parallel port mode.

Some embedded systems specify that instruction trace is to be examined while maintaining I/O and
data processing operations. Without the use of a multi-tasking operating system, a bond-out version of the
embedded processor device 102 is preferable to supply trace data since, otherwise, examination of the trace

buffer 200 via the debug port 100 requires the processor 104 to be stopped.

In the disclosed embodiment, a parallel port 214 is implemented in an optional bond-out version of
the embedded processor device 102 to support parallel command and data access to the debug port 100. The
parallel port 214 interface forms a 16-bit data path that is multiplexed with the trace pad interface port 220.
More specifically, the parallel port 214 supplies a 16-bit wide bi-directional data bus (PDATA[15:0]), a 3-bit
address bus (PADR[2:0}), a parallel debug port read/write select signal (PRW), a trace valid signal TV and an
instruction trace record output clock TRACECLOCK (TC). Although not shared with the trace pad interface
port 220, a parallel bus request/grant signal pair PBREQ/PBGNT (not shown) are also implemented. The
parallel port 214 is enabled by setting a bit in the DCSR. Serial communications via the debug port 100 are
not disabled when the parallel port 214 is enabled.

The bond-out TC pin is a trace capture clock, a clock signal that is also used to capture system
memory accesses performed on other busses. Capturing system bus activity is used to trace bus activity in
conjunction with program trace. The TC clock is preferentially accessed last in a sequence of clock signals
since system bus data can be acquired at the time of the TC clock signal. Thus other bus signals are to remain

active at the time of the TC clock, or be latched in the ICE preprocessor and held until the TC clock is active.

10

15

20

25

30

WO 98/45782 PCT/US98/06827

-15-

When the parallel port 214 is selected, rather than the trace port 220, the TC clock is used to read and
write parameters in to the Debug Registers 210, a faster process than serially clocking data into the 38-bit
JTAG instruction command register.

22 21 20 19 16 0

TV | TC | PRW | PADR [2:0] PDATA [15:0]

Bond-Out Pins/Parallel Port 214 Format

The parallel port 214 is primarily intended for fast downloads/uploads to and from target system 111
memory. However, the parallel port 214 may be used for all debug communications with the target system 111
whenever the processor 104 is stopped. The serial debug signals, either standard or enhanced, are used for

debug access to the target system 111 when the processor 104 is executing instructions.

In a manner consistent with the JTAG standard, all input signals to the parallel port 214 are sampled
on the rising edge of the test clock signal TCK and all output signals are changed on the falling edge of the
test clock signal TCK. In the disclosed embodiment, the parallel port 214 shares pins with the trécc pad
interface 220 so that commands directed to the parallel port 214 are initiated only while the processor 104 is
stopped and the trace pad interface 220 is disconnected from the shared bus.

The parallel bus request signal PBREQ and parallel bus grant signal PBGNT are included to expedite
multiplexing of the shared bus signals between the trace buffer 200 and the parallel port 214. When the host
interface to the parallel port 214 detects that the parallel bus request signal PBREQ is asserted, the host
interface begins driving the parallel port 214 signals and asserts the parallel bus grant signal PBGNT.

In some embodiments, when entering or leaving DEBUG mode with the parallel port 214
enabled, the parallel port 214 may be used for the processor state save and restore cycles. Some processors
may avoid the usage of a context save. The parallel bus request signal PBREQ is asserted immediately before
the beginning of a save state sequence penultimate to entry of DEBUG mode. On the last restore state cycle,
the parallel bus request signal PBREQ is deasserted after latching the write data. The parallel port 214 host
interface responds to parallel bus request signal PBREQ deassertion by tri-stating its parallel port drivers and
deasserting the parallel bus grant signal PBGNT. The parallel port 214 then enables the debug trace port pin
drivers, completes the last restore state cycle, asserts the command acknowledge signal CMDACK, and returns

control of the interface to trace control circuit 218.

During communication via the parallel port 214, the address pins PADR[2:0] are used for selection of
the field of the JTAG instruction register, which is mapped to the 16-bit data bus PDATA[15:0] as shown in
the following table:

PADR]2:0] Data Selection

10

15

20

25

WO 98/45782 PCT/US98/06827

- 16 -
000 No selection (null operation)
001 4-bit command register; command driven on PDATA[3:0]
010 High 16-bits of debug_data
011 Low 16-bits of debug_data

100-111 | Reserved

If only a portion of the bits of the debug_data [31:0] register are utilized during a transfer, such as on
8-bit I/O cycle data write operations, only the used bits need be updated. The command pending flag is
automatically set when performing a write operation to the four-bit command register and is cleared when the
command finished flag is asserted. The host system 111 monitors the command acknowledge signal
CMDACK to determine when the finished flag has been asserted. Use of the parallel port 214 offers full
visibility of execution history without throttling the processor core 104. The trace buffer 200, if needed, is
configured for use as a buffer to the parallel port 214 to alleviate bandwidth matching issues.

OPERATING SYSTEM AND DEBUGGER INTEGRATION

In the illustrative embodiment, the operation of all debug supporting features including the trace
buffer 200 is controlled through the debug port 100 or via processor instructions. The processor instructions
are commonly accessed from a monitor program, a target hosted debugger, or conventional pod-wear. The

debug port 100 performs data moves that are initiated by serial data port commands rather than processor
instructions.

Operation of the processor from conventional pod-space is very similar to operations in DEBUG mode
from a monitor program. All debug operations are controlled via processor instructions, whether the

instructions are accessed from pod-space or regular memory, advantageously extending an operating system to

include additional debug capabilities.

Operating systems have supported debuggers via privileged system calls such as ptrace() call for some
time. However, the incorporation of an on-chip trace buffer 200 now enables an operating system to offer
instruction trace capability. The ability to trace is often considered essential in real-time applications. In the
illustrative improved debug environment, functionality of an operating system is enhanced to support limited

trace without the incorporation of an external logic analyzer or in-circuit emulator.

Instructions that support internal loading and retrieving of trace buffer 200 contents include a load
instruction trace buffer record command LITCR and a store instruction trace buffer record command SITCR.

The command LITCR loads an indexed record in the trace buffer 200 specified by a trace buffer pointer

10

15

20

25

30

WO 98/45782 PCT/US98/06827

-17-

ITREC.PTR with the contents of the EAX register of the processor core 104. The trace buffer pointer
ITREC.PTR is pre-incremented, so that the general operation of the command LITCR is described, as follows:

ITREC.PTR <- ITREC PTR +1;
ITREC/ITREC.PTR] <- EAX.

If the instruction trace record, in a trace record format described hereinafter, is smaller that the EAX record,

only a portion of the EAX register is used.

Similarly, the store instruction trace buffer record command SITCR is used to retrieve and store into
the EAX register an indexed record from the trace buffer 200. The contents of the ECX register of the
processor core 104 are used as an offset that is added to the trace buffer pointer ITREC.PTR to create an index
into the trace buffer 200. The ECX register is post-incremented while the trace buffer pointer ITREC.PTR is
unaffected, so that:

EAX <-ITREC/ECX + ITREC.PIR],

ECX <-ECX + 1.

The LITCR and SITCR commands may be configured in numerous variations of formats that are

known in the computing and encoding arts.

Extension of the operating system to support on-chip trace has many advantages. In the
communications industry, support of on-chip trace maintains system /O and communication activity while a
task is traced. Traditionally, the use of most in-circuit emulators has demanded that the processor be stopped
and opefating system execution suspended before the processor state and trace are examined, disrupting
continuous support of I/O data processing. In contrast, the ptrace() capabilities of the illustrative enhanced

system allow the processor and operating system to continue execution while trace data is available.

The trace buffer 200 is highly useful in applications controlling field equipment. If an unexpected
system crash occurs, the trace buffer 200 can be examined to observe the execution history leading up to the
crash event. When used in portable systems or other environments in which power consumption is a concern,
the trace buffer 200 can be disabled via power management circuitry. A trace record is read from the trace
buffer 200 that includes a record of trace events. A trace event is an action that causes trace records to be
generated. Trace events are caused, for example, by x86 instructions, instructions causing an exception,
hardware interrupts, trace synchronization events, activation or deactivation of trace capture, and events that

change privilege level.

Several x86 instructions generate trace records including software interrupt instructions, BOUND
instructions, CALL instructions, interrupt taken and not taken (INT/INTO) instructions, return (RET) and
interrupt return (JRET/IRETD) instructions, jump (JMP) and conditional jump (JCC) instructions, LOOP
instructions, MOV CRO instructions, and the like. A REP prefix does not generate a trace record.

10

15

20

25

30

WO 98/45782 PCT/US98/06827

-18 -

All CALL and CALLS instructions in which the target address is supplied by a register or memory
location produce a TCODE=0010 entry. If the target address arises from the instruction (an immediate
address) no TCODE=0010 entry is used. If a segment change occurs (a long address) then a TCODE=0011
entry is generated ahead of a TCODE=0010 entry. A segment change entry may be generated even if no target

address entry occurs.

An IRET instruction generates a branch target entry, TCODE=0010, which may be preceded by a
segment change entry, TCODE=0011. All RET instructions generate branch target entries, TCODE=0010,
and may be preceded by a segment change entry, TCODE=0011.

Conditional branch instructions J xx produce a one-bit entry in a BFIELD trace element. The bit is set
if the branch is taken, and not set if not taken.

Looping instructions such as LOOP xx are treated like conditional branching instructions. The REP
instruction prefix is not treated like a conditional branch and hence not reported, like other instructions which

do not disrupt address flow.

All unconditional JMP instructions in which the target address is supplied by a register or memory
location produce a TCODE=0010 entry and are handled in the same way as CALL instructions.

All INT imm8, INT3 and INTO interrupts generate a branch target entry when the interrupt is taken.
The entry may be preceded by a segment change entry. The INTO instruction is conditional on the Overflow

Flag being set. If this flag is not set, the interrupt and trace entry are not generated.

The BOUND instruction is a conditional interrupt, like INTO, and is similarly only reported if the

interrupt is taken. BOUND is used to ensure that an array index is within specified limits.

A direct move into the CRO register may be used to change the processors operating mode. Although

infrequently done, any such move that results in a mode change is reported in the trace stream.

An instruction causing an exception generates trace records. The trace records generated will report
the EIP of the instruction causing the exception, previous segment base address and attributes, the vector

number of the exception handler, and the EIP of the target instruction in the interrupt handler.

A hardware interrupt generates trace records that report the EIP of the instruction that was most
recently executed before the interrupt was serviced, the previous segment base address and attributes, the

vector number of the interrupt handler, and the EIP of the target instruction in the interrupt handler.

A trace synchronization register implemented in the trace controller is used to generate a trace
synchronization event. The trace synchronization register is updated from the TSYNC bits of the ITCR

register whenever the ITCR is loaded. The trace synchronization register is decremented by 1 when a

10

15

20

25

30

WO 98/45782 PCT/US98/06827

~19 -

conditional branch trace record (TCODE =0001) is created. Any other trace record causes the register to be
reloaded from the TSYNC bits of the ITCR register. The register counts down to zero and generates a trace
event. The trace synchronization is then reloaded from the TSYNC bits of the ITCR register. The TSYNC
value represents the maximum number of consecutive conditional branch trace records (TCODE =0001)
created before a trace synchronization event occurs. A TSYNC value of 0 disables trace synchronization

events.

Trace records are generated when trace capture is turned on. The trace records report the EIP of the

instruction at which trace capture was turned on.

Trace records are generated when trace capture is turned off. The trace records report the EIP of the
instruction at which trace capture was turned off and optionally the base address and segment attributes of the
current segment. Generation of trace records with the current segment base is controlled by the DISCSB bit of
the ITCR. If the code segments do not change when the trace capture is turned off, then disabling generation

of current segment base trace records prevents generation of redundant trace records.

Trace records are generated upon entering debug mode. The trace records report the EIP of the last
instruction executed before entering debug mode and, optionally, the base address and segment attributes of
the current segment. Generation of trace records with the current segment base is controlled by the DISCSB
bit of the ITCR.

Trace records are generated when exiting debug mode. The trace records report the EIP of the first

instruction executed after exiting debug mode.

When entering privilege level ring 0 or 1, a capability to stop trace capture is advantageous, for
example, to prevent tracing of system calls. Therefore, when entering lower privilege levels 0 and 1, tracing is
optionally turned off via the DISLOTR, DISL1TR bits in the ITCR. If lower privilege level tracing is selected,
trace records are generated before transitioning to lower privilege levels 0 and 1. The trace records report the
EIP of the last instruction executed before transitioning to the lower privilege level and optionally report the
base address and segment attributes of the current segment. Generation of trace records with current segment
base is controlled by the DISCSB bit of the ITCR. Trace records for the call, jump, and other instructions that

cause the transition to the lower privilege level are also reported preceding the privilege trace records.

If an option to turn tracing off when entering lower privilege levels is set, then when transitioning out
of the lower privilege level, trace records are generated. The trace records will report the EIP of the first

instruction executed after transitioning out of the lower privilege level.

Note, the trace records for all these trace events can be preceded by a conditional branch trace record
if there was a pending conditional branch trace record that had not been stored in the trace buffer or reported

to the trace port.

WO 98/45782 PCT/US98/06827

-20-

EXEMPLARY TRACE RECORD FORMAT

In the disclosed embodiment of the invention, an instruction trace record is 20 bits wide and inciudes
two fields, TCODE (Trace Code) and TDATA (Trace Data), as well as a valid bit V that indicates if the buffer
entry contains a valid trace record. An internal write pointer keeps track of the last location written in the
buffer. The write pointer is incremented before a trace record is written to the buffer. The write pointer is reset
by writing to the TINIT bit of the ITCR. The V bit indicates an invalid trace record for all trace records
greater than the write pointer before the write pointer has wrapped around once. After the write pointer wraps

around, all records read back as valid. The TCODE field is a code that identifies the type of data in the

10

15

TDATA field. The TDATA field contains software trace information used for debug purposes.

20 19 15

0

A% TCODE (Trace Code)

TDATA (Trace Data)

Instruction Trace Record Format

In one embodiment, the embedded processor device 102 reports eleven different trace codes as set

forth in the following table:
TCODE # TCODE Type TDATA

0000 Missed Trace Not Valid

0001 Conditional Branch Contains Branch Sequence

0010 Branch Target Contains Branch Target Address

0011 Previous Segment Base Contains Previous Segment Base Address and
Attributes

0100 Current Segment Base Contains Current Segment Base Address and
Attributes

0101 Interrupt Contains Vector Number of Exception or
Interrupt

0110 Trace Synchronization Contains Address of Most Recently Executed
Instruction

0111 Multiple Trace Contains 2nd or 3rd Record of Entry With
Muitiple Records

1000 Trace Stop Contains Instruction Address Where Trace
Capture Was Stopped

1001 User Trace Contains User Specified Trace Data

1010 Performance Profile Contains Performance Profiling Data

TRACE COMPRESSION

The trace buffer 200 has a limited storage capacity so that compression of the captured trace data is

desirable. Trace data is acquired as a program executes on the target system 101, trace data is captured so that

10

15

20

25

30

WO 98/45782 PCT/US98/06827

-21-

an image of the executed program is made available to the host system 111. In one example of a compression
technique, if an address is otherwise obtainable from an accessible program image such as an Object Module,
then the address is not supplied in the trace data. Preferably, only instructions that disrupt the instruction flow
are reported. Only instructions in which the target address is data dependent are reported. For example,
disruptive events include call instructions or unconditional branch instructions in which the target address is

supplied from a data register or other memory location such as a stack.

CALL instructions are disrupting events in which in almost all cases the target address is supplied by
the instruction in immediate format. Therefore, the branch is not reported unless the target address is data

dependent, such as supplied from a data register or other memory location such as a stack.

Unconditional Branch instructions, like a CALL has a target address that is usually in immediate

format. Unconditional branches are compressed in the same manner as CALL instructions.

Conditional instructions have few data register-dependent target addresses. Therefore the target
address is only reported when the address is not in immediate format. Otherwise, a 1-bit trace is used to

indicate if the branch was taken or not taken.

Exception events, whether synchronous or asynchronous, are relatively infrequent events. The target

address of the trap or interrupt handler is reported in the trace record.

Return instructions pop the target address of the stack before starting a new instruction stream. The
target address is supplied in the trace record.

The traced address values are all logical and not necessarily physical. Address information relates to
the address space of an executing program and not to an address translation scheme that is utilized. Offset
addresses are translated to physical equivalents, typically by adjusting an Extended Instruction Pointer (EIP)
value by code segment and selector information. Therefore segment information is reported separately

whenever a change occurs.

In a system that uses paging, a virtual or logical address supplied by a process controlling debugging
is presented to the target processor including hardware or software support and the corresponding physical
address is determined and then supplied to the debugger. Unfortunately conversion to a physical address is
difficult if no corresponding physical page is currently in memory. Therefore, operating system involvement is

utilized. Paging is unlikely in an embedded processor environment.

Most frequently-recorded trace addresses result from procedure returns. Between the return
addresses, a stream of single bits indicating the outcome from branch decisions is typically reported using the
Conditional branch TCODE in which the BFIELD is initially cleared except for the left most bit which is set to

1 and the outcome of up to 15 branch events is grouped into a single trace entry. As each new conditional

10

15

20

25

30

35

WO 98/45782 PCT/US98/06827

-22-

branch is encountered, a new B-bit is added on the left and the entries are all shifted right one-bit. Instructions

such as CALLs and unconditional Jumps produce no trace data if the target address is in immediate form.

When a branch target address is reported, the current "BFIELD" entry is marked complete, even if 15
entries are not yet accumulated. The target address is recorded in a trace entry pair. The first entry in the pair
supplies the high-order 16 bits (TADDR .H) of the target address. The second entry supplies the low-order 16
bits (TADDR.L) of the target address. When a branch target address is supplied for a conditional jump
instruction, no BFIELD entry appears for the reported branch.

The compressed BFIELD trace record that includes single bits designating whether branches are
taken or not taken has a potential to cause difficulties in synchronizing trace entries since few trace entries
contain address values. When a trace is examined, data is identified with a particular address only to the
extent that a known program address is available. For example, starting at the oldest entry in the. trace buffer
200, all entries up to an entry containing a known address have no use and are discarded. Algorithm
synchronization starts from a trace entry supplying a target address. If the trace buffer 200 contains no address
supplying entries, then no trace analysis is possible. A TSYNC register for the serial debug port, which is

discussed in further detail hereinafter, is included for injecting an address reference in to the trace data stream.

Other trace information includes a the target address of a trap or interrupt handler, a target address of
a return instruction, a conditional branch instruction having a target address which is data register dependent
(otherwise, all that is needed is a 1-bit trace indicating if the branch was taken or not), and, most frequently,
addresses from procedure returns. Other information, such as task identifiers and trace capture stop/start
information, may also be placed in the trace buffer 200. Various data and information of many natures are

selectively included in the trace records.

The Missed Trace (TCODE = 0000) code is used to indicate that the processor missed reporting some
trace records. The TDATA field contains no valid data. A trace execution algorithm typically responds to the
Missed Trace TCODE by resynchronizing at the next trace record that includes address information.

The Conditional Branch (TCODE=0001) code is used report the status for conditional branches. The
TDATA field contains a bit for each conditional branch. The bit is marked as either taken/not taken. The
format of the trace record is shown in FIGURE 6A. Each trace record reports status information for a
maximum of 15 conditional branches. The record is stored either in the trace buffer 200 or reported to the
trace port 220 when 15 conditional branches are executed and the record is complete, or when the record is not
complete and a trace event occurs, requiring another type of trace record to be reported. In the disclosed
embodiment, the outcome of up to 15 branch events are grouped into a single trace entry. The 16-bit TDATA
field, also called a “BFIELD”, contains 1-bit branch outcome trace entries, and is labeled a TCODE = 0001
entry. The TDATA field is initially cleared except for the left-most bit, which is set to 1. As each new
conditional branch is encountered, a new one bit entry is added on the left and any other entries are shifted to

the right by one bit. Each conditional branch is marked as either taken (1) or not taken (0). To identify the

10

15

20

25

30

35

WO 98/45782 PCT/US98/06827

-23 -

conditional branch bits, the least significant bit with a 1 value is located and bits to the left are conditional

branch bits.

A 256-entry trace buffer 200 allows storage of 320 bytes of information. Assuming a branch
frequency of one branch every six instructions, the disclosed trace buffer 200 supports an effective trace record

of 1,536 instructions, disregarding call, jump and return instructions.

The trace control circuit 218 monitors instruction execution via processor interface logic 202. When
a branch target address is reported, information contained within a current conditional branch TDATA field is
marked as complete by the trace control circuit 218, even if 15 entries have not accumulated. The Branch
Target (TCODE=0010) code is used to report the target address of a data-dependent branch instruction and
always occurs in pairs. Referring to FIGURE 6B, the TDATA field of the first record in the pair has the
TCODE=0010 and indicates the high-order 16 bits of the Extended Instruction Pointer (EIP) of the target
instruction. The TDATA field of the second record in the pair has a Multiple Trace (TCODE=0111) code that
indicates the low-order 16 bits of the EIP of the target instruction. The target address, for example in a
processor-based device 102 using 32-bit addressing, is recorded in a trace entry pair, with the first entry
(TCODE = 0010) supplying the high-order 16-bits of the target address and the second Multiple Trace entry
(TCODE = 0111) supplying the low-order 16-bits of the target address. When a branch target address is
supplied in conjunction with a conditional jump instruction, no 1-bit branch outcome trace entry appears for

the reported branch.

The Multiple Trace code is used to report records for trace entry with multiple records. The format of

this trace record is not fixed and depends on the trace code that report multiple trace records.

STARTING AND STOPPING TRACE CAPTURE

Referring to FIGURE 6C, a capability to start and stop trace gathering during selected sections of
program execution is advantageous, for example when a task context switch occurs. The Trace Stop
(TCODE=1000) code is used to report the address of the instruction at which trace capture was stopped and
occurs paired with the Multiple Trace (TCODE=0111) code. The TDATA field of the first record with a
TCODE=1000 indicates the high-order 16 bits of the EIP of the instruction at which the trace capture
terminated. The TDATA field of the second Multiple Trace record with a TCODE=0111 indicates the low-
order 16 bits of the EIP of the instruction at which trace capture stopped. When trace capture is stopped, no
trace entries are entered into the trace buffer 200, nor do any entries appear on the bond-out pins of trace port
220. Various known methods are contemplated for enabling and disabling trace capture. For example, x86
commands are supplied for enabling and disabling the trace capture function. Alternatively, an existing x86
command is utilized to toggle a bit in an I/O port location. Furthermore, on-chip breakpoint control registers
(not shown) are configured to indicate the addresses at which trace capture is to start and stop. When tracing
is halted, a Current Segment Base trace entry (TCODE = 0100) and a Multiple Trace entry (TCODE = 0111)

that record the last trace address is placed in the trace stream. When tracing resumes, a trace synchronization

10

15

20

25

30

WO 98/45782 PCT/US98/06827

-24 -

entry (TCODE = 0110, TCODE = 0111) that contains the address of the currently executing instruction is

generated.

Because a debug controller can change the state of the processor core 104 before beginning execution,

a trace synchronization entry (TCODE = 0110) is generated when leaving Debug mode. A Sync address is

then the first address executed on leaving Debug mode.

A useful debug function is a capability to account for segment changes that occur while tracing is
stopped. The function is performed by selecting an option to report the segment base address and segment
attributes of the current code segment using a Current Segment Base (TCODE = 0100) entry, shown in
FIGURE 6C, which occurs in pairs with a second Multiple Trace (TCODE=0111) entry. The TDATA field
of the first record with a TCODE=0100 indicates the high-order 16 bits of the current segment base address.
The TDATA field of the second Multiple Trace record with a TCODE=0111 indicates the low-order bits 15-4

of current segment base address and the current segment attributes.

The segment attributes report status for paging (PQG), operand sizes (SZ), and addressing modes,
either real or protected (R/P). The address reported in the records only identify bits 31-4 of the base address.
The operand size (SZ) bit indicates the operand size and addressing mode and reflects the D bit of the code
segment descriptor with 1 indicating a 32-bit operand and addressing mode and 1 indicating a 16-bit operand
and addressing mode. The paging status (PG) indicates if paging is enabled (1) or disabled (0) and reflects the
PG bit of the CRO register. The Read/Protected bit (R/P) indicates real mode (0) or protected mode (1) and
reflects the PE bit of the CRO register. If the segment is not aligned to a 16-byte boundary, the low-order 4 bits

of the base address are determined from the object module file of the program or from the descriptor tables.

The Current Segment Base records occur whenever trace capture is turned off, and when debug mode
is entered. Generation of trace records with the Current Segment Base are controlled by the DISCSB bit of the
ITCR. The Current Segment Base records function is also performed using a configuration option that enables
a current segment base address entry at the end of a trace prior to entering Debug mode. Conversely, when the
segment base does not change, such as when an interrupt occurs, supplying segment base information is

typically not desirable.

The processor core 104 can enter Debug mode via an exception or other interrupt or command. No
trace capture occurs while executing in Debug mode. A trace entry is generated by the exception event,
including a SDP command causing entry to Debug mode. A trace-stop entry is not generated following the

exception-event entry. A configuration option is supported that enables a current-segment base address entry

(TCODE=0100) to be placed at the end of the trace when entering Debug mode.

The interrupt (TCODE=0101) code is used to report an exception or hardware interrupt and occurs in
triplicate with two consecutive Multiple Trace codes (TCODE=0111). Referring to FIGURE 6D, following

the occurrence of an asynchronous or synchronous event such as an interrupt or trap, a TCODE = 0101 trace

10

15

20

25

30

35

WO 98/45782 PCT/US98/06827

- 25 -

entry is generated to supply the address of the target interrupt handler. The TDATA field of the first record
with a TCODE=0101 indicates the vector number of the exception/interrupt handler. A System Management
Interrupt (SMI) is reported with a TDATA value set to FFFFh. The TDATA field of the second Multiple
Trace record with a TCODE=0111 indicates the high-order 16 bits of the Extended Instruction Pointer (EIP)
of the target instruction. The TDATA field of the third Multiple Trace record with a TCODE=0111 indicates
the low-order 16 bits of the EIP of the target instruction. The target instruction is the first instruction of the

exception/interrupt handler.

When an asynchronous or synchronous event such as an interrupt or trap occurs, merely generating a
interrupt (TCODE=0101) code alone is insufficient. The interrupt code supplies the address of the target
interrupt handler, but does not reveal the address of the instruction interrupted. The address of the instruction
which was interrupted by generating a trace synchronization (TCODE = 0110) entry immediately prior to the
interrupt entry is advantageously recorded along with the previous segment base address (TCODE = 0011).

The trace synchronization entry contains the address of the last instruction retired before the interrupt handler

commences.

The Trace Synchronization (TCODE=0110) code is used to report the address of the currently
executed instruction. The Trace Synchronization code always occurs in pairs with the second Multiple Trace
TCODE=0111. The TDATA field of the first record with a TCODE=0110 indicates the high-order 16 bits of
EIP of the currently executed instruction. The TDATA field of the second Multiple Trace record with a
TCODE=0111 indicates the low-order 16 bits of EIP of the currently executed instruction. The records occur
when an exception or interrupt is taken, a trace synchronization event occurs, trace capture is turned on, debug

mode is exited, and transitioning out of lower privilege levels if that option has been set in the ITCR register.

SEGMENT CHANGES

A segment change should not occur while tracing is stopped since the event will not be recorded in
the trace. Segment change difficulties are partially resolved by selecting an option to immediately follow a
Trace Stop TCODE=1000 entry with a current-segment base entry. Referring to FIGURE 6E, a trace entry
used to report a change in segment parameters is shown. During processing of a trace stream, trace address
values are combined with a segment base address to determine an instruction's linear address. The base
address, as well as the default data operand size (32 or 16-bit mode), are subject to change. As a result, the
TCODE = 0011 and TCODE=0111 entries, which always occur in pairs, are configured to report information
for accurately reconstructing instruction flow. The Previous Segment Base (TCODE=0011) code is used to
report the segment base address and segment attributes of the previous code segment. The TDATA field of the
first record with a TCODE = 0011 entry indicates the high-order 16-bits of the previous segment base address.
The associated second Multiple Trace record with a TCODE = 0111 entry indicates the low-order 15 - 4 bits of
the previous segment base address and the previous segment attributes. The segment attributes report status for

paging (PG), operand sizes (SZ), and addressing modes, either real or protected (R/P) the same as the segment

10

15

20

25

30

WO 98/45782 PCT/US98/06827

-26-

attributes report status for the Current Segment Base (TCODE = 0100) that is discussed in conjunction with
FIGURE 6C.

The Previous Segments Base records occur whenever a trace event causes instruction execution to
begin in another segment or whenever a change in segment attributes occurs. Note that the previous segment
refers to the segment from which instruction execution arose. The segment information generally relates to the
previous segment, not a current (target) segment. Current segment information is obtained by stopping and

examining the state of the processor core 104,

USER SPECIFIED TRACE ENTRY

Under some circumstances an application program or operating system advantageously adds
additional information into a trace stream. In one example, an x86 instruction is supported that enables a 16-
bit data value to be placed in the trace stream at a selected execution position. The instruction is implemented
as a move to I/O space with the operand supplied by memory or a register. When the processor core 104
executes the x86 instruction, the user-specified trace entry is captured by the trace control circuit 218 and
placed in the trace buffer 200. Referring to FIGURE 6F, the User Trace (TCODE = 1001) entry indicates a
user-specified trace record and inserts the selected additional information into the trace stream such as a

previous or current task identifier when a task switch occurs in a multi-tasking operating system.

The User Trace (TCODE=1001) entry is also useful with a multitasking operating system, For
example all tasks may run with a segment base of zero and paging is used to map the per-task pages into
different physical addresses. A task switch is accompanied by a segment change. The trace entry for the
segment change reports little information, merely a zero base address. During task switching, the operating
system may generate a User Trace (TCODE=1001) entry indicating more information, the previous task or the

current task identifier,

SYNCHRONIZATION OF TRACE DATA

During execution of typical software on a processor-based device 102, few trace entries contain
address values. Most entries have the TCODE = 0001 format and a single bit indicates the result of a
conditional operation. When examining a trace stream, however, data is only studied in relation to a known
program address. For example, starting with the oldest entry in the trace buffer 200, all entries untit an

address entry have little use. Algorithm synchronization typically begins from a trace entry supplying a target
address.

If the trace buffer 200 contains no entries with an address, then trace analysis cannot occur, a rare but
possible condition. For this reason, a synchronization register TSYNC is supplied to control the injection of
synchronizing address information. If the synchronization register TSYNC is set to zero, then trace

synchronization entries are not generated.

10

15

20

25

30

WO 98/45782 PCT/US98/06827

-27-

6 0

TSYNC (Trace Synchronization)

Trace Entry Synchronization Entry Control Register

Referring to FIGURE 6G, an exemplary trace synchronization entry is shown. During execution of
the processor core 104, a counter register is set to the value contained in the synchronization register TSYNC
whenever a trace entry containing a target address is generated. The counter is decremented by one for all
other trace entries including each TCODE=0001 (BFIELD-type) trace entries. If the counter reaches zero, a
trace entry is inserted (TCODE = 0110) containing the address of the most recently retired instruction (or,
alternatively, the pending instruction). When a synchronizing entry is recorded in the trace buffer 200, the

entry also appears on the trace pins 220 to ensure sufficient availability of synchronizing trace data for full-
function ICE equipment.

The TSYNC value is optionally programmed to adjust the trade off between trace buffer 200
efficiency and ensuring an address is available for trace analysis. A synchronizing entry that is recorded in the
trace buffer 200, is also output to the trace pins to ensure sufficient availability of synchronizing trace data for

the full-function in-circuit emulation equipment.

Trace entry information is also expanded to include data relating to code coverage or execution
performance. The information is useful, for example, for code testing and performance tuning. Even without
these enhancements, enabling the processor core 104 to access the trace buffer 200 is useful. In the case of a
microcontrolier device, the trace buffer 200 is accessed by mapping the trace buffer 200 within a portion of I/O
or memory space. A more general approach involves including an instruction that supports moving trace
buffer 200 data into system memory.

The foregoing describes a processor-based device providing a flexible, high-performance solution for
furnishing instruction trace information. The processor-based device incorporates an instruction trace buffer
supplying trace information for reconstructing instruction execution flow on the processor without halting
processor operation. Both serial and parallel communication channels are supported for communicating trace
data to external devices. The disclosed on-chip instruction trace buffer alleviates various of the bandwidth and
clock synchronization problems that arise in many existing solutions, and also allows less expensive external

capture hardware to be utilized.

A signal definition includes two sections, a standard section and a bond-out section. Standard signals
are shown in TABLE I and are available for usage on all embedded processor device 102 integrated circuits.
Bond-out signals are shown in TABLE II and are available only on specially-packaged parts, typically for
usage by in-circuit emulation (ICE) vendors. A TBUS[18:0] is shared between the parallel port 214 and the

trace pad interface 220. The remaining bond-out signals are dedicated to either the parallel port or the trace
pad interface 220.

WO 98/45782

PCT/US98/06827

- 28 -

TABLE I: Standard Signals

Name 17[0) Res | Sync Description

Clock

TCK Input | PD | -- Clock for TAP controller and debug serial/parallel interface

TDI Input | PD | TCK Input test data and instructions

TDO Output | -- TCK Output data

T™S Input | PD | TCK Test functions and sequence of test changes

TRST Input | PU | Async | Test reset

BRTC Input | PD | Async | Request entry to debug mode / On-Off switch for instruction
trace capture. Function selected by BRKMODE bit in DCSR
(optional)

CMDACK | Output | -- TCK Acknowledge command (optional)

STOPTX Qutput | -- Async | Asserted high on entry to DEBUG mode when normat
execution is terminated. Set high in NORMAL mode when
data is to be transmitted to the host during OS/Application
communication.

TRIG Output | -- Async | Trigger event to logic analyzer, typically for external trace
capture (optional)

TABLE 2: Bond-out Signals

Name 1/0 Res | Sync Clock | Description

TRACECLK | Output | -- - Instruction Trace record output clock

TV Output | -- TRACECLK | 0=Valid Trace record, 1=No Trace record. Pinis

not shared with parallel bus interface

PDATA[15:0] | Bidir | PD | TCK/ Parallel debug port data path. Shared with pins

TRACECLK | TBUS[15:0}].
PADR]J2:0] Bidir | PD | TCK/ Parallel debug port address. Shared with pins

10

15

20

WO 98/45782 PCT/US98/06827

-29-

TRACECLK | TBUS[18:16}.

PRW Bidir | PD | TCK/ Parallel debug port read/write select. Shared with
TRACECLK | pin TBUS[19]. 1=Parallel read from serial debug

register. 0=Parallel write from serial debug register.

PBREQ Output | -~ TCK 1=Request Host to enable parallel bus interface.
2=Request Host to disable parallel bus interface.

Pin is not shared with Trace bus interface.

PBGNT Input | PD | TCK 1=Host-enabled parallel bus interface. 0=Host-~
disabled parallel bus interface. Pin not shared with

Trace bus interface.

The trace port 220 is available only on bondout chips. The TBUS pins are shared with the parallel
debug port 214 if the parallel option has been enabled by setting the PARENB bit in the DCSR. Trace records
generated by the processor core 104 are sent to the trace port 220 in external trace mode. The trace port signals
are shown in TABLE 2. The TRACECLK timing is programmable through bits in the ITCR. The trace port
signals transition synchronous to the TRACECLK signal. The TV signal asserts when valid trace data is

driven on the TBUS. The TBUS signals are to be sampled on the next rising edge of the TRACECLK signal
after assertion of TV,

Referring to FIGURE 7, a state diagram illustrates a high-level flowchart of the host/serial port
interface of the JTAG TAP controller 204 when using standard JTAG communication. The host system 111
writes a DEBUG instruction to the JTAG TAP controller 204 in operation 702, shifting a 38-bit instruction
value into the JTAG instruction register with the Command Pending Flag (P) asserted and data (if applicable,
otherwise zero) in the data field in operation 704. Upon completing the command, which typically involves
transferring a value between the data field of the JTAG instruction register and a predetermined processor
register or memory/I0 location in the processor core 104, the processor core 104 clears the Pending flag (P=0)
and asserts the Finished flag (F=1), simultaneously storing a value in the data field, if applicable. The entire
38-bit register is scanned out to monitor the Finished (F) and Pending (P) flags. If the Pending flag P is reset
to zero and the Finished flag F is set to one, the previous command is finished. The status of the flags is
captured during the Capture-DR TAP controller state shown in FIGURE 3. A slave copy of the flag status is
saved internal to the JTAG TAP controller 204 and checked in operation 706 to determine in logic state 708
whether the next instruction is to be loaded in the Update-DR TAP controller state. If the Finished flag (F) is
set, a new 38-bit command is scanned in operation 706, otherwise the previous data scan is repeated in
operation 710. A slave copy is maintained due to the possibility of the status changing between the Capture-

DR and Update-DR TAP controller states. The processor saves the slave copy to determine the status the user

10

15

20

25

30

WO 98/45782 PCT/US98/06827

- 30 -

will detect at the time the status capture is performed to prevent the loading of the next instruction if the user

sees that the previous instruction has not finished.

Referring again to FIGURE 2, the processor interface state machine 202 performs asynchronous
control operations for adding the signals CMDACK, BRTC, STOPTX, and TRIG to the standard JTAG
interface. The CMDACK, BRTC, STOPTX, and TRIG signals are enabled when the DEBUG instruction is
written to the JTAG instruction register in the JTAG TAP controller 204, but forced to a logic zero when
disabled. The BRTC signal pin is supplied with an internal pull-down resistor (not shown).

Referring to FIGURE 8, a flow diagram illustrates state operation of the enhanced JTAG interface.
The host system 111 writes a DEBUG instruction to the JTAG TAP controller 204 in operation 802 then
optionally monitors the output signal CMDACK to determine command completion status in a logic operation
804. The CMDACK signal is asserted high simultaneous with assertion of the Finished flag (F) and remains
high until the next shift cycle begins. When using the CMDACK pin, the Finished flag (F) status is captured
without shifting out the serial port register of the JTAG TAP controller 204 since the CMDACK pin transi-
tions high on the next rising edge of TCK after the real-time status of the Finished flag (F) changes from 0 to
1. The CMDACK signal is not delayed from the state saved during the previous Capture-DR state entry of the
TAP controlier state machine. Accordingly, in the enhanced JTAG mode a new shift sequence is not started in
operation 806 until the CMDACK pin is asserted high. The CMDACK pin asserts high when the serial port is
ready to receive instructions after the DEBUG instruction is loaded into the JTAG instruction register. The
CMDACK signal is synchronous with the TCK signal. TCK is generally not be clocked at all times, but is

clocked continuously when waiting for a CMDACK response.

The BRTC input signal functions either as a break request signal or a trace capture enable signal
depending on the BRKMODE bit in the DCSR. The BRTC signal, when set to function as a break request
signal, is pulsed to cause the host system 111 to enter debug mode. If the BRTC signal is set to function as a
trace capture enable signal, asserting the signal high activates the trace capture. Deasserting the BRTC signal
deactivates the trace capture. The BRTC signal takes effect on the next instruction boundary after detection

and is internally synchronized with the internal processor clock. The BRTC signal is asserted at any time.

The TRIG output signal is optionally enabled to pulse whenever an internal breakpoint in the
processor core 104 is asserted. The TRIG signal event is typically used to trigger an external capturing device
such as a logic analyzer. The TRIG signal is synchronized with TRACECLK, the trace record capture clock.
When the processor core 104 generates a breakpoint or, more precisely a puise point, the TRIG output signal
event is synchronized with TRACECLK and pulsed for one TRACECLK period. In the illustrative
embodiment, conventional debug breakpoints DRO-DR3 are modified to alternatively generate a pulse without

the processor stopping in the manner of a breakpoint event.

10

15

20

25

30

WO 98/45782 PCT/US98/06827

-31-

The STOPTX output signal is asserted high when the host system 111 enters debug mode and is ready
for register interrogation and modification, or memory or I/O reads and writes through the serial/parallel
command interface. In a normal (nondebug) mode, the STOPTX signal is asserted high when the host system
111 is ready to transmit data during Operating System (OS) or Application communication. The STOPTX
signal reflects the state of bit 7 or bit 11 in the debug control/status register (DCSR). The STOPTX signal is
synchronous with TRACECLK. When external instruction tracing through the bond-out DEBUG trace port is
enabled, assertion of STOPTX is delayed until all data in the instruction trace buffer 200 is transferred out.

Referring again to FIGURE 2, the parallel port 214 is a high-performance interface that is typically
available in the bond-out version of the target system 101. The parallel port 214 supplies a 16-bit data path is
intended to perform fast downloads and uploads between the host system 111 and the target system memory.
The parallel port 214 is optionally used for all debug communication with the target system 101 whenever the
processor core 104 is stopped. The serial port interface, either standard or enhanced, is used for debug access

to the target system 101 when the processor core 104 is executing instructions.

The parallel port 214 includes a 16-bit wide bidirectional data bus PDATA[15:0], a two-bit address
bus PADR[2:0}, a read/write strobe PRW, and a request-grant pair PBREQ - PBGNT. The interface uses TCK
(see Table 1) for synchronization of all transactions. TCK is continually clocked while the parallel debug

interface is enabled.

The parallel port 214 is enabled by setting DCSR:3 to logic 1 via the serial port of the JTAG TAP
controller 204. The serial port interface is not disabled when the parallel port is enabled and is mandatory for
access while the processor core 104 is executing instructions. Any transaction started on the parallel port 214
completes on the parallel parallel port 214. Similarly, any transaction begun on the serial port of the JTAG
TAP controller 204 also completes on the serial port. In the illustrative embodiment the parallel parallel port

214, when enabled, is used for all save state and restore state cycles to avoid unpredictable behavior.

All input signals to the parallel port 214 are sampled on the rising edge of TCK. All output signals
are changed on the falling edge of TCK.

Referring to FIGURE 9, a timing diagram illustrates three complete bus cycles of signal behavior for
acquisition and release of a parallel debug bus PDATA[15:0] and PADR[2:0]. Because pins are shared
between the parallel port 214 and the DEBUG trace port 220, parallel port transmission commands are
initiated only while the processor core 104 is stopped and the DEBUG trace port 220 is disconnected from the
shared bus. A request-grant handshake pair of signals PB REQ / PB GNT are supplied to expedite turnaround
of the shared bus signals between the DEBUG trace port 220 and the parallel port 214. When the host system
111 interface to the parallel parallel port 214 determines that PBREQ is asserted high, the host system 111 is
to begin driving the parallel port 214 signals and assert PBGNT. When PBREQ is deasserted, the host system

111 interface to the parallel port 214 responds by tri-stating host system 111 interface signals and deasserting

10

15

20

25

WO 98/45782 PCT/US98/06827

-32-

PBGNT to indicate that the host system 111 interface is isolated from the bus. To prevent bus contention,
devices driving the parallel port 214 are tri-stated whenever PBGNT is deasserted.

The PBREQ signal is asserted immediately before beginning a save state sequence penultimate to
debug mode entry and is deasserted after the last restore state sequence data word is transferred. When the
debug mode is either commenced or terminated when the parallel port 214 is enabled, the parallel parallel port
214 is used for processor core 104 state save and restore cycles. On the last restore state cycle, the parallel port
214 controller deasserts the PBREQ signal after latching the write data. The CMDACK instruction is not yet
asserted because the processor core 104 is not released to execute code until the DEBUG trace port is available.
The parallel port 214 host interface responds to the PBREQ deassertion by tri-stating the parallel port 214
drivers and deasserting the PBGNT signal. The parallel port 214 controller then activates the DEBUG trace
port pin drivers in the debug trace port 220, completes the last restore state cycle, asserts the CMDACK signal,
and returns control of the debug trace port 220 interface to the trace control circuit 218.

Referring to FIGURE 10, a flow chart depicts a parallel debug port interface protocol followed by the
host system 111 during communications via the parallel port 214. Address pins PADR[2:0] select the field of
the 38-bit internal debug register that is mapped to the 16-bit data bus PDATA[15:0]. The field is selected
from among a null selection, the right 16 bits of debug data, the left 16 bits of debug data, and a four-bit
command register (PDATA[3:0]). The internal pending flag (P) is automatically set when performing a write
operation to the 4-bit command register, and is cleared when the Finished flag (F) is asserted. The host system
111 typically monitors the CMDACK pin to determine when the Finished flag (F) is asserted. On read cycles,
PADR is set to 00 for one clock cycle before and after reading data to allow for bus turn-around.

The JTAG instruction register, also called a serial/parallel debug command register, uses the 4-bit
command field cmd[3:0] to point to the various internal registers and functions in the JTAG TAP controller
204 interface. The serial/parallel debug command register is accessible only via the serial/parallel debug
interface of the JTAG TAP controller 204. Some of the commands use bits from the debug data field as a sub-

field to extend the number of available commands. Table 3 is a map of available functions.

TABLE 3: Serial/Parallel Debug Register Command Code Map

Command Definition

Code

0000 Null (Not recognized by hardware, Finished flag not set)
0001 Load Soft Address register

0010 General register read

WO 98/45782 PCT/US98/06827

-33-
0011 General register write
0100 Serial/parallel Debug register read
0101 Serial/parallel Debug register write
0110 reserved
0111 Miscellaneous Serial/parallel Debug functions per debug_data[3:0]
0 Exit via RESET (hard reset)
1 Exit via SRESET (soft reset)
2 Instruction step (may destroy soft address). Bit 7 of the Debug Control/Status

register or the external STOPTX pin is monitored to determine when the instruction

step is completed. Unlike TF bit, the command steps into interrupts.

3 Peripheral reset (CPU not reset)

4 Read trace buffer at displacement given in soft address
5 Exit to instruction at EIP
* Null

1000 8-bit memory write to [soft address]

1001 16-bit memory write to [soft address]

1010 32-bit meméry write to [soft address]

1011 8-bit output to [soft address] (I/O cycle)

1100 16-bit output to [soft address] (I/O cycle)

1101 32-bit output to [soft address] (I/O cycle)

1110 Input or read per debug_data[3:0]

0 8-bit read from [soft_address]

1 16-bit read from {soft_address]

10

15

20

WO 98/45782 PCT/US98/06827

-34 -

2 32-bit read from {soft_address]

3 8-bit input from [soft_address] (I/O cycle)

4 16-bit input from [soft_address] (I/O cycle)

5 32-bit input from [soft_address] (I/O cycle)

* Nulil

1111 read/write/restore data

The Load Soft Address register command places a new 32-bit value for the soft address pointer in the
debug data[3 1:0] field in combination with the command code and the pending bit (P). Debug logic transfers
the data to the Soft Address register and asserts the Finished flag (F) and the CMDACK signal.

The Memory or I/O read or write command is issued following a command that sets an address and
port designation in the Soft Address register. For a read command, data is transferred directly to the debug
data register when the Finished flag (F) and CMDACK pin is set. For a write command, data is supplied in
the debug data register in combination with the command in the Debug Command register. The address is
postincremented by the appropriate size for any read/write transfer to allow block transfers without continually
setting up the Soft Address. On memory accesses of a microcontroller with multiple physical memory spaces,
the appropriate chipset mapping registers are set prior to issue of the access command. Memory accesses
occur as data accesses. A memory access is directed either to normal memory space or SMM space based on

the setting of the SMMSP bit in the DCSR.

Issue of a General or Serial/parallel Debug Register Read command includes designation of a register
address in the debug data register in combination with identification of the command in the Debug Command
register. The address is transferred to the Soft Address register as a side effect to simplify read/modify/write
setting of individual bits, and the register contents are transferred directly to the debug data register when the
Finished flag/CMDACK pin is set.

For a General or Serial/parallel Debug Register Write command, the Soft Address is used to hold the
register address. The soft address is set up with a previous Read Register or Load Soft Address command.
The data to be written is supplied in the debug data register in combination with the command in the

Command register.

In some embodiments, Read/Write and Save/Restore Data commands include state save reads and
state restore writes. For state save read commands, the command code is loaded with the Pending bit (P)

asserted. When the Finished flag (F) is set or CMDACK is asserted, the save state data is placed in

10

15

20

25

30

WO 98/45782 PCT/US98/06827

-35-

debug_data[31:0]. If no save state data is left to read, the command field cmd[3:0] reads back all zeros. If
additional save state data is available to read, the command field cmd[3:0] reads back all ones. On state
restore write commands, restore data is loaded into debug_data[31:0] with the command code and the Pending
bit (P) set. When the Finished flag (F) and CMDACK pin are set, and the command field cmd[3:0] reads back
all ones, the processor is ready for the next restore transaction. When the Finished flag (F) and CMDACK pin
are sct and the command field cmd[3:0] reads back all zeros, the state restore is complete. The save/restore

commands may be avoided in embodiments that do not utilize context switching.

The Read Trace Record command implements read access to the 256-record internal trace buffer 200
when the internal instruction trace configuration is selected. The read trace record command is not applicable
to an external trace configuration since all trace record data is output to the bond-out DEBUG trace port upon
generation. The read trace record command is invoked by setting bit 0 of the Instruction Trace Configuration
Register (ITCR) to logic 1 to enable the instruction trace buffer 200, then the internal trace configuration is
selected by setting bit 3 of the ITCR register to 0.

The Read Trace Record command reads the 21-bit trace record at the displacement given in the soft
address register, places the record in bits 20:0 of the debug data register and asserts the finished flag and
CMDACK pin. The soft address register is post-incremented so that a subsequent read retrieves the next
location in the buffer in reverse order of history. A read operation from displacement 0 retrieves the most
recent trace record. A read operation from displacement 255 retrieves the oldest trace record in the buffer.
When the instruction trace buffer 200 is read, the valid bit on each record is to be checked. If the valid bit of a
record is zero, an event that occurs only when one or more of the 256 locations of the buffer is not loaded with
trace record data since last initialized, the record should be discarded. The trace buffer 200 wraps around and
continually overwrites the oldest data when full. Once the buffer has wrapped around, all valid bits are set,
and are cleared only when the TINIT bit (bit 2) in the Instruction Trace Configuration Register is set.

The Peripheral reset command sends a reset signal to all system logic except the processor core 104 to
be pulsed active and released. The peripheral reset command allows peripheral logic to be reinitialized

without resetting the processor core 104.

A command to enter or exit Debug mode enables and disables debug functionality. Debug functions
are enabled by writing the DEBUG instruction to the JTAG TAP controller. When a DEBUG instruction is
received, the debug serial port register is enabled to receive commands. While the processor is executing
instructions only the Debug Control/ Status register, Instruction trace configuration register, RX_DATA, and
TX_DATA registers are accessed through the serial interface. All serial debug registers become accessible
when the processor has stopped. The processor may be stopped (forced into debug mode) by one of the

following methods:

¢ Setting bit 1 of the Debug Control/Status register (DCSR)

10

15

20

25

30

WO 98/45782 PCT/US98/06827

-36-

¢ Pulsing the BRTC pin (low-to-high transition)

» Via legacy processor core 104 debug registers DRO-DR3 after setting bit 4 of the Debug
Control/Status register (DCSR). Single stepping with the TF bit set causes entry to debug mode
when DCSR bit 4 is set. Moving to and from debug registers with the GD bit of DR7 set causes
entry to debug mode when DCSR bit 4 is set.

* Executing a EDEBUG instruction. Inserting a EDEBUG instruction into the code stream enters
debug mode at a specific, arbitrary point in source code. The processor core 104 is set in debug
mode (DEBUG instruction must have been written to the TAP controller) or the EDEBUG

instruction causes an invalid opcode exception.

The external pin STOPTX or bit 7 of the Debug Control/Status register (DSCR) is optionally mon-
itored to determine when the processor enters debug mode. The flushing of cache on entry to debug mode is
controlled by the DISFLUSH bit of DCSR. If the bit is reset the cache is flushed (using the SLE486 FLUSH
pin) upon entry to debug mode. If the bit is set the cache is not flushed on entry to debug mode. A partial
state save is utilized upon entry to debug mode. On receipt of the STOPTX signal, either by sampling of the
STOPTX pin or by polling DCSR bit 7, the host system 111 performs a series of reads using command code
1111b before entry to debug mode is complete. The restore data is read from the parallel port interface if the

interface is enabled, otherwise the restore data is read from the serial port.
Debug mode is exited through command 0111, The exit options include:

s Exit and begin execution at current value of EIP. In one example, the processor jumps to a
section of patch code. A breakpoint is set at the end of the patch code to enable reentry to debug
mode. In another example, the processor state is restored to the original debug entry state, using

the general register write commands, before exiting. A partial state restore is performed before

execution resumes.

¢ Exit and perform a single instruction step. A partial state restore is performed. The processor
executes a single instruction, takes a trap, and reenters debug mode, performing a partial state

save.
¢ Exitvia a hard reset. No state restore performed. A hard CPU reset is asserted immediately.

o Exitvia a soft reset. A state restore is performed before the soft CPU reset asserted.

In embodiments that employ context switching, before completing an exit from debug mode the pro-
cessor core 104 performs a partial state restore, except on a hard reset, retrieving the data saved on entry to

debug mode. The host supplies the data by a series of writes using command code 1111b before execution

10

15

20

25

30

WO 98/45782 PCT/US98/06827

-37-

resumes. The host optionally modifies the data saved. The restore data is written to the parallel port interface

if enabled, otherwise the restore data is written to the serial port.

The X86 Enhanced Software debug mode supplies a trace and breakpoint interrupt debug
functionality on the processor core 104 without inclusion of external debug hardware. The mode is enabled by
setting DR7 bit 12. The serial interface does not need to be enabled. When the X86 Enhanced Software debug
mode is enabled, access and control of the instruction trace buffer 200 and the ITCR (Instruction Trace Control
Register) are supplied through a set of reserved instructions. The instructions cause an illegal opcode

exception if executed when DR7 bit 12 is not set.

Debug control and status is configured by setting the Debug Control/Status Register (DCSR) through
the Serial/Parallel debug interface, using the serial/ parallel debug registers read/write command, address 00.
DCSR control and status bits are described, as follows:

e Bit 0 (FRESET) is a reset bit allowing the host system 111 to completely reset all devices on the
target system 101 other than the Serial/Parallel controller. FRESET is useful in the event of a
total target system crash.

e Bit 1 (FBRK) is a register version of the BRTC pin. The host system 111 writes a 1 to FBRK to
force a break into debug mode at the next instruction boundary following synchronization of the

received command with the internal processor clock.

o Bit2 (DSPC) is a processor clock disable bit for disabling the stopping of internal processor
clocks that normally occurs when entering Halt and Stop Grant states. DSPC allows the

processor to continue to respond to break requests while halted or in the Stop Grant state.

e Bit 3 (PARENB) is a parallel port enable bit that enables the auxiliary parallel data port.
PARENB is not set on non bond-out versions of the target system 101.

e Bit 4 (DBTEN) is a debug trap enable bit that causes entry into a hardware debug mode for all
debug traps/faults of the processor core 104 that otherwise cause a software INT 1. The trace
mode on/ off toggling control in the ITCR has priority over DBTEN in that breakpoints mapped
for trace mode on/off toggling are not affected by setting of DBTEN.

¢ Bit 5 (BRKMODE) is a bit for controlling entry into debug mode. BRKMODE allows a
developer to change the functionality of the BRTC pin to become an external control for enabling
and disabling the trace capture operation. When the JTAG TAP controller 204 is programmed
with a DEBUG instruction, the BRTC pin causes the processor core 104 to stop executing an

instruction sequence and enter debug mode. Setting of the BRKMODE pin causes the BRTC pin

10

i5

20

25

30

WO 98/45782 PCT/US98/06827

- 38 -

to control activation of the trace capture operation. The trace capture status is designated by the
TRON bit of the ITCR.

¢ Bit 6 (FRCRDY) is a bit that controls forcing the RDY signal to the processor that is active to
enable the processor to move on to the next bus cycle in cases where a bus operation to an
undefined memory or /O space has occurred in the absence of a subtractive decode agent. Use of

FRCRDY is to be coordinated with chipset logic.

* Bit 7 (STOP) is a stop bit that supports a software technique for checking the state of the
STOPTX pin. When STOP reads back high, the processor is in debug mode and all debug

commands are enabled.

+ Bit 8 (SMMSP) is an SMM control bit that allows memory accesses initiated through the debug
port 100 to take place in the SMM space. When SMMSP is reset, memory accesses initiated
through the debug port 100 apply to the normal memory address space. Setting Of SMMSP
causes memory accesses initiated through the debug port 100 to apply to the SMM address space.

e Bit 9 (DISFLUSH) is a control bit for controlling flushing of a cache on entry to debug mode.
With DISFLUSH reset the cache is flushed on entry to debug mode. Setting DISFLUSH prevents

the cache from flushing on entry to debug mode.

+ Bit 10 (RX) is a data received bit that indicates whether data has been received from the host
system 111 so that the processor core 104 can read the data from the RX_DATA register.

* Bit 11 (TX) is a data transmit bit that indicates the processor core 104 is ready to transmit data so
that the host system 111 can read the data from the TX_DATA register.

Communication between an operating system (OS) and Applications via the JTAG Debug port 100 is
initiated by the host system 111 writing the DEBUG instruction to the JTAG instruction register in the JTAG
TAP controller 204. Writing of the DEBUG instruction causes the Serial Debug Shifter 212 to connect to the
JTAG TDI-TDO serial interface of the JTAG TAP controller 204. The serial debug port 100 includes two
debug registers for transmitting (TX_DATA register) and receiving (RX_DATA register) data. TX_DATA

and RX_DATA are accessed using the soft address and serial/parallel debug register commands.

The processor core 104 initiates a data transmission by first testing the read-only TX bit in the ITCR
register. If the TX bit is set to O then the processor core 104 executes an X86 instruction to transfer the data to
the TX_DATA register. The serial port 100 sets the TX bit in the DCSR and ITCR registers indicating to the
host system 111 data is ready for transmission. The serial port 100 also sets the STOPTX pin to high. After
the host system 111 compietes reading the transmit data from the TX DATA register, the TX bitissetto 0. A
TXINTEN bit in the ITCR register, when set, generates a signal to interrupt the processor core 104. The

10

15

20

WO 98/45782 PCT/US98/06827

-39-

interrupt is generated only when TX bit in the ITCR register makes a transition to 0. When the TXINTEN bit
is not set, the processor core 104 polls the TX bit of the ITCR register to further transmit the data.

The host system 111 sends data to the processor core 104 by first testing the read-only RX bit in the
DCSR register. If the RX bit is set to 0, then the host system 111 writes the data to the receive data
(RX_DATA) register and the serial port 100 sets the RX bit to 1 in the DCSR and ITCR registers. The
RXINTEN bit in the ITCR register, when set, generates a signal to interrupt the processor core 104. The
interrupt is only generated when RX bit in the DCSR makes a transition to 1. When the RXINTEN bit is not
set, the processor core 104 polls the RX bit of the ITCR register. If the RX bit is set to 1, the processor core
104 executes an X86 instruction to read the data from the receive data (RX_DATA) register. After data is
read by the processor core 104 from the RX_DATA register, the RX bit is set to 0 by the serial port 100. The

host system 111 continuously reads the DCSR register and monitors the RX bit to continue sending data.

While the invention has been described with reference to various embodiments, it will be understood
that these embodiments are illustrative and that the scope of the invention is not limited to them. Many
variations, modifications, additions and improvements of the embodiments described are possible. For
example, those skilled in the art will readily implement the steps necessary to provide the structures and methods
disclosed herein, and will understand that the process parameters, materials, and dimensions are given by way of
example only and can be varied to achieve the desired structure as well as modifications which are within the scope of
the invention. Variations and modifications of the embodiments disclosed herein may be made based on the
description set forth herein, without departing from the scope and spirit of the invention as set forth in the following

claims.

0 3 N W AW

W W N - wn = W N

W o W e

WO 98/45782 PCT/US98/06827

- 40 -

WE CLAIM:

1. A debug interface in a target processor for debug interfacing to a host system, the debug interface

comprising;

a trace controller for coupling to the target processor and receiving trace information from the target
processor, the trace controller detecting selected trace information and formatting samples of
the selected trace information; and

a trace buffer coupled to the trace controller, the trace buffer including a plurality of trace data storage
elements including a trace code (TCODE) field indicative of a type of trace information and

a trace data (TDATA) field indicative of a type of trace information data.

2. An interface according to Claim 1 wherein:
the trace data storage elements of the trace buffer further include a verify bit indicative of whether the

trace data storage element specifies a valid trace record.

3. An interface according to Claim 1 wherein:

a trace code (TCODE) designates a missed trace type of trace information indicative that the target

processor missed reporting some trace records.

4. An interface according to Claim 1 wherein:

a trace code (TCODE) designates a conditional branch type of trace information indicative of an
occurrence of a conditional branch instruction; and

a trace data (TDATA) corresponding to the conditional branch TCODE designating a plurality of bits

indicating taken branches and not taken branches.

5. An interface according to Claim 4 wherein:

a trace data (TDATA) corresponding to the conditional branch TCODE designates a plurality of bits
that are initially cleared except for a set left-most bit and either set or cleared to indicate an
outcome of up to 15 conditional branch events in which as a new conditional branch is

encountered, a new bit is added on the left and other entries are shifted right one-bit.

6. An interface according to Claim 1 wherein:

a trace code (TCODE) designates a branch target type of trace information indicative of a target
address of a data-dependent branch instruction; and

a trace data (TDATA) corresponding to the conditional branch TCODE designating a value indicative

of an Extended Instruction Pointer of the data-dependent branch instruction.

h S W N e thh & W N e wh W N N W AW N = AN h B W N e

h B W N -

WO 98/45782 PCT/US98/06827

-4] -

7. An interface according to Claim 1 wherein:

a trace code (TCODE) designates a previous segment base type of trace information indicative of a
segment base address of a previous code segment; and

a trace data (TDATA) corresponding to the previous segment base TCODE designating the segment
base address and segment attributes of the previous code segment, the segment attributes

reporting a status for paging, operand size, and addressing mode.

8. An interface according to Claim 1 wherein:

a trace code (TCODE) designates a current segment base type of trace information indicative of a
segment base address of a current code segment; and

a trace data (TDATA) corresponding to the previous segment base TCODE designating the segment
base address and segment attributes of the current code segment, the segment attributes

reporting a status for paging, operand size, and addressing mode.

9. An interface according to Claim 1 wherein:

a trace code (TCODE) designates an interrupt type of trace information indicative of an asynchronous
or synchronous event such as an interrupt or trap; and

a trace data (TDATA) corresponding to the interrupt TCODE designating a vector number of an

exception or interrupt.

10. An interface according to Claim 1 wherein:

a trace code (TCODE) designates a trace synchronization type of trace information indicative of a
currently executed instruction; and

a trace data (TDATA) corresponding to the trace synchronization TCODE designating an address of a

currently executed instruction.

11. An interface according to Claim 1 wherein:

a trace code (TCODE) designates a multiple trace entry type of trace information indicative of a trace
data extending to additional trace data storage elements; and

a trace data (TDATA) corresponding to the multiple trace entry TCODE and designating an

additional record of a trace entry.

12. An interface according to Claim 1 wherein:
a trace code (TCODE) designates a trace stop type of trace information indicative of a directive to stop
trace capture; and

a trace data (TDATA) corresponding to the trace stop TCODE and designating an instruction address

at which trace capture is stopped.

=T~ - RN e Y T

bt et ped et ped
W N = O

WO 98/45782 PCT/US98/06827

- 42 -

13. An interface according to Claim 1 further comprising:
a serial/parallel interface coupled to the trace controller, the trace controller selectively sending the

trace code (TCODE) and the trace data (TDATA) serially or in parailel to the host system.

14. A processor comprising;

an integrated circuit chip;

a processor fabricated on the integrated circuit chip;

an I/O interface coupled to the processor; and

a debug interface fabricated on the integrated circuit chip coupled to the processor and coupled to the

I/O interface, the debug interface for debug interfacing to a host system, the debug interface

including:

a trace controller for coupling to the target processor and receiving trace information from
the target processor, the trace controller detecting selected trace information and
formatting samples of the selected trace information; and

a trace buffer coupled to the trace controller, the trace buffer including a plurality of trace
data storage elements including a trace code (TCODE) field indicative of a type of
trace information and a trace data (TDATA) field indicative of a type of trace

information data.

15. An processor according to Claim 14 wherein:
the trace data storage elements of the trace buffer further include a verify bit indicative of whether the

trace data storage element specifies a valid trace record.

PCT/US98/06827

WO 98/45782

1/9

JdVML40S
T0YLNOJ

aNndida

4y

W3LSAS LSOH

[I

~a.

ol

801
140d
angid
001
3400
g0SS300dd LHONTN
W3LSAS
[/ \
0t v0l 901
W3LSAS 1394Vl

PCT/US98/06827

WO 98/45782

2/9

vmo 3oVdl Sndl INIHOYIN ALYLS 5 O
Navd ___ (Q3HSINI -
Navd V1vad 77z SN
077 JOV44ALNI
avd 3oVl 434408
mmoa %ﬁf& o0g 2% uz_Iw/mmM%&m -
[T YA VINES
i Y
— : ILIMM—938—daS
a1z 91907 [0:L] .
T0MINOD |._ ¥0dv-4nadl - mm%mw_um%m
- 10Vl > ~ 017
i | CHd[ANOT QWD NdD~ ‘ e
30Vl 1INDYD \onlzn_o
QLEES ! ZHdHIT= TVILFET| NOLLYZINONHONAS [T flw%m
gi¢ 9ongid - [~| 43ITI04LNOD ML
30Vl | dvLoovir) SHL
~ oy | L LSoH
Hﬁqmﬁ - - B P L
N0 L [L1] Lve |80 300030 [RIS
v1va uz_%&‘m mﬁ_a " CHd 300030 9vir ONYAWOD [140d T3TIVHvd
TTTER [0°GTT3S—IN0—NdD oy ANOG |
\mnwgl_mmﬁmm%_, JvdL muw = INHOVA
= VIN3S 1507
——INOG—QND—diP | . E%:%
St T éu-m%&; 300030 oVIr d 908
ong3a| | 3402 [0:1e]ln0-V1¥a-Ndd} | | ONW3F3LS
vor Ndd [0:1¢]vLva-aan 775 V1VQ

[0:07] Q4003 VAL

PCT/US98/06827

WO 98/45782

3/9

& Ol

AYLNT 30Vl LIG-0¢
AYLNI OVl 118-0¢

SNId I0VAL AMINT 30Vl 118-07
EIZ AMIN 30V¥L L1807 |-
40 VId3S AYINT 30Vl 118-07
i AYINI 3oVl L19-07
05T AMINI 30Vl L18-07

AYINI 0Vl 118-0¢

00¢

d0SS3004d

409

/
v0!

PCT/US98/06827

WO 98/45782

4/9

G Old

ON

S3A
¥0G

dITI0HLNOD dvl
0L NOILONYLSNI

ang3q JLRIM 1~706

ongid Lavis 00S

13S 119 9NION3d
HLIM NIVHD NY2S
9n43a AYOINN/avol

\
909

v Old

9y14 QIHSING ¥oIHD 1~ O

‘ANVINQD 119-8¢ 40
QYOINN/av01 LY3d3Y

S3A

ON

80

Y

V14 Q3HSINII HO3HO
‘INVWNOJ 116-8¢
MIN QYOINN/QY0T g0

|

135 118 ONION3d
HLIM INTVA VR3S
118-8¢ QYOINN/QY0T {— 404

 §

YITIOHLNOD dVl
0L NOILINYLSNI
ONg3q LM 1~z0+%

9NGIA LAVIS)_ 504

WO 98/45782 PCT/US98/06827
5/9
20 15 0
0j]0, 00 1(83B28B1 1 0 00 0 0 0 0000 0 0
TCODE=1 Only 3-bits of BFIELD used
FIG. 6A
20 19 15 0
0| TCODE=2, JADDR_H, high 16-bits of EIP target logical address
0] TCODE=7 TADDR_L, low 16-bits of EIP target logical address
FIG. 6B
20 19 15 0
0] TCODE=8 TADDR_H, high 16-bits of EIP stop instruction logical address
0| TCODE=7, JADDR_L, low 16-bits of EIP stop instruction logical address
0] TCODE=4 _BADDR_H, high 16-bits of Current segment base address
0| TCODE=7 ~ [BADDR_L, low bits 15-4 of segment base address | - | PG| SZ|RP
FIG. 6C
20 19 15 0
V ;rCODIE=1] L] 1 1 I BFIElLD 1 L Il]
0| TCODE=6 [TADDR_H, high 16-bits of EIP for interrupted instruction logical address
0] TCODE=7 |TADDR_L, low 16-bits of EIP for interrupted instruction logical address
0] TCODE=3 BADDR_H, high 16-bits of previous segment base address
0| TCODE=7 | BADDR_L, low bits 15-4 of seqment base address { - | PG| SZ [RP
0| TCODE=5 oL Vector number o
0] TCODE=7 JADDR_H, high 16-bits of interrupt handler logical address
0 TCODE=7 TADDR_L, low 16-bits of instruction logical address |

FIG. 6D

WO 98/45782 PCT/US98/06827
6/9

20 19 15 0

V lTCODlE=1 { 1 1 1 1 1] | 1 BFlEILD | | 1 1

0 TCODE=3 ,BADDR_H, high 16-bits of previous segment base address

0 TCODE=7 BADDR_L, low bits 15-4 of segment base address | ~ | PG |SZ RP

0 TCODE=2 . TADDR_H, high 16-bits of long—jump target logical address

0 ICODIE=7I ITADPR_L,, low 16Tbitsl of long~jump togget llogiclol o@dresls
FIG. 6k

20 19 15 0

0 T1CODE=9. ! 16-bit value supplied by instruction L
FIG. 6F

20 19 15 0

0 JCODE=6 | TADDR_H, high 16-bits of EIP to current instruction logical address

0 TCODE=7 TADDR_L, low 16-bits of EIP for current instruction logical address

FIG. 6G

WO 98/45782 PCT/US98/06827

7/9

START DEBUG

LOAD /UNLOAD 706

NEW 38-BIT COMMAND,
CHECK FINISHED FLAG

WRITE DEBUG
INSTRUCTION TO
TAP CONTROLLER

702

LOAD /UNLOAD 38-BIT
SERIAL VALUE WITH
PENDING BIT SET

704

REPEAT LOAD /UNLOAD
OF 38-BIT COMMAND,
CHECK FINISHED FLAG

FIG. 7

START DEBUG

WRITE DEBUG
INSTRUCTION TO
TAP CONTROLLER

802

804 WAIT FOR
CMDACK = 1

LOAD /UNLOAD
DEBUG SCAN CHAIN
WITH PENDING BIT SET

806
FIG. 8

PCT/US98/06827

8/9

WO 98/45782

e 1IN PU] _ poay _ ST " adfy~aph)
i i i ¥ T ¥ ¥ ¥ ¥ MOVAND~8|dwosTysoy
¥ Y 1] Y Y Aﬁ Y D}Op)0 D}
! ‘ D}DPTID[T}S0Y
_ 1 1 MOVAND
_J%laq.udL _ B 4%;%
[T H<1 10] _:_ | _9 _o_o_ _: [_o o_c_ _ [0 _ [* [_ | _: | _9_ Tﬂul@ﬂ_o:me&
[0 —{(MM V[V (YO B TR T aQROR 1Y IVORIY [YOR——°00d]][0:G1]v1vad
D DIV VN | 7D ")
-] _ LN98d
_ [D3¥ad
Hgipigipipigigigipigigipigigigipipgipipigigigigipigipignpigngept

PCT/US98/06827

WO 98/45782

9/9

01 "Old

V1vdd OL
SHIAA NO Nanl
= Mdd 00 = ¥dvd

0

| = MOVAAD 404 MI3HD
NIHL MOL 3INO LIVM

| = Mdd LI = ddvd

v1vd 4IM0T aviy

= MOVAWO 404 ©I3HD
NIHL ML 3INO LIvM

| = Mdd 01 = ¥0vd

ViVQ d3ddn av3y

A0L INO LIVM
‘00 = ¥Qvd ‘V1¥ad Ol
SYIARA 440 N¥NL

= MIOVAWD d04 HJ3HI
NIHL MOL INO LIvM

0 = Mdd 10 = ¥avd
INVANOD av3y dLIdM

ON

(1314 V1va JHL NI Y1vd
40 SLIg-91 ¥IMOT 3LI4M

RE

GNVANOO 404

0

603033N
d1314 v1vd

=R
mmﬁ E;U
= S0YAND 04 %OIH)
T SHL NG 1

Y

S3A

63LIIM
J401S3Y JLVIS
1SV

= Mid 10 = ddvd
ANVAWNOO LM

| = MOVAND
404 MO3HO N3HL
MOL 3NO LivM

0 = Myd
Ll = ddvd
Y1VQ dIMOT JLIM

| = MOVAND
404 HJ3FHD N3HL
ML 3NO LIVM

0 = Mid
0l = ¥avd
Y1VQ d3ddn L1

avid

| = 0348d d04
ONLLIVM FTIHM 1804
9N83d viRyaS 38N

TATIVYVd 318YN3)
| = ¢:42SQ L3S

d3TI0HLNOD dv1
0L NOLLINYLSNI
aNg3a ALim

ong3d 1y¥visS

INTERNATIONAL SEARCH REPORT in. itional Application No
PCT/US 98/06827

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 GO6F11/00

According to International Patent Classification (IPC) or to both national ctassitication and IPC

B. FIELDS SEARCHED

Minimum documeantation searched (classification system foilowed by classification symbois)

IPC 6 GO6F

Documentation searched other than minimumdocumentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X EP 0 316 609 A (KABUSHIKI KAISHA TOSHIBA) 1,6,11,
24 May 1989 14
Y see the whole document 2,15
A 4
Y US 5 058 114 A (KUBOKI SHIGEO ET AL) 15 2,15

October 1991

see column 2, line 12 - line 29

see column 2, line 60 — column 3, line 33
X "TAILORABLE EMBEDDED EVENT TRACE" 1,12,14
IBM TECHNICAL DISCLOSURE BULLETIN,
vol. 34, no. 7B, 1 December 1991,
pages 259-261, XP000282573 .

A see page 260, line 7 - page 261, line 24 4,6-11

- o

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

° Special categories of cited documents : .

"T" later document publishad after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"X" document of particular relevance; the claimed invention

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earier document but published on or after the international

filing date cannot be considerad novel or cannot be considered to
“"L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone
which is cited to establish the publicationdate of another "y* document of particular relevance; the claimed invention

citation or other special reason (as specified) cannot be considered to involve an inventive step when the

"O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means mants, such combination being obvious to a person skilled
"P" document published prior to the international filing date but in the art.
later than the priority date claimed "&" document member of the same patent family
Date of the actual completion of theinternational search Date of mailing of the international search report
17 July 1998 27/07/1998
Name and mailing address of the ISA Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Fax: (+31-70) 340-3016 Herreman, G

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

\ aational Application No

PCT/US 98/06827

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication,where appropriate, of the relevant passages Relevant to claim No.
A EP 0 762 276 A (MOTOROLA INC) 12 March 1,4,6,
1997 9-12,14

see page 3, line 56 - page 4, line 37
see page 10, line 49 - page 17, last line;
claims 1,5,8

A EP 0 683 454 A (SGS-THOMSON 13
MICROELECTRONICS) 22 November 1995

see column 5, 1ine 8 - column 6, line 2
see column 11, 1ine 18 - column 12, line 5

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

m

.tional Application No

PCT/US 98/06827

Patent document Publication Patent family Publication

cited in search report date member(s) date

EP 0316609 A 24-05-1989 JP 1134541 A 26-05-1989

US 5058114 A 15-10~-1991 JP 1233634 A 19-09-1989
JP 2678283 B 17-11-1997
KR 9707764 B 16-05-1997

EP 0762276 A 12~-03-1997 JP 9218803 A 19-08-1997

EP 683454 A 22-11-1995 FR 2720174 A 24-11-1995
DE 69501016 D 18-12-1997
DE 69501016 T 12-03-1998
JP 8212101 A 20-08-1996
us 5774708 A 30-06-1998

Form PCT/ISA/210 (patent family annex) (July 1992)

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS
	SEARCH_REPORT

