(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/176137 Al

30 October 2014 (30.10.2014) WIPOIPCT
(51) International Patent Classification: One Microsott Way, Redmond, WA 98052-6399 (US).
GO6F 9/44 (2006.01) HANNA, Fadi M.; c¢/o Microsoft Corporation, LCA - In-
. . ternational Patents, One Microsoft Way, Redmond, WA
(21) International Application Number: 98052-6399 (US)
PCT/US2014/034739 ’
. -] (81) Designated States (uniess otherwise indicated, for every
(22) International Filing Date: 21 Anril 2014 (21.04.2014 kind of national protection available): AE, AG, AL, AM,
pri (21.04.2014) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(25) Filing Language: English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
L. . DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(26) Publication Language: English HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(30) Priority Data: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
13/867,143 22 April 2013 (22.04.2013) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
(71) Applicant: MICROSOFT CORPORATION [US/US]; SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
One Microsoft Way, Redmond, WA 98052-6399 (US). TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
(72) Inventors: TROFIN, Mircea; c/o Microsott Corporation, ZW.

LCA - International Patents, One Microsoft Way, Red-
mond, WA 98052-6399 (US). DUSSUD, Patrick; ¢/o Mi-
crosoft Corporation, LCA - International Patents, One Mi-
crosoft Way, Redmond, WA 98052-6399 (US). MARTIN,
Rudi; ¢/o Microsoft Corporation, LCA - International Pat-
ents, One Microsoft Way, Redmond, WA 98052-6399
(US). HAMBY, John Lawrence; c/o Microsoft Corpora-
tion, LCA - International Patents, One Microsoft Way,
Redmond, WA 98052-6399 (US). STREHOVSKY,
Michal; c/o Microsoft Corporation, LCA - International
Patents, One Microsoft Way, Redmond, WA 98052-6399
(US). WRIGHTON, David Charles; c/o Microsott Cor-
poration, LCA - International Patents, One Microsoft Way,
Redmond, WA 98052-6399 (US). KANAMORI, Atsushi;
c/o Microsoft Corporation, LCA - International Patents,

(84)

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

[Continued on next page]

(54) Title: CONTROLLING RUNTIME ACCESS TO APPLICATION PROGRAMMING INTERFACES

e

Fig. 2

Accessing a set of application programming interfaces
(APIs) combined in a library, the set of application
programming interfaces (APls) including one or more
public application programming interfaces (APIs) and
onhe or more non-public application programming
interfacz%s1 {APls)

1

Identifying an application programming interface (API)
from among the set of application programming
interfaces (APIs) for which the default visibility provided
to dynamic access reZ%JZests are to be altered

!

Altering the default visibility inte the application

wo 2014/176137 A1 [N I NP0 00O RO

programming interface (API) to an altered visibility by
applying an atfribute to the application programming
interface (API), the attribute indicating to the runtime
environment at runtime that dynamic access requests
are to be provided the altered visibility into the
application progra%ging interface (API)

(57) Abstract: The present invention extends to methods, systems, and computer program products for controlling runtime access to
application programming interfaces Embodiments of the invention allow library developers to more precisely and easily control
which of their libraries' APIs can be called dynamically. Thus, their servicing and versioning burden can be more appropriately con-
trolled. Further, application developers can control which such APIs to further exclude from dynamic calling scenarios, to minimize
the runtime support overhead (e.g., preventing generation of metadata).

WO 2014/176137 A1 W00 000 0 A

Published:
— with international search report (Art. 21(3))

10

15

20

25

30

WO 2014/176137 PCT/US2014/034739

CONTROLLING RUNTIME ACCESS TO APPLICATION PROGRAMMING
INTERFACES

BACKGROUND
[0001] Background and Relevant Art

[0002] Computer systems and related technology affect many aspects of society. Indeed,
the computer system’s ability to process information has transformed the way we live and
work. Computer systems now commonly perform a host of tasks (e.g., word processing,
scheduling, accounting, etc.) that prior to the advent of the computer system were performed
manually. More recently, computer systems have been coupled to one another and to other
electronic devices to form both wired and wireless computer networks over which the
computer systems and other electronic devices can transfer electronic data. Accordingly, the
performance of many computing tasks is distributed across a number of different computer
systems and/or a number of different computing environments.

[0003] During code development, software developers often use Application Programing
Interfaces (APIs) to facilitate communication between software components. An API can
include a specification for routines, data structures, object classes, and variables associated
with the API. As such, one developer can use an API specification to determine how to call
an API written by another developer.

[0004] Often, one software developer (a library developer) develops code having a
number of related APIs that are grouped into a library offering specified functionality. The
software developer can make parts of the functionality available to other programs by
exposing corresponding APIs within the library as public APIs. Thus, another developer (an
application developer) can access the available parts of functionality from within their code
through calls to the public APIs. The software developer can also maintain other parts of the
functionality as private. The private functionality can be used internally between APIs
within the library or to access other private APIs in other libraries. APIs providing the
private functionality are not directly exposed to other programs.

[0005] However, many runtime environments permit code to dynamically call any API in
a third party library (c.g., using reflection to access metadata). As such, an application
program or library can identify and call private APIs within another library. When a software
developer maintains an API is private, the software developer does not expect the API to be

externally called. Unfortunately, servicing or versioning changes to internal implementation

10

15

20

25

30

WO 2014/176137 PCT/US2014/034739

details of such libraries, such as, for example, renames or removals of private methods, have
the potential of causing breaking changes in applications using these libraries.

[0006] In addition, runtime support for dynamic calls carries a size and working set
overhead (e.g., metadata). The size and working set overhead is maintained for APIs (private
or public) whether or not the APIs are actually called dynamically. Maintaining size and
working set overhead for uncalled APIs unnecessarily consumes computing resources.

BRIEF SUMMARY

[0007] The present invention extends to methods, systems, and computer program
products for controlling runtime access to application programming interfaces.
Embodiments of the invention include controlling runtime access to an application
programming interfaces (API). A runtime environment provides dynamic access requests
(c.g., through reflection or other dynamic calling techniques) with a default visibility into
APIs based on API type. For example, the default visibility into non-public APIs may
prevent dynamic access.

[0008] A sct of APIs combined in a library is accessed. The set of APIs include one or
more public APIs and one or more non-public APIs. An API is identified from among the
set of APIs for which the default visibility provided to dynamic access requests is to be
altered.

[0009] The default visibility into the API is altered by applying an attribute to the API.
The attribute indicates to the runtime environment at runtime that dynamic access requests
arc to be provided the altered visibility into the API. Altering visibility can include
permitting dynamic access to a non-public API where by default dynamic access is not
permitted.

[0010] Other embodiments include reducing the default visibility into an accessible API.
Application code for an application is accessed. The application code refers to one or more
accessible APIs combined in a library. An accessible API referred to within the application
code is identified. The accessible API is sclected from among the one or more accessible
APIs.

[0011] It is determined that the accessible API is not to be dynamically accessed at
runtime. An attribute is applied to the accessible API to reduce the default visibility into the
accessible API. The attribute indicates to a runtime environment at runtime that dynamic
access requests (e.g., through reflection or other dynamic calling techniques) are to be

provided with reduced visibility into the accessible API. Reducing visibility into an API can

10

15

20

25

30

WO 2014/176137 PCT/US2014/034739

correspondingly reduce metadata generation. In some embodiments, reducing visibility into
an API includes preventing dynamic access to the API.
[0012] Further embodiments include providing a consumer with specified visibility into
an API. Executable code is executed in a runtime environment. The executable code is
derived from application code. During execution of the executable code, a dynamic call is
received from a consumer to execute a portion of the executable code. The portion of the
executable code is derived from a portion of the application code that refers to an API within
a library. A runtime default visibility into the API is accessed based on the type of the API.
[0013] Any attributes applied to the API are accessed. Attributes applied to the API can
be indicative of a desire by the author of API to alter the runtime default visibility into the
API. Any attributes applied to the portion of the application code are accessed. Attributes
applied to the portion of the application code can be indicative of a desire by the author of
the application code to provide less visibility into the API than indicated by the runtime
default visibility as altered by any attributes applied to the API.
[0014] A calculated visibility into the API is determined based on one or more of: the
runtime default visibility into the API, any attributes applied to the API, and any attributes
applied to the portion of the application code that refers to the API. The dynamic call is
provided with the calculated visibility into the API.
[0015] This summary is provided to introduce a selection of concepts in a simplified form
that are further described below in the Detailed Description. This Summary is not intended
to identify key features or essential features of the claimed subject matter, nor is it intended
to be used as an aid in determining the scope of the claimed subject matter.
[0016] Additional features and advantages of the invention will be set forth in the
description which follows, and in part will be obvious from the description, or may be
learned by the practice of the invention. The features and advantages of the invention may
be realized and obtained by means of the instruments and combinations particularly pointed
out in the appended claims. These and other features of the present invention will become
more fully apparent from the following description and appended claims, or may be learned
by the practice of the invention as set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS
[0017] In order to describe the manner in which the above-recited and other advantages
and features of the invention can be obtained, a more particular description of the invention
briefly described above will be rendered by reference to specific embodiments thereof which

are illustrated in the appended drawings. Understanding that these drawings depict only

10

15

20

25

30

WO 2014/176137 PCT/US2014/034739

typical embodiments of the invention and are not therefore to be considered to be limiting
of its scope, the invention will be described and explained with additional specificity and
detail through the use of the accompanying drawings in which:

[0018] Figures 1 illustrates an example computer architecture that facilitates controlling
runtime access to an application programming interface.

[0019] Figure 2 illustrates a flow chart of an example method for controlling runtime
access to an application programming interface.

[0020] Figure 3 illustrates an example computer architecture that facilitates reducing the
default visibility into an accessible application programming interface.

[0021] Figure 4 illustrates a flow chart of an example method for reducing the default
visibility into an accessible application programming interface.

[0022] Figure 5 illustrates an example computer architecture that facilitates providing a
consumer with specified visibility into an application programming interface.

[0023] Figure 6 illustrates a flow chart of an example method for providing a consumer
with specified visibility into an application programming interface.

DETAILED DESCRIPTION

[0024] The present invention extends to methods, systems, and computer program
products for controlling runtime access to application programming interfaces.
Embodiments of the invention include controlling runtime access to an application
programming interfaces (API). A runtime environment provides dynamic access requests
(c.g., through reflection or other dynamic calling techniques) with a default visibility into
APIs based on API type. For example, the default visibility into non-public APIs may
prevent dynamic access.

[0025] A sct of APIs combined in a library is accessed. The set of APIs include one or
more public APIs and one or more non-public APIs. An API is identified from among the
set of APIs for which the default visibility provided to dynamic access requests is to be
altered.

[0026] The default visibility into the API is altered by applying an attribute to the API.
The attribute indicates to the runtime environment at runtime that dynamic access requests
arc to be provided the altered visibility into the API. Altering visibility can include
permitting dynamic access to a non-public API where by default dynamic access is not
permitted.

[0027] Other embodiments include reducing the default visibility into an accessible API.

Application code for an application is accessed. The application code refers to one or more

10

15

20

25

30

WO 2014/176137 PCT/US2014/034739

accessible APIs combined in a library. An accessible API referred to within the application
code is identified. The accessible API is selected from among the plurality of accessible
APIs.

[0028] It is determined that the accessible API is not to be dynamically accessed at
runtime. An attribute is applied to the accessible API to reduce the default visibility into the
accessible API. The attribute indicates to a runtime environment at runtime that dynamic
access requests (e.g., through reflection or other dynamic calling techniques) are to be
provided with reduced visibility into the accessible API. Reducing visibility into an API can
correspondingly reduce metadata generation. In some embodiments, reducing visibility into
an API includes preventing dynamic access to the API.

[0029] Further embodiments include providing a consumer with specified visibility into
an API. Executable code is executed in a runtime environment. The executable code is
derived from application code. During execution of the executable code, a dynamic call is
received from a consumer to execute a portion of the executable code. The portion of the
executable code is derived from a portion of the application code that refers to an API within
a library. A runtime default visibility into the API is accessed based on the type of the API.
[0030] Any attributes applied to the API are accessed. Attributes applied to the API can
be indicative of a desire by the author of API to alter the runtime default visibility into the
API. Any attributes applied to the portion of the application code are accessed. Attributes
applied to the portion of the application code can be indicative of a desire by the author of
the application code to provide less visibility into the API than indicated by the runtime
default visibility as altered by any attributes applied to the APL.

[0031] A calculated visibility into the API is determined based on one or more of: the
runtime default visibility into the API, any attributes applied to the API, and any attributes
applied to the portion of the application code that refers to the API. The dynamic call is
provided with the calculated visibility into the API.

[0032] Embodiments of the present invention may comprise or utilize a special purpose
or general-purpose computer including computer hardware, such as, for example, one or
more processors and system memory, as discussed in greater detail below. Embodiments
within the scope of the present invention also include physical and other computer-readable
media for carrying or storing computer-executable instructions and/or data structures. Such
computer-readable media can be any available media that can be accessed by a general
purpose or special purpose computer system. Computer-readable media that store computer-

executable instructions are computer storage media (devices). Computer-readable media

10

15

20

25

30

WO 2014/176137 PCT/US2014/034739

that carry computer-executable instructions are transmission media. Thus, by way of
example, and not limitation, embodiments of the invention can comprise at least two
distinctly different kinds of computer-readable media: computer storage media (devices)
and transmission media.

[0033] Computer storage media (devices) includes RAM, ROM, EEPROM, CD-ROM,
solid state drives (“SSDs”) (e.g., based on RAM), Flash memory, phase-change memory
(“PCM”), other types of memory, other optical disk storage, magnetic disk storage or other
magnetic storage devices, or any other medium which can be used to store desired program
code means in the form of computer-executable instructions or data structures and which
can be accessed by a general purpose or special purpose computer.

[0034] A “network” is defined as one or more data links that enable the transport of
clectronic data between computer systems and/or modules and/or other ¢lectronic devices.
When information is transferred or provided over a network or another communications
connection (either hardwired, wireless, or a combination of hardwired or wireless) to a
computer, the computer properly views the connection as a transmission medium.
Transmissions media can include a network and/or data links which can be used to carry
desired program code means in the form of computer-executable instructions or data
structures and which can be accessed by a general purpose or special purpose computer.
Combinations of the above should also be included within the scope of computer-readable
media.

[0035] Further, upon reaching various computer system components, program code
means in the form of computer-executable instructions or data structures can be transferred
automatically from transmission media to computer storage media (devices) (or vice versa).
For example, computer-executable instructions or data structures received over a network
or data link can be buffered in RAM within a network interface module (e.g., a “NIC”), and
then eventually transferred to computer system RAM and/or to less volatile computer
storage media (devices) at a computer system. Thus, it should be understood that computer
storage media (devices) can be included in computer system components that also (or even
primarily) utilize transmission media.

[0036] Computer-executable instructions comprise, for example, instructions and data
which, when executed at a processor, cause a general purpose computer, special purpose
computer, or special purpose processing device to perform a certain function or group of
functions. The computer executable instructions may be, for example, binaries, intermediate

format instructions such as assembly language, or even source code. Although the subject

10

15

20

25

30

WO 2014/176137 PCT/US2014/034739

matter has been described in language specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in the appended claims is not
necessarily limited to the described features or acts described above. Rather, the described
features and acts are disclosed as example forms of implementing the claims.

[0037] Those skilled in the art will appreciate that the invention may be practiced in
network computing environments with many types of computer system configurations,
including, personal computers, desktop computers, laptop computers, message processors,
hand-held devices, multi-processor systems, microprocessor-based or programmable
consumer electronics, network PCs, minicomputers, mainframe computers, mobile
telephones, PDAs, tablets, pagers, routers, switches, and the like. The invention may also
be practiced in distributed system environments where local and remote computer systems,
which are linked (either by hardwired data links, wireless data links, or by a combination of
hardwired and wireless data links) through a network, both perform tasks. In a distributed
system environment, program modules may be located in both local and remote memory
storage devices.

[0038] Embodiments of the invention can also be implemented in cloud computing
environments. In this description and the following claims, “cloud computing” is defined as
a model for enabling on-demand network access to a shared pool of configurable computing
resources. For example, cloud computing can be employed in the marketplace to offer
ubiquitous and convenient on-demand access to the shared pool of configurable computing
resources. The shared pool of configurable computing resources can be rapidly provisioned
via virtualization and released with low management effort or service provider interaction,
and then scaled accordingly.

[0039] A cloud computing model can be composed of various characteristics such as, for
example, on-demand self-service, broad network access, resource pooling, rapid elasticity,
measured service, and so forth. A cloud computing model can also expose various service
models, such as, for example, Software as a Service (“SaaS”), Platform as a Service
(“PaaS”), and Infrastructure as a Service (“laaS”). A cloud computing model can also be
deployed using different deployment models such as private cloud, community cloud, public
cloud, hybrid cloud, and so forth. In this description and in the claims, a “cloud computing
environment” is an environment in which cloud computing is employed.

[0040] Embodiments of the invention allow library developers to more precisely and
casily control which of their libraries' APIs can be called dynamically. Thus, their servicing

and versioning burden can be more appropriately controlled. Further, application developers

10

15

20

25

30

WO 2014/176137 PCT/US2014/034739

can control which such APIs to further exclude from dynamic calling scenarios, to minimize
the runtime support overhead.

[0041] Figures 1 illustrates an example computer architecture 100 that facilitates
controlling access to an application programming interface (API). Referring to Figure 1,
computer architecture 100 includes development environment 101 and runtime environment
102. development environment 101 and runtime environment 102 can be connected to one
another over (or be part of) a network, such as, for example, a system bus, a Local Area
Network ("LAN"), a Wide Areca Network (“WAN?”), and even the Internet. Accordingly,
development environment 101 and runtime environment 102 as well as any other connected
computer systems and their components, can create message related data and exchange
message related data (e.g., Internet Protocol (“IP”) datagrams and other higher layer
protocols that utilize IP datagrams, such as, Transmission Control Protocol (“TCP”),
Hypertext Transfer Protocol (“HTTP”), Simple Mail Transfer Protocol (“SMTP”), etc. or
using other non-datagram protocols) over the network.

[0042] Development environment 101 can be a software application that provides
facilities for software development, including but not limited to: a source code editor, build
automation, a debugger, a version control system, a class browser, an object inspector, a
class hicrarchy diagram, ctc. In some embodiments, development environment 101 includes
or is included in an Integrated Development Environment (IDE). A library developer can
use development environment 101 to apply an attribute to an API to change the visibility of
the API to dynamic access requests.

[0043] Runtime environment 102 can be a software application that provides facilities for
software execution. Runtime environment 102 can include a compiler (e.g., a just-in-time
(JIT) compiler) and/or an interpreter for executing code developed in software development
environment 101. In some embodiments, runtime environment 102 includes or is included
in an Integrated Development Environment (IDE). Runtime environment 102 can include
mechanisms (e.g., reflection) for dynamically requesting access to an API.

[0044] Development environment 101 and execution environment 102 can be integrated
into the same environment or can be resident in separate environments.

[0045] Runtime environment 102 includes visibility calculation module 109. Visibility
calculation module is configured to calculate the visibility into an API based on API type
(e.g., internal, private, public, etc.) and applied attributes. Default visibility rules 108 can
define a default visibility (e.g., permit dynamic access or remove dynamic access) for cach

API type. Applied attributes can be used to alter or override a default visibility. As such,

10

15

20

25

30

WO 2014/176137 PCT/US2014/034739

applied attributes give a library developer more precise control over how individual APIs
can be accessed dynamically.

[0046] In some embodiments, default visibility rules 108 define that dynamic access is
removed for APIs indicated as private or internal. A library developer can use development
environment 101 to apply an attribute to the private or internal API. The applied attribute
can indicate that dynamic access is to be permitted for the private or internal API. Upon
receiving a dynamic call to the private or internal API, visibility calculation module 109 can
determine that the applied attribute overrides the default visibility (of removed dynamic
access) for the private or internal API. As such, the dynamic call is permitted access to the
private or internal API.

[0047] Figure 2 illustrates a flow chart of an example method 200 for controlling access
to an application programming interface (API). Method 200 will be described with respect
to the components and data of computer architecture 100.

[0048] Method 200 includes accessing a set of application programming interfaces (APIs)
combined in a library, the set of application programming interfaces (APIs) including one
or more public application programming interfaces (APIs) and one or more non-public
application programming interfaces (APIs) (201). For example, development environment
101 can access library 103. Library 103 includes one or more public APIs including public
API 104. Library 103 includes one or more nob-public (e.g., private or internal) APIs
including non-public API 106.

[0049] Method 200 includes identifying an application programming interface (API) from
among the set of application programming interfaces (APIs) for which the default visibility
provided to dynamic access requests is to be altered (202). For example, development
environment 101 (possibly in response to author input) can identify that the default visibility
for dynamic access requests (e.g., using reflection or other dynamic calling techniques) into
non-public APT 106 is to be altered.

[0050] Mecthod 200 includes altering the default visibility into the application
programming interface (API) to an altered visibility by applying an attribute to the
application programming interface (API), the attribute indicating to the runtime
environment at runtime that dynamic access requests are to be provided the altered visibility
into the application programming interface (API) (203). For example, author 113 can enter
visibility input 112 at development environment 101. In response to visibility input 112,

development environment 101 can apply attribute 107 to non-public API 106. Attribute 107

10

15

20

25

30

WO 2014/176137 PCT/US2014/034739

can indicate to runtime environment 102 that the default visibility for non-public APIs
defined in default visibility rules 108 is to be altered for non-public API 106.

[0051] Subsequently, library 103 can be compiled along with other source code into
executable code 111. During execution of executable code 111, visibility calculation module
109 can consider both default visibility rules 108 and attribute 107 when calculating
visibility into non-public API 106. In some embodiments, attribute 107 indicates the
dynamic access to non-public API 106 is allowed even though default visibility rules 108
indicate that dynamic access to non-public APIs is to be prevented.

[0052] Figure 3 illustrates an example computer architecture 100 that facilitates reducing
the default visibility into an accessible application programming interface (API). Referring
to Figure 3, computer architecture 300 includes development environment 301 and runtime
environment 302. development environment 301 and runtime environment 302 can be
connected to one another over (or be part of) a network, such as, for example, a system bus,
a Local Area Network ("LAN"), a Wide Area Network (“WAN?”), and even the Internet.
Accordingly, development environment 301 and runtime environment 302 as well as any
other connected computer systems and their components, can create message related data
and exchange message related data (e.g., Internet Protocol (“IP”’) datagrams and other higher
layer protocols that utilize IP datagrams, such as, Transmission Control Protocol (“TCP”),
Hypertext Transfer Protocol (“HTTP”), Simple Mail Transfer Protocol (“SMTP”), etc. or
using other non-datagram protocols) over the network.

[0053] Development environment 301 can be a software application that provides
facilities for software development, including but not limited to: a source code editor, build
automation, a debugger, a version control system, a class browser, an object inspector, a
class hicrarchy diagram, ctc. In some embodiments, development environment 301 includes
or is included in an Integrated Development Environment (IDE). An application developer
can use development environment 301 to apply an attribute to code referencing an accessible
API (e.g., included in a third party library). Attributes applied to code referencing an
accessible API can be used to reduce default visibility into the accessible API.

[0054] Runtime environment 302 can be a software application that provides facilities for
software execution. Runtime environment can include a compiler (e.g., a just-in-time (JIT)
compiler) and/or an interpreter for executing code developed in software development
environment 301. In some embodiments, runtime environment 302 includes or is included
in an Integrated Development Environment (IDE). Runtime environment 302 can include

mechanisms (e.g., reflection) for dynamically requesting access to an API.

10

10

15

20

25

30

WO 2014/176137 PCT/US2014/034739

[0055] Development environment 301 and execution environment 302 can be integrated
into the same environment or can be resident in separate environments.

[0056] Runtime environment 302 includes visibility calculation module 309. Visibility
calculation module 309 is configured to calculate the visibility into an accessible API (e.g.,
public API or non-public API attributed to permit dynamic access) based on attributes
applied to code referencing the accessible API. Default visibility rules 308 can permit
dynamic access to accessible APIs. As such, applied attributes give an application developer
a mechanism to exclude otherwise accessible APIs (e.g., included in a third party library)
from dynamic access. Excluding an otherwise accessible API from dynamic access
minimizes runtime support overhead (e.g., metadata generation) and thereby conserves
resources.

[0057] Figure 4 illustrates a flow chart of an example method 400 for reducing the default
visibility into an accessible application programming interface (API). Method 400 will be
described with respect to the components and data of computer architecture 300.

[0058] Method 400 includes accessing application code for an application, the application
code referring to one or more accessible application programming interfaces (APIs)
combined in a library (401). For example, development environment 301 can access
application code 314. Development environment 310 can also access library 30. Application
code 314 can refer to one or more APIs, such as, for example, APIs 304 and 306, included
in library 303.

[0059] Method 400 includes identifying an accessible application programming interface
(API) referred to within the application code, the accessible application programming
interface (API) selected from among the one or more accessible application programming
interfaces (APIs) (402). For example, development environment 301 can identify API 306
referred to by API reference 316.

[0060] Method 400 includes determining that the accessible application programming
interface (API) is not to be dynamically accessed at runtime (403). For example,
development environment 301 (possibly in response to author input) can determine that
dynamic access to API 306 is to be prevented.

[0061] Method 400 includes reducing the default visibility into the accessible application
programming interface (API) to a reduced visibility by applying an attribute to the portion
of the application code referring to the accessible application programming interface (API),
the attribute indicating to the runtime environment at runtime that dynamic access requests

are to be provided the reduced visibility into the accessible application programming

11

10

15

20

25

30

WO 2014/176137 PCT/US2014/034739

interface (API) (404). For example, author 313 can enter visibility input 312 at development
environment 301. In response to visibility input 312, development environment 301 can
apply attribute 317 to API reference 316 (a reference to API 306). Attribute 317 can indicate
to runtime environment 302 that the default visibility for API 306 is to be reduced.

[0062] Subsequently, application code 314 and library 303 can be compiled along
(possibly with other source code) into executable code 311. During execution of executable
code 311, visibility calculation module 309 can consider both default visibility rules 308
and attribute 317 when calculating visibility into API 306. In some embodiments, attribute
317 indicates the dynamic access to API 306 is prevented even though default visibility
rules 308 indicate that dynamic access to accessible APIs is to be allowed.

[0063] Limited visibility into an API can include not generating metadata for the API. For
example, as depicted in computer architecture 300, metadata is not generated for API 306.
On the other hand, metadata 319 can be generated for API 304 (another accessible API
referenced form application code 314).

[0064] Figure 5 illustrates an example runtime environment 500 that facilitates providing
a consumer with specified visibility into an application programming interface (API).
Referring to Figure 5, runtime environment 500 includes visibility calculation module 501
and consumer 531. Visibility calculation module 501 and consumer 531 can be connected
to one another over (or be part of) a network, such as, for example, a system bus, a Local
Area Network ("LAN"), a Wide Area Network (“WAN”), and even the Internet.
Accordingly, visibility calculation module 501 and consumer 531as well as any other
connected computer systems and their components, can create message related data and
exchange message related data (e.g., Internet Protocol (“IP”) datagrams and other higher
layer protocols that utilize IP datagrams, such as, Transmission Control Protocol (“TCP”),
Hypertext Transfer Protocol (“HTTP”’), Simple Mail Transfer Protocol (“SMTP”), etc. or
using other non-datagram protocols) over the network.

[0065] Runtime environment 500 can be a software application that provides facilities for
software execution. Runtime environment can include a compiler (e.g., a just-in-time (JIT)
compiler) and/or an interpreter for executing code developed in software development
environment 500. In some embodiments, runtime environment 500 includes or is included
in an Integrated Development Environment (IDE). Runtime environment 500 can include
mechanisms (e.g., reflection) for dynamically requesting access to an API.

[0066] Runtime environment 500 includes visibility calculation module 501. Visibility

calculation module 501 is configured to calculate the visibility into an each of a plurality of

12

10

15

20

25

30

WO 2014/176137 PCT/US2014/034739

APIs grouped together in a library. Visibility can be calculated for an API based on an API
type (e.g., internal, private, public), attributes applied (e.g., a library author) to the API, and
attributes applied to application that references the API. Applied attributes can be used to
alter, override, reduce, etc. a default visibility.

[0067] In some embodiments, default visibility rules 502 define that dynamic access is
removed for non-public (e.g., private or internal) APIs and that dynamic access is permitted
for public APIs. However, the author of a non-public API (e.g., a library author) can apply
an attribute to the non-public API to override the default visibility and permit dynamic
access to the non-public API. Likewise, the author of a public API (e.g., a library author)
can apply an attribute to the public API to override the default visibility and deny dynamic
access to the public API. Other default visibility rules are also possible.

[0068] For any dynamically accessible APIs (whether dynamically accessible by default
or dynamically accessible by an applied attribute), a third party author (e.g., an application
author) can apply an attribute to code referencing the dynamically accessible API to remove
dynamic access from the API. Thus, an application author can minimize runtime support
overhead (e.g., metadata generation) and thereby conserves resources.

[0069] Figure 6 illustrates a flow chart of an example method 600 for providing a
consumer with specified visibility into an application programming interface (API). Method
600 will be described with respect to the components and data of runtime environment 500.
[0070] Method 600 incudes executing executable code in the runtime environment, the
executable code derived from application code (601). For example, executable code can be
executed in runtime environment 500. Executable code 503 can be derived from application
code that includes references to APIs contained in a library. For example, API references
511 and 517 can reference APIs contained in a library. The APIs contained in the library
can include APIs 513 and 518.

[0071] Method 600 includes during execution of the executable code, method 600
includes receiving a dynamic call from a consumer to execute a portion of the executable
code, the portion of the executable code derived from a portion of the application code that
refers to an application program interface (API) within a library (602). For example,
dynamic call 521 can be received from consumer 531. Dynamic call 521 can be a call to
execute a portion of executable code 503.

[0072] In one embodiment, dynamic call 521 is a call to execute executable code that

includes API reference 511. API reference 511 can reference either API 513 or API 518. In

13

10

15

20

25

30

WO 2014/176137 PCT/US2014/034739

another embodiment, dynamic call 521 is a call to execute executable code that includes
API reference 517. API reference 517 can reference either AP1 513 or API 518.

[0073] Method 600 incudes accessing a runtime default visibility into the application
program interface (API) based on the type of the application program interface (API) (603).
As indicated by type 514, API 513 is a non-public API. Thus, when an API reference
references API 513, a runtime default visibility for (e.g., preventing dynamic access to) non-
public APIs can be accessed from default visibility rules 502 (for API 513). As indicated by
type 519, API 518 is a public APIL. Thus, when an API reference references API 518, a
runtime default visibility for (e.g., allowing dynamic access to) public APIs can be accessed
from default visibility rules 502 (for API 518).

[0074] Method 600 incudes accessing any attributes applied to the application program
interface (API), attributes applied to the application program interface (API) indicative of a
desire by the author of application program interface (API) to alter the runtime default
visibility into the application program interface (API) (604). For example, when an API
reference references API 513, attribute 516 can be accessed. Attribute 516 can indicate a
desire by the library author to alter the runtime default visibility (as defined in default
visibility rules 502) into API 513. For example, by default, dynamic access to non-public
APIs can be prevented. However, attribute 513 can indicate that dynamic access to API 513
is to be permitted.

[0075] Method 600 incudes accessing any attributes applied to the portion of the
application code that refers to the application program interface (API), attributes applied to
the portion of the application code indicative of a desire by the author of the application
code to provide visibility into the application program interface (API) to a lesser extent than
indicated by the runtime default visibility as altered by any attributes applied to the
application program interface (API) (605). For example, when dynamic call 521 is a call to
execute executable code that includes API reference 511, attribute 512 can be accessed.
Attribute 512 can indicate a desire by an application author to reduce visibility into a
reference API (e.g., API 513 or API 518). For example, attribute 512 can indicate that
dynamic access to the references API (e.g., API 513 or API 518)is to be prevented. As such,
even if the library author otherwise permits dynamic access to an API, the application
developer can apply attribute 512 to prevent dynamic access to the API.

[0076] Method 600 incudes determining a calculated visibility into the application
program interface (API) based on one or more of: the runtime default visibility into the

application program interface (API), any attributes applied to the an application program

14

10

15

20

25

30

WO 2014/176137 PCT/US2014/034739

interface (API), and any attributes applied to the portion of the application code that refers
to the application program interface (API) (606). Thus, visibility calculation module 501
can determine a calculated visibility 522 into an API based on a default visibility for the
APT’s type (as defined in default visibility rules 502), any attributes applied to the API, and
any attributes applied to an API reference that references the API.

[0077] Method 600 incudes providing the dynamic call with visibility into the application
program interface (API) in accordance with the calculated visibility (607). For example,
consumer 531 can be provided with visibility 522 into a dynamically called API in
executable code 503. Results 524 of dynamic call 521 can also be returned to consumer 531.
Results 524 may indicate that the dynamic access to the dynamically called API is not
permitted.

[0078] Within executable code 503 various different combinations of referring code and
APIs are possible. In one embodiment, dynamical call 521 uses API reference 511 to call
API 513. In this embodiment, visibility 522 is determined from a default visibility for API
type 514 (c.g., as defined in default visibility rules 502), attribute 512, and attribute 516. In
another embodiment, dynamical call 521 uses API reference 511 to call API 518. In this
embodiment, visibility 522 is determined from a default visibility for API type 519 (e.g., as
defined in default visibility rules 502) and attribute 512.

[0079] In a further embodiment, dynamical call 521 uses API reference 517 to call API
513. In this further embodiment, visibility 522 is determined from a default visibility for
API type 514 (e.g., as defined in default visibility rules 502) and attribute 516. In an
additional embodiment, dynamical call 521 uses API reference 517 to call API 518. In this
further embodiment, visibility 522 is determined from a default visibility for API type 519
(c.g., as defined in default visibility rules 502).

[0080] The present invention may be embodied in other specific forms without departing
from its spirit or essential characteristics. The described embodiments are to be considered
in all respects only as illustrative and not restrictive. The scope of the invention is, therefore,
indicated by the appended claims rather than by the foregoing description. All changes
which come within the meaning and range of equivalency of the claims are to be embraced

within their scope.

15

WO 2014/176137 PCT/US2014/034739

CLAIMS
1. At a computer system, the computer system including a development
environment for developing executable code that includes application programming
interfaces (APIs), the executable code for running in a runtime environment that can
dynamically requests access to the application program interfaces (APIs), the runtime
environment providing dynamic access requests with a default visibility into application
program interfaces (APIs) based on application program interface (API) type, a method for
controlling runtime access to the application programming interfaces (APIs), the method
comprising:
accessing a set of application programming interfaces (APIs) combined in a
library, the set of application programming interfaces (APIs) including one or more
public application programming interfaces (APIs) and one or more non-public
application programming interfaces (APIs);
identifying an application programming interface (API) from among the set
of application programming interfaces (APIs) for which the default visibility
provided to dynamic access requests is to be altered; and
altering the default visibility into the application programming interface
(API) to an altered visibility by applying an attribute to the application programming
interface (API), the attribute indicating to the runtime environment at runtime that
dynamic access requests are to be provided the altered visibility into the application

programming interface (API).

2. The method of claim 1, wherein identifying an application programming
interface (API) comprises exposing the application programming interface (API) to the
author of the application programming interface (API); and

wherein altering the default visibility of the application programming interface (API)
comprises the author of the application programming interface (API) altering the default

visibility of the application programming interface.

3. The method of claim 1, wherein identifying an application programming
interface (API) comprises identifying a non-public application programming interface
(API), the default visibility for the non-public application programming interface (API)

preventing dynamic access to the non-public application programming interface (API).

16

WO 2014/176137 PCT/US2014/034739

4. The method of claim 3, wherein altering the default visibility of the
application programming interface (APIl) comprises applying at attribute to the non-public
application programming interface (API), the attribute altering the default visibility for the
non-public application programming interface (API) to allow dynamic access to the non-

public application programming interface (API).

5. The method of claim 1, wherein identifying an application programming
interface (API) comprises identifying a public application programming interface (API), the
default visibility for the public application programming interface (API) allowing dynamic

access to the public application programming interface (API).

6. The method of claim 5, wherein altering the default visibility of the
application programming interface (API) comprises applying at attribute to the public
application programming interface (API), the attribute altering the default visibility for the
public application programming interface (API) to prevent dynamic access to the public

application programming interface (API).

7. At a computer system, the computer system including a development
environment for developing executable code that includes application programming
interfaces (APIs), the executable code for running in a runtime environment that can
dynamically request access to application program interfaces (APIs), the runtime
environment having default visibility into accessible application program interfaces (APIs),
a method for reducing the default visibility into an accessible application programming
interfaces (API), the method comprising:

accessing application code for an application, the application code referring
to one or more accessible application programming interfaces (APIs) combined in a
library;

identifying an accessible application programming interface (API) referred
to within the application code, the accessible application programming interface

(API) selected from among the one or more accessible application programming

interfaces (APIs);

determining that the accessible application programming interface (API) is

not to be dynamically accessed at runtime;

17

WO 2014/176137 PCT/US2014/034739

reducing the default visibility into the accessible application programming
interface (API) to a reduced visibility by applying an attribute to the portion of the
application code referring to the accessible application programming interface
(API), the attribute indicating to the runtime environment at runtime that dynamic
access requests are to be provided the reduced visibility into the accessible

application programming interface (API).

8. The method of claim 7, wherein applying an attribute to a portion of the
application code referring to the accessible application programming interface (API)
comprises the author of the application code applying an attribute to a portion of the

application code referring to the accessible application programming interface (API).

9. The method of claim 7, wherein applying an attribute to a portion of the
application code referring to the accessible application programming interface (API)
comprises applying an attribute to one of: a portion of the application code referring to a

public API or a portion of the application code referring to a non-public API.

10. Atacomputer system, the computer system including a runtime environment
that can request dynamic access to application program interfaces (APIs), the runtime
environment providing dynamic access requests with a default visibility into application
program interfaces (APIs) based on application program interface (API) type, a method
providing a consumer with specified visibility into an application programming interface
(API), the method comprising:

executing executable code in the runtime environment, the executable code
derived from application code;

during execution of the executable code:

receiving a dynamic call from a consumer to execute a portion of the
executable code, the portion of the executable code derived from a portion
of the application code that refers to an application program interface (API)
within a library;

accessing a runtime default visibility into the application program
interface (API) based on the type of the application program interface (API);

accessing any attributes applied to the application program interface

(API), attributes applied to the application program interface (API)

18

WO 2014/176137

PCT/US2014/034739

indicative of a desire by the author of application program interface (API) to
alter the runtime default visibility into the application program interface
(APD),

accessing any attributes applied to the portion of the application code
that refers to the application program interface (API), attributes applied to
the portion of the application code indicative of a desire by the author of the
application code to provide visibility into the application program interface
(APD) to a lesser extent than indicated by the runtime default visibility as
altered by any attributes applied to the application program interface (API);

determining a calculated visibility into the application program
interface (API) based on one or more of: the runtime default visibility into
the application program interface (API), any attributes applied to the an
application program interface (API), and any attributes applied to the portion
of the application code that refers to the application program interface (API);
and

providing the dynamic call with visibility into the application

program interface (API) in accordance with the calculated visibility.

19

PCT/US2014/034739

WO 2014/176137

1/6

SINqURY

90¢ Idv

9|NPOI
uonenoey |

I ‘31

€Ll
Joyiny

ZhE
nduj
AlNaisiA

!

901
|V
1gqnd-UoN

ANgisiA

+

m 807 sany

AINIgIsIA ynejag
20 JuswuoJIAUg awi] uny

£07 Aeuqn

£0r Aeiqi
Juswuoliaug swdoaasq

P ——

0}

WO 2014/176137 PCT/US2014/034739

2/6

~

Accessing a set of application programming interfaces
(APIs) combined in a library, the set of application
programming interfaces (APIs) including one or more
public application programming interfaces (APIs) and
one or more non-public application programming
interfa%%s1 (APIs)

v

Identifying an application programming interface (API)
from among the set of application programming
interfaces (APIs) for which the default visibility provided
to dynamic access re2(1512(asts are to be altered

l

Altering the default visibility into the application
programming interface (API) to an altered visibility by
applying an attribute to the application programming
interface (API), the attribute indicating to the runtime
environment at runtime that dynamic access requests

are to be provided the altered visibility into the

application prograr2n£ing interface (API)

Fig. 2

PCT/US2014/034739

WO 2014/176137

3/6

|m oINQLIY ﬁ

9I¢
(90¢ 1dv 01)
ooce&mm IdVY

TIE 8p07 8|qeINoaxy

[—

608
8|NPO
uone|noe)

Anaisip

»

80¢ sainy M
AMNIGISIA JNeja(

0& 1usuluoJdiaug awl] uny

>

€ "SI

£1e
jouny

(1] %o. %o.
- .“_n_<ﬁ h_n_<ﬁ

) £0¢ Aieigr

|m esp_s/xﬁ
- 91¢

ﬁo %oo §oo
ﬁ_n_<ﬁ ﬁ_n_<ﬁ

coc Meuqi

(90¢ Idv 01)
90uaJajay |dY

F1€ 9po) uonesl|ddy

TOE uswuoJiaug Juswdojanag

9I¢
(90¢ 1dv o1)
8:8@5«_ IdY

71€ 9poD uones|jddy

0€

WO 2014/176137 PCT/US2014/034739

4/6

M%w

Accessing application code for an application, the
application code referring to one or more accessible
application programming interfaces (APIs) combined in a

librar
My

!

|dentifying an accessible application programming
interface (API) referred to within the application code, the
accessible application programming interface (API)
selected from among the one or more accessible
application program4rBi2ng interfaces (APIs)

l

Determining that the accessible application programming
interface (API) is not to be dynamically accessed at

runtime
403

l

Reducing the default visibility into the accessible
application programming interface (API) to a reduced
visibility by applying an attribute to the portion of the

application code referring to the accessible application
programming interface (API), the attribute indicating to the
runtime environment at runtime that dynamic access
requests are to be provided the reduced visibility into the
accessible application p‘rl%%ramming interface (API)

Fig. 4

WO 2014/176137

5/6

PCT/US2014/034739

Runtime
Environment Default Visibility Rules S
500 w 902
) Visibility Calculation
Module
501
—— 1111
Visibility
(Into Specified API)
922
Executable Code 503
Al_PI AR\SI‘er?nce
(%1 8) 1,551:13 or API Reference
: = (To AP1 513 or
Consumer | \Pynamic BAttribute 512 518) 517
== 521
APl 513 AP| 518
Type 514 Type 519
224 “Non-Public” ‘Public’
YAttribute 516 §

Fig. 5

WO 2014/176137 PCT/US2014/034739

6/6

60,
f“\/: Executing executable code in the runtime environment, the
executable code derivg&from application code

!

During execution of the executable code:

Receiving a dynamic call from a consumer to execute a
portion of the executable code, the portion of the executable
code derived from a portion of the application code that refers

to an application program gggrface (API) within a library

¥
Accessing a runtime default visibility into the application
program interface (API) based on the type of the application
program irggéface (API)

v

Accessing any attributes applied to the application program
interface (API), attributes applied to the application program
interface (API) indicative of a desire by the author of
application program interface (API) to alter the runtime default
visibility into the applicat(i;%rll program interface (API)

Accessing any attributes applied to the portion of the
application code that refers to the application program
interface (API), attributes applied to the portion of the
application code indicative of a desire by the author of the
application code to provide visibility into the application
program interface (API) to a lesser extent than indicated by the
runtime default visibility as altered by any attributes applied to
the application pr%%rsam interface (API)

v

Determining a calculated visibility into the application program
interface (API) based on one or more of: the runtime default
visibility into the application program interface (API), any
attributes applied to the an application program interface (API),
and any attributes applied to the portion of the application
code that refers to the appliézggon program interface (API)

_ v

Providing the dynamic call with visibility into the application

program interface (API) in accordance with the calculated
viségiyty

Fig. 6

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/034739

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/44
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X GOSLING J ET AL:

EDITION, ADDISON-WESLEY, US,

XP007921265,

ISBN: 0-201-31008-2

page 1

page 81

page 229

page 251

section 13.4.3 at page 258

June 2000 (2000-06), pages 1-532,

"The Java Language 1-6
Specification - Second Edition",
THE JAVA LANGUAGE SPECIFICATION - SECOND

Further documents are listed in the continuation of Box C.

D See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

14 July 2014

Date of mailing of the international search report

22/07/2014

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Del Castillo, G

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/034739

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

M. Biczd ET AL: "Runtime access control
in C# 3.0 using extension methods",
Annales Univ. Sci. Budapest., Sect. Comp.,
2009, pages 41-59, XP055034082,

Retrieved from the Internet:
URL:http://ac.inf.elte.hu/Vol_030_2009/041
.pdf

[retrieved on 2012-07-27]

abstract

sections 4 and 5

Stuart Dabbs Halloway: "Component
Development for the Java Platform (Chapter
3: Type Information and Reflection)",

14 December 2001 (2001-12-14), pages
57-103, XP055127743,

ISBN: 0201753065

Retrieved from the Internet:
URL:http://www.pearsonhighered.com/samplec
hapter/0201753065.pdf

[retrieved on 2014-07-09]

sections 3.3.3 and 3.3.3.1 at pages 76-78,
especially the first paragraph of section
3.3.3

& "Extract from publisher's Web page
www.pearsonhighered.com, containing
bibliographic information on the cited
book",

XP055127751,

Retrieved from the Internet:
URL:http://www.pearsonhighered.com/educato
r/product/Component-Development-for-the-Ja
va-Platform/9780201753066.page

[retrieved on 2014-07-09]

(provides evidence of the publication date
of the cited book)

1-6

1-6

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

International application No.
INTERNATIONAL SEARCH REPORT PLT/US2014/034739
BoxNo.ll Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. |:| Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. Izl Claims Nos.: 7-10
because they relate to parts of the international application that do not comply with the prescribed requirements to such
an extent that no meaningful international search can be carried out, specifically:

see FURTHER INFORMATION sheet PCT/ISA/210

3. |:| Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. lll Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

—_

As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims.

2. |:| As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of
additional fees.

3. |:| As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

4. |:| No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest The additional search fees were accompanied by the applicant's protest and, where applicable, the
payment of a protest fee.

The additional search fees were accompanied by the applicant's protest but the applicable protest
fee was not paid within the time limit specified in the invitation.

|:| No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (April 2005)

International Application No. PCT/ US2014/034739

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I1I.2

Claims Nos.: 7-10

Claims 7-10 do not comply with the provisions of clarity of Article 6 PCT
to such an extent that no meaningful search of the claims can be carried
out for these claims, as the subject-matter for which protection is
sought cannot be established with sufficient certainty (even taking into
account the content of the description and drawings).

In particular,
claim 7 is not clear for the following reasons:

a. the meaning of the

step of " determining that the accessible application programming
interface (API) is not to be dynamically accessed at runtime" is not
clear: in particular, it is not clear who or what decides that an API is
"not to be dynamically accessed" and according to which criteria;

b. the
meaning of the term "portion" is not clear: in particular, it is not
clear what is the extent of the "portion of the application code" to
which the attribute is applied (note that such a portion could be
anything, from an individual instruction referring to the API to the
whole program containing that instruction);

c. more generally, the
content of the claimed method as a whole is quite confusing for a skilled
person, in particular because the visibility of an API is changed where
the APl is referred to, which seems to defy the purpose of defining such
a visi?i]ity (so that the skilled person cannot make sense of the claimed
method).

Claim 10 is not clear for the same reason as indicated at

item b above with respect to claim 7 and, furthermore, the meaning of the
step of "determining a calculated visibility" is not clear (in
particular, it is not clear who or what determines the "calculated
visibility", how it is determined, or even what the possible values of
such a "calculated visibility" can be).

Dependent claims 8 and 9 are
not clear as a result of the lack of clarity of claim 7, on which they
depend.

The applicant's attention is drawn to the fact that claims relating to
inventions in respect of which no international search report has been
established need not be the subject of an international preliminary
examination (Rule 66.1(e) PCT). The applicant is advised that the EPO
policy when acting as an International Preliminary Examining Authority is
normally not to carry out a preliminary examination on matter which has
not been searched. This is the case irrespective of whether or not the
claims are amended following receipt of the search report or during any
Chapter 1I procedure. If the application proceeds into the regional phase
before the EPO, the applicant is reminded that a search may be carried
out during examination before the EPO (see EPO Guidelines C-1V, 7.2),
should the problems which led to the Article 17(2) declaration be

International Application No. PCT/ US2014/034739

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

overcome.

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - wo-search-report
	Page 29 - wo-search-report
	Page 30 - wo-search-report
	Page 31 - wo-search-report
	Page 32 - wo-search-report

