発明者: 塩見 弘 (SHIONOMI, Hiromi) [JP/JP]; 〒5440024 大阪府大阪市此花区南二丁目 1 番 3 号 住友電気工業株式会社

(2) 特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関
国際事務局
(43) 国際公開日
2011年9月22日(22.09.2011)

(51) 国際特許分類:
H01L 21/205 (2006.01) C23C 16/458 (2006.01)

(71) 出願人 (米国を除くすべての指定国について): 住友電気工業株式会社

(10) 国際公開番号
WO 2011/114858 A1

(25) 国際出願の言語:
日本語

(26) 国際公開の言語:
日本語

(22) 国際出願日:
2011年2月25日(25.02.2011)

(30) 優先権丁目:
特願2010-058023 2010年3月15日(15.03.2010) JP

(40) 国際出願受理国:
日本

(74) 代理人: 特許業務法人深見特許事務所 [Fukami Patent Office, p:; 〒5300005 大阪府大阪市北区]

(54) Title: SEMICONDUCTOR THIN-FILM MANUFACTURING METHOD, SEMICONDUCTOR THIN-FILM MANUFACTURING APPARATUS, SUSCEPTOR, AND SUSCEPTOR HOLDING TOOL

(57) Abstract: Substrates (10 - 12) are installed on each of a plurality of susceptors (20 - 22). The plurality of susceptors each mounted with a substrate is disposed in a rotating mechanism mutually to have a predetermined gap in up and down directions. The rotating mechanism equipped with the plurality of susceptors is rotated. The plurality of susceptors mounted with a substrate is heated. A semiconductor thin film is deposited by supplying a source gas heated via a gas flow path having a substantially equal path length, to each susceptor that is heated while being rotated.

(57) 要約: 複数のサセプター（20 〜 22）の各々に基板（10 〜 12）が搭載される。各々に基板が搭載された複数のサセプターが、互いに上下方向に所定間隔を設けられるように回転機構に配置される。複数のサセプターが配置された回転機構が回転させられる。各々に基板が搭載された複数のサセプターが加熱される。回転しながら加熱されるサセプターの各々、径路長が略等しいガス流路を経由しながら加熱された原料ガスを供給することで、半導体薄膜が堆積される。
中之島二丁目2番7号 中之島セントラルタ
(84) 指定国 (表示のない限り、全ての種類の広域保
MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ヨーロッパ
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
(AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT,
NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI
(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).
添付公開書類:
- 国際調査報告 (条約第21条(3))
明細書

発明の名称:
半導体薄膜の製造方法、半導体薄膜の製造装置、サセプター、およびサセプター保持具

技術分野
[0001] 本発明は、半導体薄膜の製造方法、半導体薄膜の製造装置、サセプター、およびサセプター保持具に関する。特に、サセプター上で単結晶の半導体薄膜をエピタキシャル成長させるCVD（Chemical Vapor Deposition）法に基づく半導体薄膜の製造方法および製造装置に関し、さらに、前記製造装置に用いられるサセプターおよびサセプター保持具に関する。

背景技術
[0002] SiC（炭化珪素）を用いた半導体基板は、Si（シリコン）等を用いた半導体基板に比較してバンドギャップが高く、耐熱性、熱伝導性等も良好なため、研究が盛んに行われている。
[0003] このSiC製半導体基板（以下、「SiC基板」という）の製造においては、従来より、ホットウォール方式のCVD装置が用いられている。
[0004] このホットウォール式CVD装置を用いたSiC基板の製造につき、図12を参照しつつ説明する。図12は、従来のホットウォール式CVD装置の主要部を模式的に示す図である。図12において、基板10はSiCのエピタキシャル成長を行うための種基板としての単結晶である。
[0005] そして、サセプター20は基板10を載置するものであり、SiCやTaC（炭化タンタル）をコートしたC（炭素）等からなており、下部のワークコイル70からの高周波誘導加熱により発熱して基板10を加熱する。
[0006] また、加熱板30は、サセプター20に対向して配置されており、サセプター20と同様に、SiCやTaCをコートしたC等からなており、上部のワークコイル32からの高周波誘導加熱により発熱する。なおこの装置に
はまた、断熱材３１、６０と、ステンレス鋼製の遮蔽板（シールド）３３、
７１と、冷却管３４、７２と、石英管８０と、装置壁９０と、ガス導入口９
５と、ガス排出口９６とが設けられている。

[0007]温度１５００〜１６００℃、真空度１３．３〜２６．６ｋＰａ（１００〜
２００Ｔｏｒｒ）に設定された装置内に、ガス導入口９５より原料ガスＳｉ
Ｈ４とＣ３Ｈ８およびキャリアガスであるＨ２が導入され、サセプター２０に載
置された基板１０の表面にＳｉＣ単結晶がエピタキシャル成長する。その後
、ガスはガス排出口９６より装置外に排出される。

[0008]しかし、このホットウォール方式には以下のような問題点があった。即ち
、導入された原料ガスは、基板１０上にＳｉＣ単結晶を形成すると共に、基
板１０に対向して配置された加熱板３０の表面に多結晶ＳｉＣを形成し、こ
の加熱板３０に形成された多結晶ＳｉＣが、パーティクルとなってＳｉＣ単
結晶を成長させた基板１０上に落下してくる恐れがあった。ＳｉＣ単結晶に
多結晶ＳｉＣが混在すると、ＳｉＣ基板の品質が低下する。このため、装置
内の清掃を定期的に行って、パーティクルの落下を防止する必要があった。

[0009]また、サセプター２０上に複数の基板１０を設置して生産効率の向上を図
ろうとした場合、例えば、直径５０ｍｍ（２インチ）程度の基板を６枚配置
する程度であれば、あまり大きなサイズのサセプターを必要としないが、直
径１５０ｍｍ（６インチ）程度の基板を６枚配置しようすると非常に大き
なサイズのサセプターが必要となる。そして、このような、大きなサイズの
サセプターは表面積が大きいため、輻射熱が逃げ易くエネルギーコストを悪
化させる問題もある。

[0010]これらの問題に対処するために、基板を設置した複数のプレートを多段に
設置して、単位体積あたりのサセプターの表面積を小さくさせることにより
、熱の逃げを少なくして効率的な加熱を行うと共に、省スペース化を図り、
さらに、上段のプレートほどガス流の上流側により多くはみ出すように配置
することにより、ＳｉＣ粉塵の基板上への落下を回避して多数の基板にエピ
タキシャル膜を形成させる技術が開示されている（特願２００８—３１１５
4 2 号公報（特許文献 1）。

[001 1] また、基板を載置した複数のサプターを多段に配置し、複数組の原料ガスの導入口と排出口を異なる方向に設けることにより、多数の基板にエピタキシャル膜を形成させる技術も開示されている（特開2009-15872号公報（特許文献 2））。

先行技術文献

特許文献

[001 2] 特許文献 1：特開2008-311542号公報
特許文献 2：特開2009-158726号公報

発明の概要

発明が解決しようとする課題

[001 3] しかしながら、特開2008-311542号公報の技術においては、基板サイズが大きくなると、ガスの上流と下流の位置でガスの組成が変化するため、エピタキシャル膜の膜質や膜厚さらに不純物濃度に差が発生し、安定した品質の製品を得ることが難しい。また、パーティクルの付着は抑制しているものの、パーティクルの発生自体を抑制するものではない。

[001 4] また、特開2009-158726号公報の技術においては、原料ガスの導入口と排出口を複数組設けるとしても数に限度があるため、原料ガスの経路長を短くすることができず、ガス流の乱れを相まって、均一なエピタキシャル膜を得ることができない。そして、原料ガスが十分加熱されない状態で基板上に到達した場合、基板上でも引き続きガス温度の上昇が進み、エピ膜の膜厚分布、不純物濃度分布が発生し、均一なエピタキシャル膜を得ることができない。

[001 5] このため、パーティクルの発生を抑制して、膜質や膜厚さらに不純物濃度などの均一性に優れたエピタキシャル膜を、エネルギーの無駄を抑制して、量産性高く作製する技術の開発が望まれていた。

課題を解決するための手段
本発明の半導体薄膜の製造方法は、以下の工程を有する。
複数のサセプターの各々に基板が搭載される。各々に基板が搭載された複数のサセプターが、互いに上下方向に所定間隔が設けられるように回転機構に配置される。複数のサセプターが配置された回転機構が回転させられる。各々に基板が搭載された複数のサセプターが加熱される。回転しながら加熱されるサセプターの各々に、経路長が略等しいガス流路を経由しながら加熱された原料ガスを供給することで、半導体薄膜が堆積される。

本製造方法によれば、基板を搭載するサセプターを複数用いて、多数枚の半導体基板（ウェハ）を同時に形成させているため、優れた量産性を発揮することができる。

そして、複数のサセプターを、上下方向に所定間隔を設けて配置しているため、エネルギーの無駄を抑制することができる。

また、経路長が略等しいガス流路を経由して所定の成膜温度に近い温度まで加熱された原料ガスを、複数のサセプターのそれぞれの隙間に導入しているため、サセプターの上下位置に関係なく各サセプターに、十分に加熱された同一条件の原料ガスが導入される。このため、上下位置に関係なく、基板上に膜質や膜厚さらに不純物濃度の均一なエピタキシャル膜を形成することができる。さらに、回転機構により基板を回転させているため、サセプターに導入された原料ガスを基板面全体に均一に分布させることができる。この結果、基板間のみならず、基板内においても、膜厚などの均一性が優れたエピタキシャル膜を形成することができる。

なお、多段方式について、本発明者が行った実験の一例では、100 s l mの水素ベースのガスを流した場合の熱量として、多段に配置しない平置きの場合の約13 kWに対して、多段に配置した場合には約7 kWと約半減することが確認できている。

複数のサセプターの各々に供給される原料ガスは層流状態とされてもよい。

原料ガスを層流状態とすることにより、サセプターの上下位置に関係なく
各サセプターに、十分に加熱された同一条件の原料ガスを導入することがで
される。

具体的には、例えば、サセプター間の間隔と同じ間隔で設けられた複数の
固定整流板を、回転しながら加熱されるサセプターの直前に配置して、原料
ガスを通過させることにより、層流状態とすることができる。

基板を搭載する工程は、複数のサセプターの少なくとも1つのかの面の各々
に基板を配置する工程を含んでもよい。

サセプターの両面の各々に基板（単結晶基板）を配置しているため、原料
ガスは向い合う基板の間を通過することとなり、それぞれの基板上に均一な
単結晶の膜を形成させることができる。この結果、サセプターにおける多結
晶の形成が抑制され、パーティクルの発生を抑制することができる。そして
、サセプターの両面で均一な単結晶の膜を形成させることができるため、量
産性がさらに向上する。

複数のサセプターおよび原料ガスの少なくともいずれかは、抵抗加熱によ
る複数の面からの輻射加熱によって加熱されてもよい。

加熱方式として誘導加熱方式を採用した場合、本発明のように回転機構が
導入されていると、誘導電流の流れるパスの対称性が崩れ、誘導加熱も非対
称的となるため、温度分布が発生し、均一な加熱ができなくなる。また、回
転機構に誘導電流が流れして部分的に過加熱される可能性もある。

これに対して、抵抗加熱方式はヒーターからの放射加熱であるため、これ
らの問題が発生する恐れがなく、容易に温度分布のない均一な加熱を行うこ
とができる。また、少なくとも2面、例えば上下2面から加熱することによ
り、サセプターを加熱する均熱板の非対称性を補償して、均熱板の温度分布
を小さくすることができる。

抵抗加熱は、互いに独立に制御された複数の抵抗加熱ヒーターによって行
われてもよい。

抵抗加熱ヒーターによる加熱を、独立した温度制御に基づき投入電力のバ
ランスを図りながら行うことにより、回転機構による熱の逃げの非対称性を
補償して、均一な加熱を行うことができる。

[0030] 上述した誘導加熱方式では、独立した温度制御を行うためには、高価な電源を複数必要とする。また、誘導加熱方式を用いて2面からの加熱を行った場合、それぞれの高周波コイルからの高周波の緩衝が発生するため、独立した制御を行うことが困難であるが、抵抗加熱方式ではこれらの問題がない。

[0031] 複数のサブカーテーおよび原料ガスの少なくともいずれかは、高周波加熱によって加熱されてもよい。これにより、短時間で加熱を行うことができるので、半導体薄膜の製造効率を高めることができる。

[0032] 複数のサブカーテーの外周の回転周速度が、複数のサブカーテーに供給される原料ガスの流速以下であってもよい。

[0033] サブカーテーの外周の回転周速度を原料ガスの流速以下に制御することにより、原料ガスを層流状態とすることができる。また、さらにサブカーテーの手前に固体整流板が設けられている場合には、固体整流板により層流状態にされた原料ガスの層流状態を維持することができる。このため、基板上に、厚さ、膜質、不純物濃度などの均一性が優れたエピタキシャル膜を形成することができる。

[0034] 複数のサブカーテーを回転機構に配置する工程は、回転機構を収めるチャンバー内（55）内へ複数のサブカーテーを搬入する工程を含んでもよい。半導体薄膜を堆積する工程の後に、複数のサブカーテーが搬出されてもよい。複数のサブカーテーを搬入する工程および複数のサブカーテーを搬出する工程の各々において、チャンバー内の雰囲気温度が2000℃以上に維持されてもよい。

[0035] サブカーテーの搬入搬出時、室温近くの低温雰囲気で作業を行った場合、昇温、降温時の温度差による熱膨張、収縮に基づくストレスが発生して、基板以外のサブカーテー、ガス導入路、整流板などに付着した多結晶SiCなどの付着物が剥離し、パーティクルの発生源になる恐れがある。

[0036] 霧囲気温度が2000℃以上に維持されると、付着物の剥離が抑制され、パーティクルの発生を抑制することができる。また、このような温度では基板に水分が付着しないため、水分に起因するパーティクルの発生も抑制するこ
とができる。雰囲気温度が 300 °C 以上であるとより好ましい。

なお、上述した誘導加熱方式は高周波加熱であるため、高周波電圧を印加した状態でサセプターを移動させると、高周波のマッチングがずれる可能性がある。このため、取り出し時には、高周波加熱をオフする必要があり、一定の温度を維持することが困難である。これに対して、抵抗加熱を用いる場合には、通電により一定の温度を維持することができる。

上記の製造方法は、半導体薄膜を堆積する工程の後に、700 °C 以上の温度を有する複数のサセプタを搬出する工程をさらに有してもよい。これにより半導体薄膜の製造効率がより高められる。

半導体薄膜を堆積する工程は、炭化硅素および窒化物のいずれかを堆積することによって行われてもよい。

炭化硅素や窒化物半導体のワードバンドギャップ半導体は、結合エネルギーが大きいため、その膜の堆積には充分原料ガスを加熱する必要がある。本発明においては、前記した通り、回転するサセプターの間に十分に加熱された原料ガスを供給することができるため、これらのワードバンドギャップ半導体を製造する方法として好適である。

本発明の半導体薄膜の製造装置は、基板上に原料ガスを供給することで半導体薄膜を形成する半導体薄膜の製造装置であって、複数のサセプターと、回転機構と、加熱機構と、原料ガス導入機構とを有する。複数のサセプター（20 - 22）は、各々が基板を搭載するものである。回転機構は、複数のサセプターを、互いに上下方向に所定間隔を設けて配置し、かつ回転させるものである。加熱機構は、複数のサセプターの各々および原料ガスを所定温度に加熱するものである。原料ガス導入機構は、複数のサセプターの各々に、経路長が略等しいガス流路を経由しながら加熱された原料ガスを供給するものである。

上記のような構成を備えた半導体薄膜の製造装置は、前記したように、基板間のみならず、基板内においても、膜質、膜厚、不純物濃度などの均一性が優れたエピタキシャル膜を形成した半導体を量産性高く提供することがで
ある。

また、複数のサセプターを、上下方向に所定間隔を設けて配置しているため、前記した通り、エネルギーの無駄を抑制して効率的な加熱を行うと共に、装置のコンパクト化を図ることができる。

原料ガス導入機構は、複数のサセプターの各々に供給される原料ガスを層流状態にする層流状態形成機構を含んでもよい。

例えば、サセプター間の間隔と同じ間隔で設けられた複数の固定整流板を、回転しながら加熱されるサセプターの直前に配置したりして、原料ガスを層流状態にすることにより、前記した通り、サセプターの上下位置に関係なく各サセプターに、十分に加熱された同一条件の原料ガスを導入することができる。

加熱機構は抵抗加熱ヒータを含んでもよい。抵抗加熱ヒータは、複数の面からの輻射加熱を行うことができるように構成されていてもよい。

抵抗加熱ヒーターからの輻射加熱とすることにより、前記した通り、誘導加熱方式を採用した場合の加熱の非対称性などの問題の発生も少なく、容易に均一な加熱状態にすることができる。

上記の製造装置は、金属のチャンバーと、断熱材とをさらに有してもよい。チャンバーは、水冷され、抵抗加熱ヒーターを収納するものである。断熱材は抵抗加熱ヒーターとチャンバーとの間に配置されている。

抵抗加熱ヒーターが水冷された金属のチャンバーに収納されているため、チャンバーの加熱を防ぐと共に、加熱のコントロールがし易い。この結果、安全性を高めることができる。また、原料ガスの漏洩を防いで原料ガスの無駄を抑制することができる。

そして、断熱材を介して収納されているため、抵抗加熱ヒーターからの熱を一定環境に閉じ込んで、効率的な加熱を実現することができる。

また、省スペース化を図れる抵抗加熱ヒーターを採用し、水冷された金属のチャンバーに、断熱材を介して収納することにより、各サセプターを所定間隔を設けて縦方向に配置する回転機構の採用とも相営って、よりコンパクト
トな半導体薄膜の製造装置を提供することが可能となる。

なお、高周波加熱（誘導加熱方式）の場合には、金属チャンバーに高周波が誘起されるため、加熱部を金属チャンバーに入れることが困難であり、一般に、水冷された金属チャンバーに比べ安全性が劣る石英管、あるいは石英窯が用いられている。

加熱機構は高周波加熱機構であってもよい。

上記の製造装置は、回転機構に駆動力を伝達するための回転駆動軸をさらに有してもよい。回転駆動軸は、炭素からなり、5mm以上20mm以下の径を有してもよい。

上記の製造装置は、複数のサセプタを昇降させるための昇降機構をさらに有してもよい。

本発明のサセプタは、上記製造装置に用いられるものであって、板状本体および係止爪を有する。板状本体には、基板を搭載することができるように形成された穴（20b）が設けられている。係止爪は、穴から基板が落下することを防ぐための、板状本体から穴内に向けて突出したものである。

このような簡易な構成のサセプターを用いることにより、1枚のサセプターに2枚の基板を容易に配置して、上下で同時にエピタキシャル膜を形成させることができるため、量産性が大きく向上する。

具体的には、まずサセプターの穴に1枚目の基板を基板表面が下向きとなるように配置する。次いで、スペーサーを配置し、さらに、2枚目の基板を基板表面が上向きとなるように配置する。このとき、サセプターの内壁面下部の少なくとも3箇所に係止爪が設けられているため、これらの基板やスペーサーが落下せず、2枚の基板を配置することができる。

本発明のサセプタ保持具は、上記製造装置の回転機構に用いられるものである。サセプタ保持具は、複数のサセプターが互いに上下方向に所定間隔を設けて配置されるように複数のサセプターの各々を保持している。サセプタ保持具には、複数のサセプターを搬入および搬出するのに用いることができるように、突出部が頭頂部に設けられている。
全てのサセプターを上下方向に所定間隔で保持した状態で、均一に回転させることにより、各サセプターに配置された基板の各々に、厚さなどのばらつきがない半導体膜を形成させることができる。

また、この状態のまま、搬入搬出を可能としているため、上述した200℃以上の雰囲気温度下におけるサセプターの搬入搬出を容易に行うことができる。具体的には、例えば、サセプター保持具の頭頂部にT字状の突出部を設け、この突出部をアームで挟み込み、搬入搬出を行う。

発明の効果

本発明によれば、パーティクルの発生を抑制して、各基板間においても、さらに基板内においても、膜質、膜厚、不純物濃度などの均一性が優れたエピタキシャル膜を、コンパクトな装置により、エネルギーと原料ガスの無駄を抑制して、量産性高く作製することができる。

図面の簡単な説明

[図1] 本発明の実施の形態1における半導体薄膜の製造装置の概略を模式的に示す断面図である。
[図2] 本発明の実施の形態1における半導体薄膜の製造装置のチャンバーとその近傍を模式的に示す図である。
[図3] 本発明の実施の形態1における半導体薄膜の製造装置のチャンバーの要部を模式的に示す図（A）、およびその一部拡大図（B）である。
[図4] 原料ガスが均一に供給される様子を概念的に示す図である。
[図5] 本発明の実施の形態1における半導体薄膜の製造装置のサセプターへの原料ガスの導入を模式的に示す図である。
[図6] 本発明の実施の形態1における半導体薄膜の製造装置の中間部のサセプターの一例の概要を模式的に示す分解断面図（A）、およびその断面図（B）である。
[図7] 本発明の実施の形態1における半導体薄膜の製造装置の中間部のサセプターの他の一例の概要を模式的に示す分解断面図（A）、およびその断面図（B）である。
発明の実施の形態

[図8] 本発明の実施の形態1における半導体薄膜の製造装置の下部のサセプタの概要を模式的に示す斜視図である。

[図9] 基板の回転と原料ガスの予熱との効果を説明するための図であり、原料ガスの流れ方向の距離と半導体薄膜の厚さとの関係の一例を示すグラフ図（A）、および、原料ガスの流れ方向の距離と原料ガスの温度との関係の一例を示すグラフ図（B）である。

[図10] 本発明の実施の形態2における半導体薄膜の製造装置の概略を模式的に示す一部断面図である。

[図11] 図10の高周波加熱部の近傍を概略的に示す斜視図である。

[図12] 比較例のSiC基板半導体製造の様子を示す図である。

発明を実施するための形態

以下、本発明を実施の形態に基づいて具体的に説明する。

（実施の形態1）

1. 半導体薄膜の製造装置

（1）全体構成

最初に、本実施の形態の半導体薄膜の製造装置としてのCVD装置（以下、単に「装置」ともいう）の全体について、図1、図2を用いて説明する。なお、図1は本実施の形態における半導体薄膜の製造装置の概略を模式的に示す断面図であり、図2は半導体薄膜の製造装置の要部であるチャンバーとその近傍を模式的に示す図である。

図1および図2に示すように、本実施の形態における半導体薄膜の製造装置は、SUS製のチャンバー55と、基板を回転させるための回転機構50、原料ガスが導入されるガス導入口95、原料ガスを予め加熱する予熱部77、ガスを排気するためのターボ分子ボンプ97および排気ダクト98を備え、さらに、エピタキシャル成長した基板を取り出すためのグローブボックス52、パスボックス54を備えている。

そして、予熱部77は、導入ガスが均一かつ十分に加熱されるよう、所定の長さに設計されている。また、各サセプター間に同一条件での原料ガスを
導入するために、上下方向に配置されサセプター保持具により固定されたサセプターセットより、断面が大きく設計されている。

[0066] 上下の内壁に沿って水冷ジャケット42が設けられたチャンバー55内には、炭素フェルト製の断熱材75に囲まれた抵抗加熱方式のヒーター76が設けられている。上下に設けられた2つのヒーター76の間にサセプターセットされる。

（2）チャンバー

次に、チャンバー55内の構成につき、図3（A）および図3（B）を用いて説明する。図3（A）および図3（B）はチャンバーの要部を模式的に示す図である。

[0067] 図3（A）に示すように、断熱材75に囲まれたヒーター76に接して、均熱板41が設けられている。そして、下側の均熱板41には回転プレート59が設けられている。回転プレート59は、回転機構50の回転軸46に連結されており、回転軸46は、上部が炭素棒40からなり、石英ジョイント47を介してSUS製のシャフト45に連結され、さらに磁気流体シール43を介してモーター44に連結されている。即ち、モーター44の回転に従って、磁気流体シール43を介して回転プレート59が回転する。

[0068] サセプターは、回転整流板94を兼ねており、固定整流板93に近接して同じ水平面を形成するように配置されている。この様子を図3（B）に示す。整流板により、導入された原料ガスが層流となって、各サセプターに略同じ温度の原料ガスが均等に導入される。各回転整流板94（サセプター）は、サセプター保持具25により、サセプターセットとして一体的に回転するよう相互に固定されている。

[0069] このように、サセプター保持具25は回転機構50に用いられるものである。サセプター保持具25は、サセプター（回転整流板94）が互いに上下方向に所定間隔を設けて配置されるように複数のサセプターの各々を保持している。サセプター保持具25には、複数のサセプターを搬入および搬出するのに
用いることができるように、突出部 85 が頭頂部に設けられている。

図 4 にみ、この原料ガスが均一に供給される様子を概念的に示す。図4 において、上下の基板を除き、基板 11、12 は、スペースサ 13 を介して、1枚のサセブターに配置されている。原料ガスが、ガス導入口 95 から長い予熱部（図示せず）を経て各サセブター間に、温度、流速などの条件が等しい状態で導入されるため、各基板上に同一の条件でエピタキシャル膜が形成される。さらに、サセブターが回転しているため、各基板の全面にわたって均一に原料ガスを分布させることができる。この結果、基板間のみならず、基板内においても、厚さ、膜質、不純物濃度などの均一性が優れたエピタキシャル膜を形成することができる。

さらに、図3 (B) に示すように、各サセブターの手前に固定整流板 93 が設けられているため、原料ガスが層流となって各サセブターに導入される。このため、より均一性が優れたエピタキシャル膜を形成することができる。

（3）サセブター

次に、サセブターにつき、図5、図6 (A)、図6 (B)、図7 (A) よび図7 (B) を用いて説明する。

図5 は、サセブターへの原料ガスの導入を模式的に示す図であり、図4の概念図に対応している。本実施の形態の製造装置において、原料ガスの流れは整流ユニット 100 によって制御される。整流ユニット 100 は、サセブター 20 ～ 22 と、複数の固定整流板 93 とを有する。基板 12 が配置されて回転しているサセブター 20 ～ 22 に、固定整流板 93 を経由した原料ガスが導入されて、各サセブター上に配置された基板上で単結晶のエピタキシャル成長が行われる。なお、図5において、20 は上下 2 枚の基板が配置された中間部のサセブターであり、21 は上面のみに基板が配置された下部のサセブターであり、22 は下面のみに基板が配置された上部のサセブターである。

複数の固定整流板 93 のそれぞれはサセブター 20 ～ 22 に対応して配置さ
れている。サセプター２１および２２によって挟まれる空間の高さＨＳは、最も下に位置する固定整流板９３と、最も上に位置する固定整流板９３によって挟まれる空間の高さＨＩと略等しい。たとえば、高さＨＩは高さＨＳ±１０％の範囲にある。

次に、図６（Ａ）および図６（Ｂ）のそれぞれに、中間部のサセプター２０の概要の斜視図および断面図を示す。図６（Ａ）および図６（Ｂ）に示すように、中間部のサセプター２０は、所定の板厚を有する円板状のサセプター本体２０ａを備えており、サセプター本体２０ａには基板１１、１２をセットするための穴２０ｂが形成され、本体２０ａから穴２０ｂ内に向けて突出した係止爪２０ｃヵ少なくなとも３箇所に設けられている。なお、係止爪２０ｃは、図７（Ａ）および図７（Ｂ）に示すように、サセプター本体２０ａの下部の内周全体にリング状に設けられてい もよい。

水平に置かれたサセプター２０の穴２０ｂに１枚目の基板１１が基板表面を下向きにして配置される。そして、基板１１の上にスペーサー１３が配置され、さらにその上に、２枚目の基板１２が基板表面を上向きにして配置される。スペーサー１３の材質としては、サセプターと同じ材質が好ましく、厚さは、２枚の基板の厚さと合計でサセプターと同じ厚さとなるようにする。これにより、各基板面とサセプター面を同一平面に配置させることがで きる。

基板がセットされた穴２０ｂには３箇所以上の係止爪２０ｃが設けて いるため、持ち上げても２枚の基板は落下することがない。

下部のサセプター２１における基板の取り付けを図８に示す。下部のサセプター２１の下面は回転プレートと接するため、ここでは１枚の基板だけがセットされる。サセプター２１の上面には、貫通穴２０ｂ（図６（Ａ））の代わりに、座続穴２１ｂが設けられている。なおサセプター２２の下面にも同様の座続穴が設けられている。

２．半導体薄膜の基板の製造（エピタキシャル成長）

次に、上記の装置を用いた半導体薄膜の製造（エピタキシャル成長）につ
き説明する。

最初に、各サセプターに2枚の基板（上下サセプターでは1枚）をセットする。基板がセットされた複数のサセプターをサセプター保持具を用いて上下方向に所定間隔で固定した後（サセプターセット）、チャンバー内に搬送し、回転プレートに装着する。

次に、ターボ分子ポンプを用いて、チャンバー、グローブボックス、およびグボックス内の残留ガスを排気して高真空とする。

その後、回転機構によりサセプターセットを回転させながら、ヒーターによりチャンバー内を所定温度まで加熱する。

その後、原料ガスをガス導入口よりチャンバー内に導入する。この際、原料ガスは予熱部で予め十分に加熱されている。原料ガスを流した後は、ターボ分子ポンプに替えてドライポンプを用いて排気ダクトから排気する。

加熱された原料ガスを、固定整流板を経由して回転整流板（サセプター）に導入する。このとき、予熱部はサセプターセットよりも大きく設計されているため、各固定整流板および各サセプターに同一の条件で原料ガスが導入される。また、固定整流板を経由することにより、原料ガスが層流とされ、サセプターの外側の回転周速度を原料ガスの流速以下に制御することにより、原料ガスが層流を乱すことなく、回転するサセプターの間に流れする。

導入された均一な原料ガスにより、各基板上で、膜質、膜厚、不純物濃度などの均一性が優れた単結晶がエピタキシャル成長する。

ここで、原料ガスの加熱状態による膜厚への影響につき、図9（A）および図9（B）に基づいて説明する。図9（A）および図9（B）において、横軸は原料ガスの流れ方向の位置を示している。また、縦軸は、図9（A）では基板上に形成された半導体薄膜の膜厚を、図9（B）では基板上のガス温度を示している。

ガスが十分に加熱されている場合には、図9（B）の実線のように、基板上に一定の温度のガスが導入される。この場合における膜厚は、回転させない場合には、図9（A）の一点鎖線のように、ガスの消費に伴い厚さが徐々
に薄くなる。しかし、回転させた場合には、図9（A）の実線のように、均一な厚さに成膜される。

これに対して、ガスが十分に加熱されていない場合には、回転させていたとしても、図9（B）の破線のように、初期には回転によっても十分な厚さの膜を成膜させることができない。また、基板終端部付近においても、ガスの消費によって膜厚が薄くなる。

所定厚の単結晶膜を形成した後は、A r ガス等の不活性ガス雰囲気のグローブボックスまで、サセプターセットを200℃以上の温度で搬出する。高温で搬出することにより、サセプター、ヒーター、均熱板などに水分が付着することが抑制され、引き続き高純度のエピタキシャル膜の形成が可能となる。また、200℃程度から温度の低下速度が下がることから、このような高い温度で搬出し、また次のセプターセットをチャージできることで装置のスループットを上げることができる。

さらに炉内を室温近くまで下げないことで、温度変化による付着物剥がれ起因のバーティクル発生を抑制できる。

高温で搬出されたセプターセットは、グローブボックス内で室温まで冷却される。その後、ボックスに落とされ、グローブボックスに大気が混合されないように取り出される。

上記の各工程において、ヒーターが炭素フェルト断熱材で断熱されているため、各工程での熱損失が少ない。また、加熱される箇所が水冷ジャケットに囲まれているため、装置を小型化することができ、さらに、装置が設置されている室内の温度上昇も最小限に抑えることが可能となる。

本実施の形態によれば、原料ガスが基板群に到達する前にセプタ温度に近い温度にまで加熱される間、それぞれの基板に供給される原料ガスの流れの経路長が略等しくなる。これにより、基板に達する時点で原料ガスの温度のばらつきが、基板間で小さくなる。よって基板間での成膜条件のばらつきを小さくすることができると。

なお経路長が略等しいとは、具体的には経路長が原料ガスの加熱の観点で
実質的に等しいことを意味し、たとえば、経路長のばらつきが－の値に対して±10％以内であることに対応する。

(実施の形態2)

図10および図11を参照して、本実施の形態における半導体薄膜の製作装置は、石英管255（チャンバー）と、高周波コイル274と、断熱材275、276および276と、炭素棒240と、高周波加熱部241aおよび241bと、回転駆動軸245と、回転方向変換部247と、搬送アーム265と、昇降機構257とを有する。昇降機構257は、制御棒258および変位棒250を有する。

回転駆動軸245は、炭素からなり、5mm以上20mm以下の直径Dを有してもよい。回転駆動軸245は、自身の軸周りに回転されることによって駆動力を伝達するものである。回転駆動軸245によって伝達された駆動力は、回転方向変換部247によって回転方向が変換されて、回転機構としての炭素棒240の回転力とされる。

本実施の形態においては、整流ユニット100に含まれるサセプタ20～22および複数の固定整流板93（図5）は、高周波加熱によって加熱される。また複数の固定整流板93が加熱されることによって、その間を通る原料ガスが加熱される。矢印×aに示すように導入された原料ガスは、加熱されて成膜に用いられた後、矢印×bに示すように排出される。高周波加熱は、具体的には、高周波コイル274による高周波加熱部241aおよび241bの各々中での誘導電流を用いて行われる。誘導電流は、高周波加熱部241aの空洞部CVaと、高周波加熱部241bの空洞部CVbとの各々の周りを回るように流れる（図11の矢印参照）。

上述した加熱および原料ガスの供給により半導体薄膜が堆積された直後にはサセプタ20～22は高い温度を有している。本実施の形態においては、半導体薄膜を堆積後に、700℃以上の温度を有するサセプタ20～22が搬出されてもよい。具体的には、まず昇降機構257によって炭素棒240が上方へ押し上げられる。これにより回転プレート59が持ち上げられ、こ
の結果、サセプター20〜22が上昇する。次に搬送アーム265が、矢印（図10）に示すように移動することで、回転プレート59の下方に挿入される。次に昇降機構257による炭素棒240の押し上げが解除されることで、サセプター20〜22と回転プレート59とが下降して搬送アーム265上に載置される。次に搬送アーム265を変位させることで、回転プレート59と共に、基板が搭載されたサセプター20〜22が搬出される。好ましくは、原料ガスの流れの下流側（矢印f b側）へ搬出が行われる。

上述したように、サセプター20〜22を挿入させるための昇降機構257が設けられることで、搬送アーム265をサセプター20〜22の下方に挿入する動作が可能となり、よって搬送アーム265を用いた搬出が可能となっている。

なお、上記以外の構成については、上述した実施の形態1の構成とほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。

本実施の形態によれば、高周波加熱が用いられることで、より短時間で加熱を行うことができる。これにより半導体薄膜の製造効率を高めることができる。

また昇降機構257が設けられることでサセプター20〜22の搬出を容易に行うことができるので、サセプター20〜22の温度が、1000℃程度でも挿入が可能であり、たとえば700℃以上で挿入を行うことで、製造効率がより高められる。

実施例

上述した実施の形態1に対応する実施例を以下に示す。本実施例においては、前記の装置を用いて、同時に6枚のSiC基板に単結晶SiC膜を形成させている。

改良レーリー法により成長させたインゴットから切り出し、鏡面研磨を施した後、有機溶媒、いわゆるRCA洗浄、およびフッ酸で順に洗浄した後、脱イオン水でリンスすることにより、6枚の4H-SiC {0001} 基板
(直径 150 mm x 厚さ 600 μm) を作製し、セプターにセットした。
なお、この基板における抵抗率は 0.017 Ωcm であった。

サセプターは、TaC コートの炭素板（直径 200 mm x 厚さ 2 mm）で
形成されており、中央部には基板を配置するための穴が設けられている。そ
して、穴の周囲には、3 箇所の係止爪が内側に向けて設けられている。

2 枚の基板のセプターへの配置は、最初に、セプターの穴に 1 枚目の
基板を基板表面が下向きとなるように配置する。次いで、1 枚目の基板の上
に TaC コートの円盤（厚さ 1 mm）をスペーサーとして配置する。最後に
、スペーサーの上に 2 枚目の基板を基板表面が上向きとなるように配置す
る。これにより、2 枚の基板とスペーサーの厚さの合計をセプターの厚さに
合わせることができ、前記したように、セプターの穴には爪が設けられ
ているため、これらの基板やスペーサーが落下することはない。このように
、1 枚のセプターに 2 枚の基板を配置することにより、上下で同時
に 2 枚の基板上に SiC 膜を形成させることが可能となる。

合計 6 枚の基板を収容した 3 枚のセプターを回転機構に等間隔で上下方
向に配置し、上下 2 面に設けられた抵抗加熱ヒーターにより、1550 ℃に
加熱した。

導入する原料ガスとして、H₂、SiH₄、C₃H₈、および N₂ の混合ガスを
用いて、H₂ = 150 sccm、SiH₄ = 45 sccm、C₃H₈ = 22.5 sccm、N₂ = 80 sccm の流量で導入を行い、圧力は 10 kPa (100 mbar) に維持した。

また、セプターの回転の速度は、原料ガスの流速以下となるように 1000 rpm とした。

以上の条件で、成長時間 120 分で、6 枚の各基板上に厚さ 11 は
m の SiC 単結晶膜を形成した。

SiC 単結晶膜が形成された 6 枚の基板間の厚さのばらつきを測定したと
ころ、中心部で（最大－最小）/平均 < 3 % であった。また、中心部の不純
物濃度を測定したところ、平均キャリア密度は 9 × 10¹⁵ cm⁻² であり、そ
のばらつきは（最大ー最小）／平均＜5%であった。

[0110]また、基板内のばらつきを測定したところ、厚みのばらつきは（最大ー最小）／平均＜3%、不純物濃度のばらつきは（最大ー最小）／平均＜4%であった。

[0111]上記のように、ばらつきが小さな6枚のSiC単結晶基板を得ることができた。この理由は、6枚の基板の各々に対する単結晶のエピタキシャル成長の条件が、互いにほぼ同じとなったためと考えられる。具体的には、基板温度のばらつきと、基板に達する時点での原料ガスの温度のばらつきとが、基板間で小さかったためと考えられる。基板の温度のばらつきは、各基板がセプタに取り付けられていたことによって抑制されたと考えられる。また原料ガスの温度のばらつきは、原料ガスが基板間を到達する前にセプタ温度に近い温度にまで加熱される間、それぞれの基板に供される原料ガスの流れの経路長が適等しかったことにより抑制されたと考えられる。

[0112]なお、各基板の厚さの測定は、SiC単結晶膜が形成された径150mmの基板の外周部から7mm内側の5点を選択して厚さを測定した。そして、各基板の不純物濃度の測定は、C-V測定の方法により行った。

[0113]エピタキシャル成長で発生したパーティクル欠陥の密度は、6枚のウェハで平均0.4cm⁻²であった。なお、パーティクル欠陥は、パーティクル起因によるエピタキシャル成長膜の欠陥であり、基板出力製膜成長膜の欠陥は、光学顕微鏡で倍率×500倍で、突起として観測され、大きさが1μm×1μm以上、または径が1μm以上の欠陥を基板全面でカウントし、単位平方センチあたりに換算して表記している。

[0114]その後、本実施例で得られたSiCエピタキシャル膜を用いて、表側に直径2.4μmのNiのショットキー電極を、裏側にNiのオーミック電極を形成し、ショットキーデバイオードを製造した。なお、ショットキー電極の周囲には、Alのイオン注入により、耐圧1200Vが得られ、また、500A/cm²でのオン電圧は1.7Vが得られ、優れた特性のショットキーデバイオードで
あることが確認された。

[01 15] （比較例）
本比較例は、ホットウォール方式を用いて基板上にS i C単結晶をエピタキシャル成長させた例である。

[01 16] 図2に示す装置を用いて、基板上にS i C単結晶を成長させ、比較例のS i C基板を作製した。この装置は、前記した通り、加熱方式として高周波誘導加熱方式を採用している。また、基板は上下方向に多段に配置されるのではなく、同じ平面に配置されている。

[01 17] 本比較例においては、回転を実施していない。これは、サブステージが高周波コイルに囲まれており、下部からの回転導入が困難であることによる。

[01 18] そして、ガスが通過するチャネルの高さを、実施例における均熱板や整流板の間隔と同じに設定して、その他は実施例と同じ条件で、厚さ12μmのS i C単結晶膜を形成した。

[01 19] 本比較例においては、成長速度は、実施例と比較して、１割弱速いが、同じガス消費量で、上流と下流でそれぞれ1枚しかエピタキシャル成長させることができないことから、その生産性は、実施例の約1/3と言える。また上流と下流とで、膜厚分布で10％、不純物濃度分布で20％の違いがあっただ。パーティクル欠陥に関しては、加熱板30からの落下と推測される多結晶S i C基板に付着しており、その密度は、平均5cm^{-2}であった。

[01 20] 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。

符号の説明

[01 21] 10、11、12 基板、13 スペーサー、20 ～ 22 サブステージ、20 a サブステージ本体、20 b サブステージ本体、20 c、20 d 係止爪、25 サブステージ保持具、30 加熱板、32、70 ワークコイル、31、60、75 断熱材、33、71 遮蔽板 (シールド)、34、72 冷却管、4
炭素棒、41均熱板、42水冷ジャケット、43磁気流体シール、44モーター、45シャフト、46回転軸、47石英ジョイント、50、240回転機構、52グローブボックス、54パスボックス、55チャンバー、59回転プレート、76ヒーター、77予熱部、85突出部、93固定整流板、94回転整流板、95ガス導入口、96ガス排出口、97ターボ分子ポンプ、98排気ダクト、245回転駆動軸、257昇降機構。
請求の範囲

[請求項1] 複数のサセプター（20〜22）の各々に基板（10〜12）を搭載する工程と、

各々に前記基板が搭載された前記複数のサセプターを、互いに上下方向に所定間隔が設けられるように回転機構（50）に配置する工程と、

前記複数のサセプターが配置された前記回転機構（50）を回転させる工程と、

各々に前記基板が搭載された前記複数のサセプターを加熱する工程と、

回転しながら加熱される前記サセプターの各々に、経路長が略等しいガス流路を経由しながら加熱された原料ガスを供給することで、半導体薄膜を堆積する工程と

を備える、半導体薄膜の製造方法。

[請求項2] 前記複数のサセプターの各々に供給される前記原料ガスは層流状態とされる、請求項1に記載の半導体薄膜の製造方法。

[請求項3] 前記基板を搭載する工程は、前記複数のサセプターの少なくとも1つの両面の各々に前記基板を配置する工程を含む、請求項1に記載の半導体薄膜の製造方法。

[請求項4] 前記複数のサセプターおよび前記原料ガスの少なくともいずれかは、抵抗加熱による複数の面からの輻射加熱によって加熱される、請求項1に記載の半導体薄膜の製造方法。

[請求項5] 前記抵抗加熱は、互いに独立に制御された複数の抵抗加熱ヒーター（76）によって行われる、請求項4に記載の半導体薄膜の製造方法。

[請求項6] 前記複数のサセプターおよび前記原料ガスの少なくともいずれかは、高周波加熱によって加熱される、請求項1に記載の半導体薄膜の製造方法。
請求項7 前記複数のサセプターの外周の回転周速度が、前記複数のサセプターに供給される前記原料ガスの流速以下である、請求項1に記載の半導体薄膜の製造方法。

請求項8 前記複数のサセプターを前記回転機構に配置する工程は、前記回転機構を収めるチャンバー(55)内へ前記複数のサセプターを搬入する工程を含み、

前記半導体薄膜を堆積する工程の後に、前記複数のサセプターを搬出しする工程をさらに備え、

前記複数のサセプターを搬入する工程および前記複数のサセプターを搬出する工程の各々において、前記チャンバー内の雰囲気温度が200℃以上に維持される、請求項1に記載の半導体薄膜の製造方法。

請求項9 前記半導体薄膜を堆積する工程の後に、700℃以上の温度を有する前記複数のサセプターを搬出する工程をさらに備える、請求項1に記載の半導体薄膜の製造方法。

請求項10 前記半導体薄膜を堆積する工程は、炭化硅素および窒化物のいずれかを堆積することによって行われる、請求項1に記載の半導体薄膜の製造方法。

請求項11 基板(10〜12)上に原料ガスを供給することで半導体薄膜を形成する半導体薄膜の製造装置であって、

各々が前記基板を搭載する複数のサセプター(20〜22)と、

前記複数のサセプターを、互いに上下方向に所定間隔を設けて配置し、かつ回転させる回転機構(50)と、

前記複数のサセプターの各々および前記原料ガスを所定温度に加熱する加熱機構と、

前記複数のサセプターの各々に、経路長が略等しいガス流路を経由しながら加熱された前記原料ガスを供給する原料ガス導入機構を備える、半導体薄膜の製造装置。

請求項12 前記原料ガス導入機構は、前記複数のサセプターの各々に供給され
前記原料ガスを層流状態にする層流状態形成機構を含む、請求項1
に記載の半導体薄膜の製造装置。

[請求項13] 前記加熱機構は抵抗加熱ヒーター（76）を含み、前記抵抗加熱ヒーターは、複数の面からの輻射加熱を行うことができるように構成されて
いる、請求項11に記載の半導体薄膜の製造装置。

[請求項14] 水冷され、前記抵抗加熱ヒーターを収納する金属のチャンバー（5
5）と、
前記抵抗加熱ヒーターと前記チャンバーとの間に配置された断熱材
（75）とをさらに備える、請求項13に記載の半導体薄膜の製造装
置。

[請求項15] 前記加熱機構は高周波加熱機構である、請求項11に記載の半導体
薄膜の製造装置。

[請求項16] 前記回転機構（240）に駆動力を伝達するための回転駆動軸（2
45）をさらに備え、前記回転駆動軸は、炭素からなり、5mm以上
20mm以下の直径を有する、請求項11に記載の半導体薄膜の製造
装置。

[請求項17] 前記複数のサセプターを昇降させるための昇降機構（257）をさら
に備える、請求項11に記載の半導体薄膜の製造装置。

[請求項18] 請求項11に記載の半導体薄膜の製造装置に用いられるサセプター
であって、
前記基板を搭載することができるように形成された穴（20b）が
設けられた板状本体（20a）と、
前記穴から前記基板が落下することを防ぐための、前記板状本体か
ら前記穴内に向けて突出した係止爪（20c）と
を備える、サセプター（20）。

[請求項19] 請求項11に記載の半導体薄膜の製造装置の回転機構に用いられる
サセプター保持具であって、
前記複数のサセプターが互いに上下方向に所定間隔を設けて配置さ
れるように前記複数のサプターの各々を保有しており、
前記複数のサブターを搬入および搬出するために用いることができるように、突出部 (8 5) が頭頂部に設けられている、サブター保
持具 (2 5)。
INTERNATIONAL SEARCH REPORT

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H01L 21/205, C23C16/455, C23C16/458

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2002-222806 A (Ebara Corp.), 09 Augsst 2002 (09.08.2002), paragraph s [0010] to [0054]; fig. 1 to 8 (Family: none)</td>
<td>1-2, 11-12, 17-18</td>
</tr>
<tr>
<td>Y</td>
<td>JP 06-010140 A (Fujifilm Mi crodevi ces Co., Ltd.). 18 January 1994 (18.01.1994), paragraph [0027]; fig. 1 (Family: none)</td>
<td>3-6, 8-10, 13-16, 19</td>
</tr>
<tr>
<td>Y</td>
<td>JP 09-246190 A (Hichi Cabi e, Ltd.). 19 September 1997 (19.09.1997), paragraph s [0014] to [0033]; fig. 1 (Family: none)</td>
<td>4-6, 8-10, 13-16, 19</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search 18 April 1, 2011 (18.04.11)

Date of mailing of the international search report 26 April 1, 2011 (26.04.11)

Name and mailing address of the ISA/Japanese Patent Office

Facsimile No. Authorized officer

Telephone No.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2003-031563 A (Fujitsu Ltd.), 31 January 2003 (31.01.2003), paragraph s [0035] to [0036] (Family: none)</td>
<td>8-10, 14, 16, 19</td>
</tr>
</tbody>
</table>
国際調査報告

国際出願番号 PCT／JP 2011/054272

A. 発明の属する分野の分類（国際特許分類（IPC））

Int.Cl. H01L21/205 (2006.01) i, C23C16/455 (2006.01) i, C23C16/458 (2006.01) i

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int.Cl. H01L21/205, C23C16/455, C23C16/458

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 1922－
日本国公開実用新案公報 1971－2
日本国実用新案登録公報 1996－
日本国登録実用新案公報 1994－2

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文書

引用文献のカテゴリー

引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示

関連する
請求書の番号

| X | JP 2002-222806 A (株式会社荏原製作所) 2002.08.09, 段落【0010】 | 1-2, 7, 11-12,17-18,3-6,8-10,13-16,19 |
| Y | [0054], 図 1-図 8（ファミリーなし） |

| Y | JP 06-010140 A (富士フィルムマイクロデバイス株式会社) 1994.01.18, 段落【0027】，図 1（ファミリーなし） |

国際調査を完了した日 18.04.2011
国際調査報告の発送日 26.04.2011

国際調査機関の名称及びあて先

日本国特許庁（ISA／JP）
郵便番号 100－8915
東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）
山本 雄一
電話番号 03－3581－1101 内線 3471

様式 PCT／ISA／210（第 2 ページ）（2009年7月）
| 引用文献の
カテゴリー | 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 | 関連する
請求項の番号 |
|-------------|--|----------------|
| Y | JP 09-246190 A（日立電気株式会社）1997.09.19，段落【014】 -
【0033】，図1（ファミリーなし） | 4-6.8-10.13-
16.19 |
| Y | JP 2003-031563 A（富士通株式会社）2003.01.31，段落【035】 -
【0036】（ファミリーなし） | 8-10.14.16.19 |
| Y | JP 2001-262353 A（住友金属工業株式会社）2001.09.26，段落【024】 -
【0026】（ファミリーなし） | 14.16.19 |

様式PCT/ISA/210（第2ページの続き）（2009年7月）