Title: NANOPARTICLES FOR TARGETING HEPATOMA CELLS

Abstract: The nanoparticles are composed of γ-PGA-PLA block copolymers conjugated with galactosamine and loaded with biactive agents are a potential drug delivery system for treating liver cancers.
NANOPARTICLES FOR TARGETING HEPATOMA CELLS

Cross-reference to Related Applications

[0001] This application claims priority of U.S. patent application Ser. No. 10/958,864 filed October 5, 2004. The application also claims the priority benefits of U.S. Provisional Application No. 60/704,561 filed August 2, 2005, the entireties of both priority documents are hereby incorporated by reference.

Field of the Invention

[0002] The present invention is related to nanoparticles composed of poly(γ-glutamic acid)-
poly(lactide) block copolymers as a target drug delivery system, more particularly, the invention is related to nanoparticles loaded with bioactive agents and their uptake by HepG2 cells.

Background of the Invention

[0004] Nanoparticles may be delivered to specific sites by size-dependant passive targeting or by active targeting (Cancer Res. 1986;46:6387-6392; J. Control. Release 1999;62:253-262). To obtain a high degree of selectivity to a specific organ and to enhance the uptake of drug-loaded nanoparticles into the target cells, active targeting has been attempted. Liver has been one of the most desirable target organs in the body due to various liver-related metabolic and infectious diseases and cancers (Int. J. Pharm. 1999;188:39-47). The asialoglycoprotein (ASGP) receptor is known to be present on hepatocytes and several human hepatoma cell lines (Adv. Drug Deliver. Rev. 1989;4:49-63). Therefore, liver targeting is achieved by designing drug delivery systems conjugated with a ligand that can bind to the ASGP receptors.

[0005] Poly(lactide) (PLA), poly(ε-caprolactone) (PCL), poly(β-benzyl L-aspartate) (PLBA), and poly(γ-benzyl L-glutamate) (PLBG) have been used mostly for the core-forming hydrophobic segment of nanoparticles (J. Control. Release 2004;94:323-335). On the other hand, poly(ethylene oxide)
(PEO), a non-toxic and highly hydrated polymer, has been used as the outer shell segment of nanoparticles because of its superior biocompatibility (J. Control. Release 2004;94:323-335). In the present invention, PLA was used for the hydrophobic segment of the block copolymer, while a natural compound [poly(γ-glutamic acid), γ-PGA], produced as capsular substance or as slime by members of the genus *Bacillus*, was used as the hydrophilic segment.

[0006] γ-PGA is unique in that it is composed of naturally occurring L-glutamic acid linked together through amide bonds rather than a nondegradable C-C backbone such as PEO. It was reported that this naturally occurring γ-PGA is a water-soluble, biodegradable, and non-toxic polymer (Crit. Rev. Biotechnol. 2001;21:219-232). A related, but structurally different, polymer poly(α-glutamic acid), (α-PGA) is usually synthesized from poly(γ-benzyl-L-glutamate) by removing the benzyl protecting group with the use of hydrogen bromide (Adv. Drug Deliver. Rev. 2002;54:695-713). Li *et al.* conjugated paclitaxel onto α-PGA via covalent bonding to form a new drug formulation (Cancer Res. 1998;58:2404-2409). Their pre-clinical data suggested that the uptake of α-PGA-paclitaxel by tumor cells was about 5-fold greater than that of paclitaxel. Additionally, α-PGA-paclitaxel had a significantly longer circulation half-life in plasma than paclitaxel (Adv. Drug Deliver. Rev. 2002;54:695-713). For the potential of targeting liver cancer cells, the prepared nanoparticles are further conjugated with galactosamine. Hashida *et al.* reported using α-PGA as a polymeric backbone and galactose moiety as a ligand to target hepatocytes (J. Control. Release 1999;62:253-262). Their *in vivo* results indicated that the galactosylated α-PGA had a remarkable targeting ability to hepatocytes and degradation of α-PGA was observed in the liver. The internalization efficiency of the prepared nanoparticles with or without galactosamine conjugated into HepG2 cells (a liver cancer cell line) was examined *in vitro* using a confocal laser scanning microscope.

[0007] Liver cancer is a common lethal disease in Asia (Br J Cancer 1998;78:34-39). It is also the ninth leading cause of cancer deaths in the United States (Cancer Lett. 1999;136:109-118). It is known that chemotherapy for cancers is usually limited by the toxicity of drugs to normal tissues (Adv. Drug Deliver. Rev. 2002;54:695-713). The self-assembled nanoparticles, composed of amphiphilic block copolymers, have a hydrophobic inner core and a hydrophilic outer shell. In a co-pending application U.S. serial no. 10/958,864, filed October 5, 2004, it is disclosed that poly(γ-glutamic acid) (γ-PGA) and poly(lactide) (PLA) are used to synthesize amphiphilic block copolymers via a simple coupling reaction between γ-PGA and PLA to prepare a novel type of self-assembled nanoparticles (J. Control. Release 2005;105:213-225). No aggregation or precipitation of the nanoparticles was observed during storage for up to 1 month, because of the electrostatic repulsion between the negatively charged nanoparticles (J. Control. Release 2005;105:213-225). γ-PGA, produced by certain *Bacillus* species, is a naturally occurring anionic homo-polyamide that is made of L-glutamic acid units connected by amide linkages.
between α-amino and γ-carboxylic acid groups (Crit. Rev. Biotechnol. 2001;21:219-232). Because of its water-solubility, biodegradability, edibility, and non-toxicity toward humans, several applications of γ-PGA in food, cosmetics, and medicine have been investigated in the past few years.

[0008] Owing to its unique structure, paclitaxel readily enters mammalian cells and preferentially binds to tubulin in polymerized microtubules (J. Biol. Chem. 1995;270:20235-20238). This binding stabilizes microtubules and greatly interferes with microtubular reorganization necessary, among other factors, for spindle formation and cell division (Cancer Lett. 1999;136:109-118). Thus, exposure of susceptible cells to paclitaxel has been shown to initially cause arrest in the G2/M phase and finally to cell death through apoptotic mechanisms (Cancer Res. 1996;56:816-825).

[0009] There is, therefore, a clinical need for providing nanoparticles composed of γ-PGA-PLA block copolymers conjugated with galactosamine and a bioactive agent as a drug delivery system for the treatment of liver cancers.

Summary of the Invention

[0010] Some aspects of the invention relate to a process for preparing self-assembled nanoparticles using poly(γ-glutamic acid) (γ-PGA) and poly(lactide) (PLA) to synthesize block copolymers via a simple coupling reaction between γ-PGA and PLA. In a further embodiment for targeting liver cancer cells, galactosamine is further conjugated on the prepared nanoparticles as a targeting moiety. γ-PGA, a water-soluble, biodegradable, and non-toxic compound, was produced by microbial fermentation (B. licheniformis, ATCC 9945a) and then was hydrolyzed. The hydrolyzed γ-PGA with a molecular weight of 4 kDa and a polydispersity of 1.3 was used, together with PLA (10 kDa, polydispersity 1.1), to synthesize block copolymers. The prepared nanoparticles had a mean particle size of about 140 nm with a zeta potential of about -20 mV.

[0011] Some aspects of the invention relate to a compound or dose for treating liver cancers in a patient comprising nanoparticles composed of γ-PGA-PLA block copolymers conjugated with galactosamine. In a further embodiment, the compound or the dose comprises a therapeutically effective amount of the nanoparticles.

[0012] Some aspects of the invention relate to a compound or dose for treating liver cancers in a patient comprising of nanoparticles composed of γ-PGA-PLA block copolymers, wherein the nanoparticles are loaded with at least one bioactive agent.

[0013] Some aspects of the invention relate to a compound or dose for treating liver cancers in a patient comprising nanoparticles composed of γ-PGA-PLA block copolymers conjugated with galactosamine, wherein the nanoparticles are loaded with at least one bioactive agent.

[0014] In one embodiment, the nanoparticles are mixed in a solution with a nanoparticle
concentration of up to 100 µg/ml. In one embodiment, a γ-PGA component prior to polymerization for forming the γ-PGA-PLA block copolymers has a molecular weight of about 4 kDa with a polydispersity of about 1.3. In another embodiment, the nanoparticles comprise a hydrophobic inner core and a hydrophilic outer shell.

[0015] In one embodiment, a mean particle size for the nanoparticles in the compound or dose is in the range of about 10 to 400 nm, preferably in the range of about 50 to 200 nm, and most preferably in the range of about 100 to 150 nm.

[0016] In one embodiment, the bioactive agent associated with the nanoparticles of the present invention comprises an anticancer drug or is selected from the group consisting of doxorubicin, adriamycin, cisplatin, taxol, and 5-fluorouracil. In another embodiment, the bioactive agent associated with the nanoparticles of the present invention is selected from the group consisting of epipodophyllotoxins, camptothecins, endiylene antibiotics, taxanes, coformycins, anthracycline glycosides, mytomycin, combretastatin, anthrapyrazoles, and polyamine biosynthesis inhibitors.

Brief Description of the Drawings

[0017] FIG. 1 shows schematic illustrations of synthesis of γ-PGA-PLA block copolymers and formation of self-assembled nanoparticles with galactosamine conjugated.

[0018] FIG. 2 shows chromatograms of the purified γ-PGA obtained from fermentation (γ-PGA before hydrolysis), the obtained γ-PGA after a 5-h hydrolysis at 150°C (γ-PGA hydrolysis for 5h), and the hydrolyzed γ-PGA after dialysis twice against deionized water (γ-PGA hydrolysis for 5h then dialysis).

[0019] FIG. 3 shows size distributions of the nanoparticles prepared with varying feed weight ratios of paclitaxel to block copolymer (the P/C ratio). PI: the polydispersity index of the size distribution of the prepared nanoparticles.

[0020] FIG. 4 shows morphology of the nanoparticles prepared with varying feed weight ratios of paclitaxel to block copolymer (the P/C ratio) obtained by the AFM and TEM.

[0021] FIG. 5 shows release profiles of paclitaxel from the nanoparticles without (NPs) or with (Gal-NPs) galactosamine conjugated.

[0022] FIG. 6 shows viability of HepG2 cells treated with distinct paclitaxel formulations with varying paclitaxel concentrations. Phyxol®: cells treated with a clinically available paclitaxel formulation (Sinphar Pharmaceutical); NPs: cells treated with the paclitaxel-loaded nanoparticles without galactosamine conjugated; and Gal-NPs: cells treated with the paclitaxel-loaded nanoparticles with galactosamine conjugated.

[0023] FIG. 7 shows biodistributions of the nanoparticles loaded with rhodamine 123 (a) without galactosamine conjugated (the NPs) and (b) with galactosamine conjugated (the Gal-NPs) in normal mice.
FIG. 8 shows biodistributions of the nanoparticles loaded with rhodamine 123 (a) without galactosamine conjugated (the NPs) and (b) with galactosamine conjugated (the Gal-NPs) in hepatoma-tumor-bearing nude mice.

FIG. 9 shows changes in the tumor volume of the hepatoma-tumor-bearing nude mice injected with distinct paclitaxel formulations. PBS: mice injected with PBS; Phytoxol®: mice injected with a clinically available paclitaxel formulation (Sinphar Pharmaceutical); NPs: mice injected with the paclitaxel-loaded nanoparticles without galactosamine conjugated; and Gal-NPs: mice injected with the paclitaxel-loaded nanoparticles with galactosamine conjugated.

Detailed Description of the Exemplary Embodiments

The preferred embodiments of the present invention described below relate particularly to preparation of nanoparticles composed of poly(γ-glutamic acid)-poly(lactide) block copolymers conjugated with galactosamine and/or further loaded with paclitaxel for HepG2 cells uptake. While the description sets forth various embodiment specific details, it will be appreciated that the description is illustrative only and should not be construed in any way as limiting the invention. Furthermore, various applications of the invention, and modifications thereto, which may occur to those who are skilled in the art, are also encompassed by the general concepts described below.

Over the past few decades, biodegradable nanoparticles composed of amphiphilic block copolymers have attracted considerable interests as an effective drug carrier. Additionally, numerous attempts have been made to increase the effectiveness of anticancer drugs by increasing their concentration at the target site. In one embodiment, biodegradable and biocompatible polymers, γ-PGA and PLA, are used to synthesize γ-PGA-PLA block copolymers via a simple coupling reaction between γ-PGA and PLA to prepare self-assembled nanoparticles. In addition, galactosamine is conjugated on the prepared nanoparticles as a targeting moiety.

γ-PGA is a naturally occurring anionic homo-polyamidate that is made of L-glutamic acid units connected by amide linkages between α-amino and γ-carboxylic acid groups (Crit. Rev. Biotechnol. 2001;21:219-232). It is an exocellular polymer of certain Bacillus species that is produced within cells via the TCA cycle and is freely excreted into the fermentation broth. Its exact biological role is not fully understood, although it is likely that γ-PGA is linked to increasing the survival of producing strains when exposed to environmental stresses. Because of its water-solubility, biodegradability, edibility, and nontoxicity toward humans and the environment, several applications of γ-PGA in food, cosmetics, medicine, and water treatment have been investigated in the past few years.

Example No. 1 Materials

Paclitaxel powder (purity > 99%) and clinical commercial paclitaxel [Phytoxol®, contained
6 mg paclitaxel, 527 mg Cremaphor EL and 47.7% (v/v) alcohol per milliliter) were obtained from Sinphar Pharmaceutical Co., Ltd. (Taipei, Taiwan). PLA [poly(l-lactide), Mn: 10 kDa, with a polydispersity of 1.1 determined by the GPC analysis] was supplied by the Biomedical Engineering Center, Industrial Technology Research Institute (Hsinchu, Taiwan). Dimethyl sulfoxide (DMSO < 0.01% water), N,N'-carbonyldimidazole (CDI, 98%), and dichloromethane were acquired from Fluka (Buchs, Switzerland). L-glutamic acid (purity > 99%), N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC), N-hydroxysuccinimide (NHS), galactosamine, and sodium cholate were purchased from Sigma (St. Louis, MO). 4-Dimethylaminopyridine (DMAP) and 1,4-dioxane were obtained from ACROS (Janssen Pharmaceuticaalaa, Belgium). All other chemicals used in preparing nanoparticles are reagent grade.

[0031] Example No. 2 Production and Purification of γ-PGA

[0032] γ-PGA (FIG. 1) was produced by Bacillus licheniformis (ATCC 9945, Bioresources Collection and Research Center, Hsinchu, Taiwan) as per the method reported by Yoon et al. with slight modifications (Biotechnol. Lett. 2000;22:585-588). Highly mucoid colonies (ATCC 9945a) were selected from Bacillus licheniformis (ATCC 9945) cultured on the E medium (L-glutamic acid, 20.0 g/l; citric acid, 12.0 g/l; glycerol, 80.0 g/l; NH₄Cl, 7.0 g/l; K₂HPO₄, 0.5 g/l; MgSO₄·7H₂O, 0.5 g/l, FeCl₃·6H₂O, 0.04 g/l; CaCl₂·2H₂O, 0.15 g/l; MnSO₄·H₂O, 0.104 g/l, pH 6.5) agar plates at 37°C for several times. Subsequently, young mucoid colonies were transferred into 10 ml E medium and grown at 37°C in a shaking incubator at 250 rpm for 24 hours. Afterward, 500 μl of culture broth was mixed with 50 ml E medium and was transferred into a 2.5-l jar-fermentor (KMJ-2B, Mituwa Co., Osaka, Japan) containing 950 ml of E medium. Cells were cultured at 37°C. The pH was controlled at 6.5 by automatic feeding of 25% (v/v) NH₄OH and 2M HCl. The dissolved oxygen concentration (DOC) was initially controlled at 40% of air saturation by supplying air and by controlling the agitation speed up to 1,000 rpm.

[0033] After 40 hours, cells were separated from the culture broth by centrifugation for 20 minutes at 12,000 × g at 4°C. The supernatant containing γ-PGA was poured into 4 volumes of methanol and left overnight with gentle stirring. The resulting precipitate containing crude γ-PGA was collected by centrifugation for 40 minutes at 12,000 × g at 4°C and then was dissolved in distilled water to remove insoluble impurities by centrifugation for 20 minutes at 24,000 × g at 4°C. The aqueous γ-PGA solution was desalted by dialysis (MWCO: 12,000-14,000, Spectrum Laboratories, Inc., Laguna Hills, CA) against distilled water for 12 hours with water exchanges several times, and finally was lyophilized to obtain pure γ-PGA.

[0034] The purified γ-PGA was confirmed by the proton nuclear magnetic resonance (¹H-NMR)
and the Fourier transformed infrared (FT-IR) analyses. Analysis of \(^1\)H-NMR was conducted on an NMR spectrometer (Varian Unity ionva 500 NMR Spectrometer, MO) using DMSO-\(d_6\) at 2.49 ppm as an internal reference. Test samples used for the FT-IR analysis first were dried and ground into a powder form. The powder then was mixed with KBr (1:100) and pressed into a disk. Analysis was performed on an FT-IR spectrometer (Perkin Elmer Spectrum RXI FT-IR System, Buckinghamshire, England). The samples were scanned in the range of 400-4000 cm\(^{-1}\).

[0035] In the \(^1\)H-NMR spectrum of the purified \(\gamma\)-PGA obtained from fermentation, five chief signals observed at 1.73, 1.94, 2.19, 4.14, and 8.15 ppm representing the protons of \(\beta\)-CH\(_2\), \(\gamma\)-CH\(_2\), \(\alpha\)-CH\(_2\), and amide, respectively. Additionally, the fermented product after purification showed no detected macromolecular impurities by the \(^1\)H-NMR analysis, suggesting that the obtained white power of \(\gamma\)-PGA was highly pure.

[0036] Example No. 3 Hydrolysis of \(\gamma\)-PGA

[0037] The average molecular weight (Mn) of the purified \(\gamma\)-PGA obtained via the previous fermentation procedure was about 320 kDa. The purified \(\gamma\)-PGA was then hydrolyzed in a tightly sealed steel container at 150°C for distinct durations. The average molecular weight along with the polydispersity of the hydrolyzed \(\gamma\)-PGA were determined by a gel permeation chromatography (GPC) system equipped with a series of PL aquagel-OH columns (one Guard 8 \(\mu\)m, 50 \(\times\) 7.5 mm and two MIXED 8 \(\mu\)m, 300 \(\times\) 7.5 mm, PL Laboratories, UK) and a refractive index (RI) detector (RI2000-F, SFD, Torrance, CA). Polyethylene glycol (molecular weights of 106-22,000 g/mol) and polyethylene oxide (molecular weights of 20,000-1,000,000 g/mol) standards of narrow polydispersity (PL Laboratories, UK) were used to construct a calibration curve. The mobile phase contained 0.01M NaH\(_2\)PO\(_4\) and 0.2M NaNO\(_3\) and was brought to a pH of 7.0. The flow rate of mobile phase was 1.0 ml/min, and the columns and the RI detector cell were maintained at 30°C.

[0038] Low-molecular-weight \(\gamma\)-PGA was produced by hydrolyzing the purified \(\gamma\)-PGA obtained from fermentation at 150°C for distinct durations. Solutions of the purified \(\gamma\)-PGA obtained from fermentation and the hydrolyzed \(\gamma\)-PGA were analyzed by a GPC system. As shown in FIG. 2, the purified \(\gamma\)-PGA obtained from fermentation had a high average molecular weight (Mn ~320 kDa) with a polydispersity of about 1.8. When \(\gamma\)-PGA was hydrolyzed at 150°C for 5 hours, the average molecular weight of \(\gamma\)-PGA was reduced to about 5 kDa. To reduce the polydispersity of the hydrolyzed \(\gamma\)-PGA, the hydrolyzed \(\gamma\)-PGA (~5 kDa) was further dialyzed twice (using a membrane with MWCO: 3,500 and a membrane with MWCO: 6,000-8,000) against deionized water. Thus obtained \(\gamma\)-PGA had an average molecular weight of about 4 kDa with a polydispersity of 1.3 (FIG. 2). This specific \(\gamma\)-PGA was used subsequently, together with PLA, to synthesize block copolymers to prepare the nanoparticles.
Example No. 4 Synthesis of γ-PGA-PLA Block Copolymers

Block copolymers composed of γ-PGA and PLA were synthesized using CDI to activate the terminal hydroxyl group of PLA. CDI (82 mg) was dissolved in 1,4-dioxane (20 ml) in a nitrogen atmosphere and PLA (0.1 g) was subsequently added into the solution. The clear solution was stirred at 37°C for 2 hours. Afterward, the solution was dialyzed extensively against deionized water at 4°C. Finally, the activated PLA was obtained via centrifugation.

The acidified form of the hydrolyzed γ-PGA (10 mg, Mn ~4 kDa, PDI = 1.3) was dissolved in DMSO (5 ml) in a dry, stoppered 20 ml round bottom flask in a nitrogen atmosphere. After dissolution of DMAP (3 mg), a calculated amount of activated PLA (25 mg) was added. The solution was stirred at room temperature for 3 days, after which the reaction was stopped by adding 0.1 ml of concentrated HCl to neutralize DMAP and imidazole. The reaction mixture was transferred to a dialysis tube and dialyzed for 2 days against deionized water at 4°C. Finally, the product (γ-PGA-PLA block copolymers) was lyophilized and stored at -20°C until used. The molecular weight distribution of the synthesized block copolymers was determined using a GPC system equipped with a Jordi Gel DVB Mixed Bed column (250 x 10 mm, Jordi Associates, Inc., MA) and a RI detector. Tetrahydrofuran (THF) was used as an elution solvent (1 ml/min) and polystyrene standards for column calibration.

Low-molecular-weight γ-PGA was produced by hydrolyzing the purified γ-PGA obtained from fermentation at 150°C for distinct durations. Solutions of the purified γ-PGA obtained from fermentation and the hydrolyzed γ-PGA were analyzed by a GPC system. As shown in FIG. 2, the purified γ-PGA obtained from fermentation had a high average molecular weight (Mn ~320 kDa) with a polydispersity of about 1.8. When γ-PGA was hydrolyzed at 150°C for 5 hours, the average molecular weight of γ-PGA was reduced to about 5 kDa. To reduce the polydispersity of the hydrolyzed γ-PGA, the hydrolyzed γ-PGA (~5 kDa) was further dialyzed twice (using a membrane with MWCO: 3,500 and a membrane with MWCO: 6,000-8,000) against deionized water. Thus obtained γ-PGA had an average molecular weight of about 4 kDa with a polydispersity of 1.3 (FIG. 2). This specific γ-PGA was used subsequently, together with PLA, to synthesize block copolymers to prepare the nanoparticles.

Example No. 5 Preparation of the Paclitaxel-loaded Nanoparticles

The paclitaxel-loaded nanoparticles were produced using an emulsion/solvent evaporation technique. Briefly, 10 mg of block copolymers were dissolved in 1 ml methylene chloride, and paclitaxel was subsequently added with varying feed weight ratios to block copolymer [paclitaxel/copolymer (P/C) = 0.5/10, 1/10, 2/10, and 3/10]. The solution was then stirred for 2 hours at room temperature and was emulsified in 50 ml of a 0.1 wt% sodium cholate solution using a sonicator (VCX-750, Sonics & Materials Inc., Newtown, CT, cycles of 1 second sonication followed by 1 second of pauses, total time 20 minutes). Afterward, the solvent was evaporated in a vacuum oven at 37°C for 1
hour. The resulting suspension was filtered through a 0.8-μm membrane filter (Whatman) and then centrifuged for 60 min at 18,000 rpm at 4°C. The supernatant was subsequently discarded and the pellet was resuspended by 10 ml phosphate buffered saline (PBS, pH 7.4, Sigma). The size distribution and zeta potential of the prepared nanoparticles were measured using a Zetasizer (3000HS, Malvern Instruments Ltd., Worcestershire, UK).

[0045] TEM and AFM were used to observe the morphology of the paclitaxel-loaded nanoparticles. The TEM sample was prepared by placing a drop of the paclitaxel-loaded nanoparticle solution onto a 400 mesh copper grid coated with carbon. About 2 minutes after deposition, the grid was tapped with a filter paper to remove surface water and negatively stained by using a 2% (by w/v) phosphortungsten acid (PTA) solution. The AFM sample was prepared by casting a drop of the paclitaxel-loaded nanoparticle solution on a slide glass and then dried in vacuum.

[0046] The size distribution and zeta potential of the prepared nanoparticles play important roles in determining their fates after administration. As shown in Table 1, the particle size of the prepared nanoparticles increases significantly with increasing the P/C ratio. Dynamic light scattering measurements further demonstrated that all the prepared nanoparticles have a narrow size distribution, with the exception of those prepared with a P/C ratio of 3/10 (FIG. 3). The AFM and TEM examinations showed that the morphology of all the prepared nanoparticles is spherical in shape with a smooth surface (FIG. 4).

Table 1

Particle size, zeta potential, and drug loading content (LC) and loading efficiency (LE) of the nanoparticles prepared with varying feed weight ratios of paclitaxel to block copolymer (the P/C ratio).

<table>
<thead>
<tr>
<th>P/C Ratio (n = 4)</th>
<th>Particle Size (nm)</th>
<th>Zeta Potential (mV)</th>
<th>LC (%)</th>
<th>LE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/10</td>
<td>115.4 ± 4.2</td>
<td>-21.4 ± 2.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.5/10</td>
<td>125.9 ± 5.5</td>
<td>-22.5 ± 3.2</td>
<td>3.7 ± 0.1</td>
<td>76.5 ± 2.4</td>
</tr>
<tr>
<td>1/10</td>
<td>128.8 ± 3.4</td>
<td>-19.6 ± 1.8</td>
<td>5.1 ± 0.2</td>
<td>53.7 ± 1.7</td>
</tr>
<tr>
<td>2/10</td>
<td>144.4 ± 2.6</td>
<td>-20.3 ± 2.7</td>
<td>5.8 ± 0.2</td>
<td>30.8 ± 2.3</td>
</tr>
<tr>
<td>3/10</td>
<td>263.2 ± 6.8</td>
<td>-19.2 ± 2.2</td>
<td>6.1 ± 0.2</td>
<td>21.7 ± 4.2</td>
</tr>
</tbody>
</table>

[0047] Hashida et al. reported that the majority of the fenestrate of the liver sinusoid is usually smaller than 200 nm in diameter. Thus, large particles hardly reach the liver’s parenchymal cells. Additionally, drug carriers with a diameter larger than 200 nm are readily scavenged non-specifically by monocytes and the reticuloendothelial system. It was reported that smaller particles tended to accumulate
at the tumor sites due to the EPR (enhanced permeability and retention) effect and a greater internalization was also observed.

[0048] As shown in Table 2, the particle size of the Gal-NPs was comparable to that of the NPs (p > 0.05). However, the zeta potential of the former was significantly lower than that of the latter (p < 0.05). This is because galactosamine was conjugated to the carboxyl (–COO⁻) groups on γ-PGA (the hydrophilic shell of the nanoparticles) and thus reduced the negative surface charge of the Gal-NPs. The drug loading content and loading efficiency of the Gal-NPs were relatively lower than those of the NPs (p < 0.05).

Table 2

<table>
<thead>
<tr>
<th>Samples (n = 4)</th>
<th>Particle Size (nm)</th>
<th>Zeta Potential (mV)</th>
<th>LC (%)</th>
<th>LE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPs</td>
<td>128.8 ± 3.4</td>
<td>-19.6 ± 1.8</td>
<td>5.1 ± 0.2</td>
<td>53.7 ± 1.6</td>
</tr>
<tr>
<td>Gal-NPs</td>
<td>127.5 ± 2.5</td>
<td>-10.6 ± 2.0</td>
<td>4.8 ± 0.2</td>
<td>50.2 ± 2.1</td>
</tr>
</tbody>
</table>

[0049] It was found that the prepared paclitaxel-loaded nanoparticles have a negative surface charge with a zeta potential of about -20 mV (Table 1), due to the carboxyl (–COO⁻) groups on the hydrophilic γ-PGA shell. This may affect the cellular uptake of the prepared nanoparticles due to electrostatic repulsion forces between the nanoparticles and the rather negatively charged surface of cells. However, Wakebayashi et al. suggested that introduction of a specific ligand on the nanoparticles may enhance their cellular uptake via a receptor-mediated endocytosis. Additionally, it was reported that positively charged carriers might induce a non-specific interaction with unintended target tissues, particularly under in vivo conditions after administration.

[0050] Example No. 6 Loading Content and Loading Efficiency of the Paclitaxel-loaded Nanoparticles

[0051] The drug loading content and loading efficiency of the nanoparticles were determined using a high-performance liquid chromatography (HPLC) system equipped with a C₁₈ analytic column (4.6 × 250 mm, particle size 5 μm, ThermoQuest, BDS, Runcorn, UK). Two milligrams of the freeze-dried paclitaxel-loaded nanoparticles were dissolved in 1 ml dichloromethane under vigorous vortexing. This solution was dried by evaporating dichloromethane in vacuum and then was dissolved in a mixture of 50/50 (v/v) ethanol and deionized water for the HPLC analysis. The flow rate of the mobile phase (60% acetonitrile and 40% deionized water by v/v), delivered by an HPLC pump (TCP, P-100, Riviera Beach, FL), was 1 ml/min at 30°C. The injection volume was 40 μl and paclitaxel eluted from the column.
was monitored with an UV detector (Jasco 875-UV, Tokyo, Japan) at 227 nm. The drug loading content and loading efficiency of the nanoparticles were calculated using the equations listed below, respectively.

\[
\text{Loading Content (\%) = } \frac{\text{weight of paclitaxel in the nanoparticles}}{\text{weight of the nanoparticles}} \times 100\%
\]

\[
\text{Loading Efficiency (\%) = } \frac{\text{weight of paclitaxel in the nanoparticles}}{\text{weight of the feeding paclitaxel}} \times 100\%
\]

[0052] Paclitaxel is highly hydrophobic with a solubility of approximately 1 µg/ml in aqueous solution at pH 7.4. Thus, in the drug loading process, incorporation of paclitaxel in the nanoparticles and precipitation of paclitaxel in aqueous solution competed with each other. With increasing the P/C ratio, incorporation of paclitaxel in the nanoparticles (the drug loading content) appears to increase, while precipitation of paclitaxel in aqueous solution is more pronounced and consequently results in a significantly lower drug loading efficiency (Table 1, p < 0.05).

[0053] Example No. 7 Release of Paclitaxel from the Loaded Nanoparticles

[0054] The release profiles of paclitaxel from the prepared nanoparticles were investigated in PBS at 37°C. The freeze-dried paclitaxel-loaded nanoparticles were weighed and resuspended in a centrifuge tube containing 20 ml PBS. The tube was placed in a shaker water bath at 37°C. At particular time intervals, the tube was taken out and centrifuged. The supernatant was poured out, freeze-dried, and then dissolved in a mixture of 50/50 (v/v) ethanol and deionized water for the HPLC analysis. The pellet was resuspended in 20 ml fresh PBS for continuous release measurements. The paclitaxel released at each time point was calculated using a calibration curve.

[0055] Paclitaxel was continuously released from the nanoparticles prepared with distinct P/C ratios. All samples exhibited a burst release of paclitaxel at the initial stage. About 10-25% of the encapsulated drug was released in the first hour. This may be due to some portion of drugs were deposited at the region near the γ-PGA shell of the prepared nanoparticles.

[0056] With increasing the P/C ratio, the release rate of paclitaxel from the prepared nanoparticles decreases significantly. It was reported that a hydrophobic drug encapsulated within the nanoparticles partially crystallizes at a higher drug loading content, while it forms a molecular dispersion at a lower drug loading content. The crystallized drug in the hydrophobic core of the nanoparticles is expected to dissolve more gradually and diffuse to their outer aqueous phase more slowly than that in the form of a molecular dispersion. Additionally, it would take a longer time for the encapsulated drug to diffuse across the polymer matrix to the aqueous medium for a larger size of nanoparticles (i.e., with increasing the P/C ratio, see Table 1).

[0057] As shown in FIG. 5, both the NPs and the Gal-NPs have a similar release profile of
paclitaxel (p > 0.05) and exhibit a burst release of paclitaxel at the initial stage. About 20% of the encapsulated drug in the NPs or the Gal-NPs was released in the first hour. This may be due to some portion of drugs were deposited at the region near the γ-PGA shell of the prepared nanoparticles.

[0058] Example No. 8 Conjugation of Galactosamine to the Paclitaxel-loaded Nanoparticles

[0059] Galactosamine was conjugated to the paclitaxel-loaded nanoparticles via an amide linkage by EDC in the presence of NHS. The conditions found in our co-pending application US 10/958,864 filed October 5, 2004, to conjugate galactosamine on the nanoparticles that had the greatest amount of nanoparticles internalized in HepG2 cells were used in the present study. The obtained galactosylated nanoparticles were separated from unreacted molecules via ultrafiltration and then lyophilized. The content of galactosamine conjugated on the nanoparticles was determined by the Morgan Elson assay.

[0060] As discussed earlier, with increasing the P/C ratio, the drug loading content of the prepared nanoparticles increases significantly, while their drug loading efficiency decreases remarkably (Table 1). To obtain a comparatively high drug loading content simultaneously with a high loading efficiency (Table 1), the nanoparticles prepared with a P/C ratio of 1/10 (the NPs) were used for the rest of the study. For the potential of targeting liver cancer cells, galactosamine was conjugated to the paclitaxel-loaded nanoparticles (the Gal-NPs). As determined by the Morgan Elson assay, the amount of galactosamine conjugated on the Gal-NPs was 66.2 ± 2.4 nmole/mg nanoparticles (n = 4). The particle size of the Gal-NPs (127.5 ± 2.5 nm) was comparable to that of the NPs (128.8 ± 3.4 nm, p > 0.05). However, the zeta potential of the former (−10.6 ± 2.0 mV) was significantly lower than that of the latter (−19.6 ± 1.8 mV, p < 0.05). This is because galactosamine was conjugated to the carboxyl (−COO−) groups on γ-PGA and thus reduced the negative surface charge of the Gal-NPs.

[0061] Example No. 9 Viability of HepG2 Cells Treated with Distinct Paclitaxel Formulations

[0062] The cytotoxicity of the paclitaxel-loaded nanoparticles with or without galactosamine conjugated was evaluated in vitro by the MTT assay, using a clinically available paclitaxel formulation (Phyxxol®, Sinphar Pharmaceutical) as a control. The assay is based on mitochondrial dehydrogenase cell activity as an indicator of cell viability. Briefly, MTT [3-(4,5-dimethyl-thiazol-yl)-2,5-diphenyltetrazolium bromide, Sigma] was dissolved in PBS with a concentration of 5 mg/ml as a stock MTT solution and filtered for sterilization. HepG2 cells were seeded in 24-well plates at 5 × 10⁴ cells/well and were allowed to adhere overnight. The growth medium was replaced with a fresh one containing varying concentrations (0.25-8 μg/ml) of distinct paclitaxel formulations investigated in the study: Phyxxol®, the nanoparticles without galactosamine conjugated (the NPs), and the nanoparticles with galactosamine conjugated (the Gal-NPs).

[0063] The cells were then incubated for 3 days and washed twice by 1 ml PBS. Subsequently,
the cells were incubated in a growth medium containing 1 mg/ml MTT agent for an additional 4 hours at 37°C and 500 µl of DMSO was added to each well to ensure solubilization of formazan crystals. Finally, the optical density readings were performed using a multiwell scanning spectrophotometer (MRX Microplate Reader, Dynatech Laboratories Inc., Chantilly, VA) at a wavelength of 570 nm.

[0064] Hepatoma cells are known to recognize galactose- and N-acetylglactosamine-terminated glycoproteins via the asialoglycoprotein (ASGP) receptors located on their surfaces. It was found in our previous study that in the incubation with the rhodamine-123-containing nanoparticles without galactosamine conjugated, little fluorescence was observed in HepG2 cells on the images taken by the CLSM. This indicated that without galactosamine, only a small amount of the nanoparticles were able to be internalized in cells, due to electrostatic repulsion forces between the nanoparticles and the cells as mentioned earlier. Hence, the NPs prepared in the study released paclitaxel mainly outside of the cells (i.e., in the culture medium). The released paclitaxel was then diffused into HepG2 cells and led to inhibit the growth of the cells. Accordingly, under in vivo conditions after administration, the normal tissues may be non-selectively exposed to paclitaxel released from the NPs in the blood stream, which can lead to unwanted toxic side effects.

[0065] In contrast, with increasing the galactosamine content conjugated on the rhodamine-123-containing nanoparticles, the intensity of fluorescence observed in HepG2 cells increases significantly at 30 min after incubation. This indicates that the galactosylated nanoparticles had a specific interaction with HepG2 cells via ligand-receptor (ASGP) recognition. Therefore, the Gal-NPs prepared in the study were first internalized into HepG2 cells via the ASGP receptors, and then released the encapsulated paclitaxel inside cytoplasm to inhibit the growth of the cells. Thus, the active targeting nature of the Gal-NPs may lead to a high degree of selectivity to the hepatic tumor and enhance their cellular uptake, with a consequent decrease in systemic toxicity.

[0066] FIG. 6 shows the viability of HepG2 cells treated with distinct paclitaxel formulations investigated in the study. As shown, the activity in inhibiting the growth of cells by the Gal-NPs was comparable to that of a clinically available paclitaxel formulation (Phycox®, p > 0.05), while the NPs displayed a significantly less activity (p < 0.05).

[0067] Example No. 10 Immunofluorescence Analysis of HepG2 Cells Treated with Distinct Paclitaxel Formulations

[0068] HepG2 cells were grown on glass coverslips and then treated with distinct paclitaxel formulations with a final paclitaxel concentration of 8 µg/ml. After incubation for 3 days, the cells were fixed with 3.7% formaldehyde in PBS for 10 min at room temperature and then permeabilized in 0.1% Triton X-100 in PBS containing 1% bovine serum albumin (PBS-BSA) and RNase 100 µg/ml. After washing 3 times with PBS-BSA, the cells were treated with Oregon Green® 514 palloidin (1:100 v/v,
Molecular Probes) in PBS-BSA for 20 min. Cells were then incubated for 60 min with anti-bovine α-tubulin mouse mAb (1 µg/ml, Molecular Probes) in PBS-BSA. The Alexa Fluor® 633-conjugated goat anti-mouse IgG antibody (2 µg/ml, Molecular Probes) was added and incubated for another 60 min. Subsequently, cells were rinsed 3 times with PBS-BSA and treated with 100nM propidium iodide (PI, Sigma) for 5 min.

Before mounting the samples for the CLSM examinations, cells were washed again with PBS and deionized water. Oregon Green® 514 pallloidin, PI, or Alexa Fluor® 633 staining were visualized with excitations at 488, 543, and 633 nm, respectively, using an inverted CLSM (TCS SL, Leica, Germany). Superimposed images were performed with an LCS Lite software (version 2.0).

Example No. 11 Altered Cycling States of HepG2 Cells Treated with Distinct Paclitaxel Formulations

To demonstrate whether paclitaxel released from the prepared NPs or the Gal-NPs could restrict HepG2 cells in specific cell cycle stages, flow cytometric studies were performed. HepG2 cells treated with distinct paclitaxel formulations with a final paclitaxel concentration of 1 µg/ml for 3 days were pelleted at 1500 rpm for 5 min and then were resuspended in PBS. The cell suspension was then added with 100% methanol precooled to -20°C for 15 min and centrifuged at 1500 rpm for 5 min. The supernatant was discarded, and the cell pellet was rehydrated with PBS. The pellet was stained with a DNA staining solution (10 µg/ml PI and 1 mg/ml RNase A) for 45 min. The DNA content of each cell was measured using a Becton Dickinson FACSCalibur flow cytometer (San Jose, CA).

Some aspects of the invention relate to the paclitaxel-loaded nanoparticles with galactosamine conjugated that are configured to be internalized into HepG2 cells via a receptor-mediated endocytosis, resulting in the inhibition of the growth of cells. Therefore in one embodiment, the prepared nanoparticles are provided as a potential drug delivery system for the targeted delivery to liver cancers.

Example No. 12 Study Animals

Male Balb/c mice (5-7 weeks old, 18-22 g) and Balb/c-nu/nu nude mice (5-7 weeks old, 16-20 g) were obtained from the National Laboratory Animal Center (Taipei, Taiwan) and acclimatized for 7 days after arrival. Nude mice were housed in individually ventilated cages (IVC cages) of isolated ventilation to avoid microbial contamination. Balb/c-nu/nu nude mice were injected subcutaneously in the right flank with 0.1 ml of cell suspension containing 10⁶ human hepatoma cells (HepG2) and allowed to grow to a mean volume of 50 mm³. Animal care and use was performed in compliance with the "Guide for the Care and Use of Laboratory Animals" prepared by the Institute of Laboratory Animal Resources, National Research Council, and published by the National Academy Press, revised 1996.

Example No. 13 Biodistribution of the Prepared Nanoparticles

In the study, rhodamine-123 was used as a model fluorescent probe that can be
encapsulated in the hydrophobic core of the prepared nanoparticles. The prepared rhodamine-123-containing nanoparticles in PBS were injected into the tail vein of normal or tumor-bearing mice at a dose of 10 mg/kg. At different time intervals after injection, mice were sacrificed, blood was drawn, and various tissues such as the brain, liver, spleen, lung, kidney, and tumor were excised. An aqueous solution (10 ml) containing deionized water and ethanol (50/50 by v/v) was added to each tissue, and the mixture was homogenized. The mixtures were subsequently centrifuged at 14,000 rpm for 30 min. The supernatants were then lyophilized and resuspended in 1 ml deionized water. Finally, the fluorescence intensities of the solutions were measured using a spectrofluorometer (F-2500, Hitachi, Tokyo, Japan) at an emission wavelength of 520 nm and an excitation wavelength of 490 nm.

[0077] Biodistributions of the prepared nanoparticles in various organs in normal mice and hepatoma-tumor-bearing nude mice were evaluated at distinct durations after the injection of the NPs or the Gal-NPs loaded with rhodamine 123. For normal mice, the NPs were distributed mainly in the spleen (FIG. 7a) due to the splenic filtration, whereas the amount of the Gal-NPs observed in the spleen decreased significantly (p < 0.05, FIG. 7b). It was found that the Gal-NPs are mainly accumulated in the liver.

[0078] For hepatoma-tumor-bearing nude mice, similar observations were observed in the spleen and the liver for the groups injected with the NPs (FIG. 8a) or the Gal-NPs (FIG. 8b). It should be noted that the amount of nanoparticles observed at the tumor site for the group injected with the Gal-NPs was significantly greater than that injected with the NPs (p < 0.05).

[0079] These observations were further confirmed by our CLSM inspection of the spleen, liver, and tumor sections retrieved from the mice injected with the NPs or the Gal-NPs loaded with rhodamine 123. For the group injected with the NPs, the intensity of fluorescence observed in the spleen was much stronger than in the liver and the tumor site. In contrast, for the group injected with the Gal-NPs, the intensities of fluorescence observed in the liver and the tumor site increased significantly. The aforementioned results indicated that the galactosylated nanoparticles prepared in the study had a specific interaction with liver's parenchymal cells and HepG2 tumor cells via ligand-receptor recognition.

[0080] Example No. 14 Anti-tumor Efficacy of the Prepared Nanoparticles

[0081] The anti-tumor efficacy of distinct paclitaxel formulations against the subcutaneously implanted solid tumors induced by HepG2 cells in nude mice was evaluated. Treatments were started when the tumors in nude mice reached a tumor volume of 50 mm^3 and this day was designated day 0. Mice were divided into four different groups [treated with PBS (control), Phyroxol®, the NPs, or the Gal-NPs], consisting of four mice in each group. Distinct paclitaxel formulations were then injected via tail vein administration at a single dose of 20 mg paclitaxel/kg in PBS on days 0, 4, 8, 12, 16. The size of the tumor and the change of body weight of each mouse were recorded.

[0082] The anti-tumor efficacy of the NPs and the Gal-NPs was studied in hepatoma-tumor-
bearing nude mice. FIG. 9 shows the progress of the tumor growth observed for 20 days in nude mice injected with PBS (control) or distinct paclitaxel formulations. It was found that the size of the tumor for the control group increases significantly with time, indicating that PBS has no significant effect in preventing the tumor growth. In contrast, the groups injected with Phyxol®, the NPs or the Gal-NPs significantly delayed the tumor growth as compared to the control group (p < 0.05). Among all study groups, the group injected with the Gal-NPs appears to have the most significant efficacy in the reduction of the size of the tumor (p < 0.05). This is because a large number of the Gal-NPs actively targets at the tumor site as mentioned earlier (FIG. 8b), and subsequently release their encapsulated paclitaxel to inhibit the growth of the tumor.

[0083] Some weight loss was observed with time for all study groups, with the exception of the group injected with the Gal-NPs (p > 0.05). The observation of weight loss was particularly remarkable for the group injected with Phyxol® (p < 0.05). These observations implied that for the group injected with Phyxol® (a free form of paclitaxel), paclitaxel is delivered not only to the tumor cells but also to other normal cells in nude mice, whereas the Gal-NPs are mainly accumulated at the tumor site and the liver.

[0084] Although the present invention has been described with reference to specific details of certain embodiments thereof, it is not intended that such details should be regarded as limitations upon the scope of the invention except as and to the extent that they are included in the accompanying claims. Many modifications and variations are possible in light of the above disclosure.
What is claimed is:

1. A compound for treating liver cancers in a patient comprising nanoparticles that are composed of γ-PGA-PLA block copolymers, wherein the nanoparticles are conjugated with galactosamine.

2. The compound of claim 1, wherein the nanoparticles are mixed in a solution with a nanoparticle concentration of up to 100 μg/ml.

3. The compound of claim 1, wherein a γ-PGA component prior to polymerization for forming the γ-PGA-PLA block copolymers has a molecular weight of about 4 kDa with a polydispersity of about 1.3.

4. The compound of claim 1, wherein a mean particle size for the nanoparticles is in the range of about 10 to 400 nm.

5. The compound of claim 1, wherein a mean particle size for the nanoparticles is in the range of about 50 to 200 nm.

6. The compound of claim 1, wherein a mean particle size for the nanoparticles is in the range of about 100 to 150 nm.

7. The compound of claim 1, wherein at least a portion of the nanoparticles is loaded with at least one anticancer drug.

8. The compound of claim 1, wherein the nanoparticles comprise a hydrophobic inner core and a hydrophilic outer shell.

9. A compound for treating liver cancers in a patient comprising nanoparticles composed of γ-PGA-PLA block copolymers conjugated with galactosamine, wherein the nanoparticles are loaded with at least one bioactive agent.

10. The compound of claim 9, wherein the nanoparticles are mixed in a solution with a nanoparticle concentration of up to 100 μg/ml.

11. The compound of claim 9, wherein a γ-PGA component prior to polymerization for forming the γ-PGA-PLA block copolymers has a molecular weight of about 4 kDa with a polydispersity of about 1.3.

12. The compound of claim 9, wherein a mean particle size for the nanoparticles is in the range of about 10 to 400 nm.

13. The compound of claim 9, wherein a mean particle size for the nanoparticles is in the range of about 50 to 200 nm.

14. The compound of claim 9, wherein a mean particle size for the nanoparticles is in the range of about 100 to 150 nm.

15. The compound of claim 9, wherein said at least one bioactive agent is an anticancer drug.

16. The compound of claim 9, wherein said at least one bioactive agent is selected from the group consisting of doxorubicin, adriamycin, cisplatin, taxol, and 5-fluorouracil.
17. The compound of claim 9, wherein said at least one bioactive agent is selected from the group consisting of epipodophyllotoxins, camptothecins, endyine antibiotics, taxanes, coformycins, anthracycline glycosides, mytomycin, combretastatin, anthrapyrazoles, and polyamine biosynthesis inhibitors.

18. The compound of claim 9, wherein the nanoparticles comprise a hydrophobic inner core and a hydrophilic outer shell.

19. A compound for treating liver cancers in a patient comprising nanoparticles composed of γ-PGA-PLA block copolymers, wherein the nanoparticles are loaded with at least one bioactive agent.

20. The compound of claim 19, wherein said at least one bioactive agent is an anticancer drug.

21. The compound of claim 19, wherein said at least one bioactive agent is selected from the group consisting of doxorubicin, adriamycin, cisplatin, taxol, and 5-fluorouracil.

22. The compound of claim 19, wherein said at least one bioactive agent is selected from the group consisting of epipodophyllotoxins, camptothecins, endyine antibiotics, taxanes, coformycins, anthracycline glycosides, mytomycin, combretastatin, anthrapyrazoles, and polyamine biosynthesis inhibitors.
FIG. 8

(a) Intensity (counts/mg tissue)

(b) Intensity (counts/mg tissue)

- 1 h after injection
- 8 h after injection
- 24 h after injection (n = 4)

Tissues: Blood, Brain, Spleen, Liver, Lung, Kidney, Tumor