20067031511 A2 | IV V000

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
23 March 2006 (23.03.20006)

7 3
PO | 1 0 000 000 0O O A

(10) International Publication Number

WO 2006/031511 A2

(51) International Patent Classification: Not classified (US). KESSLER, Richard, E. [US/US]; 30 Thestland
(21) International Application Number: Drive, Shrewsbury, MA 01545 (US). LEE, Yen [US/US];
PCT/US2005/031710 1065 Windsor Street, San Jose, CA 95129 (US).
(22) International Filing Date: (74) Agents: MEAGHER, Timothy, J. f:t al, Hamilton,
1 September 2005 (01.09.2005) Brook, Smith & Reynolds, P.C., 530 Virginia Road, P.O.
Box 9133, Concord, MA 01742-9133 (US).

(25) Filing Language: English
fg . guag &) (81) Designated States (unless otherwise indicated, for every
(26) Publication Language: English kind of national protection available): AE, AG, AL, AM,
(30) Priority Data: AT, AU, AZ,BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
60/609,211 10 September 2004 (10.09.2004) US CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, F,
11/002,728 30 November 2004 (30.11.2004) US GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
. . . L. KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
(63) Related by C(Tntmuat.lon .(CON) or continuation-in-part MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
(CIP) to earlier applications: OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
us 11/002,728 (CON) SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US (patent),

Filed on 30 November 2004 (30.11.2004) UZ, VC, VN, YU, ZA, ZM, ZW.

US 60/609,211 (CON)

Filed on 10 September 2004 (10.09.2004) (84) Designated States (unless otherwise indicated, for every

(71) Applicant (for all designated States except US): CAVIUM
NETWORKS [US/US]; 2610 Augustine Drive, Santa

Clara, CA 95054 (US).

(72) Inventors; and
(75) Inventors/Applicants (for US only): ASHER, David, H.
[US/US]; 62 Highland View Drive, Sutton, MA 01590

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: STORE INSTRUCTION ORDERING FOR MULTI-CORE PROCESSOR

Wirite Buffer

! Current Entry '
{ Active Bits (Decoded) 1o |
i [vALD 16 31 8}16 !
I IENTRY 326 316 308 1
| |COUNT 1 0 !
! SYNCW |
1 I
3

} I !
)) |
| Ordering Queue M entries !
(M <=17) :
Ciear | | Add, :
: 16 Bit Delete :
! Ordering !
306 Queue 1
v Control :
Find First SEND]
Set Bit 324 i
310 e 1
. |
““““““““““““““ 1 304 i
312 - 4 : Coherent Bus 302 {
\Write Buffer 16 1 Arbitration Q gomr{lit D }
Address File ENTRIES ouner H
] / Commit T 320 :
L b Indication i

&——-w———< From Coherent Bus

To CoherentBus 322 Commit Bus

Address Bus

(57) Abstract: A method and apparatus for minimizing stalls in a pipelined processor is provided. Instructions in an out-of-order
instruction scheduler are executed in order without stalling the pipeline by sending store data to external memory through an ordering

queue.

WO 2006/031511 A2 I} N0 00000 00 0O

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— without international search report and to be republished ance Notes on Codes and Abbreviations” appearing at the begin-
upon receipt of that report ning of each regular issue of the PCT Gazette.

WO 2006/031511 PCT/US2005/031710

10

15

20

STORE INSTRUCTION ORDERING FOR MULTI-CORE PROCESSOR

RELATED APPLICATIONS

This application is a continuation of U.S. Application No. 11/002,728, filed
November 30, 2004, which claims the benefit of U.S. Provisional Application No.
60/609,211, filed on September 10, 2004. The entire teachings of the above

application are incorporated herein by reference.

BACKGROUND OF THE INVENTION

A pipelining technique is typically used in a Reduced Instruction Set
Computing (RISC) processor to divide the instruction processing into a series of
stages of a pipeline. As instructions flow through the instruction pipeline, each stage
performs a different function. More than one instruction may be processed at the
same time, with each instruction being processed in a different stage of the pipeline.
The instruction advances through the pipeline stages at a clock rate which is
determined by the slowest stage in the pipeline. A new instruction can be started
every clock cycle in contrast to a non-pipelined processor in which processing of a
new instruction cannot commence until processing of the previous instruction is
complete. Processor throughput is a function of (i) pipeline stage clock speed,; (ii)
pipeline utilization or “efficiency” during normal execution: and (ii1) the number of
pipeline stalls. A superscalar RISC processor further increases throughput by
allowing multiple instructions to be issued simultaneously and dispatched in parallel

to multiple execution units.

WO 2006/031511 PCT/US2005/031710

10

15

20

25

30

An instruction pipeline often stalls due to resource constraints and inter-
instruction data dependencies. An inter-instruction data dependency results in a stall
when a later issued instruction requires a result produced by an earlier instruction
that has not yet completed. The later issued instruction is thus stalled in the pipeline
until the result of the first instruction is available. Stalls can also occur due to
inadequate buffering of store data. Store ordering can be complicated in multi-core
cache coherent memory chips/systems because coherent memory buses may be

highly-pipelined and may separate address, data, and commit operations.

SUMMARY OF THE INVENTION

A system and method for ordering store instructions implemented in a
processor minimizes instruction pipeline stalls according to the principles of the
present invention.

A processor includes a write buffer having a plurality of write buffer entries
for storing data to be stored in external memory and a system interface. The system
interface includes an ordering queue and ordering queue logic. Data stored in the
write buffer is sent to external memory via an ordering queue entry in the ordering
queue. Upon detecting execution of a store ordering instruction, the ordering queue
logic ensures that a write buffer address identified by ordering queue entries in the
ordering queue is sent to external memory prior to an address for a subsequently
issued store instruction. The ordering queue logic ensures that the write buffer
addresses are sent by monitoring a commit indicator returned from external memory
for each write buffer address.

When a store ordering instruction is executed, there may be active write
buffer entries in the write buffer and ordering queue entries in the ordering queue.
Upon detecting active write buffer entries in the write buffer, the system interface
allocates an ordering queue entry and identifies the active write buffer entries in the
ordering queue entry. Upon detecting no active write buffer entries in the write
buffer and at least one ordering queue entry in the ordering queue, the system
interface sets a store ordering instruction execution indicator in a last ordering queue
entry. Upon detecting no active write buffer entries in the write buffer and no

ordering queue entries in the ordering queue, the system interface allocates an

WO 2006/031511 PCT/US2005/031710

10

15

20

25

30

ordering queue entry and sets a store ordering instruction execution indicator in the
allocated ordering queue entry.

The write buffer has N write buffer entries and the ordering queue has N+1
ordering queue entries. As the number of entries in the ordering queue is greater
than the number of entries in the write buffer, an ordering queue entry is available
when an ordering instruction is executed and therefore stalling of a store ordering
instruction can be eliminated. In one embodiment, N is 16. The write buffer entry
may include a buffer for storing data to be stored in external memory and a mask
having a bit corresponding to each byte in the buffer. The ordering queue entry may
include a store ordering instruction execution indicator and an ordering mask having

a bit corresponding to each write buffer entry.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages of the invention
will be apparent from the following more particular description of preferred
embodiments of the invention, as illustrated in the accompanying drawings in which
like reference characters refer to the same parts throughout the different views. The
drawings are not necessarily to scale, emphasis instead being placed upon
illustrating the principles of the invention.

Fig. 1 is a block diagram of a Reduced Instruction Set Computing (RISC)
processor having an instruction set that includes a memory ordering instruction for
ordering store instructions according to the principles of the present invention;

Fig. 2 illustrates a write buffer entry in the write buffer shown in Fig. 1;

Fig. 3 is a block diagram of control logic in the system interface in the
processor core for sending data stored in write buffer entries over the coherent
memory bus to external memory;

Fig. 4 is a block diagram of one of the ordering queue entries in the ordering
queue shown in Fig. 2;

Fig. 5 is a flow chart illustrating a method implemented in the ordering
queue control logic for ordering store instructions after execution of a SYNCW

instruction,;

WO 2006/031511 PCT/US2005/031710

10

15

20

25

30

Fig. 6 illustrates a store operation on the coherent memory bus shown in Fig.
55

Fig. 7 is a block diagram of a security appliance including a network services
processor including at least one RISC processor shown in Fig. 1; and

Fig. 8 is a block diagram of the network services processor 700 shown in

Fig. 7.

DETAILED DESCRIPTION OF THE INVENTION

A description of preferred embodiments of the invention follows.

A processor is a central processing unit (CPU) that interprets and executes
instructions. Fig. l isa block diagram of a Reduced Instruction Set Computing
(RISC) processor 100 having an instruction set that includes an instruction for
ordering store instructions according to the principles of the present invention.

The processor 100 includes an Execution Unit 102, an Instruction dispatch
unit 104, an instruction fetch unit 106, a load/store unit 118, a Memory Management
Unit (MMU) 108, a system interface 110, a write buffer 122 and security
accelerators 124. The processor core also includes an EJTAG interface 120
allowing debug operations to be performed. The system interface 110 controls
access to external memory, that is, memory external to the processor such as, level 2
(L2) cache memory.

The Execution unit 102 includes a multiply unit 114 and at least one register
file 116. The multiply unit 114 has a 64-bit register-direct multiply. The
Instruction fetch unit 106 includes instruction cache (ICache) 126. The load/store
unit 118 includes data cache 128. A portion of the data cache 240 can be reserved as
local scratch pad/local memory 130. In one embodiment the instruction cache 126 is
32K bytes, the data cache 128 is 8K bytes and the write buffer 122 is 2K bytes. The
Memory Management Unit 108 includes a Translation Lookaside Buffer (TLB) 112.

In one embodiment, the processor 100 includes a crypto acceleration module
(security accelerators) 124 that include cryptography acceleration for Triple Data
Encryption standard (3DES), Advanced Encryption Standard (AES), Secure Hash
Algorithm (SHA-1), Message Digest Algorithm #5 (MDS5). The crypto acceleration

module 124 communicates by moves to and from the main register file 116 in the

WO 2006/031511 PCT/US2005/031710

10

15

20

25

30

Execution unit 102. RSA and the Diffie-Hellman (DH) algorithm are performed in
the multiplier unit 114.

A superscalar processor has a superscalar instruction pipeline that allows
more than one instruction to be completed each clock cycle by allowing multiple
instructions to be issued simultaneously and dispatched in parallel to multiple
execution units. The RISC-type processor 100 has an instruction set architecture
that defines instructions by which the programmer interfaces with the RISC-type
processor. Only load and store instructions access external memory; that is memory
external to the processor 100. In one embodiment, the external memory is accessed
over a coherent memory bus 134. All other instructions operate on data stored in the
register file 116 in the processor 100. In one embodiment, the processor is a
superscalar dual issue processor.

The instruction pipeline is divided into stages, each stage taking one clock
cycle to complete. Thus, in a five stage pipeline, it takes five clock cycles to process
each instruction and five instructions can be processed concurrently with each
instruction being processed by a different stage of the pipeline in any given clock
cycle. Typically, a five stage pipeline includes the following stages: fetch, decode,
execute, memory and write back.

During the fetch-stage, the instruction fetch unit 106 fetches an instruction
from instruction cache 126 at a location in instruction cache 128 identified by a
memory address stored in a program counter. During the decode-stage, the
instruction fetched in the fetch-stage is decoded by the instruction dispatch unit 104
and the address of the next instruction to be fetched for the issuing context is
computed. During the execute-stage, the Integer Execution unit 102 performs an
operation dependent on the type of instruction. For example, the Integer Execution
Unit 102 begins the arithmetic or logical operation for a register-to-register
instruction, calculates the virtual address for a load or store operation or determines
whether the branch condition is true for a branch instruction. During the memory-
stage, data is aligned by the load/store unit 118 and transferred to its destination in
external memory. During the write back-stage, the result of a register-to-register or

load instruction is written back to the register file 116.

WO 2006/031511 PCT/US2005/031710

10

15

20

25

30

The system interface 110 is coupled via the Coherent Memory Bus to
external memory. In one embodiment, the Coherent Memory bus has 384 bits and
includes four separate buses: an Address/Command Bus, a Store Data Bus, a
Commit/Response control bus and a Fill Data bus. All store data is sent to external
memory over the coherent memory bus 132 via a write buffer entry in the write
buffer. In one embodiment, the write buffer has 16 write buffer entries.

Store data flows from the load/store unit 118 to the write buffer 122, and
from the write buffer 122 through the system interface 110 to external memory. The
processor 100 can generate data to be stored in external memory faster than the
system interface 110 can write the store data to the external memory. The write
buffer 122 minimizes pipeline stalls by providing a resource for storing data prior to
forwarding the data to external memory.

The write buffer 122 is also used to aggregate data to be stored in external
memory over a coherent memory bus 132 into aligned cache blocks to maximize the
rate at which the data can be written to the external memory. Furthermore, the
write buffer can also merge multiple stores to the same location in external memory
resulting in a single write operation to external memory. The write-merging
operation of the write buffer 122 can result in the order of writes to the external
memory being different than the ordér of execution of the store instructions.

In normal operation, the order in which load and store memory accesses
appear to a viewer outside the processor 100 is not specified by the architecture.
The instruction set includes an instruction for ordering store instructions which is
referred to herein as the SYNCW instruction. The SYNCW instruction forces all
prior issued store instructions to appear visible outside the processor 100 before any
subsequent store instructions are visible. For example, the instruction sequence

ST DATA
SYNCW
ST FLAG
SYNCW

includes two SYNCW instructions. The SYNCW instructions guarantee the order of
the data store instructions (ST DATA) and store flag (ST FLAG) instructions, that

WO 2006/031511 PCT/US2005/031710

10

15

20

25

30

is, the SYNCW instruction after the ST DATA instruction guarantees that the store
data for the ST DATA instruction is visible outside the processor; that is, sent on the
coherent memory bus 132 before the ST FLAG instruction. The SYNCW
instruction after the ST FLAG instruction guarantees that ST FLAG is visible
outside the processor before the data for any subsequent store is visible outside the
processor.

This type of synchronization may commonly be needed to guarantee that a
data buffer in external memory is updated before a FLAG variable is, and to force a
FLAG variable update to become visible as soon as possible, before the data from
any subsequent store instruction is visible.

Fig. 2 illustrates a write buffer entry 200 in the write buffer 122 shown in
Fig. 1. The write buffer entry 200 includes a buffer 202 for storing a contiguous
block of data to be stored in external memory. The write buffer entry 200 also
includes a mask field 204 having one bit corresponding to each byte in the buffer
202. The state of each bit in the bit mask 204 indicates whether the corresponding
byte in the buffer 202 is storing data to be written to external memory. The cache
block address field 210 in the write buffer entry stores the start address in external
memory of the 128 byte cache block stored in the buffer 202. The write buffer entry
200 also includes an active bit 206 and a valid bit 208. The valid bit 208 is set when
the buffer 202 is storing data to be written to external memory and is cleared after
the data stored in the buffer 202 has been written to external memory. In one
embodiment, the buffer can store a 128 byte contiguous block of data and the mask
has 128 bits, one bit corresponding to each byte in the buffer.

The write buffer 122 is a merging write buffer, that is, separate store
instructions that store data in the cache block identified by the address stored in the
cache block address 210 in a write buffer entry 200 can be collapsed into a single
write operation to external memory.

The state of the active bit 206 indicates whether data from a subsequently
executed store instruction can be merged into the write buffer entry 200 or whether
the data stored in the buffer 202 in the write buffer entry 200 1s in the process of

being written to the external memory. The mask 204 and the buffer 202 in the write

WO 2006/031511 PCT/US2005/031710

10

15

20

25

30

buffer entry are updated accordingly when the data from a store instruction is
merged into an existing write buffer entry 200.

Data to be stored in external memory for a store instruction either joins or
merges into an active write buffer entry or a new write buffer entry is allocated
dependent on the address in external memory to which the data is to be stored. The
address in the store instruction is compared against the address stored in the cache
block address field 210 in all currehtly active write buffer entries 200. If the data to
be stored can be merged into a cache block that is already stored in a buffer 202 in
an active write buffer entry 200, the buffer 202 and the mask field 204 are updated
accordingly.

If a merge with an active write buffer entry is not possible, a write buffer
entry is allocated from a pool of invalid write buffer entries (write buffer entries
with valid bit cleared). After allocation, the active bit 206 in the write buffer entry
200 is set. For example, if the cache block address stored in a write buffer entry is
0x1000, a byte to be stored at address 0x1010 is located in the 128 byte cache block
starting at 0x1000 and can be stored in the write buffer entry storage area; that is, the
store data is joined to the write buffer entry. A subsequent store instruction to
address 0x1000 in the cache block overwrites the data already stored in the cache
block in the write buffer entry, that is, merges into the active write buffer entry.

The result of a store instruction (stored value) to be written to external
memory can reside in a write buffer entry 200 in the write buffer for some time
before the processor 100 writes the result to external memory.

Fig. 3 is a block diagram of control logic in the system interface 110 in the
processor core for sending data stored in write buffer entries 200 over the coherent
memory bus 132 to external memory. The write buffer address file 312 that is part
of the write buffer 122 is also shown in Fig. 3.

All data stored in write buffer entries 200 in the write buffer 122 is sent to
external memory via an entry 314 in an ordering queue 300. The ordering queue is
implemented as a First In First Out (FIFO) queue. An ordering queue entry 314 in
the ordering queue 300 is allocated each time the active bit 206 in a write buffer
entry 200 is cleared, indicating that the data stored in the buffer 202 in the write

buffer entry 200 is to be written to external memory. For example, the active bit 206

WO 2006/031511 PCT/US2005/031710

10

15

20

25

30

in a write buffer entry 200 can be cleared when a pre-selected number of CPU cycles
have elapsed since the last write of store data to external memory or after execution
of a SYNCW instruction. Each ordering queue entry 314 identifies one or more
write buffer entries 200 storing data to be written to external memory. A count field
326 stores a count of the number of ordering queue entries.

Fig. 4 is a block diagram of one of the ordering queue entries 314 in the
ordering queue 300 shown in Fig. 2. The ordering queue entry 314 includes a write
buffer entry mask 400 and a SYNCW field 402. The write buffer entry mask 400
includes a bit corresponding to each write buffer entry 200 in the write buffer 122.
The state of each bit in the write buffer entry mask 400 indicates whether the
corresponding write buffer entry 200 in the write buffer 122 is to be written to
external memory for the ordering queue entry 314. The SYNCW field 402 is a
single bit, the state of which indicates whether a SYNCW instruction has been
executed. |

The processor 100 sends all write buffer entries 200 identified by the write
buffer entry mask 400 in a first ordering queue entry 314 to external memory before
it deletes the first orderiﬂg queue entry and before it sends any write buffer entries
200 identified by the write buffer entry mask 400 in the next ordering queue entry.
For example, in one embodiment, there are N write buffer entries 200, and each
ordering queue entry 314 in the ordering queue 300 has an N-bit write buffer entry
mask (vector) 400 that identifies write buffer entries. There are M= N+1 ordering
queue entries 314 in the ordering queue 300, so that the ordering queue 300 does not
overflow and execution of a SYNCW instruction is never stalled. In an alternate
embodiment, the number of ordering queue entries 314 in the ordering queue 300
may be fewer, in this case, the execution of a SYNCW instruction may stall if the
ordering queue 300 is full.

Returning to Fig. 3, write buffer entries 200 storing data to be written to
external memory are added to the ordering queue 300 through multiplexer 308 and
ordering queue control logic 306. The system interface 110 also includes coherent
bus arbitration logic 304 and a commit counter 302 that control the transfer of store

data to external memory via the coherent memory bus. The commit counter 302

WO 2006/031511 PCT/US2005/031710

10

15

20

25

30

10

keeps track of completion of store operations to external memory. When the
commit counter is zero, all prior stores are visible in the system.

As discussed in conjunction with Fig. 4, each ordering queue entry 314
includes a mask field 400 and a SYNCW bit 402. In the embodiment shown, there
are 16 write buffer entries (N=16) and 17 ordering queue entries (M=N+1). The
multiplexer 308 selects either the 16 write buffer active bits 316 (with one active bit
206 from each write buffer entry 200) or a 16-bit vector with only one bit
corresponding to a single entry 318. The selected 16 active bits 322 are forwarded
to ordering queue control logic 306 and stored in an ordering queue entry 314 in the
ordering queue 300. The ordering queue control logic 306 through add/delete
control signals adds and deletes ordering queue entries in the ordering queue. For
example, the ordering queue can be implemented as a collapsing First In First Out
(FIFO), with new entries added to one end of the queue and entries processed from
the other end (head) of the queue.

An ordering queue entry 314 with only one write buffer entry can be created
for many different conditions as is well-known to those skilled in the art, for
example, for a write buffer overflow condition or a timeout condition. The
conditions for creating an ordering queue entry with only one write buffer entry are
beyond the scope of the present invention.

The SYNCW bit 402 in each ordering queue entry is shown separated from
the other fields in each ordering queue entry 314 in the ordering queue 300. The
SYNCW bit 402 in each ordering queue entry 314 is also forwarded to ordering
queue control logic 306.

When the SYNCW bit is set in the ordering queue entry 314 at the head of
the ordering queue 300, the ordering queue logic ensures that write buffer addresses
identified by ordering queue entries in the ordering queue are sent to external
memory prior to addresses for a subsequently issued store instruction, and that these
addresses are committed before any subsequent addresses are sent. The ordering
queue control logic 306 issues a send request 324 to the coherent bus arbitration
logic 304 to send the cache block address stored in the buffer 202 in the next write
buffer entry 200 identified by the mask bits 400 in the ordering queue entry 314 to

WO 2006/031511 PCT/US2005/031710

10

15

20

25

30

11

the coherent bus arbitration logic 304. The coherent bus arbitration logic 304 issues
the request on the coherent bus address bus to external memory.

In one embodiment, the write buffer entry mask bits 400 in the current
ordering queue entry 314 are also forwarded to the find first set bit logic 312 to
select the cache block address stored in the write buffer entry 204 that is currently
being processed. The cache block address stored in the cache block address field
210 in the write buffer entry 200 corresponding to the first set bit in the mask 400 in
the ordering queue entry 314 is selected in the write buffer address file 312 and
forwarded on the coherent bus address bus 322.

After the cache block address in the first write buffer entry 204 has been
forwarded to external memory over the coherent memory bus, the ordering queue
control logic 306 clears the bit in the write buffer entry mask 104 corresponding to
the write buffer entry 204 in the current ordering queue entry 314.

All write buffer addresses 200 identified by the write buffer entry mask bits
400 in the ordering queue entry 314 are sent to external memory over the coherent
memory bus prior to deleting the ordering queue entry 314 and processing the write
buffer entries 204 in the next ordering queue entry 314. An ordering queue entry
can be deleted after all mask bits are sent and either: a) the SYNCW bit is clear, or
b) the commit count is zero. After the data stored in the write buffer entry 200 has
been written to external memory, the valid bit 208 is cleared, indicating that the
write buffer entry 200 is free and available for allocation.

The execution of the SYNCW instruction results in ordering of store
instructions by forcing all stores in active write buffer entries to complete; that is,
the store data is committed to external memory before any subsequent store
addresses are sent to the external memory. If no SYNCW instructions have been
executed, the SYNCW bit in each ordering queue entry is clear.

Some memory ordering instruction implementations can stall instruction
execution due to the lack of completion of prior store instructions or inadequate
buffering in the write buffer. In the present invention, the execution of a memory
ordering instruction need not be stalled (if M=N+1) because prior buffered stores
(and the SYNCW) can always enter a unique ordering queue; that is, an ordering

queue entry 314 allocated in the ordering queue 300.

WO 2006/031511 PCT/US2005/031710

10

15

20

25

30

12

SYNCW is asserted whenever a SYNCW instruction executes, and a new
ordering queue entry is created. When a new ordering queue entry is not created, the
SYNCW bit in the newest existing ordering queue entry may need to be set to
guarantee the order of prior stores relative to subsequent stores. A combination of
the execution unit 102 and the load/store unit 118 detects execution of a SYNCW
instruction and asserts SYNCW.

The execution of a SYNCW instruction results in setting the SYNCW bit
402 in ordering queue entries 314, When the SYNCW bit 402 is set in an ordering
queue entry, the ordering queue entry is not deleted until all of the following
conditions are satisfied: (1) All addresses of the write buffer entries 200 included in
the ordering queue entry (identified by the write buffer entry mask 400) have been
sent to the external memory; and (2) All addresses sent to the system by this or other
ordering queue entries are visible; that is, the commit counter 302 is zero.

Fig. 5 is a flow chart illustrating a method implemented in the ordering
queue control logic 306 for ordering store instructions after execution of a SYNCW
instruction. The flow chart is described in conjunction with Fig. 3.

At step 500, the write buffer control logic 306 monitors execution of a
SYNCW instruction. If a SYNCW instruction execution is detected, processing
continues with step 502.

At step 502, the write buffer control logic 306 checks if there are any active
write buffer entries; that is, write buffer entries in the write buffer with the active bit
206 set. If so, processing continues with step 504. If not, processing continues with
step 512.

At step 504, there are active write buffer entries in the write buffer.
Processing continues with step 504.

At step 504, an ordering queue entry 314 is allocated in the ordering queue
300. Processing continues with step 506.

At step 506, the write buffer entry mask bits 400 in the allocated ordering
queue entry 312 corresponding to all active write buffer entries 200 in the write
buffer 122 are set. Processing continues with step 508.

At step 508, the write buffer entries included in the allocated ordering queue

entry 314 are deactivated by clearing the active bit 208 in each write buffer entry

WO 2006/031511 PCT/US2005/031710

10

15

20

25

30

13

200. The valid bit 208 in each write buffer entry 200 remains set until the data
stored in the buffer 202 in the write buffer entry 200 has been written to external
memory.

At step 510, the SYNCW bit 402 is set in the allocated ordering queue entry
200. Processing continues with step 500 to wait for the next SYNCW instruction to
be executed.

At step 512, there are no active write buffer entries 200 in the write buffer
122, the write buffer control logic 306 checks if there are ordering queue entries 314
in the ordering queue 300. If so, processing continues with step 514. If not,
processing continues with step 516.

At step 514, there are no active write buffer entries 200 in the write buffer
122, and there is at least one ordering queue entry 314 in the ordering queue 300.
No ordering queue entry is allocated, instead, the SYNCW bit 402 in the last
ordering queue entry 314 that was allocated in the ordering queue 300. Processing
continues with step 500 to wait for the next SYNCW instruction to be executed.

At step 516, there are no active write buffer entries 200 in the write buffer
122, and there are no ordering queue entries 314 in the ordering queue 300. An
ordering queue entry 314 is allocated. No write buffer entry mask bits 400 are set
because there are no active write buffers 200 having data to be stored in external
memory. Processing continues with step 510 to set the SYNCW bit 402 in the
allocated ordering queue entry.

Fig. 6 illustrates a store operation on the coherent memory bus 132 shown in
Fig. 1. The coherent memory bus includes an ADD bus, a STORE bus, a COMMIT
bus and a FILL bus. The interface to the ADD bus and the COMMIT bus are shown
in Fig. 3. The ADD bus transfers an address and control information to initiate a
coherent memory bus transaction. The STORE bus transfers the store data
associated with the transaction. The COMMIT bus transfers control information
that initiates transaction responses from the external memory. The FILL bus
transfers cache blocks from the external memory to the processor.

The coherent bus arbitration logic 304 controls the store operation. A store
operation is initiated upon receiving a send request 324 from the ordering queue

control logic 306. The address of a cache block 800 that is stored in a write buffer

WO 2006/031511 PCT/US2005/031710

10

15

20

25

30

14

entry 200 is sent from the write buffer address file 312 on the ADD bus and the
commit counter 302 is incremented. The ADD bus cycle also sends the number of
128 bit (octaword) transfers required during the STORE bus cycle.

The STORE bus transfers are scheduled later, when the STORE bus is
available and buffer space is available in external memory for the data. The
processor drives the store data into the STORE bus. In the example shown, five
STORE bus cycles are required for the complete store with 16 bytes (128 bits)
transferred in each STORE bus cycle. The number of STORE bus cycles can range
from as small as one, up to eight to transfer the entire 128 byte cache block stored in
a buffer 202 in a write buffer entry 200. An external memory controller buffers the
ADD and STORE bus information and services the write operation to the external
memory. A commit indication 320 received over the COMMIT bus indicates that a
memory controller has received and ordered the address; that is, that the address has
been sent to external memory.

The commit counter 302 is decremented after the commit indication 320 is
received over the COMMIT bus. The commit indication 320 indicates that the store

data is visible to all users of the Coherent Memory Bus 132. The commit indication

© 320 may be sent before the actual store operation is completely retired. For

example, the external memory controller can send the commit indication 320 on the
commit bus to the processor for the store operation even though the data is not yet
written in the external memory, provided that any subsequent Coherent Memory Bus
operation will see the updated store information.

Ordering queue control logic 306 can request that the coherent bus
arbitration logic start another store cycle on the coherent memory bus upon detecting
that the commit counter is equal to 0; that is, that the previous store cycle has
completed.

Memory ordering instructions are necessary in many high-performance
memory systems, because instructions are serviced out of order. In particular, the
high-performance memory ordering instructions are important for high packet-
processing performance because many operations can be kept in-flight by packet-

processing applications.

WO 2006/031511 PCT/US2005/031710

10

15

20

25

30

15

Fig. 7 is a block diagram of a security appliance 702 including a network
services processor 700 including at least one processor shown in Fig. 1;

The security appliance 102 is a standalone system that can switch packets
received at one Ethernet port (Gig E) to another Ethernet port (Gig E) and perform a
plurality of security functions on received packets prior to forwarding the packets.
For example, the security appliance 702 can be used to perform security processing
on packets received on a Wide Area Network prior to forwafding the processed
packets to a Local Area Network.

The network services processor 700 includes hardware packet processing,
buffering, work scheduling, ordering, synchronization, and coherence support to
accelerate all packet processing tasks. The network services processor 700
processes Open System Interconnection network L2-L7 layer protocols encapsulated
in received packets. .

The network services processor 700 receives packets from the Ethernet ports
(Gig E) through the physical interfaces PHY 704a, 704b, performs L7-L2 network
protocol processing on the received packets and forwards processed packets through
the physical interfaces 704a, 704b or through the PCI bus 706. The network
protecol processing can include processing of network security protocols such as
Firewall, Application Firewall, Virtual Private Network (VPN) including IP Security
(IPSEC) and/or Secure Sockets Layer (SSL), Intrusion detection System (IDS) and
Anti-virus (AV).

A Dynamic Random Access Memory (DRAM) controller in the network
services processor 700 controls access to an external DRAM 708 that is coupled to
the network services processor 700. The DRAM 708 is external to the network
services processor 700. The DRAM 708 stores data packets received from the
PHYs interfaces 704a, 704b or the Peripheral Component Interconnect Extended
(PCI-X) interface 706 for processing by the network services processor 700.

The network services processor 700 includes another memory controller for
controlling Low latency DRAM 718. The low latency DRAM 718 is used for
Internet Services and Security applications allowing fast lookups, including the
string-matching that may be required for Intrusion Detection System (IDS) or Anti
Virus (AV) applications.

WO 2006/031511 PCT/US2005/031710

10

15

20

25

30

16

'Fig. 8 is a block diagram of the network services processor 700 shown in
Fig. 7. The network services processor 700 delivers high application performance
using at least one processor core100 as described in conjunction with Fig. 1.
Network applications can be categorized into data plane and control plane
operations. Each of the processor cores 100 can be dedicated to performing data
plane or control plane operations. A data plane operation includes packet operations
for forwarding packets. A control plane operation includes processing of portions of
complex higher level protocols such as Internet Protocol Security (IPSec),
Transmission Control Protocol (TCP) and Secure Sockets Layer (SSL). A data
plane operation can include processing of other portions of these complex higher
level protocols. Each processor core 100 can execute a full operating system, that is,
perform control plane processing or run tuned data plane code, that is perform data
plane processing. For example, all processor cores can run tuned data plane code,
all processor cores can each execute a full operating system or some of the processor
cores can execute the operating system with the remaining processor cores running
data-plane code.

The SYNCW instruction is typically used in a parallel program which has
multiple instruction streams that can execute simultaneously on different processors.
The order in which the effects of store instructions are observed by other processors
determines the actions necessary to reliably share data in parallel programs.

The effects of store instructions executed by one processor may be observed
out of program order by other processors, so parallel programs take explicit actions
to reliably share data. At critical points in the program, the effects of stores from an
instruction stream must occur in the same order for all processors. The SYNCW
instruction allows the effects of all stores prior to the execution of the SYNCW
instruction to be seen by all processors before the effects of any store after the
SYNCW instruction is executed. The SYNCW instruction allows strict ordering of
store instructions when the SYNCW instruction is executed.

The following code fragments in Table 1 illustrate how the SYNCW
instruction can be used to co-ordinate the use of shared data between separate writer

and reader instruction streams.

WO 2006/031511 PCT/US2005/031710

10

15

20

25

30

17

Writer

LIR2, 1
SYNCW

SW R2, FLAG
SYNCW

Reader

LIR2,1

1: LWRI1, FLAG
BNE R2,R1, 1
NOP

LW R1, DATA

Table 1

FLAG is used by the instruction streams to determine whether the shared
data item DATA is valid. The first SYNCW executed by the writer forces the store
of DATA to be performed to external memory before the store to FLAG is
performed. The second SYNCW executed by the writer ensures that the store to
FLAG does not linger in the write buffer before it becomes visible to other processor
cores.

A packet is received for processing by any one of the GMX/SPX units 810a,
810b through an SPI-4.2 or RGM Il interface. A packet can also be received by the
PCI interface 824. The GMX/SPX unit performs pre-processing of the received
packet by checking various fields in the L2 network protocol header included in the
received packet and then forwards the packet to the packet input unit 814.

The packet input unit 814 performs further pre-processing of network
protocol headers (L3 and L4) included in the received packet. The pre-processing
includes checksum checks for Transmission Control Protocol (TCP)/User Datagram
Protocol (UDP) (L3 network protocols).

A Free Pool Allocator (FPA) 836 maintains pools of pointers to free memory
in level 2 cache memory 812 and DRAM. The input packet processing unit 814

WO 2006/031511 PCT/US2005/031710

10

15

20

25

30

18

uses one of the pools of pointers to store received packet data in level 2 cache
memory or DRAM and another pool of pointers to allocate work queue entries for
the processor cores.

The packet input unit 814 then writes packet data into buffers in Level 2
cache 812 or DRAM in a format that is convenient to higher-layer software executed
in at least one processor core 100 for further processing of higher level network
protocols.

The network services processor 100 also includes application specific co-
processors that offload the processor cores 100 so that the network services
processor achieves high-throughput. The compression/decompression co- processor
808 is dedicated to performing compression and decompression of received packets.
The DFA module 844 includes dedicated DFA engines to accelerate pattern and
signature match necessary for anti-virus (AV), Intrusion Detection Systems (IDS)
and other content processing applications at up to 4 Gbps.

The I/O Bridge (IOB) 832 manages the overall protocol and arbitration and
provides coherent I/O partitioning. The IOB 832 includes a bridge 838 and a Fetch
and Add Unit (FAU) 840. Registers in the FAU 840 are used to maintain lengths of
the output queues that are used for forwarding processed packets through the packet
output unit 818. The bridge 838 includes buffer queues for storing information to be
transferred between the I/O bus, coherent memory bus, the packet input unit 814 and
the packet output unit 818.

The Packet order/work (POW) module 828 queues and schedules work for
the processor cores 100. Work is queued by adding a work‘queue entry to a queue.
For example, a work queue entry is added by the packet input unit 814 for each
packet arrival. The timer unit 842 is used to schedule work for the processor cores.

Processor cores 100 request work from the POW module 828. The POW
module 828 selects (i.e. schedules) work for a processor core 100 and returns a
pointer to the work queue entry that describes the work to the processor core 100.

The processor core 100 includes instruction cache 126, Level 1 data cache
128 and crypto acceleration 124. In one embodiment, the network services

processor 100 includes sixteen superscalar RISC (Reduced Instruction Set

WO 2006/031511 PCT/US2005/031710

10

15

20

25

30

19

Computer)-type processor cores. In one embodiment, each superscalar RISC-type
processor core is an extension of the MIPS64 version 2 processor core.

Level 2 cache memory 812 and DRAM memory is shared by all of the
processor cores 100 and I/O co-processor devices. Each processor core 100 is
coupled to the Level 2 cache memory 812 by a coherent memory bus 132. The
coherent memory bus 132 is the communication channel for all memory and /O
transactions between the processor cores 100, the /O Bridge (IOB) 832 and the
Level 2 cache and controller 812. In one embodiment, the coherent memory bus
132 is scalable to 16 processor cores, supports fully coherent Level 1 data caches
128 with write through, is highly buffered and can prioritize I/O.

The level 2 cache memory controller 812 maintains memory reference
coherence. It returns the latest copy of a block for every fill request, whether the
block is stored in the L2 cache, in DRAM or is in-flight. It also stores a duplicate
copy of the tags for the data cache 128 in each processor core 100. It compares the
addresses of cache block store requests against the data cache tags, and invalidates
(both copies) a data cache tag for a processor core 100 whenever a store instruction
is from another processor core or from an I/O component via the /O Bridge 832.

After the packet has been processed by the processor cores 100, a packet
output unit (PKO) 818 reads the packet data from memory, performs L4 network
protocol post-processing (e.g., generates a TCP/UDP checksum), forwards the
packet through the GMX/SPC unit 810a, 810b and frees the L2 cache/DRAM used
by the packet.

The invention has been described for a processor core that is included in a
security appliance. However, the invention is not limited to a processor core in a
security appliance. The invention applies to ordering of store instructions in any
pipelined processor.

While this invention has been particularly shown and described with
references to preferred embodiments thereof, it will be understood by those skilled
in the art that various changes in form and details may be made therein without

departing from the scope of the invention encompassed by the appended claims.

WO 2006/031511 PCT/US2005/031710

10

15

20

25

30

20

CLAIMS

What is claimed is:

A processor comprising:
a write buffer having a plurality of write buffer entries for storing
data to be stored in external memory; and
a system interface, the system interface comprising:
an ordering queue, data stored in the write buffer being sent to
external memory via an ordering queue entry in the ordering queue;
and
ordering queue logic which upon detecting execution of a
store ordering instruction ensures that a write buffer address
identified by ordering queue entries in the ordering queue is sent to
external memory prior to an address for a subsequently issued store

instruction.

The processor of claim 1, wherein the ordering queue logic ensures that the
write buffer addresses are sent by monitoring a commit indicator returned

from external memory for each write buffer address.

The processor of claim 1, wherein upon detecting active write buffer entries
in'the write buffer, the system interface allocates an ordering queue entry and

identifies the active write buffer entries in the ordering queue entry.

The processor of claim 1, wherein upon detecting no active write buffer
entries in the write buffer and at least one ordering queue entry in the
ordering queue, the system interface sets a store ordering instruction

execution indicator in a last ordering queue entry.

The processor of claim 1, wherein upon detecting no active write buffer
entries in the write buffer and no ordering queue entries in the ordering

queue, the system interface allocates an ordering queue entry and sets a store

WO 2006/031511 PCT/US2005/031710

10

15

20

25

30

10.

11.

21

ordering instruction execution indicator in the allocated ordering queue

entry.

The processor of claim 1 wherein the write buffer has N write buffer entries

and the ordering queue has N+1 ordering queue entries.
The processor of claim 5, wherein N=16.

The processor of claim 1, wherein the write buffer entry includes a buffer for
storing data to be stored in external memory and a mask having a bit

corresponding to each byte in the buffer.

The processor of claim 1, wherein the ordering queue entry includes a store
ordering instruction execution indicator and an ordering mask having a bit

corresponding to each write buffer entry.

A method for ordering store data in a processor comprising:

storing data to be stored in external memory in a write buffer entry in
a write buffer;

sending data stored in the write buffer to the external memory via an
ordering queue entry in an ordering queue; and

upon detecting execution of a store ordering instruction, ensuring that
a write buffer address identified by ordering queue entries in the ordering
queue is sent to external memory prior to an address for a subsequently

issued store instruction.

The method of claim 10, wherein ensuring comprises monitoring a commit

indicator returned from external memory for each write buffer address.

WO 2006/031511 PCT/US2005/031710

10

15

20

25

30

12.

13.

14.

15.

16.

17.

18.

22

The method of claim 10 further comprising:
upon detecting active write buffer entries in the write buffer,
allocating an ordering queue entry and identifying the active write buffer

entries in the ordering queue entry.

The method of claim 10 further comprising:
upon detecting no active write buffer entries in the write buffer and at
least one ordering queue entry in the ordering queue, setting a store ordering

instruction execution indicator in a last ordering queue entry.

The method of claim 10 further comprising:

upon detecting no active write buffer entries in the write buffer and
no ordering queue entries in the ordering queue, allocating an ordering queue
entry and setting a store ordering instruction execution indicator in the

allocated ordering queue entry.

The method of claim 10, wherein the write buffer entry includes a buffer for
storing data to be stored in external memory and a mask having a bit

corresponding to each byte in the buffer.

The method of claim 10, wherein the ordering queue entry includes a store
ordering instruction execution indicator and an ordering mask having a bit

corresponding to each write buffer entry.

The method of claim 10, wherein the write buffer has N write buffer entries

and the ordering queue has N+1 ordering queue entries.

The method of claim 17, wherein N=16.

WO 2006/031511 PCT/US2005/031710

10

15

20

19.

20.

23

A processor comprising:

a write buffer having a plurality of write buffer entries for storing
data to be stored in external memory; and

means for sending data stored in the write buffer to the external
memory via an ordering queue entry in an ordering queue; and

upon detecting execution of a store ordering instruction, means for
ensuring that a write buffer address identified by ordering queue entries in
the ordering queue is sent to external memory prior to an address for a

subsequently issued store instruction.

A network services processor comprising:
cache memory; and
at least one processor core, the processor core comprising:
a write buffer having a plurality of write buffer entries for storing data to be
stored in the cache memory; and
a system interface, the system interface comprising:
an ordering queue, data stored in the write buffer being sent to
the cache memory via an ordering queue entry in the ordering queue;
and
ordering queue logic which upon detecting execution of a
store ordering instruction ensures that a write buffer address
identified by ordering queue entries in the ordering queue is sent to
the cache memory prior to an address for a subsequently issued store

instruction.

PCT/US2005/031710

WO 2006/031511

177

001

l Old

IN3H3IHOD

sSna
AHON3N
[—CEL

waddng |,

- on

Zzr JLEM JOVAHTLINI WILSAS ~
0cl ‘ — H
A Ol LINQ HO13d —
TVdHOIVHOS il NOILONYLSNI
L y344ng L
_ NOILVISNVL s oVL r3
1INN 3HOLS/AVOTT An_ AN NOILONYLSNI .
A .
S X S -\l 1
201 —
oLy
T4 ot
yaLSIoTY
vIT — unn [
LINN vl HOLvaSIa |
AQ/ATdILININ NOILY¥31302V |INOILONHLSNI
: < 0O1dAdO :
SHOLVHITIDIV
LINA NOLLNDIX3 WAOILNI ALIMADTS

PCT/US2005/031710

WO 2006/031511

v Ol

207 00% _
MSVIN
MONAS AYLINT H344N9 3LIYM
vLE
S
¢ Ol
Loy | T | @ | o
19 1ig
M2019 MSVIN d344N9
SHOVO anrnva JAILDVY

00¢c

PCT/US2005/031710

37

WO 2006/031511

sng ssalppy

MONAS - / _
___ INNOD

/ 0 | !
80€ 91¢ 9¢€ AYINT
E\thm mﬂu_\

ariva

oIt | (pepooaq) SHg Ay
: Anu3z yuaunn layng ajupn

— p— — lll'llllll'.ll'l'llll'lll'lllll'lll'llll'llll

NS S S s ——— — —— ———— — ———— —————— — —— —

sng jlwwo) (XA
sng JusIeyo?) WO Ym:m_ Em:mr;o_o ol . ¢ 94
| Auoneopuy T T TTTTTTTOS S a
1 02l nwwon |
P ounon . | “ STIYINT Sll4 SSaIppy
i N el w omenay) 91 Jayng ajup
| 20¢ sng juaisyon |,
- 08 b e e
I 0l€
: “ pee ngiles
“ aN3s }sii puiy
| |ojuoy)
“ 8nanp 90¢
= Bunepio
| >
! \. o LN
| ‘opy | | ‘€210
| (L1 =>)
_ samuay ©enenp Buuspio
| AN
[S b
| 008" gt e iE
I
T
[
I
I
I
|
_
L

WO 2006/031511 PCT/US2005/031710

4/7
ACTIVE NO
WRITE BUFFER >—
' ? . 512
"ORDERING NG
ENTRY IN QUEUE ,
5?4 N
ALLOCATE ORDERING | |
QUEUE ENTRY YES 514
505 SET SYNCW
l (BITIN LAST
. ORDERING
SET MASK BITS QUEUE ENTRY
CORRESPONDING .
TOALLACTIVE ' 516
BUFFERS f
508 . ALLOCATE
(ORDERING QUEUE
A DE-ACTIVATE WRITE - ENTRY
| BUFFER ENTRIES IN J(
ORDERING QUEUE
ENTRIES
N
F >
SETSYNCWBIT | s
IN ORDERING
QUEUE ENTRY

FIG. 5

PCT/US2005/031710

WO 2006/031511

57

9914

e R e e T T P

paiinbai s| ajepieaul
ON ‘PajiwiwoD s| 310)g

N\

(a gz1)

ssalppy
320|9 8yoed

RRIE
1INWOD
34018
aav

PCT/US2005/031710

WO 2006/031511

6/7

3 b9

3 bio

3 61

3 b

20"

av0.

SAHd

S.AHd

369

3619

3619

3 b9

L Ol 2 ysej4
- Joedwo)
oS
A A -~ tAV}
90, o1, 0LL M5 el
|~
X-10d/10d sng
. ljoog
| oy INDY
007
P]
HAOY HNSY
d40SS3004¥d
S3ADINE3S
HHHHHHHH MHOMLIN
INOY llﬂammv
— - =
JINODY “ “ wNmevm\\ IHNOY
A __
' Wwda | 207
 fousien
8L~ mo7 i Wvda
U . |

PCT/US2005/031710

WO 2006/031511

- WvHa li-4aa
8 Old gzL 109 _g~°
1 818 - s —— — =
1 ndy) e
g2 - I 19y0ed Sm" 918
. | G018 (oMd) | . J8l103U09D
HNDXXY | _gorg | || OMd § D _ A
10 Z'¥-1dS X1 L XdS /XINO wwv_www “ . | -
— 1 lGED) ! 18
cv8 g ——— 1| (0z7) 48jj0nU0D
yun 8wy L IIIN.H -— '? 9YIED Z 13Aa7]
— 1 — >
9¢8 | 8€8 | SNy H*
(vdd) Jsjedoly m abpug — AJOWIN vee
|00 8814 | Z¢g _ —2¢tl
, [380 “ INIH3IHOO
INDYXP 0 XdS/XWO “ 0¥8 _ -
o N i . _ TCIETERA
_ lozyidsSx 018 —+ .S<.% u_w:m_o_% _ 577 oo
w8 (D), we 0w | | | BT -
o)
W 29 MIOM/IBPIO INAS IELE
(v.mlvd. . 1939ed anssti-jenq
9NY) Jojeiausn) — .
80c 908 gzr IHOVOQ
_ 1SQUINN tuopuey uoissaidwoosaQy ck
, 8 (v1Q) juoisseidwo) S
WvHQ Aousie Mo EJewo)ny sl 0eg~ -
NG-91 XZ ansiuiwslag SNg AOUS)E|-MO| /AA—A\
. — p—— . :
o 928 4% =
(WYL [eusd)xa) sng o/l 194 sa109) 0oL~
8oBpS|| VO d4 _ . F
ysey : Y9
- poog 18vn X-10d
002 01dD 1dvn

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

