Abstract: Aspects extend to methods, systems, and computer program products for remediating power loss at a server. Aspects of the invention increase the likelihood of gracefully shutting down a server and associated components in a data center when mains power is lost for a specified amount of time (e.g., an amount of time beyond transition to generator power). A server can include a management module (e.g., a BMC) and a watchdog module. When the management controller detects loss of power at a power supply unit, the management controller orchestrates a graceful shutdown of the server in response to power loss. When the management module is unresponsive, the watchdog module provides backup functionality for orchestrating a graceful shutdown in response to power loss. As such, data can be saved from RAM to more durable storage even when the management module is unresponsive.

Declarations under Rule 4.17:
- as to applicant’s entitlement to apply for and be granted a patent (Rule 4.17(H))
- as to the applicant’s entitlement to claim the priority of the earlier application (Rule 4.17(iii))

Published:
- with international search report (Art. 21(3))
REMEDIATING POWER LOSS AT A SERVER

BACKGROUND

1. Background and Relevant Art

[0001] Computer systems and related technology affect many aspects of society. Indeed, the computer system’s ability to process information has transformed the way we live and work. More recently, computer systems have been coupled to one another and to other electronic devices to form both wired and wireless computer networks over which the computer systems and other electronic devices can transfer electronic data. Accordingly, the performance of many computing tasks is distributed across a number of different computer systems and/or a number of different computing environments. For example, distributed applications can have components at a number of different computer systems.

[0002] Within data centers, computing components can be mounted in racks to provide compute resources, storage resources, and network resources to 3rd parties. Data centers can be have a variety of power backup options to provide a higher level of reliability. For example, data centers can include onsite generators as well as battery backups. However, in many data centers, the amount of time needed for onsite generators to reliably provide power exceeds the time components within the data can operate on battery backup. As such, battery backup power is often used to mitigate short lived transient power anomalies, such as, for example, temporary brownouts of external power.

[0003] Battery backup power can also be used to graceful shutdown components if longer lasting power anomalies are anticipated. For example, after a certain amount of time running on battery backup power, components can be gracefully powered off in anticipation of battery backup power being depleted. Then, when onsite generator power is available, components can be powered back on. When external power is restored, components can then be transitioned back to external power.

[0004] Individual servers within a data center can include a baseboard management controller (BMC). The BMC includes software responsible for management of a server, including monitoring and/or communicating with power supply units. The BMC is also responsible for determining when a graceful shutdown of associated components is appropriate (e.g., in anticipation of battery backup power being exhausted) and is responsible for handling the graceful shutdown.
However, since BMCs include software, there is always some chance of a BMC operating in an inappropriate and/or unintended manner. Further, BMC software may require updating from time to time. The BMC may be temporally taken offline when an update is in progress. If a power anomaly occurs when a BMC is being updated or when a BMC is operating in an inappropriate and/or unintended manner, a gracefully shutdown may not possible. If a server is not shutdown gracefully in response to a power failure, data stored in RAM or other volatile memory can be lost.

SUMMARY

Examples extend to methods, systems, and computer program products for remediating power loss at a server. A system includes a power supply unit (PSU), a battery, and a computer system (e.g., a rack mounted server). The power supply unit receives alternating current (AC) or directed current (DC) input and provides direct current (DC) output at a specified direct current (DC) voltage. The battery provides the specified direct current (DC) voltage to provide backup power to components connected to the direct current output when problems providing the direct current output from the power supply unit (PSU) occur. In another aspect, the power supply unit receives direct current (DC) input (which may or may not be at the specified direct current (DC) voltage) and provides direct current (DC) output at the specified direct current (DC) voltage.

The computer system is connected to the power supply unit (PSU) and the battery. The computer system includes one or more processors, system memory, a management controller, and a watchdog module. The management controller monitors the status of the power supply unit (PSU). The management controller is configured to gracefully shut down the computer system when a problem with the power supply unit (PSU) is detected.

The watchdog module configured to start a timer when the problem with the power supply unit (PSU) is detected. The watchdog module is configured to gracefully shut down the computer system in response to expiration of the timer. The watchdog module is configured to abort the timer in response to communication from the management controller.

This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
[0010] Additional features and advantages will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice. The features and advantages may be realized and obtained by means of the instruments and combinations particularly pointed out in the appended claims. These and other features and advantages will become more fully apparent from the following description and appended claims, or may be learned by practice as set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] In order to describe the manner in which the above-recited and other advantages and features can be obtained, a more particular description will be rendered by reference to specific implementations thereof which are illustrated in the appended drawings. Understanding that these drawings depict only some implementations and are not therefore to be considered to be limiting of its scope, implementations will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:

[0012] Figure 1 illustrates an example architecture that facilitates remediating power loss at a server.

[0013] Figure 2 illustrates a flow chart of an example method for remediating power loss at a server.

DETAILED DESCRIPTION

[0014] Examples extend to methods, systems, and computer program products for remediating power loss at a server. A system includes a power supply unit (PSU), a battery, and a computer system (e.g., a rack mounted server). The power supply unit receives alternating current (AC) or direct current (DC) input and provides direct current (DC) output at a specified direct current (DC) voltage. The battery provides the specified direct current (DC) voltage to provide backup power to components connected to the direct current output when problems providing the direct current output from the power supply unit (PSU) occur. In another aspect, the power supply unit receives direct current (DC) input (which may or may not be at the specified direct current (DC) voltage) and provides direct current (DC) output at the specified direct current (DC) voltage.

[0015] The computer system is connected to the power supply unit (PSU) and the battery. The computer system includes one or more processors, system memory, a management controller, and a watchdog module. The management controller monitors the status of the power supply unit (PSU). The management controller is configured to
gracefully shut down the computer system when a problem with (e.g., an alert from) the power supply unit (PSU) is detected.

[0016] The watchdog module is configured to start a timer when the problem with the power supply unit (PSU) is detected. The watchdog module is configured to gracefully shut down the computer system in response to expiration of the timer. The watchdog module is configured to abort the timer in response to communication from the management controller.

[0017] Accordingly, the watchdog module can gracefully shutdown the computer system when the management controller fails to respond to a problem with the power supply unit. When the management controller indicates awareness of the problem with the power supply unit, the watchdog module permits the management controller to handle the problem.

[0018] Implementations may comprise or utilize a special purpose or general-purpose computer including computer hardware, such as, for example, one or more processors (including Central Processing Units (CPUs), Graphical Processing Units (GPUs), and Complex Programmable Logic Devices (CPLDs)) and system memory, as discussed in greater detail below. Implementations also include physical and other computer-readable media for carrying or storing computer-executable instructions and/or data structures. Such computer-readable media can be any available media that can be accessed by a general purpose or special purpose computer system. Computer-readable media that store computer-executable instructions are computer storage media (devices). Computer-readable media that carry computer-executable instructions are transmission media. Thus, by way of example, and not limitation, implementations of can comprise at least two distinctly different kinds of computer-readable media: computer storage media (devices) and transmission media.

[0019] Computer storage media (devices) includes RAM, ROM, EEPROM, CD-ROM, solid state drives ("SSDs") (e.g., based on RAM), Flash memory, phase-change memory ("PCM"), other types of memory, other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store desired program code means in the form of computer-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer.

[0020] A "network" is defined as one or more data links that enable the transport of electronic data between computer systems and/or modules and/or other electronic devices. When information is transferred or provided over a network or another communications
connection (either hardwired, wireless, or a combination of hardwired or wireless) to a computer, the computer properly views the connection as a transmission medium. Transmissions media can include a network and/or data links which can be used to carry desired program code means in the form of computer-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer. Combinations of the above should also be included within the scope of computer-readable media.

Further, upon reaching various computer system components, program code means in the form of computer-executable instructions or data structures can be transferred automatically from transmission media to computer storage media (devices) (or vice versa). For example, computer-executable instructions or data structures received over a network or data link can be buffered in RAM within a network interface module (e.g., a "NIC"), and then eventually transferred to computer system RAM and/or to less volatile computer storage media (devices) at a computer system. Thus, it should be understood that computer storage media (devices) can be included in computer system components that also (or even primarily) utilize transmission media.

Computer-executable instructions comprise, for example, instructions and data which, in response to execution at a processor, cause a general purpose computer, special purpose computer, or special purpose processing device to perform a certain function or group of functions. The computer executable instructions may be, for example, binaries, intermediate format instructions such as assembly language, or even source code. Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the described features or acts described above. Rather, the described features and acts are disclosed as example forms of implementing the claims.

Those skilled in the art will appreciate that the described aspects may be practiced in network computing environments with many types of computer system configurations, including, personal computers, desktop computers, laptop computers, message processors, hand-held devices, wearable devices, multicore processor systems, multi-processor systems, microprocessor-based or programmable consumer electronics, network PCs, minicomputers, mainframe computers, Complex Programmable Logic Devices (CPLDs), Programmable Array Logic (PAL) devices, Field-Programmable Gate Arrays (FPGAs), routers, switches, and the like. The described aspects may also be
practiced in distributed system environments where local and remote computer systems, which are linked (either by hardwired data links, wireless data links, or by a combination of hardwired and wireless data links) through a network, both perform tasks. In a distributed system environment, program modules may be located in both local and remote memory storage devices.

[0024] The described aspects can also be implemented in cloud computing environments. In this description and the following claims, "cloud computing" is defined as a model for enabling on-demand network access to a shared pool of configurable computing resources. For example, cloud computing can be employed in the marketplace to offer ubiquitous and convenient on-demand access to the shared pool of configurable computing resources (e.g., compute resources, networking resources, and storage resources). The shared pool of configurable computing resources can be provisioned via virtualization and released with low effort or service provider interaction, and then scaled accordingly.

[0025] A cloud computing model can be composed of various characteristics such as, for example, on-demand self-service, broad network access, resource pooling, rapid elasticity, measured service, and so forth. A cloud computing model can also expose various service models, such as, for example, Software as a Service ("SaaS"), Platform as a Service ("PaaS"), and Infrastructure as a Service ("IaaS"). A cloud computing model can also be deployed using different deployment models such as private cloud, community cloud, public cloud, hybrid cloud, and so forth. In this description and in the following claims, a "cloud computing environment" is an environment in which cloud computing is employed.

[0026] In this description and the following claims, a "power supply unit" is defined as a power device that converts mains current to regulated DC power for digital components, such as, for example, computers, routers, switches, etc. Regulated DC power can be at one or more different voltages. The mains current can be alternating current (AC) or direct current (DC). Mains current can be at the same voltage as one of the voltages of regulated DC power (e.g., when mains current is DC). On the other hand, mains current can be at a voltage that differs from any voltages of regulated DC power (e.g., when mains current is DC or AC). Regulated DC power can include one or more voltages compatible with various digital components, such as, for example, any of +3.3 V, +5 V, -5 V, +12 V, and +48V. However, other voltages are also possible. Power supply
unit is defined to include switched-mode power supplies. In this description and the following claims a power supply unit may be referred to as a PSU.

[0027] Aspects of the invention increase the likelihood of gracefully shutting down a server and associated components when mains power (either AC or DC) is lost for a specified amount of time (e.g., an amount of time beyond transition to generator power).

Aspects of the invention help insure that Power Loss Protection (PLP) capacitors, Non-Volatile Dual In-line Memory Module (NVDIMM), and Peripheral Component Interconnect Express (PCIe) reset is triggered on power down when mains power is lost and battery is close to depletion.

[0028] Figure 1 illustrates an example computer architecture 100 that facilitates remediating power loss at a server. Referring to Figure 1, computer architecture 100 includes server 101, PSU 106, and battery 107. Server 101, PSU 106, and battery 107 can be connected to (or be part of) a network, such as, for example, a Local Area Network ("LAN"), a Wide Area Network ("WAN"), and even the Internet. Accordingly, server 101, PSU 106, and battery 107 as well as any other connected computer systems and their components, can create message related data and exchange message related data (e.g., Internet Protocol ("IP") datagrams and other higher layer protocols that utilize IP datagrams, such as, Transmission Control Protocol ("TCP"), Hypertext Transfer Protocol ("HTTP"), Simple Mail Transfer Protocol ("SMTP"), Simple Object Access Protocol (SOAP), etc. or using other non-datagram protocols) over the network.

[0029] In one aspect, server 101, PSU 106, and battery 107 are included in a rack within a data center. The rack can also include other components, such as, for example, other servers, other PSUs, other batteries, storage devices (e.g., Solid State Drives (SSDs) and/or magnetic hard drives), networking equipment, etc. The data center can also include one or more additional racks that contain servers, PSUs, batteries, storage devices, networking equipment, etc.

[0030] PSU 106 receives mains power connection 111 (AC) and converts the mains power connection 111 (AC) to power connection 113 (DC). Voltages and frequencies of mains power systems can vary by country. Mains power connection 111 (AC) can range from 100-240 Volts (expressed as root-mean-square) operating and 50Hz or 60Hz. PSU 106 can be adapted to country of operation. Power connection 113 (DC) can be low-voltage regulated DC power for digital components, including server 101.

[0031] In another aspect, mains power connection 111 is DC. In this other aspect, mains power connection 111 can include one or more DC voltages (e.g., 24V or
12V,+5V,-5V,Gnd). Power supply unit 106 can convert DC voltage levels, limit current, etc. for battery 107 and/or server 101.

[0032] PSU 106 can be configured to emit various messages and/or alerts indicative of status. For example, when power is lost at mains power connection 111. PSU 106 can send an alert indicating the power loss. When power is restored at mains power connection 111, PSU 106 can clear the alert.

[0033] Battery 107 can provide backup power for power connection 113. For example, battery 107 can provide power connection 113 when mains power connection 111 is lost. Based on capacity, battery 107 can provide power connection 113 for a specified amount of time. The specified amount of time can be sufficient to allow a graceful shutdown of components associated with server 101 before battery 107 is depleted. As such, battery 107 can also be used to increase reliability of power connection 113 during transient conditions in mains power connection 111. For example, battery 107 can provide power connection 113 when flickers and/or fluctuations occur in mains power connection 111.

[0034] Server 101 further includes management controller 102 and watchdog module 103. Management controller 102 can be a baseboard management controller (BMC) used in an Intelligent Platform Management Interface (IPMI). Management controller 102 can be a microcontroller embedded on the motherboard of server 101. Management controller 102 can manage and interface between system management software and platform hardware. Management controller 102 can monitor platform hardware, such as, for example, PSU 106, and send alerts to system administrators.

[0035] For example, management controller 102 can receive an alert from PSU 106 indicating power loss at mains power connection 111. When responsive, management controller 102 can receive the alert and handle the alert. When handling an alert, management controller 102 may clear the alert. Management controller 102 can respond to a loss of power by gracefully shutting down components associated with server 101 (e.g., copying the contents of RAM to more durable storage) prior to depletion of battery 107. A graceful shutdown can include Asynchronous Dynamic Refresh (ADR), PCIe Reset (PERST), etc.

[0036] Watchdog module 103 is configured handle graceful shutdown of components associated with server 101 when management controller 102 is non-responsive (e.g., when management controller 102 is being updated, is hung, etc.). Watchdog module 103 can monitor PSU 106. As such, watchdog module 103 can also receive alerts from PSU 106 indicating power loss at mains power connection 111. When an alert indicating power loss
is received, timer 104 starts a countdown timer. If the alert remains active and
unacknowledged by management controller 102 for a specified amount of time, watchdog
module 103 initiates a graceful shutdown of components associated with server 101.

[0037] An alert from PSU 106 can indicate that server 101 is being powered by battery
107. As such, a timer value for timer 104 can be configured so that watchdog module 103
initiates a graceful shutdown prior to depletion of battery 107. If at any time during a
countdown timer an alert from PSU 106 is cleared (either by PSU 106 or by management
controller 102) or management controller 102 acknowledges watchdog module 103, timer
104 aborts the countdown timer.

[0038] In one aspect, watchdog module 103 is implemented in a Complex
Programmable Logic Device (CPLD). However, watchdog module 103 can also be
implemented in other types of programmable logic circuitry.

[0039] PSU 106 and server 101 can communicate over data connection 112 (a
physical interface). Data connection 112 can be any of a variety of communication
mechanisms including: a System Management Bus (SMB), an RS-232 serial console,
address and data lines, an Inter-Integrated Circuit (PC) bus, a Serial Peripheral Interface
(SPI) bus, an Intelligent Platform Management Bus (IPMB), Ethernet, or power line
communication. Data connection 112 enables management controller 102 and watchdog
module 103 to receive alerts from power supply unit 106.

[0040] Figure 2 illustrates a flow chart of an example method for remediating power
loss at a server. Method 200 will be described with respect to the components and data of
computer architecture 100.

[0041] Method 200 includes detecting a power supply unit (PSU) alert condition from
a power supply unit (PSU) supplying power to the computer system (201). For example,
watchdog module 103 can detect alert 121 (on via data connection 112). When responsive,
management controller 102 can also receive alert 121. However, if management controller
102 is updating, hung, or operating inappropriately, management controller 102 may not
receive alert 121. Alert 121 can indicate power loss at mains power connection 111.

[0042] Method 200 includes starting a timer in response to the power supply unit
(PSU) alert condition, the timer configured to allow time for gracefully shutting down the
computer system prior to depletion of a local battery backup supplying power for
components of the computer system (202). For example, watchdog module 103 can start
timer 104 in response to alert 121. Timer 104 can be based on timer value 123. Timer
value 123 can define an amount of time sufficient to allow for gracefully shutting down server 101 and associated components prior to depletion of battery 107.

[0043] Method 200 includes remediating the power supply unit (PSU) alert condition at the computer system, (203). For example, watchdog module 103 can remediate alert 121. In one aspect, watchdog module 103 sends notification 127 to management controller 102 to indicate watchdog module 103 is handling alert 121.

[0044] Remediating the power supply unit (PSU) alert condition, includes one of: gracefully shutting down the computer system in response to expiration of the timer (204) and aborting the timer in response to communication from a management controller, the communication indicating that the management controller is to handle responding to the power supply unit (PSU) alert condition (205). For example, watchdog module 103 can send shutdown commands 126 (e.g., ADR and/or PERST) to gracefully shutdown server 101 and associated components in response to expiration of timer 104.

[0045] Alternately, watchdog module 103 can abort 124 timer 104 in response to communication from management controller 102. In one aspect, management controller 102 sends acknowledgment 128 to watchdog module 103. Acknowledgment 128 indicates to watchdog module 103 that management controller 102 is handling alert 121. In response to receiving acknowledgement 128, timer 104 is aborted.

[0046] In another aspect, management controller 102 sends clear alert 122 (via data connection 112) to PSU 106. In response to clear alert 122, PSU 106 can deactivate alert 121. In a further aspect, PSU 106 deactivates alert 121 upon mains power connection 111 being restored. In response to detecting deactivation of alert 121, timer 104 is aborted. When alert 121 is deactivated, watchdog module 103 infers that management controller 102 is handling alert 121 or that mains power connection 111 is restored. When management controller 102 handles alert 121, management controller 102 can send shutdown commands 126 (e.g., ADR and/or PERST) to gracefully shutdown server 101 and associated components.

[0047] Thus, in some aspects, when AC power is lost a PSU alert is asserted. A watchdog module receives the alert and starts a shutdown timer based on the PSU alert. If the PSU alert remains active for a period of time (e.g., 45 seconds), the watchdog module does a graceful shutdown (e.g., PLP, PERST, and ADR). The period of time is programmable and can be varied, for example, based on battery capacity.

[0048] If at any point the PSU alert is deactivated by a management controller (or the PSU), the watchdog module aborts the shutdown timer. The PSU alert is sticky such that
when the PSU alert is cleared the watchdog module knows that the management module is handling the PSU alert.

[0049] In other aspects, when AC is lost, a management controller receives a PSU alert. The management controller monitors the PSU. After riding the battery for a period of time (e.g., 45 seconds), the management controller begins a graceful shutdown. The period of time is programmable and can be varied, for example, based on battery capacity. If the management controller is unresponsive (e.g., updating or hung), a watchdog module can assist with a graceful shutdown prior to battery depletion.

[0050] The watchdog module can also receive the PSU alert and being its own counter to commence graceful shutdown. If the management controller is responsive (alive) it can stop the watchdog module countdown by sending an ACK to the watchdog module.

[0051] Accordingly, either a management module (e.g., BMC) or watchdog module can gracefully shutdown a server and associated components prior to depletion of a battery. A management module can have primary responsibility for orchestrating a graceful shutdown in response to power loss. When the management module is unresponsive, the watchdog module provides backup functionality for orchestrating a graceful shutdown in response to power loss. As such, data can be saved from RAM to more durable storage even when the management module is unresponsive.

[0052] In one aspect, a system includes a power supply unit (PSU), a battery, and a computer system (e.g., a server). The power supply unit has mains power (e.g., alternating current (AC) or direct current (DC)) input and direct current (DC) output. The direct current (DC) output provides a specified direct current (DC) voltage. The battery provides the specified direct current (DC) voltage. The battery is configured to provide backup power to components connected to the direct current output when problems providing the direct current output occur.

[0053] The computer system is connected to the direct current output and connected to the battery. The computer system includes one or more processors, system memory, a management controller, and a watchdog module. The management controller monitors the status of the power supply unit (PSU). The management controller is configured to gracefully shut down the computer system when a problem with the power supply unit (PSU) is detected.

[0054] The watchdog module is configured to start a timer when the problem with the power supply unit (PSU) is detected. The watchdog module is configured to gracefully shut down the computer system in response to expiration of the timer. The watchdog
module is configured to abort the timer in response to communication from the management controller.

[0055] In another aspect, a method for remediating a power supply unit (PSU) alert condition at the computer system is performed. A power supply unit (PSU) alert condition is detected from a power supply unit (PSU) supplying power to the computer system. A timer is started in response to the power supply unit (PSU) alert condition. The timer is configured to allow time for gracefully shutting down the computer system prior to depletion of a local battery backup supplying power for components of the computer system.

[0056] The power supply unit (PSU) alert condition is remediated at the computer system, including one of: gracefully shutting down the computer system in response to expiration of the timer or aborting the timer in response to communication from a management controller. The communication indicating that the management controller is to handle responding to the power supply unit (PSU) alert condition.

[0057] In a further aspect, a computer program product for use at a computer system includes one or more computer storage devices having stored thereon computer-executable instructions that, in response to execution at a processor, cause the computer system to implement a method for remediating a power supply unit (PSU) alert condition at the computer system is performed.

[0058] The computer program product includes computer-executable instructions that, in response to execution at a processor, cause the computer system to detect a power supply unit (PSU) alert condition from a power supply unit (PSU) supplying power to the computer system. The computer program product includes computer-executable instructions that, in response to execution at a processor, cause the computer system to start a timer in response to the power supply unit (PSU) alert condition. The timer is configured to allow time for gracefully shutting down the computer system prior to depletion of a local battery backup supplying power for components of the computer system.

[0059] The computer program product includes computer-executable instructions that, in response to execution at a processor, cause the computer system to remEDIATE the power supply unit (PSU) alert condition at the computer system, including one of the following: graceful shut down of the computer system in response to expiration of the timer or abort the timer in response to communication from a management controller. The
communication indicating that the management controller is to handle responding to the power supply unit (PSU) alert condition.

[0060] The present described aspects may be implemented in other specific forms without departing from its spirit or essential characteristics. The described aspects are to be considered in all respects only as illustrative and not restrictive. The scope is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
CLAIMS

1. A system, the system comprising:
 a power supply unit (PSU), the power supply unit (PSU) comprising:
 alternating current (AC) input; and
direct current output, the direct current output providing a specified
direct current (DC) voltage;
 a battery, the battery providing the specified direct current (DC) voltage,
 the battery configured to provide backup power to components connected to the
direct current output when problems providing the direct current output occur;
a computer system, the computer system connected to the direct current
output and connected to the battery, the computer system comprising:
one or more processors;
system memory;
a management controller that monitors the status of the power
supply unit (PSU), the management controller configured to gracefully shut
down the computer system when a problem with the power supply unit
(PSU) is detected; and
 a watchdog module, the watchdog module configured to:
 start a timer when the problem with the power supply unit
(PSU) is detected;
gracefully shut down the computer system in response to
expiration of the timer; and
 abort the timer in response to communication from the
management controller.

2. The system of claim 1, wherein the watchdog module being configured to
start a timer when the problem with the power supply unit (PSU) is detected comprises the
watchdog module being configured to start a timer in response to detecting activation of a
power supply unit (PSU) alert signal from the power supply unit (PSU); and
 wherein the watchdog module being configured to abort the timer in response to
communication from the management controller comprises the watchdog module being
configured to abort the timer in response to detecting deactivation of one or more of: the
power supply unit (PSU) alert signal and the power supply unit (PSU).
3. The system of claim 1, wherein the watchdog module being configured to start a timer when the problem with the power supply unit (PSU) is detected comprises the watchdog module being configured to start a timer in response to detecting activation of a power supply unit (PSU) alert signal received via one of: an RS-232 bus, an Inter-Integrated Circuit (PC) bus, or a System Management Bus (SMB).

4. The system of claim 1, wherein the watchdog module being configured to gracefully shut down the computer system in response to expiration of the timer comprises the watchdog module being configured to copy data stored in the system memory to persistent storage in response to expiration of the timer.

5. The system of claim 1, wherein the watchdog module being configured to gracefully shut down the computer system in response to expiration of the timer comprises the watchdog module being configured to:

 - initiate a PCIe reset for the computer system; and
 - initiate an Asynchronous Dynamic Refresh for the computer system.

6. The system of claim 1, wherein the management controller comprises a Baseboard Management Controller (BMC), the Baseboard Management Controller (BMC) included in an Intelligent Platform Management Interface (IPMI) at the computer system.

7. The system of claim 1, wherein the watchdog module is implemented in programmable logic circuitry.

8. A method for use at a computer system, the method for remediating a power supply unit (PSU) alert condition at the computer system, the method comprising:

 - detecting a power supply unit (PSU) alert condition from a power supply unit (PSU) supplying power to the computer system;
 - starting a timer in response to the power supply unit (PSU) alert condition, the timer configured to allow time for gracefully shutting down the computer system prior to depletion of a local battery backup supplying power for components of the computer system;
 - remediating the power supply unit (PSU) alert condition at the computer system, including one of:
gracefully shutting down the computer system in response to expiration of the timer; and
aborting the timer in response to communication from a management controller, the communication indicating that the management controller is to handle responding to the power supply unit (PSU) alert condition.

9. The method of claim 8, wherein gracefully shutting down the computer system in response to expiration of the timer comprises copy data stored in Random Access Memory (RAM) to persistent storage in response to expiration of the timer.

10. A computer program product for use at a computer system, the computer program product for implementing a method for remediating a power supply unit (PSU) alert condition at the computer system, the method comprising one or more computer storage devices having stored thereon computer-executable instructions that, when executed at a processor, cause the computer system to implement the method, including the following:
detect a power supply unit (PSU) alert condition from a power supply unit (PSU) supplying power to the computer system;
start a timer in response to the power supply unit (PSU) alert condition, the timer configured to allow time for gracefully shutting down the computer system prior to depletion of a local battery backup supplying power for components of the computer system;
remediate the power supply unit (PSU) alert condition at the computer system, including one of the following:
graceful shut down the computer system in response to expiration of the timer; and
abort the timer in response to communication from a management controller, the communication indicating that the management controller is to handle responding to the power supply unit (PSU) alert condition.
DETECTING A POWER SUPPLY UNIT (PSU) ALERT CONDITION FROM A POWER SUPPLY UNIT (PSU) SUPPLYING POWER TO THE COMPUTER SYSTEM

STARTING A TIMER IN RESPONSE TO THE POWER SUPPLY UNIT (PSU) ALERT CONDITION, THE TIMER CONFIGURED TO ALLOW TIME FOR GRACEFULLY SHUTTING DOWN THE COMPUTER SYSTEM PRIOR TO DEPLETION OF A LOCAL BATTERY BACKUP SUPPLYING POWER FOR COMPONENTS OF THE COMPUTER SYSTEM

REMEDIATING THE POWER SUPPLY UNIT (PSU) ALERT CONDITION AT THE COMPUTER SYSTEM, INCLUDING ONE OF:

- GRACEFULLY SHUTTING DOWN THE COMPUTER SYSTEM IN RESPONSE TO EXPIRATION OF THE TIMER

- ABORTING THE TIMER IN RESPONSE TO COMMUNICATION FROM A MANAGEMENT CONTROLLER, THE COMMUNICATION INDICATING THAT THE MANAGEMENT CONTROLLER IS TO HANDLE RESPONDING TO THE POWER SUPPLY UNIT (PSU) ALERT CONDITION

Figure 2
A. CLASSIFICATION OF SUBJECT MATTER

INV. G06F1/30

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G06F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 5 923 099 A (BILIR ADNAN [US]) 13 July 1999 (1999-07-13) column 1, line 21 - column 3, line 59; figures 1-3</td>
<td>1-10</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another application or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed

* Further documents are listed in the continuation of Box C.

X See patent family annex.

Date of the actual completion of the international search

22 May 2017

Date of mailing of the international search report

02/06/2017

Name and mailing address of the ISA/Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040
Fax: (+31-70) 340-3016

Fredj, Aziz
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 5923099 A</td>
<td>13-07-1999</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 5315161 A</td>
<td>24-05-1994</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 2011016340 AI</td>
<td>20-01-2011</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>