

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : A61F 2/02, A61L 27/00, A61F 2/28, A61B 17/80		A1	(11) International Publication Number: WO 98/07384 (43) International Publication Date: 26 February 1998 (26.02.98)
(21) International Application Number:	PCT/US97/13695	(81) Designated States:	AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).
(22) International Filing Date:	5 August 1997 (05.08.97)	(30) Priority Data:	19 August 1996 (19.08.96) US 08/699,673
(71) Applicant:	MACROPORE, INC. [US/US]; Suite 223, 3252 Holiday Court, La Jolla, CA 92037 (US).	(72) Inventors:	LEMPERLE, Stefan, M.; 215 Bonair Street #8, La Jolla, CA 92037 (US). CALHOUN, Christopher, J.; 4939 Mt. Harris Drive, San Diego, CA 92117 (US).
(74) Agent:	MYERS, Richard, L.; 100 Pacifica #210, Irvine, CA 92618 (US).	Published	<i>With international search report.</i>

(54) Title: RESORBABLE, MACRO-POROUS, NON-COLLAPSING AND FLEXIBLE MEMBRANE BARRIER FOR SKELETAL REPAIR AND REGENERATION

(57) Abstract

A resorbable, flexible implant in the form of a continuous macro-porous sheet (42) is disclosed. The implant (42) is adapted to protect biological tissue defects, especially bone defects (49) in the mammalian skeletal system, from the interposition of adjacent soft tissues (57) during in vivo repair. The membrane (42) has pores (46) with diameters from 20 microns to 3000 microns. This porosity is such that vasculature (61) and connective tissue cells derived from the adjacent soft tissues (57) including the periosteum (64) can proliferate through the membrane (42) into the bone defect (49). The thickness of the sheet (42) is such that the sheet (42) has both sufficient flexibility to allow the sheet (42) to be shaped to conform to the configuration of a skeletal region (55) to be repaired and sufficient tensile strength to allow the sheet (42) to be so shaped without damage to the sheet (42). The sheet (42) provides enough inherent mechanical strength to withstand pressure from adjacent musculature and does not collapse.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

**RESORBABLE, MACRO-POROUS, NON-COLLAPSING AND FLEXIBLE
MEMBRANE BARRIER FOR SKELETAL REPAIR AND REGENERATION**

Background of the Invention

Field of the Invention

The present invention relates generally to implants for use in repairing various portions of the mammalian skeletal system and, more particularly, to implants for use in clinical procedures such as bone fracture repair, regeneration of bone loss, augmentation of deficient bone, and related procedures.

Description of Related Art

Various types of defects in the mammalian skeletal system can be treated by various surgical procedures. Defects in the mammalian skeletal system may include bone fracture, loss of bone occurring from traumatic, surgical, or infectious sources, and bone deficiencies stemming from conditions such as atrophy and congenital anomalies.

One procedure that is common in the prior art for treating bone defects involves the placement of additional bone into the bone defect area. This procedure, which is commonly referred to as bone grafting, is the second most frequently performed surgical grafting procedure, with skin grafting the most common surgical grafting procedure. Current bone grafting procedures include the use of vascularized or non-vascularized autografts and allografts.

A bone autograft is a portion of bone taken from another area of the skeletal system of the patient. A

bone allograft, in contrast, involves a human donor source other than the recipient patient. Allogenic bone graft typically comprises bone harvested from cadavers, which is subsequently treated and stored in a bone bank and ultimately used as a bone graft implant. Allogenic bone graft is known to have osteoconductive and osteoinductive capabilities, although the osteoinductive properties are limited because of the necessary tissue sterilizing and cleaning procedures associated with harvesting these bone grafts. The term osteoconduction refers to a class of biomaterials which provide a three-dimensional porous framework to conduct the ingrowth of new living bone into this structure. The term osteoinduction refers to a class of materials having capabilities of recruiting mesenchymal stem cells of the patient and promoting their differentiation into osteoblasts, which are bone forming cells. An osteoinductive material will typically form bone if implanted into an area where bone would not normally grow. For example, the placement of bone morphogenic proteins into the muscle of a patient will result in ectopic (outside of bone) bone formation.

Both bone autografting procedures and bone allografting procedures are associated with shortcomings in the healing of bone defects within the mammalian skeletal system. Bone autografting procedures are typically associated with limitation of donor sites, bone quantity, and donor site morbidity (especially if multiple donor sites are required). Bone allografting procedures, to begin with, only have limited osteoinductive capabilities. In addition to the very limited osteoinduction properties of allogenic bone grafts, compared to autograft samples, allografts are immunogenic to a certain degree, bear the risk of disease transmission (e.g. HIV and Hepatitis), and,

depending on the size of the allograft, require a long time for ingrowth and partial substitution with new bone. This long substitution process often requires a time duration of greater than one year before satisfactory clinical results are obtained.

5 Additionally, pressure from the adjacent musculature may dislocate bone graft material. Bone grafts may re-fracture after fixator removal if bone ingrowth and substitution is inadequate.

10 As a substitute to actual bone grafts, which include autografts and allografts, various bone graft substitutes have been used by the prior art for treating bone defects in the mammalian skeletal system.

15 Porous ceramic bone graft substitutes, for instance, such as coralline hydroxyapatites, operate similarly to bone grafts by providing a three-dimensional structural framework. This framework conducts the regenerating bone of the patient into the porous matrix of the three-dimensional structural framework. This process of conducting the regenerating bone into the porous matrix is commonly referred to as 20 osteoconduction, as opposed to osteoinduction discussed above. Permanent, non-resorbable, inorganic, ceramic implants have shortcomings such as inherent brittleness and large framework volume fractions. The framework 25 volume fraction of a typical bone graft substitute comprises approximately 40 percent of the volume where new bone could otherwise grow. This 40 percent volume occupied by a bone graft substitute, consequently, 30 cannot be occupied by the regenerating bone of the patient.

35 A process referred to as guided tissue regeneration is widely used by periodontists to regenerate bone and periodontal ligaments (ligaments between the tooth root and the bone) around dental implants, for example. This

surgical procedure uses cell-occlusive (cells cannot pass through) but fluid-permeable membranes, which are otherwise known as semipermeable membranes, in order to cover and segregate a bone defect from the surrounding soft tissues. U.S. Patent No. 3,962,153 discloses such a cell-occlusive, fluid-permeable membrane. Use of these cell-occlusive, fluid permeable membranes, has been predominantly developed and used by periodontists over the last decade, who worked in the mouth around teeth. The human body has many tissue types which originate from three primary germ layers of the embryo: the ectoderm, the mesoderm and the entoderm. From the ectoderm are derived the skin and its attached tissues, such as nails, hair and glands of the skin, the nervous system, external sense organs and the epithelial lining of the mouth and anus. From the mesoderm are derived the connective tissues, bone, cartilage, muscle, blood and blood vessels. From the entoderm are derived, among others, the digestive tract, bladder and urethra. The "precursor" cells of these layers are limited to only becoming cells of their respective tissue type. Bone, muscle, connective tissue, blood vessels and cartilage are of mesenchymal origin which means from the meshwork of embryonic connective tissue in the mesoderm, and are formed from versatile mesenchymal stem cells, whereas the lining of the mouth is of ectodermal origin and is formed of epithelial cells derived from the ectoderm. Ectodermal cells do not have the potential to become bone forming cells and, conversely, mesenchymal cells do not have the potential to form epithelium.

Epithelial cells are present in the mouth, but are not present in many other areas of the mammalian skeletal system, such as areas near long bones of the mammalian skeleton. The development of cell-occlusive, fluid permeable membranes was developed in the context

of periodontal and oral applications, for the purpose of excluding the introduction of epithelial cells into the bone defect area of the patient because they are believed to hinder bone formation. Epithelial cells 5 proliferate faster than bone cells and, therefore, the exclusion of these epithelial cells from the bone defect area has been considered to be essential for optimal bone and ligament regeneration in these periodontal and oral applications. Although cell-occlusive, fluid 10 permeable membranes have been predominantly used in periodontal and oral applications, these cell-occlusive membranes have recently also been applied for tissue segregation in other defect sites in the mammalian skeletal system, such as long bone defects.

15 These cell-occlusive membranes of the prior art have a shortcoming of blocking blood vessels and mesenchymal cells from entering into the bone defect area. Thus, the advantage of precluding epithelial cells from the bone defect area in the oral cavity is 20 achieved at the expense of also precluding entry of blood vessels and surrounding mesenchymal cells into the bone defect area, as well. In periodontal and oral applications, the advantage of precluding epithelial cells is believed to be worth the shortcoming of also 25 precluding blood vessels and surrounding mesenchymal cells from the bone defect area. In other areas of the mammalian skeletal system, however, where epithelial cells are not present, these cell-occlusive, fluid-permeable membranes preclude the introduction of blood 30 vessels and surrounding mesenchymal cells for no apparent reason. Thus, a need has existed in the prior art for a cell-permeable membrane barrier to protect non-periodontal bone defects from gross soft tissue prolapse and to thereby facilitate bone regeneration.

Turning to Figure 1, a typical cell-occlusive, fluid permeable membrane 10 is illustrated surrounding a first section of the long bone 12 and a second section of long bone 14. The bone defect area 20 is bounded by the two ends 16, 18 of the first section of long bone 12 and the second section of long bone 14, respectively, and by the cell-occlusive, fluid-permeable membrane 10. Although this bone defect area 20 can receive blood from the bone vessels 23, blood and cells from the surrounding blood vessels 25 and tissues 27 is precluded from entering the bone defect area 20. The periosteum 31 and the surrounding tissues 27 are just external to the cell-occlusive, fluid-permeable membrane 10 and are guided in the directions of the arrows A1 and A2.

In addition to being cell-occlusive, the cell-occlusive, fluid permeable membrane 10 suffers from a lack of rigidity, as evidenced by the hour-glass configuration of the cell-occlusive, fluid-permeable membrane 10 in Figure 1. A typical thickness of the cell-occlusive, fluid-permeable membrane 10 comprises less than 5 microns. Since periodontal defects are typically small, and since oral soft tissues typically do not apply much pressure, the cell-occlusive, fluid-permeable membrane 10 of the prior art has maintained its very thin and flexible configuration. Unfortunately, this very thin and flexible configuration, which is somewhat suitable for periodontal and oral applications, is not suitable for maintaining and protecting a sufficiently large bone defect area 20 in non-periodontal and non-oral applications. Since muscles are much larger and more powerful in orthopedic applications, for example, the cell-occlusive, fluid-permeable membrane 10 cannot provide sufficient protection against the prolapse of soft tissues into the bone defect area 20. When the surrounding tissues

prolapse into the bone defect area 20, these interposed tissues present a physical barrier for the regenerating bone. The regenerating bone will not be able to push the interposed soft tissues out of the bone defect area, and subsequently, further regeneration of the bone in these areas occupied by the prolapsed soft tissues is prevented. A "non-union" (or pseudoarthrosis which means pseudo-joint) may result, comprising fibrous scar tissue instead of bone. Additionally, the prior art cell-occlusive, fluid-permeable membrane 10 is non-resorbable, and cannot be absorbed by the patient's body. Consequently, in order to avoid the risk of bacterial infection, the cell-occlusive, fluid-permeable membrane 10 must be removed during a subsequent operation, which may introduce further complications and risks to the patient. Thus, in addition to being cell-occlusive, prior membranes suffer from lack of inherent strength and non-resorbability.

A few other devices have been developed in the prior art for treating bone defects, but these devices comprise either fixation devices or prosthetic devices. A fixation device, comprising a titanium screen mesh, is disclosed in U.S. Patent No. 5,346,492. This titanium screen mesh forms a fixation device, which is designed to be non-resorbable. The fixation device comprises a metallic plate structure which provides the necessary strength, at the cost of being non-resorbable. To date, any known resorbable material would not be capable of providing the equivalent rigidity and function of the titanium mesh screen. The metallic plate structure of the fixation device comprises a number of perforations designed specifically for accommodating screws for fixation. These screw perforations have diameters (between 4.8 millimeters and 17.5 millimeters), which do not prevent gross prolapse of soft tissues into the bone

defect area. Such gross prolapse of soft tissues occupies space which would otherwise be filled with new bone. The physical barrier presented by the prolapsing soft tissues greatly impairs new bone formation within the bone defect area. The fixation device is secured onto the bone of the patient with the screws and is designed to be permanently left inside the patient. Any proliferation of blood vessels through these screw holes would be destroyed by any subsequent removal of the fixation device. On the other hand, if the fixation device is left in permanently, which is a disclosed embodiment, the bone of the patient will be permanently stress shielded. In other words, the mended bone, after initial healing will subsequently start to resorb, since this new bone is not exposed to functional (mechanical) stress. The fixation device, if left in the patient, will shield the bone defect area from functional stress and thus prevent an optimal amount of new bone formation.

A prosthetic device, which comprises holes punched into a planar material for facilitating suturing of the prosthetic device, is disclosed in U.S. Patent No. 5,222,987. This prosthetic device, however, is only disclosed in the context of fabricating artificial bone structure. In other words, this prosthetic device is not used in any process associated with bone regeneration. The prosthetic device comprises a fabric-like composite onto which a polymer or resin is added, before the resulting product is molded into the shape of a bone. A polymerizable initiator is subsequently added to harden and bond the materials together. Small holes or ports may be added to accommodate sutures for attaching the prosthetic device to the body. The prosthetic device is specifically designed as a

replacement for the rib cage of a mammalian skeletal system, and does not facilitate bone regeneration.

Other porous devices, in addition to the above-mentioned fixation and prosthetic devices, have been implemented by the prior art. One such device, which is disclosed in U.S. Patent Nos. 5,306,304, 5,464,439, and 4,932,973, disclose an allogenic bone graft membrane having pores therein. The allogenic bone graft membrane is disclosed in these patents as providing a filler for bone defects. The matrix-like properties of the allogenic bone graft provide osteoconduction, and the morphogenic proteins within the allogenic bone graft provide osteoinductive properties. As mentioned before, an allogenic bone graft is typically harvested from a human cadaver and subsequently processed for implantation. The allogenic bone graft is intended to become integrated with the new bone of a patient and partially remodeled over time into a composite of both cadaver bone and new regenerated natural bone, while permanently remaining within the bone defect area of the patient. The pores in the allogenic bone graft membrane of these patents are designed to maximize the exposed surface area in order to enhance its osteoinductive contribution, as bone morphogenic proteins are released from the surface of the allogenic bone graft. This allogenic bone graft matrix will never be completely resorbed. This is obviously disadvantageous, because its structure reduces the space for new bone regeneration.

Another device, which comprises apertures or pores for facilitating tissue growth therein, is disclosed in U.S. Patent No. 5,326,356. This patent is directed to an apparatus for generating artificial skin grafts. Bio-compatible membranes comprising natural, synthetic, or semi-synthetic origin are used as a support for the

in vitro (outside of a living organism) growth of epithelial skin cells. These epithelial skin cells are grown into the pores of the membrane outside of the body of the patient. The resulting artificial skin graft is 5 obviously not intended for use on the mammalian skeletal system. This artificial skin graft, in any event, would be far too thin and flexible for use on the mammalian skeletal system, and further would not have adequate fixation strength. Moreover, the epithelial cells which 10 comprise the artificial skin graft are not present in the non-periodontal and non-oral applications, such as long bones, where a cell-permeable membrane is needed in the prior art for facilitating bone regeneration.

Summary of the Invention

15 The present invention recognizes that a cell-occlusive, fluid permeable membrane is not suitable for bone regeneration in non-periodontal and non-oral applications. In addition to lacking rigidity and resorbability, the present invention recognizes that 20 these prior art cell-occlusive, fluid-permeable membranes hinder bone regeneration by blocking the ingress of blood vessels and cells into the bone defect area. The protective bone regeneration membrane of the present invention has a much smaller net surface area, 25 compared to prior art cell-occlusive, fluid permeable membranes, resulting from the introduction of cell-permeable apertures into the membrane of the present invention. In addition to having a smaller net surface area, the protective bone regeneration membrane of the 30 present invention is substantially stronger and more rigid than prior art cell-occlusive, fluid permeable membranes.

According to one aspect of the present invention, an implant for protecting biological tissue defects from a prolapse of adjacent soft tissues during in vivo repair of the biological tissue defects includes a substantially planar sheet of non-metallic base material. The implant further includes a plurality of apertures disposed in the substantially planar sheet of non-metallic base material. The apertures are adapted for allowing a proliferation of vasculature and connective tissue cells, derived from the adjacent soft tissues, into the biological tissue defect, while preventing any gross prolapse of the adjacent soft tissues into the biological tissue defect. The connective tissue cells include mesenchymal cells, and the implant may be impregnated with at least one substance for cellular control. This substance for cellular control may include at least one of a chemotactic substance for influencing cell-migration, an inhibitory substance for influencing cell-migration, a mitogenic growth factor for influencing cell proliferation, a growth factor for influencing cell differentiation, and factors which promote neoangiogenesis (formation of new blood vessels). The biological tissue defect preferably comprises a bone defect and, more preferably, comprises a non-periodontal, non-oral bone defect.

The implant may be used in combination with a fixation device for stabilizing the bone defect. The material of the implant is flexible enough to conform to a curvature of a bone and strong enough to reduce macro-motion of the bone defect and limit transmission of surrounding motion into the interior space when the fixation device is attached to the bone defect. The implant is adapted for protecting the bone defect from a prolapse of adjacent soft tissues into the bone defect

5 during repair of the bone defect and, further, is adapted for preventing stress shielded resorption of bone after the repair of the bone defect. The bone, which is prevented from being resorbed, may include either an autograft, an allograft, and/or new regenerated bone within the bone defect.

10 According to another aspect of the present invention, the implant is resorbable. The resorption of the implant, according to the present invention, can prevent stress shielding of the bone defect, to thereby prevent resorption of new bone which would occur if the bone defect were stress shielded by either the fixation device or the implant, or both. The fixation device may 15 be resorbable or non-resorbable. When the fixation device is resorbable, the fixation device loses its mechanical strength within 24 months and, more preferably, within 4 to 12 months. This loss of mechanical strength of the fixation device can prevent resorption of new bone near the bone defect which would occur if the bone defect were stress shielded by either 20 the fixation device, the implant, or both. If the fixation device is non-resorbable, according to the present invention, the resorption of the implant can reduce stress shielding of the bone defect area to thereby minimize resorption of new bone near the bone 25 defect. As another option, the implant may be non-resorbable, but flexible enough to prevent stress shielding of the bone defect after the resorbable fixation device has lost its mechanical strength.

30 Each of the apertures within the implant has a diameter in a range between 20 microns and 3000 microns, and, preferably, has a diameter of approximately 1500 microns. The implant has a thickness in a range between 100 microns and 2000 microns, but may also be configured 35 as thin as 10 microns. This implant comprises at least

one of a biodegradable synthetic material and a biodegradable natural material, that is also a non-osteogenic, non-metallic substance having a stiffness sufficient to prevent gross soft tissue prolapse into an 5 area of the bone defect where new bone ideally would grow.

According to one aspect of the present invention, a planar membrane is provided for preventing soft tissue from prolapsing into a protected area of a bone defect. 10 The planar membrane is adapted for being placed outside of the bone defect area, as opposed to being placed within the bone defect area where new bone would ideally grow, to thereby facilitate entirely new bone growth only within the protected area. The planar membrane 15 includes a plurality of apertures disposed therein. Each of the plurality of apertures is adapted for allowing a proliferation of vasculature and connective tissue cells into the protected area, while preventing a prolapse of adjacent soft tissues into the protected area. The 20 planar membrane is adapted for resorption into the body of a patient, within a period of approximately 24 months from an initial implantation of the planar membrane into the body of the patient.

According to another aspect of the present 25 invention, a resorbable membrane is provided for facilitating protected bone regeneration. The resorbable membrane is adapted for being wrapped around the bone defect area, to thereby cover and surround the entire bone defect area and to overlap adjacent areas of 30 bone near the bone defect area. The resorbable membrane has a strength sufficient to prevent prolapse of adjacent soft tissues into the bone defect area and to thereby facilitate bone regeneration independently, without any aid from a fixation device, when the 35 resorbable membrane is secured around the bone defect

area and secured to the adjacent areas of bone near the bone defect area. The resorbable membrane forms a tube surrounding the entire bone defect area and overlapping the adjacent areas of bone near the bone defect area,
5 when the resorbable membrane is secured both around the bone defect area and to the adjacent areas of bone near the bone defect area. The resorbable membrane can be frictionally secured around the bone defect area, or can be secured around the bone defect area using at least
10 one of clamps, staples, screws, sutures, and tacks. The fixation device can include at least one of a plate, a screw, an intramedullary rod, and an external fixation device.

According to yet another aspect of the present
15 invention, a method of protecting a biological tissue defect area from soft tissue interposition is provided. The method includes a step of placing a resorbable membrane outside of a boundary of the biological tissue defect, where the resorbable membrane comprises a plurality of apertures adapted for allowing a proliferation of vasculature and connective tissue cells therethrough, while preventing the prolapse of adjacent soft tissues into the biological tissue defect. The biological tissue defect area can include a bone defect
20 area, and the step of placing a resorbable membrane outside of the boundary of the bone defect area can include a step of wrapping the resorbable membrane around two ends of a long bone to thereby surround a void between the two ends of the long bone. A rigid
25 fixation device can subsequently be secured between the two ends of the long bone.

The present invention, together with additional features and advantages thereof, may best be understood by reference to the following description taken in
35 connection with the accompanying illustrative drawings.

Brief Description of the Drawings

Figure 1 illustrates a longitudinal cross-section of a cell-occlusive membrane secured around a long bone defect according to the prior art;

5 Figure 2 illustrates a longitudinal cross-section of the protective bone regeneration membrane secured around a long bone defect according to the presently preferred embodiment;

10 Figures 3a and 3b illustrate the protective bone regeneration membrane according to the presently preferred embodiment;

15 Figure 4 illustrates the protective bone regeneration membrane of the present invention, as applied to a long bone defect;

Figure 5 illustrates the protective bone regeneration membrane of the present invention, applied to various bone defect areas of a human skull;

20 Figure 6 illustrates the protective bone regeneration membrane of the presently preferred embodiment, used to facilitate bone regeneration of the iliac crest of a patient, after a bone autograft has been harvested from the patient;

25 Figure 7 illustrates the protective bone regeneration membrane of the present invention, as applied to a mandibular (lower jaw) bone defect of a patient; and

30 Figure 8 illustrates the protective bone regeneration membrane of the present invention, used in combination with a fixation device, as applied to a long bone defect of a patient.

Detailed Description of the Presently Preferred Embodiments

Turning to Figure 2, a protective bone regeneration membrane 42 is illustrated, comprising a base material 44 and apertures 46. The protective bone regeneration membrane 42 is shown in Figure 2 wrapped around a bone defect area 49. The bone, which is surrounded by the protective bone regeneration membrane 42, comprises a first section of long bone 51, a second section of long bone 53, and a partially healed intermediate section of long bone 55. The protective bone regeneration membrane 42 is rigid enough to prevent prolapse of the surrounding tissues 57 into the bone defect area 49. Additionally, the apertures 46 of the protective bone regeneration membrane 42 are large enough to allow for a proliferation of blood vessels 61 therethrough and into the first section of long bone 51, the second section of long bone 53, and the partially healed bone defect 49. Since the protective bone regeneration membrane 42 of the presently preferred embodiment is rigid enough to withstand prolapse of the surrounding tissue 57, the regeneration of the partially damaged periosteum 64 is guided over the protective bone regeneration membrane 42 in a direction substantially parallel to the arrows A3 and A4.

The apertures 46 within the protective bone regeneration membrane 42 are both cell and fluid permeable, and the base material 44 of the protective bone regeneration membrane 42 is rigid enough to maintain the available space between the first section of long bone 51 and the second section of long bone 53 for ideal bone regeneration. Additionally, the base material 44 is resorbable, according to the presently preferred embodiment. The cell-occlusive membrane of

the prior art membrane 10 (Figure 1), in contrast, is specifically designed to prevent the proliferation of cells and vessels therethrough. This membrane 10 is also insufficiently rigid and non-resorbable.

5 Figures 3a and 3b illustrate different embodiments of a sheet of the protective bone regeneration membrane 42, comprising the base material 44 and the apertures 46. As presently embodied, the protective bone regeneration membrane 42 comprises either a
10 biodegradable synthetic material or a biodegradable natural material, or both. The biodegradable synthetic material may comprise polymers, for example, and the biodegradable natural material may comprise collagen, for example. Each of the apertures 46 preferably has a
15 diameter within a range of between 20 microns and 3000 microns. In the presently preferred embodiment, each aperture 46 comprises a diameter of approximately 1500 microns. A thickness of the base material 44 is
20 preferably within a range between 100 microns and 2000 microns, but may also be configured as thin as 10 microns. The pattern of distribution of the apertures 46 may vary according to the bone defect being treated. The ranges of aperture 46 sizes, base material 44
25 thickness, and aperture 46 shape and distribution is preferably implemented by the present invention in order to optimize the protective bone regeneration membrane 42 to different environmental conditions. Examples of the different environmental conditions encountered in
30 different bone defects include the location of the defect (long bone or flat bone), the type of defect (discontinuity defect, contour defect, window defect, trephine defect), size of the defect, the presence or absence of periosteum 64, and the general condition of the adjacent soft tissues covering the bone defect.

Figure 4 illustrates the protective bone regeneration membrane 42 applied to a long bone 68 of a patient. The protective bone regeneration membrane 42 is applied to the long bone 68 in combination with a fixation device 70. The fixation device 70 can be secured to the long bone 68 using conventional means, such as tacks or screws 72.

The fixation device 70, the screws 72, and the protective bone regeneration membrane 42 together securely hold the first section 75 of the long bone 68 to the second section 77 of long bone 68. A bone defect area 79 is protected against the prolapse of adjacent soft tissues, for example, by the protective bone regeneration membrane 42.

In contrast to the titanium screen mesh of the prior art, the inventors believe that the combination of the protective bone regeneration membrane 42 and the fixation device 70 may in some instances be adapted for operating together to relieve stress shielding of the long bone 68, to thereby prevent subsequent resorption of new bone. The prior art titanium screen mesh is designed to remain permanently attached to the bone, resulting in long-term stress shielding and resorption of newly formed bone within the bone defect area 79. In contrast to the prior art titanium screen mesh, the protective bone regeneration membrane 42 of the present invention is preferably configured of a resorbable, bio-compatible material. At about the time that the new bone within the bone defect area 79 is fully regenerated, the protective bone regeneration membrane 42 of the presently preferred embodiment will have resorbed sufficiently to no longer shield stress from the bone defect area 79 to thereby encourage an increase of bone formation. In addition, according to the presently preferred embodiment, the fixation device 70,

and/or the screws 72, are also formed of a resorbable material. That is, the combination of the fixation device 70, the screws 72, and the protective bone regeneration membrane 42 prevent excessive motion between the first section 75 and the second section 77 of the long bone 68.

As presently embodied, this period of time sufficient for complete new bone regeneration within the bone defect area 79 is between approximately 2 to 24 months. Thus, according to the present invention, the resorption of the protective bone regeneration membrane 42 to a point where the protective bone regeneration membrane 42 can no longer shield significant mechanical stress on the first section 75 and the second section 77 is between approximately 2 and 24 months.

In an alternative embodiment, the protective bone regeneration membrane 42 may comprise a non-resorbable material. In this alternative embodiment where the protective bone regeneration membrane 42 is non-resorbable and the fixation device 70 is resorbable, resorption of newly formed bone within the bone defect area 79 is still prevented. More particularly, the protective bone regeneration membrane 42 is configured to be flexible enough to prevent stress shielding between the first section 75 and the second section 77, after the fixation device 70 has been resorbed to a point where the fixation device 70 no longer exerts mechanical strength on the first section 75 and the second section 77 of the long bone 68.

As another distinguishing feature, the protective bone regeneration membrane 42 of the present invention is designed to be used in combination with a fixation device 70, in a preferred embodiment, while the titanium screen mesh of the prior art comprises a fixation device designed predominantly to be used alone. In one

conceivable embodiment of the present invention, the protective bone regeneration membrane 42 of the present invention may be used in combination with the prior art titanium screen mesh, as well as in combination with any other conventional fixation device. Generally, internal fixation devices can be divided into two classes.

Cortical compression plates comprise a first class and intramedullary rods comprise a second class. Both classes of devices are unable to secure and stabilize shattered bone, because bone fragments are often small and free floating within the fracture cavity.

Furthermore, the periosteum around such fracture sites is usually destroyed and cannot serve as a membrane barrier against the dislocation of bone fragments.

Multiple bone fragments are naturally resorbed unless they can be rigidly held together and provided with sufficient blood supply. Bone fragment resorption can

present a significant obstacle to efficient healing of comminuted fractures. Bone fragment resorption often necessitates additional bone grafting procedures. In contrast to the protective bone regeneration membrane 42 of the present invention, both of the above mentioned classifications of fixation devices are unable to achieve this end.

The protective bone regeneration membrane 42 of the presently preferred embodiment is preferably resorbed within the body of the patient to a point where substantial mechanical fixation is no longer exerted on the first section 75 and the second section 77 of the long bone 68, within a period of approximately 1 year. Complete resorption of the protective bone regeneration membrane 42 may subsequently occur after a total period of 1½ to 2 years have elapsed since the initial implantation. In contrast to the allogenic bone grafts of the prior art, the protective bone regeneration

membrane 42 of the present invention is resorbed into the body of the patient. Allogenic bone grafts are only partially substituted with new bone over time, typically comprising 1 to 2 years, forming a permanent composite of viable (new) bone and non-viable cadaver bone. Thus, 5 allogenic bone grafts cannot achieve a complete regeneration of the entire bone defect with new living bone, as can the protective bone regeneration membrane 42 of the present invention. This benefit is achieved 10 by placement of the protective bone regeneration membrane 42 outside of the bone defect area 49, rather than within the bone defect area 49. Additionally, the holes within the allogenic bone graft of the prior art 15 are substantially occluded by induced bone formation therein within approximately 2 to 3 weeks after the initial implantation. Finally, as a further distinguishing feature between the protective bone regeneration membrane 42 of the present invention and the prior art allogenic bone graft, the prior art 20 allogenic bone graft is placed within the bone defect area itself, since the purpose of the prior art allogenic bone graft 42 is to become a part of the new bone. In contrast, the protective bone regeneration membrane 42 of the present invention is designed to be 25 placed completely outside of the bone defect area, in order to maintain a maximal size of the bone defect area 79 for regeneration of new bone by the patient in the area 79. Still further, allogenic bone grafts are 30 inferior to the protective bone regeneration membrane 42 of the present invention in providing a combination of patient safety in preventing disease transmission, optimal prolapse prevention and maximal space 35 preservation for bone regeneration, and vasculature ingrowth potential. Similarly to the allogenic bone graft of the prior art, the above-mentioned skin graft

of the prior art comprises apertures which are quickly occluded by the ingrowth of epithelial cells therein. These prior art apertures, similarly to the allogenic bone graft holes, are actually filled with the desired tissues, whereas, the apertures of the protective bone regeneration membrane 42 allow ongoing transmigration of cells and blood vessels for generating the desired tissue. Additionally, these apertures are formed having a diameter of approximately 1 millimeter, whereas the preferred diameter of the apertures of the present invention are approximately 1.5 millimeters. Additionally, the skin graft membrane of the prior art is specifically designed for providing an in vitro scaffold and subsequent transplantable skin graft, whereas the present invention preferably operates in vivo.

Many of the above-described differences between the protective bone regeneration membrane 42 of the present invention and prior art devices help point to a fundamental difference between the present invention and prior art devices. The present invention is directed to maintaining a space, protected against adjacent soft tissue prolapse, to thereby facilitate spontaneous bone regeneration by the patient within the protected space. The present invention recognizes that spontaneous bone regeneration by the patient can be greatly accelerated and enhanced by allowing the infiltration of surrounding blood vessels and cells.

The present inventors recognize that mesenchymal stem cells, which can be found in surrounding mesodermal tissues, are the precursor cells that eventually form muscle, cartilage, tendons, ligaments, connective tissues, and bone. These cells are present in these tissues and are involved in the perpetual renewal of each specific tissue, although in their earliest stage

of development, these cells are not committed to becoming any given tissue. An uncommitted mesenchymal stem cell found in muscle, for example, will not strictly become a muscle cell. If the mesenchymal stem cell is needed to become a bone cell, the mesenchymal stem cell may migrate to a bone defect and differentiate into a bone forming cell. The mechanism for attracting these cells and directing them to become a specific tissue cell is understood by the present inventors to be controlled by morphogenic proteins, although other factors may be involved. In bone, for example, these proteins are commonly referred to as bone morphogenic proteins. The apertures 46 of the protective bone regeneration membrane 42 harness this mechanism, by allowing bone morphogenic proteins derived from within the bone matrix to attract mesenchymal stem cells from the surrounding connective tissues, musculature, periosteum, and vasculature. The attracted elements are then directed to differentiate into bone forming cells, which are essential for new bone formation by the patient. In addition, the apertures 46 of the present invention allow vital contributions of blood vessels from surrounding tissues, musculature, and periosteum into the protected area. Blood vessels invading the bone defect through the protective bone regeneration membrane 42 of the present invention greatly enhance the generation of new bone, as compared to prior art cell-occlusive membranes that limit the supply of blood to that coming from within the bone defect itself. The ability for capillaries from surrounding soft tissues to proliferate through the protective bone regeneration membrane 42 helps prevent migrating cells from the osseous bed and the periosteum from outstripping their proliferating blood supply. This proliferation of blood vessels increases the potential of spontaneous bone

regeneration within a given defect. Furthermore, mesenchymal stem cells are believed to be perivascular (around blood vessels) connective tissue cells, which would additionally foster bone regeneration by the 5 transmembranous sprouting of capillaries, since most vasculature has associated connective tissues.

The base material 44 (Figure 3), according to the present invention, may be impregnated with a variety of substances for promoting the regeneration of different 10 tissues such as bone and blood vessels. The base material 44 may be impregnated with a chemotactic substance for influencing cell-migration, an inhibitory substance for influencing cell-migration, a mitogenic growth factor for influencing cell proliferation and a 15 growth factor for influencing cell differentiation (e.g. insulinlike growth factor, transforming growth factor-beta, fibroblast growth factor, platelet-derived growth factor), and factors which promote neoangiogenesis (formation of new blood vessels).

According to the present invention, the base 20 material 44 is flexible both at the time of manufacture and after hydration. This flexibility allows the protective bone regeneration membrane 42 to be bent and shaped such that, after the area is completely healed, 25 the contour of the healed bone matches the contour of the original bone, or matches the contour of the original bone as closely as possible. According to the present invention, the base material 44 (Figure 3) further provides an advantageous rigidity, which is 30 higher than other currently used membrane materials (Figure 1) to thereby provide sufficient strength against soft tissue pressure.

The method of the present invention generally 35 comprises a step of affixing the protective bone regeneration membrane 42 (Figure 3) onto a portion of

the mammalian skeletal system in need of repair. The fixation of the protective bone regeneration membrane 42 may be accomplished by any conventional surgical technique, including the use of resorbable pins, screws, and sutures. Alternatively, the protective bone regeneration membrane 42 of the present invention can be implanted into the patient without being affixed to existing bone, such as, for example, in the case of orbital floor reconstruction 84 (Figure 5).

Other applications of the protective bone regeneration membrane of the present invention are illustrated in Figures 5-8. Figure 5 illustrates several applications of the protective bone regeneration membrane in the cranio-facial region of a human skull. A protective bone regeneration membrane 80 is applied over the burrholes and the trephination defect of a human skull 82, after a neurosurgical procedure or trauma. Inside the orbits of the skull, protective bone regeneration membranes 84 are placed over orbital floor fractures to prevent entrapment of overlying muscles and nerves therein. Another protective bone regeneration membrane 86 is applied over a defect area in the maxillary sinus, and still another protective bone regeneration membrane 88 is applied over a bone defect area in the maxilla (upper jaw). Another protective bone regeneration membrane 90 is applied over an edentulous bone defect area in the mandible (lower jaw).

A protective bone regeneration membrane 80 is illustrated in Figure 6, applied to the pelvis 82 of a human patient, after a bone autograft has been harvested therefrom. The protective bone regeneration membrane 80 protects the bone defect area 84 from soft tissue interposition, while allowing the ingrowth of blood vessels and cells. If necessary, the protective bone regeneration membrane 80 can be affixed onto the

adjacent bone using pins, screws, sutures, or other conventional means. Figure 7 illustrates a protective bone regeneration membrane 93 applied around a segmental defect 94 in a human mandible 95, for example. The

5 protective bone regeneration membrane 93 can be implanted using an extra-oral (outside of the mouth) surgical approach. According to this approach, the epithelial lining of the mouth is not broken and the protective membrane is placed beneath the epithelial lining of the mouth (since the bone defect is accessed from an extra-oral area such as below the chin).

10 Therefore the epithelial cells cannot enter the bone defect. The present invention, however, is also intended to apply in intra-oral surgical approaches.

15 The defect may be a discontinuity defect, comminuted, or just missing a part of the bone. The intact parts of the mandible 95 are fixated together by a plate 97 and screws 99, if necessary, and the protective bone regeneration membrane 93 protects the bone defect site

20 from interposition of surrounding soft tissue.

Additionally, the protective bone regeneration membrane 93 holds any free-floating fragments of bone in place and provides additional circumferential stabilization to the bone defect. Although the protective bone

25 regeneration membrane 42 is malleable to a certain extent, the protective bone regeneration membrane 42 is stiff enough to prevent collapse thereof under the weight of adjacent soft tissues. The protective bone regeneration membrane 42 can be easily cut with scissors and shaped by the hand of a user to adapt three-

30 dimensionally to a bone defect area.

35 Figure 8 illustrates another application of the protective bone regeneration membrane 105 of the present invention, as applied to a bone defect area of a long bone 101. The protective bone regeneration membrane 105

is secured to the long bone 101 using fixation devices 107 and 109, and comprises a belt-like tab 111. The belt-like tab 111 is adapted for being fed through a slot 113, which is formed between the fixation member 107 and the long bone 101. In the presently preferred embodiment, the protective bone regeneration membrane 105 is secured to the fixation member 107, and both the protective bone regeneration membrane 105 and the fixation member 107 are resorbable, in order to avoid a second surgery for removal of the devices. Surgical removal of non-resorbable, non-metallic membranes is necessary in the prior art, in order to avoid risk such as bacterial contamination and infection. A user can grip the belt-like tab 111 to securely fasten the protective bone regeneration membrane 105 around the long bone 101. This secure fastening of the protective membrane 105 around the long bone 101 can facilitate the holding of bone fragments in place within the bone defect area, in addition to adding stability to the bone fracture. In the presently preferred embodiment, the screws 109 are tightened into the long bone 101 after the protective bone regeneration membrane 105 is tightened around the long bone 101. The embodiment of Figure 8 is especially advantageous for setting comminuted fractures, having multiple bone fragments, to thereby reduce the risk of bone fragment resorption. The protective bone regeneration membrane 105 can be tightened around the long bone 101, until a desired tension is achieved for holding the native fracture fragments in place. The protective bone regeneration membrane 105 can also be used to prevent the dislocation of bone grafts or bone graft substitutes. Of course, the protective bone regeneration membrane 105 may be used without a fixation device 107. If it is necessary to stabilize major bone fragments, the protective bone

regeneration membrane 105 may be used in conjunction with other rigid fixation devices, either internal or external.

The protective bone regeneration membrane 105 may be used with or without a belt-like tab 111 to form a tube around a bone defect area of a long bone 101. If the tube overlaps both fracture ends of the long bone 101, the tube may provide sufficient structural support, resulting from the strength of the protective bone regeneration membrane 105 and the structural characteristics of the tube, to obviate the need for additional plates, screws, or external fixation devices. Structurally, a tube locates supporting elements in the area of highest stress when loaded in shear, compression, or in bending. The tube configuration, according to this alternative embodiment, is superior to intramedullary rods, which lay at the approximate neutral load axis, or eccentrically placed orthopedic plates, which support only one side of the fracture and which may introduce asymmetrical, non-axial loading on the fracture. In addition to superior strength in bending, a tube configuration will also have superior resistance to column (compression) loading. If the ends and seam of the protective bone regeneration membrane 105 are suitably fixated, the configuration will also be superior in shear strength. Although the present material, configurations, and methods have been described in the context of treating humans, these materials, configurations, and methods can also be useful in treating animals.

Although an exemplary embodiment of the invention has been shown and described, many other changes, modifications and substitutions, in addition to those set forth in the above paragraphs, may be made by one

having ordinary skill in the art without necessarily departing from the spirit and scope of this invention.

What is Claimed is:

1. An implant for protecting biological tissue defects from a prolapse of adjacent soft tissues during in vivo repair of the biological tissue defects, the implant comprising:

5 a substantially planar sheet of non-metallic base material; and

10 a plurality of apertures disposed in the substantially planar sheet of non-metallic base material, the plurality of apertures being adapted for allowing a proliferation of vasculature and connective tissue cells, derived from the adjacent soft tissues, into the biological tissue defect, while preventing gross prolapse of the adjacent soft tissues into the biological tissue defect.

2. The implant as recited in Claim 1, the connective tissue cells comprising mesenchymal cells.

3. The implant as recited in Claim 1, the implant being impregnated with at least one substance for cellular control.

4. The implant as recited in Claim 2, the implant being impregnated with at least one of a chemotactic substance for influencing cell-migration, an inhibitory substance for influencing cell-migration, a mitogenic growth factor for influencing cell proliferation, a growth factor for influencing cell differentiation, and factors which promote neoangiogenesis (formation of new blood vessels).

5. An implant for use in combination with a fixation device for repair of a bone defect, the implant

comprising a sheet of base material flexible enough to conform to a curvature of a bone and strong enough to 5 reduce macro-motion of the bone defect and a transmission of surrounding motion into the bone defect when the fixation device is attached to the bone defect, the implant being adapted for protecting the bone defect from a prolapse of adjacent soft tissues into the bone 10 defect during the repair of the bone defect, and further being adapted for preventing resorption of bone after the repair of the bone defect.

6. The implant as recited in Claim 5, the bone prevented from being resorbed comprising one of an allogenic and an autologous bone graft.

7. The implant as recited in Claim 5, the bone being prevented from being resorbed comprising new bone within the bone defect.

8. The implant as recited in Claim 7, the sheet of base material being resorbable, the resorption of the sheet of base material reducing an amount of stress shielding of the bone defect, to thereby reduce 5 resorption of new bone near the bone defect.

9. The implant as recited in Claim 8, the fixation device being non-resorbable, the resorption of the sheet of base material reducing stress shielding of the bone defect area to thereby minimize resorption of new bone within the bone defect. 5

10. The implant as recited in Claim 7, the fixation device being resorbable and losing its mechanical strength within approximately 24 months to thereby prevent resorption of new bone near the bone

5 defect which would occur if the bone defect were stress shielded by at least one of the fixation device and the implant.

11. The implant as recited in Claim 10, the sheet of base material being non-resorbable, but being flexible enough to prevent stress-shielding of the bone defect after the fixation device has lost its mechanical
5 strength.

12. The implant as recited in Claim 5, the sheet of base material comprising a plurality of apertures therein, each of the apertures having a diameter in a range between 20 microns and 3000 microns.

13. The implant as recited in Claim 12, each of the plurality of apertures having a diameter of approximately 1500 microns.

14. The implant as recited in Claim 5, the sheet of base material comprising a thickness in a range between 10 microns and 2000 microns.

15. The implant as recited in Claim 5, the sheet of base material comprising at least one of a biodegradable synthetic material and a biodegradable natural material, that is also a non-osteoinductive, non-metallic substance, having a stiffness sufficient to prevent gross soft tissue prolapse into an area of the bone defect where new bone ideally would grow.

16. A resorbable, non-osteoinductive membrane for protecting a bone defect area from soft tissue prolapse into the bone defect area where new bone ideally would grow, the resorbable, non-osteoinductive membrane

5 facilitating new bone growth within the protected area and comprising a base material having a stiffness sufficient to prevent the gross prolapse of soft tissue into the protected area, the resorbable membrane being resorbed within approximately 24 months.

17. The resorbable, non-osteoinductive membrane as recited in Claim 16, comprising a plurality of apertures therein, each of the apertures having a diameter within a range between 20 microns and 3000 microns.

18. The resorbable, non-osteoinductive membrane as recited in Claim 16, comprising a thickness within a range between 10 microns and 2000 microns.

19. The resorbable, non-osteoinductive membrane as recited in Claim 16, the resorbable, non-osteoinductive membrane comprising a synthetic or natural, non-osteoinductive, non-metallic substance, having a
5 stiffness sufficient to prevent gross soft tissue prolapse into the protected area.

20. A planar membrane for protecting a bone defect from soft tissue prolapse into the bone defect, the planar membrane being adapted for being placed outside of the bone defect area, as opposed to being placed
5 within the bone defect area where new bone would ideally grow, to thereby allow entirely new bone growth within the protected area, the planar membrane comprising plurality of apertures disposed therein, the plurality of apertures being adapted for allowing a proliferation
10 of vasculature and connective tissue cells derived from adjacent soft tissues into the protected area, while preventing a gross prolapse of adjacent soft tissues into the protected area.

21. The implant as recited in Claim 20, the connective tissue cells comprising mesenchymal cells.

22. A resorbable protective membrane for facilitating protected bone regeneration within a bone defect area, the resorbable membrane comprising a plurality of apertures disposed in the resorbable membrane, each of the plurality of apertures having a diameter greater than approximately 1 millimeter.

23. The resorbable membrane as recited in Claim 22, the plurality of apertures being adapted for allowing a proliferation of vasculature and connective tissue cells therethrough and into the bone defect area, while preventing a prolapse of adjacent soft tissues into the bone defect area.

24. The implant as recited in Claim 23, the connective tissue cells comprising mesenchymal cells.

25. The resorbable membrane as recited in Claim 22, each of the plurality of apertures comprising a diameter of approximately 1.5 millimeters.

26. The resorbable membrane as recited in Claim 22, the resorbable membrane comprising a thickness in a range between 10 microns and 2000 microns.

27. The resorbable membrane as recited in Claim 22, the resorbable membrane comprising a synthetic or natural, non-osteoinductive, non-metallic substance, having a stiffness sufficient to prevent gross soft tissue prolapse into the bone defect area.

28. A non-osteoinductive membrane for being implanted within a mammalian body to thereby prevent soft tissue from prolapsing into a protected area of a bone defect where bone would ideally grow, the non-osteoinductive membrane comprising a plurality of apertures disposed within the non-osteoinductive membrane, each of the plurality of apertures comprising a diameter within a range between 20 microns and 3000 microns.

29. The non-osteoinductive membrane as recited in Claim 28, the non-osteoinductive membrane being adapted for being resorbed into the mammalian body.

30. The non-osteoinductive membrane as recited in Claim 29, the non-osteoinductive membrane being adapted for being resorbed into the mammalian body, and not remodeled, within a period of approximately 24 months from an initial implantation of the non-osteoinductive membrane into the mammalian body.

31. A resorbable, non-osteoinductive membrane for being implanted within a mammalian body, the resorbable, non-osteoinductive membrane being adapted for being implanted around a boundary of a bone defect area where growth of new bone would ideally occur, the resorbable, non-osteoinductive membrane having a stiffness sufficient to prevent gross soft tissue prolapse into the bone defect area.

32. A flexible membrane for protecting biological tissue defects from a prolapse of adjacent soft tissues during repair of the biological tissue defects, the implant being adapted for being placed with a rigid fixation device outside of an area of the biological

10 tissue defect, as opposed to being placed within the biological tissue defect area where new bone will ideally grow, to thereby allow new bone growth within the biological tissue defect area, the flexible membrane being flexible enough to conform to a curvature of a bone and strong enough to prevent prolapse of adjacent soft tissues into the biological tissue defect area.

5 33. The flexible membrane as recited in Claim 32, comprising a plurality of apertures disposed within the flexible membrane, each of the plurality of apertures comprising a diameter within a range between 20 microns and 3000 microns.

34. The flexible membrane as recited in Claim 33, the plurality of apertures being adapted to allow for a proliferation of vasculature and connective tissue cells into the biological tissue defect area.

35. The resorbable membrane as recited in Claim 34, the flexible membrane comprising a thickness in a range between 10 microns and 2000 microns.

36. The resorbable membrane as recited in Claim 35, the flexible membrane comprising a synthetic or natural, non-osteoinductive, non-metallic substance.

5 37. A resorbable membrane for facilitating protected bone regeneration, the resorbable membrane being adapted for being wrapped around a bone defect area, to thereby cover and surround the entire bone defect area and to overlap adjacent areas of bone near the bone defect area, the resorbable membrane having a strength sufficient to prevent prolapse of adjacent soft tissues into the bone defect area and to allow protected

10 bone regeneration independently, without any aid from a fixation device, when the resorbable membrane is secured around the bone defect area and secured to the adjacent areas of bone near the bone defect area.

5 38. The resorbable membrane as recited in Claim 37, the resorbable membrane forming a tube surrounding the entire bone defect area and overlapping the adjacent areas of bone near the bone defect area, when the resorbable membrane is secured both around the bone defect area and to the adjacent areas of bone near the bone defect area.

39. The resorbable membrane as recited in Claim 38, the resorbable membrane being frictionally secured around the bone defect area.

40. The resorbable membrane as recited in Claim 38, the resorbable membrane being secured around the bone defect area with at least one of clamps, staples, screws, sutures, and tacks.

41. The resorbable membrane as recited in Claim 38, the fixation device comprising at least one of a plate, a screw, an intramedullary rod, and an external fixation device.

42. The resorbable membrane as recited in Claim 41, the bone defect area comprising a fractured long bone.

43. The resorbable membrane as recited in Claim 42, the resorbable membrane comprising a plurality of apertures disposed in the resorbable membrane, each of

5 the plurality of apertures having a diameter greater than approximately 1 millimeter.

44. The resorbable membrane as recited in Claim 43, the resorbability of the resorbable membrane avoiding long term stress shielding of the bone defect area, and thereby avoiding subsequent bone resorption of 5 new bone in and near the bone defect area.

45. A method of protecting a biological tissue defect area from soft tissue interposition, comprising a step of placing a resorbable membrane outside of a boundary of the biological tissue defect, the resorbable 5 membrane comprising a plurality of apertures adapted to allow for a proliferation of vasculature and connective tissue cells, derived from adjacent tissues, into the boundary of the biological tissue defect, while preventing the prolapse of the adjacent soft tissues 10 into the boundary of the biological tissue defect.

46. The method according to Claim 45, the biological tissue defect area comprising a bone defect area, and the step of placing a resorbable membrane outside of a boundary of the bone defect area comprising a step of wrapping the resorbable membrane around two 5 ends of a long bone to thereby surround a void between the two ends of the long bone.

47. The method according to Claim 46, the step of wrapping the resorbable membrane around two ends of a long bone being followed by a step of securing a rigid fixation member between the two ends of the long bone.

48. A method of protecting a bone defect area from soft tissue interposition, comprising a step of placing

5 a substantially planar sheet of non-metallic base material around a boundary of the bone defect area, the substantially planar sheet of non-metallic base material comprising a plurality of apertures disposed in the substantially planar sheet of non-metallic base material, the plurality of apertures being adapted for allowing a proliferation of vasculature and connective 10 tissue cells, derived from adjacent soft tissues, into the boundary of the bone defect area, while preventing a prolapse of adjacent soft tissues into the boundary of the bone defect area.

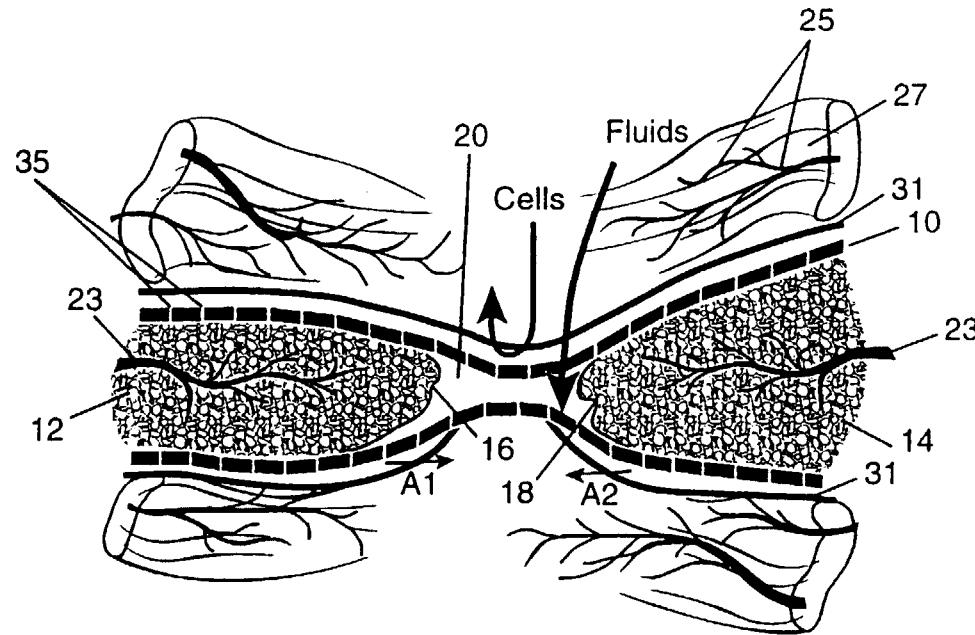


Fig. 1 (Prior Art)

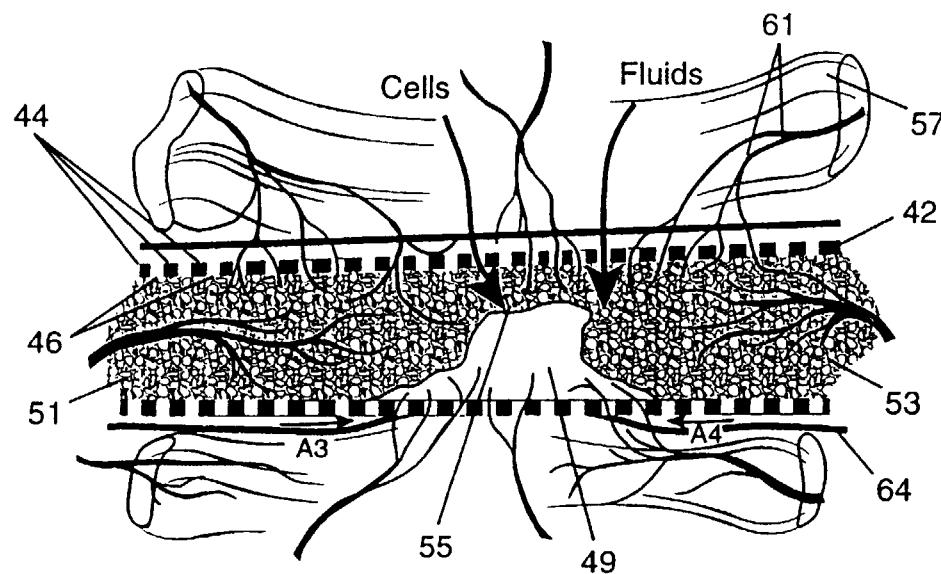


Fig. 2

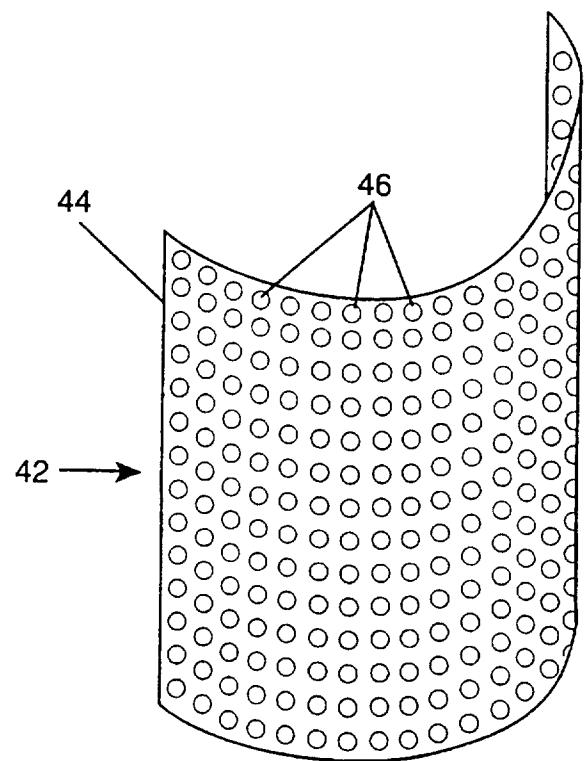


Fig. 3a

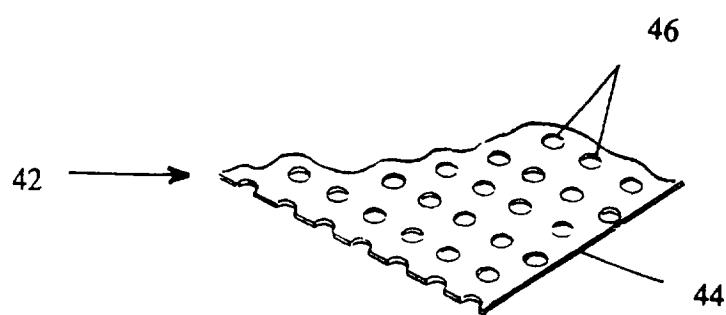


Fig. 3b

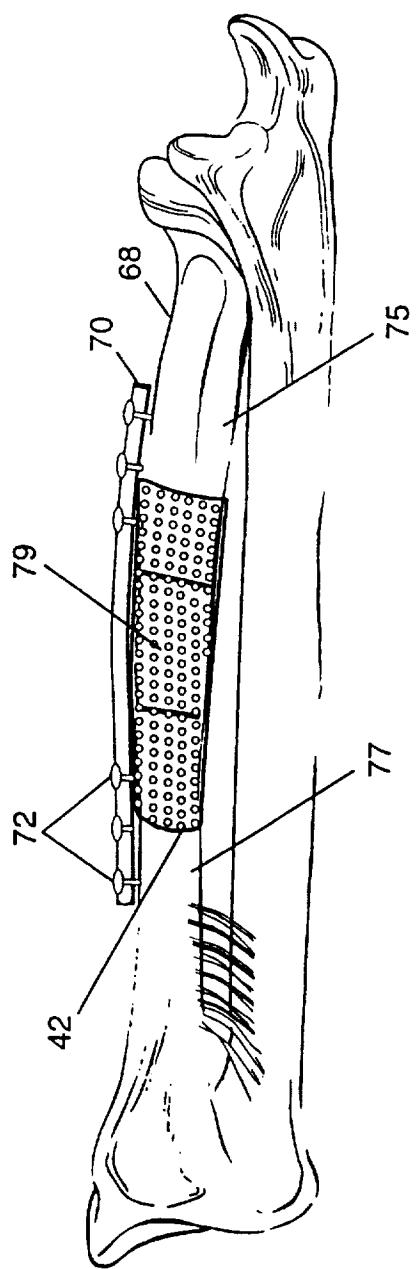


Fig. 4

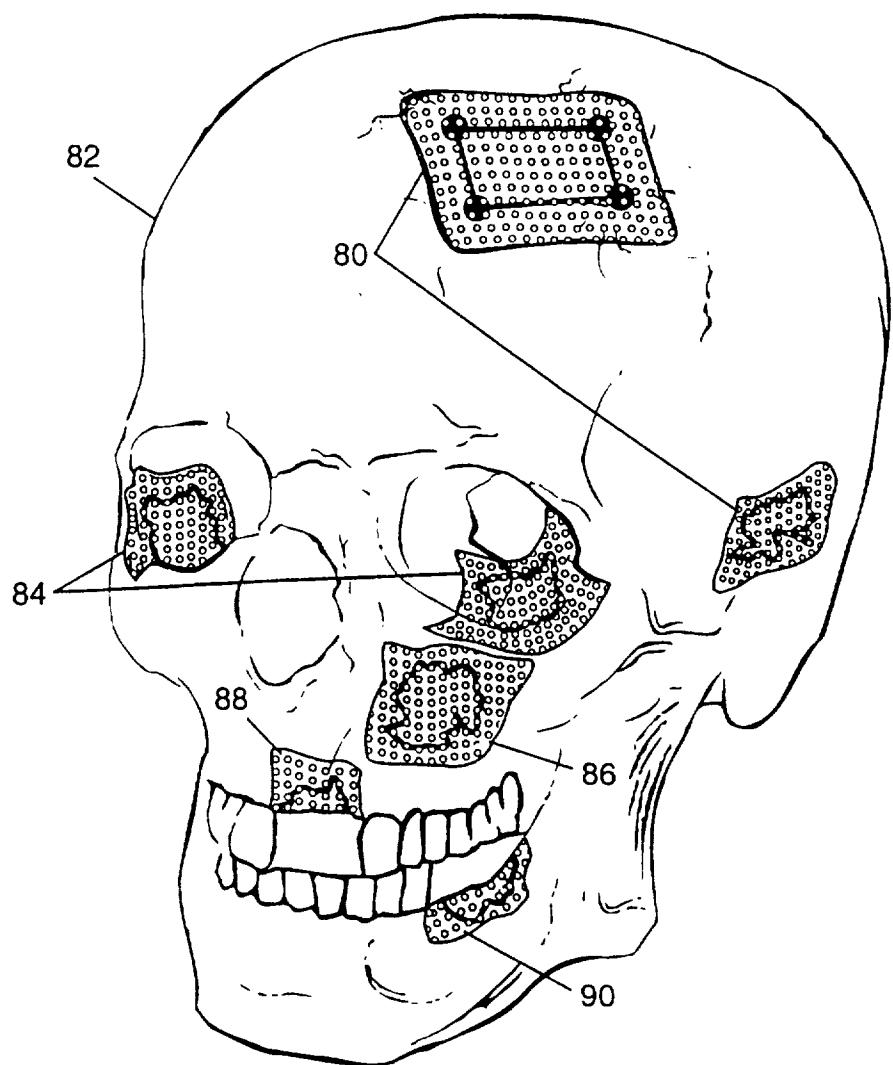


Fig. 5

Fig. 6

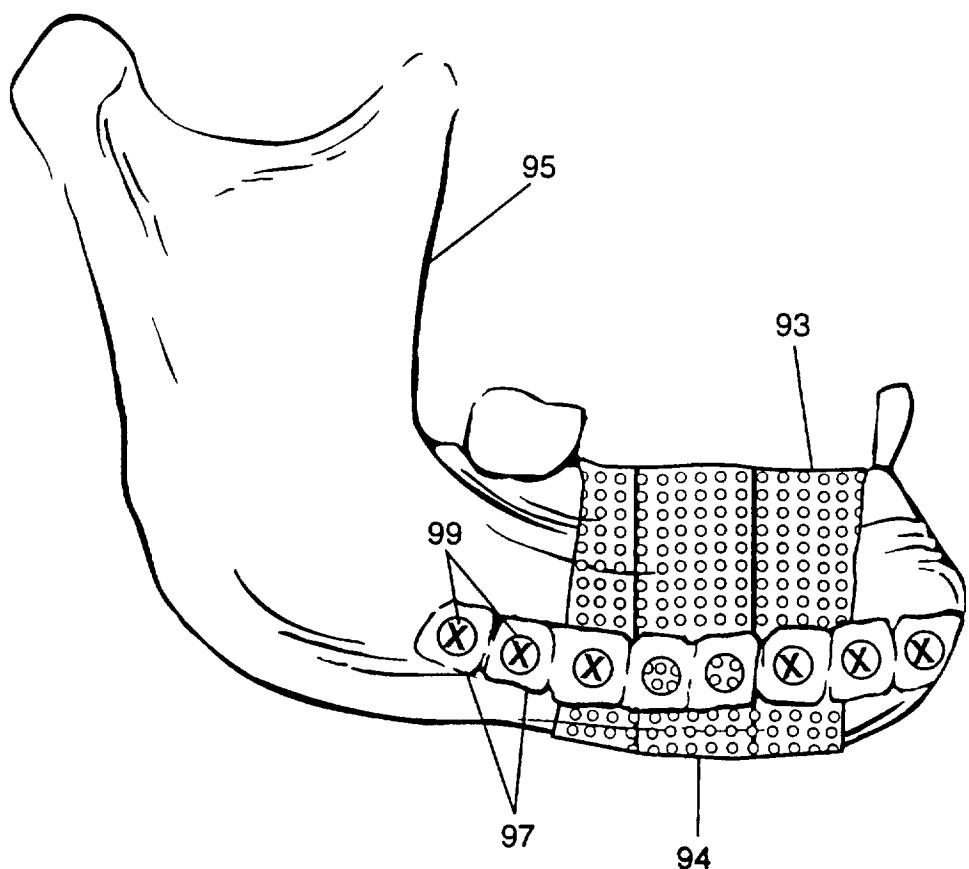


Fig. 7

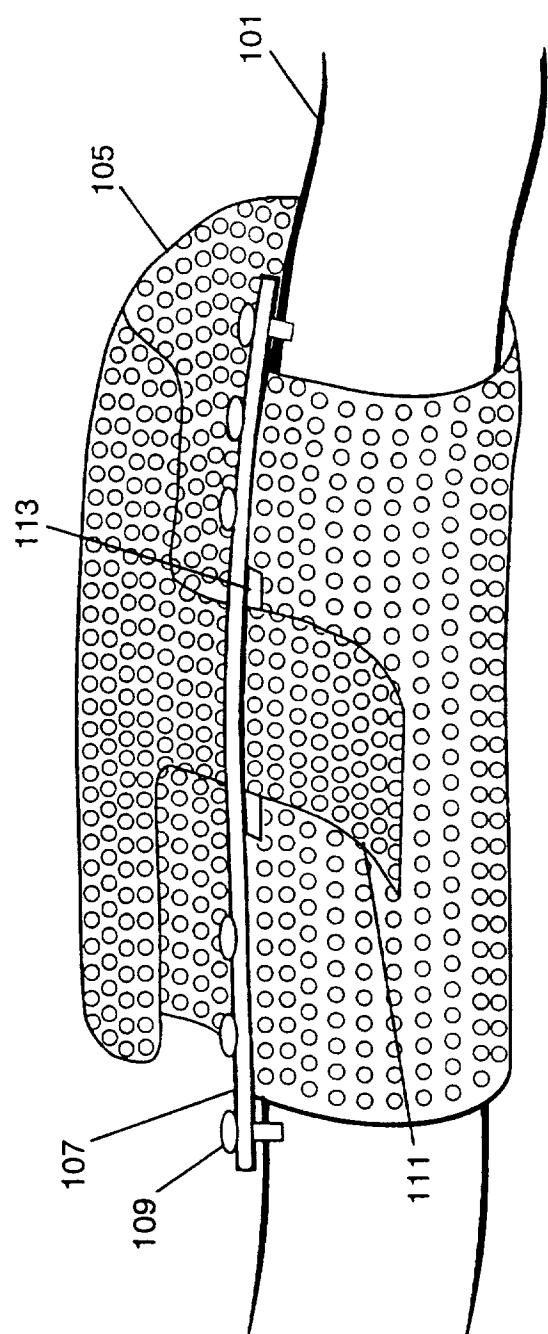


Fig. 8

INTERNATIONAL SEARCH REPORT

Int. Appl. No
PCT/US 97/13695

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 A61F2/02 A61L27/00 A61F2/28 A61B17/80

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 A61F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DE 91 15 341 U (PATYK) 20 February 1992	1,3,5-8, 15,16, 19,20, 22, 27-32,37
Y	see the whole document ---	38,40-42
Y	EP 0 475 077 A (LABORATORIUM FÜR EXPERIMENTELLE CHIRURGIE, FORSCHUNGSISTITUT, DAVOS) 18 March 1992 see the whole document ---	38,40-42

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

1

Date of the actual completion of the international search

20 November 1997

Date of mailing of the international search report

02.12.97

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Klein, C

INTERNATIONAL SEARCH REPORT

Int'l. Appl. No.
PCT/US 97/13695

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 94 03121 A (GUIDOR) 17 February 1994 see the whole document ---	1,5,12, 14-18, 20,22, 26-29, 31-33, 35-37
X	US 3 849 805 A (LEAKE) 26 November 1974	1,5,6, 20,32
A	see the whole document ---	38,40-42
X	DE 44 14 675 C (KIRSCH) 28 September 1995 see the whole document ---	5,20
X	DE 43 13 192 C (KIRSCH) 15 September 1994 see the whole document ---	5 42
X	EP 0 504 103 A (INSTITUT STRAUMANN) 16 September 1992 see the whole document ---	5
A	WO 94 19029 A (W.L. GORE & ASSOCIATES) 1 September 1994 see the whole document ---	1
A	WO 94 08529 A (DENTAL MARKETING SPECIALISTS) 28 April 1994 ---	
A	DE 86 05 079 U (EFFNER & SPREINE) 22 May 1986 ---	
A	US 5 222 987 A (JONES) 29 June 1993 cited in the application ---	
A	US 4 932 973 A (GENDLER) 12 June 1990 cited in the application -----	

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 97/13695

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: 45-48 because they relate to subject matter not required to be searched by this Authority, namely:
Methods for treatment of the human body by surgery: see PCT Rule 39.1(iv)
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
- No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US 97/13695

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
DE 9115341 U	20-02-92	NONE	
EP 475077 A	18-03-92	AT 139126 T CA 2050703 A DE 69120177 D DE 69120177 T JP 6319794 A US 5676699 A	15-06-96 11-03-92 18-07-96 10-10-96 22-11-94 14-10-97
WO 9403121 A	17-02-94	AU 4766493 A EP 0773750 A JP 8502665 T	03-03-94 21-05-97 26-03-96
US 3849805 A	26-11-74	NONE	
DE 4414675 C	28-09-95	AU 1665495 A WO 9528900 A EP 0758872 A	16-11-95 02-11-95 26-02-97
DE 4313192 C	15-09-94	BR 9400994 A CA 2121166 A EP 0625340 A JP 2501018 B JP 6343653 A US 5443483 A	08-11-94 23-10-94 23-11-94 29-05-96 20-12-94 22-08-95
EP 504103 A	16-09-92	AT 121609 T CA 2062597 A DE 59201996 D ES 2071471 T JP 5084258 A US 5196016 A	15-05-95 12-09-92 01-06-95 16-06-95 06-04-93 23-03-93
WO 9419029 A	01-09-94	US 5433996 A CA 2155326 A EP 0684844 A JP 8506750 T US 5614284 A	18-07-95 01-09-94 06-12-95 23-07-96 25-03-97
WO 9408529 A	28-04-94	US 5324294 A	28-06-94

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No	PCT/US 97/13695
------------------------------	-----------------

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
DE 8605079 U	22-05-86	NONE	
US 5222987 A	29-06-93	EP 0392734 A	17-10-90
US 4932973 A	12-06-90	DE 3435771 A FR 2552659 A GB 2148122 A,B	25-04-85 05-04-85 30-05-85