A method for leaching a sulfidic metal concentrate in hydrometallurgical production of metal in a leaching process from which hot water vapor containing off-gas is conducted out and to which an acid solution warmed up to an elevated temperature is conducted. The acid solution is warmed up to an elevated temperature by bringing off-gas of the leaching step into direct contact with the acid solution.
METHOD FOR LEACHING A SULPHIDIC METAL CONCENTRATE

FIELD OF THE INVENTION

The invention relates to a method described in the preamble of claim 1.

BACKGROUND OF THE INVENTION

In the leaching of a sulfidic metal concentrate, the sulfide leaching process produces exothermic reactions, generating a considerable amount of heat. This
heat is removed from the leaching step in a hot water vapor containing off-gas. The off-gases carry out considerable amounts of energy in the form of water vapor of approximately 100°C. Normally, the off-gases are conducted to the atmosphere through a gas scrubber. On the other hand, an acid solution to be fed to the leaching process is warmed up with vapor produced by oil, natural gas or other such external heating energy source, producing great equipment investment costs, energy costs for the external heating energy and carbon dioxide emissions.

OBJECTIVE OF THE INVENTION

The objective of the invention is to remedy the defects referred to above.

A particular objective of the invention is to disclose a method enabling the utilization of thermal energy contained by hot water vapor contained by off-gases of the process produced by exothermic reactions occurring in the leaching of a sulfidic metal concentrate to warm up an acid solution to be conducted to the process.

A further objective of the invention is to disclose a method enabling a significant reduction in the external energy needed to warm up the acid solution to be conducted to the process and in the energy costs and increase in the energy efficiency and reduction in the carbon dioxide emissions of the process.

SUMMARY OF THE INVENTION

The method according to the invention is characterized by what is presented in claim 1.
According to the invention, an acid solution is warmed up to an elevated temperature by bringing off-gas of a leaching step into direct contact with the acid solution.

The heat of the hot water vapor contained by the off-gas is recovered by bringing the off-gas into direct contact with the acid solution. Thus, there is no use or need for the conventional heat exchangers operated by indirect heat transfer, which could give rise to the problematic growth of sulfur compounds contained by the off-gas on cold surfaces. The advantage of the invention is that the sulfur-containing compounds do not cause any problems. When the off-gas is brought into direct contact with the acid solution, the hot water vapor contained by the off-gas condenses onto the surface of the cooler acid solution according to the liquid-gas equilibrium. The degree of condensation depends for example on the equilibrium states of the phases and on the surface area of the interface between the phases. As the water condensates, the acid solution dilutes a little bit, but to a very small degree and does not affect the process. A further advantage of the invention is that the thermal energy contained by the hot water vapor contained by the off-gases can be recovered so as to be able significantly to reduce the external energy needed to warm up the acid solution to be conducted to the process and thereby to be able to reduce the energy costs, so that the energy efficiency of the process is increased and the carbon dioxide emissions reduced. The invention is applicable for use in connection with the leaching of any sulfidic metal concentrate.

In one embodiment of the method, the acid solution is warmed up by providing it as droplets in the hot off-
gas, the off-gas being present as a continuous phase. By injecting the acid solution as droplets in the off-gas, it is possible to have a large heat transfer area and efficient heat transfer.

In one embodiment of the method, the acid solution is sprayed through a nozzle forming droplets into the off-gas in a device where the off-gas and the acid solution move against the flow.

In one embodiment of the method, the off-gas and the acid solution are brought into mutual contact by an ejector/venturi technique.

In one embodiment of the method, the acid solution is warmed up by dispersing the off-gas into the acid solution, the acid solution being present as a continuous phase.

In one embodiment of the method, the off-gas is dispersed into a sulfuric acid solution.

In one embodiment of the method, the temperature of the water vapor in the off-gas of the leaching step is approximately 100°C.

In one embodiment of the method, the acid solution is warmed up to approximately 50 to 80°C by means of the off-gas.

In one embodiment of the method, the metal to be leached is zinc and the acid is a sulfuric acid solution.
In one embodiment of the method, the acid solution to be warmed up is a return acid obtained from electrolysis.

In one embodiment of the method, the method comprises leaching in at least one low acid leaching step wherefrom hot water vapor containing off-gas is conducted out, and thereafter in at least one high acid leaching step where to an acid solution warmed up to an elevated temperature is conducted. Before being conducted to the high acid leaching step, the acid solution is warmed up to an elevated temperature by bringing off-gas of the low acid leaching step into direct contact with the acid solution to be conducted to the high acid leaching step.

LIST OF FIGURES

In the following section, the invention will be described in detail by means of exemplifying embodiments with reference to the accompanying drawing in which

Fig. 1 illustrates a block diagram of a process or part of a process utilizing a first embodiment of the method according to the invention, and

Fig. 2 illustrates a block diagram of a second embodiment of the method according to the invention.

DETAILED DESCRIPTION OF THE INVENTION

Fig. 1 illustrates a method for leaching a sulfidic metal concentrate in a hydrometallurgical leaching process.

In the metal concentrate leaching process, the sulfidic metal concentrate is leached under acidic and
oxidative conditions in atmospheric pressure close to
to the boiling point of the solution (~100°C). The disso-
lution of metal sulfides under acidic and oxidative
conditions is an exothermic reaction system and pro-
duces considerable amounts of energy. In simplified
terms, the reactions can be described as follows:
A trivalent iron (ferric iron) oxidizes metal sul-
fides:

$$\text{MeS(s)} + \text{Fe}_2(\text{SO}_4)_3 \rightarrow \text{MeSO}_4 + 2 \text{FeSO}_4 + \text{S}$$

wherein Me = Zn, Fe, Cu, Co, Ni, Cd, Pb etc.

The divalent iron (ferrous iron) produced in the oxi-
dation of metal sulfides is oxidized to become triva-
 lent by means of oxygen gas and sulfuric acid:

$$2\text{FeSO}_4 + \text{H}_2\text{SO}_4 + 0.5\text{O}_2 \rightarrow \text{Fe}_2(\text{SO}_4)_3 + \text{H}_2\text{O}$$

The above reactions can also be written out as an
overall reaction:

$$\text{MeS(s)} + \text{H}_2\text{SO}_4 + 0.5\text{O}_2 \rightarrow \text{MeSO}_4 + \text{H}_2\text{O} + \text{S}$$

The leaching process includes a slurry-forming step 1,
to which a metal concentrate in a powder or slurry
form and an acid solution warmed up to an elevated
temperature are fed and in which slurry-forming step 1
the metal concentrate is dispersed in the acid solu-
tion to form a suspension. From the slurry-forming
step 1, the suspension of the concentrate and the acid
solution is further conducted to a leaching step 2. In
the leaching step 2, exothermic reactions take place.
The heat generated in the reactions evaporates water
which escapes from the leaching step 2 as a hot water
vapor with the off-gases. This off-gas/water vapor is
conducted to a heat recovery step 3 to warm up the acid solution before conducting it to the slurry-forming step 1. A part of the off-gases of the leaching step 2 is led to heat recovery 3 and another part directly to a scrubber past the recovery 3. This distribution of the gas flow could be controlled on the basis of temperature measurement in the leaching step 2. In the heat recovery step 3, the acid solution is warmed up to an elevated temperature by bringing off-gas of the leaching step into direct contact with the acid solution.

Bringing the off-gas into direct contact with the acid solution may be effected in many different ways. A large heat transfer area of the acid solution and the off-gas can be obtained by injecting the liquid as droplets in the gas or by distributing the gas in the liquid. The continuous phase can be either gas or liquid, depending on the case.

For example, the acid solution can be provided as droplets in the hot off-gas, the off-gas being present as a continuous phase. Acid solution can for example be sprayed in the off-gas through a nozzle forming droplets in a device where the off-gas and the acid solution move against the flow. It is further possible to bring the off-gas and the acid solution into mutual contact by an ejector/venturi technique. It is further possible to warm up the acid solution by dispersing the off-gas in the acid solution, the acid solution being present as a continuous phase.

Fig. 2 illustrates one example of a sulfidic metal concentrate leaching process, here a zinc concentrate direct leaching process developed by the applicant (Outotec® Zinc Direct Leaching Process), effected on a
The method of Fig. 2 comprises a slurry-forming step 4, where a sulfidic zinc concentrate in a powder or slurry form and an acid solution warmed up to an elevated temperature are fed. In the slurry-forming step 4, the zinc concentrate is dispersed in the acid solution to form a suspension. From the slurry-forming step 4, the suspension of the acid solution and the zinc concentrate is conducted to a low acid leaching step 5, to which oxygen is conducted. In the low acid leaching step 5, where most of the dissolution takes place, a large amount of heat is also produced by virtue of said exothermic reactions. The heat generated in the reactions evaporates water, which escapes from the low acid leaching step 5 with the off-gases as a hot water vapor having a temperature of approximately 100°C.

Instead of letting this off-gas go to waste, it is conducted according to the invention to a heat recovery step 6 to warm up a return acid obtained from an electrolysis process before conducting the return acid to a high acid leaching step 7. The electrolysis takes place at a temperature of below 40°C, so the temperature of the return acid obtained therefrom is approximately 35°C. From the low acid leaching step 5, the suspension is conducted to a first thickening step 8 where the low acid leaching step continues and wherefrom the thickened slurry is conducted to the high acid leaching step 7. Off-gases produced in the high acid leaching step 7 are also conducted to the heat recovery step 6. In the heat recovery step 6, the return acid solution is warmed up to an elevated temperature
by bringing off-gas of the leaching step into direct contact with the return acid solution. From the heat recovery step 6, the off-gases are removed to the atmosphere through a gas scrubber. In the heat recovery step 6, the return acid can be warmed up as needed by means of the off-gas to approximately 50 to 80°C, preferably to 65°C in the example process of Fig. 2.

In the heat recovery step 6, the acid solution can for example be provided as droplets in the hot off-gas, the off-gas being present as a continuous phase. Acid solution can for example be sprayed through a nozzle forming droplets in the off-gas in a device where the off-gas and the acid solution move against the flow. Further, it is possible to bring the off-gas and the acid solution into mutual contact by an ejector/venturi technique. Further, it is possible to warm up the acid solution by dispersing the off-gas in the acid solution, the acid solution being present as a continuous phase.

From the high acid leaching step 7, the acid solution is conducted to a flotation step 9 where floated sulfur is removed. From the flotation step 9, the acid solution and the non-floated fraction are further conducted to a second thickening step 10 where lead, silver, jarosite and gypsum are separated from the acid solution. The acid solution escaping from the thickening step 10 is warmed up with vapor before being conducted back to the slurry-forming step 4.

In addition to using off-gases of the low and high acid leaching steps 5 and 7 to warm up the return acid in the heat recovery step 6, the return acid to be conducted to the high acid leaching step 7 is warmed up further in a heat exchange step 11, where the re-
The acid is warmed up by an external energy source. In using off-gas of the low and high acid leaching steps to warm up the return acid, the heat exchange step 11 needs significantly less vapor produced by an external energy source than before.

The invention is not limited merely to the exemplifying embodiments referred to above; instead, many variations are possible within the scope of the inventive idea defined by the claims.
CLAIMS

1. A method for leaching a sulfidic metal concentrate in hydrometallurgical production of metal in a leaching process, from which process hot water vapor containing off-gas is conducted out and to which process an acid solution warmed up to an elevated temperature is conducted, characterized in that the acid solution is warmed up to an elevated temperature by bringing off-gas of the leaching step into direct contact with the acid solution.

2. The method according to claim 1, characterized in that the acid solution is warmed up by providing it as droplets in the hot off-gas, the off-gas being present as a continuous phase.

3. The method according to claim 2, characterized in that the acid solution is sprayed in the off-gas through a nozzle forming droplets in a device where the off-gas and the acid solution move against the flow.

4. The method according to claim 2 or 3, characterized in that the off-gas and the acid solution are brought into mutual contact by an ejector/venturi technique.

5. The method according to claim 1, characterized in that the acid solution is warmed up by dispersing the off-gas in the acid solution, the acid solution being present as a continuous phase.

6. The method according to claim 5, characterized in that the off-gas is dispersed in a sulfuric acid solution.
7. The method according to any one of claims 1 to 6, characterized in that the temperature of the water vapor in the off-gas of the leaching step is approximately 100°C.

8. The method according to any one of claims 1 to 7, characterized in that the acid solution is warmed up to approximately 50 to 80°C by means of the off-gas.

9. The method according to any one of claims 1 to 8, characterized in that the metal is zinc and the acid is sulfuric acid.

10. The method according to any one of claims 1 to 9, characterized in that the acid solution is a return acid obtained from electrolysis.

11. The method according to any one of claims 1 to 10, characterized in that the method comprises leaching in at least one low acid leaching step from which hot water vapor containing off-gas is conducted out, and thereafter in at least one high acid leaching step to which an acid solution warmed up to an elevated temperature is conducted; and that before being conducted to the high acid leaching step, the acid solution is warmed up to an elevated temperature by bringing off-gas of the low acid leaching step into direct contact with the acid solution to be conducted to the high acid leaching step.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

See extra sheet

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: C22B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

FI, SE, NO, DK

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI, COMPDX, INSPEC, NPL, PUBCOMP, PUBSUBS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2007071 021 A1 (HARRIS G. BRYN et al.) 28 June 2007 (28.06.2007) paragraph [0056]; claims 1 and 24; Fig. 1</td>
<td>1-11</td>
</tr>
<tr>
<td>A</td>
<td>EP 0272060 A2 (ELECTROLYTIC ZINC COMPANY OF AUSTRALASIA LIMITED) 22 June 1988 (22.06.1988) abstract; page 14, lines 39-40; claim 1; Fig. 1</td>
<td>1-11</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search

14 February 2013 (14.02.2013)

Date of mailing of the international search report

25 February 2013 (25.02.2013)

Name and mailing address of the ISA/FI

National Board of Patents and Registration of Finland
P.O. Box 1160, FI-00101 HELSINKI, Finland
Facsimile No. +358 9 6939 5328

Authorized officer

Pirjo Kauraala

Telephone No. +358 9 6939 500

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family members(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2007071 021 A1</td>
<td>28/06/2007</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI 875580 A</td>
<td>19/06/1988</td>
</tr>
<tr>
<td>Int.Cl.</td>
<td>Classification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C22B 3/06 (2006.01)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C22B 3/08 (2006.01)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C22B 19/00 (2006.01)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>