wo 2012/088171 A2 |10 OO 0 AR

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2012/088171 A2

28 June 2012 (28.06.2012) WIPO I PCT
(51) International Patent Classification: 98052-6399 (US). HUSBANDS, Parry Jones Reginald;
GO6F 9/48 (2006.01) GO6F 9/44 (2006.01) c/o Microsoft Corporation, LCA - International Patents,
(21) International Application Number: (?}lse) Microsoft Way, Redmond, Washington 98052-6399
PCT/US2011/066280 ’

. - (81) Designated States (uniess otherwise indicated, for every
(22) International Filing Date: kind of national protection available). AE, AG, AL, AM,
20 December 2011 (20.12.2011) AO, AT, AU, AZ, BA, BB, BG, BI, BR, BW, BY, BZ,
(25) Filing Language: English CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
(26) Publication Language: English HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
(30) Priority Data: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
12/972,792 20 December 2010 (20.12.2010) Us MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
(71) Applicant (for all designated States except US): MI- SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,

CROSOFT CORPORATION [US/US]; One Microsoft TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Way, Redmond, Washington 98052-6399 (US). o

(84) Designated States (uniess otherwise indicated, for every
(72) Inventors: LEIBMAN, Stephen; ¢/o Microsoft Corpora- kind of regional protection available): ARIPO (BW, GH,

tion, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). STALL, Jona-
thon Michael; c/o Microsoft Corporation, LCA - Interna-
tional Patents, One Microsott Way, Redmond, Washington

GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

[Continued on next page]

(54) Title: METHOD FOR CHECKPOINTING AND RESTORING PROGRAM STATE

(57) Abstract: Techniques are described that enable restoring inter-

112

| Define Data Structure for Local Variables |/

Instantiate data structure for local variables

114
| Save Function

116
| Load Function

| 118

120

Update tracking of program stack

Load local variables for function F }-

104 |
N

122

Skip to the appropriate line of function F H

106
\‘ Functienal Code with Local Variable Re-naming J

10{ Tdentify where function G is called

L

|/
l//

Call function &

110

\J Update tracking of program stack k
L
L H1

Return data

FIG. 1

rupted program execution from a checkpoint without the need for co-
operation from the computer's operating system. These techniques can
be implemented by modifying existing code using an automated tool
that adds instructions for enabling restoring interrupted program exe-
cution.

WO 2012/0881°71 A2 |IIWAK 00TV 0O A

LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, _
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

Declarations under Rule 4.17:

— as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

15

20

25

30

WO 2012/088171

PCT/US2011/066280

METHOD FOR CHECKPOINTING AND RESTORING PROGRAM STATE

BACKGROUND OF THE INVENTION
1. Field of Invention

The techniques described herein relate to enabling the restoration of execution of a
computer process from a point of interruption.
2. Discussion of the Related Art

Program crashes are known to occur in which an application or other computer
program terminates unexpectedly or ceases to operate as designed. Some programs save
information from time to time so that, when a crash occurs, the amount of data loss can be
limited. For example, some word processing programs automatically save drafts of a
document at various times as a user works on the document. If the word processing
program crashes, the user may be able to restore the document by loading saved data from
the most recent point at which the document was automatically saved by the word
processing program.

Some operating systems provide the capability of receiving information from a
program as it is running and can restore execution of the program from a saved state.
However, in such techniques, cooperation from the operating system is required to allow
the execution of the program to be restored.

SUMMARY

. As discussed above, some existing techniques for restoring execution of a program
from a point of interruption require cooperation from the operating system. Such
techniques require the operating system to provide an interface suitable for saving
application data and restoring the state of operation of an application when execution is
interrupted. However, not all operating systems provide such capabilities. It would be
advantageous to provide the capability of restoring execution of a program at the
application level without requiring cooperation from the operating system.

Some applications have been specifically designed and programmed to include the
capability of saving program data and restoring program data when execution is
interrupted. However, it would be time consuming for an application programmer to have
to design and program an application to provide such capabilities when a new application
is written or an existing application is modified.

The techniques described herein provide a flexible framework at the program level

for enabling the checkpointing and restoration of program execution. The Applicants have

10

20

25

30

WO 2012/088171 PCT/US2011/066280

developed techniques for restoring program execution from the point at which execution
was interrupted without the need for cooperation from the computer’s operating system.
These techniques can be implemented at the program level regardless of the operating
system environment in which the program is running. In some embodiments, code for
implementing these techniques can be incorporated into existing program code using an
automated tool that modifies the program and adds instructions for enabling restoring
interrupted program execution. Thus, a programmer developing an application does not
need to design or program the application code to include such features, as code for
enabling restoring interrupted program execution can be automatically incorporated using
the automated tool.

Some embodiments relate to a method, comprising: receiving first computer
readable instructions configured to control a microprocessor to perform one or more
operations; using a microprocessor, generating second computer readable instructions
based on the first computer readable instructions, the second computer readable
instructions being configured to perform the one or more operations and to resume
execution of a function from a checkpoint by calling the function; loading data for use by
the function, the data having been saved at the checkpoint during a prior execution of the
function; and skipping a portion of the function that was executed during the prior
execution of the function before reaching the checkpoint. Some embodiments relate to a
computer readable storage medium having stored thereon instructions which, when
executed, perform the above-described method.

Some embodiments relate to a system comprising: a computer readable storage
medium having stored thereon computer readable instructions configured to resume
execution of function from a checkpoint by calling the function; loading data for use by
the function, the data having been saved at the checkpoint during a prior execution of the
function; skipping a portion of the function that was executed during the prior execution of
the function before reaching the checkpoint; saving data used by the function; and tracking
a program stack of a program comprising the function. The system also includes at least
one microprocessor configured to execute the computer readable instructions.

The foregoing is a non-limiting summary of some embodiments.

BRIEF DESCRIPTION OF DRAWINGS

In the drawings, each identical or nearly identical component that is illustrated in

various figures is represented by a like reference character. For purposes of clarity, not

every component may be labeled in every drawing. The drawings are not necessarily

20

25

30

WO 2012/088171 PCT/US2011/066280

drawn to scale, with emphasis instead being placed on illustrating various aspects of the
invention.

FIG. 1 shows a diagram of a software module that includes computer-readable
instructions for performing operations as part of a function F of a computer program,
according to some embodiments.

FIG. 2 shows a flowchart of a method of executing a program that includes saving
the program state and program data at various checkpoints, according to some
embodiments.

FIG. 3 shows a flowchart of a method of re-building the execution of a function
from a checkpoint, according to some embodiments.

FI»G’. 4 shows a flowchart of a method of modifying code to enable restoring
operation of a program from a checkpoint, according to some embodiments.

FIG. 5 shows an example of a computing device having a plurality of
microprocessors on which the techniques described herein can be implemented.

FIG. 6 shows an example of a computing environment that includes computing
devices on which the techniques described herein can be implemented.

DETAILED DESCRIPTION

As discussed above, the techniques described herein enable restoring program
execution from a checkpoint when execution is interrupted, without the need for
cooperation from the computer’s operating system. Such techniques can protect against
instability in the underlying hardware or software, and can enable restoring program
execution after an operating system crash, power failure, or other failure in the system.
These techniques can be implemented by modifying existing code using an automated tool
without requiring a programmer to program the application specifically to include this
functionality. In some embodiments, a compiler or other program translation tool can re-
configure existing code to provide the capability of saving and restoring execution of the
program after an error occurs.

Advantageously, these techniques can be robust in a multithreaded, multicore
environment and for an environment in which a program runs on multiple machines.
When execution is interrupted and is unable to continue, programs can continue execution
on a different processor or a different machine, even on a machine that is running a
different operating system. These techniques can be used advantageously in a cloud
computing environment in which multiple machines are available to execute a program. A

detailed discussion of an exemplary embodiment is provided hereafter.

W)

15

20

25

WO 2012/088171

I. Example of Modifying Program Code to Support Restoring Execution

Commonly-used program languages provide the capability of defining functions
that may be called during execution of a program. Code defines key aspects of the
function, such as the inputs that the function accepts, the operations performed by the
function, and the data returned by the function. .

For example, the following code defines functions F and G. Function F receives
integers a and b as input. Function F initializes a local variable x to be an integer that is -
set equal to the product a-b and initializes variable y to be an integer that is set equal to the
return value of function G. Function F returns an integer having the value x+y. Function
G receives integers x and b as inputs which correspond to local variables a and b within
function G, respectively. Function G initializes a local variable x to be an integer that is

set equal to a+b. Function G returns an integer equal to the value of x.

int F(int a, int b)
{
int x = a*b;
int y = G(x,b);
return x+y;
}
int G(int a, int b)
{
int x = a+b;
return x;
}

When a program is run, function F can be called which then calls function G. If
the program crashes or execution otherwise is interrupted during the execution of function
F and/or G, the progress made in executing functions F and/or G can be lost. To continue
execution, the program needs to be re-started and function F needs to be started again from
the beginning, and then function G needs to be called again. Although the amount of
processing power needed to execute exemplary functions F and G may not be large, it
should be appreciated that, when executing a complex program, significant data may be
lost and significant processing may need to be performed a second time to reach the point
at which the execution of functions F and/or G was interrupted. The amount of lost work
can be particularly significant when executing complex programming tasks such as
modeling and simulation, for example.

In some embodiments, additional code can be inserted into a program to enable
storing the state of operation of the program at various points, called “checkpoints.” Code
can be included for tracking the program stack by saving an indication as to which

functions are running. Code can also be included for storing local variables used by the

PCT/US2011/066280

20

WO 2012/088171 PCT/US2011/066280

functions and for saving an indication of the line within a function that has been reached in
execution. The addition of these types of code can enable re-building the program by
calling one or more functions that were in operation at the checkpoint, loading local
variables that were in use by the function(s), and skipping the portion of the function(s)
already executed prior to interruption.

" FIG. 1 shows an example of a software module 100 that includes computer-
readable instructions for performing operations of function F of a computer program and

for enabling restoring program execution. The computer readable instructions of software

‘module 100 enable tracking the state of execution of the function within the program,

saving data used by the function at various checkpoints during program execution, and
restoring execution of the function from a checkpoint when the program is interrupted. In
the example of FIG. 1, software module 100 includes helper code 102, a function
preamble 104, functional code 106 for performing the operations of function F, call site
label code 108, and a function epilogue 110.

Helper code 102 can include code 112 that defines a data structure for saving the
local variables and input arguments of function F. Helper code 102 can also include code
114 that defines a save function for saving data for function F and code 116 that defines a
load function for loading data for function F from storage. The save function appends the
saved variables to a checkpoint file. The load function loads the variables from the current
point in the checkpoint file and advances the file pointer. Although shown as source code
for purposes of illustrating the concept, it should be appreciated that helper code 102 and
any other code described herein may be implemented as object code, or any other suitable
type of code. An example of helper code 102 suitable for defining a data structure and

providing save and load functions is shown below.

10

WO 2012/088171

PCT/US2011/066280

struct F_Locals : Locals

{
// local variables
int x;
int y;
// input arguments
int a;
int b;
virtual void Save()
{
g_pCheckpoint->Savelocals(this);
3
virtual void Load()
{
g_pCheckpoint->LoadlLocals(this);
}
}s

// Base frame structure from which function-specific versions derive
struct Locals

{

virtual void Save()
virtual void Load()

e;
9;

int __ CallSite;

// Next structure. This is used to preserve ordering of stack frames in
the example implementation,

// but any of several alternative solutions can be used for this, as app
ropriate.

Locals * m_pNext;
}s

As shown in FIG. 1, function preamble 104 can include code 118 that instantiates a
data structure object for the local variables of function F and code 120 for tracking the
program stack b&/ saving an indication that function F is being executed using the push()
function. Function preamble 104 can also include code 122 capable of rebuilding the
execution of function F from a checkpoint. If the execution of function F-is being rebuilt,
code 124 is executed to load the local variables for function F that were saved at the
checkpoint. Code 126 is executed to skip a portion of function F that was already
executed before reaching the checkpoint. For example, if function G was in execution
within the scope of function F when execution of the program was interrupted, code 126
can skip to the line of function F that calls function G. An example of a functional

preamble 104 that may be used in some embodiments is shown below.

15

20

WO 2012/088171

int F(int a, int b)
{
F_Locals 1;
Push(&l);

// Checkpointing
if (g_RebuildMode)

{

// Deserialize locals from checkpoint

1.Load();

// Jump to proper line

int i = 1.__CallSite;

switch(i) {

case 1: goto FunctionCalll; //where G

} // is called
}

As shown in FIG. 1, functional code 106 is included for performing the operations
of a function, e.g., function F. Although function F is discussed by way of example, the
techniques described herein can be used for any function performing one or more
operations of a computer program. Functional code 106 can be re-written from that of the
original function, e.g., function F, so that local variables are stored in the data structure
defined by code 112 to facilitate saving of data during execution so that the variables can
be loaded later if it is necessary to re-build the execution of function F. An example of

functional code 106 for use in some embodiments is shown below.

l.x = a*b;

As discussed above with respect to function F, the variable X is set equal to the
product a-b. In functional code 106, the same multiplication operation is performed as in
function F, but the code is modified so that the result is stored in the data structure defined
by code 112 to facilitate re-loading the local variable if the function needs to be re-built.

As shown in FIG. 1, call site label code 130 can include code identifying where
other functions are called within function F. For example, function F may call another
function G, and call site label code 130 can identify the location within function F where
function G is called. Code 132 is also included in function F for calling function G. An

example of call site label code 130 for use in some embodiments is shown below.

FunctionCalll:
__CallSite = 1;

1.
l.y = G(1.x,b);

PCT/US2011/066280

WO 2012/088171 PCT/US2011/066280

At this point, additional functional code 106 may be included, such as the
following, which is executed to calculate the sum of variables x and y, as in function F

above.

int temp = 1l.x+l.y;

5 As shown in FIG. 1, function epilogue 110 can include code 134 for updating
tracking of the program stack using the pop() function when the execution of function F is
to be completed. Function epilogue 110 can also include code 136 for returning data by
function F. An example of a function epilogue 110 that may be used in some

embodiments is shown below.

Pop();
return temp;

}

10

Sample implementations of Push() and Pop() are shown below, by way of example.

Locals * g_pStack = NULL;
void Push(Locals * pNewFrame)
{
pNewFrame->m_pNext = g_pStack;
g_pStack = pNewFrame;
}
void Pop()
Locals * pTop = g_pStack;
g_pStack = pTop->m_pNext;
pTop->m_pNext = NULL,;
}

The following code defines an example of a “Checkpoint” class which has the
implementations of LoadLocals() and SaveLocals() which are in turn used by the Load()

15 and Save() methods of the “Locals” objects.

WO 2012/088171 PCT/US2011/066280

// False if running normally. True if rebuilding the stack from a che
ckpoint.
bool g_RebuildMode = false;

class Checkpoint

{
public:
Checkpoint()
idx = 9;
}
/7
// Helpers for reading a checkpoint
//

// Copy locals out of checkpoint into the data structure
template<class T>
void LoadlLocals(T * p)

{
Locals * pNext = (Locals*) p;

int ¢cb = sizeof(T);
memcpy(p, &pBuffer[idx], cb); // Alternatively, read from per
sistent storage at this step.

((Locals*)p)->m_pNext = pNext;

idx+= cb;
};
//
// Helpers for creating a checkpoint
/1

template<class T>
void Savelocals(T * p)

{
int cb = sizeof(T);
* memcpy(&pBuffer[idx], p, cb); // Alternatively, write directl
y to persistent storage at this step.

idx+= cb;
}s
void Done()
{
idx = 0;
}
private:
int idx;

BYTE pBuffer[1000]; // For example purposes, a buffer in memory i
s used. Can be replaced with allocation of persistent storage.
};
Checkpoint * g_pCheckpoint = NULL;

10

20

25

30

WO 2012/088171

PCT/US2011/066280

11. Example of Saving Program State at Checkpoints

FIG. 2 shows an example of a method 200 of executing a program and saving the
program state at various checkpoints. To save the program state, the stack of locals
objects can be traversed and each one can be saved in turn. Execution of the program
begins at step 202. At step 203, a checkpoint opportunity is reached at which the program
has the option of saving the state of the program. The program can make a determination
at step 203 as to whether to make use of the checkpoint opportunity to save the program
state. The decision as to whether the program uses the checkpoint opportunity can be
made based upon the amount of time that has elapsed since the last checkpoint, or any
other suitable criteria. In some cases, the user may explicitly request a ch{eckpoint. There
is a tradeoff between the frequency of saving the program state and the performance of the
program. Increasing the frequency at which the program state is saved can limit the
amount of data loss, but can cause decreased program performance. The frequency with
which checkpoint opportunities are taken can vary depending on the application.

If the program decides to use the checkpoint opportunity to save the program state,
this information is saved in step 204. For example, the program may use the save function
defined by code 114 in helper code 102. If the program decides not to use the checkpoint
opportunity, execution of the program continues in step 206. Execution of the program
continues until the next checkpoint is reached, at which point the method returns to the
next checkpoint opportunity at step 203. Method 200 can continue until the program is
terminated.

I11. Example of Restoring Program Execution from a Checkpoint

FIG. 3 shows a method 300 of restoring the execution of a function from a
checkpoint, according to some embodiments. In step 302, the program is re-started after a
crash or other failure has occurred. In step 304, the program calls a first function, such as
function F discussed above. The local variables for function F that were saved at the
checkpoint are loaded from storage in step 306. In step 308, the program skips to the line
of function F that was in execution at the checkpoint, and execution of function F is
resumed from that point. Thus, steps 306 and 308 facilitate restoring the execution of
function F to the point of execution when the program state was saved at the checkpoint.
If function G was in execution at the checkpoint, the program can skip to the line of
function F that calls function G, and then function G is called in step 310. Steps 306 and
308 are then repeated for function G. The local variables for function G that were saved at

the checkpoint are loaded from storage, and the program skips to the line of function G

10

10

15

25

- 30

WO 2012/088171

PCT/US2011/066280

that was in execution at the checkpoint. If no other functions were in execution within the
scope of the previous function, the method ends and program execution continues from the
checkpoint. Thus, execution of the program can resume from the checkpoint without
requiring re-executing all of the operations that were executed before the checkpoint was
reached, prior to interruption of the program.

IV. Generating Code Enabling Saving State and Restoring Program Execution from a

Checkpoint
FIG. 4 illustrates a method of modifying code to enable restoring operation of a

program from a checkpoint, according to some embodiments. As discussed above, the
techniques described herein advantageously can be incorporated into a program
automatically without manual coding by a programmer. A program translation tool such
as a compiler can modify existing code to enable restoring operation of a program from a
checkpoint. For example, in step 402, a compiler or other program translation tool can
receive program code that includes code defining one or more functions. The program
code can be designed to perform any suitable operation, as the techniques described herein
are not limited as to the type of operation performed by the program. As an example, the
program code may include code defining functions F and G, as discussed above. In step
404, the code for executing functions F and G is modified to enable the program to restore
execution from a checkpoint. For example, the compiler or other program translation tool
can insert helper code 102, function preamble 104, call site label code 108, and function
epilogue 110; as discussed above. Checkpoint opportunities can also be inserted at
suitable locations within the code for saving data. The functional code 106 can be
modified to make use of the data structure for storing local variables defined in helper
code 102. If a compiler is used to perform method 400, the result produced can be object
code that is configured to perform functions F and G, with the additional capability of
enabling restoring the execution of functions F and G from a checkpoint when an
interruption occurs.
V. Applications

The techniques described herein can provide fault tolerance and failover schemes
which can be very significant for programs with long execution times. This is due to the
increased cost of lost work as the size of the computation grows. These techniques can
also be very useful for distributed programs that make use of large computing resources,
as the likelihood of failure is higher when more hardware is used to perform the

computation. Trends in new computing hardware have shifted from a paradigm in which

11

20

25

30

WO 2012/088171

each successive generation of hardware is exponentially faster to one in which each
successive generation has exponentially more computational cores. The techniques
described herein can be used to enable performing large amounts of computational work
using multithreaded programs running on multiple computational cores, or a cluster of
machines. For example, such techniques can be used in a cloud computing environment in
which multiple machines and/or multiple cores are involved in processing program data.

An advantage of the techniques described herein is that a program can be started
on one processor/machine and then processing can continue on another processof/machine
when a crash or other failure occurs. If one processor or machine fails, processing can
resume on another processor or machine with minimal interruption. Since the techniques
described herein do not require the cooperation of the operatiﬁg system, processing could
continue on a processor/machine that is running a different operating system, in some
embodiments. The program can run on a different operating system if a suitable version is
compiled on the new architecture and the file format
for checkpoints is portable across architectures.

FIG. 5 shows an example of a computing device 501 having a plurality of
microprocessors 502 and 503. An entire program or a program thread may be running on
microprocessor 502 when a crash or other failure occurs that interrupts execution. Using
the techniques described herein, the program or program thread can continue execution of
the program on microprocessor 503 using data stored in persistent storage 504
representing the state of execution of the program.

FIG. 6 shows an example of a computing environment that includes computing
device 601 having microprocessor 602 and computing device 603 having microprocessor
604. A program or program thread may be running on microprocessor 602 when a crash
or other failure occurs that interrupts execution. Using the techniques described herein,
the program or program thread can continue execution of the program on microprocessor
604 of device 603. Devices 601 and 603 may be connected by any suitable
communication connection. Devices 501, 601 and 603 may be any suitable computing
devices such as general purpose computers, or other devices described herein, for
example.

Having thus described several aspects of at least one embodiment of this invention,
it is to be appreciated that various alterations, modifications, and improvements will

readily occur to those skilled in the art.

12

PCT/US2011/066280

10

15

20

25

30

WO 2012/088171 PCT/US2011/066280

Such alterations, modifications, and improvements are intended to be part of this
disclosure, and are intended to be within the spirit and scope of the invention.
Accordingly, the foregoing description and drawings are by way of example only.

The above-described embodiments of the present invention can be implemented in
any of numerous ways. For example, the embodiments may be implemented using
hardware, software or a combination thereof. When implemented in software, the
software code can be executed on any suitable processor or collection of processors,
whether provided in a single computer or distributed among multiple computers. Such
processors may be implemented as integrated circuits, with one or more processors in an
integrated circuit component. Though, a processor may be implemented using circuitry in
any suitable format.

Further, it should be appreciated that a computer may be embodied in any of a
number of forms, such as a rack-mounted computer, a desktop computer, a laptop
computer, or a tablet computer. Additionally, a computer may be embedded in a device
not generally regarded as a computer but with suitable processing capabilities, including a
Personal Digital Assistant (PDA), a smart phone or any other suitable portable or fixed
electronic device.

Also, a computer may have one or more input and output devices. These devices
can be used, among other things, to present a user interface. Examples of output devices
that can be used to provide a user interface include printers or display screens for visual
presentation of output and speakers or other sound generating devices for audible
presentation of output. Examples of input devices that can be used for a user interface
include keyboards, and pointing devices, such as mice, touch pads, and digitizing tablets.
As another example, a computer may receive input information through speech
recognition or in other audible format.

Such computers may be interconnected by one or more networks in any suitable
form, including as a local area network or a wide area network, such as an enterprise .
network or the Internet. Such networks may be based on any suitable technology and may
operate according to any suitable protocol and may include wireless networks, wired
networks or fiber optic networks.

Also, the various methods or processes outlined herein may be coded as software
that is executable on one or more processors that employ any one of a variety of opérating
systems or platforms. Additionally, such software may be written using any of a number

of suitable programming languages and/or programming or scripting tools, and also may

13

20

25

30

WO 2012/088171 PCT/US2011/066280

be compiled as executable machine language code or intermediate code that is executed on
a framework or virtual machine.

In this respect, the invention may be embodied as a computer readable storage
medium (or multiple computer readable media) (e.g., a computer memory, one or more
floppy discs, compact discs (CD), optical discs, digital video disks (DVD), magnetic tapes,
flash memories, circuit configurations in Field Programmable Gate Arrays or other
semiconductor devices, or other non-transitory, tangible computer storage medium)
encoded with one or more programs that, when executed on one or more computers or
other processors, perform methods that implement various embodiments of the invention.
The computer readable storage medium or media can be transportable, such that the
program or programs stored thereon can be loaded onto one or more different computers
or other processors to implement various aspects of the present invention as discussed
above. As used herein, the term “non-transitory computer-readable storage medium”
encompasses only a computer-readable medium that can be considered to be a
manufacture (i.e., article of manufacture) or a machine. Alternatively or additionally, the
invention may be embodied as a computer readable medium other than a computer-
readable storage medium, such as a propagating signal.

The terms “program” or “software” are used herein in a generic sense to refer to
any type of computer code or set of computer-executable instructions that can be
employed to program a computer or other processor to implement various aspects of the
present invention as discussed above. Additionally, it should be appreciated that
according to one aspect of this embodiment, one or more computer programs that when
executed perform methods of the present invention need not reside on a single computer or
processor, but may be distributed in a modular fashion amongst a number of different
computers or processors to implement various aspects of the present invention.

Computer-executable instructions may be in many forms, such as program
modules, executed by one or more computers or other devices. Generally, program
modules include routines, programs, objects, components, data structures, etc. that
perform particular tasks or implement particular abstract data types. Typically the
functionality of the program modules may be combined or distributed as desired in various
embodiments.

Various aspects of the present invention may be used alone, in combination, or in a
variety of arrangements not specifically discussed in the embodiments described in the

foregoing and is therefore not limited in its application to the details and arrangement of

14

10

WO 2012/088171 PCT/US2011/066280

components set forth in the foregoing description or illustrated in the drawings. For
example, aspects described in one embodiment may be combined in any manner with
aspects described in other embodiments.

Also, the invention may be embodied as a method, of which an example has been
provided. The acts performed as part of the method may be ordered in any suitable way.
Accordingly, embodiments may be constructed in which acts are performed in an order
different than illustrated, which may include performing some acts simultaneously, even
though shown as sequential acts in illustrative embodiments. -

Use of ordinal terms such as “first,” “second,” “third,” etc., in the claims to modify
a claim element does not by itself connote any priority, precedence, or order of one claim
element over another or the temporal order in which acts of a method are performed, but
are used merely as labels to distinguish one claim element having a certain name from
another element having a same name (but for use of the ordinal term) to distinguish the
claim elements.

Also, the phraseology and terminology used herein is for the purpose of description

3 &6

and should not be regarded as limiting. The use of “including,” “comprising,” or

¥ CC

“having,” “containing,” “involving,” and variations thereof herein, is meant to encompass

the items listed thereafter and equivalents thereof as well as additional items.

10

15

20

25

30

WO 2012/088171 PCT/US2011/066280

CLAIMS
1. A method, comprising:
Receiving first computer readable instructions configured to control a
microprocessor to perform one or more operations;
using a microprocessor, generating second computer readable instructions based on
the first computer readable instructions, the second computer readable instructions being
configured to perform the one or more operations and to resume execution of a function
from a checkpoint by
1) calling the function;
i1) loading data for use by the function, the data having been saved at
the checkpoint during a prior execution of the function; and
1i1) skipping a portion of the function that was executed during the prior
execution of the function before reaching the checkpoint.
2. The method of claim 1, wherein the method is performed by a compiler that
compiles source code comprising the first computer readable instructions into object code
comprising the second computer readable instructions.
3. The method of claim 1, wherein generating the second computer readable
instructions comprises adding additional instructions to the first computer readable
instructions, the additional instructions being configured to resume execution of the
function from a checkpoint.
4. The method of claim 1, wherein the second computer readable instructions are
additionally configured to save data used by the function.
5. The method of claim 1, wherein the second computer readable instructions are
additionally configured to track a program stack of a program comprising the function.
6. A system comprising;:
a computer readable storage medium having stored thereon computer readable
instructions configured to resume execution of a function from a checkpoint by
1) calling the function;
i1) loading data for use by the function, the data having been saved at
the checkpoint during a prior execution of the function;
1i1) skipping a portion of the function that was executed during the prior
execution of the function before reaching the checkpoint;
v) saving data used by the function; and

V) tracking a program stack of a program comprising the function; and

16

10

WO 2012/088171 PCT/US2011/066280

at least one microprocessor configured to execute the computer readable
instructions.
7. The system of claim 6, wherein the at least one microprocessor comprises a first
microprocessor and second microprocessor.
8. The system of claim 7, wherein the first microprocessor executes the function, and,
when execution of the function using the first microprocessor is interrupted, execution of
the function continues from the checkpoint using the second microprocessor.
9. The system of claim 8, wherein the system comprises:

a first device comprising the first microprocessor; and

a second device comprising the second microprocessor.
10. The system of claim 9, wherein the first device runs a first operating system and

the second device runs a second operating system different from the first operating system.

17

WO 2012/088171 PCT/US2011/066280

1/5
102 112
\ Define Data Structure for Local Variables //
100 114
Save Function —
116
Load Function |+
118
Instantiate data structure for local variables
. 120
104 Update tracking of program stack
\4 124
122\ | Load local variables for function F |-;26
] | Skip fo the appropriate line of function F d
106
Functional Code with Local Variable Re-naming
130
10{ Identify where function & is called /132
Call function 6 |+
134
110 : L
\ Update tracking of program stack 136
Return data -~

FIG. 1

WO 2012/088171 PCT/US2011/066280

2/5

START

202
Begin program execution

200

Yes 203
Checkpoint reached

Save state/data?

v
204

Save program state/
data

206
Continue program execution

t

FIG. 2

WO 2012/088171

300

3/5

START

302
Restart the program

v

04

Call a function in execution
at the checkpoint

v
306

Load local variables that <

were saved at the
checkpoint

v

308

Skip to the line of function
that was in execution at the
checkpoint and resume
execution of the function

v
310]

Call another function that

was in execution atthe ——

checkpoint within the scope
of the previous function

END

FIG. 3

PCT/US2011/066280

WO 2012/088171 PCT/US2011/066280

4/5

£

402
Receive program code

'

404

Modify the code to enable
re-starting execution of the
program from a checkpoint

END

FIG. 4

WO 2012/088171 PCT/US2011/066280

5/5

502 L 503
U U
504
e 501
FIG. 5

603

601

C

>

N

g
<

FIG. 6

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - claims
	Page 19 - claims
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings

