Title: INTERNAL-COMBUSTION ENGINE OIL COMPOSITION

Abstract

An internal-combustion engine oil composition prepared by adding (a) a boron-containing ashless dispersant, (b) a metallic detergent and, if necessary, (c) at least one member selected from among esters of hydroxylated aromatic carboxylic acids with hydroxy compounds and boron-containing derivatives of the esters to a lube base oil at a [B]/[M] ratio of 0.15 or above (wherein B is the boron content (wt.% of the composition, and M is the total content (wt.% of the metals resulting from the metallic detergent in the composition) and having a sulfated ash content of 1.5 wt.% or below. This composition has a lowered ash content, does not impair the performance of an exhaust posttreatment apparatus and is excellent in coking resistance and oxidation stability.
（57）要約

潤滑油基油に対し、（a）ホウ素含有無灰分散剤、（b）金属系清浄剤及び場合により（c）水酸基を有する芳香族カルボン酸とヒドロキシ化合物とのエステル及びそのホウ素含有物から選ばれる少なくても一種を、[B]／[M] ([B]：組成物中のホウ素含有量（重量％）、[M]：組成物中の金属系清浄剤に基づく総金属含有量（重量％）) が0.15以上になる割合で配合してなる硫酸灰分量が1.5重量％以下の内燃機関用潤滑油組成物である。本発明の潤滑油組成物は、低灰分で、排ガス後処理装置の性能を損なうことがないうえ、耐コーティング性及び酸化安定性に優れたものである。
明細書

内燃機関用潤滑油組成物

技術分野

本発明は、内燃機関用潤滑油組成物に関し、さらに詳しくは、低灰分であって、排ガス後処理装置の性能を損なうことのないうえ、耐コーティング性及び酸化安定性に優れる内燃機関用潤滑油組成物、特にディーゼルエンジン用及びガスエンジンヒートポンプ（GHP）用として好適な潤滑油組成物に関するものである。

技術の背景

近年、内燃機関のうち、特にディーゼル機関から排出される窒素酸化物（NOxガス）及び粒子状排出物（パティキュレート（PM））などによる環境汚染が重要な課題となっており、排ガス中の窒素酸化物及び粒子状排出物の削減が急務となっている。

これらの対策として、NOxガスの削減に対しては、排気ガスの再循環率（EGR）を高めたり、あるいは燃料噴射時期を遅延などによって燃焼ピーク温度を低下させることによって対応することが検討されている。

しかしながら、燃焼ピーク温度を低下させると、黒煙やPMの増加につながるため、排ガス後処理装置の装着が必要になってくる。この排ガス後処理装置には、PMトラップあるいは酸化触媒などが検討されているが、いずれもフィルター状の構造を有しているため、従来のディーゼルエンジン油では、油中の金属分による目詰まり（閉塞）が問題となっている。
内燃機関用潤滑油組成物は、一般に無灰分散剤と金属系清浄剤が必要な成分として配合されているが、上記したように、油中の金属分による目詰まりの問題から、金属分の削減が望まれている。しかしながら、金属分を削減するために、金属系清浄剤を配合しなかったり、あるいはその配合量を減少したりすると、優れたエンジン清浄性及び耐デポジット性が得られにくいという問題が生じる。

発明の開示

本発明では、このような状況下で、低灰分であって酸化触媒やPMトラップなどの排ガス後処理装置の性能を損なうことがないと同時に、耐コーティング性及び酸化安定性に優れた内燃機関用潤滑油組成物を提供することを目的とするものである。

本発明者らは、前記の好ましい性質を有する内燃機関用潤滑油組成物を開発すべく鋭意研究を重ねた結果、通常量より少ない量の金属系清浄剤と、それに対し特定の量比以上のホウ素含有無灰分散剤を配合することにより、耐コーティング性及び酸化安定性が向上することを見出した。そして、さらに水酸基を有する芳香族カルボン酸とヒドロキシ化合物とのエステルやそのホウ素含有物を配合することにより、これらの性能がさらに向上することを見出した。本発明は、かかる知見に基づいて完成したものである。

すなわち、本発明は、潤滑油基油に対し、（a）ホウ素含有無灰分散剤、（b）金属系清浄剤、及び場合により（c）水酸基を有する芳香族カルボン酸とヒドロキシ化合物とのエステル及びそのホウ素含有物から選ばれる少なくとも一種を、（B）／（M）／（B）：組成物中のホウ素含有量（重量％）、（M）：組成物中の金属系清浄剤に基づく総金属含有量（重量％）が0.15以上になる割合
で配合してなる硫酸灰分量が1.5重量％以下の内燃機関用潤滑油組成物を提供するものである。

発明を実施するための最良の形態

本発明の潤滑油組成物における基油としては、通常、鉱油や合成油が用いられる。この鉱油や合成油の種類、その他については、特に制限はないと、通常は100℃における動粘度が1.5〜4.0mm²/secの範囲にあるものが用いられる。ここで、鉱油としては、例えば、溶剤精製、水添精製などの通常の精製法により得られたパラフィン基系鉱油、中間基系鉱油又はナフテン基系鉱油などが挙げられる。

また、合成油としては、例えば、ポリブテン、ポリオレフィン（α-オレフィン（共）重合体）、各のエステル（例えば、ポリオールエステル、二塩基酸エステル、リン酸エステルなど）、各種のエーテル（例えば、ポリフェニルエーテルなど）、アルキルベンゼン、アルキルナフタレンなどが挙げられる。

本発明においては、基油として、上記鉱油を一種用いてもよく、二種以上組み合わせて用いてもよい。また、上記合成油を一種用いてもよく、二種以上組み合わせて用いてもよい。さらには、鉱油一種以上と合成油一種以上とを組み合わせて用いてもよい。

本発明の潤滑油組成物においては、（α）成分としてホウ素含有無灰分散剤が用いられる。このホウ素含有無灰分散剤については特に制限はなく、従来公知の様々なものを用いることができる。このようなホウ素含有無灰分散剤としては、例えば（1）アルケニル又はアルキルクロホル酸イミドをホウ素化合物で処理したもの、（2）アルケニル又はアルキルクロホル酸アミドをホウ素化合物で処理した
もの、（3）アルケニル又はアルキルベンジルアミンをホウ素化合物で処理したもの、（4）脂肪酸アミドをホウ素化合物で処理したもの、及び（5）コハク酸エステルをホウ素化合物で処理したものなどを挙げることができる。

前記（1）におけるアルケニル又はアルキルコハク酸イミドは、アルケニル又はアルキル無水コハク酸、あるいはアルケニル又はアルキルコハク酸とポリアミンとの反応によって得られる。ここで、アルケニル基は、分子量200～4,000、好ましくは500～3,000、より好ましくは700～2,300を有する炭素数2～15のオレフィンの重合物から形成されたものであり、好ましいアルケニル基はポリブテニル基またはポリイソブテニル基である。

また、このアルケニル基を水添してアルキル基としてもよい。ポリアミンとしては、例えば、ポリアルキレンポリアミン、好ましくはポリエチレンポリアミンを挙げることができる。具体的には、ジェチレントリアミン、トリエチレンテトラミン、テトラエチレンペントアミン、ペンタエチレンヘキサミンなどが挙げられる。これらのポリアミンは単独で用いてもよく、二種以上を混合して用いてもよい。

さらに、該アルケニル又はアルキルコハク酸イミドには、これと芳香族化合物をマンニッヒ縮合させたものも含まれ、特に、最適な芳香族化合物としては、アルキルフェノール及び硫化アルキルフェノールが挙げられる。

アルキルフェノールのアルキル基は、炭素数3～30のものが使用でき、具体的には、ブチルフェノール、オクチルフェノール、ナニルフェノール、ドデシルフェノール、ヘキサデシルフェノール、エイコシルフェノールなどが挙げられる。また、硫化アルキルフェ
ノールはアルキルフェノールの硫化物である。

上記アルケニルコハク酸イミドとしては、ポリブテニル（無水）コハク酸とポリエチレンポリアミンとの反応生成物であるポリブテニルコハク酸イミド、及びそのアルキルフェノール又は硫化アルキルフェノール誘導体が好ましく用いられる。

前記（2）におけるアルケニル又はアルキルコハク酸アミドは、アルケニル又はアルキルコハク酸とポリアミンから得られる。ここでは、アルケニル基、アルキル基は、上記（1）の場合と同じであつて、また、ポリアミンとしては、上記（1）で例示したものと同じものを挙げることができる。このポリアミンは単独で用いてもよく、二種以上を混合して用いてもよい。

前記（3）におけるアルケニル又はアルキルベンジルアミン（アルケニル又はアルキル置換フェノール、アルデヒド類、アミン類の縮合物）のアルケニル基又はアルキル基については、上記（1）の場合と同じである。

また、前記（4）における脂肪酸アミドは、脂肪酸とポリアミンとから得られ、脂肪酸としては、好ましくは炭素数8～22の飽和又は不飽和の直鎖状もしくは分岐状のカルボン酸が用いられる。ポリアミンとしては、上記（1）で例示したものと同じものを挙げることができる。このポリアミンは単独で用いてもよく、二種以上を組み合わせて用いてもよい。

さらに、前記（5）におけるコハク酸エステルは、コハク酸と、好ましくは炭素数2～50のアルコールから得られたものである。

前記（1）～（5）で用いられるホウ素化合物としては、例えば、ホウ酸、ホウ酸無水物、ハロゲン化ホウ素、ホウ酸エステル、ホ
ウ酸アミド、酸化ホウ素などが挙げられる。
このホウ素含有無灰分散剤は、通常ホウ素を0.1〜3重量％の範囲で含有するものが好ましく用いられ、また一種のみを用いてもよく、二種以上を組み合わせて用いてもよい。

本発明の潤滑油組成物においては、この（a）成分のホウ素含有無灰分散剤は、組成物全重量の基づき、通常1〜20重量％の割合で配合される。この配合量が1重量％未満ではエンジンの清浄性が不充分であり、また20重量％を超えると粘度が上昇しすぎて好ましくない。清浄性及び適正な粘度の点から、ホウ素含有無灰分散剤の好ましい配合量は2〜12重量％の範囲であり、特に2〜8重量％の範囲が好適である。

本発明の潤滑油組成物においては、（b）成分として金属系清浄剤が用いられる。この金属系清浄剤については特に制限はなく、従来公知の様々なものを用いることができる。このような金属系清浄剤としては、例えばアルカリ金属又はアルカリ土類金属のスルホネート、フェネート、サリチレート、ホスホネートなどが挙げられる。ここで、アルカリ金属としては、例えばナトリウムやカリウムなどが挙げられ、アルカリ土類金属としては、例えばカルシウム、バリウム、マグネシウムなどが挙げられる。

これらの金属系清浄剤は、通常は全塩基価（TBN）（JIS K-2501（過塩素酸法））が10〜500mg KOH/gの範囲にあるもの、好ましくは30〜350mg KOH/gの範囲にあるものが用いられる。

本発明の組成物においては、この金属系清浄剤は単独で用いてもよく、二種以上を組み合わせて用いてもよいが、本発明の効果をより良く発揮させるには、金属系清浄剤として、アルカリ金属サリチ
レート及びアルカリ土類金属サリチレートの中から選ばれた一種又は二種以上を用いるのが好ましく、あるいはアルカリ金属サリチレート及びアルカリ土類金属サリチレートの中から選ばれた一種又は二種以上と、アルカリ金属フェネート、アルカリ土類金属フェネート、アルカリ金属スルホネート及びアルカリ土類金属スルホネートの中から選ばれた一種又は二種以上とを組み合わせたものを用いるのが好ましい。

本発明の潤滑油組成物においては、この（ｂ）成分の金属系清浄剤は、組成物全重量に基づき、通常0.5～2.0重量％の割合で配合される。この配合量が0.5重量％未満ではエンジンの清浄性が不充分であり、また2.0重量％を超えると、排ガス後処理装置の目詰まりなどが生じ、好ましくない。エンジンの清浄性及び排ガス後処理装置の目詰まり抑制などの点から、金属系清浄剤の好ましい配合量は0.5～1.0重量％の範囲であり、特に1～5重量％の範囲が好適である。

本発明の潤滑油組成物においては、本発明の効果を、さらに有効に発揮させる目的で、所望に応じ、（ｃ）成分として、水酸基を有する芳香族カルボン酸とヒドロキシ化合物とのエステル及び／又はそのホウ素含有物を配合することができる。このエステルやそのホウ素含有物は、高温安定性に優れる無灰型清浄剤としての機能を有するものである。

上記エステルとしては、例えば一般式（Ⅰ）

\[
(\text{OH})_n, \quad \text{Ar} - (\text{COOH})_m, \quad \cdots (\text{I})
\]

（式中、\(\text{Ar}\)は多価芳香族核、\(\text{R}\)は有機基、\(p\)は1～3の整数、\(n\)）
は1～4の整数、mは1～3の整数を示し、Rが複数ある場合は、
複数のRは同一であっても、異なっていてもよい。
で表される水酸基を有する芳香族カルボン酸と、炭素数が2～80
のアルコールとを反応させることにより得られるものを好ましく挙
げることができる。

上記一般式（1）において、A rは多価芳香族核を示す。この多
価芳香族核としては、例えば、ベンゼン、ナフタレン、アントラセ
ン、フェナントレン、インデン、フルオレン、ビフェニルなどから
誘導されるものが挙げられる。これらの中では、特にベンゼンま
たはナフタレンから誘導されるものが好適である。また、このA rに
は、水酸基、有機基（R）及びカルボキシル基以外に、場合により
ハロゲン原子、ニトロ基、メルカプト基などが置換されていてもよ
い。

また、Rは有機基で、例えば、炭化水素基、アルコキシ基、ジアル
キルアミノ基などが挙げられるが、特に、炭化水素基が好ましい。
Rが複数ある場合は、複数のRは同一でも異なっていてもよい。
該炭化水素基については、特に制限はなく、アルキル基やアルケニ
ル基などの鎖式炭化水素基、シクロアルキル基やシクロアルケニル
基などの環式炭化水素基、フェニル基やナフチル基などの芳香族炭
化水素基のいずれであってもよいが、好ましくはアルキル基やアル
ケニル基などの鎖式炭化水素基である。これらの炭化水素基は、別
の炭化水素基、例えば、低級アルキル基、シクロアルキル基、フェ
ニル基などによって置換されていても差し支えない。また、該炭化
水素基は、実質上炭化水素基的な性質を保持しているかぎり、非炭
化水素基によって置換されているものも包含する。この非炭化水素
基としては、例えば、ニトロ基、アミノ基、ハロ基、ヒドロキシル
基、低級アルコキ基、低級アルキルメチルカプト基、オキソ基、チオ基、中断基（例えば、-NH-, -O-, -S-) などが挙げられる。

好ましい R の具体例としては、ヘキシル基、1-メチルヘキシル基、2, 3, 5-トリメチルヘプチル基、オクチル基、3-エチルオクチル基、4-エチル-5-メチルオクチル基、ノニル基、テシル基、ドデシル基、2-メチル-4-エチルドデシル基、ヘキサデシル基、オクタデシル基、エイコシル基、ドコシル基、テトラコントチル基などの直鎖又は分岐の炭素数 6～50 のアルキル基、オレフィン重合体（例えば、ポリエチレン、ポリプロピレン、ポリイソブチレン、エチレンプロピレン共重合体など）から誘導される直鎖又は分岐の炭素数 6～100 のアルキル基などを挙げることができる。

一方、炭素数 2～80 のアルコールとしては、脂肪族アルコールであってもよいし、芳香族アルコールであってもよく、また1価アルコールであっても、多価アルコールであってもよい。脂肪族アルコールとしては、例えば、炭素数 2～24 の直鎖状又は分岐状の1価アルコール類、具体的には、ヘキサノール、オクタノール、デカンノール、ドデカンノール、テトラデカンノール、ヘキサデカンノール、オクタデカンノール、オレイルアルコール、リノレニルアルコール、ラウリルアルコール、ミリスチルアルコール、セチルアルコール、ステアリルアルコール、ベヘニルアルコールなど、また、オキソ工程により製造されるタイプの比較的高級な合成の1価アルコール（例えば、2-エチルヘキシルアルコール）、アルドール縮合により形成されるタイプや、有機アルミニウム触媒によるα-オレフィン（例えば、エチレン、プロピレンなど）のオリゴマー化とそれに続く
酸化により形成されるタイプの比較的高級な合成の1価アルコール、さらにはシクロペンタノール、シクロヘキサノール、シクロデカノールなどのシクロアルキルアルコールなど、あるいは多価アルコール類、具体的には、エチレングリコール、プロピレングリコール、ブチレングリコール、へプチレングリコール、ベンチレングリコール、ヘキシレングリコール、ヘプチレングリコール、2-エチル-1、3-トリメチレングリコール、ネオベンチルグリコール、ジエチレングリコール、比較的高級なポリエチレングリコールやポリプロピレングリコール、トリプロピレングリコール、ジプロピレングリコール、ジベンチレングリコール、ジヘキシレングリコール、ジヘプチレングリコール、さらには、一般式HOCH₂（CHOH）₃CH₂OH（例えば、グリセロール、ソルビトール、マンニトールなど）の糖類、ペンタエリスリトールやそのオリゴマー（例えば、ジペンタエリスリトール、トリペンタエリスリトールなど）、トリメチロールエタン、トリメチロールプロパンなどのメチロールポリオールなどが挙げられる。

芳香族アルコールとしては、例えば、フェノール、アルキルフェノール、ナフタール、アルキルナフタールなどの1価アルコール類、カーテコール、アルキルカテコール、硫化アルキルフェノール、メチレン架橋のアルキルフェノールなどの2価アルコール類、トリヒドロキシペンゼン、トリヒドロキシアルキルペンゼンなどの3価アルコール類などが挙げられる。

このエステルのアルコール成分としては、芳香族アルコールが好ましく、特にアルキルフェノール、アルキルカテコール、トリヒドロキシアルキルペンゼンなどのアルキル置換芳香族アルコールが、得られるエステルの性能の点から好ましい。ここで、アルキル基は
炭素数1〜24、好ましくは6〜20のものが好適であり、またこのアルキル基は、直鎖状、分岐状のいずれでもよく、さらに芳香環に1〜3個程度置換されていてもよいが、1個置換したものが好ましい。本発明において、(c)成分として用いられるエステルの具体例としては、

![化学式](image)

\(x\)は1〜2の実数)
などが挙げられる。

また、これらのエステルのホウ素含有物は、該エステルをホウ素化合物で処理して得られたものであり、ホウ素化合物としては、例えばホウ酸、ホウ酸無水物、ハロゲン化ホウ素、ホウ酸エステル、ホウ酸アミド、酸化ホウ素などが挙げられる。

本発明の潤滑油組成物においては、この（c）成分として、上記エステル及びそのホウ素含有物の中から選ばれた一種のみを用いてもよく、二種以上を組み合わせて用いてもよい。また、その配合量は、組成物全重量に基づき0.1 ～ 3.0 重量%の範囲で選ぶのが好ましい。この配合量が0.1 重量%未満では、（c）成分を配合した効果が発揮されず、また3.0 重量%を超えると低温での粘度が上昇して好ましくない。効果及び適正な粘度の面から、この（c）成分のより好ましい配合量は0.5 ～ 2.0 重量%の範囲であり、特に1 ～ 1.0 重量%の範囲が好適である。

さらに、本発明の潤滑油組成物においては、組成物中のホウ素含有量を[B]（重量%）、組成物中の金属系清浄剤に基づく総金属含有量を[M]（重量%）とした場合、[B]／[M]が0.15 以上であることが必要である。この[B]／[M]が0.15 未満では耐コーティング性及び酸化安定性の向上効果が不充分であり、本発明の目的が達せられない。耐コーティング性及び酸化安定性の面から、好ましい[B]／[M]は0.20 以上である。また、組成物中のホウ素含有量[B]は0.05 重量%以上であるのが好ましい。この含
有量が0.05重量％未満ではエンジンの清浄性が充分に発揮されないことがある。また、このホウ素含有量が多くなることは、（a）成分の含有量や、（c）成分としてエスチルのホウ素含有物を用いる場合はその含有量が多くなることであり、その結果組成物の粘度が上昇する。したがって、エンジンの清浄性及び適正な粘度の面から、より好ましいホウ素含有量は0.05〜1.0重量％の範囲であり、特に0.05〜0.5重量％の範囲が好適である。

また、本発明の潤滑油組成物においては、硫酸灰分量は1.5重量％以下であることが必要である。この硫酸灰分量が1.5重量％を超えると排ガス後処理装置の目詰りなど、不良が生じる。排ガス後処理装置の目詰りなどを抑制する面から、好ましい硫酸灰分量は1.2重量％以下である。

本発明の潤滑油組成物には、本発明の目的が達なわれない範囲で、必要に応じ、酸化防止薬兼耐摩耗薬、粘度指数向上剤、流動点低下剤、油性剤、防錆剤、無灰系酸化防止剤、界面活性剤、消泡剤、摩擦調整剤などを用途に応じて配合することができる。

これらの添加剤の中では、特に酸化防止薬兼耐摩耗薬、粘度指数向上剤及び流動点低下剤が好ましく用いられる。ここで、酸化防止薬兼耐摩耗薬としては、ジチオリン酸亜鉛（ZnDTP）が好適であり、このZnDTPとしては例えば、一級アルキルジェチオリン酸亜鉛、二級アルキルジェチオリン酸亜鉛、アルキル置換アリールジェチオリン酸亜鉛、アリールジェチオリン酸亜鉛などが挙げられる。具体的には、炭素数3〜18の直鎖又は分岐炭化水素基を有する第一級又は第二級アルキルジチオリン酸亜鉛、フェニル基又は炭素数1〜18のアルキル置換フェニル基を有するアリール又はアルキル置換アリールジェチオリン酸亜鉛などが挙げられる。
粘度指数向上剤としては、例えば、ポリメタクリレート、分散型ポリメタクリレート、オレフィン系共重合体（例えば、エチレン＝プロピレン共重合体など）、分散型オレフィン系共重合体、スチレン系共重合体（例えば、スチレン＝ジエン水素化共重合体など）などが、流動点低下剤としては、例えば、ポリメタクリレートなどが挙げられる。

無灰系酸化防止剤としては、例えば、アルキル化ジフェニルアミン、フェニル－α－ナフチルアミン、アルキル化－α－ナフチルアミンなどのアミン系酸化防止剤、2、6－ジ－t－ブチル－4－メチルフェノール；4、4′－メチレンビス（2、6－ジ－t－ブチルフェノール）；4、4′－ビス（2、6－ジ－t－ブチルフェノール）；4、4′－ビス（2－メチル－6－t－ブチルフェノール）；2、2′－メチレンビス（4－エチル－6－t－ブチルフェノール）；2、2′－メチレンビス（4－メチル－6－t－ブチルフェノール）；4、4′－ブチリデンビス（3－メチル－6－t－ブチルフェノール）；4、4′－チオビス（2－メチル－6－t－ブチルフェノール）；4、4′－チオビス（3－メチル－6－t－ブチルフェノール）；2、2′－チオビス（4－メチル－6－t－ブチルフェノール）などのフェノール系酸化防止剤などが挙げられる。

以上述べたように、本発明の内燃機関用潤滑油組成物は、低灰分であって、酸化触媒やPMトラップなどの排ガス後処理装置の性能を損なうことがない上、耐コーティング性及び酸性安定性に優れており、特にディーゼルエンジン用及びガスエンジンヒートポンプ（GHP）用として好適に用いられる。

次に、本発明を実施例によりさらに詳しく説明するが、本発明は
これらの例によってなんら限定されるものではない。
なお、潤滑油組成物の性能は以下に示す方法に従い評価した。
（1） ホットチュープ試験
内径2mmのガラス管中に、供試油0.3ミリリットル/hr、空気10ミリリットル/minをガラス管の温度を310℃に保ちながら16時間流し続けた。ガラス管中に付着したラッカーと色見本を比較し、透明の場合は10点、黒の場合は0点として評点を付けた。評点が高いほど性能が良いことを示す。
（2） ISO（内燃機関用潤滑油酸化安定度試験）
JIS K-2514に従い、165.5℃、72時間の条件で試験を行い、試験後の試料の塩基価（塩酸法）を求めた。
（3） 硫酸灰分量
JIS K-2272に準拠して測定した。
実施例1〜7及び比較例1〜5
第1表に示す配合割合で潤滑油組成物を調製し、その性能を評価した。結果を第1表に示す。
第1表 - 1

<table>
<thead>
<tr>
<th>潤滑油組成物</th>
<th>実施例1</th>
<th>実施例2</th>
<th>実施例3</th>
</tr>
</thead>
<tbody>
<tr>
<td>基油①</td>
<td>87.8</td>
<td>87.3</td>
<td>83.7</td>
</tr>
<tr>
<td>(a) ホウ素含有無灰分散剤②</td>
<td>3.0</td>
<td>3.0</td>
<td>6.0</td>
</tr>
<tr>
<td>非ホウ素無灰分散剤③</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(b) Caフェネート 250TBN④</td>
<td>2.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Caトリチルエート 170TBN</td>
<td>-</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>Caスルホネート 300TBN</td>
<td>-</td>
<td>2.9</td>
<td>-</td>
</tr>
<tr>
<td>(c) エステル ⑤</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>エステル ⑥</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ZnDTP, VII, PPD など⑦</td>
<td>6.8</td>
<td>6.8</td>
<td>6.8</td>
</tr>
<tr>
<td>(M) (重量%)</td>
<td>0.23</td>
<td>0.32</td>
<td>0.21</td>
</tr>
<tr>
<td>(B) (重量%)</td>
<td>0.06</td>
<td>0.06</td>
<td>0.12</td>
</tr>
<tr>
<td>(B) / (M)</td>
<td>0.26</td>
<td>0.19</td>
<td>0.57</td>
</tr>
<tr>
<td>硫酸灰分量 (重量%)</td>
<td>1.1</td>
<td>1.4</td>
<td>1.1</td>
</tr>
<tr>
<td>塩基価 (塩酸法) (mgKOH/g)</td>
<td>7.0</td>
<td>9.6</td>
<td>8.6</td>
</tr>
<tr>
<td>性能</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ホットチューブ試験 (評点)</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>180T後の塩基価 (mgKOH/g)</td>
<td>1.5</td>
<td>1.0</td>
<td>1.5</td>
</tr>
</tbody>
</table>
第1表 - 2

<table>
<thead>
<tr>
<th></th>
<th>実施例 4</th>
<th>実施例 5</th>
<th>実施例 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>基油</td>
<td>83.2</td>
<td>83.2</td>
<td>82.5</td>
</tr>
<tr>
<td>（a）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ホウ素含有無灰分散剤①</td>
<td>5.0</td>
<td>5.0</td>
<td>6.0</td>
</tr>
<tr>
<td>非ホウ素無灰分散剤②</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>（b）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca 酸化ナトリウム 250TBN④</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>Ca サリチル酸 170TBN</td>
<td>3.0</td>
<td>3.0</td>
<td>1.7</td>
</tr>
<tr>
<td>Ca カルシウム 300TBN</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>（c）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>エステル 1⑤</td>
<td>-</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>エステル 2⑥</td>
<td>2.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ZnDTP、VII、PPDなど ⑦</td>
<td>6.8</td>
<td>6.8</td>
<td>6.8</td>
</tr>
<tr>
<td>[M] （重量％）</td>
<td>0.18</td>
<td>0.18</td>
<td>0.19</td>
</tr>
<tr>
<td>[B] （重量％）</td>
<td>0.10</td>
<td>0.10</td>
<td>0.12</td>
</tr>
<tr>
<td>(B) / [M]</td>
<td>0.56</td>
<td>0.56</td>
<td>0.63</td>
</tr>
<tr>
<td>硫酸灰分量 （重量％）</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>塩基価（塩酸法）（mgKOH/g）</td>
<td>7.6</td>
<td>7.7</td>
<td>8.1</td>
</tr>
<tr>
<td>性能</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ホットチューブ試験 [評点]</td>
<td>6</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>1SOT後の塩基価（mgKOH/g）</td>
<td>2.1</td>
<td>2.5</td>
<td>1.9</td>
</tr>
<tr>
<td>組成物</td>
<td>実施例7</td>
<td>比較例1</td>
<td>比較例2</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>基油 1)</td>
<td>85.0</td>
<td>87.2</td>
<td>86.2</td>
</tr>
<tr>
<td>(a) ホウ素含有無灰分散剤 2)</td>
<td>3.5</td>
<td>1.0</td>
<td>1.5</td>
</tr>
<tr>
<td>非ホウ素無灰分散剤 3)</td>
<td>-</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>(b) Ca フェネート 250TBN 4)</td>
<td>-</td>
<td>-</td>
<td>2.5</td>
</tr>
<tr>
<td>Ca サリチレート 170TBN</td>
<td>1.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ca スルホネート 300TBN</td>
<td>1.2</td>
<td>2.0</td>
<td>-</td>
</tr>
<tr>
<td>(c) エステル 1 5)</td>
<td>2.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>エステル 2 6)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ZnDTP, VII, PPD など 7)</td>
<td>6.8</td>
<td>6.8</td>
<td>6.8</td>
</tr>
<tr>
<td>(M) (重量%)</td>
<td>0.23</td>
<td>0.24</td>
<td>0.23</td>
</tr>
<tr>
<td>(B) (重量%)</td>
<td>0.07</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>(B)／(M)</td>
<td>0.30</td>
<td>0.08</td>
<td>0.13</td>
</tr>
<tr>
<td>硫酸灰分量 (重量%)</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>塩基価 (塩酸法) (mgKOH/g)</td>
<td>7.6</td>
<td>7.8</td>
<td>8.0</td>
</tr>
<tr>
<td>性能</td>
<td>6</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>能 1S0T後の塩基価 (mgKOH/g)</td>
<td>2.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>潤滑油組成物</td>
<td>比較例 3</td>
<td>比較例 4</td>
<td>比較例 5</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>基油</td>
<td>85.7</td>
<td>88.2</td>
</tr>
<tr>
<td></td>
<td>部素含有無灰分散剤</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>部素無灰分散剤</td>
<td>2.5</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>Ca フェニート 250TBN4)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Ca サリチル酸 170TBN</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Ca スルホネート 300TBN</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>エステル 15)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>エステル 26)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>ZnDTP, VII, PPD など7)</td>
<td>6.8</td>
<td>6.8</td>
</tr>
<tr>
<td>[M] (重量％)</td>
<td>0.58</td>
<td>0.35</td>
<td>0.21</td>
</tr>
<tr>
<td>[B] (重量％)</td>
<td>0</td>
<td>0</td>
<td>0.02</td>
</tr>
<tr>
<td>[B] / [M]</td>
<td>0</td>
<td>0</td>
<td>0.10</td>
</tr>
<tr>
<td>硫酸灰分量 (重量％)</td>
<td>2.2</td>
<td>1.4</td>
<td>1.0</td>
</tr>
<tr>
<td>塩基価 (塩酸法) (mgKOH/g)</td>
<td>14.0</td>
<td>8.7</td>
<td>7.6</td>
</tr>
<tr>
<td>性能</td>
<td>ホットループ試験 [評点]</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ISO 105後の塩基価 (mgKOH/g)</td>
<td>0.3</td>
<td>0.1</td>
</tr>
</tbody>
</table>

注1) 基油: 100N (ニュートラル) と 150N との混合油。100℃動粘度 5 mm²/sec

2) 部素含有無灰分散剤: 部素含有ポリブチルコハク酸イミド

3) 部素無灰分散剤: ポリブチルコハク酸イミド

4) TBVN: 全塩基価 (過塩素酸法, mg KOH/g)

5) エステル 1: ドデシルサリチル酸 ドデシルフェニルエステル

6) エステル 2: ドデシルサリチル酸グリコールエステル

7) ZnDTP: 第一級／第二級型ジチオリン酸亜鉛
VII（粘度指数向上剤）：オレフィン系共重合体

PPD（流動点降下剤）：ポリメタクリレート

産業上の利用可能性

本発明の内燃機関用潤滑油組成物は、低灰分であって、排ガス後処理装置の性能を損なうことがないうえ、耐コーティング性及び酸化安定性に優れたものであり、特にディーゼルエンジン用及びガスエンジンヒートポンプ（GHP）用として好適に用いることができるものである。
請求の範囲

（１）潤滑油基油に対し、（a）ホウ素含有無灰分散剤及び（b）金属系清浄剤を、[B]／[M] [B]：組成物中のホウ素含有量（重量％）、[M]：組成物中の金属系清浄剤に基づく総金属含有量（重量％）が0.15以上になる割合で配合してなる硫酸灰分量が1.5重量％以下の内燃機関用潤滑油組成物。

（２）潤滑油基油に対し、（a）ホウ素含有無灰分散剤、（b）金属系清浄剤及び（c）水酸基を有する芳香族カルボン酸とヒドロキシ化合物とのエステル及びそのホウ素含有物から選ばれる少なくとも一種を、[B]／[M] [B]：組成物中のホウ素含有量（重量％）、[M]：組成物中の金属系清浄剤に基づく総金属含有量（重量％）が0.15以上になる割合で配合してなる硫酸灰分量が1.5重量％以下の内燃機関用潤滑油組成物。

（３）[B]／[M]が0.20以上である請求の範囲第１項又は第２項に記載の内燃機関用潤滑油組成物。

（４）ホウ素含有量が0.05重量％以上である請求の範囲第１項又は第２項に記載の内燃機関用潤滑油組成物。

（５）（b）成分が、アルカリ金属サリチレート及びアルカリ土類金属サリチレートの中から選ばれた少なくとも一種である請求の範囲第１項又は第２項に記載の内燃機関用潤滑油組成物。
(6) (b) 成分が、アルカリ金属サリチレート及びアルカリ土類金属サリチレートの中から選ばれた少なくとも一種と、アルカリ金属フェネート、アルカリ土類金属フェネート、アルカリ金属スルホネート及びアルカリ土類金属スルホネートの中から選ばれた少なくとも一種との混合物である請求の範囲第1項又は第2項に記載の内燃機関用潤滑油組成物。

(7) (c) 成分が、水酸基を有する芳香族カルボン酸と炭素数2～80のアルコールとのエステル及びそのホウ素含有物から選ばれる少なくとも一種である請求の範囲第2項記載の内燃機関用潤滑油組成物。

(8) (c) 成分が、水酸基を有する芳香族カルボン酸とアルキル置換芳香族アルコールとのエステル及びそのホウ素含有物から選ばれる少なくとも一種である請求の範囲第2項記載の内燃機関用潤滑油組成物。

(9) (c) 成分における水酸基を有する芳香族カルボン酸が、一般式 (I)

\[
\begin{align}
\text{O H} \uparrow \\
Ar - (COOH)_m \quad \cdots \text{(I)} \\
(\text{R})_n
\end{align}
\]

(式中、Arは多価芳香族核、Rは有機基、pは1～3の整数、nは1～4の整数、mは1～3の整数を示し、Rが複数ある場合は、複数のRは同一でも異なっていてもよい。)

で表されるものである請求の範囲第2項, 第7項又は第8項に記載
の内燃機関用潤滑油組成物。
INTERNATIONAL SEARCH REPORT

International application No. PCT/JP96/00620

A. CLASSIFICATION OF SUBJECT MATTER
Int. C16 C10M139/00, C10M159/20, C10M105/40, C10N40:25

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int. C16 C10M139/00, C10M159/20, C10M105/40, C10N40:25

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP, 6-184578, A (Oronaito Japan K.K.), July 5, 1994 (05. 07. 94) (Family: none)</td>
<td>1 - 9</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☐ See patent family annex.

- Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - "&" document member of the same patent family

Date of the actual completion of the international search
May 8, 1996 (08. 05. 96)

Date of mailing of the international search report
May 21, 1996 (21. 05. 96)

Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)
国際調査報告

国際出願番号 PCT/JP 96/00620

A. 発明の属する分野の分類（国際特許分類（IPC））
Int.Cl* C19M139/00, C19M159/20, C19M105/40, C19N40:25

B. 調査を行なった分野
調査を行なった最小限資料（国際特許分類（IPC））
Int.Cl* C19M139/00, C19M159/20, C19M105/40, C19N40:25

最小限資料以外の資料で調査を行なった分野に含まれるもの

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー*</th>
<th>引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 6-184578 A（オホナイトジャパン株式会社）5.7月.1994（05.07.94）（ファミリーなし）</td>
<td>1-9</td>
</tr>
</tbody>
</table>

진열欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー
「A」特に関連のある文献ではなく、一般的な技術水準を示すもの
「E」先行文献であるが、国際出願日後に公表されたもの
「L」優先権主張に当該提起される文献又は他の文献の発行日若しくは他に特別な理由を確立するために引用する文献（理由を付す）
「O」口頭による開示、使用、展示等に言及する文献
「P」国際出願日以前でかつ優先権の主張の基礎となる出願

国際調査を完了した日 08.05.96
国際調査報告の発送日 21.05.96

国際調査機関の名称及び住所
日本国特許庁（ISA/JP）
郵便番号100
東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員） 福井 悟
電話番号03-3581-1101 内線3443

株式PCT/ISA/210（第2ページ）（1992年7月）