ABSTRACT OF THE DISCLOSURE

An accessory track unit for interconnected track units forming a track having a closed main guide groove therein and used with pattern-operated vehicles of the type having a depending guide which engages the groove to steer the vehicles above the track, wherein the track unit of the present invention includes functions as a water hazard, receiving vehicles from the track and alternately returning them at different spaced points for continued movement along the track, the vehicles, during return to the track, giving the illusion of fording the water hazard.

The present invention relates generally to toy tracks for battery-operated vehicles, and more particularly to an accessory track unit which simulates a water hazard and effectiely also exerts control over vehicle movement on the track to thereby increase the play value of the product.

The track herein is of the type comprised of interconnected units defining therealong a continuous main guide groove and used with battery-operated vehicles having guide pins extending into and engaging the guide groove to steer the vehicles along the track. This type track is a very important product because of its popularity. It does require, however, auxiliary or accessory units, otherwise the repetitious running of the vehicles along the track can become monotonous. Thus, there is a constant need for these accessory units, particularly such units that have an automatic mode of operation initiated, preferably by the vehicles themselves, are easily incorporated in the overall track system, and are capable of being economically mass produced.

Broadly, it is an object of the present invention to provide an improved accessory track unit meeting the foregoing and other desirable commercial requirements and effectively increasing the play value of the track. Specifically, it is an object to provide a track unit which simulates a water hazard and the fording thereof by the vehicles, each vehicle being set in the right direction, but not actually guided by a guide groove, during crossing of the hazard to thereby more realistically simulate the fording of the water hazard.

An accessory unit demonstrating objects and advantages of the present invention includes a body appropriately finished to resemble a water hazard and having formed therein, as a continuation of the main guide groove, an entrance guide groove, two exit guide grooves for returning vehicles to the main guide groove, and a switching member operatively arranged to channel a vehicle first into one exit guide groove and then into the other exit guide groove. Each exit guide groove is not connected to a cooperating entrance opening back into the main guide groove, but merely sets the vehicle along the proper course to enter such opening, the vehicle, during this movement to an opening, giving the illusion of fording the water hazard.

The above brief description, as well as further objects and advantages of the present invention, will be more fully appreciated by reference to the following detailed description of a presently preferred, but nonetheless illustrative, embodiment in accordance with the present invention, when taken in conjunction with the accompanying drawings, wherein:

FIG. 1 is a top perspective view of the accessory track hereof illustrated in its operative position connected to other track units with which it forms a track for battery-operated vehicles;

FIG. 2 is an enlarged plan view of the accessory track unit, a battery-operated vehicle being illustrated in phantom perspective thereon;

FIG. 3 is a partial plan view of the switching member of the track unit, the positions of movement of which are indicated in full line and phantom line perspective;

FIG. 4 is a partial plan view similar to FIG. 3 illustrating how the switching member alternately channels the vehicle to one and then to another of two exit guide grooves of the unit; and

FIG. 5 is an elevational view, in section taken on line 5-5 of FIG. 1, illustrating further structural details of the switching member.

Reference is now made to the drawings, and in particular to FIG. 1, illustrating an accessory track unit, generally designated 10, of the present invention. The track unit 10 is illustrated in an assembled condition with additional track units 12, 14 and 16 connected to it; all units cooperating to form a continuous track system having a closed track guide groove 18. As best shown in FIG. 2, there is an initially encountered or entrance portion 18a of the track guide groove 18 formed in the body 10a of the accessory track unit 10 through which vehicles are directed onto the unit, and first and second exit guide groove length portions 18b and 18c, respectively, for directing the vehicles back into the track guide groove 18. To this end, the two exit guide grooves 18b and 18c are oriented at an angle towards openings 20a and 20b which lead into the track guide groove 18. Thus, in practice, one or more battery-operated vehicles, such as the vehicle 22, operate on the track and each has a depending guide 24 mounted on its front end which engages with the track guide groove 18 to steer the vehicle about the track. The accessory track unit 10 herein increases the play value of the track by controlling the movement of each vehicle 22 such that after entering upon the track 10 in the entrance guide groove 18a, the vehicle is alternately channeled first to one exit guide groove 18b and then to the other exit guide groove 18c; this in turn, resulting in the vehicle being alternately directed towards the openings 20a and 20b at either of which point it resumes its travel along the track guide groove 18. This control over the travel of the vehicles operating over the track unit 10 increases the play value of the entire track system.

To achieve alternate channeling of the vehicle 22, the track unit 10 includes a switch member 26 pivotally mounted, as at 28, to the body 10a such that the member 26 is rotatably movable about the axis of the pivot 28, as is perhaps best illustrated in FIG. 3. The switch member 26 is oriented in outwardly diverging directions such that each wall ultimately forms the outer wall of the two walls bounding the exit guide grooves 18b and 18c. Thus, the wall 30 together with a horizontally oriented wall 30a bounds a generally triangularly shaped recess in the surface of the body 10a in which the switch member 26 is pivotally movable. Member 26, as clearly illustrated, is trianually shaped and, as such, presents two outwardly diverging walls 26a and 26b which cooperate with the length portions of the walls 30 connected between the entrance guide grooves 18a and exit guide
grooves 18b, 18c to form a guiding passageway which is engaged by the depending guide 24 of the vehicle; this engagement resulting in movement of the vehicle 22 to one or to the other of the exit guide grooves 18b, 18c. Additionally, while forming a guiding passageway to one exit guide groove, the surfaces 26a, 26b effectively block off the other exit guide groove. This condition is illustrated in FIGS. 3 and 4: FIG. 3 illustrating the vehicle guide 24 being shunted by the switch member 26 from the entrance guide groove 18a into the exit guide groove 18b; and FIG. 4 illustrating the alternative condition wherein the switch member 26 is in the position in which the depending guide 24 is shunted from the entrance guide groove 18a into the other exit guide groove 18c.

The movement of the switch member 26 through a switching stroke S and thus between positions steering the vehicle 18 into one and then the other of the exit guide grooves 18b, 18c is facilitated by lateral projections 32a, 32b respectively provided on the connecting walls 30, preferably at the junction of these walls with the opening into the exit guide grooves 18b, 18c. Each projection 32a, 32b forces the depending guide 24 inwardly against the trailing edges 26a, 26b so that the momentum of the moving vehicle 22 actuates the move 26 through the switching stroke movements S. In this way the accessory track unit 10 functions automatically to provide control over the movement of the vehicles operating on the track.

To further increase the play value of the accessory track unit 10, a preferred form is that illustrated herein in which the exit guide grooves 18b, 18c are not directly connected to the openings 20a and 20b into the track guide groove 18. The vehicles operating on the track, as exemplified by vehicle 22, are thus merely directed from an exit guide groove 18b, 18c toward the particular opening 20a, 20b cooperating therewith which, in an obvious manner, adds to the excitement in using the track 10. To insure that the vehicle depending guide 24 enters an opening 20a, 20b, the track unit body 18a includes built-up or raised portions 10b which can easily be surmounted by the vehicle and which effectively serve to funnel the vehicle depending guide 24 into an opening 20a, 20b of the track guide groove 18. Also, as already noted, the exit guide grooves 18b, 18c are oriented in the appropriate direction to set the vehicle 22 in the proper direction towards the openings 20a, 20b. Still further, in the illustrated embodiment of the accessory track unit 10, it is preferred to finish the surface 10c in an appropriate manner to simulate water so that the unit functions as a water hazard for the track.

A latitude of modification, change and substitution is intended in the foregoing disclosure and in some instances some features of the invention will be employed without a corresponding use of other features.

What is claimed is:

1. In combination, a track defining thereon a continuous track guide groove for operating a toy vehicle thereon, said vehicle being the type having a depending guide adapted to engage with said track guide groove to steer said vehicle along said track, and an accessory track unit connected in said track comprising a body having formed therein an entrance guide groove operatively connected to form a continuation of said track guide groove for directing said vehicle onto said accessory track unit and first and second exit guide grooves operatively associated at separate points with said track guide groove for returning said vehicle back to said track guide groove, and a switch on said body located between said entrance and said first and second exit guide grooves for alternatively channeling said vehicle during said return thereof to one and then to the other of said first and second exit guide grooves, said body having a first wall and a second wall respectively connected from each of the two walls bounding said entrance guide groove to each outer wall of the two walls bounding said first and second exit guide grooves, and said switch including a pivotally mounted member presenting a pair of outwardly diverging guide surfaces and pivotally movable through switching stroke between operative positions in which said guide surfaces alternately cooperate with said first and second walls to guide said vehicle into one said exit guide groove while simultaneously blocking entry into said other exit guide groove.

2. An accessory track unit as defined in claim 1 wherein said body first and second walls each have a lateral projection thereon adjacent the juncture of each with said outer wall of said first and second exit guide grooves effective to guide said vehicle against said pivotally mounted member of said switch, whereby said member is actuated by said vehicle through said switching stroke.

3. An accessory track unit as defined in claim 2 wherein said first and second guide grooves are each spaced from its said cooperating opening into said track guide groove and are each oriented so as to direct said vehicle moving therethrough towards said opening when causing said return of said vehicle to said track guide groove.

4. The combination according to claim 1 wherein said pivotally mounted member is adapted so that said depending guide strikes one of said outwardly diverging guide surfaces as said toy vehicle passes through said switch to drive said pivotally mounted member through said switching stroke.

5. The combination according to claim 1 wherein said diverging guide surfaces come together at a forward point on said pivotally mounted member and each outwardly diverging guide surface includes a rear section remote from said forward point, said pivotally mounted member being positioned so that as said toy vehicle passes over said switch said depending guide engages one of said diverging guide surfaces adjacent said forward point and directs said vehicle adjacent one of said first and second walls and into the corresponding one of said first and second exit guide grooves, said depending guide engaging one said rear section before it passes into said exit guide groove to drive said switch through said switching stroke.

References Cited

UNITED STATES PATENTS

2,161,314 6/1939 Randall 104—60
2,636,114 4/1953 Fields 104—60
3,290,498 12/1966 Lahr 104—60
3,291,392 12/1966 Cramer 104—60
3,777,958 4/1968 Bex 104—60

ARTHUR L. LA POINT, Primary Examiner
DANIEL F. WORTH, III, Assistant Examiner

U.S. Cl. X.R.

104—53, 100