(19

PATENTS OFFI

anlIE 20170205 a3 Al

(43) Date of Publication of Application:
16.05.2018 Journal No. 2359

(12) IRISH PATENT APPLICATION

(21) Application Number: 20170205

(22) Date of Filing: 28.09.2017

(30) Priority data: US 10.11.2016 15/348,199
US 10.11.2016 15/348,199

(51) Int. Cl. (2018.01)
GO6N 3/00

(71) Applicant(s):

GOOGLE INC.
Mountain View CA 94043
United States of America

Inventor(s):
REGINALD CLIFFORD YOUNG
WILLIAM JOHN GULLAND

Agent and/or Address for Service:
TOMKINS & CO.

5 Dartmouth Road

Dublin 6

Ireland

(54) Performing kernel striding in hardware

(57) Methods for receiving a request to process, on a hardware circuit, a neural network comprising a first convolutional
neural network layer having a stride greater than one, and in response, generating instructions that cause the hardware
circuit to, during processing of an input tensor, generate a layer output tensor equivalent to an output of the first
convolutional neural network layer by processing the input tensor using a second convolutional neural network layer
having a stride equal to one but that is otherwise equivalent to the first convolutional neural network layer to generate a
first tensor, zeroing out elements of the first tensor that would not have been generated if the second convolutional neural
network layer had the stride of the first convolutional neural network layer to generate a second tensor, and performing
max pooling on the second tensor to generate the layer output tensor. <Figure 1>

1602

"02

cPy

Logical
Address

"

Ramote
Memory

Muemory Management Unit

150

i70 7

DRAM
Page

Page Table

158

Translation
Lookaside Butfer

Page 2

_Page3

Page 4

FIG. 1

TRUE COPY |
AS
LODGED

PERFORMING KERNEL STRIDING IN HARDWARE

BACKGROUND
This specification relates to computing neural network inferences in hardware.
Neural networks are machine learning models that employ one or more layers to
generate an output, e.g., a classification, for a received input. Some neural networks
include one or more hidden layers in addition to an output layer. The output of each
5 hidden layer is used as input to another layer in the network, e.g., the next hidden layer or
the output layer of the network. Each layer of the network generates an output from a

received input in accordance with current values of a respective set of parameters.

SUMMARY
In general, this specification describes a special-purpose hardware circuit that
computes neural network inferences.

10 In general, one innovative aspect of the subject matter described in this
specification can be embodied in methods and systems for receiving a request to process a
neural network on a hardware circuit, the neural network comprising a first convolutional
neural network layer having a stride that is greater than one, and in response, generating
instructions that when executed by the hardware circuit cause the hardware circuit to,

15 during processing of an input tensor by the neural network, generate a layer output tensor
that is equivalent to an output of the first convolutional neural network layer by
performing operations comprising, processing the input tensor to the first convolutional
neural network layer using a second convolutional neural network layer that has a stride
that is equal to one but is otherwise equivalent to the first convolutional neural network

20 layer to generate a first tensor, zeroing out elements of the first tensor that would not have
been generated if the second convolutional neural network layer had the stride of the first
convolutional neural network layer to generate a second tensor, and performing max
pooling on the second tensor to generate the layer output tensor.

Implementations can include one or more of the following features. In some

25 implementations, zeroing out elements of the first tensor comprises multiplying a subset
of elements of the first tensor by zero, and multiplying the elements of the first tensor that
are not included in the subset by one. Zeroing out elements of the first tensor comprises
performing element-wise multiplication of a masking tensor and the first tensor to

generate the second tensor, wherein the masking tensor comprises (i) zeros at each

10

15

20

25

30

element position of the masking tensor that corresponds to an element of the first tensor
that would not have been generated if the second convolutional neural network layer had
the stride of the first convolutional neural network layer, and (ii) ones at each other
element position of the masking tensor. In some implementations, the masking tensor is
stored at a memory accessible by the hardware circuit, and wherein element-wise
multiplication of the masking tensor and the first tensor is performed by a vector
computation unit implemented in hardware that is included in the hardware circuit.

Implementations can further include one or more of the following features. In
some implementations, zeroing out elements of the first tensor comprises performing
element-wise multiplication of a first masking tensor and the first tensor to generate a
modified first tensor, wherein the first masking tensor comprises (i) zeros at each element
position of the masking tensor that corresponds to an element of the first tensor that
would not have been generated if the second convolutional neural network layer had the
stride of the first convolutional neural network layer, and (ii) a respective non-zero value
at each element position of the masking tensor that corresponds to an element of the first
tensor that would have been generated if the second convolutional neural network layer
had the stride of the first convolutional neural network layer, and performing element-
wise multiplication of a second masking tensor and the modified first tensor, wherein the
second masking tensor comprises, at each element position that corresponds to an element
of the first tensor that would be generated if the second convolutional neural network
layer had the stride of the first convolutional neural network layer, an inverse of the
respective non-zero value of the first masking tensor.

Implementations can further include one or more of the following features. In
some implementations, performing max pooling comprises obtaining, for each of one or
more windows of the second tensor that are defined by the stride of the first convolutional
neural network layer, a maximum value element of elements within the window. Each of
the one or more windows of the second tensor is a rectangular window having dimensions
corresponding to the stride of the convolutional neural network layer, and includes
different elements of the second tensor. In some implementations, performing max
pooling comprises obtaining, for each of one or more subsets of elements of the second
tensor, a maximum value element of the subset. The max pooling performed on the
second tensor is performed by pooling circuitry of the hardware circuit. The

convolutional neural network layer is a first neural network layer in the neural network,

10

15

20

25

30

and wherein the input tensor is a representation of a digital image comprising elements
that correspond to pixels of the digital image.

Implementations can further include one or more of the following features. In
some implementations, the input tensor is stored at a unified buffer of the hardware
circuit and weights of the second convolutional neural network layer are stored at a
dynamic memory of the hardware circuit, and wherein processing the input tensor to the
first convolutional neural network layer using the second convolutional neural network
layer comprises sending the input tensor from the unified buffer to a matrix computation
unit of the hardware circuit that is implemented in hardware, sending the weights of the
second convolutional neural network layer from the dynamic memory to the matrix
computation unit of the hardware circuit, and processing, by the matrix computation unit
of the hardware circuit, the input tensor using the weights of the second convolutional
neural network layer to generate the first tensor.

Particular embodiments of the subject matter described in this specification can be
implemented so as to realize one or more of the following advantages. An output tensor
corresponding to a convolutional neural network layer having a stride greater than one
can be generated in hardware by a special-purpose hardware circuit, even where the
hardware circuit cannot directly process an input tensor using a convolutional neural
network having a stride greater than one. By generating the appropriate output using the
special-purpose hardware circuit, the processing of a neural network layer having a stride
greater than one can be performed without passing data back to a host computer, i.e.,
without performing at least a part of the computation off-chip, even though the special-
purpose hardware circuit does not directly support such processing. This allows for an
inference of a neural network that includes a convolutional layer having a stride greater
than one to be determined efficiently without modifying the hardware architecture of the
special-purpose hardware circuit. That is, processing delays resulting from performing
part of the processing off-chip, in software, or both, are avoided.

The subject-matter described in this specification also relates to, for example, an
image recognition or classification method and system that use the disclosed techniques
and hardware for performing kernel striding when computing neural network inferences.

The details of one or more embodiments of the subject matter of this specification
are set forth in the accompanying drawings and the description below. Other features,
aspects, and advantages of the subject matter will become apparent from the description,

the drawings, and the claims.

10

15

20

25

30

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an example neural network processing system.

FIG. 2 is a flow diagram of an example method for performing a computation for
a given layer of a neural network.

FIG. 3 shows an example neural network processing system.

FIG. 4 shows an example architecture including a matrix computation unit.

FIG. 5 shows an example architecture of a cell inside a systolic array.

FIG. 6 shows an example architecture of a vector computation unit.

FIG. 7 shows an example architecture for pooling circuitry.

FIG. 8 is a flow diagram of an example method for instructing a neural network
processing system to perform a computation for a given layer of a neural network with a
stride greater than one.

FIG. 9 is a flow diagram of an example method for performing a computation for
a given layer of a neural network having a stride greater than one.

FIG. 10 is an example of a computation for a given layer of a neural network with
a stride greater than one. Like reference numbers and designations in the various

drawings indicate like elements.

DETAILED DESCRIPTION

A neural network having multiple layers can be used to compute inferences. For
example, given an input, the neural network can compute an inference for the input. The
neural network computes this inference by processing the input through each of the layers
of the neural network. Each layer receives an input and processes the input in accordance
with the set of weights for the layer to generate an output.

Therefore, in order to compute an inference from a received input, the neural
network receives the input and processes it through each of the neural network layers to
generate the inference, with the output from one neural network layer being provided as
input to the next neural network layer. Data inputs to a neural network layer, e.g., either
the input to the neural network or the outputs of the layer below the layer in the sequence,
to a neural network layer can be referred to as activation inputs to the layer.

In some implementations, the layers of the neural network are arranged in a
sequence. In some other implementations, the layer are arranged as directed graph. That

is, any particular layer can receive multiple inputs, multiple outputs, or both. The layers

10

15

20

25

30

of the neural network can also be arranged such that an output of a layer can be sent back
as an input to a previous layer.

Some neural networks pool outputs from one or more neural network layers to
generate pooled values that are used as inputs to subsequent neural network layers. In
some implementations, the neural network pools a group of outputs by determining a
maximum, minimum, or average of the group of outputs and using the maximum,
minimum, or average as the pooled output for the group. Pooling the outputs can
maintain some spatial invariance so the outputs arranged in various configurations can be
processed to have the same inference. Pooling the outputs can also reduce dimensionality
of inputs received at the subsequent neural network layers while maintaining desired
characteristics of the outputs before pooling, which can improve efficiency without
significantly compromising the quality of inferences generated by the neural networks.

Some neural networks include one or more convolutional neural network layers
having a stride that is greater than one. Conceptually, for a stride of one, a convolutional
neural network layer can apply sets of weights to activation inputs sequentially. That is,
for an activation input array, weights can be applied to a subset of the activation inputs
and moved by one position, e.g., row or column, to each other subset of the activation
inputs until the convolution computation is complete. For a convolutional neural network
layer having a stride greater than one, where the stride is an integer, the weights can be
applied to a subset of the activation inputs and moved by a number of positions
equivalent to the stride, e.g., by the number of rows or columns indicated by the stride, to
each other subset of the activation inputs until the convolution computation is complete.

This specification describes special-purpose hardware circuitry that processes
neural network layers, and optionally performs pooling on outputs of one or more neural
network layers. The special-purpose hardware circuit includes circuitry capable of
processing neural network layers having a stride of one. While the special-purpose
hardware circuitry does not directly support processing of neural network layers having a
stride greater than one, the special-purpose hardware circuitry may be controlled to
produce an output equivalent to an output of a neural network layer having a stride
greater than one. Accordingly, one technical effect and advantage of the disclosed
technology is that circuitry capable of processing neural network layers having a stride of
one can be used in a more flexible manner and for computing neural network inferences

for neural network layer having a stride greater than one.

10

15

20

25

30

FIG. 1 shows an example neural network processing system 100. The neural
network processing system 100 is an example of a system implemented as one or more
computers in one or more locations in which the systems, components, and techniques
described below can be implemented.

The neural network processing system 100 is a system that performs neural
network computations using a special-purpose hardware circuit 110. The hardware
circuit 110 is an integrated circuit for performing neural network computations and
includes a matrix computation unit 120 that performs vector-matrix multiplications in
hardware. The hardware circuit 110 also includes a vector computation unit 140 that
includes pooling circuitry for performing pooling on outputs of the matrix computation
unit 120. An example special-purpose hardware circuit 120 is described in more detail
below with reference to FIG. 3.

In particular, the neural network processing system 100 receives requests to
implement neural networks on the special-purpose hardware circuit 110, implements the
neural networks on the special-purpose hardware circuit 110, and, once a given neural
network is implemented, processes inputs to the neural network using the special-purpose
integrated circuit 110 to generate neural network inferences.

That is, the neural network processing system 100 can receive a request that
specifies a neural network architecture for a neural network that is to be used to process
inputs. The neural network architecture defines the number and configuration of layers in
the neural network and values of the parameters for each of the layers that has parameters.

To implement a neural network on the special-purpose integrated circuit 110, the
neural network processing system 100 includes a neural network implementation engine
150 that is implemented as one or more computer programs on one or more computers in
one or more physical locations.

The neural network implementation engine 150 generates instructions that, when
executed by the special-purpose hardware circuit 110, cause the hardware circuit 110 to
perform the operations specified by the neural network to generate a neural network
output from a received neural network input.

Once the instructions have been generated by the neural network implementation
engine 150 and provided to the hardware circuit 110, the neural network processing
system 100 can receive neural network inputs and can process the neural network inputs
using the neural network by causing the hardware circuit 110 to execute the generated

instructions.

10

15

20

25

30

Some neural networks, however, include one or more incompatible neural
network layers. The term incompatible neural network layer as used in this specification
refers to a neural network layer that specifies an operation that cannot be directly
performed in hardware by the special-purpose hardware circuit 110. To implement these
neural networks on the hardware circuit 110, the neural network implementation engine
150 generates instructions that, when executed by the hardware circuit 110, cause the
hardware circuit 110 to generate an output for the incompatible neural network layer by
performing operations in hardware that are different from those specified by the neural
network layer but that result in a layer output, e.g., a layer output tensor, being generated
that satisfies the specification of the incompatible neural network layer, i.e., a layer output
that is the same as an output that would have been generated by directly performing the
operations specified by the layer.

In particular, some neural networks include a convolutional neural network layer
having a stride greater than one. Such a neural network layer features one or more
kernels that are processed non-sequentially with an input tensor. For example, when
performing kernel striding with a stride of one, a kernel is applied sequentially to
elements of the input tensor. When performing kernel striding with a stride of two,
however, a kernel of a neural network layer is shifted such that a particular element of the
kernel is applied to every-other element of the input tensor to generate an output tensor.
The output tensor can then be used as input by another layer of the neural network.

Because the main hardware unit that performs matrix operations on the hardware
circuit 110 is the matrix computation unit 120, the integrated circuit cannot directly
compute a neural network layer having a stride greater than one. To implement a neural
network that includes a layer having a stride greater than one, the neural network
implementation engine 150 generates instructions that, when executed by the special-
purpose hardware circuit 110 during processing of a neural network input by the neural
network, cause the hardware circuit 110 to perform other operations in hardware to
generate an output tensor that satisfies the specification of the neural network layer
having the stride greater than one using the matrix multiplication unit 120 and the vector
computation unit 140 featuring the pooling circuitry. These instructions and other
operations are described in more detail below with reference to FIGS. 7-10.

FIG. 2 is a flow diagram of an example process 200 for performing a computation
for a given layer of a neural network using a special-purpose hardware circuit. For

convenience, the method 200 will be described with respect to a system having one or

10

15

20

25

30

more circuits that performs the method 200.The method 200 can be performed for each
layer of the neural network in order to compute an inference from a received input.

The system receives sets of weight inputs (step 202) and sets of activation inputs
(step 204) for the given layer. The sets of weight inputs and the sets of activation inputs
can be received from dynamic memory and a unified buffer, respectively, of the special-
purpose hardware circuit. In some implementations, both the sets of weight inputs and
the sets of activation inputs can be received from the unified buffer.

The system generates accumulated values from the weight inputs and the
activation inputs using a matrix multiplication unit of the special-purpose hardware
circuit (step 206). In some implementations, the accumulated values are dot products of
the sets of weight inputs and the sets of activation inputs. That is, for one set of weights,
which is a subset of all weights in the layer, the system can multiply each weight input
with each activation input and sum the products together to form an accumulated value.
The system can then compute dot products of other set of weights with other sets of
activation inputs. In some implementations, the special-purpose hardware circuit may
perform such operations similarly regardless of the stride of the particular neural network
layer, i.e., whether the neural network layer has a stride of one or a stride greater than
one. Subsequent processing of the outputs from the matrix multiplication unit can be
performed to generate an output that is equivalent to an output that would be produced if
the neural network layer was processed with a specified stride that is greater than one.

The system can generate a layer output from the accumulation values (step 208)
using a vector computation unit of the special-purpose hardware circuit. In some
implementations, the vector computation unit applies an activation function to the
accumulated values, which will be described further below in reference to FIG. 5. The
output of the layer can be stored in the unified buffer for use as an input to a subsequent
layer in the neural network or can be used to determine the inference. In some
implementations, the neural network layer may specify a stride greater than one, and the
system may perform additional processing on the accumulation values to obtain a layer
output that is equivalent to an output of the neural network layer having the stride greater
than one. The system finishes processing the neural network when a received input has
been processed through each layer of the neural network to generate the inference for the
received input.

FIG. 3 shows an example special-purpose hardware circuit 300 for performing

neural network computations. The system 300 includes a host interface 302. The host

10

15

20

25

30

interface 302 can receive instructions that include parameters for a neural network
computation. The parameters can include one or more of the following: how many layers
should be processed, corresponding sets of weight inputs for each layer of the model, an
initial set of activation inputs, i.e., the input to the neural network from which the
inference is to be computed, corresponding input and output sizes of each layer, a stride
value for the neural network computation, and a type of layer to be processed, e.g., a
convolutional layer or a fully connected layer.

The host interface 302 can send the instructions to a sequencer 306, which
converts the instructions into low level control signals that control the circuit to perform
the neural network computations. In some implementations, the control signals regulate
dataflow in the circuit, e.g., how the sets of weight inputs and the sets of activation inputs
flow through the circuit. The sequencer 306 can send the control signals to a unified
buffer 308, a matrix computation unit 312, and a vector computation unit 314. In some
implementations, the sequencer 306 also sends control signals to a direct memory access
engine 304 and dynamic memory 310. In some implementations, the sequencer 306 is a
processor that generates control signals. The sequencer 306 can use timing of the control
signals to, at appropriate times, send the control signals to each component of the circuit
300. In some other implementations, the host interface 302 passes in a control signal
from an external processor.

The host interface 302 can send the sets of weight inputs and the initial set of
activation inputs to the direct memory access engine 304. The direct memory access
engine 304 can store the sets of activation inputs at the unified buffer 308. In some
implementations, the direct memory access stores the sets of weights to dynamic memory
310, which can be a memory unit. In some implementations, the dynamic memory 310 is
located off of the circuit.

The unified buffer 308 is a memory buffer. It can be used to store the set of
activation inputs from the direct memory access engine 304 and outputs of the vector
computation unit 314. The vector computation unit 314 will be described in more detail
below with reference to FIG. 6. The direct memory access engine 304 can also read the
outputs of the vector computation unit 314 from the unified buffer 308.

The dynamic memory 310 and the unified buffer 308 can send the sets of weight
inputs and the sets of activation inputs, respectively, to the matrix computation unit 312.
In some implementations, the matrix computation unit 312 is a two-dimensional systolic

array. The matrix computation unit 312 can also be a one-dimensional systolic array or

10

15

20

25

30

10

other circuitry that can perform mathematical operations, e.g., multiplication and
addition. In some implementations, the matrix computation unit 312 is a general purpose
matrix processor.

The matrix computation unit 312 can process the weight inputs and the activation
inputs and provide a vector of outputs to the vector computation unit 314. In some
implementations, the matrix computation unit 312 sends the vector of outputs to the
unified buffer 308, which sends the vector of outputs to the vector computation unit 314.
The vector computation unit 314 can process the vector of outputs and store a vector of
processed outputs to the unified buffer 308. For neural network layers having a stride
greater than one, the vector computation unit 314 can process the vector of outputs to
generate a layer output tensor that is equivalent to an output of the neural network layer
having the stride greater than one, and can store the layer output tensor at the unified
buffer 308. The vector of processed outputs can be used as activation inputs to the matrix
computation unit 312, e.g., for use in a subsequent layer in the neural network. The
matrix computation unit 312 and the vector computation‘ unit 314 will be described in
more detail below with reference to FIG. 4 and FIG. 6, respectively.

FIG. 4 shows an example architecture 400 including a matrix computation unit.
The matrix computation unit is a two-dimensional systolic array 406. The array 406
includes multiple cells 404. In some implementations, a first dimension 420 of the
systolic array 406 corresponds to columns of cells and a second dimension 422 of the
systolic array 406 corresponds to rows of cells. The systolic array can have more rows
than columns, more columns than rows, or an equal number of columns and rows.

In the illustrated example, value loaders 402 send activation inputs to rows of the
array 406 and a weight fetcher interface 408 sends weight inputs to columns of the array
406. In some other implementations, however, activation inputs are transferred to the
columns and weight inputs are transferred to the rows of the array 406.

The value loaders 402 can receive the activation inputs from a unified buffer, e.g.,
the unified buffer 308 of FIG. 3. Each value loader can send a corresponding activation
input to a distinct left-most cell of the array 406. For example, value loader 412 can send
an activation input to cell 414.

The weight fetcher interface 408 can receive the weight input from a memory unit,
e.g., the dynamic memory 310 of FIG. 3. The weight fetcher interface 408 can send a
corresponding weight input to a distinct top-most cell of the array 406. For example, the

weight fetcher interface 408 can send weight inputs to cells 414 and 416. The weight

10

15

20

25

30

11

fetcher interface 408 is further capable of receiving multiple weights from the memory
unit, e.g., the dynamic memory 310, and of sending the multiple weights to distinct top-
most cells of the array 406 in parallel. For example, the weight fetcher interface 408 may
send different weights to the cells 414 and 416 simultaneously.

In some implementations, a host interface, e.g., the host interface 302 of FIG. 3,
shifts activation inputs throughout the array 406 along one dimension, e.g., to the right,
while shifting weight inputs throughout the array 406 along another dimension, e.g., to
the bottom. For example, over one clock cycle, the activation input at cell 414 can shift
to an activation register in cell 416, which is to the right of cell 414. Similarly, the weight
input at cell 416 can shift to a weight register at cell 418, which is below cell 414.

On each clock cycle, each cell can process a given weight input, a given activation
input, and an accumulated output from an adjacent cell to generate an accumulated
output. The accumulated output can also be passed to the adjacent cell along the same
dimension as the given weight input. Each cell may also process a given weight input
and a given activation input to generate an output, without processing an accumulated
output from an adjacent cell. The output can be passed to adjacent cells along the same
dimensions as the given weight input and output without being accumulated. An
individual cell is described further below with reference FIG. 5.

In some implementations, an identity matrix, i.e., a matrix having ones on the
principal diagonal and zeros elsewhere, can be passed to the array 406, thereby passing
the inputs provided at the value loaders 402 to the accumulators 410 without
modification. This may be used to perform element-wise multiplication of two inputs,
where a first output at the accumulators can be represented as output = MatMul(inputl,
identity), where MatMul is an instruction for the matrix computation unit to perform
matrix multiplication, and a second output corresponding to the element-wise
multiplication result is represented as output *= MatMul(input2, identity). To perform
the *= operation, i.e., the operation output = output * MatMul(input2, identity), the
architecture 400 may include a component for performing a += or *= computations. The
component for performing the += or *= operations may be positioned before the
accumulators 410, i.e., after the last row of cells 404. In some implementations, the
vector computation unit 314 of FIG. 3 may include the component for performing the +=
or *= operations, i.e., where the vector computation unit 314 performs the output *=

MatMul(input2,identity) operation to perform element-wise multiplication.

10

15

20

25

30

12

The accumulated output can be passed along the same column as the weight input,
e.g., towards the bottom of the column in the array 406. In some implementations, at the
bottom of each column, the array 406 can include accumulator units 410 that store and
accumulate each accumulated output from each column when performing calculations
with layers having more activation inputs than rows. In some implementations, each
accumulator unit stores multiple parallel accumulations. The accumulator units 410 can
accumulate each accumulated output to generate a final accumulated value. The final
accumulated value can be transferred to a vector computation unit, e.g., the vector
computation unit of FIG. 6. In some other implementations, the accumulator units 410
passes the accumulated values to the vector computation unit without performing any
accumulations when processing layers with layers having fewer activating inputs than
rows. '

FIG. 5 shows an example architecture 500 of a cell inside a systolic array, e.g.,
one of cells 414, 416, or 418 of the systolic array 406 of F1G. 4.

The cell can include an activation register 506 that stores an activation input. The
activation register can receive the activation input from a left adjacent cell, i.e., an
adjacent cell located to the left of the given cell, or from a unified buffer, depending on
the position of the cell within the systolic array. The cell can include a weight register
502 that stores a weight input. The weight input can be transferred from a top adjacent
cell or from a weight fetcher interface, depending on the position of the cell within the
systolic array. The cell can also include a sum in register 504. The sum in register 504
can store an accumulated value from the top adjacent cell. Multiplication circuitry 508
can be used to multiply the weight input from the weight register 502 with the activation
input from the activation register 506. The multiplication circuitry 508 can output the
product to summation circuitry 510.

The summation circuitry 510 can sum the product and the accumulated value from
the sum in register 504 to generate a new accumulated value. The summation circuitry
510 can then send the new accumulated value to another sum in register located in a
bottom adjacent cell. The new accumulated value can be used as an operand for a
summation in the bottom adjacent cell. The summation circuitry 510 can also accept a
value from the sum in register 504 and send the value from the sum in register 504 to a
bottom adjacent cell without summing the value from the sum in register 504 with the

product from the multiplication circuitry 508.

10

15

20

25

30

13

The cell can also shift the weight input and the activation input to adjacent cells
for processing. For example, the weight path register 512 can send the weight input to
another weight register in the bottom adjacent cell. The activation register 506 can send
the activation input to another activation register in the right adjacent cell. Both the
weight input and the activation input can therefore be reused by other cells in the array at
a subsequent clock cycle.

In some implementations, the cell also includes a control register. The control
register can store a control signal that determines whether the cell should shift either the
weight input or the activation input to adjacent cells. In some implementations, shifting
the weight input or the activation input takes one or more clock cycles. The control
signal can also determine whether the activation input or weight inputs are transferred to
the multiplication circuitry 508, or can determine whether the multiplication circuitry 508
operates on the activation and weight inputs. The control signal can also be passed to one
or more adjacent cells, e.g., using a wire.

In some implementations, weights are pre-shifted into a weight path register 512.
The weight path register 512 can receive the weight input, e.g., from a top adjacent cell,
and transfer the weight input to the weight register 502 based on the control signal. The
weight register 502 can statically store the weight input such that as activation inputs are
transferred to the cell, e.g., through the activation register 506, over multiple clock cycles,
the weight input remains within the cell and is not transferred to an adjacent cell.
Therefore, the weight input can be applied to multiple activation inputs, e.g., using the
multiplication circuitry 508, and respective accumulated values can be transferred to an
adjacent cell.

FIG. 6 shows an example architecture 600 of a vector computation unit 602. The
vector computation unit 602 can receive a vector of accumulated values from a matrix
computation unit, e.g., the matrix computation unit 312 described in reference to FIG. 3
or the accumulators 410 of the matrix computation unit of FIG. 4.

The vector computation unit 602 can process the vector of accumulated values at
the activation unit 604. In some implementations, the activation unit includes circuitry
that applies a non-linear function to each accumulated value to generate activation values.
For example, the non-linear function can be tanh(x), where x is an accumulated value.

Optionally, the vector computation unit 602 can pool values, e.g., activation
values, using pooling circuitry 608. The pooling circuitry 608 can apply an aggregation

function to one or more of the values to generate pooled values. In some

10

15

20

25

30

14

implementations, the aggregation functions are functions that return a maximum,
minimum, or average of the values or of a subset of the values.

Control signals 610 can be transferred, e.g., by the sequencer 306 of FIG. 3, and
can regulate how the vector computation unit 602 processes the vector of accumulated
values. That is, the control signals 610 can regulate whether the activation values are
pooled, where the activation values are stored, e.g., in the unified buffer 308, or can
otherwise regulate handling of the activation values. The control signals 610 can also
specify the activation or pooling functions, as well as other parameters for processing the
activation values or pooling values, e.g., a stride value.

The vector computation unit 602 can send values, e.g., activation values or pooled
values to a unified buffer, e.g., the unified buffer 308 of FIG. 3. In some
implementations, the pooling circuitry 608 receives the activation values or pooled values
and stores the activation values or pooled values in the unified buffer.

FIG. 7 shows an example architecture 700 for pooling circuitry. The pooling
circuitry can apply an aggregation function to one or more activated values to generate
pooled values. By way of illustration, the architecture 700 can perform a pooling of a 4 x
4 set of activated values. Although the pooling shown in FIG. 7 has a square region, i.e.,
4 x 4, rectangular regions are possible. For example, if the region has a window of n x m,
the architecture 700 can have n * m registers, i.e., n columns and m rows.

The pooling circuitry architecture 700 can receive a sequence of elements from
the vector of values, e.g., from activation circuitry 604 of FIG. 6. For example, the
sequence can represent pixels of an 8 x 8 portion of an image, and the pooling circuitry
architecture 700 can pool values from a 4 x 4 subset of the 8 x 8 portion. In some
implementations, pooled values are appended to the sequence once computed by the
pooling circuitry architecture 700. In some implementations, the neural network
processor includes multiple parallel pooling circuitries. Over each clock cycle, each
pooling circuitry can receive a respective element from the vector of values from
activation circuitry 604. Each pooling circuitry can interpret elements received from the
activation circuitry 604 as a two-dimensional image arriving in raster order.

The pooling circuitry can include a series of registers and memory units. Each
register can send an output to aggregation circuitry 706 that applies an aggregation
function across the values stored inside the registers. The aggregation function can return

a minimum, maximum, or average value from a set of values.

10

15

20

25

30

15

A first value can be sent to and stored inside register 702. On a subsequent clock
cycle, the first value can shift to a subsequent register 708 and be stored in memory 704,
and a second value can be sent to and stored inside register 702.

After four clock cycles, four values are stored inside the first four registers 702,
708-712. In some implementations, the memory unit 704 operates under first-in-first-out
(FIFO). Each memory unit can store up to eight values. After the memory unit 704
contains a complete row of pixels, the memory unit 704 can send a value to register 714.

At any given point in time, the aggregation circuitry 706 can access values from
each register. The values in the registers should represent values for a 4 x 4 portion of the
image.

The pooling circuitry can generate a pooled value from the accessed values by
using the aggregation circuitry 706, e.g., a maximum, a minimum, or an average value.
The pooled value can be sent to a unified buffer, e.g., the unified buffer 308 of Fig. 3.

After generating the first pooled value, the pooling circuitry can continue to
generate pooled values by shifting the values through each register so that new values are
stored in the registers and can be pooled by the aggregation circuitry 706. For example,
in architecture 700, the pooling circuitry can shift the values over 4 more clock cycles,
thereby shifting the values in the memory units into the registers. In some
implementations, the pooling circuitry shifts the new values until a new value is stored in
a last topmost register, e.g., register 716.

The aggregation circuitry 706 can then pool the new values stored in the registers.
A result of pooling the new values can be stored at the unified buffer.

FIG. 8 is a flowchart of an example process 800 for performing a computation for
a given convolutional layer of a neural network with a stride greater than one. Generally,
the process 700 is performed by a system of one or more computers that includes a
special-purpose hardware circuit. In some implementations, the example process 800 can
be performed by the system of FIG. 1.

The system receives a request to implement a neural network on the special-
purpose hardware circuit (step 802). In particular, the neural network includes a
convolutional neural network layer having a stride that is greater than one. The request
may further specify other parameters for implementing the neural network, such as an
input to process using the neural network, locations to store an output tensor generated by

the neural network, or other parameters.

10

15

20

25

30

16

The system generates a masking tensor based on the request to be used in
processing the neural network layer having the stride greater than one (step 804). For
example, based on receiving the request to implement the neural network and information
specifying an input to the neural network, the system generates a masking tensor for
processing the neural network layer having the stride greater than one.

A size of the masking tensor may be determined based on dimensions of the
specified input or an expected size of an input tensor to the neural network layer having
the stride greater than one. Values included in the masking tensor may be determined
based on the specified stride of the neural network layer that has the stride greater than
one. For example, if a neural network layer has a specified stride of four, then every
fourth element of the masking tensor may be set to one, while all other entries of the
masking tensor may be set to zero. In some implementations, a neural network may
include multiple layers having a stride greater than one, and the system may generate
corresponding masking tensors for each of the layers having a stride greater than one.
Additionally, in some implementations, the system may store, e.g., in memory, a library
of masking matrices or masking matrices components, and may select or generate a
masking matrix based using the library.

The system generates instructions that, when executed by the special-purpose
hardware circuit 110, cause the special-purpose hardware circuit 110 to, during
processing of an input tensor by the neural network, generate a layer output tensor that is
equivalent to an output of the convolutional neural network layer having stride greater
than one using the masking tensor (step 806). For example, in response to the request, the -
neural network implementation engine 150 can generate instructions that direct or control
the special-purpose hardware circuit 110 to generate an output tensor, i.e., an output
vector, that is equivalent to if the special-purpose hardware circuit 110 processed an input
tensor using the convolutional neural network layer having a stride that is greater than
one.

The system transmits the instructions and the masking tensor to the special-
purpose hardware circuit 110 (step 808). For example, the neural network
implementation engihe 150 can provide the instructions to the special-purpose hardware
circuit 110, and the special-purpose hardware circuit 110 can receive the instructions,
e.g., at the host interface 302 of FIG. 3. The neural network implementation engine 150
may also provide other instructions and/or parameters for the neural network computation

that can also be received by the host interface 302.

10

15

20

25

30

17

FIG. 9 is a flowchart of an example process 900 for computing a neural network
computation layer having a stride greater than one. For example, the process 900 can be
performed by the special-purpose hardware circuit 110 of FIG. 1 based on instructions
received from the neural network implementation engine 150. ‘

For example, upon receiving instructions for implementing the neural network
layer having a stride greater than one, the host interface 302 can send the instructions to
the sequencer 306 of FIG. 3, and the sequencer 306 can convert the instructions into low
level control signals that control the special-purpose hardware circuit 300 of FIG. 3 to
perform the neural network computation.

Based on the received instructions, the special-purpose hardware circuit 300
processes an input tensor to the convolutional neural network layer using a second
convolutional neural network layer having a stride of one (step 902). For example,
control signals generated from the received instructions control the special-purpose
hardware circuit 300 to process the input tensor, e.g., an output of a preceding layer of the
neural network stored in the unified buffer 308 or an input to the neural network specified
or provided to the special-purpose hardware circuit 300, using a second convolutional
neural network layer that has a stride that is equivalent to one but that is otherwise
equivalent to the convolutional neural network layer, to generate a convolved tensor.

To process the input tensor using the second convolutional neural network layer,
the control signals may control the unified buffer 308 to supply the input tensor, i.e.,
activation inputs which may correspond to the input to the neural network or to an output
of a preceding neural network layer, to the matrix computation unit 312 of FIG. 3. The
control signals may also instruct the direct memory access engine 304 and/or dynamic
memory 310 of FIG. 3 to provide weights to the matrix computation unit 312
corresponding to the second neural network layer that has a stride of one, i.e., a unity
stride, but that is otherwise equivalent to the neural network layer having a stride greater
than one.

The sequencer 306 may further generate instructions that control the matrix
computation unit 312 to process the input tensor using the weights, e.g., using the process
described with respect to FIG. 3. In some implementations, the matrix computation unit
312 performs the convolution using techniques described in U.S. Pat. App. No.
14/844,738, filed September 3, 2015, which is hereby incorporated by reference in its

entirety.

10

15

20

25

30

18

The matrix computation unit 312 performs computations based on the control
signals, and outputs a convolved tensor to the vector computation unit 314. For example,
the matrix computation unit 312 sends the vector computation unit 314 a vector of outputs
generated by the matrix computation unit 312. The vector of outputs may be determined
based on processing the input tensor using the weights corresponding to the neural
network layer having a stride of one that is otherwise equivalent to the neural network
layer having the stride greater than one. The vector computation unit 314 can store the
convolved tensor at the unified buffer 308.

After processing the activation inputs through a convolutional neural network
layer with a stride of one to produce the convolved tensor, the special-purpose hardware
circuit 300 zeros out elements that would not have been generated if the second
convolutional neural network layer had the stride of the convolutional network layer
having the stride greater than one (step 904). Zeroing out an element refers generally to
replacing the current values of the element with zero. Cancelling, i.e., zeroing, the values
may be achieved by performing element-wise multiplication of the convolved tensor with
a masking tensor, i.e., the masking tensor generated by the neural network processing
engine 150 and transmitted to the special-purpose neural network.

To cancel those values of the convolved tensor that would not have been
generated if the input tensor had been processed by a convolutional neural network layer
with the specified stride the sequencer 306 can send control signals to control the matrix
multiplication unit 312 to perform element-wise multiplication of the convolved tensor
and the masking tensor. The convolved tensor may be sent from the unified buffer 308 to
the matrix multiplication unit 312 based on other control signals from the sequencer 306,
and the masking tensor may be sent to the matrix computation unit 312 based on control
signals from the sequencer 306 to the direct memory access engine 304 or dynamic
memory 310, i.e., after the masking tensor has been received by the special-purpose
hardware circuit 300 and stored at the dynamic memory 310.

Generally, as described with respect to FIG. 8, the masking tensor is a vector that
includes unity-value elements, i.e., values of one, in element positions corresponding to
elements that would be produced by processing the input tensor with the convolutional
neural network layer having the stride greater than one, and includes zero-value elements
in all other positions, i.e., the positions corresponding to elements that would not be
produced by processing the activation values with the convolutional neural network layer

having the stride greater than one.

10

15

20

25

30

19

The masking tensor may be stored, for example, at the dynamic memory 310, and
the sequencer 306 may send control signals to send the masking tensor to the matrix
computation unit 312 from the dynamic memory 310. For example, the instructions
provided to the special-purpose hardware circuit 300 may identify, e.g., provide a location
in dynamic memory 310 of, the masking tensor, or may include data defining the masking
tensor that is then stored at the dynamic memory 310, and the sequencer 306 may send
control signals that cause the masking tensor stored at the location in dynamic memory
310 to be sent to the matrix computation unit 312. Additionally, the sequencer 306 may
provide control signals to cause the convolved tensor stored at the unified buffer 308 to
be provided to the matrix computation unit 312. The matrix computation unit 312 then
performs element-wise multiplication of the convolved tensor and the masking tensor to
generate a modified convolved tensor. The modified convolved tensor can be received by
the vector computation unit 314 from the matrix computation unit 312. The vector
computation unit 314 may optionally store the modified convolved tensor in the unified
buffer 308.

Due to the element-wise multiplication with the masking tensor, the modified
convolved tensor includes the values that would be output if the input tensor was
processed using the neural network layer having the specified stride of greater than one.
The modified convolved tensor includes zeros in positions corresponding to values output
in the computation of the input tensor using the convolutional neural network layer with
the stride of one that would not have been output if the input tensor were processed with
the convolutional neural network having the specified stride. In other implementations,
other methods of zeroing elements of the convolved tensor may be utilized. For example,
the convolved matrix may be rewritten in the unified buffer 308 or another memory in a
modified form, wherein elements corresponding to values output in the computation of
the input tensor using the convolutional neural network having the specified stride are
unchanged, and other elements are written as zero.

The vector computation unit 314 receives the modified convolved tensor and
performs max pooling on the modified convolved tensor to generate a layer output tensor
for the convolutional neural network layer having the stride greater than one (step 906).
For example, the vector computation unit 314 may receive the modified convolved tensor
from the matrix computation unit 312, and using pooling circuitry 608 may perform max
pooling on the modified convolved tensor. Max pooling is an operation that receives a set

of data and, for each of one or more subsets of the data, outputs the maximum value of

10

15

20

25

30

20

the elements in the subset. Performing max pooling on the modified convolved tensor
results in a tensor that includes, for each of multiple subsets of elements of the modified
convolved tensor, a maximum value of the subset. The vector computation unit 314 may
perform max pooling for windows of the modified convolved tensor determined based on
the specified stride of the convolutional neural network layer. For example, for a stride of
2, the pooling circuitry 608 will perform max pooling using a 2x2 window to generate a
layer output tensor that includes a maximum value element from each 2x2 window. For a
neural network layer having a stride of 4, the pooling circuitry 608 will perform max
pooling using a 4x4 window to generate a layer output tensor that includes a maximum
value element from each 4x4 window. The result of the max pooling operation is stored
by the vector computation unit 314 at the unified buffer 308, where the result is an output
tensor that is equivalent to an output that would be produced if the special-purpose
hardware circuit 300 had processed the input tensor using the neural network layer having
the stride greater than one. Processing of subsequent a subsequent layer of the neural
network may be performed using the layer output tensor to eventually obtain the
inference of the neural network.

FIG. 10 depicts an example of a computation for a given layer of a neural network
with a stride greater than one. The example of FIG. 10 may be performed using the
process of FIG. 7 and the special-purpose hardware circuit 300 of FIG. 2. By way of
illustration, the example of FIG. 10 applies a convolutional neural network layer having a
stride of four to an 8x8 array of activation values. The convolutional neural network
layer may have a 4x4 kernel of weights to be applied to the 8x8 array of activation values.
The activation values may represent an 8x8 portion of an image input to the neural
network, i.e., a sequence of values corresponding to the 8x8 portion of the image.
Alternatively, the 8x8 array of activation values may represent an 8x8 portion of another
input tensor, e.g., an input tensor corresponding to an output of a preceding layer of the
neural network.

In part (a) of FIG. 10, the 8x8 input tensor is processed using a convolutional
neural network layer having a stride of one that is otherwise equivalent to the
convolutional neural network layer having the stride greater than one. Thus, the 4x4
kernel of weights shown in part (a) may first be applied to the elements of the input tensor
corresponding to the first four rows and first four columns of the input tensor (values not
shown). A result of the process may be a first element in a resulting convolved tensor,

i.e., the element “a” of the resulting convolved tensor shown in part (a) of FIG. 10.

10

15

20

25

30

21

Since processing of the input tensor is performed using a convolutional neural
network layer with a stride of one instead of the specified stride of four, the 4x4 set of
weights shown in part (a) may then be applied to the elements of the input tensor
corresponding to the first four rows of the activation value array and the second through
fifth columns of the input tensor (values not shown). A result of the processing is a
second element of the convolved tensor, i.e., the element “b” of the convolution result
shown at part (a) of FIG. 10. The process may be repeated by applying the 4x4 set of
weights to the activation value array using a stride of one, i.e., by applying the 4x4 set of
weights to the activation value array incrementally in both the column and row directions.
The processing results in the 8x8 convolved tensor shown at part (a) of FIG. 10.

Element-wise multiplication is then performed between the convolved tensor and
a masking tensor to obtain a modified convolved tensor, as shown in part (b) of FIG. 9.
The size of the masking tensor is determined based on the size of the input tensor or the
size of the convolved tensor, which will generally be equal due to the processing at part
(a) of FIG. 10 using a convolutional neural network layer having a stride of one. The
masking tensor includes unity values, i.e., ones, at positions that correspond to values that
would be produced if the input tensor were processed using a convolutional neural
network layer having the specified stride. Generally, then, the positions of the unity value
entries in the masking tensor is dependent on the specified stride of the convolutional
neural network layer. In the example of FIG. 10, because the convolutional neural
network layer has a stride of four, the masking tensor would include unity values at every
fourth position in both the column and row directions. The other entries of the masking
tensor are assigned zero values, such that element-wise multiplication of the convolved
tensor and the masking tensor will result in zeroing of all values that would not be
produced if the input tensor were processed with the convolutional neural network having
the specified stride.

Element-wise multiplication of the convolved tensor and the masking tensor is
performed to produce a modified convolved tensor. As shown in FIG. 10, after the
element-wise multiplication, every fourth element of the convolved tensor is maintained,
and the remainder of the elements of the convolved tensor become zeros due to their
multipli‘cation with a corresponding zero-value element of the masking matrix. Thus, of
the elements of the 8x8 convolved tensor, only four elements remain non-zero.

In some implementations, a similar result can be obtained by first multiplying

elements of the convolved tensor by non-unity factors, and subsequently multiplying

10

15

20

25

30

22

those elements by second non-unity factors. For instance, the masking tensor may
include twos (or another value) at the positions that correspond to values that would be
produced if the input tensor were processed using a convolutional neural network layer
having the specified stride. Thus, following the example above, element-wise
multiplication of the convolved tensor and the masking tensor produces a modified
convolved tensor with every fourth element of the convolved tensor doubled, and the
remainder of the elements being zero. Subsequently, scalar multiplication of the modified
convolved tensor by one half (or an inverse of the other value) may be performed.
Alternatively, element-wise multiplication of the modified convolved tensor with a
second masking tensor may be performed, wherein the second masking tensor includes
values of one-half at positions corresponding to values that would be produced if the
input tensor were processed using a convolutional neural network layer having the
specified stride.

Max pooling is subsequently performed on the modified convolution result array
in part (¢) of FIG. 10. The result of the max pooling is equivalent to the result that would
be obtained if the input tensor had been processed by the convolutional neural network
layer having the stride of four. Using the process of FIG. 6, max pooling is performed on
the modified convolved tensor to identify the maximum value of each 4x4 window of the
modified convolved tensor. The result of the max pooling is then stored as the output
tensor of the convolutional neural network layer having the stride of four. Because the
input tensor was an 8x8 array, processing by a neural network layer having a stride of
four results in a 2x2 output array. The 2x2 output array may be stored in the unified
buffer 308 of FIG. 2, e.g., in raster order. The values of the 2x2 output array may be
provided as inputs to a subsequent layer of the neural network.

Embodiments of the subject matter and the functional operations described in this
specification can be implemented in digital electronic circuitry, in tangibly-embodied
computer software or ﬂmdware, in computer hardware, including the structures disclosed
in this specification and their structural equivalents, or in combinations of one or more of
them. Embodiments of the subject matter described in this specification can be
implemented as one or more computer programs, i.€., one or more modules of computer
program instructions encoded on a tangible non transitory program carrier for execution
by, or to control the operation of, data processing apparatus. Alternatively or in addition,
the program instructions can be encoded on an artificially generated propagated signal,

e.g., a machine-generated electrical, optical, or electromagnetic signal, that is generated to

10

15

20

25

30

23

encode information for transmission to suitable receiver apparatus for execution by a data
processing apparatus. The computer storage medium can be a machine-readable storage
device, a machine-readable storage substrate, a random or serial access memory device,
or a combination of one or more of them.

The term “data processing apparatus” encompasses all kinds of apparatus, devices,
and machines for processing data, including by way of example a programmable
processor, a computer, or multiple processors or computers. The apparatus can include
special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an
ASIC (application specific integrated circuit). The apparatus can also include, in addition
to hardware, code that creates an execution environment for the computer program in
question, e.g., code that constitutes processor firmware, a protocol stack, a database
management system, an operating system, or a combination of one or more of them.

A computer program (which may also be referred to or described as a program,
software, a software application, a module, a software module, a script, or code) can be
written in any form of programming language, including compiled or interpreted
languages, or declarative or procedural languages, and it can be deployed in any form,
including as a standalone program or as a module, component, subroutine, or other unit
suitable for use in a computing environment. A computer program may, but need not,
correspond to a file in a file system. A program can be stored in a portion of a file that
holds other programs or data, e.g., one or more scripts stored in a markup language
document, in a single file dedicated to the program in question, or in multiple coordinated
files, e.g., files that store one or more modules, sub programs, or portions of code. A
computer program can be deployed to be executed on one computer or on multiple
computers that are located at one site or distributed across multiple sites and
interconnected by a communication network.

The processes and logic flows described in this specification can be performed by
one or more programmable computers executing one or more computer programs to
perform functions by operating on input data and generating output. The processes and
logic flows can also be performed by, and apparatus can also be implemented as, special
purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC
(application specific integrated circuit).

Computers suitable for the execution of a computer program include, by way of
example, can be based on general or special purpose microprocessors or both, or any

other kind of central processing unit. Generally, a central processing unit will receive

10

15

20

25

30

24

instructions and data from a read only memory or a random access memory or both. The
essential elements of a computer are a central processing unit for performing or executing
instructions and one or more memory devices for storing instructions and data.

Generally, a computer will also include, or be operatively coupled to receive data from or
transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic,
magneto optical disks, or optical disks. However, a computer need not have such devices.
Moreover, a computer can be embedded in another device, e.g., a mobile telephone, a
personal digital assistant (PDA), a mobile audio or video player, a game console, a Global
Positioning System (GPS) receiver, or a portable storage device, e.g., a universal serial
bus (USB) flash drive, to name just a few.

Computer readable media suitable for storing computer program instructions and
data include all forms of nonvolatile memory, media and memory devices, including by
way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash
memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto
optical disks; and CD ROM and DVD-ROM disks. The processor and the memory can
be supplemented by, or incorporated in, special purpose logic circuitry.

To send for interaction with a user, embodiments of the subject matter described
in this specification can be implemented on a computer having a display device, e.g., a
CRT (cathode ray tube) or LCD (liquid crystal display) monitor, for displaying
information to the user and a keyboard and a pointing device, e.g., a mouse or a trackball,
by which the user can send input to the computer. Other kinds of devices can be used to
send for interaction with a user as well; for example, feedback provided to the user can be
any form of sensory feedback, e.g., visual feedback, auditory feedback, or tactile
feedback; and input from the user can be received in any form, including acoustic,
speech, or tactile input. In addition, a computer can interact with a user by sending
documents to and receiving documents from a device that is used by the user; for
example, by sending web pages to a web browser on a user’s client device in response to
requests received from the web browser.

Embodiments of the subject matter described in this specification can be
implemented in a computing system that includes a back end component, e.g., as a data
server, or that includes a middleware component, e.g., an application server, or that
includes a front end component, e.g., a client computer having a graphical user interface
or a Web browser through which a user can interact with an implementation of the subject

matter described in this specification, or any combination of one or more such back end,

10

15

20

25

30

25

middleware, or front end components. The components of the system can be
interconnected by any form or medium of digital data communication, e.g., a
communication network. Examples of communication networks include a local area
network (“LAN”) and a wide area network (“WAN"), e.g., the Internet.

The computing system can include clients and servers. A client and server are
generally remote from each other and typically interact through a communication
network. The relationship of client and server arises by virtue of computer programs
running on the respective computers and having a client-server relationship to each other.

While this specification contains many specific implementation details, these
should not be construed as limitations on the scope of any invention or of what may be
claimed, but rather as descriptions of features that may be specific to particular
embodiments of particular inventions. Certain features that are described in this
specification in the context of separate embodiments can also be implemented in
combination in a single embodiment. Conversely, various features that are described in
the context of a single embodiment can also be implemented in multiple embodiments
separately or in any suitable subcombination. Moreover, although features may be
described above as acting in certain combinations and even initially claimed as such, one
or more features from a claimed combination can in some cases be excised from the
combination, and the claimed combination may be directed to a subcombination or
variation of a subcombination.

Similarly, while operations are depicted in the drawings in a particular order, this
should not be understood as requiring that such operations be performed in the particular
order shown or in sequential order, or that all illustrated operations be performed, to
achieve desirable results. In certain circumstances, multitasking and parallel processing
may be advantageous. Moreover, the separation of various system modules and
components in the embodiments described above should not be understood as requiring
such separation in all embodiments, and it should be understood that the described
program components and systems can generally be integrated together in a single
software product or packaged into multiple software products.

Further implementations are summarized in the following examples:

Example 1: A method comprising: receiving a request to process a neural network
on a hardware circuit, the neural network comprising a first convolutional neural network
layer having a stride that is greater than one; and in response, generating instructions that

when executed by the hardware circuit cause the hardware circuit to, during processing of

10

15

20

25

30

26

an input tensor by the neural network, generate a layer output tensor that is equivalent to
an output of the first convolutional neural network layer by performing operations
comprising: processing the input tensor to the first convolutional neural network layer
using a second convolutional neural network layer that has a stride that is equal to one but
is otherwise equivalent to the first convolutional neural network layer to generate a first
tensor; zeroing out elements of the first tensor that would not have been generated if the
second convolutional neural network layer had the stride of the first convolutional neural
network layer to generate a second tensor; and performing max pooling on the second
tensor to generate the layer output tensor.

Example 2: The method of example 1, wherein zeroing out elements of the first
tensor comprises: multiplying a subset of elements of the first tensor by zero; and
multiplying the elements of the first tensor that are not included in the subset by one.

Example 3: The method of example 1, wherein zeroing out elements of the first
tensor comprises: performing element-wise multiplication of a masking tensor and the
first tensor to generate the second tensor, wherein the masking tensor comprises (i) zeros
at each element position of the masking tensor that corresponds to an element of the first
tensor that would not have been generated if the second convolutional neural network
layer had the stride of the first convolutional neural network layer, and (ii) ones at each
other element position of the masking tensor.

Example 4: The method of example 3, wherein the masking tensor is stored at a
memory accessible by the hardware circuit, and wherein element-wise multiplication of
the masking tensor and the first tensor is performed by a vector computation unit
implemented in hardware that is included in the hardware circuit.

Example 5: The method of example 1, wherein zeroing out elements of the first
tensor comprises: performing element-wise multiplication of a first masking tensor and
the first tensor to generate a modified first tensor, wherein the first masking tensor
comprises (i) zeros at each element position of the masking tensor that corresponds to an
element of the first tensor that would not have been generated if the second convolutional
neural network layer had the stride of the first convolutional neural network layer, and (ii)
a respective non-zero value at each element position of the masking tensor that
corresponds to an element of the first tensor that would have been generated if the second
convolutional neural network layer had the stride of the first convolutional neural network
layer; and performing element-wise multiplication of a second masking tensor and the

modified first tensor, wherein the second masking tensor comprises, at each element

10

15

20

25

30

27

position that corresponds to an element of the first tensor that would be generated if the
second convolutional neural network layer had the stride of the first convolutional neural
network layer, an inverse of the respective non-zero value of the first masking tensor.

Example 6: The method of one of examples 1 to 5, wherein performing max
pooling comprises obtaining, for each of one or more windows of the second tensor that
are defined by the stride of the first convolutional neural network layer, a maximum value
element of elements within the window.

Example 7: The method of example 6, wherein each of the one or more windows
of the second tensor is a rectangular window having dimensions corresponding to the
stride of the convolutional neural network layer, and includes different elements of the
second tensor.

Example 8: The method of one of examples 1 to 7, wherein performing max
pooling comprises obtaining, for each of one or more subsets of elements of the second
tensor, a maximum value element of the subset.

Example 9: The method of one of examples 1 to 8, wherein the max pooling
performed on the second tensor is performed by pooling circuitry of the hardware circuit.

Example 10: The method of one of examples 1 to 9, wherein the convolutional
neural network layer is a first neural network layer in the neural network, and wherein the
input tensor is a representation of a digital image comprising elements that correspond to
pixels of the digital image.

Example 11: The method of one of examples 1 to 10, wherein the input tensor is
stored at a unified buffer of the hardware circuit and weights of the second convolutional
neural network layer are stored at a dynamic memory of the hardware circuit, and
wherein processing the input tensor to the first convolutional neural network layer using
the second convolutional neural network layer comprises: sending the input tensor from
the unified buffer to a matrix computation unit of the hardware circuit that is implemented
in hardware; sending the weights of the second convolutional neural network layer from
the dynamic memory to the matrix computation unit of the hardware circuit; and
processing, by the matrix computation unit of the hardware circuit, the input tensor using
the weights of the second convolutional neural network layer to generate the first tensor.

Example 12: A system comprising: a hardware circuit; and one or more storage
devices storing instructions that are operable, when executed by the hardware circuit, to
cause the hardware circuit to perform operations comprising: processing an input tensor

to a convolutional neural network layer having a stride that is greater than one using a

10

15

20

25

30

28

second convolutional neural network layer having a stride that is equal to one but is
otherwise equivalent to the convolutional neural network layer to generate a first tensor;
zeroing out elements of the first tensor that would not have been generated if the second
convolutional neural network layer had the stride of the convolutional neural network
layer to generate a second tensor; and performing max pooling on the second tensor to
generate a layer output tensor.

Example 13: The system of example 12, wherein zeroing out elements of the first
tensor comprises: performing element-wise multiplication of a masking tensor and the
first tensor to generate the second tensor, wherein the masking tensor comprises (i) zeros
at each element position of the masking tensor that corresponds to an element of the first
tensor that would not have been generated if the second convolutional neural network
layer had the stride of the first convolutional neural network layer, and (ii) ones at each
other element position of the masking tensor.

Example 14: The system of example 13, wherein the masking tensor is stored at a
memory accessible by the hardware circuit, and wherein element-wise multiplication of
the masking tensor and the first tensor is performed by a vector computation unit
implemented in hardware that is included in the hardware circuit.

Example 15: The system of one of examples 12 to 14, wherein performing max
pooling comprises obtaining, for each of one or more windows of the second tensor that
are defined by the stride of the first convolutional neural network layer, a maximum value
element of elements within the window.

Example 16: The system of example 15, wherein each of the one or more
windows of the second tensor is a rectangular window having dimensions corresponding
to the stride of the convolutional neural network layer, and includes different elements of
the second tensor.

Example 17: The system of one of example 12 to 16, wherein the max pooling
performed on the second tensor is performed by pooling circuitry of the hardware circuit.

Example 18: The system of examples 12 to 17, wherein the convolutional neural
network layer is a first neural network layer in the neural network, and wherein the input
tensor is a representation of a digital image comprising elements that correspond to pixels
of the digital image. '

Example 19: The system of one of examples 12 to 18, wherein the input tensor is
stored at a unified buffer of the hardware circuit and weights of the second convolutional

neural network layer are stored at a dynamic memory of the hardware circuit, and

10

15

20

25

29

wherein processing the input tensor to the first convolutional neural network layer using
the second convolutional neural network layer comprises: sending the input tensor from
the unified buffer to a matrix computation unit of the hardware circuit that is implemented
in hardware; sending the weights of the second convolutional neural network layer from
the dynamic memory to the matrix computation unit of the hardware circuit; and
processing, by the matrix computation unit of the hardware circuit, the input tensor using
the weights of the second convolutional neural network layer to generate the first tensor.

Example 20: A computer readable storage device encoded with a computer
program, the program comprising instructions that, if executed by one or more computers,
cause the one or more computers to perform operations comprising: receiving a request to
process a neural network on a hardware circuit, the neural network comprising a first
convolutional neural network layer having a stride that is greater than one; and in
response, generating instructions that when executed by the hardware circuit cause the
hardware circuit to, during processing of an input tensor by the neural network, generate a
layer output tensor that is equivalent to an output of the first convolutional neural network
layer by performing operations comprising: processing the input tensor to the first
convolutional neural network layer using a second convolutional neural network layer
that has a stride that is equal to one but is otherwise equivalent to the first convolutional
neural network layer to generate a first tensor; zeroing out elements of the first tensor that
would not have been generated if the second convolutional neural network layer had the
stride of the first convolutional neural network layer to generate a second tensor; and
performing max pooling on the second tensor to generate the layer output tensor.

Particular embodiments of the subject matter have been described. Other
embodiments are within the scope of the following claims. For example, the actions
recited in the claims can be performed in a different order and still achieve desirable
results. As one example, the processes depicted in the accompanying figures do not
necessarily require the particular order shown, or sequential order, to achieve desirable
results. In certain implementations, multitasking and parallel processing may be

advantageous.

10

20

30

30

CLAIMS

1. A method comprising;
receiving a request to process a neural network on a hardware circuit, the neural
network comprising a first convolutional neural network layer having a stride that is
greater than one; and
in response, generating instructions that when executed by the hardware circuit
cause the hardware circuit to, during processing of an input tensor by the neural
network, generate a layer output tensor that is equivalent to an output of the first
convolutional neural network layer by performing operations comprising:
processing the input tensor to the first convolutional neural network layer
using a second convolutional neural network layer that has a stride that is equal to one
but is otherwise equivalent to the first convolutional neural network layer to generate a
first tensor;
zeroing out elements of the first tensor that would not have been
generated if the second convolutional neural network layer had the stride of the first
convolutional neural network layer to generate a second tensor; and
performing max pooling on the second tensor to generate the layer output

tensor.

2. The method of claim 1, wherein zeroing out elements of the first tensor
comprises:
multiplying a subset of elements of the first tensor by zero; and

multiplying the elements of the first tensor that are not included in the subset by

one.
3. The method of claim 1, wherein zeroing out elements of the first tensor
comprises: |

performing element-wise multiplication of a masking tensor and the first tensor
to generate the second tensor, wherein the masking tensor comprises (i) zeros at each
element position of the masking tensor that corresponds to an element of the first tensor

that would not have been generated if the second convolutional neural network layer

15

30

31

had the stride of the first convolutional neural network layer, and (ii) ones at each other

element position of the masking tensor.

4. The method of claim 3, wherein the masking tensor is stored at a memory
accessible by the hardware circuit, and wherein element-wise multiplication of the
masking tensor and the first tensor is performed by a vector computation unit

implemented in hardware that is included in the hardware circuit.

S. The method of claim 1, wherein zeroing out elements of the first tensor
comprises:

performing element-wise multiplication of a first masking tensor and the first
tensor to generate a modified first tensor, wherein the first masking tensor comprises (i)
zeros at each element position of the masking tensor that corresponds to an element of
the first tensor that would not have been generated if the second convolutional neural
network layer had the stride of the first convolutional neural network layer, and (ii) a
respective non-zero value at each element position of the masking tensor that
corresponds to an element of the first tensor that would have been generated if the
second convolutional neural network layer had the stride of the first convolutional
neural network layer; and

performing element-wise multiplication of a second masking tensor and the
modified first tensor, wherein the second masking tensor comprises, at each element
position that corresponds to an element of the first tensor that would be generated if the
second convolutional neural network layer had the stride of the first convolutional
neural network layer, an inverse of the respective non-zero value of the first masking

tensor.

6. The method of claim 1, wherein performing max pooling comprises obtaining,
for each of one or more windows of the second tensor that are defined by the stride of
the first convolutional neural network layer, a maximum value element of elements

within the window.

7. The method of claim 6, wherein each of the one or more windows of the second

tensor is a rectangular window having dimensions corresponding to the stride of the

15

25

30

32

convolutional neural network layer, and includes different elements of the second

tensor.

8. The method of claim 1, wherein performing max pooling comprises obtaining,
for each of one or more subsets of elements of the second tensor, a maximum value

element of the subset.

9. The method of claim 1, wherein the max pooling performed on the second tensor

is performed by pooling circuitry of the hardware circuit.

10. The method of claim 1, wherein the convolutional neural network layer is a first
neural network layer in the neural network, and wherein the input tensor is a
representation of a digital image comprising elements that correspond to pixels of the

digital image.

11. The method of claim 1, wherein the input tensor is stored at a unified buffer of
the hardware circuit and weights of the second convolutional neural network layer are
stored at a dynamic memory of the hardware circuit, and wherein processing the input
tensor to the first convolutional neural network layer using the second convolutional
neural network layer comprises:

sending the input tensor from the unified buffer to a matrix computation unit of
the hardware circuit that is implemented in hardware;

sending the weights of the second convolutional neural network layer from the
dynamic memory to the matrix computation unit of the hardware circuit; and

processing, by the matrix computation unit of the hardware circuit, the input
tensor using the weights of the second convolutional neural network layer to generate

the first tensor.

12. A system comprising:

a hardware circuit; and

one or more storage devices storing instructions that are operable, when
executed by the hardware circuit, to cause the hardware circuit to perform operations

comprising:

10

20

25

30

33

processing an input tensor to a convolutional neural network layer having a
stride that is greater than one using a second convolutional neural network layer having
a stride that is equal to one but is otherwise equivalent to the convolutional neural
network layer to generate a first tensor;

zeroing out elements of the first tensor that would not have been generated if the
second convolutional neural network layer had the stride of the convolutional neural
network layer to generate a second tensor; and

performing max pooling on the second tensor to generate a layer output tensor.

13. The system of claim 12, wherein zeroing out elements of the first tensor
comprises:

performing element-wise multiplication of a masking tensor and the first tensor
to generate the second tensor, wherein the masking tensor comprises (i) zeros at each
element position of the masking tensor that corresponds to an element of the first tensor
that would not have been generated if the second convolutional neural network layer
had the stride of the first convolutional neural network layer, and (ii) ones at each other

element position of the masking tensor.

14. The system of claim 13, wherein the masking tensor is stored at a memory
accessible by the hardware circuit, and wherein element-wise multiplication of the
masking tensor and the first tensor is performed by a vector computation unit

implemented in hardware that is included in the hardware circuit.

15. The system of claim 12, wherein performing max pooling comprises obtaining,
for each of one or more windows of the second tensor that are defined by the stride of
the first convolutional neural network layer, a maximum value element of elements

within the window.

16. The system of claim 15, wherein each of the one or more windows of the second
tensor is a rectangular window having dimensions corresponding to the stride of the
convolutional neural network layer, and includes different elements of the second

tensor.

20

25

34

17. The system of claim 12, wherein the max pooling performed on the second

tensor is performed by pooling circuitry of the hardware circuit.

18. The system of claim 12, wherein the convolutional neural network layer is a first
neural network layer in the neural network, and wherein the input tensor is a
representation of a digital image comprising elements that correspond to pixels of the

digital image.

19. The system of claim 12, wherein the input tensor is stored at a unified buffer of
the hardware circuit and weights of the second convolutional neural network layer are
stored at a dynamic memory of the hardware circuit, and wherein processing the input
tensor to the first convolutional neural network layer using the second convolutional
neural network layer comprises:

sending the input tensor from the unified buffer to a matrix computation unit of
the hardware circuit that is implemented in hardware;

sending the weights of the second convolutional neural network layer from the
dynamic memory to the matrix computation unit of the hardware circuit; and

processing, by the matrix computation unit of the hardware circuit, the input
tensor using the weights of the second convolutional neural network layer to generate

the first tensor.

20. A computer readable storage device encoded with a computer program, the
program comprising instructions that, if executed by one or more computers, cause the
one or more computers to perform operations comprising:

receiving a request to process a neural network on a hardware circuit, the neural
network comprising a first convolutional neural network layer having a stride that is
greater than one; and

in response, generating instructions that when executed by the hardware circuit
cause the hardware circuit to, during processing of an input tensor by the neural
network, generate a layer output tensor that is equivalent to an output of the first
convolutional neural network layer by performing operations comprising:

processing the input tensor to the first convolutional neural network layer

using a second convolutional neural network layer that has a stride that is equal to one

35

but is otherwise equivalent to the first convolutional neural network layer to generate a
first tensor;

zeroing out elements of the first tensor that would not have been
generated if the second convolutional neural network layer had the stride of the first
convolutional neural network layer to generate a second tensor; and

performing max pooling on the second tensor to generate the layer output

tensor.

21. A method substantially as described herein with reference to and as shown in

any one of the accompanying drawings.

22. A system substantially as described herein with reference to and as shown in any

one of the accompanying drawings.

23. A computer readable storage device substantially as described herein with

reference to and as shown in any one of the accompanying drawings.

114

I "Old

 abed

¢ obed

Z obed

g9l

[
honst

layng episey007] oyl
uolnejsuel | a|qe]

| ebed

AWvVdd

Cos

sSsalppy
[eoisAyd

0gl

Hun juswesbeuey Aioway

Aoway
ajoway

0¢l

ssalppy
jeo1b07

0t

NQE

2/4

¢ 'Old

aoedg

ssalippy
leoisAud

(NAW)
nun
juswabeuep
Alowsy

aoedg
EIEN

NdO

aoedg
Jasn

ore

N 0¢t

A

/44

aoedg
IR

e

aoedg
Jssn

ERED S

SSaIppY [ENUIA

1114

g $s900.d

s07

v $S800.d

Ngm

3/4

/
.

7

7

1%

§0¢

pajedoily
CIVET

1%

(W4d

(1-u)4d

Ve 'Old

174

0Le

V

u abed

L-u abed

N\

vdd

€dd

A

7 abed

¢dd

¢ abed

/

Ldd

Z abed

04d

LSIVETD
[e3ISAU4g

%.‘2
e
[

ol

| ebed

0 ebed

LN VVE]T
[enuIA

4002

4/4

Receive request to access data contained in a
first portion of a first page of data

410

v

Initiate a page fault based on determining that
the first page of data is not stored in the main

memory 420

v

Allocate a portion of the main memory
equivalent to the first page size

430

v

Transfer the first portion of the first page of
data from the secondary memory to the
allocated portion of the main memory

=3

¢ 44

Update a first page table entry associated with
the first portion of the first page of data

P
=1

5

FIG. 4

	IE20170205A1
	CLAIMS
	DESCRIPTION
	DRAWINGS

