(19)

DANMARK (10 DK/EP 3143753 T3

(12) Oversaettelse af
europeeisk patentskrift

Patent- og
Varamegerkestyrelsen

(51)
(45)

(80)

(74)
(54)

(56)

Int.Cl.: H04 L 29/08 (2006.01)
Overseettelsen bekendtgjort den: 2018-12-03

Dato for Den Europaeiske Patentmyndigheds
bekendtgorelse om meddelelse af patentet: 2018-08-29

Europaeisk ansggning nr.: 15726434.2

Europaeisk indleveringsdag: 2015-05-11

Den europaeiske ansggnings publiceringsdag: 2017-03-22

International ansggning nr.: US2015030235

Internationalt publikationsnr.: WO2015175442

Prioritet: 2014-05-13 US 201461992623 P 2014-09-24 US 201414495683

Designerede stater: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV
MC MK MT NL NO PL PT RO RS SE S| SK SM TR

Patenthaver: Google LLC, 1600 Amphitheatre Parkway, Mountain View, CA 94043, USA

Opfinder: EISENBUD, Daniel Eugene, 1600 Amphitheatre Parkway, Mountain View, California 94043, USA
NEWTON, Simon Jeffrey, 1600 Amphitheatre Parkway, Mountain View, California 94043, USA

Fuldmaegtig i Danmark: AWA Denmark A/S, Strandgade 56, 1401 Kobenhavn K, Danmark
Benaevnelse: FREMGANGSMADE OG SYSTEM TIL BELASTNINGSBALANCERING AF ANYCAST-DATATRAFIK

Fremdragne publikationer:
US-A1- 2006 212 597
US-A1- 2010 302 940
US-A1- 2011 145 390
US-B1-7 355 977

DK/EP 3143753 T3

DK/EP 3143753 T3

DESCRIPTION

FIELD OF THE DISCLOSURE

[0001] The present disclosure relates generally to the field of data traffic load balancing.

BACKGROUND

[0002] Much of the world's Internet-accessible content is provided by servers hosted in large
data centers. Such data centers are typically distributed across multiple geographical locations,
and serve end-users globally. A typical data center houses thousands of servers hosting
multiple instances of software applications associated with different services provided to end-
users. When an end-user makes a request for Internet content associated with, for example, a
web site, social media service, streaming media content item, gaming service, or any other
online service, the request is sent to an application instance associated with the service hosted
by a data center to serve request.

[0003] Patent Application US 2010/302940 discloses a load balancing system which includes
two layers (two levels) of load balancers. The first level of dynamic load balancers DLB
distribute / forward the packets to local load balancers LLB. Packets of a particular service are
directed (destination address) to a single Virtual IP and are then forwarded by routers to the
DLB (first level). The DLB use a hashing function on the packet header fields to select the
target device (second level LLB or application servers).

[0004] Patent Application US 7355977 discloses an algorithm to distribute received packets to
targets / servers (load balancing). A hash on header fields is an index to a mapping table
where each slot contains the identifier of a target (e.g. IP). The number of occurrences of a
target identifier in the table is proportional to the weight (load ration) of this target, i.e. number
of slots for each server is calculated as the proportion of the load share.

[0005] Patent Application US 2011/145390 discloses a load balancing method wherein an
virtual Internet protocol address for forwarding client packets by routers to a set of load
balancing devices is envisaged. The load balancers use hashing of packet header fields
mapped to target servers for session persistence and an uneven (weighted) load distribution to
available servers. Routers identify a next hop and forward packets based on destination
information (e.g., a destination IP address and/ or port) included in a header of a received
packet.

SUMMARY

DK/EP 3143753 T3

[0006] According to one aspect of the disclosure, a method for load balancing data traffic
addressed to an anycast address includes maintaining, by each load balancing (LB) device of
a first set of LB devices, a first data structure including entries associated with application
instances in a group of application instances served by the LB device of the first set of LB
devices. The frequency with which each served application instance is included in the first data
structure is indicative of a weight value associated with a capacity of the corresponding served
application instance. Upon an LB device in the first set of LB devices receiving a data packet
originally addressed to an anycast address, the LB device generates a first hash value based
on a first set of header fields of the received data packet. The LB of the first set then uses the
first data structure to identify a virtual Internet protocol (IP) address of one of the served
application instances based on the generated first hash value, and forwards the data packet to
the identified application instance. The method also includes maintaining, by a LB device of a
second set of LB devices, a second data structure including entries associated with respective
LB devices in the first set, the frequency with which each LB device in the first set of LB devices
is included in the second data structure is indicative of a weight value associated with the
corresponding LB device of the first set. Upon an LB device of the second set of LB devices
receiving a data packet originally addressed to the anycast address, the LB generates a
second hash value based on a second set of header fields of the received data packet, and
identifies a LB device of the first set using the second data structure, based on the generated
second hash value. The LB of the second set then forwards the data packet to the identified LB
device of the first set of LB devices.

[0007] According to another aspect of the disclosure, a system for load balancing anycast
traffic in a communications network includes a first set of load balancing (LB) devices. Each LB
device of the first set of LB devices is configured to maintain a first data structure including
entries associated with application instances in a group of application instances served by the
LB device of the first set of LB devices. The frequency with which each served application
instance is included in the first data structure is indicative of a weight value associated with a
corresponding served application instance. Upon an LB device of the first set of LB devices
receiving a data packet, received at the system addressed to an anycast address, the LB
device generates a first hash value based on one or more first header fields of the received
data packet, and uses the first data structure to identify a virtual Internet protocol (IP) address
of one of the served application instances based on the generated first hash value. The LB
device of the first set then forwards the data packet to the identified application instance. The
system also includes a second set of load balancing LB devices. Each LB device of the second
set of LB devices is configured to maintain a second data structure including entries associated
with respective LB devices in the first set. The frequency with which each LB device in the first
set of LB devices is included in the second data structure is indicative of a weight value
associated with the corresponding LB device of the first set. Upon an LB device in the second
set of LB devices receiving a data packet, received at the system addressed to the anycast
address, the LB device generates a second hash value based on one or more second header
fields of the received data packet, and identifies a LB device of first set of LB devices using the
second data structure, based on the generated second hash value. The LB device of the
second set then and forwards the data packet to the identified LB device of the first set. The

DK/EP 3143753 T3

system further includes an anycast node associated with the anycast address configured to,
upon receiving a data packet addressed to the anycast address, forward the received data
packet to a LB device in the second set of LB devices.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The above and related objects, features, and advantages of the present disclosure will
be more fully understood by reference to the following detailed description, when taken in
conjunction with the following figures, wherein:

Figure 1 shows a block diagram of an implementation of a single-layer load balancing system
for load balancing data traffic addressed to an anycast address;

Figure 2 shows a flowchart describing an implementation of a process of processing anycast
data packets performed by the single-layer load balancing system ;

Figure 3 shows a block diagram of an implementation of a two-layer load balancing system for
load balancing data traffic addressed to an anycast address;

Figure 4 shows a block diagram representing another implementation of the two-layer load
balancing system;

Figure 5 shows a flowchart describing an implementation of a process of handling anycast data
packets performed by the two-layer load balancing system;

Figure 6 shows a flowchart describing an implementation of a process for generating a data
structure employed by load balancers; and

Figure 7 shows illustrations of data structures employed by systems in Figures 1 and 3.

[0009] Like reference numbers and designations in the various drawings indicate like
elements.

DETAILED DESCRIPTION

[0010] Online services or applications usually include multiple application instances for each
application or service. The multiple application instances for each application or service may
reside on multiple computer servers. As such, the load associated with accessing an
application or service by multiple end-users may be distributed across at least a subset of the
corresponding multiple application instances. Also, distributing the multiple application
instances for a given application or service across different geographical locations helps
reduce latency experienced by end-users. In particular, an end-user may be served by the

DK/EP 3143753 T3

closest geographical location having one or more of the corresponding multiple application
instances. While serving each end-user or client by the corresponding closest geographical
location reduces latency, the computer servers in each geographical location, and the
application instances therein, have a finite capacity. When demand for a given application or
service at a particular location exceeds the capacity of the applications instances in the same
location, excess demand for the application may overflow to the next closest location.

[0011] In order to address the finite capacities of the computer servers and the application
instances executed thereon, domain name system (DNS) servers have been traditionally
employed in existing data centers to perform load balancing functionalities. In the following,
implementations of processes, apparatuses, and systems for load balancing anycast data
traffic are presented.

[0012] In anycast-based services or applications, one or more Internet protocol (IP) addresses
are advertised, from multiple servers, globally using anycast. The anycast IP address for a
given application or service is then used by end-users when accessing the same application or
service. Data traffic associated with the anycast address, e.g., requests from end-users to
access the application or service, is then load balanced across different corresponding
application instances as depicted in the implementations described below. Data traffic
associated with an anycast address is also referred to herein as anycast traffic or anycast data
traffic. In some implementation, anycast traffic associated with stateful protocols, e.g., transport
control protocol (TCP), is load balanced and served while corresponding connections are
maintained even as Internet routing tables change. Furthermore, implementations described
below can allow for specifying capacities or other load balancing metrics for different locations,
and allow for rapid load balancing responses to changes in load, capacity, or any other load
balancing metrics.

[0013] Figure 1 shows a block diagram of an implementation of a single layer load balancing
system 100 for load balancing data traffic addressed to an anycast address. The system 100
includes multiple anycast redirector nodes 110a - 110c (also referred to hereinafter either
individually or collectively as anycast node(s) 110) load balancer devices 120a - 120b (also
referred to hereinafter either individually or collectively as load balancer(s) 120) and multiple
server clusters 130a - 130c (also referred to hereinafter either individually or collectively as
cluster(s) 130). Each of the clusters 130 includes a number of application instances 131.

[0014] A data packet 10 addressed to an anycast address is received at the system 100 by an
anycast node 110. For example, the data packet 10 is received by the anycast node 110. The
anycast nodes 110 are devices configured to receive data packets 10 addressed to an anycast
address, and redirect the received data packets to corresponding load balancers 120. In some
instances, an anycast node 110 redirects a received data packet 10 to a corresponding load
balancer 120. In other instances, the receiving anycast node 110 redirects the received data
packet 10 to a pool of load balancers 120 serving one or more respective clusters 130 of the
system 100.

DK/EP 3143753 T3

[0015] In some implementations, each anycast node 110 maintains, or has access to, a
respective map mapping source Internet Protocol (IP) addresses to corresponding clusters 130
or load balancers 120 associated with such clusters. The map is also referred to as a source IP
map. In some instances, each source IP address is mapped to the cluster 130, or
corresponding load balancer(s) 120, that is closest to the data packet source associated with
the same source IP address. A person skilled in the art should appreciate that the mappings
between source IP addresses and clusters 130, or load balancers 120, may be defined
differently, for example, based on assignments made by administrators of the system 100.
Upon receiving the data packet 10 addressed to the anycast address, the anycast node 110
looks up the packet's source Internet Protocol (IP) address in the source IP map, and redirects
the data packet 10 to a mapped location, i.e., a location associated with the source IP address
in the source IP map. The mapped location is indicative of a load balancer 120 or a pool of
load balancers 120 of the system 100.

[0016] In some implementations, the anycast node 110 uses several header fields of the
received data packet 10 to determine a load balancer 120, or a pool of load balancers 120, to
which the received data packet 10 is to be redirected. For instance, the receiving anycast node
110 uses a destination IP address (such as a virtual IP (VIP) address) and a source port
associated with the received data packet 10 to determine an anycast service group among
multiple anycast service groups. In some implementations, the receiving anycast node 110 can
use the destination address, the destination port, the source IP address, the source port, the
protocol, or any combination thereof to determine the anycast service group. The receiving
anycast node 110 may also use other information included in the data packet payload such as
a connection identifier (ID) or the like. For example, two anycast service groups may be
defined, one using end-point servers for backend load balancing and another employing load
balancing servers for backend load balancing. End-point servers are configured to terminate a
transport control protocol (TCP) connection. In other examples, different anycast service
groups may be defined. In mapping the packet's destination IP address and source port to the
corresponding anycast service group, the receiving anycast node 110 makes use, for example,
of a second map or configuration information indicative of such mappings. The receiving
anycast node 110 further employs the source IP address of the received data packet 10 and
the source IP map associated with receiving anycast node 110 to determine a zone, e.g., one
or more clusters 130, of the system 100. In some implementations, a single source IP map is
shared by all anycast nodes 110. In other implementations, different anycast nodes 110 may
be associated with distinct source IP maps. In some implementations, each source IP map is
associated with a respective service . The receiving anycast node 110 then maps the
determined zone and the determined anycast service group to a load balancer 120 or a pool of
load balancers 120 based on, for example, a third map. The receiving anycast node then
redirects the received data packet 10 to the determined load balancer 120 or the determined
pool of load balancers 120.

[0017] A person of ordinary skill in the art should appreciate that using a global mapping, e.g.,
a source |IP map, makes redirecting of data packets 10 by the anycast nodes 110 consistent. In
other words, if the data packet is received at the anycast node 110c instead of the anycast

DK/EP 3143753 T3

110b, the anycast node 110c will, using the source IP map, redirect the data packet 10 to the
same load balancer that would have been selected by the anycast node 110b.

[0018] The receiving anycast node 110 can be further configured to check a connection table
to determine whether the received data packet 10 corresponds to a data flow, or session,
recently served by the receiving anycast node 110. If the received data packet corresponds to
a data flow or session indicated in the connection table, the receiving anycast node 110
forwards the received data packet 10 to a destination associated with the corresponding data
flow or session. Otherwise, the receiving anycast node 110 determines a load balancer 120, or
a pool of load balancers 120, as described above, and redirects the received data packet 10 to
the determined load balancer 120 or the determined pool of load balancers 120.

[0019] In some implementations, each load balancer 120 is a computing device including a
processor and a memory. The memory stores computer code instructions and a data structure
121 associated with the anycast address to which the data packet 10 is originally addressed.
The computer code instructions include a software load balancer for load balancing data
packets associated with the anycast address. In some implementations, the software load
balancer is a virtual machine. The load balancer 120 may include multiple software load
balancers associated with the same anycast address and/or multiple software load balancers
associated with multiple anycast addresses. The data structure 121 is employed by the load
balancer 120 to map data packets associated with the anycast address to corresponding
application instances 131 residing in the clusters 130. In some instances, each load balancer
120 includes a separate data structure for each anycast address served by the same load
balancer 120. The processor is configured to execute the computer code instructions stored in
the memory. A person of ordinary skill in the art should appreciate that each load balancer 120
may include multiple processors and/or multiple memories. The load balancers 120 include a
computer server, an end-point server that terminates TCP connection, other electronic devices
configured to perform load balancing as described herein, or combinations thereof.

[0020] In some instances, the load balancers 120 are distributed across different geographical
areas of the system 100. For example the load balancers 120a, 120b, and 120c, serve
corresponding clusters 130a, 130b, and 130c, respectively. In other instances, a load balancer
120 may serve more than one cluster 130. A load balancer 120 may serve a zone of the
system 100. A zone herein refers to one or more clusters 130 of the system 100 which are
related, for example, based on corresponding geographical locations or other criteria. For
instance, a zone may include multiple clusters 130 located at close geographic proximities to
each other such as within a same data center. In other instances, a zone may include more
distant clusters 130 inter-connected through relatively high speed communication links. Also, a
zone may be served by a pool of load balancers.

[0021] In instances where the received data packet 10 is redirected by the anycast node 110
to a pool of load balancers 120, equal-cost multi-path (ECMP) routing may be employed to
forward the received data packet to a specific load balancer 120 of the pool of load balancers
120. For example, a device receiving the data packet 10 generates an integer hash value

DK/EP 3143753 T3

based on header fields of the data packet 10, e.g., the packet's five-tuple, including protocol,
source IP address, destination IP address, source port, and destination port. The receiving
device then determines the destination load balancer 120 based on the generated hash value
modulo a size of a table including identifications of the load balancers 120. In some
implementations, the receiving device determines the destination load balancer 120 using the
same or substantially similar algorithm as used by the load balancer 120 as described further
below. The receiving device then delivers the data packet 10 to the destination load balancer
120 by either rewriting the packet's layer-two Ethernet header to point to the destination load
balancer 120, or by encapsulating the data packet 10 with a generic routing encapsulation
(GRE) header and an outer IP header. The same approach may be employed by a load
balancer 120 including multiple software load balancers serving the packet's destination IP
address to forward the received data packet 10 to one of the multiple software load balancers.

[0022] Upon receiving the data packet 10, the receiving load balancer 120, or a software load
balancer thereon, generates a hash value based on one or more header fields of the data
packet 10, e.g., the packet's five-tuple including protocol, source IP address, destination IP
address, source port, and destination port. In some implementations, the data structure 121
includes entries associated with a group of application instances 131 served by the receiving
load balancer 120. The group of application instances 131 correspond to an application or
service associated with the anycast address to which the data packet 10 was addressed when
arriving at the system 100. The receiving load balancer 120 then uses the generated hash
value and the data structure 121 to determine a destination IP address of an application
instance 131 of a group of application instances served by the receiving load balancer 120.
The receiving load balancer 120 then forwards the data packet 10 to the determined
application instance 131.

[0023] In some implementations, the data structure 121 is designed in a way that the
frequency with which each application instance 131 is included in the data structure 121
reflects a weight associated with the same application instance 131. The weight associated
with the application instance 131 is indicative of a load balancing metric such as capacity,
processing time, or other criteria relevant in deciding to which application instance 131 the data
packet is to be forwarded. That is, the weight associated with each application instance 131
may reflect how busy or how free the application instance 131 is. Alternatively, the weight
associated with a given application instance 131 may reflect how fast or how slow processing
the data packet 10 would be if the same application instance 131 is used. Capacity of each
application may be defined in terms of packets per second, connections, or synchronize (SYN)
packets per second, bandwidth, or the like. Processing time may be defined in terms of round
trip time (RTT), or other metrics known in the art. In the data structure 121, the more frequent
an application instance 131 is included, the more likely the same application instance 131 is to
be selected for processing the request associated with the data packet 10.

[0024] The receiving load balancer 120 uses the generated hash value to select an entry of
the data structure 121. For instance, the receiving load balancer 120 may select the data
structure entry with index equal to the generated hash value modulo a size of the data

DK/EP 3143753 T3

structure or the size of an element portion of the data structure. Each entry of the data
structure 121 is indicative of a corresponding application instance 131. For instance, each
entry of the data structure 121 includes a destination IP address of a corresponding application
instance 131. The receiving load balancer 120 then forwards the data packet 10 to the
application instance 131 with the destination IP address obtained from the selected data
structure entry.

[0025] In some implementations, the data structure 121 is a single table with each row or
alternatively each column, including entries for application instances associated with a
corresponding location, e.g., a cluster 130 or zone, of the system 100. As such, the receiving
load balancer 120 may first select a row, or alternatively a column, and then select an entry
within the selected row, or alternatively the selected column, based on the generated hash
value. In some implementations, the data structure 121 includes multiple tables with each table
corresponding to a location, e.g., a zone or cluster 130, of the system 100. In such a case, the
receiving load balancer 120 may first select a table, and then select an entry within the
selected table based on the generated hash value.

[0026] The receiving load balancer 120 may select a table, or sub-table such as a row or a
column, corresponding to a location of the system 100 in different ways. For instance the
selection may be based on a map associating IP subnets to corresponding locations of the
system 100. Such map may be defined by observing at what location of the system 100 traffic
from each IP subnet usually arrives. Alternatively, the map may be defined based on
assignments made by administrators of the system 100, or based on RTT and distances
between IP subnets and locations 130 of the system 100. The receiving load balancer 120
looks up the source IP address associated with the received data packet 10 in the map, and
gets back either a location or a weighted list of locations. If a weighted list of location is
retrieved from the map, the receiving load balancer may select a location from the list based
on the corresponding weights and another hash value generated using one or more header
fields, e.g., the five tuple, of the data packet 10. However, if no weighted list is used, the
receiving load balancer 120 checks whether the closest location indicated in the map has
enough available capacity to handle the data packet 10. If yes, the closest location is selected,
otherwise the next closest location as indicated in the map is checked and so on. Given that
each location is associated with a corresponding table, or sub-table, the receiving load
balancer 120 selects a table, or sub-table, for use in determining a destination application
instance 131 for the data packet 10 when selecting a location from the map. A person skilled in
the art should appreciate that the data structure 121 may alternatively include one or more
trees or any other data structures known in the art instead of one or more tables.

[0027] The receiving load balancer 120 may also check a connection table, prior to selecting
an application instance 131, to determine if the received data packet 10 corresponds to a flow
or session associated with an existing connection. If the received data packet 10 is found to be
associated with an existing connection, the data packet 10 is forwarded to an application
instance associated with the connection in the connection table. Otherwise, the receiving load
balancer 120 determines an application instance 131 from the data structure 121 and forwards

DK/EP 3143753 T3

the data packet 10 to the determined application instance 131. Also, upon receiving the data
packet 10, the load balancer 120 may further de-capsulate the data packet 10 if the later has
been previously encapsulated one or more times. As such, the receiving load balancer 120 de-
capsulates the data packet 10 until the inner packet is reached, and then retrieves any header
fields for use in determining an application instance 131 to process the data packet 10.

[0028] Each cluster 130 includes one or more computer servers, e.g., content delivery servers
and/or application servers, that maintain application instances associated with one or more
services. In Figure 1, each of the clusters 130a - 130c, includes a number of application
instances 131 associated with the application or service accessed through the anycast address
to which the data packet 10 was addressed when arriving at the system 100. The application
instances 131 in a given cluster 130 may reside in a single computer server, or may be
distributed among multiple computer servers of the same cluster 130. The application
instances 131 are addressed through corresponding destination IP addresses. An application
instance as referred to herein includes a copy of a server application serving requests of end-
users of a web page or an application, such as an email application, game application, social
media application, calendar application, or any other online application. The application
instance 131 receiving the data packet 10 processes the request associated with the data
packet 10.

[0029] Figure 2 shows a flowchart describing an implementation of a process 200 of
processing anycast data packets performed by the single-layer load balancing system 100.
The process 200 includes the processes of receiving by an anycast node 110 a data packet 10
addressed to an anycast address (stage 210), forwarding by the anycast node 110 the
received data packet 10 to a load balancer 120 (stage 220), and determining by the load
balancer 120 if the data packet is associated with a previously served flow or session (stage
230). If the data packet is determined to be associated with a previously served flow or
session, the process 200 includes forwarding the data packet 10 to application instance
associated with the previously served flow or session(stage 240). Otherwise, the process 200
includes selecting a sub-data structure from multiple sub-data structures (stage 250),
determining an application instance 131 based on the selected sub-data structure and one or
more header fields of the data packet 10 (stage 260), and forwarding the data packet to the
determined application instance (stage 270).

[0030] When end-users request or consume an online service associated with an anycast
address, corresponding data packets sent from the end-users are addressed to the same
anycast address. One or more anycast nodes 110 receive the data packets addressed to the
anycast address (stage 210). For instance, each data packet addressed to the anycast
address is received by the closest anycast node 110 to the source of the data packet. Upon
receiving a data packet addressed to the anycast node (stage 210), a receiving anycast node
may check a connection table to determine whether the received data packet is associated
with a previously served flow or session, e.g., an already established connection. If the data
packet is determined to be associated with an existing flow or session, the receiving anycast
node 110 forwards the data packet to a next hop associated with the existing flow or session.

DK/EP 3143753 T3

The checking of the connection table is optional as it may be carried out by another network
element or device, other than the receiving anycast node 110 or it may be skipped entirely.

[0031] If the data packet is determined not to be associated with an existing flow or session
such as a synchronize (SYN) data packet or a data packet where flow had previously been by
a different anycast node, or no checking is performed by the receiving anycast node 110, the
anycast node forwards the data packet to a load balancer (LB) 120 (stage 220). In forwarding
the data packet (stage 220), the receiving anycast node 110 may determine the load balancer
120 based on one or more header fields, e.g., source IP address, destination IP address,
and/or source port, of the data packet and a sub-data structure associated with the receiving
anycast node 110. Also, the anycast node 110 may de-capsulate the data packet and/or
encapsulate it with one or more new headers before forwarding the data packet to the load
balancer 120.

[0032] Upon receiving the data packet, the load balancer 120 may check a connection table to
determine whether the received data packet is associated with a previously served flow or
session, e.g., an already established connection (stage 230). If the data packet is determined
to be corresponding to an existing flow or session, the LB 120 forwards the data packet to the
application instance serving the existing flow or session (stage 240). The checking of the
connection table is optional as it may be carried out by another network element or device,
other than the LB 120 or it may be skipped entirely.

[0033] If the data packet is determined not to be associated with an existing flow or session
such as a synchronize (SYN) data packet or a data packet where flow had previously been by
a different anycast node, or no checking is performed by the LB 120, the LB selects a sub-data
structure from a data structure 121 maintained by the LB 120 (stage 250). For instance, if the
data structure 121 is a single table, the selected sub-data structure may be a row or column of
the table. In other instances where the data structure 121 includes multiple tables, the selected
sub-data structure is table of the multiple tables. The selection of the sub-data structure may
be based on header field(s) of the data packet and a sub-data structure between IP subnets
and corresponding locations of the system 100. Alternatively, the selection may be based on
header field(s) of the data packet and a list of the sub-data structures reflecting a weight for
each sub-data structure in the list. Each sub-data structure of the data structure 121
represents a redundant list of application instances 131 associated with a corresponding
location, e.g., a cluster 130 or zone, of the system 100. The frequency with which an
application instance 131 is included in a corresponding sub-data structure is dependent on a
weight value associated with the same application instance 131.

[0034] The LB 120 then determines an application instance 131 from the selected sub-data
structure using one or more header fields of the data packet (stage 260). For instance, the LB
120 generates a hash value using the one or more header fields of the data packet and then
uses the generated hash value to determine an entry of the sub-data structure. The LB 120
may calculate the generated hash value modulo the size of the sub-data structure and use the
result as an index for the entry selected. A person of ordinary skill in the art should appreciate

DK/EP 3143753 T3

that the header field(s) of the data packet may be used in different ways to identify an entry of
the sub-data structure for selection. Each entry of the selected sub-data structure includes an
IP address, e.g., a destination IP address, associated with a corresponding application
instance 131. The LB 120 then forwards the data packet to the determined application instance
131 (stage 270), where the request associated with the data packet is served.

[0035] Figure 3 shows a block diagram of an implementation of a two-layer load balancing
system 300 for load balancing data traffic addressed to an anycast address. The system 300
includes anycast redirector nodes 310a - 310c, also referred to hereinafter either individually or
collectively as anycast node(s) 310, first-layer load balancer devices 320a - 320c, also referred
to hereinafter either individually or collectively as first-layer load balancer(s) 320, second-layer
load balancers 325a - 325c, also referred to hereinafter either individually or collectively as
second-layer load balancer(s) 325, and multiple server clusters, e.g., clusters 330a - 330c also
referred to hereinafter either individually or collectively as cluster(s) 330. Each of the clusters
330a - 330c, includes a number of application instances 331 associated with a service
accessed through the anycast address.

[0036] An anycast node 310 is configured to forward a received data packet 10, addressed to
a corresponding anycast address, to a first-layer LB 320 of one or more first-layer LBs 320.
The anycast node 310 determines the first-layer LB 320 for forwarding the data packet based
on one or more header fields, e.g., source |IP address, destination IP address, and/or source
port, of the data packet 10 and a sub-data structure associated with the anycast node 310.
Also, the anycast node 310 may de-capsulate the data packet and/or encapsulate it with one
or more new headers before forwarding the data packet to the selected firs-layer LB 320.
Furthermore, the anycast node 310 may check a connection table upon receiving the data
packet similar to the anycast node 110 described in relation to Figure 1.

[0037] In some implementations, each first-layer LB 320 includes a first data structure 321 for
mapping received data packets to respective second-layer LBs 325. In some instances, the
first data structure 321 includes a redundant list of the second-layer LBs 325 such that the
frequency with which each second-layer LB 325 is included in the first data structure depends
on a weight value associated with the same second-layer LB 325 or a corresponding location.
For instance, the weights may reflect the available capacity at each corresponding location, the
RTT to each corresponding location, another load balancing criterion, or combinations thereof.
The first-layer LB 320 selects a second-layer LB 325 from the corresponding firs data structure
321 based on one or more header fields of the data packet 10. The first-layer LB 325 then
forwards the data packet 10 to the selected second-layer LB 325. In some instances, the first-
layer LB 320 generates a hash value using the header field(s) of the data packet 10 and
selects the second-layer LB 325 from the first data structure 321 based on the generated hash
value. In other instances, the selection of the second-layer LB 325 by the first-layer LB 320
may be performed similar to the selection of a sub-data structure (stage 250) as described in
relation with Figure 2. The selection of a second layer LB 325 by the first-layer LB 320 may be
dependent on checking a connection table by the first-layer LB 320 (similar to stage 230, stage
240 and stage 250 in Figure 2).

DK/EP 3143753 T3

[0038] Each second-layer LB 325 is associated with a location, e.g., zone or cluster 330, of the
system 300, and includes a corresponding second data structure 326 associated with the
same location of the system 300. The second data structure 326 includes a redundant list of
application instances associated with the same location. The frequency with which each
application instance is included in the second data structure 326 reflects a weight value
associated with the same application instance. Such weights may reflect the available capacity
at each application instance, the RTT to each application instance, other load balancing
criteria, or combinations thereof. The selected second-layer LB 325 receives the data packet
10 and determines an application instance from the corresponding second data structure 326
based on one or more header fields of the data packet 10. For instance, the first-layer LB 320
generates a hash value using the header field(s) of the data packet 10 and selects the second-
layer LB 325 from the first data structure 321 based on the generated hash value. In some
implementations, each entry of the second data structure 326 includes an IP address, e.g., a
destination IP address, associated with a corresponding application instance. The generated
hash value can be used as an index of an entry in the second data structure in selecting an IP
address. The second-layer LB 325 then forwards the data packet 10 to the determined
application instance.

[0039] Each cluster 330 includes one or more computer servers, e.g., content delivery servers
and/or application servers, that maintain application instances associated with one or more
services. In Figure 3, each of the clusters 330a - 330c, includes a number of application
instances 331 associated with the application or service accessed through the anycast address
to which the data packet 10 was addressed when arriving at the system 300. The application
instances 331 in a given cluster 330 may reside in a single computer server, or may be
distributed among multiple computer servers of the same cluster 330. The application
instances 331 are addressed through corresponding destination IP addresses. The application
instance 331 receiving the data packet 10 processes the request associated with the data
packet 10. As illustrated in Figure 3, each cluster 330, or zone, of the system 300 may be
served by one or more second-layer LBs 325. For instance, while the cluster 330a is served by
the second-layer LB 325a, the cluster 330b is served by two second-layer LBs 325b and 325b'.

[0040] Figure 4 shows a block diagram of another implementation of the two-layer load
balancing system 300. For convenience of illustration, the block diagram shown in Figure 4
depicts only a single anycast node 310, two first-layer LBs 320a and 320b, two second-layer
LBs 325a and 325b, and two clusters 330a and 330b, of the system 300. The system 300 also
includes a first controller 312, a second controller 322, a third controller 327, and a global load
balancing controller 350.

[0041] The first controller 312 includes a network element, a computer server, or another
electronic device. The first controller 312 configures the anycast node 310, with information
such as the source IP map, connection table, and/or other information employed by the
anycast node 310 in handling received data packets 10 addressed to a corresponding anycast
address. The first controller 312 may acquire such information from one or more data bases or

DK/EP 3143753 T3

other devices of the system 300, and provide corresponding updates to the anycast node 310.

[0042] The second controller 322 includes a network element, a computer server, or another
electronic device. The second controller 322 configures first-layer LBs 320a and 320b, by
providing information such as the weights associated with each location, e.g., cluster 330 or
zone, of the system 300, routing information for routing data packets to locations of the system
300, a connection table, and/or other information employed by the first-layer LB 320 in
handling received data packets 10. The second controller device 322 may acquire such
information from the global load balancing controller 350, one or more databases, or other
devices of the system 300, and provide corresponding updates to the first-layer LB 320.

[0043] The third controller 327 includes a network element, a computer server, or another
electronic device. The third controller 327 configures the second-layer LBs 325a and 325b, by
providing information such as the weights associated with each application instance 331 in a
corresponding location of the system 300, routing information for routing data packets 10 to
application instances 331, and/or other information employed by the second -layer LB 320 in
handling received data packets 10. The third controller 327 may acquire such information from
the one or more databases or other devices of the system 300, and provide corresponding
updates to the second-layer LB 320.

[0044] In Figure 4, the continuous lines between different components of the system 300
indicate the data packet path (also referred to as the data plane), the dashed lines indicate the
flow of configuration information/instructions (also referred to as the control plane), and the
break lines indicate feedback paths (which may also be part of the control plane). In some
implementations, each time the first-layer LB 320 forwards a data packet to a location, or a
corresponding second-layer LB 325, of the system 300, the first-layer LB 325 reports the
forwarding to the global load balancing controller 350. Also, the second-layer LB 325 may
report the forwarding of the data packet 10 to the global load balancing controller 350 and/or to
another device of the system 300. The global load balancing controller 350 uses the
information reported by the first-layer LB 320 to update weights associated with different
locations of the system 300. The information reported by the second-layer LB 325 is used by
the global load balancing controller 350, or a device local at the location associated with the
second-layer LB 325, to update weights associated with different application instances 331. In
some implementations, the clusters 330 can be configured to provide status information of its
servers or application instances 331 to the global load balancing controller 350 and/or other
devices in the system 300. The global load balancing controller 350 or another device in the
system 300 can use the information reported by the clusters 330 to update weights associated
with different application instances 331. In some implementations, the global load balancing
controller 350 also obtains data from routers and/or network elements regarding link
congestions.

[0045] Figure 5 shows a flowchart describing an implementation of a process 500 of
processing anycast data packets performed by the two-layer load balancing system 300. The
process 200 includes the processes of receiving by an anycast node 310 a data packet 10

DK/EP 3143753 T3

addressed to an anycast address (stage 510), forwarding by the anycast node 310 the
received data packet 10 to a first-layer LB 320 (stage 520), determining by the first-layer LB
320 if the data packet is associated with a previously served flow or session (stage 530), if the
data packet 10 is determined to be associated with a previously served flow or session
forwarding the data packet 10 to an application instance associated with the previously served
data flow or session (stage 540), otherwise selecting a second-layer LB 325 based on a first
data structure maintained by the first-layer LB 320 and one or more header fields of the data
packet 10 (stage 550), forwarding the data packet to the selected second-layer LB 325 (stage
560), determining by the selected second-layer LB 325 an application instance 331 based on a
second data structure maintained by the second-layer LB 325 and one or more header fields
of the data packet 10 (stage 570), and forwarding the data packet to the determined
application instance (stage 580).

[0046] The stages 510 - 540 of the process 500 are similar to the stages 210 - 240 of the
process 200 described in relation with Figure 2, except that the first-layer LB 325 (shown in
Figures 3 and 4) is used instead of the load balancer 120 (shown in Figure 1). Also, stages
530 and 540 are optional since the checking of the connection table may be performed by
another device, other than the first-layer LB 320. The first layer LB 320 receiving the data
packet 10 selects a second layer LB 325 based on a first data structure 321 maintained by the
first-layer LB 320 and one or more header fields of the data packet 10 (stage 550). The first
data structure 321 includes a redundant list of second-layer LBs 325 or corresponding
locations, e.g., clusters 330 or zones, in the system 300. The frequency with which each
second-layer LB 325, or a corresponding location, is included in the first data structure 321
depends on weight value associated with same corresponding location. The weights may
reflect the available capacity at each corresponding location, the RTT to each corresponding
location, another load balancing criterion, or combinations thereof. In some instances, the first-
layer LB 320 generates a hash value using the header field(s) of the data packet 10 and
selects the second-layer LB 325 from the first data structure 321 based on the generated hash
value. For instance, the first-layer LB 320 uses the generated hash value modulo the size of
the first data structure as an index of an entry to be selected from the first data structure. The
first-layer LB 320 then forwards the data packet to the selected second-layer LB 325, or to a
second-layer LB 325 associated with the selected location (stage 560).

[0047] The second-layer LB 325 receiving the data packet 10 determines an application
instance 331 based on a second data structure 326 maintained by the second-layer LB 325
and one or more header fields of the data packet 10 (stage 570). The second data structure
326 includes a redundant list of application instances 331. The frequency with which each
application instance 331 is included in the second data structure 326 depends on weight
values associated with the application instances 331. The weights may reflect the available
capacity at each corresponding application instance 331, the RTT to each corresponding
application instance 331, other load balancing criteria, or combinations thereof. The second-
layer LB 325 generates a hash value using the header field(s) of the data packet 10 and
determines the application instance 331 from the second data structure 326 based on the
generated hash value. For instance, the second-layer LB 325 uses the generated hash value

DK/EP 3143753 T3

modulo the size of the second data structure 326 as an index of an entry to be selected from
the second data structure 326. The second-layer LB 325 then forwards the data packet 10 to
the determined application instance 331 (stage 580).

[0048] Figure 6 shows a flowchart describing an implementation of a process 600 for
generating a redundant list employed by load balancers. For instance, given a list of entities
each being associated with a corresponding weight value, a prime number, larger than the
number of entities in the list, is chosen as the size of the redundant list to be generated. A
processor executing the process 600 selects an offset value and a step value for each entity in
the given list of entities (stage 610). The processor then selects an entity from the given list of
entities (stage 620). The selection can be done based on a pseudorandom permutation of
identifications (such as names, portions of names, identification strings, or the like) of the
entities. The processor compares the number of entries already included in the redundant list
for the selected entity to a corresponding dynamic threshold value (stage 630). For instance,
the dynamic threshold value is defined as the weight corresponding to the selected entity
multiplied by an iteration number. If the number of entries already included is found to be
smaller than the dynamic threshold value at (stage 630), the processor checks if the position
indicated by the offset value in the redundant list to be generated is empty (stage 640). If the
position indicated by the offset value is not found empty, the processor updates the offset value
by incrementing it with the corresponding step value and truncating the incremented value
modulo the size of the redundant list (stage 650). The processor then checks if the position
indicated by the updated offset value is empty (stage 640). The stages 650 and 640 are
repeated until an empty position is detected. If at any point, the result of the process (stage
640) indicates an empty position, the processor adds an entry corresponding to the selected
entity at the empty position (stage 660). Once an entry for the selected entity is added in the
redundant list (stage 660), or the number of already added entries for the selected entity is
found to be larger than the dynamic threshold at (stage 630), the processor then checks if all
the entities in the given list have been processed in the current iteration(stage 670). If not all
entities in the given list have been processed, the processor selects a new entity from the
given list for processing (stage 620). otherwise, the processor increments the iteration number
(stage 680), and then selects an entity from the given list for processing (stage 620). The
processor iterates through the stages depicted in Figure 6 until the redundant list is full.

[0049] The process 600 generates the redundant list as one-dimensional table, e.g., a row or
column, a tree, a sub-tree, or any other data structure. The entities in the given list may be
application instances 131 or 331, load balancers 120 or 325, or locations of a load balancing
system 100 or 300. In the generated redundant list, the frequency with which each entity is
repeated is dependent on the weight value corresponding to the same entity. In instances
where the size of the redundant list is chosen to be much larger than the total number of
entities in the give list, e.g., 100 times larger, the frequencies with which the entities are
included in the redundant list becomes almost proportional to the corresponding weights. The
larger the sized of the generated redundant list relative to the number of entities in the given
list, the more accurate is the proportionality between the frequencies and the weights of the
same entities.

DK/EP 3143753 T3

[0050] Figure 7 shows illustrations of data structures employed by systems in Figures 1 and 3.
Considering three application instances A_1, A 2, and A_3 of a cluster A, e.g., clusters 130a or
330a, and three application instances B_1, B_2, and B_3 of a cluster B, e.g., clusters 130b or
330ba, each row of the table in Figure 7 depicts a sample output, with size equal to 17, of the
process 600 (shown in Figure 6) generated based on corresponding sets of weights. For
instance, the first row corresponds to an output where the weights associated with each
application instance A_1, A_2, and A_3 are equal to 1.0 and the weights associated with the
application instances B_1, B_2, and B_3are equal to 0.0. Going from any row to the next, the
weight value for the application instances A_1, A_2, and A_3 is decremented by 0.1, and the
weight value for the application instances B_1, B_2, and B_3 is incremented by 0.1.

[0051] As the weights associated with the application instances change slowly from one row to
the next in the table shown in Figure 7, only few changes are observed from one row to the
next. In fact, by examining the columns of the table of Figure 7, one can see that only few
changes occur across each column as the weights slightly change from one row to the next.

[0052] Consider a scenario where the cluster 130a of Figure 1 includes the application
instances A_1, A 2, and A_3 and that each of these application instances is experiencing an
overflow. The overflow demand, e.g., 20%, is to be redirected to the next closest cluster with
available capacity, e.g., cluster 130b of Figure 1 including application instances B_1, B_2, and
B_3. As such, a weight value of 0.8 is associated with each of the application instances A 1,
A 2, and A_3, and a weight value of 0.2 is associated with each of the application instances
B_1, B_2, and B_3 with respect to anycast traffic associated with the cluster 130a of Figure 1.
In such, a case the third row of the table in Figure 7 represents a sample of a sub-data
structure associated with the cluster 130a of Figure 1. Also, given that the application instances
B_1, B_2, and B_3 have enough bandwidth to serve anycast traffic coming to cluster 130b,
these application instances will all have equal weight of 1.0 when it comes to anycast traffic
associated with the cluster 130b shown in Figure 1. As such, the last row of the table in Figure
7 represents a sample of the sub-data structure associated with the cluster 130b of Figure 1.

[0053] Comparing any pair of consecutive rows, one can observe that only few entries change
from one row to the next. Such observation indicates that a small change in the weight values
(the weight values change by +0.1 from one row to next one) has a slight effect on data paths.
Adding or removing one application instance associated with a small weight value would also
have slight effect on the entries of the respective row or sub-data structure. The way rows or
sub-data structures are generated (using the process 600 shown in Figure 6) results in
consistency in assigning new requests to respective application instances 131 or 331 (shown in
Figures 1 and 3). In some implementations, small changes in weight values and/or
adding/removing application instances associated with small weights would not result in
rerouting of data traffic (or re-computing routing tables at network routers or other network
elements) since such changes have slight effect on load balancing data traffic.

[0054] Considering a similar scenario, e.g., with the same weights as discussed in the previous

DK/EP 3143753 T3

paragraph, where the application instances are associated with the cluster 330a of Figure 3,
and the application instances B_1, B_2, and B_3 are associated with the cluster 330b of Figure
3, then the third row of the table in Figure 7 represents a sample of the second data structure
326 associated with the cluster 330a of Figure 3. Also, the last row of the table in Figure 7
represents a sample of the second data structure 326 associated with the cluster 330b of
Figure 3.

[0055] Implementations of the subject matter and the operations described in this specification
can be implemented in digital electronic circuitry, or in computer software embodied on a
tangible medium, firmware, or hardware, including the structures disclosed in this specification
and their structural equivalents, or in combinations of one or more of them. Implementations of
the subject matter described in this specification can be implemented as one or more computer
programs embodied on a tangible medium, i.e., one or more modules of computer program
instructions, encoded on one or more computer storage media for execution by, or to control
the operation of, a data processing apparatus. A computer storage medium can be, or be
included in, a computer-readable storage device, a computer-readable storage substrate, a
random or serial access memory array or device, or a combination of one or more of them.
The computer storage medium can also be, or be included in, one or more separate
components or media (e.g., multiple CDs, disks, or other storage devices). The computer
storage medium may be tangible and non-transitory.

[0056] The operations described in this specification can be implemented as operations
performed by a data processing apparatus on data stored on one or more computer-readable
storage devices or received from other sources. The processes and logic flows can also be
performed by, and apparatus can also be implemented as, special purpose logic circuitry, e.g.,
an FPGA (field programmable gate array) or an ASIC (application specific integrated circuit).

[0057] While this specification contains many specific implementation details, these should not
be construed as limitations on the scope of any inventions or of what may be claimed, but
rather as descriptions of features specific to particular implementations of particular inventions.
Certain features that are described in this specification in the context of separate
implementations can also be implemented in combination in a single implementation.
Conversely, various features that are described in the context of a single implementation can
also be implemented in multiple implementations separately or in any suitable sub-
combination. Moreover, although features may be described above as acting in certain
combinations and even initially claimed as such, one or more features from a claimed
combination can in some cases be excised from the combination, and the claimed combination
may be directed to a sub-combination or variation of a sub-combination.

[0058] References to "or" may be construed as inclusive so that any terms described using
"or" may indicate any of a single, more than one, and all of the described terms. The labels
"first," "second," "third," and so forth are not necessarily meant to indicate an ordering and are
generally used merely to distinguish between like or similar items or elements.

DK/EP 3143753 T3

[0059] Thus, particular implementations of the subject matter have been described. Other
implementations are within the scope of the following claims. In some cases, the actions
recited in the claims can be performed in a different order and still achieve desirable results. In
addition, the processes depicted in the accompanying figures do not necessarily require the
particular order shown, or sequential order, to achieve desirable results. In certain
implementations, multitasking or parallel processing may be utilized.

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not
form part of the European patent document. Even though great care has been taken in
compiling the references, errors or omissions cannot be excluded and the EPO disclaims all
liability in this regard.

Patent documents cited in the description

o 1JS2010302940A [0083]
o US7300077E [0004
o USZ0111453904A [0005]

10

15

20

25

30

35

DK/EP 3143753 T3

1

PATENTIKRAYV

1. System til belastningsbalancering af anycast-trafik i et kommunikationsnetveerk
omfattende:

et fgrste saet af belastningsbalanceringsanordninger (LB-anordninger), hvor hver LB-
anordning af det fgrste saet af LB-anordninger er konfigureret til:

at opretholde en fgrste datastruktur, som indbefatter indlaesninger, der er tilknyttet
applikationsinstanser i en gruppe af applikationsinstanser, som er betjent af LB-
anordningen af det fgrste saet af LB-anordninger, hvor hyppigheden, med hvilken hver
betjent applikationsinstans er indbefattet i den fgrste datastruktur, er indikerende for en
vaegtveerdi, der er tilknyttet en kapacitet af den tilsvarende betjente applikationsinstans;

ved modtagelse af en datapakke, der er adresseret en anycast-adresse, ved en LB-
anordning af det fgrste saet af LB-anordninger, at generere en fgrste hashvaerdi baseret pa
ét eller flere fgrste startfelter af den modtagne datapakke,

at identificere en virtuel internetprotokoladresse (IP-adresse) af én af de betjente
applikationsinstanser baseret pa den fgrste genererede hashveerdi ved anvendelse af den
fgrste datastruktur; og

at videresende datapakken til den identificerede applikationsinstans;

et andet seet af belastningsbalanceringsanordninger (LB-anordninger), hvor hver LB-
anordning af det andet seet af LB-anordninger er konfigureret til:

at opretholde en anden datastruktur, som indbefatter indlaesninger, der er tilknyttet
de respektive LB-anordninger af det fgrste seet, hvor hyppigheden, med hvilken hver LB-
anordning i det fgrste saet af LB-anordninger er indbefattet i den anden datastruktur, er
indikerende for en veegtveerdi, der er tilknyttet den tilsvarende LB-anordning af det fgrste
seet;

at generere en anden hashveerdi ved modtagelse af datapakken baseret pa ét eller
flere anden startfelter af den modtagne datapakke;

at identificere en LB-anordning af det fgrste seet af LB-anordninger ved anvendelse af
den anden datastruktur baseret pa den genererede anden hashveerdi; og

at videresende datapakken til den identificerede LB-anordning af det fgrste saet; og
en flerhed af anycast-knudepunkter, som er tilknyttet anycast-adressen, og som er konfi-
gureret til:

at sld pakkens kildeadresse op i et kildeadressekort, som deles af flerheden af
anycast-knudepunkter, ved modtagelse af datapakken for at bestemme en placering, som
er tilknyttet kildeadressen, hvor pladsen er indikerende for en LB-anordning af det andet
seet af LB-anordninger, og at videresende den modtagne datapakke til LB-anordningen.

2. System ifglge krav 1, hvor LB-anordningen af det andet sat af LB-anordninger
yderligere er konfigureret til at rapportere trafikbelastning, som er videresendt til hver LB-

anordning af det fgrste saet af LB-anordninger, til et globalt LB-element.

10

15

20

25

30

35

DK/EP 3143753 T3

2

3. Systemet ifglge krav 2, hvor det globale LB-element er konfigureret til at generere
veegte, som er tilknyttet LB-anordninger af det fgrste saet af LB-anordninger i det mindste
delvist baseret pa modtagne rapporter af videresendte trafikbelastninger fra LB-
anordninger af det andet saet af LB-anordninger til LB-anordninger af det fgrste seet af LB-
anordninger.

4. System ifglge et hvilket som helst af kravene 1 til 3, hvor veegtveerdien, som er
tilknyttet den tilsvarende LB-anordning af det fgrste seet, er indikerende for en kapacitet af
gruppen af processeringsanordninger betjent af den tilsvarende LB-anordning af det fgrste
seet, hvor applikationsinstanserne fortrinsvis er tilknyttet mindst én af en applikationsser-
ver, en indholdsserver, og en virtuel maskine.

5. System ifglge et hvilket som helst af kravene 1 til 4, hvor hver LB-anordning af
det andet sat af LB-anordninger er yderligere konfigureret til:

at modtage en vaegtveerdi for én eller flere LB-anordninger i det farste seet af LB-
anordninger; og

at generere den anden datastruktur baseret pa de modtagne veegtveerdier for den
ene eller de flere LB-anordninger i det fgrste seet af LB-anordninger.

6. System ifglge krav 5, hvor hver LB-anordning af det andet sat af LB-anordninger
ved generering af den anden datastruktur er yderligere konfigureret til:

at veelge et antal tomme datastrukturplaceringer for hver LB-anordning af det fgrste
saet af LB-anordninger, hvor antallet af valgte datastrukturplaceringer bestemmes baseret
pa vaegtveerdien, som svarer til LB-anordningen af det fgrste saet af LB-anordninger; og at
indseette en IP-adresse af LB-anordningen af det fgrste seet af LB-anordninger i hver af de
valgte tomme datastrukturplaceringer,

hvor, fortrinsvis, hver LB-anordning af det andet seet af LB-anordninger er yderligere
konfigureret til at veelge antallet af tomme datastrukturplaceringer for hver LB-anordning
af det forste saet af LB-anordninger baseret pa en offsetvaerdi tilknyttet LB-anordningen af
det fgrste saet af LB-anordninger.

7. System ifglge et hvilket som helst af kravene 1 til 6, hvor hver LB-anordning af
det fgrste saet af LB-anordninger er yderligere konfigureret til:

at modtage en vaegtveerdi for hver applikationsinstans i gruppen af applikationsin-
stanser, der er betjent af LB-anordningen af det fgrste seet af LB-anordninger; og

at generere den fgrste datastruktur baseret pa de modtagne veegtveerdier for appli-
kationsinstanser i gruppen, som er betjent af LB-anordninger af det fgrste saet af LB-
anordninger, hvor hver LB-anordning af det fgrste seet af LB-anordninger, fortrinsvis ved
genereringen af den fgrste datastruktur, er yderligere konfigureret til:

at veelge et antal tomme datastrukturplaceringer for hver applikationsinstans af
gruppen betjent af LB-anordningen af det fgrste seet af LB-anordninger, hvor antallet af
valgte datastrukturplaceringer er bestemt baseret pd veegtveerdien svarende til applikati-

onsinstansen; og

10

15

20

25

30

35

DK/EP 3143753 T3

3

at indseette en virtuel IP-adresse af applikationsinstansen i hver af de valgte tomme
datastrukturplaceringer.

8. System ifglge krav 7, hvor hver LB-anordning af det fgrste seet af LB-anordninger
er yderligere konfigureret til at vaelge antallet af tomme datastrukturplaceringer for hver
applikationsinstans af gruppen betjent af LB-anordningen af det fgrste seet af LB-
anordninger baseret pa en offsetveaerdi tilknyttet applikationsinstansen.

9. Fremgangsmade til datatrafikbelastningsbalancering hvor:

hver belastningsbalanceringsanordning (LB-anordning), af et fgrste saet af LB-
anordninger udfgrer de fglgende trin:

at opretholde en fgrste datastruktur indbefattende indlaesninger, der er tilknyttet ap-
plikationsinstanser i en gruppe af applikationsinstanser betjent af LB-anordningen af det
fgrste saet af LB-anordninger, hvor hyppigheden, med hvilken hver betjent applikationsin-
stans er indbefattet i den fgrste datastruktur, er indikerende for en veegtveerdi, der er til-
knyttet en kapacitet af den tilsvarende betjente applikationsinstans;

ved modtagelse, ved en LB-anordning af det fgrste saet af LB-anordninger, af en da-
tapakke adresseret en anycast-adresse, at generere en fgrste hashveerdi baseret pa ét
eller flere fgrste startfelter af den modtagne datapakke;

at identificere en virtuel internetprotokoladresse (IP-adresse)- af én af de betjent
applikationsinstanser baseret pa den genererede fgrste hashvaerdi ved at anvende af den
fgrste datastruktur; og

at videresende datapakken til den identificerede applikationsinstans;

hvor hver LB-anordning af et andet seet af LB-anordninger udfgrer de fglgende trin:

at opretholde en anden datastruktur indbefattende indlasninger tilknyttet respektive
LB-anordninger i det fgrste saet, hvor hyppigheden, med hvilken hver LB-anordning i det
farste seet af LB-anordninger er indbefattet i den anden datastruktur, er indikerende for en
vaegtveerdi, der er tilknyttet den tilsvarende LB-anordning af det fgrste seet;

at generere en anden hashveerdi ved modtagelse af datapakken baseret pa ét eller
flere anden startfelter af den modtagne datapakke, hvor datapakken modtages ved LB-
systemet, som er adresseret anycast-adressen;

at identificere en LB-anordning af det fgrste sat af LB-anordninger, baseret pa den
genererede anden hashveerdi ved at anvende den anden datastruktur;

at videresende datapakken til den identificerede LB-anordning af det fgrste saet af
LB-anordninger; hvor en flerhed af anycast-knudepunkter tilknyttet anycast-adressen ud-
farer fglgende trin:

at sld pakkens kildeadresse op i et kildeadressekort, som deles af flerheden af
anycast-knudepunkter, for at bestemmme en placering tilknyttet kildeadressen, hvor place-
ringen er indikerende for en LB-anordning af det andet seet af LB-anordninger, og at vide-

resende den modtagne datapakke til LB-anordningen.

10

15

20

25

30

35

DK/EP 3143753 T3

4

10. Fremgangsmade ifglge krav 9, der yderligere omfatter at rapportere trafikbelast-
ning, som er videresendt til hver LB-anordning af det fgrste saet af LB-anordninger, til et
globalt LB-element ved hjeelp af LB-anordningen af det andet sat af LB-anordninger; som,
fortrinsvis, yderligere omfatter, at generere veegte, der er tilknyttet LB-anordningerne af
det andet seet af LB-anordninger, ved hjeelp af det globale LB-element, i det mindste del-
vist baseret pa modtagne rapporter af videresendte trafikbelastninger fra LB-anordninger
af det andet sat af LB-anordninger til LB-anordninger af det fgrste seet af LB-anordninger.

11. Fremgangsmade ifglge et hvilket som helst af kravene 9 til 10, hvor veegtveerdi-
en, som er tilknyttet den tilsvarende LB-anordning af det fgrste seet af LB-anordninger, er
indikerende for en kapacitet af gruppen af applikationsinstanser betjent af den tilsvarende
LB-anordning af det fgrste saet af LB-anordninger, og
hvor applikationsinstanserne fortrinsvis er tilknyttet mindst én af en applikationsserver, en
indholdsserver, og en virtuel maskine.

12. Fremgangsmade ifglge et hvilket som helst af kravene 9 til 11, som yderligere
omfatter:

at modtage en vaegtveerdi for én eller flere LB-anordninger i det farste seet af LB-
anordninger, ved hjalp af LB-anordningen af det andet seet af LB-anordninger; og

at generere den anden datastruktur baseret pa de modtagne veegtveerdier for én el-
ler flere LB-anordninger i det fgrste saet af LB-anordninger.

13. Fremgangsmade ifglge krav 12, hvor trinnet at generere den anden tabel indbe-
fatter:

at veelge et antal af tomme datastrukturplaceringer for hver LB-anordning af det fgr-
ste seet af LB-anordninger, hvor antallet af valgte datastrukturplaceringer er bestemt base-
ret pa veegtveerdien tilsvarende til LB-anordningen af det fgrste saet af LB-anordninger; og
at indseette en IP-adresse af LB-anordningen af det fgrste seet i hver af de valgte tomme
datastrukturplaceringer,

hvor, fortrinsvis, at veelge antallet af tomme datastrukturplaceringer, for hver LB-
anordning af det fgrste saet af LB-anordninger, indbefatter at vaelge antallet af tomme da-
tastrukturplaceringer baseret pa en offsetveerdi tilknyttet LB-anordningen af det fgrste saet
af LB-anordninger.

14. Fremgangsmade ifglge et hvilket som helst af kravene 9 til 13, som yderligere
omfatter:

at modtage en vaegtvaerdi for hver applikationsinstans i gruppen af applikationsin-
stanser betjent af LB-anordningen af det fgrste seet af LB-anordninger ved LB-anordningen
af det fgrste seet, og

at generere den fgrste datastruktur baseret pa de modtagne veegtveerdier.

15. Fremgangsmaden ifglge krav 14, hvor trinnet at generere den fgrste datastruktur
indbefatter:

10

DK/EP 3143753 T3

5

at veelge et antal af tomme datastrukturplaceringer, for hver applikationsinstans af
gruppen betjent af LB-anordningen af det fgrste saet af LB-anordninger, hvor antallet af
valgte datastrukturplaceringer bestemmes baseret pa vaegtvaerdien svarende til applikati-
onsinstansen; og

at indseette en virtuel IP-adresse af applikationsinstansen i hver af de valgte tomme
datastrukturplaceringer,

hvor, fortrinsvis, at veelge antallet af tomme datastrukturplaceringer for hver appli-
kationsinstans indbefatter at veelge antallet af tomme datastrukturplaceringer baseret pa

en offsetvaerdi, som er tilknyttet applikationsinstansen.

DK/EP 3143753 T3

DRAWINGS

11 f__

(il

M|

1€T
ok
NI

T 34ngi4
30T 3 1318N)D 0T g 4215n{) 0ET v 43315n)
TET Iet TeT

T

o
/_

J0Ct

Jaouefeq peoy

011
3poN 1sedAuy

q0¢t
jdduefeq pea]

q0TT
SpPOoN IsedAuy

eOCT

J3duelEq PROT

BOTL
BPON 1seAuy

19)0ed eleg

DK/EP 3143753 T3

7 3403814

0LC SoueIsuUl
uoleafjdde pauiwiaiap ayl 03 18yded elep ayl piemiod

\

09¢ 19oed ejep
941 JO SPIaif 1opeay 40w IO JUC U0 pPIseq NS elep
QNS P3312313s Ayl WOy 2duLIsUl uoiedldde ue auiulIala(oo |
¥ _ ove
_ MO|4 panias Ajsnoiaaad
te 5ININIIS LIEP-GNS © 198]3G _ 341 YliM Pa1eID0SSe UOoi1Rullsap e 01 1ayded eiep syl piemiod
——————1 77 g
- -~ ™~ -
- a ™~
- ~
- - g1y Ag p1aasas Ajsnoinaad =~ <
<~ ~ /oy e 0} puodsalod iavoedelep ssoq L —~ =
=~ -
ON S~ - S3A
S~ - -

~ .

Iﬂ

J3Juejeq peoj e 0} 133ed elep pPanisadal syl piemiod

O
N
N

-~

$S2JppPE 1SEIAUR 01 pasalppe 1)ded elep ‘DPOouU ISEIAUR IR ‘9A12I9Y

O
o4
o

DK/EP 3143753 T3

€ 24n8y
0t 3 123801) g Ja8np) BOEE v 12150
Tee Iee 1ee
we] we [e Y]

o)

/
e

Jasuefeq peo

BGZE 49JuejEQ PROT

192U€|Rq PEOT

o/

20¢¢e
13duejeq peos

90¢¢
13duejRq peal

[aa!

= P

20T¢
IPON 15e2AUY

-

qote
SpoN Isedhuy

E0Ct
19ouR|Eq pEOo

EQTE
JpON JsedAuy

0T
19)0ed eieg

DK/EP 3143753 T3

7 84ndiy4
qoee g 4a1snjg B0ee YV iaasnp
e Y] tee |
| T 5|]
' \,
\\
g3cs Jiozuejeq peon BGZE J3guejeq peol
yxas L,
€ 13}jolu0)
b
y T |
| GOcE Joouejeq peol E0CE 19ouejeq peo?
05t I
18jjonuo) | zZs L _
Supuejeg 7 491j041u0)
peoT [eqoj9)
7T !!! S oE
T 43}|013U0) apoN 3IsedAuy

ot

19%28d BleQ

DK/EP 3143753 T3

G aindi4

085S
g7 49AB[-PUOIS PAUILLIDIAP YL 01 133ded e1ep 3y piemio

b

048 19xoed elep ayi Jo (s)p(aYy
J3peay pue g7 1aAel-puodas ayrAg paureiuield 2inidnals
BlEp pU0Jas B o4y 3ouelisul uoneaydde ue supwiialag

A

09s
g1 49Ae]-puodas Payas|as Ayl 03 1ayded elep Ayl plemio

N

0SS 19x0ed ejep
3y1 JO (s)piayy 1opesy pue g1 J13Ae}-1sily 3y} Ag paulejuiew I~ T T T T T T T T T U
34N12NJIS B1ep 1541} B UC paseq g7 49AR|-pUOIIS B 10998

— —_—
- 0es T~
— 7 ig494e-1sa1y 9yl Ag piaalss Ajsnoinaud T
ON i~ ~nojp e 0} puodsa.liod 1exdedelep segg —~ SIA
~ - —
= -

~ -

g7 49Ae|-15414 € 01 19¥06d BIep 9Y) piemio

(@]
o
w

ssouppe 1sedAue 03 pasalppe 1axded elep ‘9pou jSedrAue 3e ‘OAI19I9Y

o
o~
(Kg]

DK/EP 3143753 T3

— 9 34ndi4
089
Jaquinu ucllela}l 1U3WaIIU|
: Passan0Id 151 IYI Ul SDIIIUD
SIA ép 1si 9y iy ON
099
anjeA 19540 ajepdn pue uoisod Axdwe ay) uf AJijus Pa32319s 2yl 104 AlJud ue ppy
)
> 059
0v9 [8zis]pow (anjea azis da1s + an(eA 185}40) D anfeA 13S0
JAYdws anjea 73

SIA 1954j0 AqQ paiedipul uonjsod ayl s

0€9
¢ PIOYsa4y3 e spaadxs Alijua

3193[3s 3Y1 10J SB1IIUS JO Jaquny 3yl $30

S3A

0?9
S3I313UD 4O 151} UANIB e wouy AU ue 133|195

019
AInua yoes 10) anen dals e pUe anjeA 1850 Ue 31BI3UD

DK/EP 3143753 T3

£ 81n8i4
€gizal 19 mnmv e, 19 9 C4d ‘mx‘mw ‘mzm‘ﬂ [ﬁwm Nnm mem €4 U8 Wm oT8Q0Y TT
“a o] v ca] cv] va] o] ca|ealva]calevcalrv]es [rare [sosTov o
1] Tvi£d m cv] Te] Tv m;m“ cglTd]calev.cg TVvi€g jr'g (179 {80970V 6
c€gicaj19; 18 _. cvitejcvizacs j\, Nw.m, : EV i ceilyv €9 eV 18 I LOgEOY 8
ifajTe Ta{TUe TV TBiZV 78 €aiTV{Za ey TV|TV €9 v iZv 90870V
Za[vy ev[ve|cv|valcv|calcalty]cejey ta[ivied v eV [soamoy o
YTy ,ms,qw T8 Tvite v, e ,m:,m.‘M Tvi s ”m:< 1TV H.nmw €9 gV iy (YO890Y S
€4izg m,|<u m|<‘,, v Hlmw N;<, TV €8 .H-<. e jev TV ﬂ.<. 1 mzq, v €OaLOY ¥
TVITvicv €V cviTajzv|Iviea Ty %Na fev TV tviey jev jcv jeogisoy ¢
TViTY Nw<” m;,,‘, Vit Ty ,H:<‘M E8jTviza m,l<, _ Hx< | ﬂ«<_ €V €V ITV 1eeieoy T
TV TV EVITY [TV €V iZVITY va<;s<.m:< EV TV {TV TV €V {7y (0080TV T
L ot sI v € o 1 o 6 8 L 9 s v & 2 1 .wzm_m.s,

