PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

GOGF 9/44, 17/30 Al

(11) International Publication Number:

(43) International Publication Date:

WO 98/06033

12 February 1998 (12.02.98)

(21) International Application Number: PCT/US97/13817 | (81) Designated States: JP, European patent (AT, BE, CH, DE, DK,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(22) International Filing Date: 8 August 1997 (08.08.97)
Published
(30) Priority Data: With international search report.

60/023,373 8 August 1996 (08.08.96) uUsS Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(71) Applicant: AGRANAT SYSTEMS, INC. {US/US]; 1345 Main

Street, Waltham, MA 02154 (US).

(72) Inventors: AGRANAT, Ian, D.; 108 Jericho Road, Weston,

MA 02193 (US). GIUSTI, Kenneth, A.; 16 Josiah Drive,

Upton, MA 01568 (US). LAWRENCE, Scott, D.; 560 Old

Marlboro Road, Concord, MA 01742-4042 (US).

(74) Agent: ENGELSON, Gary, S.; Wolf, Greenfield & Sacks, P.C.,
600 Atlantic Avenue, Boston, MA 02210 (US).
(54) Title: EMBEDDED WEB SERVER
57) Abstract
7 — £
An embedded graphical user interface employs a World-Wide- SOURCE DIRECTORY TREE

Web communications and display paradigm. The development
environment includes an HTML compiler which recognizes and
processes a number of unique extensions to HTML. The HTML
compiler produces an output which is in the source code language
of an application to which the graphical user interface applies. A
corresponding run-time environment includes a server which serves
the compiled HTML documents to a browser.

<}

HTML, Java, text, graphics

07 100
/ /m /{//Om er Appim‘bn_sped&c
g i

C Compiler

U

— 105
i Object Code 4

101

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing intemational applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cote d’lvoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
Fl1

FR
GA
GB
GE

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

treland

Israel

Iceland

Ttaly

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS

* LT

LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
™D
TG
TJ
™
TR
TT
UA
UG
us
uz
VN
YU
YA

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

20

25

WO 98/06033 PCT/US97/13817
-1-

EMBEDDED WEB SERVER

COPYRIGHT NOTICE
The tables attached to the disclosure of this patent contain material that is subject to
copyright protection. The copyright owner has no objection to the facsimile reproduction by
anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark

Office patent file or records, but otherwise reserves all copyright rights whatsoever.

TABLES
Table A is a functional specification of the Agranat Systems, Inc. EmWeb™ product; and
Table B is a source code listing in the C programming language of header files defining
data structures representing an archive of content as used by the EmWeb™ product.
The noted tables are provided to show an example of a particular embodiment of the

invention incorporating features thereof which are described in detail below.

OSS-REFERENCE TO RELATED APPLICATION
Priority is claimed under 35 U.S.C. §119(e) to the inventors' Provisional U.S. Patent
Application Serial No. 08/023,373, entitled EXTENDED LANGUAGE COMPILER AND RUN
TIME SERVER, filed August 8, 1996, now pending. The inventors' above-identified provisional

U.S. patent application is incorporated herein by reference.

1. Fi f the Invention

The present invention relates generally to graphical user interfaces (GUISs), i.e. user
interfaces in which information can be presented in both textual form and graphical form. More
particularly, the invention relates to GUIs used to control, manage, configure, monitor and
diagnose software and hardware applications, devices and equipment using a World-Wide-Web
client/server communications model. Yet more particularly, the invention relates to methods and
apparatus for developing and using such GUIs based on a World-Wide-Web client/server

communications model.

10

15

20

25

30

WO 98/06033 PCT/US97/13817

2. ed

Many modern communications, entertainment and other electronic devices require or
could benefit from improved local or remote control, management, configuration, monitoring
and diagnosing. It is common for such devices to be controlled by a software application
program specifically written for each device. The design of such a device includes any hardware
and operating environment software needed to support the application, which is then referred to
as an embedded application, because it is embedded within the device. Embedded application
programs are generally written in a high-level programming language such as C, C++, etc.,
referred to herein as a native application programming language. Other languages suitable to
particular uses may also be employed. The application program communicates with users
through a user interface, generally written in the same high-level language as the application.

The representation of an application in a native application programming language is
referred to as the application program source code. A corresponding representation which can be
executed on a processor is referred to as an executable image.

Before an application written in a high-level language can be executed it must be
compiled and linked to transform the application source code into an executable image. A
compiler receives as an input a file containing the application source code and produces as an
output a file in a format referred to as object code. Finally, one or more object code files are
linked to form the executable image. Linking resolves references an object module may make
outside of that object module, such as addresses, symbols or functions defined elsewhere.

Source code may also define arrangements by which data can be stored in memory and
conveniently referred to symbolically. Such defined arrangements are referred to as data
structures because they represent the physical arrangement of data within memory, i.e., the
structure into which the data is organized.

Most commonly, remote control, management, configuration, monitoring and diagnosing
applications employ unique proprietary user interfaces integrated with the application software
and embedded into the device. Frequently these user interfaces present and receive information
in text form only. Moreover, they are not portable, generally being designed to operate on a
specific platform, i.e., combination of hardware and software. The devices for which control,
management, configuration and diagnosing are desired have only limited run-time resources
available, such as memory and long-term storage space. Proprietary interfaces are frequently

designed with such limitations to data presentation, data acquisition and portability because of

10

20

25

30

WO 98/06033 PCT/US97/13817
-3-

the development costs incurred in providing such features and in order to keep the size and run-
time resource requirements of the user interface to a minimum. Since each user interface tends to
be unique to the particular remote control, management, configuration, monitoring or diagnosing
function desired, as well as unique to the operating system, application and hardware platform
upon which these operations are performed, significant time and/or other resources may be
expended in development. Graphics handling and portability have therefore been considered
luxuries too expensive for most applications.

However, as the range of products available requiring control, management,
configuration. monitoring or diagnosing increase, such former luxuries as graphical presentation
and portability of the interface from platform to platform have migrated from the category of
luxuries to that of necessities. It is well known that information presented graphically is more
quickly and easily assimilated than the same information presented as text. It is also well known
that a consistent user interface presented by a variety of platforms is more likely to be understood
and properly used than unique proprietary user interfaces presented by each individual platform.
Therefore, portable GUIs with low run-time resource requirements are highly desirable.

With the growing popularity and expansion of the Internet, one extremely popular public
network for communications between computer systems, and development of the World-Wide-
Web communication and presentation model, a new paradigm for communication of information
has emerged.

The World-Wide-Web and similar private architectures such as internal corporate LANS.
provide a "web" of interconnected document objects. On the World-Wide-Web, these document
objects are located on various sites on the global Internet. The World-Wide-Web is also
described in "The World-Wide Web, " by T. Berners-Lee, R. Cailliau, A. Luotonen, H. F.
Nielsen, and A. Secret, Communications of the ACM, 37 (8), pp. 76-82, August 1994, and in
"World Wide Web: The Information Universe," by Berners-Lee, T., et al., in Electronic
Networking: Research, Applications and Policy, Vol. 1, No. 2, Meckler, Westport, Conn., Spring
1992. On the Internet, the World-Wide-Web is a collection of documents (i.e., content), client
software (i.e., browsers) and server software (i.e., servers) which cooperate to present and receive
information from users. The World-Wide-Web is also used to connect users through the content
to a variety of databases and services from which information may be obtained. However, except
as explained below, the World-Wide-Web is based principally on static information contained in

the content documents available to the browsers through the servers. Such a limitation would

15

20

30

WO 98/06033 PCT/US97/13817
-4.

make the World-Wide-Web paradigm useless as a GUI which must present dynamic information
generated by a device or application.

The World-Wide-Web communications paradigm is based on a conventional client-server
model. Content is held in documents accessible to servers. Clients can request, through an
interconnect system, documents which are then served to the clients through the interconnect
system. The client software is responsible for interpreting the contents of the document served,
if necessary.

Among the types of document objects in a “web” are documents and scripts. Documents
in the World-Wide-Web may contain text, images, video, sound or other information sought to
be presented, in undetermined formats known to browsers or extensions used with browsers. The
presentation obtained or other actions performed when a browser requests a document from a
server is usually determined by text contained in a document which is written in Hypertext Mark-
up Language (HTML). HTML is described in HyperText Markup Language Specification - 2.0,
by T. Bemers-Lee and D. Connolly, RFC 1866, proposed standard, November 1995, and in
"World Wide Web & HTML," by Douglas C. McArthur, in Dr, Dobbs Journal, December 1994,
pp. 18-20, 22, 24, 26 and 86. HTML documents stored as such are generally static, that is, the
contents do not change over time except when the document is manually modified. Scripts are
programs that can generate HTML documents when executed.

HTML is one of a family of computer languages referred to as mark-up languages.
Mark-up languages are computer languages which describe how to display, print, etc. a text
document in a device-independent way. The description takes the form of textual tags indicating
a format to be applied or other action to be taken relative to document text. The tags are usually
unique character strings having defined meanings in the mark-up language. Tags are described
in greater detail, below.

HTML is used in the World-Wide-Web because it is designed for writing hypertext
documents. The formal definition is that HTML documents are Standard Generalized Markup
Language (SGML) documents that conform to a particular Document Type Definition (DTD).
An HTML document includes a hierarchical set of markup elements, where most elements have
a start tag, followed by content, followed by an end tag. The content is a combination of text and
nested markup elements. Tags are enclosed in angle brackets ('<' and >') and indicate how the
document is structured and how to display the document, as well as destinations and labels for

hypertext links. There are tags for markup elements such as titles, headers, text attributes such as

20

25

WO 98/06033 PCT/US97/13817
-5-

bold and italic, lists, paragraph boundaries, links to other documents or other parts of the same
document, in-line graphic images, and many other features.
For example, here are several lines of HTML.:
Some words are bold, others are <I>italic</[>. Here we start a new
paragraph.<P>Here's a link to
the Agranat Systems, Inc. home

page.

This sample document is a hypertext document because it contains a "link" to another
document, as provided by the "HREF=." The format of this link will be described below. A
hypertext document may also have a link to other parts of the same document. Linked
documents may generally be located anywhere on the Internet. When a user is viewing the
document using a client program called a Web browser (described below), the links are displayed
as highlighted words or phrases. For example, using a Web browser, the sample document above
would be displayed on the user's screen as follows:

Some words are bold, others are italic. Here we start a new paragraph.
Here's a link to Agranat Systems, Inc. home page.

In the Web browser, the link may be selected, for example by clicking on the highlighted
area with a mouse. Selecting a link will cause the associated document to be displayed. Thus,
clicking on the highlighted text "Agranat Systems, Inc." would display that home page.

Although a browser can be used to directly request images, video, sound, etc. from a
server, more usually an HTML document which controls the presentation of information served
to the browser by the server is requested. However, except as noted below, the contents of an
HTML file are static, i.e., the browser can only present a passive snapshot of the contents at the
time the document is served. In order to present dynamic information, i.e., generated by an
application or device, or obtain from the user data which has been inserted into an HTML-
generated form, conventional World-Wide-Web servers use a “raw” interface, such as the
common gateway interface (CGI), explained below. HTML provides no mechanism for
presenting dynamic information generated by an application or device, except through a raw
interface, such as the CGI. Regarding obtaining data from the user for use by the application or
device, although standard HTML provides a set of tags which implement a convenient

mechanism for serving interactive forms to the browser, complete with text fields, check boxes

http://%25d9%25a1v%25d9%25a1vw.agranat%25d9%25a0com%25d9%25a0T%253eAgranat

20

25

30

WO 98/06033 PCT/US97/13817
-6 -

and pull-down menus, the CGI must be used to process submitted forms. Form processing is
important to remote control, management, configuration, monitoring and diagnosing applications
because forms processing is a convenient way to configure an application according to user input
using the World-Wide-Web communications model. But, form processing using a CGI is
extremely complex, as will be seen below, requiring an application designer to learn and
implement an unfamiliar interface. A CGI is therefore not a suitable interface for rapid
development and prototyping of new GUI capabilities. Moreover, a developer must then master
a native application source code language (e.g., C, C++, etc.), HTML and the CGI, in order to
develop a complete application along with its user interface.

Models of the World-Wide-Web communications paradigm for static content and
dynamic content are shown in Figs. 14 and 15, respectively. As shown in Fig. 14, a browser
1401 makes a connection 1402 with a server 1403, which serves static content 1405 from a
storage device 1407 to the browser 1401. In the case of dynamic content, shown in Fig. 15, the
server 1403 passes control of the connection 1402 with the browser 1401 to an application 1501,
through the CGI 1503. The application 1501 must maintain the connection 1402 with the
browser 1401 and must pass control back to the server 1403 when service of the request which
included dynamic content is complete. Furthermore, during service of a request which includes
dynamic content, the application 1501 is responsible for functions normally performed by the
server 1403, including maintaining the connection 1402 with the browser 1401, generating
headers in the server/browser transport protocol, generating all of the static and dynamic content
elements, and parsing any form data returned by the user. Since use of the CGI 1503 or other
raw interface forces the application designer to do all of this work, applications 1501 to which
forms are submitted are necessarily complex.

In order to provide dynamic content to a browser, the World-Wide-Web has also evolved
to include Java and other client side scripting languages, as well as some server side scripting
languages. However, these languages are interpreted by an interpreter built into the browser
1401 or server 1403, slowing down the presentation of information so generated. In the case of
client side scripting, the script does not have any direct access to the application or to application
specific information. Therefore, in order to generate or receive application specific information
using client side scripting, the CGI 1503 or other raw interface must still be used. In the case of
server side scripting, the server 1403 must parse the content as it is served, looking for a script to

be interpreted. The access which a script has to the application is limited by the definition of the

20

25

30

WO 98/06033 PCT/US97/13817
-7-

scripting language, rather than by an application software interface designed by the application
designer.

A server side script is an executable program, or a set of commands stored in a file, that
can be run by a server program to produce an HTML document that is then returned to the Web
browser. Typical script actions include running library routines or other applications to get
information from a file, a database or a device, or initiating a request to get information from
another machine, or retrieving a document corresponding to a selected hypertext link. A script
may be run on the Web server when, for example, the end user selects a particular hypertext link
in the Web browser, or submits an HTML form request. Scripts are usually written in an
interpreted language such as Basic, Practical Extraction and Report Language (Perl) or Tool
Control Language (Tcl) or one of the Unix operating system shell languages, but they also may
be written in programming languages such as the "C" programming language and then compiled
into an executable program. Programming in Tcl is described in more detail in Tcl and the Tk
Toolkit, by John K. Ousterhout, Addison-Wesley, Reading, MA, USA, 1994. Perl is described
in more detail in Programming Perl, by Larry Wall and Randal L. Schwartz, O'Reilly &
Associates, Inc., Sebastopol, CA, USA, 1992.

Each document object in a web has an identifier called a Universal Resource Identifier
(URI). These identifiers are described in more detail in T. Berners-Lee, “Universal Resource
Identifiers in World-Wide-Web: A Unifying Syntax for the Expression of Names and Addresses
of Objects on the Network as used in the World-Wide Web,” RFC 1630, CERN, June 1994; and
T. Berners-Lee, L. Masinter, and M. McCahill, “Uniform Resource Locators (URL),” RFC 1738,
CERN, Xerox PARC, University of Minnesota, December 1994. A URI allows any object on
the Internet to be referred to by name or address, such as in a link in an HTML document as
shown above. There are two types of URIs: a Universal Resource Name (URN) and a Uniform
Resource Locator (URL). A URN references an object by name within a given name space. The
Internet community has not yet fully defined the syntax and usage of URNs. A URL references
an object by defining an access algorithm using network protocols. An example URL is
"http://www.agranat.com" A URL has the syntax “scheme: scheme_specific_components” where

“scheme” identifies the access protocol (such as HTTP, FTP or GOPHER). For a
scheme of HTTP, the URL may be of the form "http://host:port/path?search"
where

"host" is the Internet domain name of the machine that supports the protocol;

http://www.agranat.com
http://host:port/path?searchr%25d9%25a0

20

25

30

WO 98/06033 PCT/US97/13817
-8-

“port” is the transmission control protocol (TCP) port number of the appropriate

server (if different from the default);

"path" is a scheme-specific identification of the object; and

"search" contains optional parameters for querying the content of the object.
URLs are also used by web servers and browsers on private computer systems or networks and
not just the World-Wide-Web.

A site, 1.e. an organization having a computer connected to a network, that wishes to
make documents available to network users is called a "Web site" and must run a "Web server"
program to provide access to the documents. A Web server program is a computer program that
allows a computer on the network to make documents available to the rest of the World-Wide-
Web or a private web. The documents are often hypertext documents in the HTML language,
but may be other types of document objects as well, as well as images, audio and video
information. The information that is managed by the Web server includes hypertext documents
that are stored on the server or are dynamically generated by scripts on the Web server. Several
Web server software packages exist, such as the Conseil Europeen pour la Recherche Nucleaire
(CERN, the European Laboratory for Particle Physics) server or the National Center for
Supercomputing Applications (NCSA) server. Web servers have been implemented for several
different platforms, including the Sun Sparc 11 workstation running the Unix operating system,
and personal computers with the Intel Pentium processor running the Microsoft® MS-DOS
operating system and the Microsoft® Windows™ operating environment.

Web servers also have a standard interface for running external programs, called the
Common Gateway Interface (CGI). CGlI is described in morc detail in How To Set Up And
Maintain A Web Site, by Lincoln D. Stein, Addison-Wesley, August 1995. A gateway is a

program that handles incoming information requests and returns the appropriate document or

generates a document dynamically. For example, a gateway might receive queries, look up the
answer in an SQL database, and translate the response into a page of HTML so that the server
can send the result to the client. A gateway program may be written in a language such as "C" or
in a scripting language such as Perl or Tcl or one of the Unix operating system shell languages.
The CGI standard specifies how the script or application receives input and parameters, and
specifies how any output should be formatted and returned to the server.

A user (typically using a machine other than the machine used by the Web server) that

wishes to access documents available on the network at a Web site must run a client program

20

30

WO 98/06033 PCT/US97/13817
-9.

called a "Web browser." The browser program allows the user to retrieve and display documents
from Web servers. Some of the popular Web browser programs are: the Navigator browser from
NetScape Communications Corp., of Mountain View, California; the Mosaic browser from the
National Center for Supercomputing Applications (NCSA); the WinWeb browser, from
Microelectronics and Computer Technology Corp. of Austin, Texas; and the Internet Explorer,
from Microsoft Corporation of Redmond, Washington. Browsers exist for many platforms,
including personal computers with the Intel Pentium processor running the Microsoft® MS-DOS
operating system and the Microsoft® Windows™ environment, and Apple Macintosh personal
computers.

The Web server and the Web browser communicate using the Hypertext Transfer
Protocol (HTTP) message protocol and the underlying transmission control protocol/internet

protocol (TCP/IP) data transport protocol of the Internet. HTTP is described in Hypertext

Transfer Protocol - HTTP/1.0, by T. Berners-Lee, R. T. Fielding, H. Frystyk Nielsen, Internet

Draft Document, October 14, 1995, and is currently in the standardization process. At this
writing, the latest version is found in RFC Z068 which is a draft definition of HTTP/1.1. In
HTTP, the Web browser establishes a connection to a Web server and sends an HTTP request
message to the server. In response to an HTTP request message, the Web server checks for
authorization, performs any requested action and returns an HTTP response message containing
an HTML document resulting from the requested action, or an error message. The returned
HTML document may simply be a file stored on the Web server, or it may be created
dynamically using a script called in response to the HTTP request message. For instance, to
retrieve a document, a Web browser sends an HTTP request message to the indicated Web
server, requesting a document by its URL. The Web server then retrieves the document and
returns it in an HTTP response message to the Web browser. If the document has hypertext
links, then the user may again select a link to request that a new document be retrieved and
displayed. As another example, a user may fill in a form requesting a database search, the Web
browser will send an HTTP request message to the Web server including the name of the
database to be searched and the search parameters and the URL of the search script. The Web
server calls a program or script, passing in the search parameters. The program examines the
parameters and attempts to answer the query, perhaps by sending a query to a database interface.

When the program receives the results of the query, it constructs an HTML document that is

20

30

WO 98/06033 PCT/US97/13817
-10-
returned to the Web server, which then sends it to the Web browser in an HTTP response
message.

Request messages in HTTP contain a "method name” indicating the type of action to be
performed by the server, a URL indicating a target object (either document or script) on the Web
server, and other control information. Response messages contain a status line, server
information, and possible data content. The Multipurpose Internet Mail Extensions (MIME) are
a standardized way for describing the content of messages that are passed over a network. HTTP

request and response messages use MIME header lines to indicate the format of the message.

MIME is described in more detail in MIME i ose Internet Mail Extensions):
Mechanisms for Specifying and Describing the Format of Internet Message Bodies, Internet RFC

1341, June 1992.

The request methods defined in the HTTP/1.1 protocol include GET, POST. PUT,
HEAD, DELETE, LINK, and UNLINK. PUT, DELETE, LINK and UNLINK are less
commonly used. The request methods expected to be defined in the final version of the
HTTP/1.1 protocol include GET, POST, PUT, HEAD, DELETE, OPTIONS and TRACE.
DELETE, PUT, OPTIONS and TRACE are expected to be less commonly used. All of the
methods are described in more detail in the HTTP/1.0 and HTTP/1.1 specifications cited above.

Finally, a device or application using conventional World-Wide-Web technology must
have access to a server. Conventional servers are large software packages which run on
relatively large, resource-rich computer systems. These systems are resource-rich in terms of
processing speed and power, long-term storage capacity, short-term storage capacity and
operating system facilities. Conventional servers take advantage of these resources, for example,
in how they store content source documents. For high-speed, convenient access to content, it is
conventionally stored in a directory tree of bulky ASCII text files. Therefore, conventional
World-Wide-Web technology cannot be used to implement a GUI in a relatively small,
inexpensive, resource-poor device or application.

The combination of the Web server and Web browser communicating using an HTTP
protocol over a computer network is referred to herein as the World-Wide-Web communications

paradigm.

20

25

30

WO 98/06033 PCT/US97/13817
-11 -

SUMMARY OF THE INVENTION

It is therefore an object of the present invention to provide an improved graphical user
interface (GUI) for use in connection with remote control, management, configuration,
monitoring and diagnosing functions embedded in applications, devices and equipment.

According to one aspect of the invention, there is provided a method for providing a
graphical user interface having dynamic elements. The method begins by defining elements of
the graphical user interface in at least one text document written in a mark-up language. Next,
the method defines including at a location in the document a code tag containing a segment of
application source code. The text document is then served to a client which interprets the mark-
up language; and when the location is encountered, the client is served a sequence of characters
derived from a result of executing a sequence of instructions represented by the segment of
application source code. An embodiment of code tags illustrating their use is described in detail.
later.

According to another aspect of the invention, there is another method for providing a
graphical user interface having dynamic elements. This method also defines elements of the
graphical user interface in at least one text document written in a mark-up language. Included in
the document is a string identified by prototype tags. The text document is served to a
prototyping client which interprets the mark-up language but does not recognize and does not
display the prototype tag, but does display the string. An embodiment of prototype tags
illustrating their use is described in detail, later.

According to yet another aspect of the invention, there is yet another method for
providing a graphical user interface having dynamic elements. Elements of the graphical user
interface are defined in at least one text document written in a mark-up language. Included at a
location in the document is a code tag containing a segment of application source code. Also
included in the document is a string identified by prototype tags. The text document is compiled
into a content source, which is subsequently decompiled into a replica of the text document. The
replica of the text document is served to a client which interprets the mark-up language; and
when the location is encountered in the replica, the client is served a character stream generated
by executing the segment of application source code.

Yet another aspect of the invention is a software product recorded on a medium. The
software product includes a mark-up language compiler which can compile a mark-up language

document into a data structure in a native application programming language, the compiler

15

20

25

30

WO 98/06033 PCT/US97/13817
-12-

recognizing one or more code tags which designate included text as a segment of application
source code to be saved in a file for compilation by a compiler of the native application
programming language.

Another aspect of the invention is a method for providing a graphical user interface
having displayed forms for entry of data. The steps of this method include defining elements of
the graphical user interface in at least one text document written in a mark-up language; naming
in the document a data item requested of a user and used by an application written in a native
application programming language; and compiling the text document into a content source
including a data structure definition in the native application programming language for the
named data item.

Yet another aspect of the invention may be practiced in a computer-based apparatus for
developing a graphical user interface for an application, the apparatus including an editor which
can manipulate a document written in a mark-up language and a viewer which can display a
document written in the mark-up language. The apparatus further includes a mark-up language
compiler which recognizes a code tag containing a source code fragment in a native application
source code language, the code tag not otherwise part of the mark-up language, the compiler
producing as an output a representation in the native application source code language of the
document, including a copy of the source code fragment.

In accordance with another aspect of the invention, there is a method for developing and
prototyping graphic user interfaces for an application. The method includes accessing an HTML
file, encapsulating portions of said HTML and entering source code therein, producing a source
module from said HTML with encapsulated portions, producing source code for a server, and
cross compiling and linking said application, said source code module and said server thereby
producing executable object code.

The invention, according to another aspect thereof, may be a data structure fixed in a
computer readable medium, the data structure for use in a computer system including a client and
a server in communication with each other. The data structure includes cross-compiled, stored
and linked, HTML files with encapsulated portions containing executable code associated with
said application, server code, and application code, wherein said executable code is run when the

HTML file is served thereby providing real time dynamic data associated with said application.

15

20

30

WO 98/06033 PCT/US97/13817
-13 -
BRIEF DES P OFT DRAWINGS -
In the drawings, in which like reference numerals denote like elements:

Fig. 1 is a block diagram of that aspect of the invention relating to development systems;

Fig. 2 is a block diagram of that aspect of the invention relating to an embedded system;

Fig. 3 is an HTML text fragment illustrating the use of an EMWEB_STRING tag;

Fig. 4 is another HTML text fragment illustrating another use of an EMWEB_STRING
tag;

Fig. 5 is an HTML text fragment illustrating the use of an EMWEB_INCLUDE tag;

Fig. 6 is another HTML text fragment illustrating another use of an EMWEB INCLUDE
tag;

Fig. 7 is an HTML text fragment showing a use of the EMWEB ITERATE attribute in
connection with an EMWEB_STRING tag;

Fig. 8 is an HTML text fragment showing a use of the EMWEB_ITERATE attribute in
connection with an EMWEB INCLUDE tag;

Q

Fig. 9 is an example of forms processing showing the relationship between the HTML
source code for the form and the form output produced;

Fig. 10 is a block diagram of the data structure which defines the header for the data.dat
archive file;

Fig. 11 is a state diagram of an embedded system illustrating dynamic content processing;

Fig. 12 is a state diagram of an embedded system illustrating forms processing;

Fig. 13 is a state diagram of an embedded system illustrating suspend/resume processing;

Fig. 14 is a block diagram illustrating conventional World-Wide-Web communication of
static content between a server and a client; and

Fig. 15 is a block diagram illustrating conventional World-Wide-Web communication of

dynamic content between a server and a client.

DETAILED DESCRIPTION
The present invention will be better understood upon reading the following detailed
description in connection with the figures to which it refers.
Embodiments of various aspects of the invention are now described. First. a development
environment is described in which application development and graphical user interface

development are closely linked, yet require a low level of complexity compared to conventional

15

20

25

30

WO 98/06033 PCT/US97/13817
-14 -

development of an application and GUI. Second, an operating environment is described in which
the application, a server and GUI are tightly coupled, compact and flexible. In the described
system a GUI having portability, low run-time resource requirements and using any of a wide
variety of systems available to a user as a universal front end, i.e. the point of contact with the

user is software with which the user is already familiar.

vel viron
Fig. 1 illustrates a development environment according to one aspect of the invention.
Not all components of the environment are shown, but those shown are identified in the
following discussion.
Conventionally, an application development environment may include a source code
editor, a compiler 101, a linker and a run-time environment in which to test and debug the

application. It is expected that development environments in accordance with the invention

‘include those components of a conventional development environment which a developer may

find useful for developing an application. In the case of embedded applications, i.e., applications
included within a device or larger application, the run-time environment includes the device or
application in which the application is embedded, or a simulation or emulation thereof.

The compiler 101 takes source code 103 generated using the source code editor or from
other sources and produces object code 105, which is later linked to form the executable image.

In addition to the conventional elements noted above, the described embodiment of a
development environment according to the invention includes an HTML compiler 107 whose
output 109 is in the source code language of the application under development. In addition, the
development environment may include an HTML editor, an HTTP-compatible server for
communicating with client software, i.e., browsers, and an HTTP-compatible browser.

The HTML editor is used to create and edit HTML documents 111 which define the look
and feel of a GUI for the application. Numerous tools are now available for performing this task
while requiring a minimal knowledge or no knowledge of HTML, for example, Microsoft® Front
Page™, It is preferred that the HTML editor used permit entry of non-standard tags into the
HTML document.

As will be seen in further detail, below, the server and browser are used to test a
prototype GUI before it is fully integrated with the application or in the absence of the

application. The browser should be capable of making a connection with the server using, for

10

15

20

25

30

WO 98/06033 PCT/US97/13817
-15-

example, a conventional connection protocol such as TCP/IP, as shown and described above in
connection with Fig. 14. Other protocols or direct connections can also be used, as would be
understood by those skilled in this art. While the browser and the server may be connected
through a network such as the Internet, they need not be. For example, the server and client may
run and connect on a single computer system.

Application development proceeds substantially in a conventional manner as known to
software developers. The application development should include the design of a software
interface through which data will be communicated into and out of the application. However, the
software interface is not a GUI. Rather, the interface merely defines how other software can
communicate with the application. For example, the interface may be a collection of function
calls and global symbols which other software can use to communicate with the application. The
application should be written in a high level language such as C, C++, etc. The application can
be tested by compiling and linking it with prototype code that provides or receives information
through the software interface, exercising those features of the application.

Meanwhile, a GUI for the application is designed as follows. The look and feel of the
GUI are developed using the HTML editor, server and browser to create a set of content source
documents 111 including at least one HTML document, which together define the look and feel
of the GUI. This aspect of GUI development is conventional, proceeding as though the
developer were developing a World-Wide-Web site.

At locations in one or more HTML documents where data obtained from the application
is to be displayed, the author includes special tags, explained further below, which allow the
HTML document to obtain from the application the required data, using the application software
interface.

The content source documents 111 are stored conventionally in the form of one or more
directory trees 113. The directory tree 113 containing the content which defines the GUI is then
compiled using the HTML compiler 107, to produce an application source code language output
109 representing the content source documents in the directory tree. The source code elements
109 produced from the content source documents 111 in the directory tree 113, source code for
an HTTP compatible server (not shown) and the application source code 103 are compiled into
object code 105 and linked to form an executable image. The server may be supplied in the form
of an object code library, ready for linking into the finished executable image. The executable

image thus formed fully integrates the graphical user interface defined using familiar tools of

20

25

30

WO 98/06033 PCT/US97/13817
-16-

World-Wide-Web content development with the control and other functions defined using
conventional application development tools.

In order to successfully perform the integration described above, the HTML compiler 107
of the described embodiment of the invention, the EmWeb™/compiler 107, recognizes a number
of special extensions to HTML. The HTML extensions implemented by the EmWeb™/compiler
107, embodying aspects of the invention are described in detail in Table A, Section 3.2. Several
of these extensions are described briefly here, to aid in understanding the invention.

The EMWEB_STRING tag is an extension of HTML used to encapsulate a fragment of
source code in the HTML document. The source code will be executed by a system in which the
application is embedded when the document is served to a browser (usually running on another
system) and the location of the EMWEB_STRING tag is reached. The source code returns a
character string that is inserted as is into the document at the location of the EMWEB_STRING
tag. Examples of the use of the EMWEB_STRING tag are shown in Figs. 3 and 4.

In the example of Fig. 3, the EMWEB_STRING tag 301 first defines using "C="a
boundary character 303 used to define the end 305 of the included source code. Immediately
following the boundary character definition is a fragment of C code 307 which returns a pointer
to a string representing one of three fax states. When served by an embedded application, this
example HTML produces the text "NetFax State:" followed by "Sending", "Receiving" or "Idle",
depending on the value of the symbol GlobalFaxState.

The example of Fig. 4 shows the use of EMWEB_STRING to output typed data whose
type is defined by an attribute, EMWEB_TYPE 401. The EmWeb™/compiler uses this attribute
401 to produce a source code output routine which converts the typed data found at the address
returned 403 into a string for serving at the proper location in the document.

A similar function is performed by the HTML extension, the EMWEB_INCLUDE tag.
Using this tag, standard parts of a GUI such as headers and footers common to multiple pages or
windows of information need only be stored once. Header and footer files are referred to using
the EMWEB_INCLUDE tag which inserts them at the location in each HTML content document
where the tag is placed. In the described embodiment of the invention, the contents of the
EMWEB_INCLUDE tag must resolve to a relative or absolute path name within the local
directory tree of content. This can be done by specifying a local Universal Resource Locator
(URL), which is how resources are located in the World-Wide-Web communications paradigm,

or by including source code which returns a string representing such a local URL. An absolute

10

15

20

WO 98/06033 PCT/US97/13817

-17-

local URL takes the form *“/path/filename”, where “/path” is the full path from the root of the
directory tree to the directory in which the file is located. A relative URL defines the location of
a file relative to the directory in which the current, i.e., base, document is located and takes the
form “path/filename”. While the described embodiment requires resolution of the
EMWEB_INCLUDE tag to a local URL, the invention is not so limited. In alternate
embodiments, local and external URLs may be permitted or other limitations imposed.
Examples of the use of the EMWEB_INCLUDE tag are shown in Figs. 5 and 6.

In the example of Fig. 5, a COMPONENT attribute 501 in an EMWEB_INCLUDE tag
simply defines a local URL 503.

In the more elaborate example of Fig. 6, a fragment of source code 601 which produces a
local URL 603 upon a defined condition 605 is used to generate a local URL at run time.

The results to be returned by an EMWEB_STRING or EMWEB_INCLUDE tag can also
be built up iteratively using repeated calls to the included source code. This is done using the
EMWEB _ITERATE attribute, yet another extension to HTML. Examples of the use of
EMWEB_ITERATE are shown in Figs. 7 and 8.

Fig. 7 shows an example of the EMWEB ITERATE attribute 701 used in connection
with the EMWEB_STRING tag 703. The fragment of code 705 is executed repeatedly until a
NULL is returned. Thus, this HTML repeatedly executes the C source code fragment to display
the tray status of all trays in a system.

Similarly, in Fig. 8, EMWEB_INCLUDE 801 and EMWEB_ITERATE 803 are used to
build a table of features for which content from other URLSs 805 are to be displayed. When the
table is complete, a NULL is returned 807, terminating the iterations.

Since the extensions to HTML described above allow the encapsulation of source code
within an HTML document a mechanism with which to provide the encapsulated source code
with required global definitions, header files, external declarations, etc. is also provided in the
form of an EMWEB_HEAD tag. The EMWEB_HEAD tag specifies a source code component
to be inserted in the source code output of the EmWeb™/compiler, outside of any defined
function. Although it is preferred that the EMWEB_ HEAD tag appears in the HTML file
header, it may appear anywhere. The code generated by an EMWEB_HEAD tag is placed before
any functions or other code defined within the HTML content source documents.

As indicated above, the GUI may be prototyped using a conventional server and browser

(see Fig. 14) to preview the HTML documents comprising the GUI. Therefore, it may be useful

20

25

30

WO 98/06033 PCT/US97/13817
-18 -

to provide static content with which to preview the page, at locations where dynamic content will
appear during use, but which does not appear in the compiled document. For example, it may be
useful to include a prototyping value for content which is otherwise provided using the
EMWEB_STRING tag mechanism. Therefore, another extension to HTML recognized by the
EmWeb™/compiler is the EMWEB_PROTO begin 309 and end 311 tags, as shown in Fig. 3.
The EmWeb™/compiler removes these tags and everything between them when compiling the
document, but the tags are ignored and the text between them is interpreted normally by a
conventional browser viewing the HTML document either directly or via a conventional server.
Conventional browsers recognize the tag due to its special syntax, e.g., being enclosed in “<” and
“>” but are designed to ignore and not display any tag for which the browser does not have a
definition. All EmWeb™/compiler HTML extensions are thus skipped over by conventional
browsers. Thus, in the example of Fig. 3, the prototype page displays “NetFax State: Sending”.
Fig. 4 shows a similar use of EMWEB_PROTO tags.

Handling of HTML forms by the EmWeb™/compiler is now described in connection
with Fig. 9. As seen in Fig. 9, an HTML form is defined substantially conventionally. Names
used in the form are used in constructing symbol names used in the output source code produced
by the EmWeb™/compiler. Therefore names should be valid symbol names in the source code
language.

Each element of a form definition is translated by the EmWeb™/compiler into a part of a
corresponding data structure defined for that form. Forms data is moved into and out of the
application by changing values of items in the data structure.

Turning now to the example in Fig. 9, the relationship between the illustrated HTML
form definition and the corresponding data structure is described. The form is given a unique
name, using an EMWEB NAME attribute in a FORM tag. The form name becomes part of the
structure name, for easy reference and uniqueness. The form name will also be used to generate
function names for functions which are called when the form is served and when the form is
submitted.

The structure generated is itself composed of two structures. The first holds values of
each dynamic element of the form. The second holds a status flag indicating the status of the
contents of a corresponding value. Thus, in the example of Fig. 9, a structure to hold values and
status for the sysName INPUT and the Logging SELECTion is created. The value of sysName is

a character string, while Logging is an enumerated type.

10

20

25

30

WO 98/06033 PCT/US97/13817
-19-

Two function prototypes are also generated. The actions to be performed by these
functions must be defined by the developer. The Serve function is called when the form is
served and can be used to supply default values, for example. The Submit function is called
when the form is submitted, to update values in the data structure, for example.

Currently, EmWeb™/compiler supports TEXT, PASSWORD, CHECKBOX, RADIO,
IMAGE, HIDDEN, SUBMIT, RESET, SELECT and OPTION input fields. For detailed
descriptions, see Table A, Section 3.2.5. In addition, the EmWeb™/compiler supports “typing”
of TEXT input field data. That is, the EMWEB_TYPE attribute may be used to define a TEXT
input field to contain various kinds of integers, a dotted IP address (i.e., an address of the form
000.000.000.000), various other address formats, etc. A mapping of EMWEB_TYPE values to
C language types is formed in the table in Table A, Section 3.2.5.3.

The EmWeb™/compiler has been described in terms of a generic application source code
language. The current commercial embodiment of the EmWeb™/compiler assumes the
application source code language to be C or a superset thereof, e.g., C++. However, the
functionality described can be generalized to any application source code language which may be
preferred for a particular application purpose. However, in order to more fully understand how
the EmWeb™/compiler and HTML extensions described above cooperate to permit integration
of an HTML defined GUI with an application defined in an application source code, it will be
assumed, without loss of generality, that the application source code language is C or a superset
thereof.

The EmWeb™/compiler produces a set of output files including a data.dat file containing
the fixed data of a content archive, a code.c file containing the generated source code portions of
an archive including portions defined in EMWEB_STRING, EMWEB_ INCLUDE and
EMWEB_HEAD tags and other source code generated by the EmWeb™/compiler, as well as
proto.h and stubs.c files containing the definitions of C functions used for forms processing. The
structure of these files is now described in connection with the data structure illustrated in Fig.
10.

The content archive file data.dat has a header structure as illustrated in Fig. 10. The data
structure is accessed through an archive header 1001 which is a table of offsets or pointers to
other parts of the archive. For example, there is a pointer 1001a to a compression dictionary
1003 for archives which include compressed documents. There is also a pointer 1001b to a

linked list of document headers 1005, 1007 and 1009. Each document header 1005, 1007 and

15

20

25

30

WO 98/06033 PCT/US97/13817
-20 -

1009 is a table of offsets or pointers to various components of the document. For example, the
document header includes a pointer 1005a to the URL 1011 to which the document corresponds.
There is also a pointer 1005b to a field 1013 giving the Multipurpose Internet Mail Extension
(MIME) type of the document. There are pointers 1005¢ and 1005d respectively to header nodes
1015 and document nodes 1017, explained further below. Finally, there is a pointer 1005¢ to a
block of static compressed or uncompressed data 1019 representing the static portions of the
document.

The static data does not include any EmWeb™ tags, i.e., the extensions to HTML
discussed above and defined in detail in Table A. Rather, information concerning any EmWeb™
tags used in the document appears in the document nodes structure.

Each EmWeb™ tag employed in a document is represented in that document's document
nodes structure as follows. The location of the EmWeb™ tag within an uncompressed data
block or an uncompressed copy of a compressed data block is represented by an offset 1017a
relative to the uncompressed data. The type of tag is indicated by a type flag 1017b. A node
may include a flag which indicates any attributes associated with the tag represented. For
example, a node for a tag of type EMWEB_STRING may include a flag indicating the attribute
EMWEB ITERATE. Finally, nodes include an index 1017c. In nodes defining form elements,
the index holds a form number and element number uniquely identifying the element and form
within the document. In nodes defining EMWEB STRING tags, the index is a reference to the
instance of source code which should be executed at that point. As such, the index may be
evaluated in an expression of a “switch” statement in C, where each controlled statement of the
“switch” statement is one source code fragment from one EMWEB_STRING instance.
Alternatively, the index may be a pointer or index into a table of source code fragments from
EMWEB_STRING tags, which have been encapsulated as private functions.

The data structure defined above provides a convenient way of transferring control as a
document containing dynamic content is served. When a document is requested, the list of
document nodes is obtained, to determine at what points control must be transferred to code
segments which had been defined in the HTML source document. The document is then served
using the data block defining the static elements of the document, until each document node is
encountered. When each document node is encountered, control is transferred to the appropriate
code segment. After the code segment completes execution, the static content which follows is

served until the offset of the next document node is encountered.

10

15

20

25

30

WO 98/06033 PCT/US97/13817
221 -

Header nodes permit the storage of document meta information, not otherwise handled,
such as content language, e.g., English, German, etc., cookie control, cache control or an e-tag
giving a unique version number for a document, for example a 30-bit CRC value computed for
the document. By avoiding having to put this information in the header of each document,
significant space can be saved in the archive because not all documents require this information.
Therefore, header nodes need only be stored for documents using this information.

The data structure which represents the archive of content used by the
EmWeb™/compiler embodiment of the invention is defined by the C source code contained in

Table B.

Run-time Environment

Aspects of the invention related to the run-time environment and server are embodied in
the EmWeb™/server as described in detail in Table A, Section 4.

To a conventional browser implementing HTTP, the EmWeb™/server behaves
conventionally. However, as shown in Fig. 2, the EmWeb™/server is fully integrated with the
application and therefore has access to information about the application and device in which it is
embedded.

Operation of the EmWeb™/server with respect to presentation of dynamic content is now
described in connection with Fig. 11.

Before the operations shown in Fig. 11 commence, one or more archives are loaded by
the server. When each archive is loaded, the server generates a hash table using the archive
header data structure to make documents easy to locate using URLSs.

First, the browser requests a document at a specified URL, using HTTP 1101. The
EmWeb™/server acknowledges the request, in the conventional manner 1103. The
EmWebT/server then uses the hash table of the archive header to locate the document requested
and begin serving static data from the document 1105. When a document node is encountered,
for example denoting the presence of an EMWEB_STRING tag, then the server passes control to
the code fragment 1107a of the application which had been included in the EMWEB_STRING
tag 1107. When the code fragment completes execution and returns some dynamic data 1109,
the EmWeb™/server then serves that dynamic data to the browser 1111. The EmWeb™/server
then resumes serving any static data remaining in the document 1113. This process continues

until the entire document, including all dynamic elements has been served.

10

20

25

30

WO 98/06033 PCT/US97/13817
-22.

Run-time serving and submission of forms is now described in connection with Fig. 12.
A brief inspection of Fig. 12 will show that form service and submission proceeds along similar
lines to those for serving dynamic content.

The browser first requests a URL using HTTP 1201. When, during service of the
contents of the URL requested, a form is encountered, service of the form and any HTML-
defined default values commences normally. The EmWeb™/server then makes a call to the
application code 1203 to run a function 1203a which may substitute alternate default values 1205
with which to fill in the form. The document served then is made to include the default values
defined by the static HTML as modified by the application software 1207. Later, when the user
submits the form, the browser performs a POST to the URL using HTTP 1209. The form data is
returned to the application by a call 1211 made by the EmWeb™/server to a function 1211 which
inserts the data returned in the form into the data structure defined therefor within the application
code. The response 1213 is then served back to the browser 1215.

Finally, it should be noted that there may be times when a request for dynamic content
may require extended processing, unacceptably holding up or slowing down other operations
performed by the application. In order to avoid such problems, the EmWeb™/server implements
a suspend/resume protocol, as follows. The suspend/resume protocol exists within a context of a
scheduler maintained and operated by the server. The scheduler includes a task list of scheduled
server tasks to be performed.

Fig. 13 illustrates a situation where a browser requests a document containing an
EMWEB_STRING tag whose processing is expected to interfere with other application
operations. The initial HTTP request 1301 for the document is acknowledged 1303,
conventionally. When the EMWEB_STRING tag is encountered, control transfers 1305a to the
appropriate source code fragment 1305b in the application. The application then calls the
suspend function 1307 of the EmWeb™/server and returns a dummy value 1309 to the function
call generated at the EMWEB_STRING tag location. Calling the suspend function 1307 causes
the scheduler to remove the EMWEB_STRING processing task from the task list. When the
application has finally prepared the dynamic content required in the original function call, the
application calls a resume function 1311 of the EnWeb™/server. Calling the resume function
1311 requeues the EMWEB-STRING processing task on the task list, as the current task. The
EmWeb™/server responds by calling 1305¢ the function 1305d defined at the

EMWEB_STRING tag again, this time immediately receiving a response from the application in

15

20

25

30

WO 98/06033 PCT/US97/13817
-23-

which the requested dynamic content 1313 is returned. The dynamic content is then served to
the browser 1315.

The suspend/resume feature is particularly useful in distributed processing environments.
If an embedded application is running on one processor of a distributed environment, but
dynamic content can be requested which is obtained only from another processor or device in the
distributed environment, then the use of suspend/resume can avoid lockups or degraded
processing due to the need to obtain the dynamic content through a communication path of the
distributed environment. Consider, for example, a distributed system including a control or
management processor, and several communication devices. An embedded application running
on the management processor can be queried for configuration data of any of the communication
devices. Without suspend/resume, obtaining that data would tie up the communication path used
by the management processor for control of the various communication devices, degrading
performance.

The described embodiment of the invention illustrates several advantages thereof. For
example, an embedded application can now have a GUI which is independent of either the
application platform of that used to view the GUI. For example, the GUI can be operated
through a Microsoft® Windows™ CE machine, Windows™ 3.x machine, Apple Macintosh,
WebTV box, etc. running conventional browser software. Also, development of a GUI for an
embedded application is greatly simplified. The look and feel is designed using conventional
HTML design techniques, including straight-forward prototyping of the look and feel using a
conventional client server system, using simple HTML extensions. Integration with the
embedded application does not require the developer to learn or develop any special interface,
but rather uses some HTML extensions to incorporate application source code directly into the
HTML content. Yet another advantage in that the entire embedded application along with an
HTTP-compatible server and the content to be served is reduced to a minimum of application
source code, data structures for static data and data structures for dynamic data.

The present invention has now been described in connection with specific embodiments
thereof. However, numerous modifications which are contemplated as falling within the scope
of the present invention should now be apparent to those skilled in the art. For example, the
invention is not limited to content whose source is HTML. Any mark up language could be used
in the context of this invention. Alternatively, the content source could be raw text, which is

particularly suitable for situations where the output of the user interface is also processed by one

WO 98/06033 PCT/US97/13817
224 -

or more automatic software text filters. Therefore, it is intended that the scope of the present

invention be limited only by the properly construed scope of the claims appended hereto.

WO 98/06033

TABLE A
225 -

EmWeb™ Functional Specification

by
lan Agranat
Ken Giusti

Scott Lawrence

6/20/97

Copyright © 1997 Agranat Systems, inc. All Rights Reserved
Patent Pending

Agranat Systems Confidential

SUBSTITUTE SHEET (RULE 26)

PCT/US97/13817

PCT/US97/13817

WO 98/06033
™ . I - 26 - '
EmWeb' ™ Functional Specification Confidential Table Of Contents
Table Of Contents

1. Introduction. tessneresserentrasssnstasensasasesssnane w1
1.1. Web-based Network Management....ccccccreeerecirseeeecressnecssssneeesessanasesssssssassssssssasess 1
1.2, Web-based Systems, Devices, and SORWAreceeeeeeriiesnesnessscressssns eveenenenes 1
1.3, GOIS suureeeresrmssussisssessassssssstsesessssssennssssesssesasssesasssassesesssseseaasesasesssastesassaesasessastns 2
1.4, ASSUIMIPUIONS cettssseecetrsnistsssssiesssssnnissssnsessssstssasossenssesessansssesssrassssssssserssssssessssasanesasses 2
2. Overview...... tetessesasesantessasessnnesessesnsterassntiessttesnstresannesasntasesserenraressesarannses 3
3. EMWED/COMPIIET coveiiciiiicninseniiencninisssnsssassisssnasssssassantessesssssanasssassessarsssssasasssssassssss 4
3.1. EMWED COMEXL...corereeirurriunsneecsneesiaesnsssesssessseessesssessessssssssassasassessessessssasssssssesassns ‘6
3.2, HTML EXIENSIONS cuerererersrercserserssserssssssasessssonsesessnsssescsssssessssntssesessiossessssssssessesssesen 6
3.2.1. EMWEB_STRING «.ueieeiiirennieniiiienicnnrccseesseessnesssnsisssesessessasssasessasssossesnsossssssasese 6
3.2.2. EMWEB_INCLUDE.........ceecu... seseerstsessttaesteeetetestesaeeerarssteesratesaaatentossaseserassares 8
3.2.3. EMWEB_HEAD....ccccceceercrrunennns eeeraneectsaseresaneessaseeesssasersaeisnnesesesessarasessrresnnsas 9
3.2.4, EMWEB_PROTO tiirieietiicrrenrecineersrreessssecssnesesssesacssessssssesssnssesssassssssssssesss S
B.2.5. FOIIMIS errnrrereecirenseessssnessiaratentaeesstsssentsassssessansassssssasasssessssassssssassssessnesssssossansass 10
3.2.5.1. Form EIement NamES.....ccoceiveerieinienniernineinenseessesessssssssssessssessesossscsees 10
- 3.2.5.2. Form Data StruCtUrecuveeceeiivnnnecennssnesensnasensensenes erstesressenntessnenons 11
3.2.5.3. HTML Form TEXT INPUL Fields ciiirernrenmineiieceiienisieesiecesenseessecnressenes 13
3.2.5.4. HTML Form PASSWORD [NPUt FIldscccciiieiiiiiinnecsnenssessssessessassens 14
3.2.5.5. HTML Form CHECKBOX InpUt Fields.....cccccrervmecreneinreccrecnneereenneensveenens 15
3.2.5.6. HTML Form RADIO INpUt FieldS....ccovvriiiininreecrcnninenicinneeersosoeesscsssssrsens 15
3.2.5.7. HTML Form IMAGE [NPUt FIldS «.ueeieciieeiirieirrecreenneccceeeessinessesesesnnes 16
3.2.5.8. HTML Form HIDDEN INPUL FieldSeicverrnrinirinnneensininesssnesssnssessessresssnoes 16
3.2.5.9. HTML Form SUBMIT INPUL FieldS ..ueccveiiveiiieieeicrininecrnecceeeseresseeessnnens 16
3.2.5.10. HTML Form RESET INpUt Fields .covcvvereeenieiiiiiieierccieecsieerneenenesnneessnens 17
3.2.5.11. HTML Form SELECT/OPTION Fields «..cccevvninirinnnrenrnneerensaessassecssessanes 17
3.2.5.12. TEXTAREA . . iiretttnretnitinrineerssteecteessesssesesrsssssecsssesansssssessssssssassssesses 17
3.2.5.18. File UPIOaQ....ccievuierererirericiccissaneriisnnnsniesersseessiesssmsisseessessssssesssessssessssans 18
3.2.8. GraphiC Maps ..cccuerimimeiinnnennniininieniei ittt sisssessssessssaassssssssasasses 18
3.2.7. Cache Control....ceerenes e erebatas it aes e et eessarateseennataeessterasersranetesssttaaesranansents 19
3.2.8. EMWED CGl auceerrereiricrnnrrerssonectssaessuesessrnesssssascsssseronsesssrssassassessssssssassersnsasessase 20
3.3. mime.types Configuration File......cciciiiinininncicine e 20
3.4, _ACCESS FllES uiicticinntnnsnnnissnnsasinninissaisiossnssississssissasssssssssissossassssssssssssssses 22
3.5, COmPpiler OPLIONS ...cvieserssnseissnnssunaisensusnsssnssnssnessnsssssesssssnsssossssssssssssnssssssssassnssnas 28
3.6. Compiler OQUIPUL....ccoivimneninintisisniiiisisiaisscssissiesssssssssssssesessssssasssanssesss 25
4. EMWED/SEIVEer..cccineeiocssnessancsssareressoncessanensnese . restssssnssereessnentssnane 27
4.1, ApPlication INErfaCES...cceiererrenriterinnstsiniesansinse sttt et s sasssassesasaesssbesnsens 28
4.1.1. System Interfaces.......ceeeeerrenene Seestasessnsenssatsssssnsonsansasnsassateserestsrasnassaanssasasasss 25
4.1.1.1. Initialization and SAUHOWR c...auiiiiiicrrrieiieinreeesisissneessesssesesssansesssssseassasersas 29
4.1.1.2. SChEAUIING .eccaerrecsesessisertesssssesanssisssssassnssseessossosssssnesssssssssssssassnssnssssssanssnss 28
4.1.1.3. Memory Management. .o 31
Copyright © 1997 Agranat Systems, inc. Page iii REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

PCT/US97/13817

WO 98/06033
-27 -

EmWebTM Functional Specification Confidential Table Of Contents
4.1.1.4. Time-of-Day Management ... iiiciniinneriieseieseeeseessesessnseessanes 31
4.1.2. NetWOTK INterfaCeS. cieiiciireeiiiiincieienniainenecsssnnesissesesesssnssisnsssaessseessseasssesssaeses 32
4.1.2.1. Network Buffer Management........ccevvuenrreinens seirerersaressantessasansrerssntsatsases 32
4.1.2.2. TCP/IP INMEIACES ..cerrurvrrrurnitiissinrenninieientsinisissssensssssssnassssssassssssisscses 33
4.1.3. Document and Archive Managementcceceeceeinerornnenieeeerssessanssssesnessesssees 36
4.1.3.1. Installing and Removing ArChivVeS.....ccuicrerirnniencnrnniicrseeensnieicseerereeessanes 36
4.1.3.2. Demand LOAdiNg ueirierinniiinianiennisiiennitissmeitiierssmissenserensessssseesessassssas 37
4.1.3.3. ClONMING..ccccrnurenrtrcsrnniiniessnsssisnniirsssstsssssssnssiessessssasesossssossassassssansassonnssnnas 38
4,1.3.4. URL REWEItING...eeertrternrirnecreecsasseenssasssiessasssnnsersssssnsesssasesssasssssensesssesnsasses 38
4.1.3.5. Document Data ACCESScieiiniiensisinriiieniissinisssiststessoseesoneesssesssnnnesesssssnns 39
4.1.4. Authentication and SECUMTYciciirrninmerminieciiiitiiiiiieieieeniceceisseaessrssressessesasesssne 39
4.1.4.1. Basic AUtheNtiCAtION .uceicveereicrsneccneereiennienisnitsiesssasnesssesnenesesossssensssssassanas 42
4.1.4.2. Manual Basic AUthentiCationcccecirnrneiiiicicsinnninnneccecerenssescssnneeesssssneess 43
4.1.4.3. Digest AUtNENntiCAtON.cccoverecsesersensesiereserenssnesiassnsessasessarsasssssnsssassenens .44
4.1.4.4. Manual Digest AUthentiCationccviiinninitiieiitineiiciiinnieeneeeasreeeecenes 45
4.1.4.5. Application Security VErifiCationcccvcieeereceeircreeisieniiiccsnnnecsnnensesneesssenee 47
4.1.4.6. Document Realm ASSIGNMENT ..ccueiviniiriccicerrereetintrcereressseee s sssseseses 47
4.1.5. Request CONEXt ACCESS «...ucireiriniiieniesinrieniosinrmnereeeiiesisssisessssssrsssesseesssseesoes 48
4.1.8. RAW CGluuuieiiiiiieiennieieentiiessesisisessiosssssossessasessesssneesssssssnssesssessssasssasssssssessans 51
4.1.7. Logging HOOK ..cccceeriruneecsinnenaens eteesnteeset it eaeresaea et nreaeaseeeetasesnresnsrraeessnnaranas S3
4.,1.8. Local Filesystem INterfates . ..civiieiricininieiinneienninnieseisoinienieneniueseeesssassssssasens 54
4.1.8.1. The EWSFileParams SIrUCIUIE.....cccuveieicieeieitnrereccietienecmrneesesssenessssnesssnnns 54
4.1.8.2. File UPIOAGU....ciccreriiniinicisincssseiienenesisinsiossistsmessssnssessssasssssessssnserssssasssssnas 55
4.,1.8.3. FIlE SeIVE.ccvutirretitintinticinnninrtiecstreseiieistatetsesssiornrereestesseesessssossrsssssessssnnans 58
4.2. Application Interface EXampIes......cuiiviineiininiiiiininieciie e seeesessassnnenns 61
4.3. Porting GUIAEIINES ..cvuceuiinuiiiinniiniiitnniinenine et sisessiassssssssstssessessssessssssesanes 65
4.3.1. Configuration Header FileS.......cccumeriiinnnunineonniemeeennenieeneeeenenenen 65
4.3.2. Application-Provided FUNCHONS ...cciccienuiiirieniiiiiieseienniennneeenieseniereneernessnesssees 78
4.4. Memory REQUIFEMENES ...ciiviiereniniemniiiiieiosiniinisstesniesionsssasessssassonsessssasassssessasas 79
5. CON OIMANCE. . ecrieeeeretirsirsesssstisssnesserassssssstssssnssocsssssssnsersasasssseassssntnesssnnssssasssssassssane 85
6. Release History....enecvecenans cesesssnnnsssessases ceersesssiessesiesnressnastssassenasasrasssntaen esesess 86
7. References.. cresnesnnne ereressasaresiessresesenssane cersensasnns S coneecsasices wee 87
Appendix A: EmWeb Application Interface Header Files..... evearsrasensenss 88
A-1. CONfIQUIALION seuuieesersruntssrisreniesstnsieneinieiintstiseniesniinieesssieisssissessssesssssssssssasssassese 88
A-1.1. SIc/CONfig/EW_tYPES.H ettt et esseseessssssasens 88
A-1.2. src/config/eW_CONfig.N ueiiiieinenininineniinntiniemeroniemesisionssenernesesesessesse 91
A-2, Common Header Files ...ccccciviereininricisnissarenescsisnesisanens seersiesenensarnrsessssanssisssresenssn 93
A-2.1. srcfinclude/ews_api.f cceviecensanene vertesesneseseraesasnenns rrettetsteseseseesrantnneessesarresernee 99
A-2.2. srefincludefews_def.h.iiecnicniinniaens cesstseresnanaesersereesnnne treresreteeeerenssnranesennae 100
A-2.3. srefincludefews_sys.h........... ceseeresntenasane teteetetttssts et e s e sa st aa e s e ra s banerbaens 105
A-2.4, srcfinclude/eWs_NeLN .. iiiniiiennnenniesiienieeenniniereessnss e csssssenes 112
A-2.5. SIc/iINCIUAE/@WS_AOC.H ceeveietiiennnrrrenecinrecnreseneserecansecsieeneasesssssesnesssssnsssanssesans 118
Copyright © 1997 Agranat Systems, Inc. Page iv REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-28-

EmWeb.rM Functional Specification Confidential Table Of Contents
A-2.6. SrefiNCIUGE/@WS _BUNLN wiiiiicieiccirteiectcccicenree e secesssseeranisses s sesessesssssnssssssessane 123
A-2.7. SrC/iNCIUAE/EWS _CIXEN veetireiceeniietieinirinicrnneneesiessressssinnseeesssssssesssnssesssesssossnnnes 130
A-2.8. SrefiNCIUE/EWS_COI.N cvveeeeeriiirircniiiiiiinierieniriccessesineessseseesossesannessessesssesnnne 133

Copyright © 1997 Agranat Systems, Inc. Pagev REV. §/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817
- 29 .-

EmWeb' ™ Functional Specification Confidential Introduction

1. Introduction
The explosive growth of the World-Wide-Web in recent years has created a new standard

for the Graphxcal User Interface (GUI) of networked applications: the Web browser,
Netscape , Mosaic, and other commercial and public-domain Web browsers are

ubiquitous and inexpensive.

1.1. Web-based Network Management

Network management is a natural application for the World-Wide-Web. Before the Web,
network management required end-users to purchase expensive custom-built GUI
applications that used the SNMP protocol to manage network-based devices. With
World-Wide-Web technology, many of these applications can be replaced by
economical Web browsers.

World-Wide-Web standards make it possible to migrate the “look-and-feel" intelligence
of the device configuration GUl away from third-party and custom-built network
management applications and into the managed device itself. This migration gives
vendors control over the configuration “look-and-feel” of their products among both low-
cost Web browsers and the high-end third-party network management applications of

the future.

Web-based network management can greatly accelerate the time-to-market for
products traditionally managed by SNMP. With SNMP-based management, new
product features require significant engineering resources to design and implement
proprietary MIBs and develop customized GUI| applications to manage the new features.
On the other hand, Web-based management GUI| applications can be rapidly prototyped
and implemented using simple HTML forms.

SNMP will continue to play an important role in high-end network management
applications by utilizing standard MIBs to monitor the overall topology and health of
devices throughout the enterprise network. However, the new World-Wide-Web
standards offer an exciting alternative to SNMP for the configuration and management
of individual devices.

1.2. Web-based Systems, Devices, and Software

Embedded Web server technology can enable remote configuration, monitoring, and
diagnostic capabilities for a wide range of applications. Imagine sending and receiving
faxes, checking your voice-mail, and knowing the availability of your favorite candy bar
in the vending machine down the hall by using your Web browser? Your office manager
could configure the phone switch and voice-mail system, check the toner and paper
levels in the photocopying machine, and monitor the security alarm system from their
desktop. Your automobile mechanic could connect to your car's computer to perform
engine diagnostics, and if they were stumped, the manufacturer could examine the
results from around the world over the Internet.

Copyright © 1997 Agranat Systems, Inc. - Page 1 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-30 -
EmWebTM Functional Specification Confidential Introduction

1.3. Goals

EmWeb™ by Agranat Systems is a family of Embedded World-Wide-Web protocol
software products engineered for the demanding real-time requirements of embedded
systems.

Goals of the EmWeb product architecture include:
- Ease of use

. Support rapid prototyping and implementation of new World Wide Web interfaces
including device monitoring, configuration, and network management.

. Easily portable to a wide-variety of real-time embedded operating environments
with limited operating system capabilities, memory, and CPU resources.

. Easily upgradable with new releases as World-Wide-Web standards continue to
evolve rapidly.

- High performance

. Efficient implementation for real-time processing environments.
. Small foot-print to minimize FLASH and RAM resources required.

- Security

. Support for authentication and security standards as they continue to evolve.
. Configuration of method-independent access controls.

1.4. Assumptions

This functional specification assumes that the reader is familiar with the C programming
language, the World-Wide-Web, and standards such as HTML (Hyper-Text Markup
Language). Knowledge of HTTP (Hyper-Text Transport Protocol) and CGl (Common
Gateway Interface) is also helpful to understand some of the more advanced features,
but isn't required for most applications.

Copyright © 1997 Agranat Systems, Inc. Page 2 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

PCT/US97/13817

WO 98/06033

™ . -31 - -
EmWseb' ™ Functional Specification Confidential Overview
2. Overview

One draw-back to traditional World-Wide-Web servers is the CGl interface. Although
HTML provides a convenient mechanism for sending interactive forms to a Web browser
complete with text fields, checkboxes, and pull-down menus, the CGl interface used by
server applications to process submitted forms is difficult to master. Form processing is
essential for network management applications because it is the best way to implement a
device configuration screen using World Wide Web protocols. However, CGl is not an
appropriate interface for the rapid implementation and prototyping of new network
management capabilities (EmWeb’s number one goal). Another draw-back to traditional
World-Wide-Web servers is the static nature of the content of files served to the Web
browser. These files are typically resident on disk and are not expected to change
frequently. On the other hand, the data of interest to network management applications is
constantly changing (e.g. the number of packets received on a particular Ethernet port).

The EmWeb architecture works around the draw-backs of traditional World-Wide-Web
servers by extending the standard HTML specification with new proprietary tags
developed by Agranat Systems. These tags make it possible to provide a more intuitive
HTML form processing interface for embedded systems, and give the application run-time
control over the document content for the presentation of dynamic data. Note that these
tags are not actually sent to the Web browser. Instead, they are stripped out and

interpreted by the EmWeb/Compiler.

The EmWeb product consists of two components: The EmWeb/Compiler and the
EmWeb/Server.

The EmWeb/Compiler is a tool provided by Agranat Systems that runs on an engineering
development work-station under Unix, Windows/NT (x86), and Windows/385. The tool
compiles one or more directories of files containing HTML, Java, text, graphics, etc., into
one or more EmWeb archives. Each archive consists of an object code component and a
fixed data component. These components are usually linked into the target's run-time
image at compile time. However, the EmWeb architecture permits the dynamic loading
and unloading of the fixed data components at run-ime. Furthermore, if the target's
operating system supports the dynamic loading and linking of object code modules, then
entire archives may be loaded and unloaded at run-time.

The EmWeb/Server is a portable run-time library implemented in ANSI C which is
compiled and linked with the target platform’s application software. The EmWeb/Server
implements the HTTP protocols to handle requests from Web browsers and interfaces
with the archives created by the EmWeb/Compiler. The EmWeb/Server implements an
application interface (API) to the target software environment's memory management,
buffer management, and TCP/IP protocol stack.

Copyright © 1897 Agranat Systems, Inc. Page 3 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

PCT/US97/13817

WO 98/06033

-32-
EmWebTM Functional Specification Confidental EmWeb/Compiler
3. EmWeb/Compiler

The EmWeb/Compiler processes directories of HTML and other Web documents to
generate ANSI C code. The generated C code is then compiled using a C cross-compiler
to generate object code for the target system. HTML forms are translated by the EmWeb/
Compiler into a simple C function call interface customized to the application. The
software developer is responsible for implementing the application-specific C code using
these simple interfaces. The EmWeb/Compiler can generate function prototype
definitions (a C include header file) to ensure comrectness, and optionally generates stub
functions to accelerate development.

The figure below illustrates the operation of the EmWeb/Compiler.

Copyright © 1897 Agranat Systems, Inc. Page 4 REV. 6/20/57
SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-33-

L
) o

Source Directory Tree

AN

HTML, Java, text, graphics

P ¢

Application-Specific
ew_proto.h
ew_stubs.c

G
&
2]
®
)
3
w
EmWeb Archive EmWeb Archive Application-Specific
(Fixed Data) (Object Code)
ew_data.dat
ew_data.c _-J ew_code.c |[H *.c H
'S
~
‘a Y
QCO mpiler
Object Code

Figure 1: EmWeb/Compiler

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-34 -
‘EmWebTM Functional Specification Confidential EmWab/Compiler

3.1. EmWeb Context

The EmWeb/Server maintains a handle of type ewscontext at run-time that coresponds
to a specific HTTP request from a Web browser client. This handie is made available to
the application code responsible for providing the run-time content of HTML documents
and forms.

The EmWeb/Server contains a library of functions available to the application for
extracting information attached to this handle. For example, the application may want to
determine the type of browser making a request, and change the look-and-feel of the
requested document to take advantage of features available to particular browsers. in
this example, the application could extract the browser type as follows:

bytes = ewsContextUserAgent (ewsContext,
user_agent, sizeof(*user_agent));

For more information about available context information functions, refer to 4.1.5.
Request Context Access, page 48.

3.2. HTML Extensions

The content to be provided by the EmWeb server is prepared as you would content for
any normal Web server. The developer constructs a directory tree (or trees) of
documents, which may include HTML documents, Java, text, graphics, and sound
samples. The EmWeb compiler is then run over the content directory tree to build an
internal database that is compiled and linked with the EmWeb/Server and the system
code.

EmWeb defines proprietary HTML tags and attributes for access to system data and
dynamic system control of the served documents. These tags are never served to
browsers by the EmWeb/Server, and because (with one exception) they have no body
part (they do not use a start and end tag, but only a stand-alone tag with attributes), they
are ignored by browsers that see them when browsing the content tree either locally or
via a non-EmWeb server. This facilitates testing and prototyping of content.

3.2.1. EMWEB_STRING

The <eMwEB_STRING> tag is used to provide applications with run-time control of an
HTML document’s content by encapsulating a fragment of C code in the document
itself. This C code is executed as the document is being served to a Web browser and
retums a null-terminated character string that is inserted as-is into the document in
place of the <eMwEB_STRING> tag.

To include content in a document (which may include any standard HTML):

<EMWEB_STRING C=‘...; return (char =) somestring;’>
or
<EMWEB_STRING EMWEB_ITERATE C=‘...; return (char *) somestring;‘>
Copyright © 1997 Agranat Systems, Inc. Page 6 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-35.
EmWebTM Functiona! Specification Confidential . EmWeb/Compiler

The EmWeb/Compiler extracts the C language code fragment from the EMWEB_STRING
tags in an HTML document and constructs a C module from them. Each fragment must
end with a return statement that retums a pointer to a nuli-terminated string (or a nuLL
value which inserts no content). When the location of the EMwER_sTRING tag in the
content is reached, the EmWeb/Server executes the code fragment and inserts the
retumed string Into the document. If the optional emweEe_ITERATE attribute is specified,
the code fragment is called repeatedly until it returns a nuLL pointer value. The number
of iterations already processed (beginning with zero) is available to the code fragment
by calling:

ewsContextlterations (ewsContext);

Note that the local variable

EwsContext ewsContext;
is made available to the emweBs_sTrinG C code fragment by the EmWeb/Compiler.

The returned string must not be an automatic (stack) variable. The value is copied for
transmission by EmWeb/Server immediately after retuming. Thus, a single static
string buffer may be shared by multiple code fragments. If pre-emptive multi-threading
is to be used, the application may maintain a per-request buffer as part of its network
handle. Alternatively, EMwEB_ITERATE may be used to support dynamic allocation of the
string buffer as follows. On the first iteration (#0), memory may be allocated, filled with
data, and returned to the EmWeb/Server for transmission. On the second iteration
(#1), memory may be released and a NuLL pointer returned to terminate the iteration.

The EmWeb/Compiler treats the embedded code opaquely; from the compiler's point
of view, the code is simply a string of text that gets assembled into a generated code

file. (See 3.6. Compiler Output, page 25).

As such, the EmWeb/Compiler needs to know the beginning and end of the embedded
C code fragment. The character following the c= attribute in the eMwes_sTrING tag
identifies the "bounds" of the embedded C code. This character must be either a
single quote (') or double quote ("). When the EmWeb/Compiler identifies this
"boundary character”, it then treats all following characters as part of the embedded C
code fragment, until it finds the next terminating "boundary character".

The obvious problem here is that the embedded C code can contain a single or double
quote as part of the C code. For example:

return “Example of EmWeb‘’s dynamic content\n";

In order to keep the EmWeb compiler from mistakenly confusing a single or double
quote that belongs to the C code fragment as the ending “boundary character”, the
programmer must escape (using '\') any character intended for the C code that would
be confused with the terminating boundary character. Thus, the above code fragment

Copyright © 1997 Agranat Systems, Inc. " Page7 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817
‘ -36-
EmWebTM Functional Specification Confidential . EmWeb/Compiler

could be embedded in an emweB_sTRING tag in either of the following ways:

<EMWEB_STRING C=‘return "Example of EmWeb\'’s dynamic content\n";’>
<EMWEB_STRING C="return \“Example of EmWeb‘’s dynamic content\n\";">

The <eMwEB_STRING> tag may optionally be typed using the emwes_TYPE attribute as
follows:

<EMWEB_STRING EMWEB_TYPE-DECIMAL_QINT Ce’
return (uint32 *) &some_integer;‘>

If emweB_TYPE is specified, then the C code fragment must return a pointer to data with
the comresponding type. EmWeb/Server will convert the value into a character string
automatically. A table of supported types can be found in section 3.2.5.3. HTML Form
TEXT input Fields, page 13 ' _ '

3.2.2. EMWEB_INCLUDE

The EmWeb/Server provides server-side inclusion of any part of its content tree using
the eMweB_INCLUDE 1ag; it is used in the same way as the EMWEB_STRING tag:

<EMWEB_INCLUDE COMPONENT='Local-URL‘>
or

<EMWEB_INCLUDE C='...; zeturn (char *) localURL; ‘>
or

<EMWEB_INCLUDE EMWEB_ITERATE C='...; return (char *) localURL;’>

If the compoNENT tag is specified, the specified local element is resolved and inserted
into the current document. This allows standard parts such as headers and footers to
be stored only once.

As in EMWEB_STRING, the fragment specified by the c= attribute must end with a retuzn
statement that returns a pointer to a nullterminated string (or wuiL). For
EMWEB_INCLUDE, however, this string is treated as a relative or absolute path name
within the local content tree. The path name is resolved to an entire document, which
is then inserted in the current document for retum to the browser. If the optional
EMWEB_ITERATE attribute is specified, the code fragment is called repeatedly until it
returns a nuLL pointer value. The number of iterations already processed (beginning
with zero) is available to the code fragment using the same access routine used for
EMWEB_STRING. This tag is useful for building a response from components that may
be part of the ‘original document tree, or created dynamically.

Note that the local variable
EwsContext ewsContext;

is made available to the emweB_1NcLupe C code fragrrient by the EmWeb/Compiler.

Copyright © 1997 Agranat Systems, Inc. Page 8 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-37-
EmWebTM Functional Specification Confidential EmWeb/Compiler

The same quoting rules as EMWEB_STRING apply 10 EMWEB_INCLUDE.

3.2.3. EMWEB_HEAD

Because the <emwEB_STRING> and <Emwes_INcLUDE> tags allow the application to
encapsulate fragments of C code within an HTML document, a mechanism is needed
to provide the code fragments with the necessary global definitions, header files,
external declarations, etc. needed for compilation. The <emweEs_nEAD> tag is provided

for this purpose.
<EMWEB_HEAD C=‘#include file-name.h‘>

The emweB_HEAD tag, if present, should appear in the xeap portion of the HTML
document (this is not enforced, but the code fragments from all Emwee_HEAD fragments
are placed at the beginning of the generated module, so doing so is less confusing); it
specifies a source fragment to be inserted in the generated module outside any C
function. This fragment may declare variables, constants, or (as shown in the example
above) C preprocessor directives - it could even define entire subroutines. This
fragment is never executed directly by the EmWeb Server, so it does not insert any
content into the document at the location of the tag.

Note that all emwes HEAD code fragments from all HTML files in an archive are
combined into the generated archive object code component source file. Therefore, it
is recommended that common #include directives appear only in one document in the
archive (typically, the index.html document at the archive’s root directory).

The same quoting rules as EMWEBR_STRING apply 10 EMWEB_HEAD.

3.2.4. EMWEB_PROTO

When designing an HTML document, it may occasionally be useful to provide content
with which to preview the page, but which does not appear in the compiled document.
This is accomplished with the emweB_pProTo begin and end tag; the EmWeb/Compiler
removes these tags and everythlng between them when producing the document
database, but the text between them is interpreted normally by a browser viewing the
HTML document directly or via a conventional server. For example:

<H4>
System: <EMWEB_STRING C=“return mib2sysName;*">
<EMWEB_PROTO>system-name</EMWEB_PROTO>

</H4>

When compiled, the system name displayed in the first level header will be the value
in the string variable mib2sysname, but viewed with a browser when previewing it looks
like:

System: system-name

Note that the EmWeb/Compiler ignores HTML comments (e.g. "<:-- ... -->". If
EMWEB_STRING and EMwEB_INCLUDE tags are present within HTML comments, they will

Copyright © 1997 Agranat Systems, inc. ' Page 8 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-38.-
EmWebTM Functional Specification Confidental EmWaeb/Compiler

be expanded by EmWeb/Server. If it is desirable to "comment out" an EMWEB_STRING
or EMWEB_INCLUDE tag, EMWEB_PRoOTO tags should be used instead.

3.2.5. Forms

Form processing takes place as two operations: serving the form to the browser,
possibly with cumrent or default values set in some form input elements, and
processing the values from the submitted form. Each of these operations is assisted
by an application-provided routine associated with the form. Prototypes for these two
application routines are produced for each form by the EmWeb/Compiler using
information provided by EmWeb attributes on the FORM and its input elements.

Restriction: While HTML allows it, EmWeb does not support
nested rorm tags (you may not have a form within a form).

The elements for each form are combined in a generated C data structure by the
EmWeb Compiler; this structure is passed by the EmWeb Server to each of the two
form processing routines, and includes information on the status of each element.

3.2.5.1. Form Element Names

The emweB_NaME attribute is used to specity the names to be used by the EmWeb/
Compiler when generating function and structure names.

On the rorM tag, the EmweB_NaME attribute specifies a base name to be used to
generate the function names and the form data structure name. (This implies that the
value of the emweB_naME attribute must be a valid C identifier). Note that if eMweBs_NaME
is not present in a <ForM> tag, then the form is simply ignored by the EmWeb/
Compiler and is passed as-is to the brovsser.

Consider the following example. Suppose there exists an HTML document
“example.htm!" that contains:

<FORM METHOD=POST EMWEB NAME=foo ACTION=bar >

The acrron attribute is optional; if Actzon is not specified, then there may be only one
form in the document. If acrion is specified, it is served to the browser as
"ACTION=example.html/bar". (This allows EmWeb/Server to differentiate between
multiple forms in a document. It also allows the submission of forms to be protected
by different access controls than the serving of forms. See 3.4. _ACCESS Files,
page 22).

The EmWeb/Compiler generates the following function and structure prototypes:

typedef struct EwaForm_foo_s
{
struct

{

} value;

Copyright® 1997 Agranat Systems, Inc. Page 10 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-39- :
EmWabTM Functional Specification Confidential EmWeb/Compiler
struct
{
} status;

} EwaForm_foo;...

void ewaFormServe_foo (EwsContext context, EwaForm_ foo *formp);
char * ewaFormSubmit_foo (EwsContext context, EwaForm foo *formp);

The ellipsis (...) above are replaced by declarations of the structure members to hold
the data for each form element. The standard HTML naMe attribute is used in each
IneuT tag of the form to specify the structure member names within the form data

structure.

Restriction: While HTML allows arbitrary string values for Name
attributes, EmWeb requires that name attributes are valid C
identifiers since they are used as field names in the form's C
structure definition.

The application-provided ewaFormsexve_foo function is invoked by EmWeb/Server
when the HTML document containing the form is requested by a Web browser. This
provides the application with an opportunity to modify the default values displayed
by the browser at run-time.

The application-provided ewaFormsubmi t_foo function is invoked by EmWeb/Server
when the corresponding HTML form is submitted. This provides the application with
an opportunity to process the submitted form data and generate an appropriate
response.

3.2.5.2. Form Data Structure

The generated form data structure passes information for the form between the
system and the EmWeb/Server. it has two sections: ‘value' and ‘status', each
containing one or more members for each form element. The 'status' section
member is a flag that indicates the status of the contents of the ‘value' member. The
‘value' member contains the data for the form element in an intemnal representation
which may be specified by the form author using the emwes_tvpe attribute. For
example:

<INPUT TYPE=TEXT SIZE=15 MAXSIZE=15 VALUE=127.0.0.1
NAME=ifAddr EMWEB_TYPE=DOTTED_IP>

The example above produces the following structure members:

typedef struct EwaForm foo_s
{

struct
{
uinwsz ifaddr;
Copyright © 1997 Agranat Systems, Inc. . Page 11 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-40 -
EmWebTM Functional Specification Confidential EmWeb/Compiler
uintf 1fAddr_size;
uintf 1fAddr_maxlength;
} value;
struct
{
uints 1fAddr;
} status;

} EwaForm_foo;

The value.ifaddr member contains the host-order 32-bit |IP address. The
evaFormserve_foo function sets this structure member with the value to be displayed
on the form and sets status.ifaddr to Ew_FORM INITIALIZED. (Note that if
status.ifaddr is not changed by the application, then the form is displayed with the
value specified by the vaLue tag, “127.0.0.1"). When the Web browser end-user has
entered a valid IP address and submits the form, the EmWeb/Server sets
value.ifaddr to the value provided by the browser and sets status.ifaddr to
EW_FORM_RETURNED before invoking ewaFormsubmi t_foo.

The value.ifaddr_size member is generated because the size attribute was
specified and defaults to 15. This gives ewaFormserve_foo an opportunity to override
the field size value before serving the form. (This field is not used by
ewaFormsubmi t_foo).

The value.ifaddr_maxlength member is generated because the maxsize attribute
was specified and defaults to 13. This gives evaFormserve_foo an opportunity to
override the maximum field size value at run-time. (This field is not used by
ewaFormSubmi t_foo).

The status.ifaddr member is used to indicate the status of the form element
member and consists of a bit field defined as follows (from src/include/ews_def .h):

/Q

* For ewaFormServe_*

*/
#define EW_FORM INITIALIZED 0x01 /* set if field initialized */
#define EW_FORM DYNAMIC 0x02 /* set if field ewaAlloc‘ed +/
/*

* For ewaFormSubmit_*

*/
#define EW_FORM_RETURNED 0x10 /* set if value returned */
#define EW_FORM_PARSE_ERROR 0x20 /* set if value invalid +/
#define EW_FORM_ FILE_ERROR 0x20 /™ or i/o erxor +/

For the ewarormserve_+ call (when the form is being sent to the browser), the
structure is passed with the status for each element set to either zero, or
Ew_rorM_INITIALIZED if a default value was specified by the HTML vauLe tag. When

Copyright © 1997 Agranat Systems, Inc. Page 12 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-41 - _
EmWeb-rM Functional Specification Confidential . EmWeb/Compiler

control is retumed to the EmWeb/Server, the server checks each status and uses
the new value for each field for which the ew_rorM_INITIALIZED is Set. Initialized
values override any VALUE, CHECKED, Or SELECTED values specified in the source
HTML document. The ew_rorM_DyNamrc flag is only valid for type fields containing
pointers to data (including TEXT, PASSWORD, HIDDEN, TEXTAREA, SUBMIT, and
EMWEB_TYPE=HEXSTRING) and indicates that the memory referenced by the pointer
was allocated by ewaalloc and must be freed by EmWeb/Server using evarzee after

the form is served.

When the form is submitted by the browser, the server attempts to convert each
value returmned by the browser to the appropriate type. The server sets the status
member to indicate the status of the data member of the structure, and then calls the
evaFormsubmit_+ routine associated with the form. The ew_rorM_RETURNED flag is set
if a valid value was retumed for the field in the submission. The
EW_FORM_PARSE_ERROR flag is set if a value was retumned, but was not parsed correctly

for the specified EMWEB_TYPE.

Note: When a form is submitted, the contents of a value field is
undefined unless the ew_rorM RETURNED flag is set in the
corresponding status byte.

The application processes the submitted values and retums a string containing the
URL to use as the redirection response to the Web browser, or xuLL for an empty
("204 No Content") response. Alternatively, the following function may be invoked to
retum a local relative URL from the archive as a response.

EwsStatus ewsContextSendReply (EwsContext context, char * url);

3.2.5.3. HTML Form TEXT Input Fields

A text field can be used to represent a wide variety of value types. For example, a
text field may be used to configure an IP address in which case the natural C-
language representation is a host-order 32-bit integer. By default, a text field is
simply a null-terminated character string. However, the emwes_TypE attribute may be
used to indicate any of a number of supported EmWeb types. Refer to the table
below for details.

HTML text fields may specify a field size and/or a maximum length. If so, additional

_size and _maxlength Structure members are added to the form structure to give the
apphcation run-time control over these values. The format and resultmg form
structure fields of a text input field is given below.

<INPUT TYPE=TEXT NAME=name {MAXLENGTH=#max} {SIZE=#size) {VALUE=value}
{EMWEB_TYPE=ewtype}>

EwType name; /* defaults to value */
uintf name_maxlength; /+* defaults to #max */
uintf name_size; /* defaults to #size */
Copyright © 1997 Agranat Systems, Inc. ‘Page 13 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033

EmWebTM Functional Specification

Confidential

PCT/US97/13817

-42 -

The following table lists all eMmwes_TypE values currently supported.

uint32 length;
uints8 *datap:;
)

EMWEB_TYPE C-Type Description
—— —a————————————|

(not specified) char + null-terminated string

DECIMAL_INT int32 32-bit signed integer

DECIMAL_UINT uint32 32-bit unsigned integer

HEX_INT uint32 32-bit unsigned hex integer

DOTTED_IP uint32 32-bit host-order P address translated using
the conventional dotted-quad ASCII notation.

IEEE_MAC char [6) IEEE MAC address (any of ' or '’ or " is
accepted between bytes on input, displayed
with '’). I/G bit is least significant (Ethemnet)

| FDDI_MAC char [6] FDDI MAC address (any of ' or ' or " is
accepted between bytes on input, displayed
with *-'). I/G bit is most significant (FDDI,
Token Ring)

STD_MAC char [6] A MAC address - if " or " is used between
bytes on input, it is interpreted as IEEE (I/G
bit is least significant); if '-' is used on input, it
is interpreted as FDDI (I/G bit is most signifi-
cant). Displayed as IEEE with '",

HEX_STRING struct { A hex string. Any of "' or '-' or " or white-

space is accepted between bytes. Displayed
with ”.

DECNET_IV_ADDRESS

uintié

area.node

OBJECT_ID

struct {
uint32 length;

uint32 *datap;

)i

A variable length array of unsigned decimal
integers displayed with periods between ele-
ments.

Note that support for additional EmWeb types may be added in future releases.

3.2.5.4. HTML Form PASSWORD Input Fields

A password field is represented by a null-terminated character string. HTML
password fields may specify a field size and/or a maximum length. If so, additional

_size and _maxlength Structure members are added to the form structure to give the
application run-time control over these values. The format and resulting form
structure fields of a password input field is given below.

EmWeb/Compiler

Copyright © 1997 Agranat Systems, Inc.

Page 14

SUBSTITUTE SHEET (RULE 26)

REV. 6/20/97

WO 98/06033 PCT/US97/13817

: -43 -
EmWebTM Functional Specification Confidential EmWeb/Compiler

¢INPUT TYPE=PASSWORD NAME=name {SIZE=#size) {MAXLENGTH=#maxlength]}
{VALUE=value)} >

char *name; /* defaults to value, or NULL+/
uintf name_size; /* defaults to #size */
uintf name_maxlength; /* defaults to #maxlength =/

3.2.5.5. HTML Form CHECKBOX Input Fields

Checkbox fields are represented as booleans. The optional vaiue field is passed
unchanged to the browser and is not used by EmWeb.

<INPUT TYPE=CHECKBOX NAME=name {VALUE=value]} {CHECKED]}>

boolean name; /* defaults to TRUE if CHECKED, else FALSE */

Note: If the Ew_ForRM_RETURNED bit in the status byte is set on
submission, then the checkbox was checked and the value is
TRUE,

3.2.5.6. HTML Form RADIO Input Fields

Radio buttons are represented by a C enumerated type generated by the EmWeb/
Compiler for each unique vaLue assigned to a radio button in the archive. (The
enumerated types defined by radio buttons and single select options are combined
into a single archive-wide enumeration).

<INPUT TYPE=RADIO NAME=name VALUE=valuel {CHECKED}>
<INPUT TYPE=RADIO NAME=name VALUE=value2 {CHECKED}>

typedef enum EwaFormEnum_ew_archive_e
{
,valuel
,value2

} EwaFormEnum_ew_archive;

EwaFormEnum_ew_archive name;/* defaults to checked value */

Restriction: While HTML allows arbitrary string values for vaLue
attributes, EmWeb requires that vaLue attributes for radio
buttons are valid C identifiers since they are used as
enumerated type identifiers.

Note that EmWeb/Compiler generates a singlé enumeration for each archive. The
ew_archive suffix may be overridden at the command line (See 3.5. Compiler
Options, page 23).

The following function is provided as a convenience for translating from the

Copyright © 1997 Agranat Systems, Inc. " Page 15 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-44 -
EmWeb ' M Functional Specification Confidential EmWeb/Compiler

enumerated type's integer value to its name as specified by the vaLuk attribute:

const char *ewsFormEnumToString (EwsContext context, int value);

3.2.5.7. HTML Form IMAGE Input Fields.

images are “read only” from the point of view of the application as they return the x
and y image coordinates selected by the end-user from the Web browser. Therefore,
the generated structure value members are only useful in the ewaFormSubmit_*
application function. Structure members are generated representing the x and y
coordinates as follows.

<INPUT TYPE=IMAGE NAME=name SRC=src {ALIGN=align}>

typedef struct EwaForm_foo_s

{
struct

{

uint32 name_Xx;
uint32 name_y;

} value;
struct
{

uints name;
} status;

} EwaForm_foo;

3.2.5.8. HTML Form HIDDEN Input Fields

Hidden fields are identical to text fields except that they are not displayed (and thus
not modified) by the browser. They are typically used by applications to pass context
information to the browse. This context information is returned to the application
during submission.

<INPUT TYPE=HIDDEN NAME=name {VALUE=value} {EMWEB_TYPE=ewtype) >

EwType name; /* defaults to value if present */

3.2.5.9. HTML Form SUBMIT Input Fields

Submit buttons with namMe attributes are represented by a null-terminated character
string. Submit buttons without naMz attributes are not included in the form structure.

<INPUT TYPE=SUBMIT {NAME=name} {VALUE=value} >

char *name; /* defaults to value if present */

Copyright © 1997 Agranat Systems, Inc. ~ Page 16 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-45 -
EmWebTM Functional Specification Confidential EmWeb/Compiler

3.2.5.10. HTML Form RESET Input Fields
No structure member is generated for a reset button.

3.2.5.11. HTML Form SELECT/OPTION Fields

Select boxes may be used to select a single item from a list (the default), or multiple
items from a list (if the attribute MuLTIPLE iS present). For single item selection, values
are represented by a C enumerated type generated by the EmWeb/Compiler. (The
enumerated types defined by radio buttons and single select options are combined

into a single archive-wide enumeration).

<SELECT NAME=name {SIZE=#size} >
<OPTION VALUE=valuel {SELECTED} >
<OPTION VALUE=value2 {SELECTED)] >

</SELECT>

typedef enum EwaFormEnum _ew archive_e

{
,valuel
,value2
} EwaFormEnum_ew_archive;

EwaFormEnum_ew_archive name;/* defaults to selected value */

For multiple item selection, a status and value form structure field is generated for
each option as follows:

<SELECT NAME=name {SIZE=#size] MULTIPLE >
<OPTION VALUE=valuel {SELECTED) > descriptive text
<OPTION VALUE=value2 {SELECTED} > descriptive text

</SELECT>

boolean valuel; /* defaults to TRUE if SELECTED */
boolean value2; /* defaults to TRUE if SELECTED */
uintf name_size: /* defaults to #size +*/

HTML select fields may specify the size of the selection box. If so, an additional
_size structure member is added to the form structure to give the application run-

time control over this value,

Restriction: While HTML allows arbitrary string values for vaLve
attributes, EmWeb requires that vaLue attributes for select
options are valid C identifiers since they are used as
enumerated type or structure field identifiers.

3.2.5.12. TEXTAREA
The textarea value is a null-terminated string of characters. Additional value fields
are placed in the form structure for the number of rows and columns in the textarea.

Copyright © 1997 Agranat Sysrgms, Inc. Page 17 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

.46 -
EmWebTM Functional Specification Confidential EmWeb/Compiler

These fields are initialized by EmWeb/Server to the defaults specified in the source
HTML document, but may be overridden at run-time by the application's
ewaFormSexve_+ function.

<TEXTAREA .COLS=#icols ROWS=#rows NAME=name >

</TEXTAREA>

char *name; /* null-terminated string */
uintf name_cols; /* default to #cols +/
uintf name_Iows; /* default to #rows */

Note that the vname points to the text present in the TexTaREA input field.

3.2.5.13. File Upload
RFC1867 file upload defines a new form input type as follows:

<INPUT TYPE=FILE NAME=name {VALUE=value) {SIZE=#rows{,#cols}}>

Note: Use of file input types requires that the form uses
multipart/form-data as an encapsulation type. This must be
specified in the <Form> tag as follows:

<FORM METHOD=POST ENCTYPE=multipart/form-data ... >

This causes the browser to prompt the user for a local (relative to the browser)
filename (by default, value is used if specified). On submission, the file is uploaded
to the server along with other form field values.

EmWeb/Compiler parses file type input fields into the following fields in the form
value substructure:

char *name; /* sexve only: default filename */
EwaFileBandle name_handle; /* submit only: received file +/
uintf name_size; /* serve only: #rows (no #cols) */
uintf name_xows; /= serve only: #izows (w/#cols) =/
uintf name_cols; /* serve only: #cols v/

In addition, the following fields in the form status substructure are generated as well:

uints name; /* status for filename */
uints name_handle; /* status for received file */

For more detailed information on the file upload interface, please refer to 4.1.8. Local
Filesystem Interfaces, page 54. '

3.2.6. Graphic Maps

The HTML zsuap attribute on an 1Mc tag specifies that the file is an image map. Such
an 16 tag must always be enclosed within an anchor that specifies a hyper-link URL

Copyright © 1997 Agranat Systems, Inc. Page 18 REV. 6/20/87

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

. -47 -
EmWebTM Functional Specification Confidential EmWeb/Compiler

The 1sMap attribute causes a click within the image to be sent as a request to the URL
in the enclosing anchor, qualified by the x & y coordinates of the click within the image.

EmWeb provides support for image maps through a map element in the HTML source
tree which specifies rectangular regions and URLs to be associated with them.

The interface designer creates an image map file, a text file which defines the URLs
to be provided for each region of the image. The syntax of the entries is:

rect-line | default-line

rect-line ::= rect url point point
point 1= X,y
default-line ::a default uzrl

The zect token specifies a.URL to be served in response to the specified top-left and
bottom-right coordinates. The optional default specifier provides the URL for any
coordinate not specified by some rect (only one default is allowed). Order of the rect
lines is significant - if the regions overlap the first match takes precedence.

If no match is found, and no default is specified, the server retums "no content” to the
browser, effectively a no-operation. Otherwise, the matching URL is returned to the
browser as a redirection. The URL may be relative to the map file in the archive, or

absolute.

The map files are compiled by EmWeb/Compiler so that they do not need to be parsed
at run-time by the EmWeb/Server. The following illustrates the syntax of a typical map

file:
rect examplel.html 15,18 169,37
Tect example2.html 157,46 385,65

rect example3.html 365,71 460,87
default /home.html

If the above file was "sample.map”, and corresponded to the image "/pictures/
sample.git", the following HTML would be used to implement the map:

By convention, map files use the suffix ".map’, but this can be changed. See 3.3.
mime.types Configuration File, page 20, and 3.4. _ACCESS Files, page 22.

3.2.7. Cache Control

The HTTP/1.0 protocol has some simple provisions for communicating cachability
information to caches and proxies between the server and the browser. HTTP/1.1
provides even greater cache control features.

- Copyright © 1997 Agranat Systems, Inc. Page 18 REV. 8/20/97

SUBSTITUTE SHEET (RULE 26)

PCT/US97/13817

WO 98/06033
\ -48 -
EmWebTM Functional Specification Confidential EmWeb/Compiler

By default, EmWeb/Server classifies compiled-in documents as being either static or
dynamic. A document is considered dynamic if it contains one or more EMWEB_STRINGS,
EMWEB_INCLUDES, of EmWeb-enhanced HTML forms. Otherwise, the document is
static,

When serving a static document, EmWeb/Server sends a Last-Modified HTTP header
indicating the time and date that the corresponding archive was created by the
EmWeb/Compiler. No other cache control headers are generated in HTTP/1.0. With
HTTP/1.1, a Cache-Control header is generated indicating either "public” if the
document is not protected by an authentication realm, or "private” if it is.

When serving a dynamic document, EmWeb/Server sends a Last-Modified and
Expires HTTP header indicating the current time and date, as well as “Pragma no-
cache” for HTTP/1.0 and “Cache-Control: no-cache” for HTTP/1.1.

It may be desirable to override the above default behavior for certain applications.
Specifically, an application may desire static treatment of a dynamic document. For
example, If eMweB_INCLUDE tags are used to insert common headers and footers,
EmWeb/Server would treat the document as dynamic even though the content may
actually be static. The following EmWeb tag may be used anywhere in an HTML
document to mark it as static for cache control purposes:

<EMWEB_STATIC)

3.2.8. EmWeb CGI

The mechanisms described above are designed to meet most needs of the system
designer without having to deal with the complexities of direct access to the HTTP
input and output mechanisms. If such access is desired, the EmWeb raw CGl interface
provides access similar to that available in a CG! program environment on any HTTP
server. See 4.1.6. Raw CGl, page 51.

3.3. mime.types Configuration File

- The mime. types configuration file is read by EmWeb/Compiler before processing source
directories of HTML and other Web documents. If "-m" is specified on the EmWeb/
Compiler command line, then the specified file is used. Otherwise, EmWeb/Compiler
searches for a mime. types file by first looking at the semwes_MIME environment variable,
and then looking at sEMweB_HoME/SEMWEB_MIME. |f the SEMWEB_MIME environment variable
is not specified, it defaults to "mime. types”. If the seMwEB_HOME environment variable is
not specified, it defaults to "/usr/local/share/emweb".

The mime.types file contains default parameters for files derived from the file name
suffix. For example:

]

EmWeb/Compiler mime.types file example

Anything after a ‘#' is a comment.

A line whose first character is white space is a continuation line

Copyright © 1997 Agranat Systems, Inc. Page 20 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033

PCT/US97/13817

-49 .

EmWebTM Functional Specification Confidential ' EmWeb/Compiler

Each specifier must end in ‘;’

#

.html . typeetext/html parse=emweb html compress ;

. Xt type=text/plain parse=emweb_text compzess ;
gif type=image/gif parse=binary ;
.map imagemap; :

index=index.html;

The suffix may be any tail match; it is not restricted to values starting with '.’. The
mime.cypes file contains specifiers for the default access rights and parameters of files
ending with a particular suffix. Each speclfier is the file name suffix, tollowed by one or
more of the following attributes, followed by a semicolon:

type=mime-type

Specifies the MIME encapsulation media type represented by the file. Media
type values are registered with the Intemet Assigned Number Authority
(IANA). Use of non-registered media types is discouraged. (Note that the
mime - type Must be quoted if it contains a *}' line-terminator character). The
default type depends on the parser selected (see below).

parse=emweb_html! [emweb_text | text / binary

Specifies how the EmWeb/Compiler is to parse the file.

EMwEB_HTML indicates that the file contains HTML and the EmWeb/Compiler
handles <EMWEB_STRINGS, <EMWEB_INCLUDE>, <EMWEB_PROTO>,
<EMWEB_HEAD>, and EmWeb HTML forms. The default type for the
EMWEB_HTML parser is "text/html".

emwes_TEXT indicates that the file contains text which may contain
<EMWEB_STRING>, <EMWEB_INCLUDE>, <EMWEB_PROTO> and <EMWEB_HKEAD>
directives. However, such a file may not contain EmWeb HTML forms. The
default type for the eMweB_TEXT parser is "text/plain".

TExT indicates that the file contains text which should not be parsed (e.g.
PostScript). The default type for the TexT parser is "text/plain”.

BINARY indicates that the file contains raw binary data. The default type for
the BINARY parseris "application/octet-stream".

The default parser is BxNary if not otherwise specified.

compress

Specifies that the content should be compressed. The EmWeb
compression algorithm creates an archive-wide dictionary of common
strings which are referenced by the individual documents. Compression
ratios for text files of 50% can be achieved if there is sufficient redundancy

Copyright © 1997 Agranat Systems, Inc. Page 21 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-50-
EmWebTM Functional Specification Confidential EmWeb/Compiler

throughout the archive. However, compression ratios will vary widely among
applications. The default is no compression.

nocompress
Specifies that the content should not be compressed. (This is typically used
in an _access file to override a specification in mime. types). The default is
no compression.

imagemap
Specifies that the content is an imagemap that defines the coordinates for
an image. This implies "hidden", and inherits realm membership from the
current directory.

ignore
Specifies that the entry should be skipped (i.e. not included in the archive).
This is typically used to exclude source control directories, backup files from
editors, etc.

The current directory is specified using .’ as the suffix name. Directories may contain
the attribute:

index=index-file-name
The element (in the directory) to be returned in response to an access
request to that directory (a URL whose last component is the directory
name),

3.4. _ACCESS Files

Access to individual files and directories is controlled by a configuration file in each
source archive directory named '_access'. The _access files contain specifiers for the
access rights of elements in the corresponding directory (and optionally for the directory
itselt using the '.' specifier). Specifiers in the _access file override specifiers in the
mime.types file. Each specifier is the file name (not a suffix) followed by any of the
attributes defined above for mime.types. The following additional attributes are
permitted in _access files.

realm=realm-name
requires that any request to access the file or directory must be
authenticated in the named realm. If an empty realm is given (i.e. realm=""),
then the file may be accessed without any authentication. See 4.1.4.
Authentication and Security, page 39.

hidden
Specifies that the file is included for use in constructing dynamic content and
may not be seen or accessed directly by a Web browser. (Note that the
hidden and realm attributes are mutually exclusive).

Copyright © 1997 Agranat Systems, Inc. Page 22 REV. 6/20/87

SUBSTITUTE SHEET (RULE 26)

PCT/US97/13817

WO 98/06033
-5] -
EmWebTM Functional Specification Confidential EmWeb/Compiler
link=url

Specifies that this element is linked to a different URL. When accessing this
file, the browser shall be redirected to the specified relative or absolute URL.
The link attribute may not appear with any other attributes.

If realm is specified for a directory, it applies as a default for all files and subdirectories
within the current directory. Specifications for individual files in an _access file override
defaults specified for the directory.

If nidden is specified for a directory, it applies as a default for all files and
subdirectories within the current directory. Individual files and subdirectories may be

overridden by specifying a realm.

Note that a default’.’ specification for index may be included in the mime. ~types file and
overmridden In individual _access files.

in addition to the elements in the directory, the _access file may specify the base name
for CGl elements (which do not need actual files in the HTML tree). These are
specified with the access attribute cgi below and may also have a realm attribute.

cgi=symbol
The element is a CG| application. The symbol value is used by the EmWeb/
Compiler to generate application-specific prototypes for the raw-CGl
interface. See 4.1.6. Raw CGl, page 51.

Finally, form action URLs used when a browser submits an EmWeb HTML form to the
EmWeb/Server may be protected by a specific realm which may be different from the
realm of the document containing the form. In this way a form may be used to display
data to a less restricted realm, while permitting changes only from users in a more
restricted realm. For example, if the HTML file “example.html” contained an EmWeb
HTML form tag <FORM METHOD=POST EMWEB_NAME=foo ACTION=bar>, the following
specifier may appear in the _access file corresponding to the directory containing

“example.html”. .

example.html/bax xealm=realm-name

Access control is only computed by the EmWeb/Server on the initial URL: if the
element to be retumed in response to the URL includes an eMwes_incLupe tag, the
EmWeb/Se:rver does not perform an access check on those individual elements.

3.5. Compiler Options

The EmWeb/Compiler program “ewc” takes the following command-line arguments
followed by a list of one or'more directories and/or files with which to build an EmWeb

archive.

Copyright © 1987 Agranat Systems, Inc. ~Page 23 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-52-
EmWebTM Functional Specification Confidential EmWeb/Compiler

(-n | =name) <archive-symbol-base-name>
The base symbol name produced by EmWeb/Compiler corresponding to
the object part (and, if -c is.also speciﬁed the data part) of the archive. By
default, this parameter Is “ew_archive”. Thus, the following symbol is
generated by the EmWeb/Compxler in ew_code.c:

EwsArchive ew_archive;

And If the -c option is specified, the following symbol is generated in
ew_data.c.

uint8 ew_archive_datal];

(-m | -mime) <mime.types filename>
The path name to the mime.types configuration file. By default, EmWeb/
Compiler looks in $EMwEB_MIME (mime.cypes) followed by sEMwEB_HoME/
SEMWEB_MIME (/usr/local/shaze/ emweb/mime. types).

(-u | =url) <archive-url-base-path>
The base URL path of the generated archive. By default, this is '/".

(-r]=-raw)|(=c|=cC).

The output format of the generated archive data component (raw by
default). If - -zaw is specified, the data component of the archive is written to
the file ew_data.dat as a raw binary file. If --c is specified, the data
component of the archive is written to the file ew_data.c as a C file that,
when compiled, produces an amay of data reference by the symbol
ew_archive_data. Both flags may be specified on the command line to
cause the generation of both raw and C output files.

(-o | —output)
The prefix for generated files data.dat, data.c, code.c, stubs.c, and
proto.h (“./ew_" by default).

(-s | =stubs)
Generate ew_stubs.c file containing stubbed-out versions of form and CGI
functions normally provided by the application to facilitate rapid prototyping
and development.

(-C | -no-compress)
Disable compression of the archive. (Overrides compress attribute in
mime.types and _access files).

(-1 | =little)
The byte-order of the generated archive data component. By default, a big-
endian archive is generated. If --little is specified, then a little-endian

Copyright © 1997 Agranat Systems, Inc. Page 24 REV. 6/20/37

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

EmWebTM Functional Specification Conngenval EmWeb/Compiler

archive is generated.

(-P | =no-preprocessor)
Disable generation of #1ine pre-processor directives in generated
ew_code.c file; normally, these directives are included so that the C compiler
and debuggers can find the original C in the source HTML documents. This
option should only be used if your C compiler does not understand the

'#1ine’ directive.

(-q | —quiet) | (-v|—verbose)| (-d | ~debug)
The logging level. The —quiet options suppresses all but error messages.
The - -verbose is specified, more logging output is produced. The - -debug
is specified, still more logging output is produced. The default (non of these
options specified) includes errors and some waming messages.

(-v[-version)
Displays the EmWeb/Compiler's version.

Two dashes in a row indicate the end of options. All remaining parameters
are file and/or directory names. This is optional, as any parameter that does
not begin with a ’~' is assumed to be a file and/or directory name.

3.6. Compiler Output
The EmWeb/Compiler produces the following output files:

ew_data.dat
A raw binary file containing the data component of the archive.

ew_data.c
If the - -c option is specified at the command line, this file is generated. It
contains C code that, when compiled, defines an array of octets
representing the data component of the archive and referenced by the
global symbol uints ew_axrchive datal].

ew_code.c
A C file that, when compiled, defines the object component of the archive

referenced by the global symbol (ewsAzchive) ew_archive.

ew_proto.h
This C header file is generated if the archive contains EmWeb HTML forms
or CGI documents. The header file defines function prototypes and data
structures for an application-specific interface between EmWeb/Server and
application-provided functions responsible for serving and submitting forms

and/or raw CGl processing.

Copyright © 1997 Agranat Systems, Inc. Page 25 REV. 6/20/87

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-54 -
EmWebTM Functional Specification Confidential . EmWeb/Compiler

ew_stubs.c
If the - -stubs option is specified at the command line, this file is generated.
It contains stubbed-out versions of form and CG! functions normally
provided by the application to facilitate rapid prototyping and development.

Copyright © 1997 Agranat Systems, Inc. Page 26 REV. 6/20/87
SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-55-

EmWebTM Functional Specification Confidential EmWeb/Server

4. EmWeb/Server
The EmWeb/Server is written in portable ANSI C and is easily integrated into a wide

variety of embedded application environments. EmWeb/Server implements the HTTP
protocol and responds to requests from networked Web browsers with documents stored

in run-time archives created by the EmWeb/Compiler.

The following figure illustrates a typical EmWeb/Server device management application.

Device
Configuration
and

Statistics

TCPNIP
Protocol
Stack

t Network Access

Figure 2: EmWeb/Server

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-56-
EmWebTM Functional Specification Confidential EmWeb/Server

4.1. Application Interfaces

The EmWeb/Server application interfaces are divided into six functional areas including
system interfaces, network interfaces, document and archive maintenance,
authorization and security, request context access, and raw CGl.

Many application interfaces are optional and can be configured out of the EmWeb/
Server at compile time. This offers the system integrator flexibility in balancing the trade-
offs between functionality, memory requirements, and system performance.

Most application interfaces are provided by the EmWeb/Server and are called by the
application. However, some application interfaces must be provided by the application
and are called by the EmWeb/Server. Function names beginning with “ews" and data
types beginning with “Ews” are defined by the server for use by the application. Function
names beginning with “ewa” and data types beginning with “Ewa" must be defined by
the application for use by EmWeb/Server.

Status codes returned by the EmWeb/Server to the application are of type EwsStatus
and are defined as follows (from src/include/ews_def.h):

/ - .
* Status codes returned to the application by EmWeb/Server
*/
typedef enum EwsStatus_e
{

EWS_STATUS_OK,

EWS_STATUS_BAD MAGIC,

EWS_STATUS_BAD_VERSI ON,

EWS_STATUS_ALREADY_EXISTS B

EWS_STATUS_NO_RESOURCES,

EWS_STATUS_IN_USE,

EWS__STATUS_NOT_REGISTERED .

EWS_s TA'I'US_NOT_CLONED '

EWS_STATUS_NOT_FOUND,

EWS_STATUS_AUTH_FAILED,

EWS_STATUS_BAD_STATE,

EWS_STATUS_BAD_REALM,

EWS_STATUS_FATAL_ERROR,

ENS_STATUS_ABORTED

} EwsStatus;

Status codes retumed by the application to the EmWeb/Server are of type EWaStatus
and are defined as follows (from src/include/ews_def.h):

/ -
* Status codes returned to EmWeb/Server by the application
*/
typedef enum EwaStatus_e
{
EWA_STATUS_OKX,
EWA_STATUS_OK_YIELD,
EWA_STATUS_ERROR

Copyright © 1997 Agranat Systems, Inc. Page 28 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

' -57-
EmWebTM Functional Specification Confidential EmWaeb/Server

} EwaStatus;

4.1.1. System Interfaces
The system functional interfaces are further divided into four functional areas including
initialization, scheduling, memory management, and time-of-day services.

4.1.1.1. Initialization and Shutdown

Before any other application interface function may be used, the EmWeb/Server
must be initialized. This is accomplished by invoking the following function:

EwsStatus ewsInit (void);

This function retums Ews_sTaTus_ox on success. Otherwise, an error code is
retumed. (Ews_STATUS_NO_RESOURCES is retumed if EmWeb/Server was unable to
allocate memory for internal hash tables, etc.).

A graceful shutdown of the EmWeb/Server can be accomplished by invoking the
function below. This causes EmWeb/Server to terminate all outstanding HTTP
requests and release all dynamically allocated resources.

EwsStatus ewsShutdown (void);

This function retums ews_sTaTus_ok on success. Otherwise, an eror code is
retumed. (There are currently no conditions that cause an error to be returned).

4.1.1.2. Scheduling

The EmWeb/Server is capable of serving multipie HTTP requests simultaneously. It
may be configured at compile-time to use either its own intemal real-time scheduler

or to make use of an extemal scheduler provided by the application's operating
system.

If an extemal scheduler is to be used, HTTP requests may be multi-threaded if each
TCP connection is handled by its own operating system thread. Otherwise, requests
will be single-threaded. The ewsRun(), ewssuspend() and ewsResume() functions
described below for EmWeb/Server's intemal scheduler would not be used. Instead,
all application <emweB_STRING> and <EMWEB_INCLUDE> code fragments and
evaFormserve_* and ewvaFormsubmit_* functions are invoked from the

ewsNetHTTPReceive () function.

if the internal scheduler is to be used , HTTP requests are served from the following
function:

EwsStatus ewsRun (void);

This function retums Ews_sTaTus_ok on success. Otherwise, an eror code is
retumed. (There are currently no conditions that cause an error to be returned). Al
application <EMWEB_STRING> and <EMWEB_INCLUDE> code fragments and

Copyright © 1997 Agranat Systems, Inc. Page 28 REV. 6/20/97
SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-58 -
EmWebTM Functional Specification Confidential EmWeb/Server

evaFormsexrve_* and ewaFormsubmit_+ functions are invoked from ewsrun().

The ewsrun() function processes any outstanding HTTP requests until either all
requests have been served, or the application requests that EmWeb/Server yield the
CPU as follows. Each time EmWeb/Server sends a buffer of HTTP response data to
the network via the application-provided ewaNetHTTPsend function, the application
may return the status ewa_sTaTus_ox_vIELD to request that the EmWeb/Server
relinquish control of the CPU. This ‘will cause the EmWeb/Server to returmn from the
ewsRun () function immediately. (Note that if the last buffer of the HTTP response was
transmitted, the EmWeb/Server will close the connection and release any
corresponding resources before retuming control to the application).

In addition, the intemal scheduler gives the application a means to temporarily
suspend a specific HTTP request each time it invokes application-specific code from
<EMWEB_STRING>, <EMWEB_INCLUDE>, and HTML form serve and submit functions. The
application may instruct EmWeb/Server to suspend an HTTP request from the
application-specific code provided in <eMWEB_STRING> and <EMWEB_INCLUDE> C code
fragments, and ewaFormserve_+ and EwaFormsubmit_+ functions by invoking the
following function before retuming to the EmWeb/Server.

EwsStatus ewsSuspend (EwsContext context) ;

This function retums ews_sTATus_ox on success. Otherwise, an error code is
retumed (Ews_sTaTus_BAD_sTATE). When the application retums to EmWeb/Server
after invoking ewssuspend, the EmWeb/Server may continue to process other
outstanding requests from ewsrun() before returning control to the application. Note
that the value retumed by the application after calling ewssuspend is ignored. The
application's <EMWEB_STRING> or <EMWEB_INCLUDE> C code fragment or
ewaFormServe_* O ewaFormsubmit_» function is re-invoked when the request is
resumed. This functionality makes it possible to implement proxy servers (i.e. a local
HTTP request might cause the application to send an IPC message to another
process and suspend EmWeb/Server processing of this request until an IPC
response is received). The application can resume a previously suspended request
by invoking the following function.

EwsStatus ewsResume (EwsContext context, EwaStatus status);

Status can be either Ewa_STATUS_ox Or EwA_STATUS_OK_YIELD. If the status is
EWA_STATUS_oK, then the resumed request may be scheduled right away (for
example, this could cause ewsrun t0 be invoked internally). Otherwise, the
suspended request is scheduled to run, but is not actually run until control is
transferred back to EmWeb/Server. This gives the application control over which
CPU thread processes HTTP requests (i.e. a-suspended request may be resumed
by an interrupt handler for execution later in a polling loop that calls ewsrun). This
function retums Ews_sTATUus_ok on success. Otherwise, an error code is retumed
(EWS_STATUS_BAD_STATE).

Copyright © 1997 Agranat Systems, Inc. Page 30 REV. 6/20/37

SUBSTITUTE SHEET (RULE 26)

%25c2%25a1nterru.pt

WO 98/06033 PCT/US97/13817

-59-
EmWebTM Functional Specification Confidential EmWeb/Server

The following function may be invoked from within the application's <eMwEB_STRING>
or <EMWEB_INCLUDE> C code fragment or ewaFormServe_» Of ewaFormSubmit_ =
function to determine if this is the initial invocation of the application code, or if the

code is being resumed.
boolean ewsContextIsResuming (EwsContext context);

This function retums True it the application code is being re-invoked after
ewsResume. Otherwise, this function retumns FaLSE.

4.1.1.3. Memory Management

The EmWeb/Server requires the application to provide simple memory management
for the allocation and release of temporary data-structures used throughout the
processing of HT TP requests and maintaining the run-time document archive and
authentication databases. These functions are equivalent to the POSIX malloc and
free calls as follows:

void * ewaAlloc (uintf bytes);
void ewaFree (void * pointex);

The ewaalloc function (or macro) retumns a pointer to available memory of at least
- the specified number of bytes long, or nuLL if no memory is available. The ewaFzee
function (or macro) returns a block of available memory previously allocated by

ewaAlloc.

Note: If the EmWeb/Server is unable to allocate memory
during the processing of a particular HTTP request, the
request is aborted, all resources related to the request are
released, and the application's ewaNetyTTPERd () function is
invoked. Alternatively, the application may implement
ewaAlloc () SO as to block until resources are available using
external operating system facilities.

4.1.1.4. Time-of-Day Management

Some of the optional HTTP/1.0 functionality requires a "time-of-day" for pate:,
Expires:, and Last-modified: headers. Many embedded systems do not have a
reliable time-of-day capability, so these features are configurable options in EmWeb/
Server. To take advantage of these features the application must provide the
following function (or macro):

const char * ewaDate (void);

This function should return the current time (GMT) in one of the following two
formats:

RFC1123: (Preferred)

Fri, 08 Jun 1996 08:57:28 GMT

Copyright ©1997 Agranat Systems, Inc. Page 31 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-60 -
EmWebTM Functional Specification Confidential EmWeb/Server

RFCB850:

Friday, 08-Jun-96 08:57:28 GMT

4.1.2. Network Interfaces

The EmWeb/Server relies upon a pre-existing TCP/IP protocol stack available in the
target software environment. The interface between the application's TCP/IP protoco!
stack and the EmWeb/Server is event driven. This approach makes it possible to port
EmWeb/Server to a wide variety of software environments.

4.1.2.1. Network Bufter Management

The EmWeb/Server design assumes that the application malntams data buﬁers for
the reception and transmission of TCP data.

Buffers can be uniquely identified by an application-defined buffer descriptor. No
assumptions are made about the actual structure of the buffer descriptors or their
relationship to the data. For example, a buffer descriptor could be an index into a
table, a pointer to a structure (either contiguous or separate from the data
represented), etc. The application is responsible for defining the appropriate type for
EwaNetBuffer and a value for EwA_NET_BUFFER_NULL.

Bufters can be chained together. Given a buffer descriptor, EmWeb/Server must be
able to get or set the "next buffer in the chain" field. This is done by the
evaNetBufferNextset and ewaNetBufferNextGet functions (or macros). Note that
the buffer chain is terminated when the next buffer value is Ewa_NET BUFFER_NULL.

EwaNetBuffer ewaNetBufferNextGet (EwaNetBuffer buffer):
void ewaNetBufferNextSet (EwaNetBuffer buffer, EwaNetBuffer next);

Given a buffer descriptor, EmWeb/Server can determine the start of data in the
buffer. Additionally, EmWeb/Server may change the start of data in the buffer
(EmWeb/Server only moves the pointer to the data upward (increments)). This is
done by the ewaNetBufferDataGet and ewaNetBufferDataSet functions (or macros).

uint8 * ewaNetBufferDataGet (EwaNetBuffer buffer);
void ewaNetBufferpataSec (EwaNetBuffer buffer, uintg +datap);

Given a buffer descriptor, EmWeb/Server can determine the size of contiguous data
in the buffer. Additionally, EmWeb/Server may change the size of the buffer
(EmWeb/Server only changes the size of the buffer downward (decrements)). This
is done by the ewaNetBufferLengthGet and ewaNetBufferLengthset functions (or
macros).

uintf ewaNetBufferlengthGet (EwaNetBuffer buffer);
void ewaNetBufferLengthset (EwaNetBuffer buffer, uintf length);

Copyright © 1997 Agranat Systems, Inc. Page 32 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-6l -
EmWebTM Functional Specification Confidential EmWeb/Server

EmWeb/Server may allocate a single buffer by invoking the ewaNetBufferalloc
function (or macro). The application may return a buffer of any size to EmWeb/
Server. The size of the buffer must be initialized to the number of bytes available in
the buffer for EmWeb/Server. It no buffers are available, this function retums
EWA_NET_BUFFER_NULL. Additionally, EmWeb/Server may release a chain of one or
more buffers by invoking the ewaNetBufferFree function (or macro).

EwaNetBuffer ewaNetBufferAlloc (void);
void ewaNetBufferFree (EwaNetBuffexr buffer);

Note: If the EmWeb/Server is unable to allocate a network
buffer during the processing of a particular HTTP request, the
request is aborted, all resources related to the request are
released, and the application's ewaNetsTTPEnd () function is
invoked. Alternatively, the application may implement
ewaNetBufferalloc() SO as to block until resources are
available using external operating system facilities.

4.1.2.2. TCP/IP Interfaces

The application is responsible for listening to the HTTP TCP port (80) for connection
requests. When an HTTP TCP connection request is received, the application
accepts the TCP connection on behalf of EmWeb/Server and invokes the following

function.
EwsContext ewsNetHTTPStart (EwaNetHandle handle);

This function returns a new context handle which the application is expected to use
when referencing this HTTP request for future operations. The value
EWS_CONTEXT_NuLL is returned on failure (e.g. no resources available to handle the
new request). The handle parameter is application-defined and is retumed to the
application unchanged by the EmWeb/Server in other network interface calls as
illustrated below. The handle is also made available to <eMweB_sTrRinG> and
<eMweB_INCLUDE> C code fragments and ewaFormserve_» and ewaFormsubmit *
application functions by invoking the following function: B

EwaNetHandle ewsContextNetHandle {(EwsContext context);

At any time, the application can abort an uncompleted HTTP request by invoking the
following function:

EwsStatus ewsNetHTTPAbort { EwsContext context);

This function is typically invoked by the application to notify EmWeb/Server that the
corresponding TCP/IP connection has been disconnected. The function retums
EWs_STATUS_OK on success. Otherwise, an error code-is retumed. (There are

Copyright © 1997 Agranat Systems, Inc. Page 33 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-62 -

bTM Functional Specification Confidential EmWeb/Server

EmWe

currently no conditions that cause an error to be returned).

As data buffer(s) are received from the network on a TCP connection corresponding
to an HTTP request, the application passes these buffers to the EmWeb/Server by
invoking the following function.

EwsStatus ewsNetHTTPReceive (EwsContext context, EwaNetBuffer buffer);

This function retums Ews_sTATus_ox On success. Otherwise, an error code is
retumed. (There are currently no conditions that cause an error to be retumed). The
bufter parameter describes a chain of one or more buffers containing raw TCP data.
The structure of the buffers is determined by the application, and the application
provides EmWeb/Server with functions to manipulate these buffers as defined
previously. Note that EmWeb/Server takes responsibility for releasing received
buffers when they are no longer needed, and may hold on to buffers containing
certain HTTP request headers for the duration of the request.

When EmWeb/Server has assembled one or more buffers for transmission, it
invokes the following function (or macro) which must be provided by the application:

EwaStatus ewaNetHTTPSend (EwaNetHandle handle, EwaNetBuffer buffer)i

This function transmits (and then releases) a chain of one or more network buffers
and retums EWA_STATUS_OK OfF EWA_STATUS_OK_YIELD ON Success, Or
EWA_STATUS_ERROR on failure. If the application returns ewa_sTaTUs_ox, EmWeb/
Server will continue processing outstanding requests in a round-robin fashion. If the
application returns ewa_sTaTus_ERROR, EmWeb/Server will abort the current request
(asif ewsNetHTTPAbOrt () Was called) and continue processing any other outstanding
requests. The application returns Ewa_sTATUs_ox_YIELD 10 request that EmWeb/
Server give up the CPU. In most cases, ewaNetiTTPsend () is called for each buffer's
worth of HTTP response data generated by the EmWeb/Server. Thus, the CPU used
by the server can be throttled by adjusting the buffer size available to the server and
using the ewa_sTATUs_ok_YIELD retum code. (See 4.1.1.2. Scheduling, page 29).
Note that use of this return code requires that the application eventually either
reschedule processing of the request by invoking ewsrun, or abort the request by
invoking ewsNetHTTPAbozt.

The application may signal the EmWeb/Server with flow control events to indicate
congestion on an outbound TCP connection. If a TCP connection's transmit window
is full, the application may call the following function at any time:

EwsStatus ewsNetFlowControl (EwsContext context);

This will cause the EmWeb/Server to temporarily suspend processing of the request.
When the TCP connection’s window opens again, the application may invoke the
following function at any time to notify EmWeb/Server that processing of the request
may continue:

Copyright© 1997 Agranat Systems, Inc. Page 34 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-63 - .
Emweb M Functional Specification Confidential EmWeb/Server

EwsStatus ewsNetUnFlowControl (EwsContext context):

If ewsNetFlowcControl() is called from the ewaNetHTTPsend() function, then the
application is responsible for transmitting the current buffer. However,
evaNetHTTPSend () Will not be called again untii the application has called
ewsNetUnFlowcontzol(). Note that if ewsNetFlowcontrol () is invoked from outside
ewaNetHTTPSend (), then EmWeb/Server may call ewaNetuTTPsend() once before
suspending the request. In any case, the application should be prepared to receive
notification of request completion as described below.

When the EmWeb/Server has completed processing an HTTP request, or if the
application aborts an outstanding HTTP request by invoking ewsNe tHTTPAbort (), it
invokes the following function which must be provided by the application:

EwaStatus ewaNetHTTPEnd (EwaNetHandle handle);

This function should close the TCP connection corresponding to the request and
retum EWA_STATUS_OK Of EWA_STATUS_OK_YIELD ON SUCCESS Of EWA_STATUS_ERROR ON
failure. Note that retuming EwA_sTATUS_OK_YIELD causes EmWeb/Server to give up
the CPU. Otherwise, EmWeb/Server may continue processing other HTTP requests

in progress.

If persistent connections are used, it is possible that several HTTP requests will be
handled over a single TCP/IP connection. For some applications, it is necessary to
reset ‘application-specific state information and to release application-specific
dynamic resources after each HTTP request. The following function may be

provided by the application for this purpose:

void ewaNetHTTPCleanup (EwaNetHandle handle);

This function must be provided by the application or defined as a empty macro. ltis
invoked by EmWeb/Server when a request completes, aliowing the application to
reset any processing state stored in the network handle. Note that for persistent
connections, this routine may be called several times for the same connection, as
one connection can be used for multiple requests. This routine will be called before

_ewaNetHTTPEnd () is invoked.

The EmWeb/Server must have access to an application-provided nuli-terminated
character string representing the HTTP network location (e.g.
"www.agranat.com:80". Note that the host name (left of the ") may be a dotted
decimal |P address. Also note that the ":<port-number>' may be omitted if the
standard HTTP TCP port #80 is used. This string is returned by the following

application-provided function (or macro).

const char * ewaNetLocalHostName (EwsContext context);

Copyright © 1997 Agranat Systems, Inc. Page 35 REV. 6/20/37

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-64 -
EmWeb "M Functional Specification Confidential EmWeb/Server

4.1.3. Document and Archive Management

The EmWeb/Compiler generates an archive of one or more documents. Documents
can be HTML files, JAVA programs, graphical images, or any other information
resource addressable by a URL. Archives may be independently loaded or unloaded
into the EmWeb/Server.

In most applications, the entire set of available documents are compiled into a single
archive and loaded at boot time. However, some applications may desire to
dynamically load archives at run-time as needed in order to reduce memory
requirements. In fact, applications may implement a scheme similar to virtual memory
page swapping under some operating systems to cache an active set of documents in
memory while storing other documents in a secondary storage area. Such a
secondary storage area could be in FLASH memory, disk, or on a remote server usmg
TFTP or other protocols to load documents at run-time.

An EmWeb archive consists of two components. First, there is the archive data
component containing the database of compressed documents, information about
how to construct dynamic documents at run-time, access controls, etc. Second, there
is the archive object component containing the run-time object code used for the
construction of dynamic documents, etc.

Operating systems supporting the run-time loading and linking of object code may off-
load both the data and object archive components to a secondary storage area.
Otherwise, only the data components are off-loaded while the object components are
statically linked into the run-time executable image.

Each archive contains an archive descriptor in the object component. The archive
descriptor is referenced by a public symbol generated by the EmWeb/Compiler.

4.1.3.1. Installing and Removing Archives

In order to activate an archive at run-time, the application must invoke
ewsDocumentInstallArchive With parameters indicating the address of the data
component and the archive descriptor of the object component.

EwsStatus ewsDocumentInstallArchive
(EwsArchive descriptor, const uint8 +datap);

This function may return one of the following status codes:

EWS_STATUS_OK The archive was installed successfully

EWS_STATUS_BAD_MAGIC The data or object portion of the arxchive is
invalid or corrupt. This may happen if the
EmWeb/Serxver is configured for a big-endian
archive when the EmWeb/Compiler generated a
little-endian axchive, or vice versa.

EWS_STATUS_BAD_VERSION The archive generated by the EmWeb/Compiler
is not understood by the EmWeb/Server.
EWS_STATUS_ALREADY_EXISTS The archive has already been installed.
Copyright © 1997 Agranat Systems, Inc. Page 36 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

PCT/US97/13817

WO 98/06033
T™ e o ‘65'.
EmWeb' ™ Functional Specification Confidential EmWeb/Server
EWS_STATUS_IN_USE The archive contains a document with a URL

that has been previously loaded from a
different archive.

EWS_STATUS_NO_RESOURCES Insufficient dynamic memory is available to
install the archive.

The archive may be deactivated by invoking ewsbocumentRemovearchive.

EwsStatus ewsDocumentRemoveArchive (EwsAxchive descriptor);

These functions return ews_sTATUS_ox on success. Otherwise, Ew_STATUS_IN_USE is
retumed indicating that the archive contains documents that are either being
processed by outstanding HTTP requests or that have been cloned to other URLs.

The fixed data component of an archive contains the name of the archive and the
date it was created by the EmWeb/Compiler. These values may be retrieved as

{ollows:

const char * ewsDocumentArchiveName (const uints ~datap }:
const char * ewsDocumentArchiveDate (const uint8 *datap);
const .char * ewsDocumentArchiveDatel036 (const uint8 =datap);

4.1.3.2. Demand Loading

in order to impiement on-demand archive loading, the application may register
document URLs with the EmWeb/Server which are valid but not loaded. This is done
by invoking the following function:

EwsDocument
ewsDocumentRegister (const char *url, EwaDocumentHandle handle);

This function returns an EmWeb/Server document descriptor of type EwsDocument,
Or Ews_DOCUMENT_NULL On error. The handle is an application-defined value passed
back unchanged to the application in ewabDocumencrault as shown below.

If a registered document is requested by a Web browser, then EmWeb/Server
notifies the application by invoking the following application-provided function:

EwaStatus
ewaDocumentFault (EwsContext context, EwaDocumentHandle handle);

At this point, the application may load a new archive (possibly removing a previously
installed archive to make room). When the archive containing the page is installed,
the EmWeb/Server automatically completes processing the request when the
archive is loaded. The request can be aborted either immediately by retumning
EWA_STATUS_ERROR from the ewaDocumentraulr function, or by invoking

ewsNetHTTPAbort.

Once a document is registered, there is no need to re-register it in the event that the

Copyright © 1997 Agranat Systems, Inc. Page 37 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-66 -
EmWebTM Functional Specification Confidential EmWeb/Server

corresponding archive is removed. EmWeb/Server remembers that the document
has been registered as dynamically loadable. However, the application may de-
register a document by invoking the following function:

EwsStatus ewsDocumentDeregister (EwsDocument document);

This function returns ews_sTaTus_ok on success. Otherwise, Ews_STATUS_IN_USE is
retumed indicating that the document was cloned or not registered.

4.1.3.3. Cloning

Documents may be cloned and assigned to a new URL. This allows multiple
instances of a document to exist while minimizing the storage requirements. An
application-specific handle can be used to identify an instance of a document from
the request context.

The application clones a document by invoking the following function:

EwsDocumentewsDocumentClone
(const char *baseurl, const char *newurl, EwaDocumentHandle handle);

This function returns a document descriptor for the clone, or Ews_DOCUMENT_NULL ON
error.

The cloned document may be removed by invoking the following function:
BEwsStatus ewsDocumentRemove (EwsDocument document) ;

This function returns one of the following status codes:

EWS_STATUS_OK The document was successfully removed
EWS_STATUS_NOT_CLONED The document is not a clone.
EWS_STATUS_IN USE The document is itself cloned. The clone of

the clone must be removed first.

All clones created from documents in an archive must be removed before the archive
can be removed.

Note that the application's document handle is made available to the application in
the HTTP request context by invoking the tollowing function:

EwaDocumentHandle ewsContextDocumentHandle (EwsContext context);

If the document corresponding to the context was not cloned or registered by the
application, then this function returns ewa_DOCUMENT_HANDLE_NULL.

4.1.3.4. URL Rewriting
In some applications, it may be desirable to translate between URLs advertised to
the outside world and URLSs configured in the archive. The optional URL hook feature

Copyright © 1997 Agranat Systems, Inc. Page 38 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-67-
EmWebTM Functional Specification Confidential EmWeb/Server

provides the application with an opportunity to rewrite a requested URL before
EmWeb/Server looks up the URL in its archive database. The following function (or
macro) may.be provided by the application for this purpose:

char * ewaURLHook (EwsContext context, char * url);

This function passes the requested URL and request context to the application. The
application may simply return url if no rewriting is desired, or it may retumn an
absolute local URL to substitute. The retumed URL is looked up in the archive and
served as if requested directly. If the application returns NuLL, the request is aborted.

This functionality is intended to allow the application to select a subdirectory of
documents based upon requested language, content encodings, and other
information available from the request context.

Note that this function may rewrite and return any portion of the url string parameter
(provided that the string's length is not increased), or return a completely different
string buffer instead. If a different buffer is used, the server copies the value

immediately.

4.1.3.5. Document Data Access

In some applications, it may be desirable to access the content of a file pointed to by
a URL directly (e.g. data files used by CGl scripts, etc.). The following function is
optionally provided by the EmWeb/Server to the application for this purpose:

EwsStatus ewsDocumentData
(const char * url, uint32 *bytesp, const uints +**datapp);

This function looks up the requested URL and, if found, updates <bytesp and
=datapp With the length and pointer to the start of raw data in the file. (Note that the
data is compressed if compression is enabled). Since EmWeb employs a proprietary
compression technique, the application should specifically disable compression of
files it wishes to access this way by using the nocompress attribute in the appropriate
_access file (see 3.4. _ACCESS Files, page 22). This function retums Ews STATUS OK
On sUCCess, OF EWs_STATUS_NOT_FOUND on failure. - -

4.1.4. Authentication and Security
HTTP Authorization techniques are discussed in the HTTP specifications (see 7.
References, page 87). Knowledge of these principles is essential for correct use of

these authorization interfaces.

One or more HTML documents can be associated with a single "realm". A realm is a
case-sensitive ASCII string that defines a "protection space" for the associated

document(s).

Each realm may have zero or more authentication entries associated with it. If a realm
has no authentication entries, then documents in that realm are not accessible.

Copyright © 1997 Agranat Systems, Inc. Page 39 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

inay.be

WO 98/06033 PCT/US97/13817

-68 -
EmWebTM Functional Specification Confidential . EmWeb/Server

A client that attempts to access a document associated with a non-null realm is
required to authenticate itself. To authenticate, the client must send authentication
parameters valid for at least one authentication entry for that document's reaim.
Clients that do not authenticate are denied access to the requested document.

For example, assume a realm exists called "foo". It has three authentication entries
associated with it (two using the "basic cookie" scheme defined in the HTTP/1.0
specification, and one using the "digest" scheme defined in the HTTP/1.1
specification): ‘

REALM: “foo*
Authentication Entry 1:
Type: “basic"
parameters: Username="userl"
Password="guest"
EwaAuthHandle: <application's entryl identifier>

Authentication Entry 2:
Type: “digest" i
parameters: Username=*"user2"
Password="837I8U9"
‘DigestRequired=FALSE
EwaAuthHandle: <application's entry2 identifier>

Authentication Entry 3:
Type: “basic"
parameters: Username=“sinclair®
Password="babylon”
EwaAuthHandle: <application's entry3 identifier>

When a client attempts to access a document associated with realm "foo", it needs to
authenticate against one of the above entries. Which one the client authenticates

against is at its discretion.

When a client does authenticate against one of the above entries, the gwaauthHandle
for that entry is stored in the current context for the HTTP request (Ewscontext). The
datatype of this EwaauthHandle is implementation-defined.

The following types are defined for the authorization application interface (from sxc/
include/ews_auth.h):

/'
*» Defines the authorization schemes supported by the EmWeb server.
* New schemes will be added as they are supported.
*/
typedef enum
{
ewsAuthSchemeBasic,
ewsAuthSchemeDigest,
ewsAuthSchemeManualBasic,
ewsAuthSchemeManualDigest,

Copyright © 1997 Agranat Systems, Inc. Page 40 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

‘ - 09 -
EmWebTM Functional Specification Confidential EmWeb/Server
ewsAuthMaxScheme /* count of supported schemes */

} EwsAuthScheme;

/*
*» this structure defines parameters for all the supported
* authorization types. New parameters will be added in
* to this structure in the future
*/
typedef union
{
#ifdef EW_CONFIG_OPTION_AUTH_ BASIC
struct
{
char +*usexName;
char +*passWord:
} basic;
#endif /* EW_CONFIG_OPTION_AUTH_BASIC */
#ifdef EW_CONFIG_OPTION_AUTH_DIGEST
struct
{
char *userName;
char *passWoxd;

ifdef EW_CONFIG_OPTION_AUTH_DIGEST M
boolean digestRequired:; /* require message data verification */
endif /» EW_CONFIG_OPTION_AUTH_DIGEST;M -/
} digest;
#endif /+ EW_CONFIG_OPTI ON_AUTH__DIGES'I‘ v/
char reservedl;
} EwsAuthParameters;

/'
* This structure represents a single authorization entry.
*/
typedef struct
{
EwsAuthScheme scheme;
EwsAuthParameters params;
EwaAuthHandle handle; /* usexr defined =*/

} EwsAuthorization;
An authorization entry may be created by invoking the following function:

EwsAuthHandle ewsAuthRegister
_ (const char *realm, const EwsAuthorization *authorization);

This function returns an EmWeb/Server authorization handle which corresponds to the

~authorization entry, or Ews_AUTH_HANDLE_NULL on failure. The entry contains the triplet
(authorization scheme (e.g. basic cookie), scheme-specific parameters (e.g. user and
password), application-specific authorization handle).

The application-specific authorization handle corresponding to the authentication
validating a particular HTTP request is available from the context as follows:

Copyright © 1997 Agranat Systems, Inc. Page 41 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-70 -
EmWebTM Functional Specification Confidential . EmWeb/Server

EwaAuthHandle ewsContextAuthHandle (EwsContext context);

The application may remove a previously registered authorization handle by invoking
the following function:

EwsStatus ewsAuthRemove (EwsAuthHandle authorization);

This function retums ews_sTATus_ok on success. Otherwise, an error code is returned
(there are presently no conditions that result in error).

By default, documents assigned to a non-null realm are protected and may only be
accessed by authorized users. It may be desirable to enable or disable a realm's
access controls. The following function disables access control for a realm making
documents assigned to the realm accessible to everyone.

EwsStatus ewsAuthRealmDisable (const char * realm).

This function retums Ews_STATUS_OK ON SUCCesS, Of Ews_STATUS_BAD_REALM if the reaim
was not defined by any loaded archives.

The following function enables access control for a realm making documents assigned
to the realm protected. Protected documents may only be accessed by authorized
users.

EwsStatus ewsAuthRealmEnable (const char * realm);

This function retums Ews_STATUS_OK ON SUCCESS, Of EWS_STATUS_BAD_REALM if the realm
was not defined by any loaded archives.

The following function (or macro) must be provided by the application. The function is
invoked by EmWeb/Server to get a realm qualifier string from the application. The
qualifier string is concatenated with the base realm name in authentication protocol
messages such that browsers may differentiate between realms of the same name
appearing in multiple servers.

const char *ewaAuthRealmQualifier (void);

The application would typically retum the string “@hostname”, where hostname is the
server's local host name or |P address. The application may retum nuLL if no qualifier
is desired.

4.1.4.1. Basic Authentication

The Basic authentication scheme requires the browser client to transmit a Base64
encoded username and password to the server for authentication. While no less
secure than SNMP v1, Basic authentication is vulnerable to network monitoring and
replay attacks.

The authentication parameters for Basic authentication are simply the usemame and

Copyright © 1997 Agranat Systems, Inc. Page 42 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

‘ -71-
EmWebTM Functiona!l Specification Confidential EmWeb/Server

password represented as nuli-terminated character strings.

4.1.4.2. Manual Basic Authentication

For some applications, it may be impossible to obtain the Basic authentication
usermame/password pair prior to receiving requests for a document. Instead, the
Basic authentication username/password may be stored in a remote secure
database. This database would need to be queried for the username/password as
each request requiring authentication is processed.

in order to support this, a special type of authentication scheme is defined:
ewsAuthSchemeManualBasic. This scheme s available only if the build option
EW_CONFIG_OPTION_AUTH_MBAsIC is defined. Once defined, the application must
provide the following intertace:

boolean ewaAuthCheckBasic (EwsContext context
,const char *realm
,const char +*basicCookie
,const char *userName
,const char *password);

The ewsauthschemeManualBasic scheme can be registered for any realm by using
the ewsAuthRegistex function. The scheme field of the Ewsauthorization parameter
must be setto ewsauthschemeManualBasic, and the application handle can be setin
the handie field. The params field is not used by the manual basic scheme. Manual
basic can only be registered once per realm. If there are “non-manual”
(ewsauthschemeBasic) Basic authorization entries registered to the same realm as a
manual Basic entry, the “non-manual” authorization entries will be given preference.
If no “non-manual” authorization entries match the request, then ewaauthchecksasic
will be called.

The EmWeb/Server will invoke the application's ewaauthcheckBasic function when
authenticating a request for a realm protected by the manual basic scheme, unless
a "non-manual" basic authorization entry matched. The application's
evahuthCheckBasic function must now determine whether or not the authorization is
valid. This function is passed the context, requested document's realm, and the
base64-encoded basic cookie from the Authorization header (as specified in RFC
2068). If the build option EwW_CONFIG_OPTION_AUTH_MBASIC_DECODE is defined, then
userName and passwoxd Will point to the usemame/password strings decoded from
the basiccookie, Otherwise these pointers are nuLL. All strings are null terminated,
and should not be modified by the application.

The return value from ewaAuthchecksasic determines how the server will respond to
the request. If FaLsE is retumed, access will be denied. If Trur is retumed, access

will be granted .

Optionally, the application can suspend the context tfrom within ewaAuthcheckBasic
using ewssuspend. EmWeb/Server will ignore the return value in this case. When the

Copyright © 1997 Agranat Systems, Inc. Page 43 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-72-
EmWeb '™ Functional Specification Confidential EmWeb/Server

context is later resumed by ewsResume, the ewaAuthcheckBasic function will be
reinvoked by EmWeb/Server.

The application may abort the context from within ewaauthcheckBasic by calling
ewsNetHTTPAbort.

4.1.4.3. Digest Authentication

The Digest authentication scheme challenges the browser client using a "nonce"
value. The client responds with a valid cryptographic checksum of the usermame,
secret password, the given nonce value, the HTTP request method, and the
requested URI. This avoids sending the secret password over the network.
Furthermore, by generating unique nonce values, the server can make replay and
other forms of attack impractical.

Note: EmWeb's digest authentication support is derived from
the RSA Data Security, inc. MD5 Message-Digest Algorithm.

Note: Digest authentication is currently an interet proposed
standard and is not yet supported by many browsers.

The authentication parameters for Digest authentication include the usemame and
password represented as null-terminated character strings. In addition, one
additional boolean parameter is defined as follows:

digestRequired
If TrRue, the EmWeb/Server will require that the client provide a valid
message digest to prevent forgery of the request message. This requires
significantly more computation and is not supported by most browsers.

The application is required to define the application-specific structure called
EvaAuthNonce. The EwaaAuthNonce Structure is application-specific and contains
parameters to be used in calculating (via MDS hash of the structure's contents) a
unique nonce value. We recommend including the client's IP address, timestamp, a
server-wide secret key, and any other random bits the application desires.

Two additional functions must be provided by the application for the generation and
verification of nonce values as follows:

First, the ewaauthNoncecreate () function is called by EmWeb/Server in response to
an unauthenticated request for a document to request that the application initialize
the EwaauthNonce structure.

void

ewaAuthNonceCreate
(EwsContext context
,const char *realm
,EwaAuthNonce *noncep);

Copyright © 1997 Agranat Systems, Inc. Page 44 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-73-
EmWebTM Functional Specification Confidential EmWeb/Server

The application should initialize the EwaAuthNonce structure. The request context
and realm are provided as inputs. For example, a typical application could read the
application-specific network handie from the request context to determine the client's
IP address.

Second, the ewaauthNoncecheck () function is called by EmWeb/Server in response
to a client's request to authenticate against a nonce value previously initialized by
the application in ewaAuthNonceCreate ().

typedef enum EwaAuthNonceStatus_e

{
ewaAuthNonceOK, /* nonce value valid for request +/

ewaAuthNoncelastOK, /* nonce value valid, but won't be again '/'
ewvaAuthNonceStale, /* nonce value is stale, generate new nonce */
ewaAuthNonceDenied /* nonce value is invalid +/

} EwaAuthNonceStatus;

EwaAuthNonceStatus
ewaAuthNonceCheck
(EwsContext context
,const char * realm
EwaAuthNonce 'noncgp,uintf count),

This function is called by EmWeb/Server to verify that the nonce is valid for the
current request. The count parameter indicates the number of times this nonce has
been used previously (i.e. zero on the first call). The application may decide to
accept the nonce by returning ewaiuthNonceOK OF ewaAuthNoncelastOK. The
ewaAuthNoncelastoX is used to signal to the server that the nonce value is valid this
time, but will not be valid if used again. The server uses this information to generate
a new nonce and pass a next nonce value to the browser to be used on the next
request. Otherwise, the application may decide to expire the nonce (because it has
been used too many times, because too much time has gone by since it was created,
or any other reason that the application decides) by returning evaAuthNoncestale, OF
refuse to authenticate (because the client IP address doesn't match) by retumning
ewaAuthNonceDenied.

4.1.4.4. Manual Digest Authentication

For some applications, it may be impossible to obtain the digest authentication
username/password pairs prior to receiving requests for a document. Instead, the
digest authentication username/password may be stored on a remote server. This
server would need to be queried for the username/password as each request
requiring authentication is processed.

In order to support this, a special type of authentication scheme is defined:
evsAuthschemeManualDigest. This scheme is available only if the build option
EW_CONFIG_OPTION_AUTH_MDIGEST is defined. Once defined, the application must
provide the following interface:

Copyright © 1997 Agranat Systems, inc. Page 45 REV. 8/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-74 -
EmWebTM Functional Specitication Confidential EmWeb/Server

boolean ewaAuthCheckDigest(EwsContext context
,const char *realm
,const EwaAuthNonce =*noncep
,const char *userName
,const char *+*digest);

The ewsauthschemeManualDigest Scheme can be registered for any realm by using
the ewsauthregistex function, The scheme field of the Ewsauthorization parameter
must be set to ewsauthschemeManualDigest, and the application handle can be set in
the handle field. The params.digest.digestRequired flag may be used if the
EW_CONFIG_OPTION AUTH_DIGEST M build option is defined. All other parameters are
not used by the manual digest scheme. Manual digest can be registered once per
reaim. If there are “non-manual” (ewsauthschemeDigest) digest authorization entries
registered to the same realm as a manual digest entry, the “non-manual”
authorization entries will be given preference. If no “non-manual” authorization
entries match the request, then ewaauthcheckbigest Will be called.

The EmWeb/Server will invoke the application's ewaauthcheckbigest function when
authenticating a request for a realm protected by the manual digest scheme, unless
a ‘"non-manual" digest authorization entry matched. The application's
ewaAuthCheckDigest function must now determine whether or not the authorization
is valid. This function is passed the context, the requested document's realm, the
nonce associated with this request, and the usemame as it appears in the request.
All strings are null terminated, and should not be modified by the application.

ewaAuthCheckDigest retums a boolean status that determines how the server will
respond to the request. |f FaLsE is returned, access will be denied. If Truz is returmned,
the +digest parameter has been set to a null terminated string containing the ASCI|
string representation of the MDS checksum of the usemame, realm, and password
strings. This is referred to the H(A1) value in RFC 2069. For example, if the
username is “user”, password is “password”, realm is “foo_realm”, then +digest
should be set to the string representation of MDS(user:foo_realm:password), which
would be:

*digest = "eafd9339d0114895926c24ec79af7211"

The «digest value is used by the server to validate the response digest and entity-
digest that are present in the request's Authorization header. If the validation does
not pass, access will be denied. The memory used by the «digest value will remain
referenced by the server until the context of the request is freed.

Optionally, the application can suspend the context from within ewaAuthcheckpigest
using ewssuspend. The return value will be ignored. When the context is later
resumed with ewsResume, the ewaauthcheckpigest function will be reinvoked.

The application may abort the context from within ewaauthcheckpigest by calling
ewsNetHTTPADbOIC.

Copyright © 1997 Agranat Systems, Inc. Page 46 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-75 -
EmWebTM Functiona! Specification Conlfidential EmWeb/Server

4.1.4.5. Application Security Verification

Some applications may provide their own proprietary form of client authentication.
These proprietary methods will vary from application to application. For example, an
application could use the client's IP address to restrict the dient's access to certain
realms.

EmWeb provides a generic interface that allows an application 1o provide any
proprietary checks on the request context and requested realm. This interface
aliows the application to deny service to the client if so desired.

This interface is made available by defining the Ew_coNFIc_oPTION_AUTE _VERIFY
build option. The application must then provide the followmg interface:

boolean ewaAuthVerifySecurity(EwsContext context
,const char *realm);

This function is called by EmWeb/Server after the current request has passed the
standard authorization procedures described above. For example, if basic
authentication is enabled on arealm, ewaauthverifysecurity will be called only after
the basic authentication successfully completes. If digest authentication is used,
then ewaauthverifysecurity is called alter the response digest is successfully
verified, but before the entity-digest is checked (if the
EW_CONFIG_OPTION_AUTH_DIGEST_M build option is tumed on).

evahuthVerifysecurity is passed the current context, and a pointer to a null
terminated string containing the realm. The application can allow the request to
complete by retuming TRUE from ewaAuthverifySecurity. If ewaAuthverifysecurity
retums raLsE, the request is denied access.

evaAuthVerifysecurity is provided only as a secondary security mechanism, and
can only be used in conjunction with a defined standard security scheme, such as

basic or digest.

Optionally, the application can suspend the context from within
ewaAuthVerifySecurity USINg ewssuspend. The return value will be ignored. When
the context is later resumed, the evaauthverifysecurity function will be reinvoked.

The application may abort the context from within ewaauthverifysecurity by calling
ewsNetHTTPAbor.

4.1.4.6. Document Realm Assignment

The authentication realm of a document is typically determined from the _access
configuration files by the EmWeb/Compiler. However, it may be desirable to change
the document’s realm assignment at run-time. The following function is optionally
provided by the EmWeb/Server to the application for this purpose:

EwsStatus ewsDocumentSetRealm (const char *url, const char *realm);

Copyright © 1997 Agranat Systems, Inc. Page 47 REV. 6/20/87

SUBSTITUTE SHEET (RULE 26)

WO 98/06033

EmWeb '™ Functional Specification

PCT/US97/13817

-76 -

Confidential EmWeb/Server

This function retums’ Ews_STATUS_OK ON SUCCESS, OF EWS_STATUS_NOT_Found if the
specified local URL is not installed, or ews_sTaTus_No_REsources if insufficient
resources were available to create a new realm.

4.1.5. Request Context Access

Each HTTP request received by the EmWeb/Server is assigned a unique context. A
context handle of type Ewscontext is first returned to the application from the
ewsNetHTTPStart function.

Application code responsible for the run-time content of HTML documents (i.e. C code
fragments from <emweB_sTRING> and <emweB_INcLUDE>, HTML form processing
functions ewaFormserve_* and ewaFormsubmit_+, and raw CGI interface functions
evacGIStart_+ and ewacGIpata_*) have access to the corresponding HTTP request
context. In the case of <eMwEB_STRING> and <eMwEB_INCLUDE> C code fragments, the
context is available from the local variable symbol evscontext. In the case of the form
and raw CGl processing functions, the context is passed as a parameter.

Several context access functions are defined which can be called by the application to
extract information about the current context. For example, the function:

EwaNetHandle ewsContextNetHandle (EwsContext context)

Retums the network handle corresponding to the HTTP context that was passed by
the application to the EmWeb/Server in the ewsNnethTTPstart function. The following
table lists these context access functions:

Context Access Function Description

S —

I—
ewsContextNetHandle

ewsContextNetHandle (EwsContext context);

Retums the network handle that
was passed by the application to
EmWeb/Server in the ewstetHTTP-
start function.

EwaDocumentHandle
ewsContextDocumentHandle
(EwsContext context):

Retumns the document handle that
was passed by the application to
EmWeb/Server in either the ews-
DocumentRegister Of ewsDocument-
clone tunctions, or

EWA_DOCUMENT HANDLE_NULL.

EwaAuthHandle
ewsContextAuthHandle
(EwsContext context);

‘| that was passed by the application

Retumns the authorization handle

to EmWeb/Server in the ewsau-
thregister function, or
EWA_AUTH_HANDLE_NULL.

Copyright © 1997 Agranat Systems, Inc. Page 48

REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

PCT/US97/13817

WO 98/06033
™ - 77 -
EmWeb' ™ Functional Specitication Confidental EmWeb/Server
Context Access Function Description
boolean Retums TRuE if this is the first appli-
ewsContextIsResuming cation call-out after a suspended
(EwsContext context); request was resumed by calling
ewsResume. Otherwise, retums
FALSE.
uint32 Retumns the iteration count (start-
ewsContextItexations ing with zero) to an
(EwsContext context); <EMWEB STRING> O
<EMWEB_INcLUDE> C code fragment
with the EMWEB_ITERATE aftribute
specified.
uintf Copies the HTTP pate: header
ewsContextDate (EwsContext context, into the buffer provided by the
char “datap, uintf length); application and returns the actual
number of bytes present.
uintf . Copies the HTTP pragma: header
ewsContextPragma (EwsContext context, into the butfer provided by the
char =datap, uintf length); application and returns the actual
number of bytes present.
uintf Copies the HTTP From: header
ewsContextFrom (EwsContext context, into the buffer provided by the
char *datap, uintf length)i application and retumns the actual
number of bytes present.
uintf o Copies the HTTP 1f-modified-
ewsContextIfModifiedSince since: header into the buffer pro-
(EwsContext context, char *datap, uintf vided by the application and
th);
lengeh) . returns the actual number of bytes
present.
uintf Copies the HTTP referez: header
ewsContextReferer (EwsContext context, into the buffer provided by the
char *datap, uintf length J; application and retums the actual
number of bytes present.
uintf . Copies the HTTP user-agent:
ewsContextUserAgent (EwsContext context, value into the buffer provided by
char =datap, uintf length); _ the application and retums the
actual number of bytes present.
Copyright © 1897 Agranat Systems, Inc. Page 49 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817
-78 -
EmWebTM Functional Specification Confidential EmWeb/Server
Context Access Function Description

—

uintf
ewsContextHost (EwsContext context, char

“.T-—

Copie—s the HTTP Host: value into
the buffer provided by the applica-

ewsCGIServerProtocol (EwsContext context,
char *datap, uintf length);

*datap, uintf length); tion and retums the actual number
of bytes present.
uintf Copies the HTTP server protocol

"BTTP/1.0" OF "HTTP/0.9" into the
buffer provided by the application
and returns the actual number of
bytes present.

uincf
ewsCGIRequestMethod(EwsContext context,
char *datap, uintf length);

Copies the HTTP request method
"GET", "HEAD", Or "posT" into the
buffer provided by the application
and returns the actual number of
bytes present.

const char *«
ewsCGIPathInfo(EwsContext context);

Retumns pointer to CGl extra path
information if present, or NULL.

const char *
ewsCGIScriptName(EwsContext context);

Retumns pointer to URL base path
string.

uintf
ewsCGIQueryString(EwsContext context, char

Copies the URL query string into
the buffer provided by the applica-

ewsCGIContentType(EwsContext context, char

sdatap, uintf length): tion and retums the actual number
of bytes present.
uintf Copies the HTTP content- type:

value into the buffer provided by

ewsCGIContentlength(EwsContext context);

*datap, uintf length); the application and retums the
actual number of bytes present.
uintf Retumns the value of the HTTP

Content-length: header or zero if
not present.

uincf
ewsCGIContentEncoding(EwsContext context,
chay *datap, uintf length);

Copies the HTTP content-encod-
ing: value into the buffer provided
by the application and returns the
actual number of bytes present.

Note that the context access functions that copy values into application-provided
strings return the actual number of bytes in the value. If the value is not present, then
these functions return zero. These functions do not overwrite the application buffer
(i.e. the 1engch parameter shall be honored by EmWeb/Server). However, the function

Copyright © 1997 Agranat Systems, Inc. Page 50

REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-79 -
EmWeb.rM Functional Specification Confidential EmWeb/Server

may return a number greater than the 1ength if the application buffer was not large
enough to accommodate the value. In fact, the 1ength parameter of zero may be used
to determine the size of the buffer needed.

4.1.6. Raw CGI

We believe that one of the greatest features of EmWeb/Server is that the system
integrator can implement nearly any embedded Web-based application without using
CGl.

While Agranat Systems strongly discourages its use, we recognize that some highly
sophisticated applications may require a raw CGl interface, and sc we provide one.

A URL corresponding to the base name of a CGl script may be specified inthe _access
file which is processed by the EmWeb/Compiler. The application must provide two
functions for each CGl script with names derived from the value of the cgi=symbol
directive in the _access file as follows:

EwaCGIHandle ewaCGIStart_symbcl (EwsContext context);

This function is called by EmWeb/Server when a CGI script is first requested by a Web
server. The application retums a handle that is passed back to the application in the
second function:

void ewaCGIData_symbcl (EwaCGIHandle handle, EwaNetBuffer buffer);

This second function is called by EmWeb/Server to pass one or more buffers to the
application containing raw CGI data (i.e. the HTTP message body) as they are
received from the network. The application is responsible for knowing where the end
of data is from the content-length: header (available from ewscGIcontentLength).

Restriction: The application’s ewacGiDate_symbol function
must not attempt to access request header information from
the request context because the network buffer(s) containing
request headers may have been discarded. Any information
needed by the application should be copied and saved during
ewaCGIStart_symbol.

The application may generate a standardized HTTP response header by invoking the
following function:

EwsStatus ewsCGISendStatus
{ EwsContext context, const char * status, const char wstring);

This function sends an HTTP status line for the appropriate HTTP version. The status
argument must contain a null-terminated character string containing a three-digit
HTTP status code followed optionally by descriptive status text. If not NULL, the string
argument contains a null-terminated character string containing additional headers,
and/or data. This function retums ews_sTaTus_ox on success. Otherwise, an error

Copyright © 1997 Agranat Systems, iInc. Page 51 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-80 -
ErnWebTM Functional Specification Confidential EmWeb/Server

code (EWS_STATUS_BAD_STATE Of EWS_STATUS_NO_RESOURCEs) is retumed. Note that if
ewsCGISendstatus iS t0 be used, it must be used only once per request, and must be
used before calling ewscGIpata.

For example, to send a simple HTML page:"

ewsCGISendStatus (context, "200 OK",
“Content-Type: text/html\r\n"
“Content-Length: 66\r\n*
“ \I\n“
“<HEAD><TITLE>Example</TITLE> </HEAD>"
“<BODY>This is an example</BODY>");

The application may send additional headers followed by a message body by invoking
the following function:

EwsStatus ewsCGIData (EwsContext context, EwaNetBuffer buffer);

This function sends the chain of buffers to the Web browser. Note that the application
must delimit the header and body sections with a blank line sequence in accordance
with the HTTP specification. To complete the request, the application should invoke
this function with an ewa_NET BUFFER_NULL buffer descriptor. This causes EmWeb/
Server to close the connection. This function returns Ews_sTATUS_ox oOn success.
Otherwise, an error code (Ews_STATUS_BAD_STATE) is returned.

Instead of sending headers and data, the application may instruct EmWeb/Server to
generate a redirect to a specified URL or, if local, serve a local document as a
response. To send a redirect response to the browser (for a local or remote document)
the application may invoke the following function:

EwsStatus ewsCGIRedirect (EwsContext context, const char =* url);

To serve a local document as a response, the application may invoke the following
function:

EwsStatus ewsContextSendReply (EwsContext context, char * url);

Note that these functions may not be used in conjunction with ewsccipata oOr
ewsCGISendstatus. The url parameter may be a relative or absolute URL.

Several CGI environment values are available from the HTTP request context as
outlined in the Context section above. In addition, the following two functions return
global server information for conformance with CGl/1.0:

const char * ewsCGIServerSoftware (void)
Retumns the server software version string, for example "Agranat-EmWeb/R1_0".

const char * ewsCGIGatewayInterface (void)

Copyright © 1997 Agranat Systems, Inc. Page 52 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-81-
EmWebTM Functional Specification Confidental EmWeb/Server

Retums the gateway interface version string, for example "cG1/1.0"

4.1.7. Logging Hook
The application may optionally provide the following function (or macro) for logging
HTTP events:

void ewalogHook (EwsContext context, EwslogStatus status);

This function is invoked by EmWeb/Server at least once for each HTTP request, and
possibly a second time for certain dispositions after a successful request. Possible
status values include (from sxc/include/ews_def.h):

typedef enum EwslLogStatus_e
{

/'
* 200 Request accepted
*/

EWS_LOG_STATUS_OK,

/™ .

* Request dispositions (after successful request)
*/

EWS_LOG_STATUS_NO_CONTENT, /* 204 no-op form or ima
EWS_LOG_STATUS_MOVED_PERMANENTLY, /* 301 1link =/
EWS_LOG_STATUS_MOVED_TEMPORARILY, /* 302 redirect */
EWS_LOG_STATUS_SEE_OTHER, /* 303 see other */

EWS_LOG_STATUS_NOT_MODIFIED, /* 304 not modified sinc
/'

* 401 Unauthorized
*/

EWS_LOG_STATUS_AUTH_FAILED, /* authorization failed

EWS_LOG_STATUS_AUTE_FORGERY, /* bad message checksum

EWS_LOG_STATUS_AUTH_STALE, /* authorization nonce s

EWS_LOG_STATUS_AUTH_REQUIRED, /* authorization not pre

EWS_LOG_STATUS_AUTH_DIGEST_FREQUIRED, /* message digest not pr
/'

* 400 Bad Request
~/

EWS_L10G_STATUS_BAD_REQUEST, /* HTTP parse exxor */
EWS_LOG_STATUS_BAD_TFORM, /* form data parse error
EWS_LOG_STATUS_BAD_IMAGEMAP, /* imagemap qQuery parse

/*

* Additional exrors
*/

EWS_LOG_STATUS_NOT_FOUND, /* 404 not found or hidd

EWS_LOG_STATUS_METHOD_NOT_ALLOWED, /* 405 method not allowe

EWS_LOG_STATUS_LENGTH_REQUIRED P /* 411 length requized *

EWS_LOG_STATUS_UNAVAILABLE, /* 503 aborted Document

EWS_LOG_STATUS_NOT_IMPLEMENTED, /* 501 bad method for UR

Copyright © 1997 Agranat Systems, Inc. Page 53 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-82 -

Emweb ' M Functional Specification Confidential EmWeb/Server
EWS_LOG_STATUS_NO_RESOURCES, /* 500 insufficient reso
EWS_LOG_STATUS_INTERNAL_ERROR /* 500 internal error */

} EwslLogStatus;

4.1.8. Local Filesystem Interfaces

The EmWeb Server provides the ability to manage a filesystem on the serving system.
The Server supports:

- uploading a file from a client (browser) to the server

- serving the contents of a file in response to a URL GET

In both cases, the filesystem is extemal to the EmWeb Server. EmWeb assumes
nothing about the implementation of this filesystem; it can exist on a local disk, non-

volatile memory, or on an extemal proxy. All EmWeb requires is the ability to:

retrieve/set meta-information about the file (e.g., type, size, modification time, etc.).

open a file

read a number of bytes from a existing file

write a number of bytes to a newly created file

close a file.

The API that must be supplied to EmWeb to provide these functions is defined below.
To enable the basic file support, define the preprocessor symbol
EW_CONFIG_OPTION_FILE iN ew_config.h.

4.1.8.1. The EwsFileParams structure

The EwsFileParams structure is defined in the ews_sys.n include file. It is used by the
EmWeb server to associate meta-information with a local file. The ewsFileParams
structure consists of a union of two substructures. These substructures correspond
to the file function that EmWeb is to perform. The filerield structure is used when
the browser is uploading a file to the server via a form post (see RFC1867). The
fileInfo Structure is used to serve a file in response to a cer for a particular URL.
The individual fields for each of these structures is described in the description

associated file operation.

typedef union EwsFileParams_s
{
/'
* fileField - for support of the form INPUT TYPE=FILE field.
* The server fills out this structure, and passes it to
* the application when the file is submitted

Copyright © 1997 Agranat Systems, Inc. Page 54 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-83-
EmWebTM Functional Specification Confidental EmWeb/(Server
v/
ifdef EW_CONFIG_OPTION_FIELDTYPE_ FILE
struct
{
const char *fileName; /* file name oxr NULL */
const char “contentType; /* MIME type */

)

const char *contentEncoding; /* content encoding or NULL =/
const char *contentDisposition; /* Content-disposition: +/
int32 contentlength; /* length or EWS_CONTENT_LENGTH_UNKNOWN =/

fileField:;

endif /* EW_CONFIG_OPTION_FIELDTYPE_FILE */
/'
« fileInfo - for support for local file operations (GET,KEAD,OPTIONS,
* PUT,DELETE). This structure is setup by the application when a URL
* that corresponds to a local file is received. This structure
* gives the server all it needs to know to handle the file operation.
-/
if defined(EW_CONFIG_OPTION_FILE GET)
struct
{)
EwaFileName fileName; /* file name (opaque) */
const char *contentType; /* MIME type */

const char =*contentEncoding; /* content encoding or NULL +/
const char *contentlanguage; /* content language or NULL +/

const char *eTag; /* BTTP/1.1 cachability tag, or NULL */
const char *lastModified; /* modification time (RFC1123) or NULL */
const char *lastModifiedl036;/* modification time (RFC1036) or NULL +*/
const char *realm; /* auth realm or NULL +*/

int32 contentlength; /* length or EWS_CONTENT_LENGTH_UNKNOWN =/
EwsRequestMethod allow; /* allowed methods */

/* HEAD & OPTION _always_ allowed by default =/

] filelnfo;

char reservedl;

} EwsFileParams, *EwsFileParamsP;

4.1.8.2. File Upload
Support for File Upload is enabled in the EmWeb server by defining the preprocessor
Symbol EW_CONFIG_OPTION_FIELDTYPE FILE iN ew_config.h.

To support file upload, EmWeb supports the methods described in RFC1867 (Form-
based File Upload in HTML). At the time of this writing, only Netscape Navigator
implements this RFC. For more information about RFC1867 and file upioad
support, contact Agranat Systems. :

RFC1867 describes a new form input field of Type=rILE. This form field results in an
input field that allows a user to enter a filename. This filename is the name of a file
that is accessible by the browser. On submission of this form, the browser reads the

Copyright © 1997 Agranat Systems, Inc. Page 55 REV. 6/20/87

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-84 .
EmWebTM Functiona! Specification Confidential . EmWeb/Server

file, and sends the file's contents to server as part of the posT request.

This file field takes the following form:

<INPUT TYPE=FILE NAME=npame VALUE=value>

Where name s the name of the form field and value is the default filename to display
in the form when it is first served. When the EmWeb/Compiler encounters one of
these form fields, the following form structure fields are generated:

char *name;
EwaFileHandle name_handle;

The name field is used by the form serve function only. It allows the application to
override the default file name given when the form is first displayed (note: some
browsers do not support a default value - call Agranat Systems for more information).
The name_handle field is used by the form submit function only. It provides the file
handle for the submitted file (see the discussion of ewaFilepost below). The status
for name_handle is set 10 (w_FORM_RETURNED | EW_FORM_DYNAMIC) on successful file
POST, €lse Ew_FORM_FILE_ERROR.

When EmWeb receives the submitted file, it allocates an ewsrileparams structure
andinitializes the filerield substructure. Thefilerield substructure is setup using
the optional file headers that are sent along with the file. The filerield fields are:

tileName
Null terminated string containing the name of the file. This is usually
supplied as the basename of the file (no path information). This field will be
a nurL pointer if the browser does not supply a filename.

contentType
Null terminated string containing the value of the content-Type header, or
a nuLL pointer if the content-Type header is not present (assumed to be

text/plain).

contentEncoding
Null terminated string containing the value of the content-Encoding header,
or a NuLL pointer if the content -Encoding header is not present.

contentDisposition
“ Null terminated string containing the value of the content-Disposition
header, or a NuLL pointer if the content-Disposition header is not present.

contentLength
set to the number of bytes in the file to be posted. If the content-Length

header is not supplied by the browser, then this field will be set to

Copyright © 1997 Agranat Systems, Inc. Page 56 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-85-
EmWebTM Functional Specification Confidenta! EmWeb/Server

EWS_CONTENT_LENGTH_UNKNOWN.

As soon as EmWeb receives the submitted form containing an 1xpuT TypE=FILE field
with file content, prior to calling the application's submit function, a call will be made
to the application interface ewaFilePost:

EwvaFileHandle ewaFilePost(
EwsContext context,
const EwsFileParams w*params);

This function is provided by the application. The application defines the appropriate
type for EwaFileHandle, and the value for Ewa_FILE_HANDLE_NULL, Which indicates a
NULL EwaFileHandle. The params parameter is initialized by EmWeb as described
above, and released by EmWeb on retumn from ewaFilePost.

ewvaFilepost should open a file, and return a EwarileHandle value that uniquely
identifies that file. On efror, ewaFilePost Can retum EwA_FILE_r:NDLE_NULL, Which
will cause EmWeb to discard the contents of the submitted file without discarding the
other submitted form fields. The application can also call ewssuspend to suspend the
current context. In this case, ewarileros: Will be reinvoked (with
ewsContextIsResuming (context) == TRUE) once the application calls ewsresume ON
the context. The request can be aborted and the connection closed if ewarilepost

invokes ewsNetHTTPAboxt.

After ewaFilePost is called, EmWeb will start calling the file write routine:

sintf ewaFileWrite(EwsContext context,
EvaFileHandle handle,
const uint8 =datap,
uintf length);

handle is set to the value that was retumed by the ewarilePost call. datap iS a
pointer to the data to be written, and 1ength is set to the number of bytes that can be
written from datap. ewvaFilewzite retums the number of bytes written, or < o if an
error occurred. If < o is retumed, EmWeb will discard the rest of the incoming file
without discarding the other submitted form fields. The application can suspend the
current context by calling ewssuspend from within evaFilewrite and retumning the
number of bytes written prior to suspending (can be zero). The application can then
resume the context by calling ewsresume. This will cause ewaFilewrite t0 be
reinvoked with ewscontextIsResuming(context) == TRUE and datap and length
adjusted by the number retumed by the suspended call 10 ewsFilewzite. The
application can also call ewsnetHTTPAbozt t0 abort the entire request, and close the

connection.

After the entire file has been received and written, the application's form submit
function will be called. !f the status field has been set to ew_rorM_2cTURNED, then the
name_handle contains the file handle for the file as returned by evarilepost. it is the

Copyright © 1997 Agranat Systems, Inc. Page §7 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

v - 86 -
Emweb'™™ Functional Specification Confidential EmWeb/Server

responsibility of the form submit function to close the file at this point.

Note well that once a file handle is retumed by ewaFileprost, it is the responsibility of
the application to close that file handle during the form submit function. EmWeb/
Server will close the file handle if the request is aborted prior to calling the submit

4.1.8.3. File Serve
The EmWeb Server allows an application to provide a file external to an EmWeb

archive for the response to a Ger request. This functionality is enabled by defining
the preprocessor symbol Ew_CONFIG_OPTION_FILE_GET in ew_config.h.

To serve a file, an application must “mark” a GeT request URL as representing a non-
archive file. Once this is done, the EmWeb Server will “open” this file, read data from
it and serve this data in response to the URL ceT. After all data is served, EmWeb
Server will close the file.

To “mark” a URL as a local file, the application calls the server interface
ewsContextsSetFile during a URL GeT:

EwsStatus ewsContextSetFile(EwsContext context,
EwsFileParamsP params)

ewsContextSetFile can be called from:
- evaURLHook once the URL is determined to be a local file entity.

- an application's form submit function prior to calling ewscontextsendreply. In this
case, the URL passedto ewscontextsendreply represents the local file to be served.

Note that both the ewaURLKook and an application's form submit function can suspend
the current context using ewssuspend. This allows the application to do any
asynchronous tasks needed prior to calling ewscontextsetFile.

The fileInfo substructure of the pazam parameter must be set up by the application
prior to calling ewscontextsetFile. This structure gives EmWeb Server all the
information about the file it needs in order to serve the file as response content. The

fields are described below:

EwaFileName fileName
This field is for use only by the application, EmWeb Server ignores this field.
The type ewaFileName muUst be specified by the application.

contentType .
set to a nuLL terminated string containing the value for the content-Type

header that is to be sent with the file.

Copyright © 1997 Agranat Systems, Inc. Page 58 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-87-
EmWebTM Functional Specification Confidential . EmWeb/Server

contentEncoding
set to a ~uLL terminated string containing the value for the coatent-
Encoding header that is sent with the file. If a NuLL pointer, no content-

Encoding header is sent.

contentLanguage
set to a nuLL terminated string containing the value for the content-

Language header that is sent with the file. If a NuLL pointer, no content-
Language header is sent.

eTag
reserved, must be set to nuLL.

lastModified
the last modification date of the file in RFC1123 format as a nuLL terminated
string. If nuLL, it is assumed that the file should be served each time it is

requested.

lastModified1036
the last modification date of the file in RFC 1036 format as a nuLL terminated

string. Some browsers cannot correctly recognize the RFC1123 format, so
this field should be set in addition to the lastModified field. Call Agranat
Systems for more information.

realm
the realm the request should be authenticated against for this file as a NuLL

terminated string, else nuLL if no authorization required. Authorization is
only checked whenthe file is served as a result of calling ewsContextSetFile
from ewaURLHooK - the realm used to protect the form submission is used
implicitly when serving the file as a result of a ewsContextSendReply.

contentLength
Set to the number of bytes in the file, else zws_coNTENT LENGTH_unrnowN if

the file's length is unknown.

allow
reserved, must be set 10 ewsRequestMethodGet.

EmWeb/Server references the param parameter for the duration of the file operation.
As such, this parameter must be accessible throughout the life of the request -
beyond the context of the evacontextsetFile call. It can be safely deallocated by the
application during the ewaNetHTTPCleanup call.

Once the URL has been “marked"” by the ewscontextsetrile call, EmWeb/Server
will open the file using the ewaFilecet interface:

Copyright © 1997 Agranat Systems, Inc. Page 59 REV. 6/20/37

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-88 -
EmWebTM Functional Specification Confidental EmWeb/Server

EwaFileHandle ewaFileGet(EwsContext context,
’ const char *url,
const EwsFileParamsP params) ;

The ur1 parameter is the URL that was “marked” as a file access. params is the
EwsFileParams Structure that was passed t0 ewscontextsetFile. The application
defines the appropriate type for EvarileHandle, and the value for
EWA_FILE_HANDLE_ NuLL, which indicates a NULL EwaFileHandle.

ewaFilecet should open the file identified by params and uzl, and retumn a
EwaFileHandle that uniquely represents the file. On error, ewaFileGet can return
EWA_FILE_HANDLE_NULL. This causes the connection to abort. If desired, the
application can suspend the current context by calling ewssuspend from within
evaFileGet. The context can be resumed at a later time by calling ewsrResume.
evaFileGet Will be reinvoked (with ewscontextIsResuming(context) == TRUE).

Once the file has been opened by evarilecet, EmWeb/Server will read the file by
calling ewaFileRead:

sintf ewaFileRead(EwsContext context,
EwaFileHandle handle,
uintcg =*datap,
uintf length);

This function should copy up 1o length bytes into the area of memory starting at
datap. handle is set to the file handle returned by ewaFilecet. On retum,
ewaFileRead should return the number of bytes written into datap, which can be less
than 1ength. On error, < o should be retumed (this causes the request to be aborted
and the connection close). This function can suspend by calling ewssuspend and
retuming the number of bytes written into datap (can be zero). When the file
described by handle has been completely read, this routine must return zero.
Retuming zero indicates that End-of-File has been reached (except when
ewssuspend has been called prior to returning).

Once all file data has been read, EmWeb/Server will close the file by calling
ewaFileClose:

void ewaFileClose (EwaFileHandle handle, EwsStatus status);

ewaFileclose should close the file associated with handle (the EwsFileParams
structure can be safely deallocated at this point). status will be setto ews_sTaTus_ox
on successful completion of the file serve, otherwise it will be set to an error code.
EmWeb/Server will call this function to close a file handle during an aborted request
prior to calling ewvaNetHTTPEnd. Note that this function does not support suspension.

Copyright © 1997 Agranat Systems, inc. ~ Page 60 REV. 8/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-89 -
EmWeb.rM Functional Specification Confidential EmWeb/Server

4.2. Application Interface Examples
This section is intended to illustrate the use of application interface functions under
various scenarios.

The following tables illustrates the application interfaces used in the simplest EmWeb/
Server configuration.

bl > N
Application->Server Server - Description
(Initialization) Application
ewsInit ewahAlloc Application initializes EmWeb/Server.
ce The server may allocate run-time
memory resources.
ewsDocumentInstallAr- | ewaalloc Application installs one or more docu-
chive e ment archives and registers zero or
s , more authenticated users. The server
ewsAuthRegister allocates run-time memory resources
for its interal databases.
ication- -> -
Application >Se.rver Seryer : Description
(HTTP Transaction) Application

ewsNetHTTPStart evaalloc Application accepts a new HTTP TCP
e connection request and informs the

EmWeb/Server. The server allocates

memory resources for the request.

ewsNetHTTPReceive ewaAlloc Application accepts request data from

; . e the network and passes it to the server
evaNetBufferFzee | for processing. The server may allo-
e cate memory resources to process the
request as needed. Some network
buffers received may be released at
this point.

Copyright © 1997 Agranat Systems, inc. Page 61 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033

PCT/US97/13817

-90 -
EmWebTM Functional Specification Confidential EmWeb/Server
Application->Server Server -> -
(HTTP Transaction) Application Description

ewsRun

<EMWEB_STRING>
<EMWEB_INCLUDE>
ewaFormServe_*
ewvaFormsubmit_*
ewaCGIstart_-
ewaCGIData_-~

The server invokes the application
code attached to the requested docu-
ment in order to construct a response
on-the-fly.

ewaNetBufferAl- The server allocates network buffers
loc as needed, fills them with HTTP

<o esponse dat

ewaNetHTTPSend ra SFI). ti?:n fo?'traandsse.nqs them to t'he
(STATUS_OK) ppiica nsmission.

ewaFree The server releases any remaining
e resources associated with the HTTP
ewvaNetBufferFree | yransaction and terminates the
evaNetHTTREND request. The application closes the

TCP connection at this point.

The next table illustrates a typical HTTP transaction during which the application
instructs the EmWeb/Server to yield control of the CPU.

Application->Server
(Scheduling)

ewsNetHTTPStazrt

Server ->
Application

Description

ewaAlloc

Application accepts a new HTTP TCP
connection request and informs the
EmWeb/Server. The server allocates
memory resources for the request.

ewsNetHTTPReceive

evaAlloc

ewaNetBufferFree

Application accepts request data from
the network and passes it to the server
for processing. The server may allo-
cate memory resources to process the
request as needed. Some network
buffers received may be released at
this point.

ewsRun

<EMWEB_STRING>
<EMWEB_INCLUDE>
ewaFormserve_*

ewaFormSubmit_+

The server invokes the application
code attached to the requested docu-
ment.

Copyright © 1897 Agranat Systems, Inc.

Page 62

REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817
-9} -
EmWebTM Functional Specification Confidential EmWeb/Server
i i o > o 40
Application->Server Server - Description
(Scheduling) Application
ewsSuspend The application suspends the request.
Processing on the request stops until
resumed.
ewsResume <EMWEB_STRING> The application resumes the request.
(EMWEB_INCLUDE> The server re-invokes the application
e"’a:““‘ze;"?{' code attached to the requested docu-
ewarormsubmit_ ment in order to construct a response
on-the-fly.
ewaNetBufferal- The server allocates and sends a -
loc response buffer. The application trans-
?;;2;;*;73 ;z;‘)“ mits the data and requests that the
- server yield the CPU.
ewsRun ewaNetBufferAl- The application reschedules the
loc server. The server sends the next
ewaNetHTTPSend buffer
(STATUS_YIELD) '
ewsRun ewaNetBufferFree | The application reschedules the
e server. The server releases resources
2?525577}{»& 4 and terminates processing of the
2 request.

The next table illustrates a typical scenario in which the application aborts processing of
an incomplete HTTP request.

Application->Server Server -> intion
(Abort) Application Descriptl
ewsNetETTPStart ewanlloc o Application accepts a new HTTP TCP
connection request and informs the
EmWeb/Server. The server allocates
memory resources for the request.
ewsNetHTTPReceive ewaAlloc Application accepts request data from
- cee the network and passes it to the server
ewaNetBufferFree

for processing. The server may allo-
cate memory resources to process the
request as needed. Some network
buffers received raay be released at
this point.

Copyright © 1997 Agranat Systems, Inc.

Page 63

REV. 6/20/87

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817
T™ - 92 -
EmWeb' ™ Functional Specification Confidential EmWeb/Server
Application->Server Server -> .
(Abort) Application Description
—————————————————— — —_—

ewsNetHTTPAbort evaFree | Application requests abort of HTTP
e transaction in progress. Server
ewaNetBufferfree | rojeases resources and terminates
ewaNetHTTPEnd request.

The next table illustrates the on-demand archive loading feature of EmWeb.

Application->Server
(Demand Loading)

ewsDocumentRegister

Server ->
Application

Description

ewvaAlloc ..

Application registers a URL with
EmWeb/Server that is not loaded.

ewsNetHTTPStart

ewailloc

Application accepts a new HTTP TCP
connection request and informs the
EmWeb/Server. The server allocates
memory resources for the request.

ewsNetHTTPReceive

ewailloc

ewaNetBufferFree

Application accepts request data from
the network and passes it to the server
for processing. The server may allo-
cate memory resources to process the
request as needed. Some network
butfers received may be released at’
this point.

ewaDocumentFault

The server recognizes the requested
URL to be a registered document and
notifies the application.

ewsDocumentlInstallAr-
chive

The application loads the archive con-
taining the document.

ewsRun

<EMWEB_STRING>
<EMWEB_INCLUDE>
ewaFormServe_*
ewaFormSubmit_*
ewaCGIstart_-+
ewaCGIData_*

The server automatically continues
processing the request once the docu-
ment has been loaded. The server
invokes the application code attached
to the requested document in order to
construct a response on-the-fly.

ewaNetBufferal-
loc

ewaNetHTTPSend
(STATUS_OK)

The server allocates network buffers
as needed, fills them with HT TP
response data, and sends them to the
application for transmission.

Copyright © 1997 Agranat Systems, Inc.

Page 64

REV. 6/20/87

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

' -93 -
EmWebTM Functional Specification Confidental EmWeb/Server
Application->Server Server -> Descrioti
. c escriptio
(Demand Loading) Application ription
ewvaFree The server releases any remaining

e resources associated with the HTTP
evaNetBufferFree | yansaction and terminates the
request. The application closes the

ewaNetHTTPEnd . . .
TCP connection at this point.

4.3. Porting Guidelines

The EmWeb/Server is distributed as a directory tree of ANSI C files. In order to assure
the best possible upgrade path and support from Agranat Systems, most of these files
should not be modified by the system integrator.

To port EmWeb/Server to a specific target environment foo, a target-specific config. foo
configuration directory must be created. config.foo contains the target-specific
configuration files ew_types.h, ew_config.h, and config.mak. These files can be copied
from the examples provided in the config directory, and modified as appropriate for the
target. '

To build the server library obj . foo/evs .a, use the following command:
make CONFIG=foo server

Note: The configure SCript may be used on Unix systems to
automatically generate the configuration files for the local Unix
development environment target. Typing "make" will build the
EmWeb/Compiler, the example archives, and the reference

Unix port.

4.3.1. Configuration Header Files

The sxc/config/ew_types.h file contains definitions for base C types used throughout
the EmWeb/Server. Most of these are straightforward and generally do not require
modification under 32-bit CPU architectures. The one definition which may require
modification by the system integrator is the preprocessor symbol EMwes_enpran which
is defined to either EMWEB_ENDIAN_ BIG Or EMWEE_ENDIAN_LITTLE, and reflects the byte-
order of the target processor (Intel processors are generally little endian while
Motorola processors are generally big endian). The symbo! EMWEB_ARCHIVE_ENDIAN
indicates the byte-order of the archive generated by the EmWeb/Compiler. By default,
the compiler generates big-endian archives unless the --1ittle command-line
argument is present. Note that it is more efficient it the byte-order of the archive
matches the byte-order of the target processor.

The src/config/ew_config.h file definitions are expected to be modified extensively
for porting EmWeb/Server to a particular hardware platform as follows:

Copyright © 1997 Agranat Systems, Inc. Page 65 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-94 -
ErnWeb-“'"l Functional Specification Confidental EmWeb/Server

EW_CONFIG_HTTP_PROTOCOL
Define the level of protocol conforrnance desired. Must be set to either
HTTP_1_0 or HTTP_1_1.

EW_CONFIG_OPTION_DATE
Define to enable generation of HTTP pate: headers. This function requires
that the application provide the ewapate function. This is required for
protocol conformance, but some environments may simply not be able to
determine the time-of-day.

EW_CONFIG_OPTION_EXPIRE

Define to enable generation of HTTP Eexpire: headers. The symbol
EWS_CONFIG_OPTION_DATE Mmust also be defined. If a dynamic document is
requested (.e.a document containing content defined by the application as
it is being served), then an expire: header is generated with the current
time. Otherwise, no Expire: header is generated. The code size may be
reduced by not defining this symbol This is recommended for proper HTTP
caching.

EW_CONFIG_OPTION_LAST_MODIFIED
Define to enable generation of HTTP Last-modified: headers. The symbol
EWS_CONFIG_OPTION_DATE Must also be defined. If a static document is
requested, then the archive creation date is retumed to the Web browser.
Otherwise, the current time is returned to the Web browser. The code size
may be reduced by not defmmg this symbol. This is recommended for

proper HTTP caching.

EW_CONFIG_OPTION_CONDITIONAL_GET
Define to enable parsing of received 1f-Modified-since: headers to
support conditional get functionality defined in the standard. This is
recommended for proper HTTP caching.

EW_CONFIG_OPTION_PRAGMA_NOCACHE
Define to enable generation of "pragma: no-cache" HTTP/1.0 headers for
documents containing dynamic content.

EW_CONFIG_OPTION_PERSISTENT
Define to enable persistent connections. This is recommended, especially
with HTTP/1.1, for optimum network performance. Persistent connections
enable the browser to pipeline multiple HTTP requests over a single TCP/
IP connection which was not possible in the original HTTP/1.0 specification.

EW_CONFIG_OPTION_CHUNKED_OUT
HTTP/1.1 only. Define to enable the generation of chunked encoded data
during transmission of documents containing dynamic elements. This
makes maintaining a persistent connection- possible under certain

Copyright © 1997 Agranat Systems, Inc. Page 66 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-95-
EmWebTM Functional Specification Confidential EmWeb/Server

circumstances and is strongly recommended.

EW_CONFIG_OPTION_CHUNKED_IN
HTTP/1.1 only. Required for protocol contormance. Define to enable
parsing of chunked form data received from the browser.

EW_CONFIG_OPTION_METHOD_OPTIONS
Define to enable HTTP/1.1 options method.

EW_CONFIG_OPTION_METHOD_TRACE
Define to enable HTTP/1.1 trace method.

EW_CONFIG_OPTION_CACHE_CONTROL
Define to enable generation of HTTP/1.1 Cache-Control: headers.
Recommended for optimum cache contro!,

EW_CONFIG_OPTION_STRING -
Define if the application intends to use the <emwes_sTRING> feature.

Otherwise, code size may be reduced by not defining this symbol.

EW_CONFIG_OPTION_STRING_TYPED
Define to enable typed eMweB_STRINGS (i.€. USe Of EMWEB_TYPE attribute).

EW_CONFIG_OPTION_INCLUDE
Define it the application intends to use the <eMwes_incLupE> feature.
Otherwise, code size may be reduced by not defining this symbol.

EW_CONFIG_OPTION_FORM
Define if the application intends to use the EmWeb form processing
interfaces. Otherwise, code size may be reduced by not defining this

symbol.

EW_CONFIG_OPTION_IMAGEMAP
Define if the application intends to use EmWeb imagemaps. Otherwise,
code size may be reduced by not defining this symbol.

EW_CONFIG_OPTION_CGI
Define if the application intends to use the raw CGl application interfaces.

Otherwise, code size may be reduced by not defining this symbol.

EW_CONFIG_OPTION_LINK
Define if the application intends to use the 1link attribute in _access files.
Otherwise, code size may be reduced by not defining this symbol.

EW_CONFIG_OPTION_CLONING .
Define if the application intends to use the ewsDocumentClone application

Copyright © 1997 Agranat Systems, inc. ‘Page 67 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

- 96 -
EmWeb.rM Functional Specification Confidential EmWeb/Server

interface. Otherwise, code size may be reduced by not defining this symbol.

EW_CONFIG_OPTION_DEMAND_LOADING
Define if the application intends to use the ewsDocumentRegister/
evaDocumentFault application interface. Otherwise, code size may be
reduced by not defining this symbol.

EW_CONFIG_OPTION_DOCUMENT_DATA
Define if the application intends to use the ewsDocumentpata application
interface. Otherwise, code size may be reduced by not defining this symbol.

EW_CONFIG_OPTION_DOCUMENT_SET_REALM
Define if the application intends to use the ewsbocumentsetrealm application
interface. Otherwise, code size may be reduced by not defining this symbol.

EW_CONFIG_OPTION_CLEANUP
Define if the application desires to perform a graceful shutdown of the
EmWeb/Server by invoking ewsshutdown. In some application
environments, graceful shutdown may not be necessary as a system restart
may be accomplished by a re-boot of the processor. The code size may be
reduced by not defining this symbol

EW_CONFIG_OPTION_SCHED
Define if the application intends to use EmWeb's internal scheduler making
use of the ewsrun application interface. Otherwise, the code size may be
reduced by not defining this symbol.

EW_CONFIG_OPTION_SCHED_SUSP_RES
Define if the application intends to use the ewssuspend/ewsResume
application interfaces. Otherwise, the code size may be reduced by not
defining this symbol.

EW_CONFIG_OPTION_SCHED_FC
Define if the application intends to use the ewsNetFlowControl/
UnFlowControl application interfaces. Otherwise, the code size may be
reduced by not defining this symbol.

EW_CONFIG_OPTION_URL_HOOK
Define if the application intends to use the URL rewriting feature by
_providing the function ewaurLHook interface. Otherwise, the code size may

"be reduced by not defining this symbol.

EW_CONFIG_OPTION_AUTH
Define to enable support for authentication through the ewsAuthRegister
application interface. Otherwise, the code size may be reduced by not
defining this symbol.

Copyright © 1997 Agranat Systems, Inc. Page 68 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-97 -
EmWei;rM Functional Specification Confidential ‘ EmWeb/Server

EW_CONFIG_OPTION_AUTH_BASIC
Define to enable support for the HTTP/1.0 basic cookie authentication
method. The symbol Ew_conr1G_opTION_AUTH MUSt also be defined. The
code size may be reduced by not defining this symbol.

EW_CONFIG_OPTION_AUTH_MBASIC
Define to enable support for the "manual basic" authentication scheme. The
code size may be reduced by not defining this symbol,

EW_CONFIG_OPTION_AUTH_DIGEST
Define to enable support for the HTTP/1.1 digest authentication method.
The symbol Ew_coNF16_oPTION_AUTH Must also be defined. The code size
may be reduced by not defmlng this symbol.

Note: EmWeb's digest authentication support is derived from
the RSA Data Security, inc. MD5 Message-Digest Algorithm.
The following legal notice can be found in src/lib/ew_md5c.c:

Copyzright (C) 1991-2, RSA Data Security, Inc. Created 1991. All
rights reserved. -

License to copy and use this software is granted provided that it
is identified as the "RSA Data Security, Inc. MDS Message-Digest
Algorithm" in all material mentioning or 1eferencing this software
or this function.

License is also granted to make and use derivative works provided
that such works are identified as “derived from the RSA Data
Security, Inc. MD5 Message-Digest Algorithm" in all material
mentioning or referencing the derived work.

RSA Data Security, Inc. makes no representations concerning either
the merchantability of this software or the suitability of this
software for any particular purpose. It is provided “"as is"
without express or implied warranty of any kind.

These notices must be retained in any copies of any part of this
documentation and/or software.

EW_CONFIG_OPTION_AUTH_MDIGEST
Define to enable support for the "manual digest" authentication scheme.
The code size may be reduced by not defining this symbol.

EW_CONFIG_OPTION_AUTH_DIGEST_M
Define to enable support for the digestRequired parameter used in digest
authentication. This protects against forged messages using proper
authentication credentials. The symbol Ew_conFic_oPTION_AUTH_DIGEST
must also be defined. The code size may be reduced by not defining this

symbol.

Copyright ® 1997 Agranat Systems, Inc. Page 69 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

. -98 -
ErnWebTM Functional Specification Confidential EmWeb/Server

EW_CONFIG_OPTION_AUTH_VERIFY
Define to enable support for secondary application-defined authentication.
The code size may be reduced by not defining this symbol.

EW_CONFIG_OPTION_RELEASE_UNUSED
Define to include extra code that attempts to release received network
buffers as soon as possible it they do not contain information needed for the
duration of an HTTP request. Otherwise, if HTTP headers are typically
received in multiple network buffers, the EmWeb/Server may hold on to
these buffers longer than necessary.

EW_CONFIG_OPTION_FILE
Define to include local file system support. The code size may be reduced
by not defining this symbol '

EW_CONFIG_OPTION_FILE_GET
Define to include access to local filesystem for GET method requests. This
option requires EWw_cONFIG_OPTION_FILE. The code size may be reduced by
not defining this symbol.

EW_CONFIG_OPTION_COMPRESS
Define to include extra code required for decompression of compressed
archives.

EW_CONFIG_OPTION_CONTEXT_DATE
Define to enable the ewscontextpate application interface. The code size
may be reduced by not defining this symbol.

EW_CONFIG_OPTION_CONTEXT_PRAGMA
Define to enable the ewscontextPragma application interface. The code size
may be reduced by not defining this symbol.

EW_CONFIG_OPTION_CONTEXT_FROM
Define to enable the ewscontextFrom application interface. The code size
may be reduced by not defining this symbol.

EW_CONFIG_OPTION_CONTEXT_IF_MODIFIED_SINCE
Define to enable the ewscontextIfModifiedsince application interface.
Furthermore, EmWeb/Server honors the HTTP 1f-modified-since:
header for static documents by comparing to the archive creation date.
(Note that dynamic documents are always served). The code size may be
reduced by not defining this symbol.

EW_CONFIG_OPTION_CONTEXT_REFERER
Define to enable the ewscontextReferer application interface. Otherwise,
the code size may be reduced by not defining this symbol.

Copyright © 1997 Agranat Systems, Inc. Page 70 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-99.
EmWebTM Functional Specification Confidental EmWeb/Server

EW_CONFIG_OPTION_CONTEXT_USER_AGENT
Define to enable the ewscontextuUsexragent application interface. Otherwise,
the code size may be reduced by not defining this symbol.

EW_CONFIG_OPTION_CONTEXT_HOST
Define to enable the ewsContextHost application interface. Otherwise, the
code size may be reduced by not defining this symbol.

EW_CONFIG_OPTION_SEND_REPLY
Define to enable the ewsContextSendReply application interface.
Otherwise, the code size may be reduced by not defining this symbol.

EW_CONFIG_OPTION_CGI_SERVER_SOFTWARE
Define to enable the ewscciserversoftware application interface.
Otherwise, the code size may be reduced by not defining this symbol.

EW_CONFIG_OPTION_CGI_GATEWAY_INTERFACE
Define to enable the ewscGIGatewayinterface application interface.
Otherwise, the code size may be reduced by not defining this symbol.

EW_CONFIG_OPTION_CGI_SERVER_PROTOCOL
Define to enable the ewscciserverrrotocol application interface.
Otherwise, the code size may be reduced by not defining this symbol.

EW_CONFIG_OPTION_CGI_REQUEST_METHOD
Define to enable the ewscGIRequestMethod application interface. Otherwise,
the code size may be reduced by not defining this symbol.

EW_CONFIG_OPTION_CGI_PATH_INFO
Define 1o enable the ewsccIrathinfo application interface. Otherwise, the
code size may be reduced by not defining this symbol.

EW_CONFIG_OPTION_CGI_SCRIPT_NAME
Define to enable the ewsceIscriptnName application interface. Otherwise, the

code size may be reduced by not defining this symbol.

EW_CONFIG_OPTION_CGI_QUERY_STRING
Define to enable the ewsceiguerystring application interface. Otherwise,
the code size may be reduced by not defining this symbol.

EW_CONFIG_OPTION_CGI_CONTENT_TYPE
Define to enable the ewsccicontentType application interface. Otherwise,
the code size may be reduced by not defining this symbol.

EW_CONFIG_OPTION_CGI_CONTENT_LENGTH
Define to enable the evscGicontentLength application interface. Otherwise,

Copyright © 1997 Agranat Systems, Inc. Page 71 REV. 6/20/97
SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

- 100 -
EmWebTM Functional Specification Confidental EmWeb/Server

the code size may be reduced by not defining this symbol.

EW_CONFIG_OPTION_CGI_CONTENT_ENCODING
Define to enable the ewsceicontentEncoding application interface.
Otherwise, the code size may be reduced by not defining this symbol.

EW_CONFIG_OPTION_FIELDTYPE_RADIO
Define to enable support for EmWeb HTML form radio buttons. Otherwise,
the code size may be reduced by not defining this symbol.

EW_CONFIG_OPTION_FIELDTYPE_SELECT_SINGLE
Define to enable support for EmWeb HTML form single option selection
boxes. Otherwise, the code size may be reduced by not defining this
symbol. '

EW_CONFIG_OPTION_FIELDTYPE_SELECT_MULTIPLE
Define to enable support for EmWeb HTML form multiple option selection
boxes. Otherwise, the code size may be reduced by not defining this
symbol.

EW_CONFIG_OPTION_FIELDTYPE_CHECKBOX
Define to enable support for EmWeb HTML form checkbox fields.
Otherwise, the code size may be reduced by not defining this symbol.

EW_CONFIG_OPTION_FIELDTYPE_TEXT
Define to enable support for EmWeb HTML form text fields. Otherwise, the
code size may be reduced by not defining this symbol.

EW_CONFIG_OPTION_FIELDTYPE_IMAGE
Define to enable support for EmWeb HTML form image inputs. Otherwise,
the code size may be reduced by not defining this symbol.

EW_CONFIG_OPTION_FIELDTYPE_DECIMAL _UINT
Define to enable support for EmWeb HTML form text fields for unsigned
integers. Otherwise, the code size may be reduced by not defining this
symbol.

EW_CONFIG_OPTION_FIELDTYPE_DECIMAL_INT
Define to enable support for EmWeb HTML form text fields for signed
integers. Otherwise, the code size may be reduced by not defining this
symbol.

EW_CONFIG_OPTION_FIELDTYPE_HEX_INT
Define to enable support for EmWeb HTML form text fields for hexadecimal
integers. Otherwise, the code size may be reduced by not defining this
symbol.

Copyright © 1997 Agranat Systems, Inc. Page 72 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

- 101 -
EmWebTM Functional Specification Confidential EmWeb/Server

EW_CONFIG_OPTION_FIELDTYPE_HEX_STRING
Define to enable support for EmWeb HTML form text fields for hexadecimal
octet strings. Otherwise, the code size may be reduced by not defining this
symbol.

EW_CONFIG_OPTION_FIELDTYPE_DOTTEDIP
Define to enable support for EmWeb HTML form text fields for dotted IP
addresses. Otherwise, the code size may be reduced by not defining this
symbol.

EW_CONFIG_OPTION_FIELDTYPE_DECNET_IV
Define to enable support for EmWeb HTML form text fields for DECnet |V
addresses. Otherwise, the code size may be reduced by not defining this

symbol.

EW_CONFIG_OPTION_FIELDTYPE_IEEE_MAC
Define to enable support for EmWeb HTML form text fields for IEEE MAC
addresses. Otherwise, the code size may be reduced by not defining this

symbol.

EW_CONFIG_OPTION_FIELDTYPE_FDDI_MAC
Define to enable support for EmWeb HTML form text fields for FDD! MAC
addresses. Otherwise, the code size may be reduced by not defining this

symbol.

EW_CONFIG_OPTION_FIELDTYPE_STD_MAC
Define to enable support for EmWeb HTML form text fields for big or little
endian standard MAC addresses. Otherwise, the code size may be reduced

by not defining this symbol.

EW_CONFIG_OPTION_FIELDTYPE_OID
Define to enable support for EmWeb HTML form text fields for SNMP object
identifiers. Otherwise, the code size may be reduced by not defining this

symbol.

EW_CONFIG_OPTION_FIELDTYPE_FILE
Define to enable support for RFC 1867 file upload from browser. This option

requires Ew_CONFIG_OPTION_FILE. The code size may be reduced by not
defining this symbol.

EW_CONFIG_OPTION_BROKEN_IMS_EXTRA_DATA
Define to handle non-conformant browsers that place extra data at the end
of l{-Modified-Since: headers. Otherwise, the code size may be reduced by

not defining this symbol.

Copyright © 1997 Agranat Systems, inc. Page 73 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

-102 -
EmWebTM Functional Specification Confidential EmWeb/Server

EW_CONFIG_OPTION_BROKEN_NEED_OPAQUE
Define to handle non-conformant browsers that require optional opaque
field in digest authentication headers. Otherwise, the code size may be
reduced by not defining this symbol.

EwaNetBuffer
Define the C type used to represent a bufter descriptor.

EWA_NET_BUFFER_NULL
Define the value of a nuLL buffer descriptor used to terminate a chain of
buffers or indicate no buffers available.

EwaNetHandle :
Define the C type used for the application-defined network handle passed
to EmWeb/Server in ewsNetyTTPstart and available from the request
context by ewsContextNetHandle.

EwaDocumentHandle
Define the C type used for the application-defined document handle passed
to EmWeb/Server in ewsDocumentClone Of ewsDocumentRegister and
available from the request context by ewscontextDocumentHandle.

EWA_DOCUMENT_HANDLE_NULL
Define the value for a nuLL document handle stored in the context for
documents that have not been cloned or registered.

EwaAuthHandle
Define the C type used for the application-defined authorization handle
passed to EmWeb/Server in ewsauthrRegister and available from the
request context by ewscontextauthHandle.

EWS_AUTH_HANDLE_NULL
Define the value for a nuLL authorization handle stored in the context for
requests that have not been authenticated.

EwaAuthNonce
Define the C structure containing parameters used in generating nonce

challenges.

EwaCGlHandle
Define the C type used for the application-defined CGI handle passed to

EmWeb/Server from ewaccIstart_* and returned to the application in
subsequent evacGIData_*. '

EWA_CGI_HANDLE_NULL
Define the value for a NULL CGI handle stored in the context for CGl

Copyright © 1997 Agranat Systems, Inc. Page 74 REV. 6/20/87

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

- 103 -
EmWebTM Functional Specification Confidential EmWeb/Server

requests.

EWA_TASK_LOCK(
This application-defined macro is invoked by EmWeb/Server to enter a

critical region. If the application is preemptive and multiple threads may
access EmWeb application interface functions simultaneously, then this
macro should be defined in such a way as to disable preemption.

EWA_TASK_UNLOCK(Q)
This application-defined macro is invoked by EmWeb/Server to leave a

critical region entered by Ewa_TASK_LoCK ().

EMWEB_ERROR() :
This application-defined macro is invoked by EmWeb/Server to repo

serious error conditions, usually a result of improper system integration.

EMWEB_WARN(_
This application-defined macro is invoked by EmWeb/Server to report an

error condition for which recovery is possible.

EMWEB_TRACE()
This application-defined macro is invoked by EmWeb/Server 1o trace

execution for debugging.

EWA_LOG_HOOK
Define to enable the ewaLogHook() application intertace. Otherwise, the
code size may be reduced by not defining this symbol.

EMWEB_SANITY
Define to enable extra code for checking the consistent use of the AP} and

intemal data structures. This is strongly recommended during initial porting
and debug. However, the code size may be reduced by not defining this
symbol.

EMWEB_HAVE_MEMCPY
Define to use application-provided run-time memcpy library function.

Otherwise, extra server code is included to implement this functionality.

EMWEB_HAVE_MEMSET
Define to use application-provided run-time memsetr library function.

Otherwise, extra server code is included to impfement this functionality.

EMWEB_HAVE_SPRINTF
Define to use application-provided run-time sprintf library function.
Otherwise, extra server code is included to handle conversions from

integers to strings (%d, %Xx).

Copyright © 1997 Agranat Systems, Inc. Page 75 X REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

: -104 -
EmWeb.rM Functional Specification Confidential EmWeb/Server

EMWEB_HAVE_STRCPY
Define to use application-provided run-time scrcpy library function.
Otherwise, extra server code is included to implement this functionality.

EMWEB_HAVE_STRLEN
Define to use application-provided run-time scrlen library function.
Otherwise, extra server code is included to implement this functionality.

EMWEB_HAVE_STRCMP
Define to use application-provided run-time stremp library function.
Otherwise, extra server code is included to implement this functionality.

EwaFileHandle

Define the C type used for the application-defined file handle used in the
local filesystem API.

EWA_FILE_HANDLE_NULL
Define the value for a nuLL file handle as used by the local filesystem API.

EwaFileName .
Define the C structure used to represent an application-defined filename
parameter as used by the local filesystern API.

The following macros may be defined to override EmWeb/Server defaults as follows:

EWS_FILE_HASH_SIZE
Default: 256. Information about each unique URL loaded from an archlve
registered, or cloned, is maintained in an open hash table for fast lookup.
This macro may be defined to set the number of entries in the hash table,
where each entry contains a pointer value. Smaller values will typically
decrease memory usage while increasing search times.

EWS_REALM_HASH_SIZE
Default: 4. Information about each unique realm defined in loaded archives
or by the ewsDocumentsetRealn() function is maintained in an open hash
table for fast lookup. This macro may be defined to set the number of entries
in the hash table, where each entry contains a pointer value. Smaller values
will typically decrease memory usage while increasing search times.

EWS_NONCE_QUEUE_SIZE
Default: 4. If digest authentication is-used, outstanding nonce values are
maintained in a circular queue. This macro may be defined to set the
maximum number of outstanding nonce values, where each value will
contain approximately 48 bytes of state information plus the size of the
application-defined Evaauthnonce Structure. Larger values are
recommended if one-time nonces are to be used and/or many simultaneous

Copyright © 1997 Agranat Systems, Inc. Page 76 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

- 105 -
EmWeb-rM Functional Specification Confidential EmWeb/Server

authenticated requests from different clients are likely.

EWS_HTTP_STATUS_204, EWS_HTTP_STRING_204
Default: "No Content", "\\n". These macros may be used to override the
status line and message body issued for a no content HTTP response. (This
status is generated in response to a form submission application function
returning NULL, or to an undefined region of an imagemap if no default URL
was specified).

EWS_HTTP_STATUS_304, EWS_HTTP_STRING_304
Default: "Not Modified", "\r\n". These macros may be used to override the
status line and message body issued for a not modified HTTP response.
(This status is generated in response to a conditional GET request if the
requested document has not changed since the "l{-Modified-Since:" value).

EWS_HTTP_STATUS_400, EWS_HTTP_STRING_400
Default: "Bad Request", "\r\n400 Bad Request\r\n". These macros may be
used to override the status line and message body issued for a bad request
HTTP response. (This status is generated in response to an HTTP request

that could not be parsed). -

EWS_HTTP_STATUS_401, EWS_HTTP_STRING_401
Default: "Unauthorized”, "\r\n401 Unauthorized\r\n". These macros may be
used to override the status line and message body issued for an
unauthorized HTTP response. (This status is generated in response to an
HTTP request that did not contain proper credentials to access the server).

EWS_HTTP_STATUS_404, EWS_HTTP_STRING_404
Default: "Not Found", "\r\nd04 Not Found\r\n". These macros may be used
to override the status line and message body issued for a not found HTTP
response. (This status is generated in response to an HT TP requests for an

unknown or hidden URL).

EWS_HTTP_STATUS_411, EWS_HTTP_STRING_411
Default: "Length Required", "n\n411 Length Required\r\n". These macros
may be used to override the status line and message body issued for an
intemal error HTTP response. (This status is generated in response to an
HTTP/1.1 request containing chunk encoded form data with
EW_CONFIG_OPTION_CHUNKED_IN disabled).

EWS_HTTP_STATUS_500, EWS_HTTP_STRING_500
Default: "Internal Error”, "\\n500 Internal Error\in". These macros may be
used to override the status line and message body issued for an intemal
error HTTP response. (This status is generated in response to an HTTP
request resulting in a detectable internal error. This should not ever occur.)

Copyright © 1997 Agranat Systems, Inc. Page 77 REV. 6/20/97

SUBSTITUTE SHEET (RULE 26)

WO 98/06033 PCT/US97/13817

. - 106 -
EmWebTM Functional Specification Confidential EmWeb/Server

EWS_HTTP_STATUS_501, EWS_HTTP_STRING_501
Default: "Not Implemented”, "\r\n501 Not Implemented\r\n". These macros
may be used to override the status line and message body issued for a not
implemented HTTP response. (This status is generated in response to an
HTTP request containing a method not supported by the URL).

EWS_HTTP_STATUS_503, EWS_HTTP_STRING_503
Default: "Service Unavailable", "\r\n503 Service Unavailable\nn". These
macros may be used to override the status line and message body issued
for a service unavailable HTTP response. (This status is generated in
response to an HTTP request for a registered and unloaded document
when the. application-specific ewaDocumentFault() function aborts the
request rather than loading the archive containing the URL).

4.3.2. Application-Provided Functions
The following functions must be provided by the application:

- System functions

. ewaAlloc
. ewaFree

- Network functions

. ewaNetBufferAlloc

. ewaNetBufferFree

. ewaNetBufferNextGet

. ewaNetBufferNextSet

. ewaNetBufferLengthGet
. ewa<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>