B

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Burean

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : (11) International Publication Number: WO 93/07564
GOGF 9/45, 15/40 AL | (43) International Publication Date: 15 April 1993 (15.04.93)
(21) International Application Number: PCT/US92/08683 | (81) Designated States: AU, BR, CA, JP, KR, RU, European

(22) International Filing Date: 9 October 1992 (09.10.92)

(30) Priority data:

07/774,205 10 October 1991 (10.1091) US

71) Applicant: ACUCOBOL, INC. [US/US]; 7950 Silverton
Avenue, Suite 201, San Diego, CA 92126 (US).

(72) Inventor: COKER, Drake ; 112690D Springbrook, San
Diego, CA 92128 (US).

(74) Agent: PUGH, C., Emmett; 4917 St. Charles Avenue, New
Orleans, LA 70115 (US).

patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT,
LU, MC, NL, SE).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: COMPUTER SYSTEM FOR GENERATING SQL STATEMENTS FROM COBOL CODE

COBOL Source

Program
(1)
CoBOL v
coBoOL
Object COBOL Compller
HunlllFGaA)Syslem | code I 2)
(3)
Generlc File System
(6B)
A R
Dat
COBOL/SQL Interface " ch"‘: ;’ary
Querles
and Results
DBMS DBMS DBMS
- Data ¢«—>»{ Runtime je—->] Dictionary
(57) Abstract (9) (7) (8)

An interfacing computer system which allows a COBOL program, despite its totally different nature and internal data han-
dling constructs and statement approaches, to effectively generate structured Query Language (SQL) statements in accessing and
using data from an SQL oriented database (8-9) and getting appropriate data back in a form consistent with what the COBOL
program expects. The program’s interface module (5) receives COBOL statements from an appropriately compiled COBOL pro-
gram (3), and, using information contained in a data dictionary (4) created when the COBOL program (1) was compiled (note
compiler 2), generates the appropriate SQL statements to access and generate the appropriate data from an SQL oriented data-
base (8-9) for sending back to the COBOL program (3). A number of innovative programming and logic techniques are used, in-

cluding techniques. for enhanced execution speed.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

applications under the PCT.

AT Austria
AU Australia
BB Barbados
BE Belgium

BF Burkina Faso
BG Bulgaria

BJ Benin

BR Brazil

CA Canada

CF Central African Republic
CG Congo

CcH Switzerland

Cl Céte d’lvoire
cM Camecroon

cs Czechoslovakia
czZ Czech Republic

DE Germany
DK Denmark
ES Spain

Fi1 Finland

KR
Ll
LK
Ly
MC
MG
ML
MN

France

Gabon

United Kingdom
Guinca

Greeee

Hungary

Ireland

Italy

Japan

Democratic People’s Republic
of Korca
Republic of Korea
Licchtenstein

Sri Lanka
Luxembourg
Monaco
Madagascar

Mali

Mongolia

Mauritania

Malawi
Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slovak Republic
Senegal

Sovict Union

Chad

Togo

Ukraine

United States of America
Vict Nam

€,

.

o

'y

-

WO 93/07564

10

15

20

25

30

35

PCT/US92/08683

-1-

_ Computer System for
Generating SQL Statements from COBOL Code

BACKGROUND of INVENTION
7 1. Field of Invention
The present invention relates to computer programs,

and more particularly to a computer system, including
programming principles and practices, used in converting
statements from one computer language into a different,
generally inconsistent language. The invention in its
preferred embodiment further relates to, inter alia, an
interfacing program which allows a COBOL program,
despite its totally different nature and internal data
handling constructs and statement approaches, to gener-
ate Structured Query Language (SQL) statements in creat-
ing, accessing and/or using data from a SQL oriented
database and getting appropriate data back in a form
consistent with what the COBOL program expects. o

2. General Background

'As noted in the SQL Programmer’s Guide (Gupta &
Gietz, Que, 1989, ISBN 0-88022:390-1), a database is

like an electronic "filing cabinet". It is used for the
same purpose as any other f£iling cabinet — to store
records. A basic difference, of course, is that, with a
database, the records are stored electronically.

To get at stored records, or even to store them in
the first place, a system is needed for managing the
database. A database management éystem (DBMS) enables

operations to be performed, e.g. — "Bring me this file,"
"Update this record," etc. — on the contents of the
cabinet.

Various types of DBMS's exist, representing differ-
ent approaches to the tasks of furnishing access to
information in a database, preserving the data’s integ-
rity, keeping track of the users, providing security,
and so on. 'Generally speaking, all of the DBMS’s can be
classified into two kinds — relational and non-rela-

SUBSTITUTE SHEET

WO 93/07564

10

15

20

25

30

35

-2-

tional. By and large, all of the newer systems on the
market are "relational".

One of the relational type database languages that
has been gaining great prominence is the Structured
Query Language (SQL), formerly called "Sequel". SQL’s
background and history, and the details and workings of
the language, are described in, for example, the SQL
Programmer’s Guide referred to above. Although the lan-
guage has not been totally standardized and there are a
number of vendors (e.g., Informix™, Oracle™, etc.) who
sell variants of the language, SQL generally will in-
clude at least the following statements (or their equiv-
alents or variants) which are used in the exemplary
embodiment of the present invention:

ALTER ALTER TABLE CLOSE

COMMIT CREATE INDEX CREATE TABLE
DECLARE CURSOR DELETE DROP

EXEC SQL EXECUTE FETCH

FETCH INTO GRANT GROUP BY
INSERT ' MODIFY OPEN

ORDER BY PREPARE RENAME TABLE
ROLLBACK SELECT UPDATE
WHENEVER

With respect to the nature or structure of an SQL
oriented database, it includes a collection of tables
(each two dimensional having columns and rows), in which
the data has been at least in part pre-processed. It
includes a series of restrictions and qualifications not
found in other languages, particularly COBOL (Common
Business Oriented Language), which as explained more
fully below, has its own philosophical approaches,
restrictions and qualifications.

Many companies today have developed very valuable
SQL oriented databases having values in the many mil-

lions of dollars, and it is highly desirable for a com-

SUBSTITUTE SHEET

PCT/US92/08683

-

A

WO 93/07564

10

15

20

25

PCT/US92/08683

-3-
pany’s program(s) to be able to access and manipulate
the data in such databases through the SQL language.
However, a number of well established business programs
which are very widely in use today (perhaps even domi-
nant in the business world), being based on programming
languéges which were created many years ago, were writ-
tén in languages having a totally different approach and
programming philosophy highly inconsistent with the
approach and philosophy of SQL, making the two'very
large and very valuable "worlds" heretofore practically
inconsistent and incompatible. |

A prime example of this situation is the business

~dominant programming language of COBOL, which traces its

development back to 1960 (and earlier). It has had at
least two standardized versions since then, namely
ANSI-74 and ANSI-85.

For additional background information on the COBOL
language and in particular the AcuCOBOL™-85 version of
the COBOL (ANSI-85) language, in which the exemplary
embodiment of the invention described in detail below
was developed, reference is had to, for example, the

AcuCOBOL™-85 COBOL COMPILER (Version 2.0) User’s Guide &

Reference Manual (AcuCOBOL, Inc., San Diego, CA, 1991),

the disclosures of which are incorporated herein by
reference.
COBOL's database scheme is purely sequential and

non-relational due to its historical development many

~ years ago during the time period when the only practi-

SUBSTITUTE SHEET

WO 93/07564 PCT/US92/08683

10

i5

20

25

-4-
cally available form of "memory" was IBM™ type punch
cards, paper tape and later magnetic tape. Such a
scheme is purely one dimensional and is very limited in
comparison to the approaches of DBMS’s available today,
such as, for examplé, the Structured Query Language or
"SQL" database, discussed above.

In contrast, a SQL database is a relational data-
base which is random in nature in the way it presents
its data in its two dimensional tables in its database
structure. The randomness nature of an SQL database is
part of its strength. However, when one remembers the
dominant existence of COBOL programs through out the
world, it and the totally different way the two lan-
guages handle and consider data and the significant
differences in allowed language statements, has created
a heretofore insurmountable obstacle insofar as allowing
a COBOL program to use an SQL oriented database.

However, those obstacles have all been overcome in
the present invention, with the invention achieving for
the first time that which was heretofore thought to be

at least practically if not technically impossible.

General Summary Discugsion of the Invention

The present invention thus provides the interfacing
means or programming features and techniques which allow
a COBOL program to directly access and effectively use

data f£rom a SQL database.

SUBSTITUTE SHEET

o

WO 93/07564

10

15

20

25

. PCT/US92/08683

-5-

The present invention is directed to a computer
system, including a program or program subset, having
one or more of the various programming principles,
guidelines and innovations of the present invention, to
generate and execute "Structured Query Lahguage" (sQL)
statements based on COBOL code, so that a COBOL program .
can now access and use data in an SQL oriented database
as if the data were in COBOL form. Thus, with the pres-
ent invention venerable COBOL programs, with the advan-
tages that language provides, can also directly access
the ever expanding world of SQL databases, thereby
obtaining also the advantages of the advances in that
language. |

Part of the tremendous economic value of the inven-
tion lies in part in its ability to allow the selling of
database management systems to COBOL shops (provided
these shops convert to a supported COBOL language, e.g.,
AcuCOBOL™, and use the present exemplary embodiment of
the invention), as well as COBOL to DEMS shops, etc.

The preferred embodiment that is described in some

- detail below is based on the exemplary use of a COBOL

program following AcuCOBOL™-85 (COBOL ANSI-85) working
with an Informix™ SQL database. With respect to these
two vendors’ products, both publish substantial informa-
tion about their programs and their respective versions
of COBOL and SQL, the disclosures of which publications

are incorporated herein by reference.

0
J

m
m
_|

SUBSTITU

k=

—
=

WO 93/07564 PCT/US92/08683

10

15

20

25

-6~

Since COBOL and SQL evolved differently, they have
different data types. Part of the invention resides in
the treatment of COBOL type data so that it can function
in a SQL type table with the expense (time) of conver-
sion between the two being acceptable. The conversion
table preferably is done once at compile time when all
of the data definitions are known from the COBOL source
code.

At runtime, SQL statements are generated and exe-
cuted based on the statements and data needs of the
user’s COBOL, which typically will be in compiled,
object code form.

As discussed in some detail below, there are a
number of major translation, conversion and formét prob-
lems that the present invention has solved using innova-
tive techniques and solutions.

The scope of the exemplary embodiment of the inven-
tion is the entire COBOL instruction set based on COBOL
ANSI standard 85 and preferably at least the SQL state-
ments listed above. 1In the invention there is effec-
tively a conversion of COBOL logic, structure and state-
ments to SQL established or acceptable statements,
allowing access to the data in spite of the tremendous
differences between the logic, philosophy and data
structure and handling approaches of the two languages.
However, if so desired, the present invention can be
limited to be used or be compatible with only a subset

of COBROL, typically including at least a number of the

SUBSTITUTE SHEET

WO 93/07564

10

15

20

25

-7~
statements relevant to I/0O (input/output), namely CLOSE,
DELETE, OPEN, READ, REWRITE, START, UNLOCK & WRITE.
Additionally, as the COBOL and SQL languages expand and
change, the exemplary embodiment can be readily modified
tﬁréccommodate these future developments.

~In operation, in the exemplary embodiment, a COBOL

progrém in source code form is compiled using a COBOL
compiler, which operates in accordance with the princi-
plés 6f the present invention. As the source code pro-
gram is being compiled, the COBOL program is analyzed
énd evaluated, particularly with respect to its data
fields and how those fields are used, with the compiler
producing not only the compiled COBOL prbgram in object .
codeiform (as is standard), but also a data dictionary
fiié'in'which a series of values is set based on the
coméiler's analysis and evaluation of the COBOL program.
Then, as the compiled COBOL program executes and needs
data fromrthe SQL database, its COBOL I/0O statements are
received by an interface program, which theh generates
and sends SQL statements to the SQL database based on
the COBOL statements, obtaining the data desired by the
COBOL program from the SQL database.

 This operation of the invention’s programs in its

preferred approach is "seamless" and requires no SQL

- awareness on the part of the COBOL program. Insofar as

the COBOL program is aware, it is runningVCOBOL I/0

statements and receiving COBOL data back in return,

although in fact the data came from or was produced by

SUBSTITUTE SHEET

PCT/US92/08683

WO 93/07564 PCT/US92/08683

10

15

20

25

-8 -
standard queries operating though a SQL oriented and run
database by means of the invention’s interface program.

It is noted that in the preferred embodiment the
data dictionary is created during the compiling process
and saved for interaction with the compiled program
during runtime. Although this procedure, as described
fully below, is believed to be the most efficient, the
invention can be employed in a system where its parts or
all of them are utilized or created at compile time or
runtime, if so desired.

It is therefore an object of the present invention
to provide a practical means for allowing a COBOL pro-
gram to create, access, manipulate and/or receive pro- .
cessed data to and from a SQL oriented database.

It is another object of the present invention to
achieve this in a way which does not require the COBOL
program to be in and of itself SQL aware or oriented.

It is a further object to achieve these heretofore
"impossible" goals with the program operating speedily
and effectively and without any significant burden on
the COBOL program’s users.

BRIEF DESCRIPTION of the DRAWING

For a further understanding of the nature and
objects of the present invention, reference should be
had to the following detailed description, taken in
conjunction with the accompanying drawing, wherein:

Fig. 1 is a block diagram illustrating in general-

ized form how the exemplary embodiment of the invention

SUBSTITUTE SHEET

)

£

WO 93/07564

‘10

15

20

25

PCT/US92/08683

-9 -
works and interfaces and communicates with the various
elements of the exemplary embodiment. _
DETAILED DESCRIPTION of PREFERRED, EXEMPLARY EMBODIMENT

As can be seen in Fig. 1, a COBOL program in source
code form 1 is typically compiled by a COBOL compiler 2
(e.g. AcuCOBOL™-85) to produce a compiled COBOL program
3 in object code form. This in and of itself is stan-
dard practice.
| However, using the translation and conversion prin-
éiples of the present invention and doing the evaluation
work necessary in order to perform the transiating _
interfacing of the compiled COBOL program 3 with the SQL
oriented database (7-9), the compiler also produces a
data dictionary file 4 which stores a set of values
which will be used by the interface program 5.

The data dictionary 4, which maps the COBOL records
of the compiled COBOL program 3 to the database’s fields
in the SQL database 8 based on an analysis and evalua-
tion of the COBOL program 1/3 during the ¢ompiling oper-
ation, is a very important part of the exemplary embodi-
ment and is discussed more fully below. .

All of this takes place within a computer running
the program in conjunction with the data dictionary 4
of the invention, working in connection with the user’s
compiled COBOL program 3 and the SQL oriented database
(7-9) . |

The SQL database typically includes a runtime ver-

sion of the SQL language database program 7 (e.g. Infor-

SUBSTITUTE SHEET

WO 93/07564 PCT/US92/08683

10

i5

20

25

-10~
mix™ SQL) working with the data 9 in the database with
the assistance of the DBMS dictionary 8. The SQL ori-
ented database can be located in the memory storage sub-
system of the user’s computer or at a remote but acces-
sible computer.

Although included together in Fig. 1 for the
general purposes of illustration, it should be under-
stood that the compiling of the COBOL source code pro-
gram 1 by the compiler 2 to produce the compiled program
3 typically takes place at a different time and indeed
often at a different location than that where the com-
piled COBOL program 3 and its accessing of the SQL ori-
ented database 7-9 occurs. Thus, for example, a program
developer may develop the source code program and then
compile it, thereafter distributing the compiled object
code version of the program to the developer’s user
base.

For an exemplary embodiment of the present inven-
tion and for purposes of illustration only, the pre-
ferred embodiment will be described in éhe context of
using an AcuCOBOL™-85 compiled and compatible COBOL
program 3 on one side and an InformixSQL™ program for
the SQL language on the other side. However, it should
be understood that the invention has far ranging appli-
cability with regards to various other versions and
dialects of the COBOL and SQL languages generally.

The programming problems and obstacles encountered

in making the present invention will now be described

SUBSTITUTE SHEET

.

e

‘WO 93/07564

10

15

20

25

PCT/US92/08683

-11-
and the solutions of the exemplary embodiment therefor
further described in some detail.

Accessing Data with AcuCOBOL™-85 brograms

The standard file system supplied with AcuCOBOL™-85
is the Vision indexed file system from AcuCOBOL™.

Vision supports variable-length records, data compres-
sion, and data encryption.

At the user’s option, Vision can be replaced by (or
used in conjunction with) other indexed file systems
such as C-ISAM™, and relational database management
systems such as Informix™. This interchangeability of
file systems is possible because all of AcuCOBOL's I/0
passes through a generic file system 6B that can accom- ,
modate a wide variety of protocols.

Interface Routines

All file systems that are external to AcuCOBOL™-85
communicate with the AcuCOBOL generic file system 6B via
interface routines. These routines are available from
AcuCOBOL as add-on modules.

Data Dictionaries

Relational databases such as Informix™ interface to
AcuCOBOL™-85 via a special family of add-on interfaces
5. Because relational databases manipulate fiélds, and

COBOL programs manipulate records, some mapping is

- necessary to associate records with their fields. The

interfaces 5 use data dictionaries 4 that help to map

COBOL records into relational database fields, and map

~the database fields back into records.

SUBSTITUTE SHEET

WO 93/07564 PCT/US92/08683

10

i5

20

25

30

-12-

The following discussions describes the exemplary
computer system of the present invention and explains
how they interface to file systems by referencing data
dictionaries.

Interfaces to indexed file systems such as C-ISAM",
MINISAM, and Btrieve do not require data dictionaries.
Those interfaces are documented in separate booklets.

Database Concepts

Databases such as Informix™ differ from indexed
file systems in some significant ways. They operate on
fields rather than on records. Each file is logically
represented in table form. Within a table, each column
represents éne field, each row represents one record.

For example:

Name Acct .Number LastPurchase Amount

Smith, C. 23278 02/19/91 123.50
Jones, B. 34657 03/14/91 652.00
Foster, V. 12976 09/30/90 1,260.75
Malden, G. 25556 06/13/91 985.45
Drake, F. 34857 07/15/89 799.00
Hoover, L. 29384 10/04/91 45.00
Pierce, S. 64532 01/15/91 75.00

The names of the columns are analogous to the names
of fields in an indexed file.
Each of the following COBOL concepts is associated

with the SQL database concept listed beside it:

COBOL Concept Database Concept
Directory Database

File Table

Record Row

Field Column

SUBSTITUTE SHEET

»

WO 93/07564

10

15

20

25

30

azZzzad=ze

 PCT/US92/08683

-13-

For example, a COBOL record that looks like this:

01 AR-CODES-RECORD.
03 AR-CODES-KEY.
05 AR-CODE-TYPE PIC X.
05 AR-CODE-NUM PIC 999.
01 TERMS-CODE-RECORD.

03 TERMS-RATE PIC S9V999,
03 TERMS-DAYS PIC 9(3).
03 TERMS-DESCRIPT PIC X(15).

would be represented logically in the database in a

format similar to this:

ar-code-type ar-code-num terms-rate terms-days terms-descript
234 1.500 10 net 10
235 1.750 10 net 10
245 2.000 30 net 30
255 1.500 15 net 15
236 2.125 10 net 10
237 2.500 10 net 10
256 2.000 15 net 15

When COBOL applications access a database, each

COBOL - I/0 operation performs an operation on an entire

row in a table in the database.
How the Interface Works

The interfaces 5 of the exempléry embodiment make
it possible for the user to access SQL relational data-
basesrsuch,as Informix™ directly from the user’s COBOL
appiications.

Previously, accessing SQL relational databases
involved writing Standard Query Language (SQL) code and
embedding that code in the user’s COBOL program. The

user had to know SQL and had to write SQL statements

‘appropriate for the specific database the user wanted to

access. Because the user’s queries were tailored to

suit one database management system, the user’s code had

SUBSTITUTE SHEET

WO 93/07564 PCT/US92/08683

10

i5

20

-14-
to be changed if the user later wanted to access a dif-
ferent DBMS with the user’s application, or access an
indexed file system instead.

The exemplary embodiment of the invention prefera-
bly provides a seamless interface between the program
and the SQL relational database. This means that the
information exchange is so smooth that it appears to the
end COBOL users that the database and the COBOL program
are part of the same process. For example, if the COBOL
program specifies a READ, this is automatically trans-
lated by the interface into a database SQL type query,
which may be printed in addition to being executed.

Then the data that is read from the database is automat-
ically translated into a COBOL record. This exchange
occurs in fractions of a second, and the application
proceeds without interruption.

The exemplary embodiment interfaces are categorized
as seamless because the communication between the COBOL
program and the SQL database is smooth, with no data
duplication, no special query coding on the part of the
COBOL programmer, and no interruptions in the éxecution
of the program. Additionally, the COBOL code need not
be changed if the COBOL user later wants to access a

different database or access an indexed file system.

SUBSTITUTE SHEET

2

»

&

WO 93/07564 < f ~ PCT/US92/08683

10

15

20

25

-15-
Steps For the User to Follow

This seamless dialogue is possible because the
éxemplary embodiment interface 5 (see Fig. 1) builds its
own database queries whenever a COBOL input or output
request is received. These are the steps that prefera-
bly occur in the exemplary embodiment.

Compile with -2x

1. The user writes a standard COBOL application
and compiles it with a compiler, such as, for example,
the AcuCOBOL-85™ compiler. When the users compiles, the
user specifies via a compile-time option that the user
wants the compiler to generate data dictionaries, in
addition to an object code file.

Dictionaries are Created

2. A data dictionary of the exemplary embodiment
is created by the compiler for each file in the program.
These data dictionaries map COBOL records to the fields
that they comprise.

Set DEFAULT-HOST Variable

3. 1In the configuration file, the user specify
whiéh DBMS the user are using. This is set with the
DEFAULT-HOST variable. For example, the user might set
"DEFAULT-HOST informix".

| Set DATABASE Variable

4. 1In the configuration file, thé user specifies

which database the user is using. This is set with the

DATABASE variable. For example, "DATABASE stores"

SUBSTITUTE SHEET -

WO 93/07564 PCT/US92/08683

10

i5

20

25

-16-
selects the demonstration database named "stores" that

is shipped with Informix™.
I/0 Requests are Passed to the Interface .

5. The user uses the embodiment’s runtime system

'1

to execute the application. Whenever the runtime system
encounters an input or output instruction (such as READ
or WRITE), it passes the request to the interface 5.
SQL Statements are Built Automatically

6. The interface automatically builds SQL instruc-
tions that the database management system can under-
stand. As it builds these SQL instructions, it looks at
the AcuCOBOL data dictionary, which associates the COBOL
records with their fields.

Database is Accessed

7. The database management system.uses its own
dictionary as a pointer into its own data files, per-
forms the requested I/O operation, and passes the
results back to the interface 5.

COBOL Records are Formed

8. The interface translates the data fields into
COBOL records, which are then passed back to the runtime
system 6A via the generic file interface 6B.

All of this communication is preferably automatic,
and all database queries and translations are performed
behind the scenes, so that the COBOL end user preferably

experiences no interruption in program execution.

SUBSTITUTE SHEET

WO 93/07564

10

15

20

25

PCT/US92/08683

-17~-
Data Dictionaries
Very important to the exemplary embodiment’s data-
base interface are the data dictionaries 4 that map
COBOL records to database fields. These dictionaries
are called extended file descriptors (XFD’s) because
they are based on the standard COBOL file descriptors
(FD’'s) .
XFD Files
Each COBOL file has a corresponding XFD file. XFD
files are created by the compiler when the user speci-
fies the "-2x" compile — time option. When this option

is used, an XFD file is created for every file contained

in the compiled program.

‘Creating XFD files at compile time offers two sig-
nificant advantages:
| Any changes made to the files are automatic-
ally included in the data dictionaries when the
pfogram is re-compiled.

The effects of all compile-time options, COPY
REPLACING, and source-code control lines are
reflected correctly in the dictionaries.

The XFD file describes a COBOL file from the point
of view of the fields the file contains. It also con-
tains all of the standard information uséd by the non-
database file systems. This information is not strictly
required for the database interface 5, but it is gener-
ally useful. The XFD file is a simple text file. The

format of this file is as follows:

SUBSTITUTE SHEET

WO 93/07564 PCT/US92/08683

10

15

20

25

-18-

The first line contains the phrase "XFD,01," fol-
lowed by the SELECT name of the COBOL file and the base-
name of the XFD file. For example:

"XFD, 01, CUSTOMER-FILE, CUSTFILE."

This line is used to identify the XFD file. The "O01"
identifies the format used for the XFD file (revision
"oir) .,

The second line contains the logical parameters
field used by the generic file system. This consists of
the maximum record size, the minimum record size and the
number of keys, all separated by commas.

Then follows a number of sections equal to the
number of keys in the file. Each section has the follow-
ing format:

a. The key definition string used by the
generic file system for the key being defined. This
consists of a series of comma-separated numbers. These
values are — the number of segments, the duplicate flag
and the key size and offset for each segment. This is
described in more detail in the fFile System Interface"
documentation of the AcuCOBOL User’s Guide & Manual
referred to above.

b. The number of field definitions that are
contained in the key. Since the database does not under-
stand the notion of a group item, each key must be
described as a series of individual fields.

c. The name of each field contained in the

key then follows, one per line.

SUBSTITUTE SHEET

WO 93/07564 -

10

15

20

25

PCT/US92/08683

..19-
4. After the key definitions come a series of
condition definitions. Condition definitions are used to
identify fields that are not present in every record.

This is described in more detail below. The first line

after the key definitions contains a count ofbthe number

of condition definitions that follows (3 digits).
5. Each condition’s definition then follows, one
per line. The condition definitions have the following

format (each field is separated from the next by com-

- mas) :
a. The condition number (3 digits).
b. The condition type: "in = equality condi-
tion, "2" = inequality condition or "3" = wapg" condi-
tion.

€. For condition types 1 and 2, what follows
is the name of the field to test and the value to test
for. For condition type 3, what follows is the numbers
of the two condition and "andw together. |

5. After the condition definitions are completed,

the iields are defined. This line contains the number

of fields that are defined (4 digits).

6. The count field is followed by each field defi-

nition, one per line. This definition consists of a

series of comma-separated entries. These entries are as
follows:
a. The offset of the field, in bytes (5 dig-

its).

SUBSTITUTE SHEET

WO 93/07564

10

15

20

25

30

b. The
its).

c¢. The

PCT/US92/08683

-20-

size of the field, in bytes (5 dig-

type of the field, using the "sub.h"

values (2 digits).

d. For
in the field. For
the size field (5

e. The

numeric fields, the number of digits
nonnumeric fields, this is the same as
digits).

scale of the field, expressed as a

power of 10. For example, a numeric field with two dig-

its after the dec

numeric fields, this value is zero.

expressed as a "+

£. The

be described later.

its).

g. The
field, or zero if
digits) .

h. The

For example,

imal point has a scale of -2. For non-
The value is
" or a "-" followed by 2 digits.
nuser type" of the field. This will |

The default value is zero (3 dig-

condition number to apply to this

the field appears in every record (3

name of the field.

suppose you had the following COBOL

01 KEYWORDS-RECORD.
03 KEYWORDS-KEY

05
05

03 KEYWORD-PERCENT

PIC X(15).
PIC 9(7).
PIC 9(3)V99 COMP-3.

KEYWORD-WORD
KEYWORD-ID

This would produce the following XFD:

XFD, 01, KEYWORDS-F
00025, 00025, 001
1,0,022,00000

02

KEYWORD-WORD

ILE,KEYWORDS (file identification)
(max-rec,min-rec,# of keys)

(layout of first key)

(# of fields in key)

(field names in key)

SUBSTITUTE SHEET

WO093/07564 ~ PCI/US92/08683

10

15

20

25

30

-21-
KEYWORD-ID
000 (# of conditions)
0003 (# of fields in record,

followed by field definitions)
00000,00015,16,00015,+00,000,000,KEYWORD-WORD
00015, 00007,01, 00007, +00,000, 000, KEYWORD-ID
00022,00003,08,00005,-02,000,000,KEYWORD-PERCENT

It is noted that the group items have been elimif
nated from the XFD file. This is because group items
ére‘ndt fields — they are collection of fields.

Defaults Used in the Dictionaries

There are several elements of COBOL that require
special handling when data dictionaries are built.
These include multiple record definitibns, REDEFINES,
FILLERs, and OCCURSQL. This section describes how Acu-
COBOL™-85 handles each of these situations.

Note that, in the exemplary embodiment, in some
cases the user can override the default behavior by
placing a special comment line in the user’s COBOL code.
These comments are called directives, and they are all
described more fully below.

REDEFINES

Fields contained in a redefining item occupy the
same'pbsitions as the fields being redefined. Databases
generally do not support the notion of multiple defini-
tions for the same column. For this reason, one needs
only to select one of the field definitions to use. The
default rule that is followed in the exemplary embodi-
ment is to use the fields in the item being redefined,
and ignore any fields that appear subordinate to a

REDEFINESQL.

!BLHBEﬂHHTJTTESSFHEE?F

WO 93/07564 PCT/US92/08683

10

15

20

25

-22~-
Multiple Record Definitions

In the exemplary embodiment this same rule extends
to multiple record definitions. In COBOL, multiple
record definitions are essentially redefinitions of the
entire record area. This leads to the same complication
that is present with REDEFINES: multiple definitions
for the same data. So one needs to select one defini-
tion to use.

Because the multiple record types can be different
sizes, the largest one preferably is used, so that all
of the fields can be adequately covered. The rule for
the exemplary embodiment is to use the fields in the
largest record defined for the file. If more than one
record is the largest, the first one of those is used.

Group Items

It should be noted that group items are never
included in a data dictionary for the same reason that
REDEFINES are excluded — they result in multiple names
for the same data items. The user can, however, choose
to combine grouped fields into one data item by spécify-
ing the "use group" directive, described later.

FILLER Data Items

FILLER data items require special handling because
they do not have a name. SQL databases do not allow
unnamed columns. So FILLER data items are not placed in
the AcuCOBOL dictionary 4, but the compiler issues a

warning whenever it rejects a FILLER field. The user

SUBSTITUTE SHEET

fe

WO 93/07564 . PCI/US92/08683

-23-
can then choose to add a name to the FILLER item with
the "name" directive, described below.
Identical Field Names
In COBOL identical field names are resolved by
5 qualification. But database systems consider duplicate
| names an error. Thus, in the exemplary embodiment, if
more than one field in a particular file has the same
name, the data dictionary 4 will not be generated for
Vthat file.
10 The preferred solution to this situation is to add
a special comment line that associates an alternate name
with each of the conflicting fields. The "name" direc-

tive, described below, is placed on that comment line. N

o

Long Field Names
15 Field names longer than eighteen (18) characters
are truncated to eighteen (18) characters by the inter-
face, to meet SQL requirements.
Naming the XFD.
A name must be given to each XFD (data dictionary)
20 4 that is built. Each XFD name preferably is built from
| a starting name that is derived from the user’s COBOL
code. The following paragraphs explain how that occurs.
ASSIGN Name is a Variable
If the SELECT for the file has a variable ASSIGN
25 name (such as ASSIGN TO FILENAME), then the user must
_ speéify a starting name for the XFD file via a comment
in the user’s code. This process is described'beloﬁ in

the section titled "Using Directives".

SUBSTITUTE SHEET

WO 93/07564

10

is5

20

25

-24-

PCT/US92/08683

ASSIGN Name is a Constant

If the SELECT for the file has a constant ASSIGN

name (such as ASSIGN TO "COMPFILE")
plary embodiment that name is used

for the XFD name.

, then in the exem-

as the starting name

ASSIGN Name is Generic

If the ASSIGN phrase refers to a generic device

(such as "DISK"), then in the exemplary embodiment the

SELECT name is used as the starting name.

Forming the Final XFD Name

From the starting name, this is how the final name

is formed in the exemplary embodiment:"

1. The starting name is stripped of any extens

sions.

2. A "yniversal'" base name is constructed. We

construct the base name by stripping out directory

information that fits any of the formats used by

the operating systems that run AcuCOBOL™-85.

3. This base name is then reduced to eight

characters and converted to lower case.

4. The base name then has the letters ".xfd"

appended to it.

Examples of XFD Names

COBOL_Code:
ASSIGN TO "“usr/ar/customers.dat”
SELECT TESTFILE, ASSIGN TO DISK
ASSIGN TO "-D SYS$LIB:HELP"

ASSIGN TO FILENAME

SUBSTITUTE SHEET

File Name:

customer.xfd
testfile.xfd
help.xfd

(the user specifies)

v

0

WO 93/07564

10

15~

20

25

-25-
Getting Started

The user will typically be in one of two situations
in starting to use the preferred embodiment. In situa-
tion one, the database files do not exist yet, and will
be.brandrnew; In situation two, the database files
already exist, and the user wants to access that exist-
ing data from a COBOL application (1/3 of Fig. 1).

Each situation brings up its own issues. For exam-
pié, one must consider how the COBOL data is declared so
thét iﬁlmatches the database data, and if there are any
special fields in the database that must be accessed in
érspecial way.

No matter which situation exists at the user’s
éiﬁe,rif the user is writing a new COBOL application
that will access a specific SQL relational daﬁabase,
it’s simplest if the user chooses COBOL record names,
field names, and data types that accommodate the special
rules and restrictions imposed by the database manage-
ment system. For example, fields within a file prefera-
bly should have unique names, and should be no longer
than eighteen (18) characters.

Adhering to the rules of the DBMS ensures that the
user’s COBOL application will produce accurate data
dictionaries when it’s compiled.

The fpllowing are automatically handled by the
intérface 5 of the preferred, exemplary embodiment:

The preferred program of the invention auto-

matically converts uppercase field names to lower-

" SUBSTITUTE SHEET -

PCT/US92/08683

WO 93/07564 PCT/US92/08683

10

is5

20

25

_26-

case (and vice versa) when necessary, so the user

need not be concerned with case differences.

Numeric data is assumed to be positive, so the
user need not specify a sign. If negative data is
possible in a field, the user must specify an "S*"
in the PICTURE clause.

The preferred program of the invention auto-
matically performs the conversions needed to match
the internal storage formats used by the database.

If the database files do not already exist,
they will be created for the user automatically. If
this is the user’s situation, the user will have no
concerns about matching COBOL fields to database
fields. The fields will match perfectly, because
the database fields will be based on the user’s
COBOL code.

Accessing Existing Database Files

If the user is accessing existing data in a rela-
tional database, the user needs to know how to declare
the user’s data so that it will match the database
fields.

If the user’s COBOL code isn’t written yet, the
user preferably should follow the guidelines given in
this section.

If the user’s COBOL application already exists, the
user can make the necessary adjustments by adding direc-
tives to the user’s code. Directives are comments that

guide the creation of the data dictionaries. The dic-

SUBSTITUTE SHEET

WO 9307564 " PCI/US92/08683
-27-
tionaries in turn help map the COBOL fields to their
equivalent database fields. These directives are
described below in the section sub-titled "Using Direc-
tives". |
5 - Matching Existing Text Fields J
R To access character data, the user simply declares
the field as PICTURE X, with as many X’s as appropriate.
~Matching Existing Numeric Fields
Numeric SQL database fields generally fall into one
10 Qf these types — INTEGER, SMALLINT, DECIMAL, MONEY,
SERIAL, FLOAT, DATE INTERVAL, or BLOB.
The following table shows how most of these numeric

data types preferably are declared in the user’s COBOL

program:

15
INTEGER PIC $9(10)
" SMALLINT PIC 89(5) or
PIC S9(4)
COMP-4
DECIMAL(6,2) PIC 9(4)Vvo9
, MONEY (4) PIC 9(2) V99
20 SERIAL PIC 9
FLOAT PIC S9(nn)
DATE INTERVAL and BLOB (Binary large object) are
not included.
As many 9's should be used in the COBOL program’s
’ 25 PICTURE phrase as the user needs to accommodate the

largest data that could be stored. If the user knows

the data well enough to know the largest ?ossible value,

SUBSTITUTE SHEET

WO 93/07564 PCT/US92/08683

10

i5

20

25

30

-28~-
or if the user know that the data is always positive,
the COBOL program’s PICTURE phrase should be adjusted to
reflect the user’s situation.
USAGE Types
The USAGE type the user declares in COBOL is not
really essential to the invention, because the preferred
embodiment of the invention will do its conversion work
regardless. However, it is noted that the conversion of
the data is somewhat more efficient if the user uses
COMP-4. The table below presents what the preferred
conversion will be from COBOL to SQL by the interface 5
based on how the COBOL data is declared, as detailed in

the first column.

DATA DECLARATION CONVERSION TABLE

COBOL SQL

PIC X (15) = CHAR(15)
PIC 9 = SMALLINT

99

999

9999
PIC 9(5) E INTEGER

9(e)

9(7)

9(8)

9(9)
Other Numeric = DECIMAL

(all other PIC 9’s)
e.g., 59(6)Vves DECIMAL(8,2)

All non-numeric data becomes type CHAR. For an

additional example, PIC X(10) becomes CHAR(10).

SUBSTITUTE SHEET

)

WO 93/07564 -

10

15

20

25

PCT/US92/08683

-29-

Numeric data items from PIC 9 to PIC 9(4) become
SMALLINT (16-bit binary, an efficient data form); while
data items from PIC 9(5) to PIC 9(9) become INTEGER
(32-bit binary).

All other PIC 9 formats, including data items with
a decimal point such as PIC 99V9, become DECIMAL (#,#).
The first "#" is the total number of digits, while the
second "#" is the number of digits after the decimal
point.

Computational types do not really matter. No con-
version occurs for COMP-4, so it is most efficient to
ﬁse COMP-4 for PIC 9 to PIC 9(9).

The foregoing scheme of the exemplary embodiment 4
solves one of the very basic pfoblems in converting
COBOL I/O statements, namely how to interface and handle
the Qery formidable task of harmonizing the totally
different concepts of handling integers and other numer-
ical values which exist between COBOL and SQL.

Thus the exemplary embodiment of the invention uses
the relationships expressed in the foregoing table to
interface between the two differeﬁt treatments of text,
integers and other numeric values found in COBOL and
SQL.

Dates

‘To specify that a numeric or alphabetic data item

is a date, the user can use a special "date" comment.

(See the section entitled "Using Directives", below.)

SUBSTITUTE SHEET

WO 93/07564 PCT/US92/08683

10

15

20

25

-30-
Field Names

If the user’s COBOL application already exists, and
if it must access a relational database that already
exists, the user may have to work around differences in
the names of the fields, as well as naming conventions
imposed by the DBMSQL For example, the user’s program
might use the name EMPLOYEE-NO, while the database uses
the name EMP-NUMBER for the same item of information.

Resolving Name Conflicts

If naming differences exist, the user need not
rename the user’s variables, and the user need not
change the database. This is because the AcuCOBOL™-85
compiler builds data dictionaries that map the user’s
COBOL variables (regardless of their names) to the cor-
rect database fields. The user enables the compiler to
make the mapping by adding directives to the user’s
COBOL code wherever the COBOL name differs from the
database name. '

Directives can also be used to produce other
effects when data is mapped from COBOL to the SQL data-
base. They can:

group fields together;

give a name to the data dictionary file;

treat selected numeric data as text strings;

set up conditions under which certain fields
are defined; and

specify additional data mapping options.

SUBSTITUTE SHEET

WO 93/07564 ~ PCI/US92/08683

10

15

20

-31-

The following section explains each directive,
describes when the user would use each, énd provides
examples.

Using Directives

AcuCOBOL™ data dictionaries 4 (note Fig. 1) are
based on the user’s COBOL FD's (file descriptors) .
Hence the dictionaries 4 (Fig. 1) are preferably called
Extended FD’'s or XFD’'s. Each dictionary describes all
of the fields for one file.

If the files used by the user’s COBOL program con-
tain no duplicate names, and if the default mapping
rules described earlier in this document are sufficient
for the user’s situation, then the user’s data dlctlon—;
aries 4 may be built directly from the user’s source
code with no additional directives.

If the user would like to override the default
mapping behavior, or map a field to a différent name,
thén the user preferably may add directives to the
user’s COBOL code.

~ Directives are special comments that are used to
guide the building of the data dictionaries.r They
always include special letters, for example, "XFD".
These three letters indicate to the compiler that the

comment is to be used in dictionary generation.

SUBSTITUTE SHEET

WO 93/07564 PCT/US92/08683

10

15

20

25

30

-32-
Syntax for Directives
A sample of COBOL code with three directives in
place is:
01 EMPLOYEE-RECORD.
03 DATE-HIRED.
05 Yy PIC 99.
05 MM PIC 99.
05 DD PIC 99.
03 DATE-LAST-PAID.
$ XFD NAME=YEAR-LAST-PAID
05 YY PIC 99.
$ XFD NAME=MONTH-LAST-PAID
05 MM PIC 99.
$ XFD NAME=DAY-LAST-PAID
05 DD PIC 99.

In the sample shown above, the "name" directive is
used to associate an alternate name with three fields:
nyy" is associated with "YEAR-LAST-PAID"; "MM" with
"MONTH-LAST-PAID"; and "DD" with "DAY-LAST-PAID."

In the exemplary embodiment each directive should
be placed on a line by itself, immediately before the
COBOL line to which it pertains Additionally, the user
introduces each directive with a "$" in the Indicator
Area, followed by the letters "XFD".

For example: $ XFD NAME =EMP-NUMBER.

An alternate way to introduce directives that is
ANSI-compliant is with an "*" in the Indicator Area. 1In
this case, the user begins the directive with the let-
ters "XFD" and encloses the entire comment in double
parentheses. For example: * ((XFD NAME=EMP-NUMBER)).

In the exemplary embodiment the user may use either

form of the directive syntax (or a combination of both)

in the user’s applications.

SUBSTITUTE SHEET

WO 93/07564

10

15

20

25

-33-
The Alpha Directive

The "alpha" directive allows the user to treat a
data item as alphanumeric text in the database, when it
is declared as numeric in the COBOL program,

7Syntax:' $ XFD ALPHA

This is especially useful when the user has numeric
keys in which the user occasionally stores non-numeric
data, such as LOW-VALUESQL In this situation, treating
the field as alphanumeric allows the user to move any
kind of data to it.

The "alpha" directive basically tells the inter-
face: when the user takes this data item and moves it to
the database, put quotation marks around it and treat it.
as S String.

Example: §$ XFD ALPHA

The Binary Directive

The "binary" directive is used to specify that the
data could'be alphanumeric data of any classification.
Absolutely any data is allowed. Stored in a détabase—-
dependenﬁ format.

Syntax: $ XFD BINARY

This directive implies the "alpha" directive.

Example: §$ XFD BINARY

7 The Date Directive

The "date" directive effectively says "I want to

store this field in the database as a date." Because

there is no COBOL syntax that identifies a field as a

SUBSTITUTE SHEET

PCT/US92/08683

WO 93/07564 PCT/US92/08683

10

15

20

25

-34-~
date, the user may want to add this directive to differ-
entiate dates from other numbers.

Syntax: §$ XFD DATE

This directive implies the "numeric" directive.

If the user’s data has any one of the following
formats, the user in the exemplary may precede it with
the "date" directive:

PIC 9(6)
PIC 9(8)
PIC X(6)
PIC X(8)

Other formats will produce a compile-time error if
preceded by a "date" directive.

When the "date" directive is used, six-digit (or
six-character) fields are stored as YYMMDD in the data-:
base. Eight-digit fields are stored as YYYYMMDD.

Example: § XFD DATE

The Name Directive

The "name" directive assigns a database field name
to the field defined on the next line.

Syntax: $ XFD NAME=fieldname

This directive has several uses, as shown in the
following examples.

Example 1: Within a database file, all field names
must be unique. (Multiple database files may include
the same field name, but duplicates may not exist within

a single file.) Unique field names are not required in

SUBSTITUTE SHEET

»

WO 93/07564

10

15

20

25

30

35

PCT/US92/08683

-35-
COBOL, because names can be qualified by group items.
For example, this code is acceptable in COBOL: -

01 EMPLOYEE-RECORD.
03 DATE-HIRED.
05 Yy PIC 99.
05 MM PIC 99.
05 DD PIC 99.
03 DATE-LAST-PAID,
05 Yy PIC 99.
05 MM PIC 99.
05 DD PIC 99.

The user need not change the field names in the
user'g COBOL program to access a database. instead, the
user uses the "name" directive to provide unique data-
base names for the fields. For example:

01 EMPLOYEE-RECORD.
03 DATE-HIRED.
05 YY PIC 99.
05 MM PIC 99.
05 DD PIC 99.
03 DATE-LAST-PAID.
$ XFD NAME=YEAR-LAST-PAID
05 YY PIC 99.
'$ XFD NAME=MONTH-LAST-PAID
05 MM PIC 99.
$ XFD NAME=DAY-LAST-PAID
05 DD PIC 99.

, ﬁxample 2: SQL-based databases require that names
be né more than eighteen (18) characters long. 1If the
user’s COBOL names are longer than this, the interface
will automatically truncate them after the 18th charéc-'
ter.

If the user has names that are identical within the

- first eighteen (18) characters, or that are not meaning-

ful to the user when shortened to eighteen (18) charac-

ters, the user can use the "name" directive to assign

SUBSTITUTE SHEFT

WO 93/07564 PCT/US92/08683

10

15

20

25

30

35

-36-
them different database field names. For example, if a
portion of the user’s database contained:

01 ACME-EMPLOYEE-RECORD.
03 ACME-EMPLOYEE-RECORD-DATE-HIRED.

05 HIRE-YY PIC 99.
05 HIRE-MM PIC 99.
05 HIRE-DD PIC 99.

03 ACME-EMPLOYEE-RECORD-DATE-LAST-PAID.
05 LAST-PAY-YY PIC 99.
05 LAST-PAY-MM PIC 99.
05 LAST-PAY-DD PIC 99.

The user could add two "name" directives to differ-
entiate the two group names and make them meaningful

with eighteen (18) characters:

01 ACME-EMPLOYEE-RECORD.
$ XFD DATE-HIRED
03 ACME-EMPLOYEE-RECORD-DATE-HIRED.

05 HIRE-YY PIC 99.
05 HIRE-MM PIC 99.
05 HIRE-DD PIC 99.

$ XFD DATE-LAST-PAID
03 ACME-EMPLOYEE-RECORD-DATE-LAST-PAID.

05 LAST-PAY-YY PIC 99.

05 LAST-PAY-MM PIC 99.

05 LAST-PAY-DD PIC 99.

Note that the user’s COBOL names have not changed.
The new names are used only for the database fields.

In the exemplary embodiment each time the user
compiles the user’s program and specifies "-2Zx" to cre-
ate data dictionaries, the compiler will truncate any
field names longer than eighteen (18) characters. If
any are identical within the first eighteen (18) charac-
ters, a warning message will be issued "where?". A
warning of this type does not prevent the program from

compiling, but does prevent the data dictionary from

being generated for the file with the duplicate names.

SUBSTITUTE SHEET

WO 93/07564 © PCI/US92/08683

10

15

20

25

30

-37~
Example 3: The user may want to use the "name"
directive to assign shorter names than those used in the
user’s COBOL programs. This makes the formation of
interactive SQL queries easier and quicker. |
The Numeric Directive
The "numeric" directive allows the user to treat a
data item as an unsigned integer when it is declared as
alphanumeric.
Syntax: $ XFD NUMERIC
Example: $ XFD NUMERIC
The Use Group Directive
The "use group" directive allows the user to enter
a group item into the database as a single field,
instead of using the elements contained in the group.
This is helpful if the group is more interesting to the
user’s application than the individual fields.
Syntax: $ XFD USE GROUP
By default, the "use group" directive impiies that
the consolidated field is alphanumeric. If the user
want a numeric field, the user may simply add the woxrd
"NUMERIC" at the end of the directive.

Example: For example, the directive in the follow-

ing code indicates that the date should be entered into

the database as a single numeric data item instead of
three distinct fields —

§ XFD USE GROUP, NUMERIC
03 DATE-ENTERED.

05 YY PIC 99.

05 MM PIC 99.

05 DD PIC 99.

SﬁBSﬂTUTE SHEET

WO 93/07564 PCT/US92/08683

10

i5

20

25

30

-38~-

Either a comma or a space may separate the word
"NUMERIC" from the words "USE GROUP".

Other fields with which the user might use this
directive include multi-part general ledger account
numbers and department numbers, and keys that are mean-
ingful as a unit but not as individual pieces.

Whether to group fields or not depends on how the
user wants to process them. Does the user always store
and use the fields together? If so, the user would gain
efficiency by grouping them. Someone who really knows
how the data is being used in the database should help
to identify groups of fields that should be combined to
speed processing.

The When Directive

The "when" directive is used to tell preferred
embodiment of the program how to handle multiple record
types and REDEFINES. It lets the user state under which
conditions certain fields are defined.

Syntax: $ XFD WHEN field=value

Example: In the following code, the "when" direc-
tive determines when each of the two record types is
defined:

01 AR-CODES-RECORD.
03 AR-CODES-KEY.
05 AR-CODE-TYPE PIC X.
05 AR-CODE-NUM - PIC 999.
$ XFD WHEN AR-CODE-TYPE = "gt
01 SHIP-CODE-RECORD.
03 FILLER PIC X(4).
03 SHIP-INSTRUCT PIC X(15).
$ XFD WHEN AR-CODE-TYPE = "T"

01 TERMS-CODE-RECORD.
03 FILLER PIC X(4).

SUBSTITUTE SHEET

- WO93/07564 © PCI/US92/08683

-39-
03 TERMS-RATE-1 ' PIC S9V999.
03 TERMS-DAYS-1 PIC 9(3).
03 TERMS-RATE-2 - PIC 89V999.
03 TERMS-DESCRIPT PIC X(15).
5 One of the biggest problems in converting COBOL I/O

into database actions is handling field redefinitions
and multiple record types. The default rules provide a
method for handling this, but they won’'t work for all
situations. They essentially remove all redefinitions
10 - and multiple record types. This works, but it provides a
~ very incomplete view of the data.

A better solution is to be able to identify which
fields belong to which types of records. Then all of
the fields are represented in the database as columns,

15 but only select ones are actually used for each record.
The idea is to define a field that appears in every
record as a conditioning field. The value of this field
defines which other fields are used in the record.

This is the purpose of the "when" directive. It

20 identifies a condition that must be met before the fol-
lowing field(s) are used for a particular record. Con-
sider the following example:

01 EMPLOYEE-RECORD.
03 EMPLOYEE-KEY.

25 ' 05 EMPLOYEE-NO ~ PIC 9(5).
' 05 EMPLOYEE-REC-TYPE PIC X.
88 EMP-PAY-REC ~ VALUE "pr,
88 EMP-DATA-REC VALUE "D",
03 EMPLOYEE-PAY-DATA.
30 05 EMPLOYEE-RATE PIC 9(5)Vv99.
05 EMPLOYEE-HOURS PIC 9(4)V9.

03 EMPLOYEE-PERSONNEL-DATA REDEFINES
EMPLOYEE-PAY-DATA.
_ 05 EMPLOYEE-MARITAL-STATUS PIC X.
35 o 05 EMPLOYEE-RACE PIC 99.
05 EMPLOYEE-~DEPENDENTS PIC 99.

SUBSTITUTE SHEET

WO 93/07564 PCT/US92/08683

10

15

20

25

30

35

-40-

In this record, there are two views of the record
depending on the value of EMPLOYEE-REC-TYPE. For "P"-
type records, the EMPLOYEE-DATA is used. For "D"-type
records, the EMPLOYEE-PERSONNEL-DATA is used.

Using the default rules, the last three data items
in the record are not included in the XFD file. This
will cause these fields to be not represented in the
corresponding database. Furthermore, errors are likely
to occur when the database stores "D"-type records
because the values in EMPLOYEE-RATE and EMPLOYEE-HOURS
will not be valid numbers.

Using the "when" directive, this record could be
entered into the dictionary as follows:

01 EMPLOYEE-RECORD.
03 EMPLOYEE-KEY,

05 EMPLOYEE-NO PIC 9(5).
05 EMPLOYEE-REC-TYPE PIC X.
88 EMP-PAY-REC VALUE "P".
88 EMP-DATA-REC VALUE "D".

* ((XFD WHEN EMPLOYEE-REC-TYPE = "P"))
03 EMPLOYEE-PAY-DATA.)
05 EMPLOYEE-RATE PIC 9(5)V9s.
05 EMPLOYEE-HOURS PIC 9(4)Ve.
* ((XFD WHEN EMPLOYEE-REC-TYPE = "D"))
03 EMPLOYEE-PERSONNEL-DATA REDEFINES
EMPLOYEE-PAY-DATA.
05 EMPLOYEE-MARITAL-STATUS PIC X.
05 EMPLOYEE-RACE PIC 99.
05 EMPLOYEE-DEPENDENTS PIC 99.

This would cause the EMPLOYEE-PAY-DATA fields to be
defined only when EMPLOYEE-REC-TYPE was "P" and would
cause EMPLOYEE-PERSONNEL-DATA to be defined when
EMPLOYEE-REC-TYPE was "D." Note that in this case, the
default rule for handling REDEFINES is overridden.

Instead of ignoring the fields in the REDEFINES, they

SUBSTITUTE SHEET

- WO 93/07564 o PCT/US92/08683

10

i5

20

25

-41-
are represented as fields with a condition assigned to
them. |
This notion can be used to handle multiple record
types. There are several important points however.
‘1. The field that is used to determine a con-
dition cannot be conditioned on itself. When mulﬁiple

record types are used, every field is based on a condi-

tion. Therefore, it is necessary to create a new rule

that states that the field used to determine a condition
is always marked as not being based on a condition.

2. The same problem occurs for keys of the
filé. The rules of COBOL insure that each key is repre-
sented in'each record by with data that is the same si;e
and in the same position, but not necessarily in the
same format. In the database, each key can only have
one definition. Therefore, no key field can be marked
as belonging to a condition. One alternative is that
the fields used to define the keys are those named in
the KEY phrase of the file’s SELECT statement. If a

group item is named, then its elementary fields are used

to define the key fields (unless the "use group" direc-

tive is also specified).

3. Note that for the keys and the condition-
field, there will be fields in the alternate records
that overlap them. These overlapping fields must be
automatically removed from the dictipnary because they

are conditionally-based fields the redefine areas that

~SUBSTITUTE SHEET

WO 93/07564 PCT/US92/08683

10

15

20

25

30

35

40

-42-
are not based on a condition. This would case a confus-
ing multiple definition if they were not removed.
Alternatively, one could just include them and have
duplicated columns in the database. However, this is a
less desirable alternative, because database design
generally states that each piece of data should be rep-
resented only once.
Here is a comprehensive example:
SELECT AR-CODES-FILE
ASSIGN TO DISK "ARCODES"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS AR-CODES-KEY.
FD AR-CODES-FILE.

01 AR-CODES-RECORD.
03 AR-CODES-KEY.

05 AR-CODES-TYPE PIC X.
88 SHIPPING-CODE VALUE "S".
88 TERMS-CODE VALUE "T".
03 AIR-CODES-NUM PIC X(3).

* ((XFD WHEN AR-CODES-TYPE = "S"))
01 SHIPPING-CODES-RECORD.
03 SHIPPING-KEY.

05 SHIPPING-TYPE PIC X.
05 SHIPPING-CODE-NUM PIC X(3).
03 SHIPPING-DESCRIPTION PIC X(15).

* ((XFD WHEN AR-CODES-TYPE = “"T"))
01 TERM-CODES-RECORD.
03 TERM-CODES-KEY.

05 TERM-CODE-TYPE PIC X.
05 TERM-CODE-NUM PIC X(3).
03 TERM-CODES-DESCRIPTION PIC X(15).
03 TERM-CODES-RATE-1 PIC 99V999.
03 TERM-CODES-RATE-2 PIC 99V999.

03 TERM-CODES-RATE-1-PERIOD PIC 9(4).
This would produce the following dictionary (named
r"arcodes.xfd"):
XFD, 01,AR-CODES-FILE, ARCODES
00033,00004,001

1,0,004,00000
02

SUBSTITUTE SHEET

WO 93/07564 - PCT/US92/08683

-43-
AIR-CODES-TYPE
AR-CODES -NUM
02
001,1,AR-CODES-TYPE, "S"
5 002,1,AR-CODES-TYPE, "T"
0007 ,
00000,00001,16,00001,+00,000, 000, AR-CODES-TYPE
00001,00003,16,00003,+00,000,000, AR-CODES-NUM
00004,00015,16, 00015, +00,000, 001, SHIPPING-DESCRIPTION
10 00004,00015,16,00015,+00,000, 002, TERM-CODES-DESCRIPTION
00019, 00005,01,00005,-03,000, 002, TERM-CODES-RATE-1
00024,00005,01,00005,-03,000, 002, TERM-CODES-RATE-2
00029,00004,01,00004,+00,000, 002, TERM-CODES-RATE-1-
PERIOD
5 , It should be noted that the entire SHIPPING-KEY and
TERM-CODES-KEY fields were eliminated from the diction-
' ary. This is because they redefine the key arena which
is not based on a condition (and we can’t have the same
data fields simultaneously represented by more than one
20 data item).
Handling Invalid Data
This section describes how the interface converts
invalid data before it writes to the database.
Compiler Options
25 This section explains the exemplary compile-time
options that can be used with the interfaces of the
preferred embodiment.
-2o
This option specifies the name of the directory
30 that will hold the data dictionary files. A space is
typed after the option and then the name of the chosen
- directory is given.
If this option is not used, and if the XFD-DIR-

ECTORY variable is not set in the user’s configuration

SUBSTITUTE SHEET

WO 93/07564 PCT/US92/08683

10

15

20

44 -
file, the data dictionaries will be placed into the
current directory in the exemplary embodiment.
Example: To cause the dictionaries to be stored in
the directory‘"/usr/inventorY/dictionaries" the user

would enter -

-Zo /usr/inventory/dictionaries
See also the "-2Zx" compile-time option causes data

dictionaries to be built.

-2x

This option tells the compiler to build data dic-

tionaries for every data file opened by this program.

The interface 5 (Fig. 1), as designed in the exem-
plary embodiment, cannot operate without data dictionar-
ies. ’

Example: To cause the dictionaries to be stored in
the directory "/usr/inventory/dictionaries" the user

would enter:

-2o0 /Jusr/inventory/dictionaries
See also the "-Zo" compile-time option, which

specifies the directory where the data dictionaries will

be placed.

SUBSTITUTE SHEET

WO 93/07564) : PCT/US92/08683

10

15

20

25

-45-
SUMMARY OF SOME PROBLEMS & SOLUTIONS OF INVENTION
As a general approach (subject to some variation)
this part of the specification will be presented in
"problem and solution" format with particular emphasis
being given to the primary COBOL I/0 statements, which
are the COBOL statements most involved in the conversion
process of the invention. |
Of course, the general problem is the inability and
iﬁcompatibility of the two languages to permit the
direct conversion of COBOL statements to SQL statemeﬁts.
The primary problem areas include:
problems related to incompatibility of state-
ment function; A
problems related to incompatibility of data
storage strategy;
problems related to incompatibility of data
types; and
problems related to incompatibility of

sequencing strategy.

~ Also, the exemplary embodiment includes innovative tech-

niques to increase efficiency of execution to speed up
the conversion process, all of which will be discussed
below. | |
I. INCOMPATIBILITIES RELATED TO STATEMENT FUNCTIONS
A. PROBLEMS
.COBOL’S READ Statement:
'READ NEXT, a very common form of the read state-

ment, uses the COBOL concept of sequencing. This con-

SUBSTITUTE SHEET

WO 93/07564 PCT/US92/08683

10

15

20

25

-46-
cept at least on the surface is foreign to SQL. The use
of SELECT and ORDER statements in SQL inhibit the abil-
ity to lock as directed by COBOL.

COBOL’s OPEN, CLOSE Statements:

The OPEN and CLOSE statements of COBOL refer to the
opening and closing of files and therefore have no SQL |
equivalent. The COBOL programmer expects to be able to
check messages indicating the availability of the speci-
fied file. At this time COBOL also does resource allo-
cation to efficiently handle the file. 1In contrast, at
the creation of an SQL table, privileges for different
users are established.

COBOL’s DELETE, WRITE, REWRITE Statements:)

COBOL'’s DELETE, WRITE and WRITE statements deleté,
add and update rows in tables, whereas other I/0 verbs
create relatively intimidating problems in bridging the
gap between COBOL and SQL, the use of the data diction-
ary makes the problem of finding the SQL verb to accom-
plish the COBOL objective for DELETE, WRITE and REWRITE
straightforward.

COBOL‘’s START Statement:

COBOL’s START is used to define the place from
which automatic sequencing will occur. Since sequencing
is not a natural strategy of SQL, SQL has no START
statement.. A further potential inconsistency between
COROL‘’s START and SQL is that since the START value is
provided by the user, not only might it not be in the

SQL table, it might not be a valid SQL data type.

SUBSTITUTE SHEET

WO 93/07564 PCI/US92/08683

10

15

20

25

-4 -

COBOL’s UNLOCK Statement:

Locking and unlocking in SQL is done with cursors.
Multiple records can be locked in COBOL in a manner very
different from SQL.

COBOL’s I/0 STATUS Statement:

I/0 status is expected by the COBOL program from
all I/0 statements. The codes expected to be returned
by COBOL are not provided by SQL.

B. SOLUTIONS of INVENTION

COBOL‘’s READ Statement:

Replace the automatic sequencing accomplished by
COBOL with an SQL non-automatic sequence control accom-
plished by tracking sequence by keeping a copy of the
last key value found and, when necessary, re-selectiné
(i.e. use SQL SELECT) data from one of the keys by the
use of the WHERE phrase. By experimentation it was

determined that the WHERE selection process had a side

‘effect by which the key values would be returned in

sequence if the WHERE statement were simple, such as
SELECT * customer# WHERE customer# > X. If the keys are
multiple, one cannot select for one key and get the
desired result. A compound request, which would logi-

cally accommodate the multiple keys, violates the simple

WHERE rule and fails to return the keys in sequence (as

determined by experimentation).
The solution then requires phase processing, where
first the program selects for everything that is equal

to a particular higher order key and greater than a

SUBSTITUTE SHEEF

WO 93/07564 PCT/US92/08683

10

15

20

25

-48-
particular lower order key, retrieves all those records
and, after processing, again requests those records
equal to the high order key but greater than the most
recently processed lower order key. When a null set is
returned, the higher order key can be incremented and
the process repeated, always using a "simple" WHERE
statement, which results in sequential return of lower

order keys.

After much further laborious work it was discovered
that the solution to the difficult problem of identical
keys can be solved by resort to the use of SQL’s unique
row number.

1. Repetitive Instruction Optimization (RIO) _

The functioning of COBOL’s READ NEXT, as well as of
many other COBOL verbs, demands on the SQL side frequent
repeﬁitive use of the same SELECT routine. In the exem-
plary embodiment of the invention, previously formed SQL
statements are retained on a limited basis in an easily
accessible area for the purpose of saving the resources
involved in recreating SQL statements and corresponding
machine language statements for execution when it can be
determined that the retained SQL is appropriate for the
COBOL being processed. In this manner, the incidence of
the repetitive use of instructions without the necessity
of regeneration is optimized.

This described "repetitive instruction optimiza-
tion" (RIO) technique of the invention was necessary to

invent and implement after it was discovered that per-

SUBSTITUTE SHEET

WO 93/07564 ' o ' PCT/US92/08683

10

15

20

25

-49 -

formance on standard benchmark COBOL programs had been
reduced by about fifty (50%) percent with the introduc-
tion of the earlier development embodiment (s) of the
present invention without "RIO" of SELECT routines.
"RIO" brought the performance of these benchmark COBOL
programs up to the previous performance standard.
| There are problems involved with locking and
sequencing. In SQL, the only way in which records may
be locked is to select for update, fetch, and the cur-
sor, which is the owner of the lock, is the argument of
the fetch. When the COBOL program calls for a single
lock, the exemplary embodiment uses one cursor for both
locking and sequence location.

COBOL’s OPEN, CLOSE Statements:

An OPEN statement suggests the opportunity to check
the requisite SQL table for its existence and for the

appropriate matching with the data dictionary elements

. for the named COBOL file by using SELECT * (tablename)

SQL statements. This statement is foliowed by an SQL
DESCRIBE statement, which returns a description of the
table, which is then matched with the data dictionary
elements for the COBOL file and related messages
returned to the COBOL program.

Appropriate resource management is also done at

this time. With OPEN OUTPUT statements, an SQL table is

created with appropriate SQL statements.

Since COBOL programs do not distinguish privileges

between users, the SQL table created makes equal privi-

QIReTITIITE QHEET

WO 93/07564 PCT/US92/08683

10

15

20

25

-50-
leges with a runtime option for unequal privileges. At
the OPEN statement different data types are matched
preferably in accordance with the equivalence relation-
ships presented in the "COBOL Data Declaration Conver-
sion Table" above.

At the time of the COBOL CLOSE statement the SQL
cursors are closed by use of an SQL CLOSE statement.
Similarly, resource saving is implemented consistent
with the non-use of the SQL table.

COBOL’s START Statement:

The implementation of START in SQL is intimately
connected with sequencing as in READ NEXT. The exem-
plary embodiment of the invention generates the logic_,
for the first READ statement generating the SQL state-
ments and tests the reading of the first record, return-
ing error codes for improper starting position to the
COBOL program. The solution to a common problem of
using the SQL invalid LOW VALUES or spaces is to infer
the programmer’s intent to start at the lowest valid
value in the SQL key. Therefore numeric spaces are
translated to zeroes, and low values are translated to
the most negative theoretical value that can fit into
the SQL field (negative 9's).

COBOL'’s UNLOCK Statement:

If unlocking is done by COBOL’s UNLOCK instruction,
the SQL implementation is straightforward, closing all

of'the cursors.

QUIRSTITHTE QMHEET

WO 93/07564 PCI/US92/08683

10

15

20

25

-51-

COBOL’s I/O STATUS Statement:

COBOL status codes are artificially generated from
the results of the "in lieu of" SQL statements described
in the OPEN solution section above.

II. INCOMPATIBILITIES RELATING TO DATA STORAGE STRATEGY
A. PROBLEMS |
(COMPARISON OF DATA STORAGE STRATEGIES)

Although both COBOL and SQL have flexibility of
varying degrees, they differ markedly in data storage
strategy. COBOL, much older and related more closely to
streams of punched cards or paper or magnetic tape,.
tends to look at data as a one dimensional stream in
which sequence is paramount. SQL, more associated with
more recent, real time applications, prefers a two .
dimensional address to access data rather than using
sequence.

B. SOLUTIONS of INVENTION
(DATA DICTIONARY)

- At compile time a dictionary of potential SQL fow
and column elements is made from the source program such
that at any time a COBOL field is referenéed in the
COBOL program, the corresponding SQL column or field is
immediately available for substitution. Multiple field
definitions allowed in COBOL are internally swapped for

their equivalents.

SUBSTITUTE SHEET

WO 93/07564 PCT/US92/08683

10

15

20

25

-52-
III. INCOMPATIBILITIES RELATED TO DATA TYPES
A. PROBLEMS
1. Comparison of Data Types
COBOL uses the data types listed in the column on
the left side of the "COBOL Data Declaration Conversion
Table" presented above to represent data, while SQL data
types are listed on the right side of the Table. These
varying data types between the languages are well known
to those of skill in those languages and are described
in detail in the literature.
2. Comparison of Data Validity Rules
Certain COBOL allowable data types are not allow-
able in SQL (as determined by experimentation), e.g.
first eight (8) bits = 0 is not allowed in SQL. Null
fields exist in SQL but not COBOL. SQL has date fields
in different formats than COBOL.
B. SOLUTIONS ,Of INVENTION
1. Data Equivalence Table
See the preferred, exemplary equivalence relation-
ships contained in the "COBOL Data Declaration Conver-
sion Table" above, as used in the preferred embodiment
of the invention. The values of the table have been
determined and confirmed by experimentation.
Further experimentation confirms the success of the
technique of expanding the eight "0s" field from COBOL

to nine digits in SQL with a leading non-zero digit.

SUBSTITUTE SHEET

WO 93/07564 ' PCT/US92/08683

10

15

20

25

-53-

Further suggested techniques for handling data

“validity inconsistencies are:

null SQL fields are translated into COBOL as

Zeros;

7.zero date COBOL fields are translated into
null SQL date fields; and
invalid numeric COBOL fields are translated as
null SQL fields.
~ The date format for COBOL must be translated into
SQL'by a detailed, logical mapping.
) 2. Invalid Data Routines

The SQL field is expanded to nine digits and padded

with an acceptable leading digit. Null SQL fields are

'translated as zeroes into COBOL date fields'and vice--

versa. (Results may be determined by experimentation.)

‘Additional information concerning the programming
téchniques and innovations which allow the exemplary
embodiment to achieve the conversion of the invention is
contained in the additional information presented before
thié "problem and solution" section.

MODIFYING EXEMPLARY EMBODIMENT FOR OTHER VERSIONS
OF COBOL & SQL

As noted above, the exemplary embodiment was con-

ceived in connection with a COBOL program written in

accordance with ANSI standard 85 COBOL as provided in
AcuCOBOL™-85 interfacing with an Informix™ SQL oriented

database. However, there are a number of variants of

) the COBOL and SQL languages to which the present inven-

SUBSTITUTE SHEET

WO 93/07564 PCT/US92/08683

10

15

20

25

..54-
tion can be applied. 1Indeed it is believed that it can
be applied to all of them with little change and no
change beyond the level of ordinary skill in the art.

It would of course simplify matters if there was
only one version of SQL and only one version of COBOL
and that these versions would remain static.

However, with respect particular to, for example,
SQL, as brought out in the SQL PROGRAMMERS’S GUIDE
referred to above, such is not the case because cur-
rently.every vendor has differentiated their respective
SQL "engine" in minor, and in some cases, major ways.
Even IBM™'s several products — DB2, SQL/DS, and 0S/2
Extended Edition, for instance — differ from each other.
As a result, SQL implementations are only imperfectly
compatible with one another, and greater portability and
connectivity are actively worked on by the standards
group, including in particular the American National
Standards Institute or "ANSI".

Part of the problem is that effecting complete
compatibility involves more than just having all vendors
agree on a certain set of features to offer. Besides
incompatibilities that stem from vendors offering dif-
ferent extensions, incompatibilities are possible even
among vendors offering exactly the same features and
extensions.

Incompatibilities can appear at several levels. The
outermost are the languages themselves — the level of,

for example, such SQL statements as SELECT, UPDATE, and

SUBSTITUTE SHEET

¥

10

15

20

25

WO 93/07564 ~ PCI/US92/08683

_55-
INSERT. Although different implementations agree in the
main on these; they tend to add clauses of their own for
special purposes, or even to add entirely new types of
statements. Or the syntax of the statements may vary to
some extent among different systems.
At another level, differences can exist in the

function call interface (also called the API — "applica-

tion programming interface") or even in the pre-compiler

syntax.

The analogy here is to written as opposed to spokén
language — even when a spoken language is shared, dif-
ferent communities may write the language differently.
One might write "color" and another writer“colour". ’
Likewise, for one SQL system, the function call to con-
nect to a database might be ORACON; for another it might
be SQLCON or SQLCONNECT. Or arguments might appear in a

different order — wuser name, database name, password

. versus password, database name, user name, etc. Differ-

ences such as these can persist at therprogrammatic
level even in the face of standardization at the level
of SQL statements. And in fact standardiééﬁion at this
level does not receive as much attention as the stan-
dardization of SQL statements themselves.

Wheh there are differences at either of these lev-
els, the incompatibilities interfere with the'ability to
connect front ends and back ends of differen; vendors
and to run the program of the invention on a variety of

machines.

SUBSTITUTE SHEET

WO 93/07564 PCT/US92/08683

10

15

20

25

-56-

Then, too, as noted, the COBOL programming language
also is not entirely standardized. COBOL on a mainframe
is not necessarily the same as COBOL on a microcomputer
or COBOL on a minicomputer. And here again one may
encounter incompatibilities arising from the fact that
different versions of the COBOL language are offered by
different vendors.

Not complete but at least general standardization
of the SQL language is now actively being worked on,
although, like COBOL, this "standardization" does not
mean that all vendors’ versions will then offer exactly
the same features and use exactly the same syntax.

There is no reason to think that developers will
stop having ideas for interesting new features for
actively used languages, such as COBOL and SQL. Stan-
dardization is always bound to lag behind such new
developments, no matter how much the boundaries of stan-
dard SQL or COBOL continue to expand, encompassing a
greater and greater body of features. The frontier is
likely to keep expanding too, and, on the frontier one
will always likely find diversiéy.

However, for the application or use of the present
invention, this means that there is a substantial and
growing subset of the SQL language that is relatively
static, and COBOL has been well defined standardized in
COBOL based on ANSI standard 85. Thus, the embodi-
ment (s) hereof and the teachings of the present inven-

tion can be used with some confidence that, for example,

SUBSTITUTE SHEET

WO 93/07564 ' PCI/US92/08683

10

15

20

25

-57-
the preferred embodiment hereof will work with other SQL
engines and other versions of COBOL with little if any
rchange, and no change beyond the level of those of ordi-
nary skill. Comparable function calls belonging to
different systems but the same language tend to differ,
as was noted above earlier, only in minor syntactic
details.

Another development in SQL that will tend to mini-
mize the problem of portability of the exemplary embodi-
ment and future embodiments of the invention is the
appearance of application development tools that include
a fourth-generation language. These development tools
allow applications to be built virtually or entirely

without coding and with little or no attention paid to

tailoring them to a particular engine. Rather, the

application is assembled from the menus and options of
the tool, which comes with a selection of SQL drivers.
The drivers — also called translators or routers — will,
it is believed, enable the exemplary embodiment hereof
to run with many different SQL engines with little, if
any, significant modification. ‘ |

Hence, it should be understood that the principles

~and teachings of the present invention have broad appli-

cability to, it is believed, all known versions of stan-

dardized COBOL and established SQL languages, as well as

those currently perceived for the future.
Thus, the embodiment (s) described herein in detail

for exemplary purposes are of course subject to many

SUBSTITUTE SHEET

WO 93/07564 PCT/US92/08683

-58-
different variations in structure, design, application
and methodology. Because many varying and different
embodiments may be made within the scope of the inven-
tive concept(s) herein taught, and because many modifi-

5 cations may be made in the embodiment (s) herein detailed
in accordance with the descriptive requirements of the
law, it is to be understood that the details herein are

to be interpreted as illustrative and not in a limiting

gsense.

SUBSTITUTE SHEET

10

15

20

WO 93/07564 © PCI/US92/08683

-59-
CLAIMS

What is CLAIMED is:

1. In a computer system, a method of converting

COBOL statements in a COBOL program into SQL statements

to obtain data in an SQL oriented database for use in

- the COBOL program, comprising the following steps:

a. compiling the COBOL application program in
source code form using a COBOL compiler, and, in con-
junction with the source code program being compiled to
produce the application program in object code form,
analyzing and evaluating the COBOL application program,

at least with respect to its data fields and how those

~ fields are used in the application program, to create a

set of values based on the compiler’s analysis and eval-
uation of the COBOL program’s data fields and their
usage in the program; and

b. as the compiled COBOL application program

runs COBOL I/O statements involving data in a SQL data-

base, generating and sending SQL statements to the SQL
oriented database based on the COBOL statements and the
set of values, effectively converting the COBOL state-
ments into SQL statements, obtaining the data desired by
the COBOL program based on the data in the SQL oriented
database through an interfacing program which receives
those COBOL I/O statements and generates the SQL state-

ments.,

SUBSTITUTE SHEET

WO 93/07564 PCT/US92/08683

10

15

20

-60_
2. The method of Claim 1, wherein there is further
included the following step(s):
using the COBOL compiler program itself to
produce not only the compiled COBOL program in object
code form, but also to directly create a data dictionary

file in which the series of values is stored.

3. The method of Claim 1, wherein there is further
included in connection with step "b" the following

step(s):

converting the COBOL statements to SQL state-
ments based at least in part on how the COBOL data is
declared in the COBOL application program in accordance

with the "equivalence" expressed in the table below —

COBOL SQL
PIC X(15) CHAR (15)

PIC 9 = SMALL INT

99
999
9999

PIC 9(5) = INT
9 (6) -
9(7)
9(8)
9(9)

Other Numeric

(all other PIC 9's)
e.g., 59(6)Vv99 DECIMAL(S8,2).

DECIMAL

SUBSTITUTE SHEET

”

WO 93/07564 = - PCT/US92/08683

10

-61-~
4. In a computer system, an apparatus for automat-

ically generating SQL statements from a COBOL source
code program such that the SQL statements effectuate
operational interface between the COBOL source code
program and a relational data base, comprising:

dictionary means for correlating COBOL fields
with SQL fields;

invalid data recovery means for allowing con-
tinued operation despite use of invalid data;

sequence simulating means for generating SQL
statements to simulate COBOL sequencing; and

COBOL statement conversion means for providing
SQL statements which in concert perform the objectiveg

of the COBOL statements.

5. The apparatus of Claim 4, wherein there is
further included:
| means for repeatedly using previously

generated SQL statements.

6. The apparatus of Claim 4, wherein said sequence
simulating means uses a different process for higher

order and lower order keys.
7. The apparatus of Claim 4, wherein said sequence

simulating means uses SQL unique row identification when

key fields are equal.

SUBSTITUTE SHEET

WO 93/07564

10

15

PCT/US92/08683

-62-
8. A method of automatically generating SQL state-

ments from a COBOL source code program, having an objec-

(tive, such that the SQL statements effectuate the use by

the COBOL source code program of relational data base
I/0, comprising the following steps:

a. correlating COBOL fields with SQL fields;

b. recovering from invalid data signals from
COBOL or SQL fields to allow continued processing con-
sistent with the objective of the COBOL source code
program;

c. generating SQL statements to simulate

required COBOL sequencing; and

¢. converting COBOL statements into SQL
statements which in concert perform the objective of the

COBOL statements.

9. The method of Claim 8, wherein there is further
included the step(s) of:
optimizing the repetitive use of previously

generated instructions.

10. The method of Claim 8, wherein there is fur-

ther included the step(s) of:

optimizing the repetitive use of previously

generated instructions.

SUBSTITUTE SHEET

WO 93/07564 o PCT/US92/08683

10

15

-3~
11. A method of automatically generating SQL
statements from a COBOL source code program, having an
objective, such that the SQL statements effectuate the
use by the COBOL source code program of relational data
ﬁése I/0, comprising the following stepsﬁ
a. correlating COBOL fieldsrwith SQL fields;

b. recovering from invalid data signals from

COBOL or SQL fields to allow continued processing con-

sistent with the objective of the COROL source code

~ program;

7 €. generating SQL statements to simulate
required COBOL sequencing; and

€. converting COBOL statements into SQL

VStétéments which in concert perform the objective of the

COBOL statements.
12. The method of Claim 11, wherein step "c" fur-

ther includes the step(s) of:

generating SELECT statements.

SUBSTITUTE SHEET

PCT/US92/08683

WO 93/07564

171

1/

| 8Inbi

(v)

(8)
Aieuopnolq

sada

sjjnsey pus
sapIany

Aieuonoig
ejeq

(2)
Jenidwod 10800

(1)

wesboly
8%4nos 10409

(2)
ewjjuny

singa
A

(s)

edepleju| J0S/704d0D

W w

(a9)
wasAs eji4 opeuan

| (v9)
walsAs swipjuny

10400

-~ "'INTERNATIONAL SEARCH REPORT

| International Application No.
I PCT/US92/08683

A. CLASSIFICATION OF SUBJECT MATTER
IPC(5) :GO6F 9/45; 15/40
US CL :395/700,600

According to International Patent Classification (IPC) or to both national classification and IPC

|B. FIELDS SEARCHED

us. :

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

AUTOMATED PATENT SYSTEM

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

SEARCH TERMS: SQL, QUERY, COBOL, INTERPRET, COMPILE, DBMS, DATABASE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

entire document.

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US, A, 4,918,588 (BARRETT ET AL.) 17 April 1990, See col. 8, 1-12
: line 40 - col. 9, line 15.
A 1 US, A, 4,930,071 (TOU ET AL.) 29 May 1990, cols. 13-19. 1-12
A US, A, 4,931,928 (GREENFELD) 05 June 1990, See entire| 1-12
document.
AP US, A, 5,091,852 (TSUCHIDA ET AL.) 25 February 1992, See| 1-12

D Funher&;w are listed in the continuation of Box C.

D Sec patent family annex.

* Special categaries of cited documents: T m:dmmmwmmmrm date or prionty
date and not in with the application but cited to understand the
‘At document defiing the general state of the art which is not considered le wnd
10 be part of part principle or theory underlying the invention
g X document of pasticular televance; the claimed inveation cannot be
E earlier document published on or afler the intemational filing date - considered novel or cannot be considered to involve an inventive sicp
L document which may throw doubts on priority claim(s) or which is when the document is taken alone
cited to establish the publication date of anoth jon or other oy . . f the claimed i X be
special reason ified o cannot
- (an specified) id b ive siep when the document is
0 documem referring to an onal disclosure, use, exhibition or other combined vnh one ormoreothermch documents, such combination
being obvious to a person skilled in the arnt
°p document published prior to the intemational filing date but iater than ~ =g,* document member of the same patent family
the priority date clammed

Date of the actual completion of the international search

24 FEBRUARY 1993

Date of mailing of the Woml search report

03 MAR

Name and mailing address of the ISA/US
Commissioner of Patents and Tndemlrks

Authorized officer M /a“ I ot —
i

Box PCT
Washington, D.C. 20231 MATTHEW C. FAGAN
Facsimile No. NOT APPLICABLE Telephone No. (703) 305-3829

Form PCT/ISA/210 (second sheet)(July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

