US 20110281845A1 ## (19) United States # (12) Patent Application Publication CHEN et al. # (10) Pub. No.: US 2011/0281845 A1 (43) **Pub. Date:** Nov. 17, 2011 ### (54) ORGANIC COMPOUNDS (75) Inventors: Zhuoliang CHEN, Belmont, MA (US); Mark G. PALERMO, Rindge, NH (US); Sushil K. SHARMA, West Orange, NJ (US); Troy SMITH, Nashua, NH (US); Christopher S. STRAUB, Stow, MA (US); Run-Ming D. WANG, Somerville, MA (US); Yaping WANG, Boxborough, MA (US); Leigh ZAWEL, Hingham, MA (US) (73) Assignee: **NOVARTIS AG**, Basel (CH) (21) Appl. No.: 13/161,166 (22) Filed: Jun. 15, 2011 ### Related U.S. Application Data - (62) Division of application No. 11/916,887, filed on Aug. 5, 2008, now Pat. No. 7,989,441, filed as application No. PCT/US2006/021850 on Jun. 6, 2006. - (60) Provisional application No. 60/688,639, filed on Jun. 8, 2005. #### **Publication Classification** | (51) | Int. Cl. | | |------|-------------|-----------| | , , | A61K 31/55 | (2006.01) | | | A61K 31/551 | (2006.01) | | | C07D 487/06 | (2006.01) | | | A61P 35/00 | (2006.01) | | | A61K 31/437 | (2006.01) | | | C07D 513/04 | (2006.01) | | | A61K 31/407 | (2006.01) | | | C07D 487/04 | (2006.01) | | | C07D 471/04 | (2006.01) | ### (57) ABSTRACT The present disclosure relates to XIAP inhibitor compounds of the formula I. #### **ORGANIC COMPOUNDS** #### **SUMMARY** [0001] The present invention relates generally to novel compounds that inhibit the binding of the Smac protein to Inhibitor of Apoptosis Proteins (IAPs). The present invention includes novel compounds, novel compositions, methods of their use and methods of their manufacture, wherein such compounds are generally pharmacologically useful as agents in therapies whose mechanism of action rely on the inhibition of the IAP/Caspase 9 or Smac/IAP interaction, and more particularly useful in therapies for the treatment of proliferative diseases, including cancer. #### BACKGROUND [0002] Programmed cell death plays a critical role in regulating cell number and in eliminating stressed or damaged cells from normal tissues. Indeed, the network of apoptotic signaling mechanisms inherent in most cell types provides a major barrier to the development and progression of human cancer. Since most commonly used radiation and chemotherapies rely on activation of apoptotic pathways to kill cancer cells, tumor cells which are capable of evading programmed cell death often become resistant to treatment. [0003] Apoptosis signaling networks are classified as either extrinsic when mediated by death receptor-ligand interactions or intrinsic when mediated by cellular stress and mitochondrial permeabilization. Both pathways ultimately converge on individual Caspases. Once activated, Caspases cleave a number of cell death-related substrates, effecting destruction of the cell. [0004] Tumor cells have devised a number of strategies to circumvent apoptosis. One recently reported molecular mechanism involves the over expression of members of the IAP family. IAPs sabotage apoptosis by directly interacting with and neutralizing Caspases. The prototype IAPs, XIAP and cIAP have three functional domains referred to as BIR 1, 2 & 3 domains. BIR3 domain interacts directly with Caspase 9 and inhibits its ability to bind and cleave its natural substrate, Procaspase 3. [0005] It has been reported that a proapoptotic mitochondrial protein, Smac (also known as DIABLO), is capable of neutralizing XIAP and/or cIAP by binding to a peptide binding pocket (Smac binding site) on the surface of BIR3 thereby precluding interaction between XIAP and/or cIAP and Caspase 9. The present invention relates to therapeutic molecules that bind to the Smac binding pocket thereby promoting Caspase activation. Such therapeutic molecules are useful for the treatment of proliferative diseases, including cancer. ### SUMMARY OF THE INVENTION [0006] The present invention relates generally to novel compounds that mimic the binding of the Smac protein to Inhibitor of Apoptosis Proteins (IAPs). The present invention includes novel compounds, novel compositions, methods of their use and methods of their manufacture, where such compounds are generally pharmacologically useful as agents in therapies whose mechanism of action rely on the inhibition of the IAP/Caspase 9 or Smac/IAP interaction, and more particularly useful in therapies for the treatment of proliferative diseases, including cancer. ### DETAILED DESCRIPTION [0007] The present invention relates to compounds of the formula (I) $$R_1$$ R_2 R_3 X X X X wherein [0008] R_1 is H or C_1 - C_4 alkyl; [0009] R_2 is H, or C_1 - C_4 alkyl which is unsubstituted or substituted by one or more substituents selected from halogen, —OH, —SH, —OCH₃, —SCH₃, —CN, —SCN and nitro: **[0010]** R_3 is H, C_1 - C_4 alkyl, — CF_3 , — C_2F_5 , — CH_2 —Z or R_2 and R_3 together form with the nitrogen form a C_3 - C_6 heteroaliphatic ring; [0011] Z is H, —OH, F, Cl, —CH $_3$; —CF $_3$, —CH $_2$ Cl, —CH $_2$ F or —CH $_2$ OH; [0012] X is a monocyclic or a bicyclic structure selected from the group consisting of: $$R_{A}$$ R_{A} R $$\begin{array}{c|c} R^4 & R_a \\ \hline R^4 & R_a \end{array}$$ -continued where [0013] A is —CH₂, —CH—, N, O, or S; [0014] $X_1 = O$, S, or NR_a ; $\begin{array}{ll} \textbf{[0015]} & \textbf{R_4}, \textbf{R_a} \text{ and } \textbf{R_b} \text{ are independently, } \textbf{H}; \textbf{C}_1 - \textbf{C}_{16} \text{ straight} \\ \text{or branched alkyl; } \textbf{C}_1 - \textbf{C}_{16} \text{ alkenyl; } \textbf{C}_1 - \textbf{C}_{16} \text{ alkynyl; } \text{or } \textbf{C}_1 - \textbf{C}_{16} \\ \text{cycloalkyl; } & -(\textbf{CH}_2)_{0-6}\text{-phenyl; } (\textbf{CH}_2)_{0-6}\text{-het; } & -\textbf{O} - \textbf{C}_1 - \textbf{C}_{16} \\ \text{straight or branched alkyl, } & -\textbf{S} - \textbf{C}_1 - \textbf{C}_{16} \text{ straight or branched} \\ \text{alkyl; } & -\textbf{N} - \textbf{C}_1 - \textbf{C}_{16} \text{ straight or branched alkyl; } & -\textbf{O} - \textbf{C}_1 - \textbf{C}_{16} \\ \text{alkenyl; } & -\textbf{S} - \textbf{C}_1 - \textbf{C}_{16} \text{ alkenyl; } & -\textbf{N} - \textbf{C}_1 - \textbf{C}_{16} \text{ alkenyl} \\ -\textbf{O} - \textbf{C}_1 - \textbf{C}_{16} \text{ cycloalkyl; } & -\textbf{N} - \textbf{C}_1 - \textbf{C}_{16} \text{ cycloalkyl; } \\ -\textbf{S} - \textbf{C}_1 - \textbf{C}_{16} \text{ cycloalkyl; } & -\textbf{O} - (\textbf{CH}_2)_{0-6}\text{-phenyl; } & -\textbf{N} - (\textbf{CH}_2)_{0-6}\text{-phenyl; } \\ -\textbf{N} - (\textbf{CH}_2)_{0-6}\text{-phenyl; } & -\textbf{S} - (\textbf{CH}_2)_{0-6}\text{-het; } \\ -\textbf{N} - (\textbf{CH}_2)_{0-6}\text{-het and } & -\textbf{S} - (\textbf{CH}_2)_{0-6}\text{-het wherein alkyl, cycloalkyl and phenyl are unsubstituted or substituted; } \\ \text{or } \textbf{R}_4 \text{ and } \textbf{R}_a \text{ may form a ring;} \end{aligned}$ $\begin{array}{llll} \textbf{[0016]} & U & is & -R_5; & -CH(R_5)(R_6); & -CO-N(R_5)(R_6); \\ -CO-O(R_5); & -CO-S(R_5); & -CS-N(R_5)(R_6); \\ -N(R_5)-CO-N(R_5)(R_6); & -C_1-C_5-alkyl-N(R_5)(R_6); \\ -C_1-C_5-alkyl-O(R_6) & or -C_1-C_5-alkyl-S(O)_n(R_6) & where n is \\ 0, 1 & or 2; \end{array}$ **[0018]** or when U is $-CO-N(R_5)(R_6)$; $-CS-N(R_5)$ (R_6) ; $-N(R_5)-CO-N(R_5)(R_6)$; or $N(R_5)-CO-N(R_5)$ (R_6) , R_5 and R_6 together with the N atom form an aromatic or aliphatic heterocycle; [0019] R_7 and R_8 are independently H, halogen; C_{1-7} alkyl; $-OC_{1-7}$ alkyl; C_{1-7} cycloalkyl; or $-OC_{1-7}$ cycloalkyl wherein the alkyl, cycloalkyl substituents may be substituted or unsubstituted; $\begin{array}{ll} \textbf{[0020]} & V \text{ is } R_9; R_{10}; CR_9R_{10}; --C(O)--; C(hal)_2; --O--; \\ --N(H)--; N(alkyl); N(aryl); S; SO; \text{ or } S(O)_2; \end{array}$ [0021] R_9 and R_{10} are independently H, halogen, C_{1-7} alkyl; $-OC_{1-7}$ alkyl; C_{1-7} cycloalkyl; or $-OC_{1-7}$ cycloalkyl wherein the alkyl, cycloalkyl substituents may be substituted or unsubstituted; $\begin{array}{lll} \textbf{[0022]} & R_6 \text{ is } H; & -C_1\text{-}C_{10} \text{ alkyl}; & -\text{OH}; & -\text{O}-C_1\text{-}C_{10}\text{-}\\ \text{alkyl}; & -(\text{CH}_2)_{0.6}\text{-}C_3\text{-}C_7\text{-}\text{cycloalkyl}; & -\text{O}-(\text{CH}_2)_{0.6}\text{-}\text{aryl};\\ -(\text{CH}_2)_{0.6}\text{-}\text{aryl}; & \text{phenyl}; & -(\text{CH}_2)_{1.6}\text{-}\text{het}; & -\text{O}-(\text{CH}_2)_{1.6}\text{-}\\ \text{het}; & -\text{N}(R_{12})(R_{13}); & -\text{CNOR}_{12}; & -\text{S}-R_{12}; & -\text{S}(\text{O})-R_{12};\\ -\text{S}(\text{O})_2 - R_{12}; & \text{or } -\text{S}(\text{O})_2 - \text{NR}_{12}R_{13} & \text{wherein the alkyl,}\\ \text{cycloalkyl and aryl substituents are unsubstituted or substituted;} \end{array}$ [0024] wherein the alkyl, cycloalkyl and aryl substituents are unsubstituted or substituted; or a substituent that facilitates transport of the molecule across a cell membrane, or R_{12} and R_{13} together with the nitrogen form an aromatic or aliphatic heterocycle; [0025] $\,$ where $\rm R_{11}$ and $\rm R_{14}$ are $\rm C_{1-7}$ alkyl; —(CH₂) $_{0-6}$ -phenyl; or amide; [0026] aryl is phenyl, naphthyl, or indanyl which is unsubstituted or substituted; [0027] and wherein **[0028]** alkyl substituents may be substituted by one or more substituents selected from a double bond, halogen (hal), OH, SH, $-O-C_1-C_6$ alkyl especially $-OCH_3$, $-S-C_1-C_6$ alkyl especially $-SCH_3$, -CN, -SCN, nitro, $-N(R_1)(R_2)$ and $-CF_3$; alkyl as used in this application includes heteroalkyl wherein one of the carbon atoms in the alkyl chain is substituted with N, O or S; **[0029]** cycloalkyl substituents may be substituted by one or more substituents selected from a double bond, C_1 - C_6 alkyl, halogen, OH, SH, —O— C_1 - C_6 alkyl especially —OCH $_3$, —S— C_1 - C_6 alkyl especially —SCH $_3$, —CN, —SCN, nitro and —CF $_3$; and **[0030]** substituted phenyl or aryl are substituted by one or more substituents selected
from halogen, hydroxy, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, nitro, —CN, —O—C(O)— C_1 - C_4 alkyl (substituted or unsubstituted) and —C(O)—O— C_1 - C_4 alkyl (substituted or unsubstituted); and pharmaceutically acceptable salts thereof. [0031] The present invention also relates to a method of treating a proliferative disease comprising administering a compound of the formula (I) to a warm-blooded animal, especially a human, and the use of a compound of the formula (I), especially for treating a proliferative disease. The present invention also relates to pharmaceutical preparations comprising a compound of the formula (I), especially for the treatment of a proliferative disease, a process for the manufacture of a compound of the formula (I), and novel starting materials and intermediates for their manufacture. The present invention also relates to the use of a compound of formula (I) in the manufacture of a pharmaceutical preparation for the treatment of a proliferative disease. [0032] In a particularly important embodiment of the present invention, R_3 has the stereochemistry indicated in formula (II), with the definitions of the variable substituents and preferences described herein also applying to compounds having the stereochemistry indicated in formula (II). $$\begin{matrix} R_1 \\ N \\ R_2 \end{matrix} \qquad \begin{matrix} R_3 \\ X - U \end{matrix}$$ 3 ### PREFERRED EMBODIMENTS [0033] One embodiment of the present invention comprises a compound of formula (I): wherein [0034] R_1 is H or C_1 - C_4 alkyl; [0035] R₂ is H or C₁-C₄ alkyl; [0036] R_3 is H or C_1 - C_4 alkyl; [0037] X is a monocyclic or a bicyclic structure selected from the group consisting of: $$R_{4}$$ R_{a} R_{b} R_{b} R_{b} R_{b} 14 15 16 17 18 19 -continued where [0038] A is —CH₂, —CH—, N, O, or S; [0039] X_1 is O, S, or NR_a ; **[0040]** R₄, R_a and R_b are independently, H; C₁-C₁₆ straight or branched alkyl or —(CH₂)₀₋₆-phenyl, wherein said phenyl may be unsubstituted or substituted, preferably with halo; [0043] R₇ and R₅ are independently H, halogen; C₁₋₇ alkyl; —OC₁₋₇ alkyl; C₁₋₇ cycloalkyl; or —OC₁₋₇ cycloalkyl; [0044] V is -C(O)-; $C(hal)_2$; -O-; -N(H)-; N(alkyl); N(aryl); S; SO; or $S(O)_2$; $\begin{array}{ll} \textbf{[0045]} & R_9 \text{ and } R_{10} \text{ are independently H, halogen, } C_{1\text{--}7} \text{ alkyl}; \\ ---OC_{1\text{--}7} \text{ alkyl}; C_{1\text{--}7} \text{ cycloalkyl}; \text{ or } ---OC_{1\text{--}7} \text{ cycloalkyl}; \\ \end{array}$ $\begin{array}{l} \textbf{[0046]} \quad R_6 \text{ is } H; \quad -\text{C}_{1}\text{-}\text{C}_{10} \text{ alkyl}; \quad -\text{OH}; \quad -\text{O}-\text{C}_1\text{-}\text{C}_{10}\text{-}\\ \text{alkyl}; \quad -(\text{CH}_2)_{0\text{-}6}\text{-phenyl}; \quad -(\text{CH}_2)_{0\text{-}6}\text{-aryl}; \quad -\text{O}-(\text{CH}_2)_{0\text{-}6}\text{-}\\ \text{aryl}; \text{ phenyl}; \quad -(\text{CH}_2)_{1\text{-}6}\text{-het}; \quad -\text{O}-(\text{CH}_2)_{1\text{-}6}\text{-het}; \quad -\text{N}(R_{12})\\ (R_{13}); \quad -\text{CNOR}_{12}; \quad -\text{S}-\text{R}_{12}; \quad -\text{S}(\text{O})-\text{R}_{12}; \quad -\text{S}(\text{O})_2-\text{R}_{12};\\ \text{or } -\text{S}(\text{O})_2-\text{NR}_{12}\text{R}_{13}; \end{array}$ [0047] R_{12} and R_{13} are independently H; or C_1 - C_{10} alkyl; [0048] where R_{11} and R_{14} are C_{1-7} alkyl; —(CH₂)₀₋₆-phe- [0048] where R_{11} and R_{14} are C_{1-7} alkyl; —(CH₂)₀₋₆-phenyl; or amide; [0049] aryl is phenyl, naphthyl, or indanyl which is unsubstituted or substituted; and pharmaceutically acceptable salts thereof. [0050] In an especially preferred embodiment is a compound of formula (I): $$\begin{matrix} R_1 & & & & \\ & & & & \\ & & & & \\ R_2 & & & \\ \end{matrix} X - U$$ wherein [0051] R_1 , R_2 and R_3 are independently H or C_1 - C_4 alkyl; [0052] X is a monocyclic or a bicyclic structure selected from the group consisting of: $$R_{4}$$ R_{4} R_{4} R_{5} R_{6} R_{6} R_{7} R 19 -continued where [0053] A is —CH₂, —CH—, N, O, or S; [0054] X_1 is O, S, or NR_a ; [0055] R_4 , R_α and R_b are independently, H; C_1 - C_{16} straight or branched alkyl; or —(CH_2)₀₋₆-phenyl; [0056] U is $-R_5$; C_1 - C_5 alkyl- $N(R_5)(R_6)$; or $-CO-N(R_5)(R_6)$; [0057] R_5 is H; — $(CH_2)_{0-6}$ -phenyl; C_1 - C_3 alkyl; -Aryl-V-Aryl-; or —C(O)—NH— $CH(R_{11})(R_{14})$ wherein aryl or phenyl may be unsubstituted or substituted, preferably with halo; [0058] V is —O—; [0059] R_6 is H; $-C_1$ - C_{10} alkyl; -OH; $-O-C_1$ - C_{10} -alkyl; $-O-(CH_2)_{0-6}$ -phenyl; $-(CH_2)_{0-6}$ -phenyl; indanyl; or phenyl; [0060] where R_{11} and R_{14} are $C_{1\text{--}7}$ alkyl; —(CH $_2$) $_{0\text{--}6}$ -phenyl; or amide; [0061] aryl is phenyl, naphthyl, or indanyl which is unsubstituted or substituted; and pharmaceutically acceptable salts thereof. [0062] In other preferred embodiment of the present invention compound of formula (I) has the following: [0063] R_1 is H or alkyl. [0064] R_2 is especially H, methyl or ethyl, particularly H or methyl, which methyl group is unsubstituted or substituted, particularly unsubstituted methyl. R_2 as substituted methyl especially includes chloromethyl, dichloromethyl and especially trifluoromethyl. [0065] R₃ is especially methyl or ethyl. [0066] In a particular embodiment, R_2 and R_3 together with the nitrogen form a heteroaliphatic ring, including saturated and unsaturated 3 to 6 membered nonaromatic rings, for example, aziridine, azetidine, azole, piperidine, piperazine, and the like, especially aziridine and azetidine. $[0067]\ R_4$ is preferably H, Me, n-Bu, benzyl, phenyl or phenyl-substituted halo. ${\bf [0068]}~{\rm R}_a$ is preferably H, Me, n-Bu, benzyl, phenyl or phenyl-substituted halo. [0069] R_b is preferably H. [0070] R_5 is — $(CH_2)_{0-6}$ — C_3 - C_7 -cycloalkyl- $(CH_2)_{0-6}$ -phenyl includes fused cycloalkyl-phenyl rings, such as indanyl, when there are no methylenes between the cycloalkyl and phenyl rings. [0071] R_5 as —(CH₂)₀₋₄CH—((CH₂)₁₋₄-phenyl)₂ is especially —CH₂CH₂-phenyl, indanyl; **[0072]** R₅ as —(CR₇, R₈) $_{0-2}$ Aryl-V-Aryl is especially —(CH₂)-Ph-O-Ph or -Ph-O-Ph; Ph-C(O)-Ph; Ph-NH-Ph; Ph-N(Me)-Ph; Ph-S-Ph, Ph-SO $_2$ -Ph; Ph-SO-Ph may be unsubstituted or substituted, preferably with halo. [0073] R_6 is especially H. [0074] A particularly important embodiment includes the compounds wherein R_5 is — C_1 - C_4 alkyl-phenyl, especially those wherein R_5 is — C_2 H₄-phenyl and R_6 is H. [0075] In a particular embodiment of the present invention, one or both of R_7 and R_8 is H. If one of R_7 and R_8 is other than H, it is especially hydroxy, $-N(R_{12})(R_{13})$, especially wherein R_{12} is $-C(O)-(CH_2)_{1-6}-C_3-C_7$ -cycloalkyl, for example, wherein $(CH_2)_{1-6}-C_3-C_7$ -cycloalkyl is cyclohexylmethyl, $-O-(CH_2)_{0-6}$ -aryl, for example, wherein $(CH_2)_{0-6}$ -aryl is benzyl. If only one of R_7 and R_8 is other than H, it is preferred for R_8 to be the substituent other than H. **[0076]** In a preferred embodiment, R_6 is H and R_5 is — C_{1-} C₁₀ alkyl-aryl, particularly phenylmethyl, phenylethyl and phenylpropyl, indonyl especially phenylethyl and indanyl. [0077] The general terms used hereinbefore and hereinafter preferably have, within this disclosure, the following meanings, unless otherwise indicated: [0078] Unsubstituted is intended to mean that hydrogen is the only substituent. [0079] Halogen is fluorine, chlorine, bromine or iodine, especially fluorine and chlorine. Unless otherwise specified alkyl substituents include straight or branched chain alkyl, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, n-pentyl and branched pentyl, n-hexyl and branched hexyl, and the like. [0080] Cycloalkyl substituents include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cycloheptyl. [0081] The het substituents include aromatic and non-aromatic heterocyclic rings and fused rings containing aromatic and non-aromatic heterocyclic rings. Suitable het substituents include unsubstituted and substituted pyrrolidyl, tetrahydrofuryl, tetrahydrothiofuranyl, piperidyl, piperazyl, tetrahydropyranyl, morphilino, 1,3-diazapane, 1,4-diazapane, 1,4oxazepane, 1,4-oxathiapane, furyl, thienyl, pyrrole, pyrazole, triazole, tetrazole, thiazole, oxazole, pyridine, pyrimidine, isoxazolyl, pyrazine, quinoline, isoquinoline, pyridopyrazine, pyrrolopyridine, furopyridine, indole, benzofuran, benzothiofuran, benzindole, benzoxazole, pyrroloquinoline, and the like. The het substituents are unsubstituted or substituted on a carbon atom by halogen, especially fluorine or chlorine, $hydroxy, C_1\text{-}C_4 \, alkyl, such \, as \, methyl \, and \, ethyl, C_1\text{-}C_4 \, alkoxy,$ especially methoxy and ethoxy, nitro, —O—C(O)—C₁- C_4 alkyl or -C(O)-O $-C_1$ - C_4 -alkyl or on a nitrogen by C_1 - C_4 alkyl, especially methyl or ethyl, -O-C(O)- C_1 - C_4 alkyl or —C(O)—O—C₁-C₄ alkyl, such as carbomethoxy or carboethoxy. [0082] When two substituents together with a commonly bound nitrogen are het, it is understood that the resulting heterocyclic ring is a nitrogen-containing ring, such as aziridine, azetidine, azole, piperidine, piperazine, morphiline, pyrrole, pyrazole, thiazole, oxazole, pyridine, pyrimidine, isoxazolyl, and the like. [0083] Substituents that facilitate transport of the molecule across a cell membrane are known to those of skill in the medicinal chemistry arts (see, for example, Gangewar S., Pauletti G. M., Wang B., Siahaan T. J., Stella V. J., Borchardt R. T., *Drug Discovery Today*, vol. 2, p 148-155 (1997) and Bundgaard H. and Moss J., *Pharmaceutical Research*, vol. 7, p 885 (1990)). Generally, such substituents are lipophilic substituents. Such lipophilic substituents include a C_6 - C_{30} alkyl which is saturated, monounsaturated, polyunsaturated,
including methylene-interrupted polyene, phenyl, phenyl which substituted by one or two C_1 - C_8 alkyl groups, C_5 - C_9 cycloalkyl, C_5 - C_9 cycloalkyl which is substituted by one or two C_1 - C_8 alkyl groups, $-X_1$ -phenyl, $-X_1$ -phenyl which is substituted in the phenyl ring by one or two C_1 - C_8 alkyl groups, X_1 - C_5 - C_9 cycloalkyl or X_1 - C_5 - C_9 cycloalkyl which is substituted by one or two C_1 - C_8 alkyl groups; where X_1 is C_1 - C_2 4 alkyl which is saturated, monounsaturated or polyunsaturated and straight or branched chain. [0084] It will be apparent to one of skill in the art when a compound of the invention can exist as a salt form, especially as an acid addition salt or a base addition salt. When a compound can exist in a salt form, such salt forms are included within the scope of the invention. Although any salt form may be useful in chemical manipulations, such as purification procedures, only pharmaceutically acceptable salts are useful for pharmaceutically products. [0085] Pharmaceutically acceptable salts include, when appropriate, pharmaceutically acceptable base addition salts and acid addition salts, for example, metal salts, such as alkali and alkaline earth metal salts, ammonium salts, organic amine addition salts, and amino acid addition salts, and sulfonate salts. Acid addition salts include inorganic acid addition salts such as hydrochloride, sulfate and phosphate, and organic acid addition salts such as alkyl sulfonate, arylsulfonate, acetate, maleate, fumarate, tartrate, citrate and lactate. Examples of metal salts are alkali metal salts, such as lithium salt, sodium salt and potassium salt, alkaline earth metal salts such as magnesium salt and calcium salt, aluminum salt, and zinc salt. Examples of ammonium salts are ammonium salt and tetramethylammonium salt. Examples of organic amine addition salts are salts with morpholine and piperidine. Examples of amino acid addition salts are salts with glycine, phenylalanine, glutamic acid and lysine. Sulfonate salts include mesylate, tosylate and benzene sulfonic acid salts. **[0086]** For the purposes of isolation or purification, as well as in the case of compounds that are used further as intermediates, it is also possible to use pharmaceutically unacceptable salts, e.g., the picrates. Only pharmaceutically acceptable, non-toxic salts may be used for therapeutic purposes, however, and those salts are therefore preferred. [0087] Synthetic Procedure [0088] Abbreviations: [0089] CH₂Cl₂ methylene chloride [0090] CH₃CN acetonitrile [0091] DIBAL diisobutylaluminium hydride [0092] DIPEA diisopropylethylamine [0093] DME ethylene glycol dimethyl ether [0094] DMF N,N-dimethylformamide [0095] DTBB 4,4'-di-tert-butylbiphenyl [0096] EtOAc ethyl acetate [0097] HBTU O-benzyltriazol-1-yl-N,N,N,N'-tetramethy-luronium hexafluorophosphate [0098] HOBt 1-hydroxhbenzotriazole [0099] HPLC high performance liquid chromatography [0100] KOTMS potassium trimethysilanoate. [0101] MeOH methanol [0102] MgSO₄ magnesium sulfate [0103] MnO₂ manganese dioxide [0104] Na₂CO₃ sodium carbonate [0105] NaHCO₃ sodium bicarbonate [0106] NaOH sodium hydroxide [0107] Tetrakis tetrakis(triphenylphosphine)palladium(0) [0108] TFA trifluoroacetic acid [0109] THF tetrahydrofuran **[0110]** The compounds of formula (I) may be prepared as depicted below in Scheme 1: #### Scheme 1 Step A $$R_2$$ O $tBoc-N$ OH + H—X—U $HBTU/HOBt/DMF$ DIEA Step B $$R_2$$ $tBoc-N$ $X-U$ $95\% TFA/DCM$ [0111] Step A: This step involves the coupling of an amine HXU (prepared in this invention or purchased from commercial sources) with a t-Boc-L-amino acid or its derivative using standard peptide coupling agents such as DCC/HOBt or HBTU/HOBt. [0112] Step B: This step involves the removal of t-Boc group with trifluoroacetic acid (TFA). [0113] As discussed above, the compounds of the present invention are useful for treating proliferative diseases. Thus, the present invention further relates to a method of treating a proliferative disease which comprises administering a therapeutically effective amount of a compound of the invention to a mammal, preferably a human, in need of such treatment. [0114] A proliferative disease is mainly a tumor disease (or cancer) (and/or any metastases). The inventive compounds are particularly useful for treating a tumor which is a breast cancer, genitourinary cancer, lung cancer, gastrointestinal cancer, epidermoid cancer, melanoma, ovarian cancer, pancreas cancer, neuroblastoma, head and/or neck cancer or bladder cancer, or in a broader sense renal, brain or gastric cancer; in particular, [0115] (i) a breast tumor; an epidermoid tumor, such as an epidermoid head and/or neck tumor or a mouth tumor; a lung tumor, for example, a small cell or non- small cell lung tumor; a gastrointestinal tumor, for example, a colorectal tumor; or a genitourinary tumor, for example, a prostate tumor (especially a hormonerefractory prostate tumor); or [0116] (ii) a proliferative disease that is refractory to the treatment with other chemotherapeutics; or [0117] (iii) a tumor that is refractory to treatment with other chemotherapeutics due to multi-drug resistance. [0118] In a broader sense of the invention, a proliferative disease may furthermore be a hyperproliferative condition such as leukemias, hyperplasias, fibrosis (especially pulmonary, but also other types of fibrosis, such as renal fibrosis), angiogenesis, psoriasis, atherosclerosis and smooth muscle proliferation in the blood vessels, such as stenosis or restenosis following angioplasty. [0119] Where a tumor, a tumor disease, a carcinoma or a cancer are mentioned, also metastasis in the original organ or tissue and/or in any other location are implied alternatively or in addition, whatever the location of the tumor and/or metastasis. **[0120]** The inventive compound is selectively toxic or more toxic to rapidly proliferating cells than to normal cells, particularly in human cancer cells, e.g., cancerous tumors, the compound has significant antiproliferative effects and promotes differentiation, e.g., cell cycle arrest and apoptosis. [0121] The present invention further relates to a method of promoting apoptosis in rapidly proliferating cells, which comprises contacting the rapidly proliferating cells with an effective apoptosis promoting amount of a non-naturally-occurring compound that binds to the Smac binding site of XIAP and/or cIAP proteins. Preferably, the non-naturally-occurring compound a compound of present formula (I) or (II). [0122] Pharmaceutical Compositions [0123] The invention relates also to pharmaceutical compositions comprising a compound of formula (I), to their use in the therapeutic (in a broader aspect of the invention also prophylactic) treatment or a method of treatment of a kinase dependent disease, especially the preferred diseases mentioned above, to the compounds for said use and to pharmaceutical preparations and their manufacture, especially for said uses **[0124]** The present invention also relates to pro-drugs of a compound of formula (I) that convert in vivo to the compound of formula (I) as such. Any reference to a compound of formula (I) is therefore to be understood as referring also to the corresponding pro-drugs of the compound of formula (I), as appropriate and expedient. [0125] The pharmacologically acceptable compounds of the present invention may be present in or employed, for example, for the preparation of pharmaceutical compositions that comprise an effective amount of a compound of the formula (I), or a pharmaceutically acceptable salt thereof, as active ingredient together or in admixture with one or more inorganic or organic, solid or liquid, pharmaceutically acceptable carriers (carrier materials). [0126] The invention relates also to a pharmaceutical composition that is suitable for administration to a warm-blooded animal, especially a human (or to cells or cell lines derived from a warm-blooded animal, especially a human, e.g., lymphocytes), for the treatment of (this, in a broader aspect of the invention, also includes the prevention of (=prophylaxis against)) a disease that responds to inhibition of protein kinase activity, comprising an amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof, preferably which is effective for said inhibition, together with at least one pharmaceutically acceptable carrier. [0127] The pharmaceutical compositions according to the invention are those for enteral, such as nasal, rectal or oral, or parenteral, such as intramuscular or intravenous, administration to warm-blooded animals (especially a human), that comprise an effective dose of the pharmacologically active ingredient, alone or together with a significant amount of a pharmaceutically acceptable carrier. The dose of the active ingredient depends on the species of warm-blooded animal, the body weight, the age and the individual condition, individual pharmacokinetic data, the disease to be treated and the mode of administration. [0128] The invention relates also to a method of treatment for a disease that responds to inhibition of a protein kinase and/or a proliferative disease, which comprises administering a (against the mentioned diseases) prophylactically or especially therapeutically effective amount of a compound of formula (I) according to the invention, or a tautomer thereof or a pharmaceutically acceptable salt thereof, especially to a warm-blooded animal, for example, a human, that, on account of one of the mentioned diseases, requires such treatment. [0129] The dose of a compound of the formula (I) or a pharmaceutically acceptable salt thereof to be administered to warm-blooded animals, for example, humans of approximately 70 kg body weight, preferably is from approximately 3 mg to approximately 10 g, more preferably from approximately 10 mg to approximately 1.5 g, most preferably from about 100 mg to
about 1,000 mg/person/day, divided preferably into 1-3 single doses which may, for example, be of the same size. Usually, children receive half of the adult dose. [0130] The pharmaceutical compositions comprise from approximately 1% to approximately 95%, preferably from approximately 20% to approximately 90%, active ingredient. Pharmaceutical compositions according to the invention may be, for example, in unit dose form, such as in the form of ampoules, vials, suppositories, dragées, tablets or capsules. [0131] The pharmaceutical compositions of the present invention are prepared in a manner known per se, for example, by means of conventional dissolving, lyophilizing, mixing, granulating or confectioning processes. ### Examples [0132] The following Examples serve to illustrate the invention without limiting the scope thereof. [0133] The following examples are intended to illustrate, but not further limit, the invention. ### Example 1 Synthesis of (1S,9S)-9-((S)-2-Methylamino-butyry-lamino)-6,10-dioxo-octahydro-pyridazino[1,2-a][1, 2]diazepine-1-carboxylic acid phenethyl-amide (1) **[0134]** The title compound 1 (formula 1) is prepared according to the procedure set forth in Scheme 2. $$\begin{array}{c|c} \underline{Scheme\ 2} \\ \hline O \\ \hline O \\ NH \\ \hline \hline \\ nBuLi/THF \\ \hline \\ Br(CH_2)_4COCl \\ \hline \end{array} \begin{array}{c} \underline{Scheme\ 2} \\ \hline O \\ \hline O \\ \hline \\ N \\ \hline \\ Br \\ \hline \end{array} \begin{array}{c} \underline{BocN=NBoc} \\ \underline{LDA/THF} \\ \overline{Bu_4Ni/CH_2Cl_2} \\ \hline \end{array}$$ $$\bigcap_{N \in \mathbb{N}} O \bigcap_{N \bigcap_{N$$ $$\begin{array}{c} Cl \\ \hline \\ NH \\ \hline \\ 1E \end{array}$$ 1F 1I # (S)-4-Benzyl-3-(4-bromo-butyryl)-oxazolidin-2-one (1A) [0135] To a solution of S-(-)-4-benzyl-2-oxazolidinone (8.0 g, 45.1 mmol) in THF (75 mL) at -70° C., is added n-BuLi (19.8 mL, 49.6 mmol, 2.5 M in hexane) slowly. After stirring at -70° C. for 1 hour, 5-bromovaleryl chloride (11.7 g, 58.7 mmol) is added dropwise. After stirring at -70° C. for 20 minutes, the cooling bath is removed and the reaction mixture is warmed to 25° C. and stirred for 2 hours. The solution is diluted with 150 mL of ether, and washed with 2×100 mL of water. The combined organic layers is dried over Na₂SO₄ and concentrated. The crude product is purified by chromatography (hexane/EtOAc:85/15) to give a white solid (15.3 g, 99.7%). (NMR and MS data confirmed, U-3133-51-24). ### (S)-3-((S)-4-Benzyl-2-oxo-oxazolidine-3-carbonyl)tetrahydro-pyridazine-1,2-dicarboxylic acid di-tertbutyl ester (1B) [0136] To a solution of diisopropylamine (0.77 mL, 5.53 mmol) in THF (4 mL) at 0° C. is added BuLi (2.17 mL, 5.42 mmol, 2.5 M in hexane) dropwise. The solution is stirred at 0° C. for 30 minutes to form an LDA solution. The LDA solution is cold to -70° C. and added to a solution of (S)-4-benzyl-3-(4-bromo-butyryl)-oxazolidin-2-one (1.72 g, 5.07 mmol) in THF (4 mL) at -70° C. dropwise. After stirring at -70° C. for 2 hours, a solution of di-t-butyl azodicarboxylate (1.40 g, 6.08 mmol) in CH₂Cl₂ (4 mL) is added slowly. After stirring at -70° C. for 15 minutes, Bu₄NI (0.28 g, 0.76 mmol) is added in one portion. After stirring at -70° C. for 10 minutes, the flask with reaction mixture is moved to a -20° C. bath and stirred overnight (16 hours). The reaction mixture is quenched to ether (50 mL) with buffer solution (50 mL, Ph=7), and the mixture is extracted with ether (3×50 mL). The organic layer is dried over $\rm Na_2SO_4$ and concentrated. The crude product is purified by chromatography (hexane/EtOAc: 70/30) to give (S)-3-((S)-4-benzyl-2-oxo-oxazolidine-3-carbonyl)-tetrahydro-pyridazine-1,2-dicarboxylic acid di-tertbutyl ester as white solid (1.22 g, 49.3%). (NMR and MS data confirmed, U-3133-55-30). # (S)-Tetrahydro-pyridazine-1,2,3-tricarboxylic acid 1,2-di-tert-butyl ester (1C) [0137] To a solution of (S)-3-((S)-4-benzyl-2-oxo-oxazolidine-3-carbonyl)-tetrahydro-pyridazine-1,2-dicarboxylic acid di-tert-butyl ester (1.22 g, 2.5 mmol) in THF (15 mL) at 0° C., is added a solution of LiOH (7 mL, 5% in $\rm H_2O$). After stirring at 0° C. for 2 hours, the reaction mixture is diluted with 15 mL of water and extracted with 20 mL of ether. The ether layer is extracted with 10 mL of saturated NaHCO $_3$. The combined aqueous layers is acidified with saturated NaHSO $_4$ to Ph=2, and extracted with CH $_2$ Cl $_2$ (3×20 mL). The combined organic layers is dried over Na $_2$ SO $_4$ and concentrated to give clued product (0.83 g) as a pale gum without further purification for next step reaction. (NMR and MS data confirmed, U-3133-56-22). ### (S)-3-Phenethylcarbamoyl-tetrahydro-pyridazine-1, 2-dicarboxylic acid di-tert-butyl ester (1D) [0138] To a solution of (S)-tetrahydro-pyridazine-1,2,3-tri-carboxylic acid 1,2-di-tert-butyl ester (83 mg, 2.5 mmol) in DMF (10 mL) at room temperature, is added diisopropylethylamine (1.4 mL) slowly. After stirring at room temperature for 20 minutes, to the reaction mixture, is added phenethylamine (445 mg, 3.67 mmol), and followed by a solution of HOBT $(545 \, \mathrm{mg}, 4.04 \, \mathrm{mmol})$ and HBTU $(1.53 \, \mathrm{g}, 4.04 \, \mathrm{mmol})$ in DMF $(10 \, \mathrm{mL})$. After stirring for 1.5 hours at room temperature, the reaction solution is diluted with ether $(100 \, \mathrm{mL})$, and washed with water $(2\times50 \, \mathrm{mL})$. The combined organic solution is concentrated. The crude product is diluted with $\mathrm{CH_2Cl_2}$ and dried over $\mathrm{Na_2SO_4}$, and purified by chromatography $(\mathrm{CH_2Cl_2}/\mathrm{MeOH:97/3})$ to give (S)-3-phenethyl carbamoyl-tetrahydropyridazine-1,2-dicarboxylic acid di-tert-butyl ester as pale gum $(920 \, \mathrm{mg}, \, 83.6\%$ in two steps). (NMR and MS data confirmed, U-3133-57-26). # (S)-Hexahydro-pyridazine-3-carboxylic acid phenethyl-amide (1E) [0139] To a solution of (S)-3-phenethyl carbamoyl-tetrahydro-pyridazine-1,2-dicarboxylic acid di-tert-butyl ester (920 mg, 2.12 mmol) in ${\rm CH_2Cl_2(2\ mL)}$ at -20° C. is added TFA (4 mL, pre-cooled to -20° C.) slowly. After stirring at 0° C. for 30 minutes, the reaction mixture is concentrated by rotavaporation under room temperature. The residue is diluted with ${\rm CH_2Cl_2/H_2O}$ (20 mL, 8/2), and neutralized with 10% NH₄OH to Ph=7. After dried and concentrated to give crude (S)-hexahydropyridazine-3-carboxylic acid phenethylamide (376 mg, 76.4%) as pale gum without further purification for next step reaction. (NMR and MS data confirmed, U-3133-58-18). # (S)-3-Phenethylcarbamoyl-tetrahydro-pyridazine-1-carboxylic acid benzyl ester (1F) [0140] To a solution of (S)-hexahydro pyridazine-3-carboxylic acid phenethyl-amide (376 mg, 1.59 mmol) and Et₃N (0.66 mL) in CH₂Cl₂ (10 mL) at 0° C., is added benzylchloroformate (270 mg, 1.59 mmol) dropwise. After stirring at -5° C. for 1.5 hours, the reaction mixture is diluted with CH₂Cl₂ (50 mL) and washed with 10 mL of water. The organic layer is dried over Na₂SO₄ and concentrated to give (S)-3-phenethylcarbamoyl-tetrahydro-pyridazine-1-carboxylic acid benzyl ester (580 mg) as pale gum without further purification for next step reaction. (NMR and MS data confirmed, U-3133-59). (S)-2-[(S)-4-Benzyloxycarbonyl-2-(1,3-dioxo-1,3-dihydro-isoindol-2-yl)-butyryl]-3-phenethylcarbam-oyl-tetrahydro-pyridazine-1-carboxylic acid benzyl ester (1G) [0141] To a solution of (S)-2-(1,3-dioxo-1,3-dihydroisoindol-2-yl)-pentanedioic acid 5-benzyl ester (580 mg, 1.59 mmol) in ether (25 mL) at 0° C., is added PCl $_5$ (920 mg, 4.38 mmol) in one portion. After stirring at 25° C. for 40 minutes, ether is removed by evaporation, and the residue is dissolved in 20 mL of THF, and is added to a solution of (S)-3-phenethylcarbamoyl-tetrahydro-pyridazine-1-carboxylic acid benzyl ester (580 mg) and N-methylmorpholine (0.74 mL, 6.77 mmol) in THF (10 mL) at 0° C. slowly. After stirring at room temperature for 2 hours, the reaction mixture is diluted with 100 mL of ether and washed with 2×20 mL of water. The combined organic layers is dried over Na $_2$ SO $_4$ and concentrated, and purified by chromatography (CH $_2$ Cl $_2$ /MeOH:97/3) to give (S)-2-[(S)-4-benzyloxycarbonyl-2-(1,3-dioxo-1,3-dihydro-isoindol-2-yl)-butyryl]-3-phenethylcarbamoyl- tetrahydro-pyridazine-1-carboxylic acid benzyl ester (1.13 g, 99.2%) as pale solid. (NMR and MS data confirmed, U-3133-62). (S)-4-(1,3-Dioxo-1,3-dihydro-isoindol-2-yl)-5-oxo-5-((S)-6-phenethylcarbamoyl-tetrahydro-pyridazin-1-yl)-pentanoic acid (1H) [0142] A solution/suspension of (S)-2-[(S)-4-benzyloxycarbonyl-2-(1,3-dioxo-1,3-dihydro-isoindol-2-yl)-butyryl]-3-phenethylcarbamoyl-tetrahydro-pyridazine-1-carboxylic acid benzyl ester (1.13 g) and Pd/C (350 mg, 10% on carbon) in MeOH (15 mL, with 2 drops of acetic acid) in a 1,000 mL round flask is vigorously stirred at room temperature, under hydrogen gas (at atmosphere pressure) from a balloon for 3 hours. After degassed by house vacuum for 10 minutes, the reaction mixture is filtered to remove catalyst and concentrated. The crude product is diluted with CH₂Cl₂/H₂O (10 mL, 8/2) and neutralized with 10% NH₄OH to Ph=7. After dried and concentrated, the crude product is purified by chromatography (CH₂Cl₂/MeOH:97/3) to give (S)-4-(1,3-dioxo-1,3-dihydro-isoindol-2-yl)-5-oxo-5-((S)-6-phenethylcarbamoyl-tetrahydro-pyridazin-1-yl)-pentanoic acid (0.74 g, 95.3%) as pale solid. (NMR and MS data confirmed, U-3133- (1S,9S)-9-(1,3-Dioxo-1,3-dihydro-isoindol-2-yl)-6, 10-dioxo-octahydro-pyridazino[1,2-a][1,2]diazepine-1-carboxylic acid phenethyl-amide (1I) [0143] To a solution of (S)-4-(1,3-dioxo-1,3-dihydroisoindol-2-yl)-5-oxo-5-((S)-6-phenethylcarbamoyl-tetrahydro-pyridazin-1-yl)-pentanoic acid (0.74 g, 1.5 mmol) and N-methylmorpholine (0.6 g, 6.0 mmol) in THF (20 mL) at 0° C., is added PCl₅ (470 mg, 2.25 mmol)
in one portion. After stirring at 0° C. for 3 hours, the reaction mixture is concentrated and purified by chromatography (CH₂Cl₂/MeOH:97/3) to yield (1S,9S)-9-(1,3-dioxo-1,3-dihydro-isoindol-2-yl)-6,10-dioxo-octahydro-pyridazino[1,2-a][1,2]diazepine-1-carboxylic acid phenethyl-amide (310 mg, 43.6%) as white solid. (NMR and MS data confirmed, U-3133-65). (1S,9S)-9-Amino-6,10-dioxo-octahydro-pyridazino [1,2-a][1,2]diazepine-1-carboxylic acid phenethylamide (1J) [0144] To a mixture/suspension of (1S,9S)-9-(1,3-dioxo-1, 3-dihydro-isoindol-2-yl)-6,10-dioxo-octahydro-pyridazino [1,2-a][1,2]diazepine-1-carboxylic acid phenethyl-amide (310 mg, 0.70 mmol) and hydrozinehydrate (70 mg, 1.40 mmol) in ethanol (10 mL) is stirred at 60° C. for 2 hours. After cooled to room temperature and concentrated, the reaction mixture is purified by chromatography (CH₂Cl₂/MeOH:97/3) to give (1S,9S)-9-amino-6,10-dioxo-octahydro-pyridazino[1,2-a][1,2]diazepine-1-carboxylic acid phenethyl-amide (240 mg, 99%) as white solid. (NMR and MS data confirmed, U-3133-67). [(S)-1-((4S,7S)-6,10-Dioxo-4-phenethylcarbamoyloctahydro-pyridazino[1,2-a][1,2]diazepin-7-ylcarbamoyl)-propyl]-methyl-carbamic acid tert-butyl ester (1K) [0145] To a solution of (S)-2-(tert-butoxycarbonyl-methylamino)-butyric acid (167 mg, 0.77 mmol) in DMF (5 mL) at room temperature, is added diisopropylethylamine (0.48 mL) slowly. After stirring at room temperature for 20 minutes, the solution is transferred to another flask contained (1S,9S)-9-amino-6,10-dioxo-octahydro-pyridazino[1,2-a][1,2]diazepine-1-carboxylic acid phenethyl-amide (240 mg, 0.70 mmol), and then a solution of HOBT (125 mg, 0.92 mmol) and HBTU (350 mg, 0.92 mmol) in DMF (5 mL) is added to the reaction mixture. After stirring for 1.5 hours, the reaction solution is diluted with ether (20 mL), and washed with water (2×10 mL). The combined organic layers is concentrated. The crude product is diluted with CH $_2$ Cl $_2$ (10 mL) and dried over Na $_2$ SO $_4$, and purified by chromatography (CH $_2$ Cl $_2$ /MeOH: 97/3) to give (S)-1-((4S,7S)-6,10-dioxo-4-phenethylcarbamoyl-octahydro-pyridazino[1,2-a][1,2]diazepin-7-ylcarbamoyl)-propyl]-methyl-carbamic acid tert-butyl ester (270 mg, 71.3%) as pale solid. (NMR and MS data confirmed, U-3133-69). (1S,9S)-9-((S)-2-Methylamino-butyrylamino)-6,10-dioxo-octahydro-pyridazino[1,2-a][1,2]diazepine-1-carboxylic acid phenethyl-amide (1) [0146] To a solution of (S)-1-((4S,7S)-6,10-dioxo-4-phenethylcarbamoyl-octahydro-pyridazino[1,2-a][1,2]diazepin-7-ylcarbamoyl)-propyl]-methyl-carbamic acid tert-butyl ester (270 mg, 0.50 mmol) in $\mathrm{CH_2Cl_2}$ (1 mL) at -20° C. is added TFA (5 mL, pre-cooled to -20° C.) slowly. After stirring at 0° C. for 30 minutes, the reaction mixture is concentrated and purified by prep HPLC (column: waters prep C18 40×300 mm; mobile phase: gradient condition, started at $\mathrm{CH_3CN}\ 10\%/\mathrm{H_2O}\ 90\%$ with 0.1% TFA, 10 minutes changed lineally to $\mathrm{CH_3CN}\ 100\%$ with 0.1% TFA; flow rate: 25 mL/min.) to give(1S,9S)-9-((S)-2-methylamino-butyrylamino)-6,10-dioxo-octahydro-pyridazino[1,2-a][1,2]diazepine-1-carboxylic acid phenethyl-amide (230 mg) as TFA salt/white solid. (NMR and MS data confirmed, U-3133-73). ### Example 2 Synthesis of (Z)-(2S,5S)-5-ethyl-1-[(S)-2-((S)-2-methylamino-propionylamino)-pentanoyl]pyrrolidine-2-carboxylic acid phenethyl-amide (11) and (Z)-(3S,6S,10aR)-6-((S)-2-methylamino-propionylamino)-5-oxo-1,2,3,5,6,7,10,10a-octahydro-pyrrolo [1,2-a]azocine-3-carboxylic acid phenethylamide (12) **[0147]** The title compounds 11 and 12 (formula 1) is prepared according to the procedure set forth in Scheme 3: 11G DMAP DCM # (S)-2-Oxo-5-phenethylcarbamoyl-pyrrolidine-1-carboxylic acid benzyl ester (11A) [0148] (S)-5-Oxo-pyrrolidine-1,2-dicarboxylic acid 1-benzyl ester (14.9 g, 57 mmol) is suspended in dichloromethane (100 mL) and added DMAP (7.1 g, 58 mmol) while cooling on ice (0-5° C.). The suspension immediately clarified. EDCI (11.1 g, 58 mmol) is added resulting in precipitation which quickly clarified again. Phenethylamine (6.8 mL, 54 mmol) is added slowly via syringe. The reaction is complete in one half hour. The dichloromethane layer is washed with aqueous 10% citric acid, water and saturated bicarb, then dried over anhydrous sodium sulfate, filtered and concentrated to a white solid. LCMS characterization ES+367.1 (m+1). # (S)-5-Hydroxy-1-methyl-pyrrolidine-2-carboxylic acid phenethyl-amide (11B) [0149] A THF solution of 11A pyroglutamide (3.9 g, 11 mmol) is chilled to -78° C. After 15 minutes, 1 M superhydride solution (13 mL, 13 mmol) is slowly added. After 1 hour, it is carefully quenched with saturated bicarb and added 4 mL 30% hydrogen peroxide and concentrated to half volume and reconstituted with ethyl acetate, then washed with saturated bicarb and brine and dried over anhydrous sodium sulfate, filtered and concentrated to a clear oil. LCMS characterization ES+ 369.1 (m+1). # (S)-5-Methoxy-1-methyl-pyrrolidine-2-carboxylic acid phenethyl-amide (11C) [0150] Product 11B is dissolved hemi-aminal in 10 mL anhydrous methanol and 100 mg 10-camphorsulfonic acid is added. Methanolysis is complete in 1 hour. The resulting material is filtered and concentrated, then reconstituted with ethyl acetate and washed with saturated bicarb followed by drying over anhydrous sodium sulfate, filtered and concentrated. LCMS characterization ES+ 383.1 (m+1). # (2S,5R)-5-Allyl-1-methyl-pyrrolidine-2-carboxylic acid phenethyl-amide (11D) [0151] A dichloromethane ($20\,\mathrm{mL}$) solution of 11C methylaminal ($7.7\,$ g, $20\,$ mmol) is chilled to -78° C. After 20 minutes, allyltrimethylsilane ($6.5\,$ mL, $40\,$ mmol) is added. After 10 more minutes 1 M titanium(IV) chloride ($24\,$ mL, $24\,$ mmol) is added slowly by syringe. The reaction is complete after 1 hour. The resulting material is carefully quenched (frothing) with saturated bicarb and extracted with dichlormethane, then washed with brine, dried over anhydrous magnesium sulfate, filtered and concentrated. The product is isolated by flash chromatography (SiO_2), and it crystallizes upon standing. LCMS characterization ES+ 393.1 (m+1). # (2S,5R)-5-Allyl-pyrrolidine-2-carboxylic acid phenethyl-amide (11E) [0152] Dissolved 11D Cbz-homoallylproline amide (4.3 g, 11 mmol) in dichloromethane (11 mL, 1 M) is chilled to 0° C. Iodotrimethylsilane (5 mL, 37 mmol) is added via syringe. After complete reaction, it is diluted with diethyl ether and washed with 1 N HCl. Then it is concentrated aqueous with methanol titration to yield HCl salt of product. LCMS characterization ES+ 259.1 (m+1). ### (2S,5R)-5-Allyl-1-((S)-2-methylamino-pent-4enoyl)-pyrrolidine-2-carboxylic acid phenethylamide (11F) [0153] AllylGlyOH (10.5 g, 26.4 mmol) is suspended in dichloromethane (200 mL) and EDCI (5.1 g, 26.4 mmol) and DMAP (3.2 g, 26.4 mmol) are added to obtain a clear solution. 11E homoallylproline amide in dichloromethane (50 mL) is added and stirred overnight. The product is quenched with saturated bicarb and extracted with dichloromethane, followed by washing with brine, drying over anhydrous magnesium sulfate, filtering and concentrating. The crude is used in following deprotection. LCMS characterization ES+456.1 (m+1). ### (2S,5R)-5-Allyl-1-((S)-2-amino-pent-4-enoyl)-pyrrolidine-2-carboxylic acid phenethyl-amide (11G) [0154] Product 11F is reconstituted in dichloromethane (40 mL) and added trifluoroacetic acid (10 mL). Stirring until reaction complete by HPLC. Toluene is added and concentrated to an amber oil. The product is dissolved in dichloromethane and washed with saturated bicarb followed by drying over anhydrous magnesium sulfate, filtering and concentrating to an amber solid. LCMS characterization ES+ 356.1 (m+1). (2S,5R)-5-Allyl-1-[(S)-2-((S)-2-dimethylaminopropionylamino)-pent-4-enoyl]-pyrrolidine-2-carboxylic acid phenethyl-amide (11H) [0155] Boc-N-MeAlaOH (5.36 g, 26.4 mmol) is suspended in dichloromethane (200 mL) and EDCI (5.4 g, 28 mmol) and DMAP (3.4 g, 28 mmol) are added to obtain a clear solution. 11G in dichloromethane (50 mL) is added and stirred overnight followed by quenching with saturated bicarb and extracting with dichloromethane then washing with brine, drying over anhydrous magnesium sulfate, filtering and concentrating. LCMS characterization ES+ 541.2 (m+1). (Z)-(3S,6S,10aR)-6-((S)-2-Dimethylamino-propionylamino)-5-oxo-1,2,3,5,6,7,10,10a-octahydro-pyrrolo[1,2-a]azocine-3-carboxylic acid phenethylamide (11I) [0156] Product 11G (894 mg) is dissolved in dichloromethane (50 mL) in a sealed tube under argon. Grubbs generation 2 catalyst (160 mg) is added and heated to 50° C., venting every half hour. After 6 hours, the product is concentrated and filtered through ${\rm SiO}_2$ with 10% methanol in ethyl acetate. Concentrating and isolating product by HPLC purification. LCMS characterization ES+ 513.2 (m+1). (Z)-(3S,6S,10aR)-6-((S)-2-Methylamino-propionylamino)-5-oxo-1,2,3,5,6,7,10,10a-octahydro-pyrrolo [1,2-a]azocine-3-carboxylic acid phenethyl-amide (12) [0157] Product 11I is reconstituted in 20% trifluoroacetatic acid in dichloromethane (50 mL). Stirring until reaction complete by HPLC. Toluene is added and concentrated to an amber oil. The product is dissolved in dichloromethane and washed with saturated bicarb followed by drying over anhydrous magnesium sulfate, filtering and concentrating. HPLC purification to yield 12. LCMS characterization ES+ 413.1 (m+1). (Z)-(2S,5S)-5-Ethyl-1-[(S)-2-((S)-2-methylamino-propionylamino)-pentanoyl]-pyrrolidine-2-carboxy-lic acid phenethyl-amide (11) [0158] Product 12 bicyclic olefin (5 mg) is dissolved in ethyl acetate (2 mL) under N_2 atmosphere and added 10% palladium on carbon (20 mg). It is purged with H_2 and stirred vigorously for 1 hour followed by filtering and concentrating to obtain 11. LCMS characterization ES+ 415.1 (m+1). #### Example 3 Synthesis
of (S)-2-methylamino-N-[2-oxo-1-(phenethylcarbamoyl-methyl)-6-phenyl-1,2-dihydro-pyridin-3-yl]-propionamide (15) [0159] The title compound 15 (formula 1) is prepared according to the procedure set forth in Scheme 4. 15 [6-(2-Chloro-phenyl)-2-oxo-1-(phenethylcarbamoyl-methyl)-1,2-dihydro-pyridin-3-yl]-carbamic acid benzyl ester (15B) [0160] To a suspension of NaH (60% in mineral oil, 287 mg, 7.17 mmol, 1.2 eq.) in anhydrous DMF (12 mL) is added [6-(2-chloro-phenyl)-2-oxo-1,2-dihydro-pyridin-3-yl]carbamic acid benzyl ester (15A) (Bernstein, P. R. et. al., J. Med. Chem., vol. 37, p 3313-3326 (1994)) (2.121 g, 5.98 mmol). After being stirred for 30 minutes, the orange solution is cooled to 0° C. and 2-iodo-N-phenethyl-acetamide (1.902 g, 6.58 mmol, 1.1 eq.) is added. The mixture is stirred at room temperature for 3 hours and is quenched with 1 N HCl (8 mL), extracted with ethyl acetate (3×). The organic layer is washed in sequence with 1 N HCl, saturated Na₂S₂O₃, water and brine; is dried over anhydrous Na₂SO₄ and concentrated. The residue is purified via silica gel chromatography (2-10% ethyl acetate in dichloromethane) to provide compound 15B as a yellow solid (605 mg, 20%): [0161] 1 H NMR (400 MHz, DMSO): δ 8.52 (bs, 1H), 7.96 (m, 1H), 7.93 (d, J=8H, 1H), 7.63-7.07 (m, 14H), 6.22 (d, J=8 Hz, 1H), 5.20 (bs, 2H), 4.89-3.75 (AB q, 2H), 3.20-3.11 (m, 2H), 2.57 (t, J=8 Hz, 2H); 13 C NMR (100 MHz, MSO): δ 165.7, 157.0, 153.2, 139.1, 138.8, 136.4, 133.1, 132.6, 132.1, 131.4, 129.3, 128.5, 128.4, 128.3, 127.9, 129.8, 127.7, 127.5, 126.0, 121.0, 107.1, 66.1, 47.7, 40.2, 34.8; MS (ESI) m/e 516 (M+H⁺), 395. Methyl-{(S)-1-[2-oxo-1-(phenethylcarbamoyl-methyl)-6-phenyl-1,2-dihydro-pyridin-3-ylcarbamoyl] ethyl}-carbamic acid tert-butyl ester (15C) [0162] To compound 15B (595 mg, 1.15 mmol) above in anhydrous ethanol (24 mL) is added sodium methoxide (65 mg, 1.21 mmol) and palladium on carbon (10%, 236 mg, 40%). The mixture is hydrolyzed under hydrogen (1 atm) for 4 days. The mixture is filtered and washed with methanol. The filtrate is concentrated and the resulting residue is dissolved in anhydrous DMF (2 mL) followed by treatment at 0° C. with a solution prepared below: To (S)—N-methyl-N—BOC-alanine (240 mg, 1.18 mmol, 1.05 eq.) in anhydrous acetonitrile (2 mL) is added Hunig base (390 µL, 2.24 mmol, 2 eq.) and HBTU (447 mg, 1.18 mmol, 1.05 eq.) at 0° C. and kept at temperature for 30 minutes. The whole reaction mixture is stirred at room temperature for 36 hours and 50° C. for 7 hours; and quenched with water and 1 N HCl (2 mL). The mixture is extracted with ethyl acetate (3×). The organic layer is washed with water and brine; dried over anhydrous Na₂SO₄. Upon concentration the residue is purified through silica gel chromatography (20-30% ethyl acetate in hexane) to provide compound 15C as a white solid (86 mg, 15%): [0163] 1 H NMR (400 MHz, CDCl₃): δ 8.70 (bs, 1H), 8.34 (d, J=8 Hz, 1H), 7.35-7.04 (m, 10H), 6.19 (bs, 1H), 6.13 (d, J=8H), 4.35 (AB q, 2H), 4.06 (q, J=4 Hz, 1H), 3.42 (m, 2H), 2.79 (bs, 3H), 2.71 (t, J=4 Hz, 2H), 1.36 (d, J=8 Hz, 3H); 13 C NMR (100 MHz, CDCl₃): δ 170.7, 167.0, 158.1, 155.5, 142. 8, 138.6, 134.5, 129.4, 129.3, 128.7, 128.6, 128.5, 127.8, 126.5, 122.3, 108.6, 80.9, 40.8, 35.5, 29.3, 28.3, 14.1, 13.7; MS (ESI) m/e 522 (M+H $^+$). (S)-2-Methylamino-N-[2-oxo-1-(phenethylcarbamoyl-methyl)-6-phenyl-1,2-dihydro-pyridin-3-yl]propionamide (15) [0164] Compound 15C (74 mg, 0.14 mmol) from above is treated with anisole (45 μ L, 0.42 mmol) and TFA (1 mL) in anhydrous dichloromethane (1 mL) for 4 hours. The mixture is concentrated and the residue is treated with dichloromethane (1 mL). The solution is added dropwise to a rapidly stirring mixture of hexane and anhydrous ether (10.5 mL). The resulting slurry is filtered, leaving a white solid that is washed with the same solvent mixture twice and dried in vacuo to afford compound 1 as a TFA salt (45 mg, 59%): [0165] 1 H NMR (400 MHz, DMSO): δ 10.08 (s, 1H), 8.83 (bs, 2H), 8.22 (d, J=8 Hz, 1H), 8.05 (t, J=4 Hz, 1H), 7.44-7.08 (m, 10H), 6.18 (d, J=8 Hz, 1H), 4.32 (s, 2H), 4.18 (q, J=4 Hz), 3.19 (m, 2H), 2.59 (t, J=8 Hz), 2.43 (bs, 3H), 1.39 (d, J=3 Hz, 3H); 13 C NMR (100 MHz, DMSO): δ 168.5, 166.4, 157.6, 157.1, 144.1, 139.2, 134.7, 129.3, 128.7, 128.6, 128.5, 128.3, 126.6, 126.1, 124.1, 106.6, 56.7, 49.0, 35.0, 30.9, 16.0; MS (ESI) m/e 433 (M+H⁺), 312. ### Example 4 Synthesis of (S)—N-[6-phenyl-2-oxo-1-(3-phenoxy-benzyl)-1,2-dihydro-pyridin-3-yl]-2-methylamino-propionamide (20) [0166] The title compound 20 (formula 1) is prepared according to the procedure set forth in Scheme 5: (6-Chloro-2-oxo-1,2-dihydro-pyridin-3-yl)-carbamic acid tert-butyl ester (20A) [0167] A suspension of tin powder (2 g, 17.20 mmol, 2.5 eq.), ammonium chloride (2.576 g, 48.16 mmol, 7 eq.) and 6-chloro-3-nitro-1H-pyridine-2-one (1.201 g, 6.88 mmol, Moody, C. J. et al., J. Chem. Soc. Perkin Trans I, p 955 (2001)) in anhydrous methanol (14 mL) is sonicated for 3 hours. The solvent is removed from the mixture by rotary evaporation. The residue is treated with anhydrous THF (14 mL) and Boc anhydride (3.00 g, 13.76 mmol, 2 eq.) and the mixture is heated at reflux for 18 hours. More Boc anhydride (0.90 g, 0.6 mmol) is added to the mixture and reflux continued for 14 hours. The mixture is filtered through a silica gel pad with 2% methanol in methylene chloride washing. The filtrate is concentrated and the residue is purified by silica gel chromatography (0-2% methanol in methylene chloride) to afford the title compound 20A (1.12 g, 58.9%): [0168] ¹H NMR (400 MHz, CDCl₃): δ 7.95 (bd, J=8 Hz, 1H), 7.33 (bs, 1H), 71.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 158.9, 152.6, 127.8, 126.5, 122.6, 107.6, 81.2, 28.3; MS (ESI) m/e 245 (M+H⁺), 191, 189 (U3910-65). 6-Chloro-2-oxo-1-(3-phenoxy-benzyl)-1,2-dihydro-pyridin-3-yl]-carbamic acid tert-butyl ester (20B) [0169] To lithium hydride (53 mg, 6.67 mmol) in anhydrous DMF/DME (7.6/2.6 mL) is added at 0° C. pyridone 20A (1.255 g, 5.13 mmol). The mixture is stirred at room temperature for 30 minutes, then 3-phenoxy-benzyl iodide (1.43 mL, 7.19 mmol) is added and the mixture is heated at 75° C. for 3 hours. The reaction mixture is quenched with icy water and extracted with ethyl acetate (3×). The organic phase is washed with brine (5×), dried over anhydrous sodium sulfate. Upon filtration and concentration the residue showed the presence of ca. 80/20 of the N-/O-alkylation products by ¹H NMR (the two structures were distinguished by HMBC). The crude product is purified by silica gel chromatography (2.5-5.0% ethyl acetate in hexane) to afford the desired pyridone 20B (1.544 g, 70.5%): **[0170]** ¹H NMR (400 MHz, CDCl₃): δ 7.88 (bs, d, J=8 Hz, 1H), 7.51 (bs, 1H), 71.28-6.81 (m, 9H), 6.28 (d, J=8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 158.1, 157.6, 156.9, 152.7, 137.6, 130.0, 129.8, 128.6, 127.7, 123.4, 121.9, 119.2, 117.9, 117.8, 107.3, 81.0, 49.5, 28.2; MS (ESI) m/e 427 (M+H+), 371 (U3910-76). {(S)-1-[6-Chloro-2-oxo-1-(3-phenoxy-benzyl)-1,2-dihydro-pyridin-3-ylcarbamoyl]-ethyl}-methyl-carbamic acid benzyl ester (20C) [0171] To compound 20B (410 mg, 0.836 mmol) in anhydrous methylene chloride (0.65 mL) is added anisole (0.31 mL) and TFA (2.0 mL). The mixture is stirred for 2 hours and is added dropwise to a rapidly stirring mixture of methylene chloride and anhydrous ether (15/1 mL). The top solution is decanted and the bottom oil is dried in vacuo The greenish amine residue is dissolved in anhydrous methylene chloride (2.5 mL) with 2,4,6-trimethylpyridine (0.39 mL, 2.93 mmol). [0172] In another flask is placed L-N-methyl Z-analine (536 mg, 2.26 mmol) and methylene chloride (2.5 mL). The mixture is treated at 0° C. with 1-chlorine-N,N,2-trimethylpropenylamine (0.30 mL, 2.26 mmol). The reaction mixture is stirred at 0° C. for 20 minutes and at the same temperature, is treated with the above mentioned amine solution. After being stirred at 0° C. for 2 hours and room temperature for 1 hour, the reaction mixture is concentrated. The residue is quenched with water and extracted with ethyl acetate (3×). The organic phase is washed with saturated citric acid, saturated sodium bicarbonate and brine (3x), dried over anhydrous sodium sulfate. Upon filtration, concentration and purification by silica gel chromatography (15-20% ethyl acetate in hexane) the desired compound 20C (363 mg, 75.0%) is obtained: [0173] ¹H NMR (400 MHz, CDCl₃): δ 8.84 (bs, 1H), 8.30 (bs, 1H), 7.35-6.86 (m, 14H), 6.36 (d, J=8 Hz, 1H), 5.46 (AB, 2H), 5.29 (br, 2H), 5.19-4.98 (b, 1H), 2.92 (bs, 3H), 1.43 (d, J=8 Hz, 3H); $^{13}\mathrm{C}$ NMR (100 MHz, CDCl $_3$): δ 170.4, 158.2, 157.6, 156.8, 137.4, 136.3, 130.1, 129.8, 129.6, 128.5, 128.1, 127.7, 123.5, 122.0, 121.8, 119.1, 117.8, 107.2, 67.9, 55.8, 49.6, 30.0, 14.4; MS (ESI) m/e 546 (M+H+) (U3910-80, 83 and 100). {(S)-1-[6-Phenyl-2-oxo-1-(3-phenoxy-benzyl)-1,2-dihydro-pyridin-3-ylcarbamoyl]-ethyl}-methyl-carbamic acid benzyl ester (20D) [0174] To a mixture of compound 20C (37 mg, 0.068 mmol), phenyl boronic acid (12 mg, 0.10 mmol) tri-tert-butylphosphonium tetra fluoroborate (16 mg, 0.054 mmol), tris(dibenzylideneacetone) dipalladium (12 mg, 0.027 mmol) and potassium fluoride (61 mg, 1.0 mmol) is added under nitrogen atmosphere anhydrous THF (1.0 mL). The mixture is heated at reflux for 20 hours and is concentrated. The residue is purified by silica gel preparative TLC (40% ethyl acetate in hexane) to provide the title compound 20D (32 mg, 80%): [0175] 1 H NMR (400 MHz, CDCl₃): δ 8.90 (bs, 1H), 8.32 (bs, 1H), 7.33-7.00 (m, 14H), 6.86 (m, 2H), 6.75 (dd, J=8, 8 Hz, 1H), 6.58 (m, 1H), 6.43 (bs, 1H), 6.10 (d, J=8 Hz, 1H), 5.18-4.75 (m, 5H), 2.88 (bs, 3H), 1.39 (d, J=8 Hz, 3H); 13 C NMR (100 MHz, CDCl₃): δ 170.5, 158.0, 157.5, 156.8, 142. 7, 138.7, 134.9, 129.9, 129.7, 129.2, 129.1, 128.5, 128.4, 128.1, 123.4, 122.0, 121.4, 119.1, 117.5, 117.0, 108.5, 64.8,
55.8, 49.2, 30.1, 13.8; MS (ESI) m/e 588 (M+H+) (U3910-108). (S)—N-[6-Phenyl-2-oxo-1-(3-phenoxy-benzyl)-1,2-dihydro-pyridin-3-yl]-2-methylamino-propionamide (20) [0176] Compound 20D (55 mg, 0.094 mmol) in ethanol (2 mL) is hydrogenated under 10% palladium on carbon (10 mg) and hydrogen (balloon pressure). The reaction is monitored by LCMS. Upon completion the mixture is filtered and the filtrate is concentrated and purified by HPLC to afford the title compound (5 mg, 12%): [0177] 1 H NMR (400 MHz, CDCl₃): δ 8.96 (bs, 1H), 8.33 (d, J=8 Hz, 1H), 7.36-7.02 (m, 9H), 6.85 (d, J=8 Hz, 2H), 6.75 (dd, J=8, 8 Hz, 1H), 6.56 (d, J=8 Hz, 1H), 6.42 (bs, 1H), 6.17 (d, J=6, 1H), 5.12 (bs, 2H), 4.06 (bs, 1H), 2.70 (bs, 3H), 1.62 (d, J=4 Hz, 3H); MS (ESI) m/e 454 (M÷H⁺), (U3910-116). ### Examples 1-30 [0178] The following compounds are prepared by methods analogs to those described herein utilizing analogous starting materials: | Compound Structure | Example
Number | |---|---| | | Example 4
MS ESI
402.51
(M + H)+ | | | Example 5
MS ESI
430.2
(M + H)* | | | Example 6
MS ESI
415.50
(M + H) ⁺ | | | Example 7
MS ESI
416.54
(M + H) ⁺ | | | Example 8
MS ESI
435.54
(M + H) ⁺ | | H. N. | Example 9
MS ESI
387.50
(M + H)+ | | Compound Structure | Example
Number | |--|--| | N _{Im.} S N N N N N N N N N N N N N N N N N N | Example 10
MS ESI
405.54
(M + H) ⁺ | | H _N _M _M , O _N _H | Example 11
MS ESI
415.55
(M + H) ⁺ | | H NHIM. NH H O O NH | Example 12
MS ESI
413.54
(M + H)+ | | $H_2N_{M_1}$, $H_2N_{M_2}$ | Example 13
MS ESI
386.43
(M + H)+ | | H _{m.} N N N N N N N N N N N N N N N N N N N | Example 14
MS ESI
357.43
(M + H)+ | | | Example 15
MS ESI
433.53
(M + H) ⁺ | | Compound Structure | Example
Number | |--|--| | | Example 16
MS ESI
447.55
(M + H)+ | | H _N _N _N _N O | | | | Example 17
MS ESI
413.54
(M + H) ⁺ | | No. of the second secon | | | | Example 18
MS ESI
371.46
(M + H) ⁺ | | | Example 19
MS ESI
447.55
(M + H) ⁺ | | H. N. | | | HN _{m_n} | Example 20
MS ESI
454.55
(M + H) ⁺ | | HN _m , N | Example 21
MS ESI
392.47
(M + H) ⁺ | | Compound Structure | Example
Number | |---|--| | H. N. N. H. N. N. H. N. | Example 22
MS ESI
397.49
(M+H)+ | | NH O NH N | Example 23
MS ESI
383.47
(M + H) ⁺ | | H _N _M _M , N _H N _H N _N _H | Example 24
MS ESI
389.51
(M + H)+ | | H N N N N N N N N N N N N N N N N N N N | Example 25
MS ESI
375.49
(M + H)* | | H None N O | Example 26
MS ESI
389.2
(M + H) ⁺ | | Compound Structure | Example
Number | |---|--| | H. O. N. | Example 27
MS ESI
405.51
(M + H)* | | $H_{2}N$ $H_{3}N$ N N N N N N N N N | Example 28
MS ESI
404.49
(M + H) ⁺ | | H_2N N N N N N N N N N | Example 29
MS ESI
452.53
(M + H)* | | H_2N N N N N N N N N N | Example 30
MS ESI
452.53
(M + H) ⁺ | | | Example 31
MS ESI
392.47
(M + H) ⁺ | | HN _{m.} N N | Example 32
MS ESI
378.17
(M + H) ⁺ | [0179] In order to measure the ability of the inventive compounds to bind the BIR3 peptide binding pocket, a solution phase assay on the FMAT or ELISA technology platform is utilized. [0180] Fmat [0181] Biotinylated Smac 7-mer peptide (AVPIAQK, lysine s-amino group is biotinylated) is immobilized on streptavidin coated beads. GST-BIR3 fusion protein is precipitated with FMAT beads and is detected using fluorescent tagged anti-GST antibodies. Importantly, non-biotinylated Smac peptide is highly effective at competing GST-BIR3 off the FMAT beads (FIG. 2). The $\rm IC_{50}$ for non-biotinylated Smac is 400 nM. The $\rm IC_{50}$ values of compounds listed in Table 1 in the described FMAT assay ranged from 0.025-10 μM . [0182] Elisa [0183] Compounds are incubated with GST-BIR3 fusion protein and biotinylated SMAC peptide (AVPFAQK) in streptavidin-coated 96-well plates. For XIAP BIR3Smac Elisa, a GST-BIR3 fusion containing amino acids 248-358 from XIAP was used. For CIAP1 BIR3Smac Elisa, a GST-BIR3 fusion containing amino acids 259-364 from CIAP1 was used. Following a 30-minute incubation, wells are extensively washed. The remaining GST-BIR3 fusion protein is monitored by ELISA assay involving first, incubation with goat anti-GST antibodies followed by washing and incubation with alkaline phosphatase conjugated anti-goat antibodies. Signal is amplified using Attophos (Promega) and read with Cytoflour Ex 450 nm/40 and Em 580 nm. $IC_{50}s$ correspond to concentration of compound which displaces half of GST-BIR3 signal. The IC₅₀ for non-biotinylated Smac is 400 nM. The IC_{50} values of compounds listed in Table 1 in the described ELISA assays ranged from 0.005-10 µM. [0184] Cell Proliferation Assay [0185] The ability of
compounds to inhibit tumor cell growth in vitro was monitored using the CellTiter 96® AQ_{ue}- ous Non-Radioactive Cell Proliferation Assay (Promega). This assay is composed of solutions of a novel tetrazolium [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS] and an electron coupling reagent (phenazine methosulfate) PMS. MTS is bioreduced by cells into a formazan product, the absorbance of which is measured at 490 nm. The conversion of MTS into the aqueous soluble formazan product is accomplished by dehydrogenase enzymes found in metabolically active cells. The quantity of formazan product as measured by the amount of 490 nm absorbance is directly proportional to the number of living cells in culture. The IC₅₀ values of compounds listed in Table 1 in the described cell assays ranged from 0.005-50 μM . | Compound Structure | Example Number | |---|---| | HN _m , N | Example 37
MS ESI 485.2 (M + H) ⁺ | | | Example 38
MS ESI 499.2 (M + H) ⁺
F | | HN _m , O N N S | Example 39
MS ESI 488.2 (M + H) ⁺
.F | | HN _m , N N S | Example 40
MS ESI 520.0 (M + H) ⁺
.F | | HN _m , N _H N _O S | Example 41
MS ESI 502.2 (M + H) ⁺
F | | | Example 42
MS ESI 534.1 (M + H) ⁺ | -continued -continued | -continued | | |---|---| | Compound Structure | Example Number | | HN _m , N N S | Example 49 MS ESI 506.2 (M + H)* | | HN _m , N N N N N N N N N N N N N N N N N N N | Example 50
MS ESI 538.2 (M + H)*
F | | HN _M , O N N N N N N N N N N N N N N N N N N | Example 51
MS ESI 527.2 (M + H) ⁺ | | HN _M , N | Example 52 MS ESI 555.3 (M + H) ⁺ | | HN _M , N | Example 53
MS ESI 477.2 (M + H)* | | -continued | | |---|---| | Compound Structure | Example Number | | HN _M , N H | Example 54
MS ESI 458.2 (M + H) ⁴ | | $\begin{array}{c c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$ | Example 55
MS ESI 437.2 (M + H) ⁴ | | HN _{Mn} . NH NH | Example 56
MS ESI 455.2 (M + H)* | | HN _m , NH OO O | Example 57
MS ESI 477.2 (M + H) ⁴ | | HN, | Example 58
MS ESI 491.2 (M + H)* | -continued | Compound Structure | Example Number | |---|-------------------------------------| | HN _M , NH NH | Example 59
MS ESI 463.2 (M + H)* | | HN _M , N | Example 60
MS ESI 491.3 (M + H)* | | HN _{III} , | Example 61
MS ESI 505.3 (M + H)* | | HN _M , O N N N N N N N N N N N N N N N N N N | Example 62
MS ESI 505.3 (M + H)* | | HN _m , O N N N N N N N N N N N N N N N N N N | Example 63
MS ESI 483.2 (M + H)* | -continued | Compound Structure | Example Number | |---|---| | HN _m , O N N N N N N N N N N N N N N N N N N | Example 64
MS ESI 468.2 (M + H) ⁺ | | HN _m , N N O | Example 65
MS ESI 432.2 (M + H) ⁺ | | HN _{III} | Example 66
MS ESI 436.2 (M + H) ⁺ | | | Example 67 MS ESI 468.2 (M + H) ⁺ | | | Example 68 MS ESI 418.2 (M + H)+ | | | Example 69
MS 429.2 (M + H) ⁺ | | Compound Structure | Example Number | |--|---------------------------------| | | Example 70
MS 433.2 (M + H)* | | | Example 71
MS 449.2 (M + H)* | | | Example 72
MS 465.2 (M + H)* | | | Example 73
MS 451.2 (M + H)* | | HN N N N N N N N N N N N N N N N N N N | Example 74
MS 469.2 (M + H)* | | Compound Structure | Example Number | |--------------------|---| | | Example 75
MS 463.2 (M + H) ⁺ | | | Example 76
MS 476.2 (M + H) ⁺ | | | Example 77
MS 443.3 (M + H) ⁺ | | | Example 78
MS 447.2 (M + H) ⁺ | | | Example 79
MS 463.2 (M + H) ⁺ | | Compound Structure | Example Number | |--|---| | | Example 80
MS 479.2 (M + H) ⁺ | | | Example 81
MS 465.2 (M + H) ⁺ | | HN N N N N N N N N N N N N N N N N N N | Example 82
MS 483.2 (M + H) ⁺ | | | Example 83
MS 414.3 (M + H) ⁺ | | | Example 84
MS 418.3 (M + H) ⁺ | | Compound Structure | Example Number | |--------------------|---| | | Example 85
MS 434.2 (M + H) ⁺ | | | Example 86
MS 450.2 (M + H) ⁺ | | | Example 87
MS 436.3 (M + H) ⁺ | | O NH O F | Example 88
MS 454.2 (M + H) ⁺ | | | Example 89
MS 448.3 (M + H)* | | Compound Structure | Example Number | |--|---| | HI N N N N N N N N N N N N N N N N N N N | Example 90
MS 462.3 (M + H) ⁺ | | | Example 91
MS 464.3 (M + H) ⁺ | | | Example 92
MS 432.3 (M + H) ⁺ | | H N O | Example 93
MS 450.3 (M + H) ⁺ | | | Example 94
MS 428.3 (M + H) ⁺ | -continued | Compound Structure | Example Number | |---|---| | | Example 95
MS 464.3 (M + H)* | | O N O F | Example 96
MS 468.3 (M + H) ⁺ | | H N N N N N N N N N N N N N N N N N N N | Example
97
MS 400.3 (M + H)* | | | Example 98
MS ESI 436.2 (M + H) ⁺ | | H N N N N N N N N N N N N N N N N N N N | Example 99
MS 434.2 (M + H) ⁺ | | H N O N O | Example 100
MS 430.3 (M + H)* | | Compound Structure | Example Number | |---|--| | | Example 101
MS 450.2 (M + H) ⁺ | | H N N N N N N N N N N N N N N N N N N N | Example 102
MS 404.2 (M + H) ⁺ | | H N N N N N N N N N N N N N N N N N N N | Example 103
MS 422.2 (M + H) ⁺ | | HH N N N N N N N N N N N N N N N N N N | Example 104
MS 448.3 (M + H) ⁺ | | H N N N N N N N N N N N N N N N N N N N | Example 105
MS 418.2 (M + H) ⁺ | | H N O N O O O O O O O O O O O O O O O O | Example 106
MS 436.3 (M + H) ⁺ | -continued | Compound Structure | Example Number | |--|--| | H N N N N N N N N N N N N N N N N N N N | Example 107
MS 420.2 (M + H) ⁺ | | H N N N N N N N N N N N N N N N N N N N | Example 108
MS 440.2 (M + H) ⁺ | | H
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N | Example 109
MS 434.2 (M + H) ⁺ | | H N N N N N N N N N N N N N N N N N N N | Example 110
MS 454.2 (M + H) ⁺ | | H O N N N N N N N N N N N N N N N N N N | Example 111
MS 386.2 (M + H) ⁺ | | H
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N | Example 112
MS 422.2 (M + H)* | | H N N N N N N N N N N N N N N N N N N N | Example 113
MS 390.2 (M + H) ⁺ | | Compound Structure | Example Number | |--|--| | H N N N N N N N N N N N N N N N N N N N | Example 114
MS 406.2 (M + H) ⁺ | | H N N N N N N N N N N N N N N N N N N N | Example 115
MS 408.2 (M + H)* | | H
N
N
H
O | Example 116
MS 426.2 (M + H)* | | HI N N N N N N N N N N N N N N N N N N N | Example 117
MS 420.2 (M + H) ⁺ | | H N N N N N N N N N N N N N N N N N N N | Example 118
MS 434.2 (M + H) ⁺ | | H N N N N N N N N N N N N N N N N N N N | Example 119
MS 400.2 (M + H) ⁺ | | Compound Structure | Example Number | |--|--| | H N N N N N N N N N N N N N N N N N N N | Example 120
MS 404.2 (M + H) ⁺ | | H N N N N N N N N N N N N N N N N N N N | Example 121
MS 420.2 (M + H)* | | H N N N N N N N N N N N N N N N N N N N | Example 122
MS 436.2 (M + H) ⁺ | | H N N N N N N N N N N N N N N N N N N N | Example 123
MS 422.2 (M + H) ⁺ | | H
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N | Example 124
MS 440.2 (M + H) ⁺ | | | Example 125
MS 427.2 (M + H) ⁺ | | Compound Structure | Example Number | |---|--------------------------------------| | HN _m , N N N N N N N N N N N N N N N N N N N | Example 126
MS ESI 430.2 (M + H)* | | HN _m , | Example 127
MS ESI 444.2 (M + H)* | | HN _m , O N N N N N N N N N N N N N N N N N N | Example 128
MS ESI 498.3 (M + H)* | | HN _{III} , O | Example 129
MS ESI 512.3 (M + H)* | | HN _M , N H | Example 130
MS ESI 485.3 (M + H)* | | Continued | | |---|--| | Compound Structure | Example Number | | HN _m , N N N N N N N N N N N N N N N N N N N | Example 131
MS ESI 499.3 (M + H)* | | | Example 132
MS ESI 534.3 (M + H) ⁺ | | | Example 133
MS ESI 486.3 (M + H)* | | HN _m , N | Example 134 MS ESI 414.3 (M + H)* | | HN _{Mn} , | Example 135
MS ESI 516.9 (M + H)* | | Compound Structure | Example Number | |---|---| | HN _m , N N N N N N N N N N N N N N N N N N N | Example 136
MS ESI 517.3 (M + H) ⁺
F | | HN _m , O N N N N N N N N N N N N N N N N N N | Example 137
MS ESI 552.3 (M + H) ⁺
F | | HN _M , N H | Example 138
MS ESI 491.3 (M + H) ⁺ | | HN _m , N H | Example 139
MS ESI 469.3 (M + H) ⁺ | | HN _m , O N N N N N N N N N N N N N N N N N N | Example 140
MS ESI 491.3 (M + H) ⁺ | | Continued | | |---|--| | Compound Structure | Example Number | | HN _{III} , O N N N N N N N N N N N N N N N N N N | Example 141
MS ESI 519.4 (M + H) ⁺ | | HN _m , N N N N N N N N N N N N N N N N N N N | Example 142
MS ESI 497.3 (M + H) ⁺ | | HN _M , N O | Example 143
MS ESI 446.3 (M + H) ⁺ | | | Example 144
MS ESI 482.3 (M + H) ⁺ | ### 1. A compound of the formula (II) $$\begin{matrix} R_1 \\ N \\ R_2 \end{matrix} \qquad \begin{matrix} R_3 \\ X - U. \end{matrix}$$ wherein R_1 is H or C_1 - C_4 alkyl; R₂ is H, or C₁-C₄ alkyl which is unsubstituted or substituted by one or more substituents selected from halogen, —OH, —SH, —OCH₃, —SCH₃, —CN, —SCN and nitro; R_3 is H, C_1 - C_4 alkyl, $-CF_3$, $-CH_2$ -Z or R_2 and R_3 together form with the nitrogen form a C_3 - C_6 heteroaliphatic ring; Z is H, —OH, F, Cl, —CH $_3$; —CF $_3$, —CH $_2$ Cl, —CH $_2$ F or —CH $_2$ OH; X is or a bicyclic structure selected from the group consisting of 5 -continued -continued $$R^4$$ R^4 R^2 R^3 R^4 where 10 11 A is — CH_2 , —CH—, N, O, or S; X_1 is O, S, or NR_a ; R_4 , R_a and R_b are independently, H; C_1 - C_{16} straight or branched alkyl; C_1 - C_{16} alkenyl; C_1 - C_{16} alkynyl; or C_1 - C_{16} eycloalkyl; — $(CH_2)_{0-6}$ -phenyl; $(CH_2)_{0-6}$ -het; —O— C_1 - C_{16} straight or branched alkyl; —S— C_1 - C_{16} straight or branched alkyl; —S— C_1 - C_{16} straight or branched alkyl; —S— C_1 - alkenyl; —N— C_1 - C_{16} alkenyl —O— C_1 - C_{16} cycloalkyl; —N— C_1 - C_{16} cycloalkyl; —S— C_1 - C_{16} cycloalkyl; —S— $(CH_2)_{0-6}$ -phenyl; —N— $(CH_2)_{0-6}$ -phenyl; —O— $(CH_2)_{0-6}$ -het; —N— $(CH_2)_{0-6}$ -het or —S— $(CH_2)_{0-6}$ -het wherein alkyl, cycloalkyl and phenyl are unsubstituted or substituted; or R_4 and R_a may form a ring; U is $-R_5$; $-CH(R_5)(R_6)$; $-CO-N(R_5)(R_6)$; -CO-O (R_5) ; $-CO-S(R_5)$; $-CS-N(R_5)(R_6)$; $-N(R_5)-CO-N(R_5)(R_6)$; $-C_1-C_5$ alkyl- $N(R_5)(R_6)$; $-C_1-C_5$ alkyl- $N(R_5)(R_6)$; $-C_1-C_5$ alkyl- $N(R_5)(R_6)$; $-C_1-C_5$ alkyl- $N(R_5)(R_6)$; where n is 0, 1 or 2: $\begin{array}{l} R_5 \text{ is H}; C_1\text{-}C_{10} \text{ alkyl}; C_3\text{-}C_7 \text{ cycloalkyl}; — (CH_2)_{1\text{-}6}\text{-}C_3\text{-}\\ C_7 \text{ cycloalkyl}; — C_1\text{-}C_{10} \text{ alkyl-aryl}; — (CH_2)_{0\text{-}6}\text{-phenyl};\\ — (CH_2)_{0\text{-}6}\text{-}C_3\text{-}C_7 \qquad \text{cycloalkyl-}(CH_2)_{0\text{-}6}\text{-phenyl};\\ — (CH_2)_{0\text{-}4}\text{CH} — ((CH_2)_{1\text{-}4}\text{-phenyl})_2; — (CH_2)_{0\text{-}6}\text{-CH}\\ \text{(phenyl)}_2, \qquad -\text{C}(O) - C_1\text{-}C_{10} \quad \text{alkyl}; \qquad -\text{C}(O) - (CH_2)_1\text{-}\\ 6\text{-}C_3\text{-}C_7 \quad \text{cycloalkyl}; \qquad -\text{C}(O) - (CH_2)_{0\text{-}6}\text{-phenyl};\\ — (CH_2)_{1\text{-}6}\text{-het}; \qquad -\text{C}(O) - (CH_2)_{1\text{-}6}\text{-het}; \qquad (CR_7R_8)_{0\text{-}2}\text{-}\\ \text{Aryl-V-Aryl}; \quad \text{CHR}_6\text{C}(O)\text{N}(R_{12})(R_{13}); \quad \text{C}(O) - \text{NH} - \text{CH}(R_{11})(R_{14}) \text{ or } R_5 \text{ is a residue of an amino acid,}\\ \text{wherein the alkyl, cycloalkyl, phenyl and aryl substituents are unsubstituted or substituted;} \end{array}$ or when U is $-CO-N(R_5)(R_6)$; $-CS-N(R_5)(R_6)$; $-N(R_5)-CO-N(R_5)(R_6)$; or $N(R_5)-CO-N(R_5)$ (R_6) , R_5 and R_6 together with the N atom form an aromatic or aliphatic heterocycle; R₇ and R₉ are independently H, halogen; C₁₋₇ alkyl; —OC₁₋₇ alkyl; C₁₋₇ cycloalkyl; or —OC₁₋₇ cycloalkyl wherein the alkyl, cycloalkyl substituents may be substituted or unsubstituted; V is R₉; R₁₀; CR₉R₁₀; —C(O)—; C(hal)₂; —O—; —N(H)—; N(alkyl); N(aryl); S; SO; or S(O)₂; R₉ and R₁₀ are independently H, halogen, C₁₋₇ alkyl; —OC₁₋₇ alkyl; C₁₋₇ cycloalkyl; or —OC₁₋₇ cycloalkyl wherein the alkyl, cycloalkyl substituents may be substituted or unsubstituted; $\begin{array}{l} R_{12} \ \text{and} \ R_{13} \ \text{are independently H; C}_1\text{-C}_{10} \ \text{alkyl;} \quad \text{-(CH}_2)_{0-6} \\ \text{--C}_3\text{-C}_7 \ \ \ \ \text{cycloalkyl;} \quad \text{--(CH}_2)_{0-6} \quad \text{-(CH}_{0.1} (\text{aryl})_{1-2}; \\ \text{--C(O)} \quad \text{--C}_1\text{--C}_{10} \ \ \text{alkyl;} \quad \text{--(O)} \quad \text{-(CH}_2)_{1-6} \quad \text{--C}_3\text{--C}_7 \\ \text{cycloalkyl;} \quad \text{--C(O)} \quad \text{--(CH}_2)_{0-6} \quad \text{-aryl;} \quad \text{--C(O)} \\ \text{--(CH}_2)_{0-6} \quad \text{--O-fluorenyl;} \quad \text{--C(O)} \quad \text{--NH} \quad \text{--(CH}_2)_{0-6} \quad \text{-aryl;} \\ \text{---(O)} \quad \text{--(CH}_2)_{0-6} \quad \text{-aryl;} \quad \text{or} \quad \text{---(O)} \quad \text{--(CH}_2)_{1-6} \quad \text{-het,} \\ \text{wherein the alkyl, cycloalkyl and aryl substituents are} \\ \text{unsubstituted or substituted; or a substituent that facilitates transport of the molecule across a cell membrane,} \\ \text{or } R_{12} \ \text{and } R_{13} \ \text{together with the nitrogen are het;} \end{array}$ where R_{11} and R_{14} are C_{1-7} alkyl; — $(CH_2)_{0-6}$ -phenyl; or amide: aryl is phenyl, naphthyl, or indanyl which is unsubstituted or substituted: or a pharmaceutically acceptable salt thereof. ${f 2.}$ A compound of formula (II) according to claim ${f 1}$ wherein R_1 is H or C_1 - C_4 alkyl; R_2 is H or C_1 - C_4 alkyl; R_3 is H or C_1 - C_4 alkyl; X is a bicyclic structure selected from the group consisting of proper N O property, Server
M. O received. A N O ROWN, where 48 11 12 15 16 17 18 19 A is —CH₂, —CH—, N, O, or S; X_1 is O, S, or NR_a ; R_4 , R_a and R_b are independently, H; C_1 - C_{16} straight or branched alkyl; or — $(CH_2)_{0-6}$ -phenyl wherein phenyl is unsubstituted with halo; $\begin{array}{lll} U \ \ is \ \ --R_5; \ \ --CH(R_5)(R_6); \ \ C_1\text{-}C_5 \ \ alkyl\text{-}N(R_5)(R_6); \ \ or \\ --CO--N(R_5)(R_6); \end{array}$ R_7 and R_8 are independently H, halogen; C_{1-7} alkyl; —OC₁₋₇ alkyl; C₁₋₇ cycloalkyl; or —OC₁₋₇ cycloalkyl; V is —C(O)—; C(hal)₂; —O—; —N(H)—; N(alkyl); N(aryl); S; SO; or S(O)₂; $\begin{array}{l} R_9 \ \ \text{and} \ \ R_{10} \ \ \text{are independently H, halogen, } C_{1\text{--}7} \ \ \text{alkyl}; \\ --OC_{1\text{--}7} \ \ \text{alkyl}; C_{1\text{--}7} \ \ \text{cycloalkyl}; \text{or} \\ --OC_{1\text{--}7} \ \ \text{cycloalkyl}; \end{array}$ R_{12} and R_{13} are independently H, or C_1 - C_{10} alkyl; where R_{11} and R_{14} are C_{1-7} alkyl; —(CH₂)₀₋₆-phenyl; or amide; aryl is phenyl, naphthyl, or indanyl which is unsubstituted or substituted; or a pharmaceutically acceptable salt thereof. 3. A compound of formula (II) according to claim 1 wherein R_1 , R_2 and R_3 are independently H or C_1 - C_4 alkyl; X is a bicyclic structure selected from the group consisting of 7 8 9 10 11 12 15 -continued -continued where X_1 is O, S, or NR_a ; R_4 , R_a and R_b are independently, H; C_1 - C_{16} straight or branched alkyl; or —(CH₂)₀₋₆-phenyl; $\begin{array}{l} U \text{ is } -R_5; -CO - N(R_5)(R_6) \text{ or } C_1 \text{-} C_5 \text{alkyl-N}(R_5)(R_6); \\ R_5 \text{ is } H; -(CH_2)_{0-6} \text{-phenyl; } \text{Aryl-V-Aryl; } \text{ or } C(O) - NH - CO C$ $CH(R_{11})(R_{14})$ wherein aryl or phenyl may be substituted or unsubstituted; V is —O—; where R_{11} and R_{14} are C_{1-7} alkyl; — $(CH_2)_{0-6}$ -phenyl; or aryl is phenyl, naphthyl, or indanyl which is unsubstituted or substituted; or a pharmaceutically acceptable salt thereof. **4.-5**. (canceled) 6. A pharmaceutical composition which comprises a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of formula (II) according to claim 7. A method of treating a proliferative disease which comprises administering a therapeutically effective amount of a compound of formula (II) according to claim 1 to a mammal in need of such treatment. - **8**. A method of claim **7**, wherein the mammal is a human. - 9. A process to prepare compound of formula (II) according to claim 1 comprising the steps of - (a) coupling of an amine HXU with a t-Boc-L-amino acid or its derivative using a peptide coupling agent; and - (b) removing t-Boc with trifluoroacetic acid. - 10. The process according to claim 9, wherein the coupling agent is DCC/HOBt or HBTU/HOBt. - 11. A compound selected from the group consisting of - (1S,9S)-9-((S)-2-Methylamino-butyrylamino)-6,10-dioxo-octahydro-pyridazino[1,2-a][1,2]diazepine-1-carboxylic acid phenethyl-amide; - (1S,9S)-9-((S)-2-Methylamino-propionylamino)-6,10-dioxo-octahydro-pyridazino[1,2][1,2]diazepine-1-carboxylic acid phenethyl-amide; - (1S,9S)-9-((S)-2-Methylamino-propionylamino)-10-oxooctahydro-pyridazino[1,2-a][1,2]diazepine-1-carboxylic acid phenethyl-amide; - (1S,8S)-8-((S)-2-Methylamino-propionylamino)-9-oxohexahydro-pyrazolo[1,2-a][1,2]diazepine-1-carboxylic acid phenethyl-amide; - (1S,8S)-8-((S)-2-Methylamino-butyrylamino)-5,9-dioxo-hexahydro-pyrazolo[1,2-a][1,2]diazepine-1-carboxylic acid phenethyl-amide; - (1S,8S)-8-((S)-2-Methylamino-propionylamino)-5,9-dioxo-hexahydro-pyrazolo[1,2-a][1,2]diazepine-1-carboxylic acid phenethyl-amide; - (1S,8S)-8-((S)-2-Methylamino-butyrylamino)-9-oxohexahydro-pyrazolo[1,2-a][1,2]diazepine-1-carboxylic acid phenethyl-amide; - (3S,6S,8aS)-6-((S)-2-Methylamino-propionylamino)-5oxo-octahydro-indolizine-3-carboxylic acid phenethylamide: - (3R,6S,8aS)-6-((S)-2-Methylamino-propionylamino)-5oxo-hexahydro-thiazolo[3,2-a]pyridine-3-carboxylic acid phenethyl-amide; - (6S,10aS)-6-((S)-2-Methylamino-propionylamino)-5oxo-decahydro-pyrrolo[1,2-a]azocine-3-carboxylic acid phenethyl-amide; - (Z)-(3S,6S,10aR)-6-((S)-2-Methylamino-propionylamino)-5-oxo-1,2,3,5,6,7,10,10a-octahydro-pyrrolo[1, 2-a]azocine-3-carboxylic acid phenethyl-amide; - (S)-6-((S)-2-Methylamino-butyrylamino)-5-oxo-1,2,3,5tetrahydro-indolizine-3-carboxylic acid phenethylamide; - (S)-6-((S)-2-Methylamino-propionylamino)-5-oxo-1,2,3, 5-tetrahydro-indolizine-3-carboxylic acid phenethylamide: - (S)-6-((S)-2-Methylamino-propionylamino)-5-oxo-1,2,3, 5-tetrahydro-indolizine-3-carboxylic acid (2-cyclohexyl-ethyl)-amide; - (S)-2-Amino-N-{1-[((S)-1-carbamoyl-2-phenyl-ethylcarbamoyl)-methyl]-2-oxo-2,3,4,5-tetrahydro-1H-benzo [b]azepin-3-yl}-propionamide; and - (S)-2-Amino-N-{1-[((S)-1-carbamoyl-2-phenyl-ethylcarbamoyl)methyl]-2-oxo-2,3,4,5-tetrahydro-1H-benzo [b]azepin-3-yl}-propionamide; - or a pharmaceutically acceptable salt thereof. - 12. A compound selected from the group consisting of - N-[(4S,7S)-4-(Indan-2-yloxymethyl)-6,10-dioxo-octahy-dro-pyridazino[1,2-a][1,2]diazepin-7-yl]-2-methy-lamino-propionamide; - N-((4S,7S)-6,10-Dioxo-4-phenethylsulfanylmethyl-octahydro-pyridazino[1,2-a][1,2]diazepin-7-yl)-2-methylamino-propionamide; - N-[(4S,7S)-6,10-Dioxo-4-(2-phenyl-ethanesulfinylm-ethyl)-octahydro-pyridazino[1,2-a][1,2]diazepin-7-yl]-2-methylamino-propionamide; - N-[(4S,7S)-6,10-Dioxo-4-(2-phenyl-ethanesulfonylmethyl)-octahydro-pyridazino[1,2-a][1,2]diazepin-7-yl]-2-methylamino-propionamide; - N-[(4S,7S)-6,10-Dioxo-4-(3-phenoxy-phenyl)-octahy-dro-pyridazino[1,2-a][1,2]diazepin-7-yl]-2-methy-lamino-propionamide; - N-{(4S,7S)-4-[3-(4-Fluoro-phenoxy)-phenyl]-6,10-dioxo-octahydro-pyridazino[1,2-a][1,2]diazepin-7-yl}-2-methylamino-propionamide; - N-[(4S,7S)-4-(3-Benzoyl-phenyl)-6,10-dioxo-octahydro-pyridazino[1,2-a][1,2]diazepin-7-yl]-2-methylamino-propionamide; - N-[(4S,7S)-4-(3-Benzoyl-phenyl)-6,10-dioxo-octahydro-pyridazino[1,2-a][1,2]diazepin-7-yl]-2-methylamino-butyramide; - N-[(4S,7S)-4-(Indan-2-yloxymethyl)-6,10-dioxo-octahy-dro-pyridazino[1,2-a][1,2]diazepin-7-yl]-2-methy-lamino-butyramide; - N-((4S,7S)-6,10-Dioxo-4-phenethylsulfanylmethyl-octahydro-pyridazino[1,2-a][1,2]diazepin-7-yl)-2-methylamino-butyramide; - N-[(4S,7S)-6,10-Dioxo-4-(2-phenyl-ethanesulfinylmethyl)-octahydro-pyridazino[1,2-a][1,2]diazepin-7-yl]-2-methylamino-butyramide; - N-[(4S,7S)-6,10-Dioxo-4-(2-phenyl-ethanesulfonylmethyl)-octahydro-pyridazino[1,2-a][1,2]diazepin-7-yl]-2-methylamino-butyramide; - N-[(4S,7S)-6,10-Dioxo-4-(3-phenoxy-phenyl)-octahy-dro-pyridazino[1,2-a][1,2]diazepin-7-yl]-2-methy-lamino-butyramide; - N-{(4S,7S)-4-[3-(4-Fluoro-phenoxy)-phenyl]-6,10-dioxo-octahydro-pyridazino[1,2-a][1,2]diazepin-7-yl}-2-methylamino-butyramide; - N-[(3S,6S,10aS)-3-(Indan-2-yloxymethyl)-5-oxodecahydro-pyrrolo[1,2-a]azocin-6-yl]-2-methylamino-propionamide; - 2-Methylamino-N-((3S,6S,10aS)-5-oxo-3-phenethylsul-fanylmethyl-decahydro-pyrrolo[1,2-a]azocin-6-yl)-propionamide; - 2-Methylamino-N-[(3S,6S,10aS)-5-oxo-3-(2-phenylethanesulfinylmethyl)-decahydro-pyrrolo[1,2-a]azocin-6-yl]-propionamide; - 2-Methylamino-N-[(3S,6S,10aS)-5-oxo-3-(2-phenylethanesulfonylmethyl)-decahydro-pyrrolo[1,2-a]azo-cin-6-yl]-propionamide; - 2-Methylamino-N-[(3S,6S,10aS)-5-oxo-3-(3-phenoxy-phenyl)-decahydro-pyrrolo[1,2-a]azocin-6-yl]-propionamide; - N-{(3S,6S,10aS)-3-[3-(4-Fluoro-phenoxy)-phenyl]-5-oxo-decahydro-pyrrolo[1,2-a]azocin-6-yl}-2-methy-lamino-propionamide; - N-[(3S,6S,10aS)-3-(3-Benzoyl-phenyl)-5-oxo-decahydro-pyrrolo[1,2-a]azocin-6-yl]-2-methylamino-propionamide; - N-[(3S,6S,10aS)-3-(3-Benzoyl-phenyl)-5-oxo-decahy-dro-pyrrolo[1,2-a]azocin-6-yl]-2-methylamino-butyramide; - 2-Methylamino-N-[(3S,6S,10aS)-5-oxo-3-(2-phenylethanesulfonylmethyl)-decahydro-pyrrolo[1,2-a]azo-cin-6-yl]-butyramide; - 2-Methylamino-N-((3S,6S,10aS)-5-oxo-3-phenethylsul-fanylmethyl-decahydro-pyrrolo[1,2-a]azocin-6-yl)-butyramide - 2-Methylamino-N-[(3S,6S,10aS)-5-oxo-3-(3-phenoxy-phenyl)-decahydro-pyrrolo[1,2-a]azocin-6-yl]-butyramide; - N-[(3S,6S,10aS)-3-(Indan-2-yloxymethyl)-5-oxodecahydro-pyrrolo[1,2-a]azocin-6-yl]-2-methylaminobutyramide; - N-{(3S,6S,10aS)-3-[3-(4-Fluoro-phenoxy)-phenyl]-5-oxo-decahydro-pyrrolo[1,2-a]azocin-6-yl}-2-methylamino-butyramide; - N-[(3S,6S,9aS)-3-(Indan-2-yloxymethyl)-5-oxo-octahydro-pyrrolo[1,2-a]azepin-6-yl]-2-methylamino-propionamide; - 2-Methylamino-N-[(3S,6S,9aS)-5-oxo-3-(2-phenylethanesulfonylmethyl)-octahydro-pyrrolo[1,2-a] azepin-6-yl]-propionamide; - N-[(3S,6S,9aS)-3-(3-Benzoyl-phenyl)-5-oxo-octahydro-pyrrolo[1,2-a]azepin-6-yl]-2-methylamino-propionamide: - 2-Methylamino-N-{(3S,6S,9aS)-5-oxo-3-[3-((Z)-propenyl)-4-vinyl-cyclopent-3-enyloxymethyl]-octahydropyrrolo[1,2-a]azepin-6-yl}-butyramide; - 2-Methylamino-N-[(3S,6S,9aS)-5-oxo-3-(2-phenylethanesulfonylmethyl)-octahydro-pyrrolo[1,2-a] azepin-6-yl]-butyramide; - 2-Methylamino-N-((3S,6S,9aS)-5-oxo-3-phenethylsulfanylmethyl-octahydro-pyrrolo[1,2-a]azepin-6-yl)-propionamide; - 2-Methylamino-N-[(3S,6S,9aS)-5-oxo-3-(3-phenoxy-phenyl)-octahydro-pyrrolo[1,2-a]azepin-6-yl]-propionamide: - N-[(3S,6S,9aS)-3-(3-Benzoyl-phenyl)-5-oxo-octahydro-pyrrolo[1,2-a]azepin-6-yl]-2-methylamino-butyramide: - 2-Methylamino-N-((3S,6S,9aS)-5-oxo-3-henethylsulfanylmethyl-octahydro-pyrrolo[1,2-a]azepin-6-yl)-butyramide; - 2-Methylamino-N-[(3S,6S,9aS)-5-oxo-3-(3-phenoxy-phenyl)-octahydro-pyrrolo[1,2-a]azepin-6-yl]-butyramide; - 2-Methylamino-N-[(3S,6S,9aS)-5-oxo-3-(2-phenylethanesulfinylmethyl)-octahydro-pyrrolo[1,2-a]azepin-6-yl]-propionamide; - N-{(3S,6S,9aS)-3-[3-(4-Fluoro-phenoxy)-phenyl]-5-oxooctahydro-pyrrolo[1,2-a]azepin-6-yl}-2-methylaminopropionamide; - 2-Methylamino-N-[(3S,6S,9aS)-5-oxo-3-(2-phenylethanesulfinylmethyl)-octahydro-pyrrolo[1,2-a]azepin-6-yl]-butyramide; - N-{(3S,6S,9aS)-3-[3-(4-Fluoro-phenoxy)-phenyl]-5-oxooctahydro-pyrrolo[1,2-a]azepin-6-yl}-2-methylamino-butyramide; -
N-[(3S,6S,8aS)-3-(Indan-2-yloxymethyl)-5-oxo-octahy-dro-indolizin-6-yl]-2-methylamino-propionamide; - 2-Methylamino-N-[(3S,6S,8aS)-5-oxo-3-(2-phenylethanesulfonylmethyl)-octahydro-indolizin-6-yl]-propionamide; - 2-Methylamino-N-((3S,6S,8aS)-5-oxo-3-phenethylsulfanylmethyl-octahydro-indolizin-6-yl)-propionamide; - 2-Methylamino-N-[(3S,6S,8aS)-5-oxo-3-(2-phenyl-ethanesulfinylmethyl)-octahydro-indolizin-6-yl]-propionamide: - 2-Methylamino-N-[(3S,6S,8aS)-5-oxo-3-(3-phenoxy-phenyl)-octahydro-indolizin-6-yl]-propionamide; - N-{(3S,6S,8aS)-3-[3-(4-Fluoro-phenoxy)-phenyl]-5-oxooctahydro-indolizin-6-yl}-2-methylamino-propionamide; - N-[(3S,6S,8aS)-3-(3-Benzoyl-phenyl)-5-oxo-octahydro-indolizin-6-yl]-2-methylamino-propionamide; - N-[(3S,6S,8aS)-3-(3-Benzoyl-phenyl)-5-oxo-octahydroindolizin-6-yl]-2-methylamino-butyramide; - N-[(3S,6S,8aS)-3-(Indan-2-yloxymethyl)-5-oxo-octahy-dro-indolizin-6-yl]-2-methylamino-butyramide; - 2-Methylamino-N-((3S,6S,8aS)-5-oxo-3-phenethylsulfa-nylmethyl-octahydro-indolizin-6-yl)-butyramide; - 2-Methylamino-N-[(3S,6S,8aS)-5-oxo-3-(2-phenylethanesulfinylmethyl)-octahydro-indolizin-6-yl]-butyramide; - 2-Methylamino-N-[(3S,6S,8aS)-5-oxo-3-(2-phenylethanesulfonylmethyl)-octahydro-indolizin-6-yl]-butyramide: - 2-Methylamino-N-[(3S,6S,8aS)-5-oxo-3-(3-phenoxy-phenyl)-octahydro-indolizin-6-yl]-butyramide; and - N-{(3S,6S,8aS)-3-[3-(4-Fluoro-phenoxy)-phenyl]-5-oxooctahydro-indolizin-6-yl}-2-methylamino-butyramide; or a pharmaceutically acceptable salt thereof. * * * * *