
US 2010.0023552A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2010/0023552 A1

Back et al. (43) Pub. Date: Jan. 28, 2010

(54) SERIALIZABLE OBJECTS AND A DATABASE Related U.S. Application Data
THEREOF

(62) Division of application No. 1 1/586,769, filed on Oct.
25, 2006, now Pat. No. 7,620,526. (75) Inventors: Jonathan Back, Vancouver (CA);

Emmanuel A. Papoutsakis, Publication Classification
Vancouver (CA)

(51) Int. Cl.
Correspondence Address: G06F 7700 (2006.01)
BLAKELY SOKOLOFF TAYLOR & ZAFMAN (52) U.S. C. .. 707/103 R: 707/100; 703/1: 707/E17.002:
LLP 707/E17.055
1279 OAKMEAD PARKWAY
SUNNYVALE, CA 94085-4040 (US) (57) ABSTRACT

A technique to communicate data between two objects in a
(73) Assignee: ZEUGMA SYSTEMS INC. computing environment includes invoking a write method of

Richmond (CA) a first object. A converter associated with a second object
having a second format for storing the data is then invoked.

(21) Appl. No.: 12/568,543 The converter converts field values associated with first fields
of the first object to the second format. The converted field

(22) Filed: Sep. 28, 2009 values are then written into second fields of the second object.

ATCA
{

200 8888.8888.8888.888
\ ||

|

s Serdy Y ar

arixx-22se

Patent Application Publication

N
DB

SCHEMA

1N-1
2S

DATABASE
CLIENT
110

Jan. 28, 2010 Sheet 1 of 13

RECORD
120

FIG. 1
(PRIOR ART)

105

DATABASE
O

US 2010/0023552 A1

100

KEY if 1 RECORD

KEY i2. RECORD

KEYiN RECORD

S-1

RECORD

Patent Application Publication Jan. 28, 2010 Sheet 2 of 13 US 2010/0023552 A1

FIG. 2 Om O

2107

W
W / Xe (AZXS 210 SASA (f/EG 4.Y V A2. 210
N a2 10 NXSS-SS, tAX4)xSW/
ŠySYXr Axf2 ŠS&ex2A32? Sasy XX-2s61

2102 /sage 2109
7 N

2103 2108

26,
2106 2105

Patent Application Publication

CLI, XML, ETC.

Jan. 28, 2010 Sheet 3 of 13

SET
GET SINGLE
GET MULTIPLE

w CREATE
\ REMOVE

340

345

INTERFACE LAYER 320

MANAGEMENT LAYER 315

| PROVISION
as

v

A

RUNTIME LAYER 310

/ HAL 305
300

OAMP COMPUTE TRAFFIC
MODULE MODULE MODULE

INTERFACE
X LAYER
X MANAGEMENT

LAYER

RUNTIME
X X X LAYER

FIG. 3B

US 2010/0023552 A1

NG

/ DATABASE 325 WARIABLE
LENGTH,

COMPRESSED,
FLAT

STRUCTURES

FIXEDLENGTH
FLAT

STRUCTURES

RUNTIME
DATABASE 330

Patent Application Publication Jan. 28, 2010 Sheet 4 of 13 US 2010/0023552 A1

CD
DB N 45 XM 405 N

450 coMMAND(S)
as

475

SERAZABLE
OBJECT 400

0.10111.10

Ne (...)
Ci CODE

445

SERAZABE
OBJECT 494

US 2010/0023552 A1 Jan. 28, 2010 Sheet 5 of 13 Patent Application Publication

999 079

(I)18 ELIHM
(N) LE ELIHM (N)IG GWEH

?

©? (Z) 18 ELIHM (Z) 18 QWEH

(!) 18 QVEM.

099

009!
099

Patent Application Publication

WRITING FROMSO 605

610
SET ONE ORMORE FIELDS

WITHIN SO

615
NVOKE WRITE METHOD OF SO

DENTIFY CONVERTER

625 DESTINATION OBJECT
POPULATED WITH DATA
FROM SET FELDS

FIG. 6A

WRITE INT (FOO, "FOO");

Jan. 28, 2010 Sheet 6 of 13

READING INTO SO 650

M
655

INVOKE READMETHOD OF
SO

660

DENTIFY CONVERTER

665 DATA CONVERTED AND
READ FROM SOURCE

OBJECT

FIG. 6C

630 N FLAT DB STRUCTURE

US 2010/0023552 A1

FOO BAR NAME

WRITE DOUBLE (BAR, "BAR");
INT FOO.

POUBLEBAR: WRITE STRING (NAME, "NAME"); STRING NAME: e

<FOO> ... </FOOD
<BAR> ... <!BARD
<NAME) ... <INAME)

</XM >
640

FIG. 6B

Patent Application Publication Jan. 28, 2010 Sheet 7 of 13 US 2010/0023552 A1

READINGSO FROM DATABASE

CLASS DEFINITION 715

INSTANTIATE
EMPTY S.O.

710 715

EMPTY S.O. SET SET S.O. 725
FIELD(S)

FIELD 1 (INDEX 1) FE A NE
FIELD2 (2) FA2 W
FIELD 3 (INDEX 2) FIELD 3 (INDEX 2)

- s s

M N
a w

w
745 735 A 720 725 V

/ \, / M
f GET(S.O., DEST, INDEXVALUE) Y
I

VALUE A DB ty DB
O CV 405 CV 405

A

M

730 -o- - - - 1 740 DATABASE
705

(QUERY ?)

FIG. 7

Patent Application Publication Jan. 28, 2010 Sheet 8 of 13 US 2010/0023552 A1

READINGSO FROM DATABASE

CREATE EMPTY
SERIALIZABLE OBJECT

SET ONE ORMORE FIELDS MARKED WITH AN
INDEX TO AVALUE

805 800

810

815 ISSUE GET COMMAND AND PASS S.O.,
DESTINATION FOR DATA, AND INDEX #TO

SEARCHON

820
SET FELDS ARE CONVERTED TO FLAT DB

STRUCTURES FOR SEARCHING

EMPTY SET

FLATTENED DB RECORDS ARE EXPANDED
AND RETURNED BY DATABASE

830

835

840
DATA WRITTEN INTO SERALIZABLE
OBJECT TO POPULATE EMPTY FIELDS

FIG. 8

US 2010/0023552 A1 Jan. 28, 2010 Sheet 9 of 13 Patent Application Publication

AO 8C] O 1 ELIHAW <—| HB+Ang VIVO

(N) CITEI
gTETIT\//\ = 8THWA (ZXECINI) Z CITEI WTEDT\!A = WTYJWA (I XEGNI) I CITEI

009Iz
? H+Ang VIVG|

^_906

Patent Application Publication Jan. 28, 2010 Sheet 10 of 13 US 2010/0023552 A1

WRITING SO TODATABASE

1000

1005
SETFIELDS TO WRITE TO

DB

1010

INVOKE WRITE METHOD

1015

IDENTIFY DB CV

SO SERALZED INTO FLAT CONTIGUOUS
STRUCTURES

FLAT CONTIGUOUS STRUCTURE
STORED NDB

1020

1025

FIG. 10

Patent Application Publication Jan. 28, 2010 Sheet 11 of 13 US 2010/0023552 A1

TRAFFICBLADE 210 ATCA CHASSIS

NETWORK INFRA- BACKPLANE
LAYER STRUCT. HGG

oNPU XGM oFABRIC
oTB HOST

PHYSICAL LINK LAYER
LAYER

too o

oPHY oMAC

Karoo
SP42
SP4.2
too H

1106 1108

FULL MESH
INTER

COMPUTE BLADE 215 CONNECT

oCOMPUTE
NODE

FIG. 11

US 2010/0023552 A1 Jan. 28, 2010 Sheet 12 of 13 Patent Application Publication

&&&&&&§§§§§§§§§§§§§§§§§§§
§§§

§

Z # ECJON~~~~ § xXxxXxxXxxXxxXxxXxxXXXXXXXXXXXXXXXXXXXXXX $$$$$$$$$$$$$$$$$$$$$$$$$$$$$§§§

US 2010/0023552 A1 Jan. 28, 2010 Sheet 13 of 13

THART-HEMOT

qvoi º 618|| ? – – – –

|T? Y III, IIIIIII|:=:|| ~ ||

Patent Application Publication

US 2010/0023552 A1

SERALIZABLE OBJECTS AND A DATABASE
THEREOF

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. The present application is a Divisional of U.S.
patent application Ser. No. 1 1/586,769, filedon Oct. 25, 2006.

TECHNICAL FIELD

0002 This disclosure relates generally to software, and in
particular but not exclusively, relates to databases.

BACKGROUND INFORMATION

0003 FIG. 1 illustrates a conventional database system
100 including a database 105 and a database client 110. As
illustrated, database 105 stores separate internal keys indexed
to each record or data buffer. It is noteworthy that the internal
keys are not apart of the record or the data buffer of the record,
and do not contain useful data, other than for the purposes of
organization and retrieval. To retrieve a particular record,
database client 110 provides a key 115 to database 105, which
in turn searches on it internal keys. If a match is found, then
database 105 will return a record 120 indexed to the internal
key that matched key 115 provided. To write data buffers or
records into database 105, database client 110 may reference
a database (“DB) schema 125, which includes a description
of the internal structure or directory system of database 105.
In short, schema 125 provides database client 110 with the
knowledge necessary to access and utilize database 105.
0004 Since database 105 merely indexes data buffers or
records to internal keys, the knowledge and complexity
required to run higher level queries on database 105 is pushed
onto application developers of database client 110. Further
more, since the internal keys themselves are not part of the
useful data stored by database client 110, but rather indepen
dently generated values used simply for retrieving records or
data buffers, the internal keys consume additional memory
resources within database 105.
0005. In an alternative conventional database system,
database 105 itself may contain knowledge of the internal
representation of the data buffers or records it stores to per
form it own complex queries and indexing. This alternative
embodiment pushes the complexities of indexing and queries
onto the database developer; however, does so at the expense
of performance by adding a layer of abstraction between the
records stored and the database clients accessing the records.

BRIEF DESCRIPTION OF THE DRAWINGS

0006 Non-limiting and non-exhaustive embodiments of
the invention are described with reference to the following
figures, wherein like reference numerals refer to like parts
throughout the various views unless otherwise specified.
0007 FIG. 1 (PRIOR ART) illustrates a conventional
database system.
0008 FIG. 2 is a diagram illustrating a mesh interconnect
between traffic and compute modules of a network service
element, in accordance with an embodiment of the invention.
0009 FIG. 3A is a block diagram illustrating a layered
Software stack executing on a module of a network service
element, in accordance with an embodiment of the invention.
0010 FIG. 3B is a table illustrating which layers of a
layered software stack execute on an OAMP module, a com

Jan. 28, 2010

pute module, or a traffic module of a network service element,
in accordance with an embodiment of the invention.
0011 FIG. 4A is a block diagram illustrating how convert
ers can convert a serializable object into a variety of different
data formats, in accordance with an embodiment of the inven
tion.
0012 FIG. 4B is a block diagram illustrating how two
converters may be linked in series, in accordance with an
embodiment of the invention.
0013 FIG. 5A illustrates a serializable object, in accor
dance with an embodiment of the invention.
0014 FIG. 5B is a table illustrating the basic types of a
serializable object, in accordance with an embodiment of the
invention.
0015 FIG. 5C illustrates a converter including read and
write methods for each basic type of a serializable object, in
accordance with an embodiment of the invention.
0016 FIG. 6A is a flow chart illustrating a process for
writing from a serializable object, in accordance with an
embodiment of the invention.
0017 FIG. 6B is a block diagram illustrating how a seri
alizable object may be converted to other file formats through
a converter, in accordance with an embodiment of the inven
tion.
0018 FIG. 6C is a flow chart illustrating a process for
reading into a serializable object, in accordance with an
embodiment of the invention.
0019 FIG. 7 is a block diagram illustrating a technique for
reading a serializable object from a database, in accordance
with an embodiment of the invention.
0020 FIG. 8 is a flow chart illustrating a process for read
ing a serializable object from a database, in accordance with
an embodiment of the invention.
0021 FIG.9 is a block diagram illustrating a technique for
writing a serializable object into a database, in accordance
with an embodiment of the invention.
0022 FIG. 10 is a flow chart illustrating a process for
writing a serializable object into a database, in accordance
with an embodiment of the invention.
0023 FIG. 11 is a block diagram illustrating interconnec
tions between traffic modules and compute modules of a
network service node, in accordance with an embodiment of
the invention.
0024 FIG. 12 is a block diagram illustrating a compute
module, in accordance with an embodiment of the invention.
0025 FIG. 13 is a block diagram illustrating a traffic mod
ule, in accordance with an embodiment of the invention.

DETAILED DESCRIPTION

0026. Embodiments of a system and method for serializ
able objects and a serializable objects database are described
herein. In the following description numerous specific details
are set forth to provide a thorough understanding of the
embodiments. One skilled in the relevant art will recognize,
however, that the techniques described herein can be prac
ticed without one or more of the specific details, or with other
methods, components, materials, etc. In other instances, well
known structures, materials, or operations are not shown or
described in detail to avoid obscuring certain aspects.
0027. Reference throughout this specification to “one
embodiment' or “an embodiment’ means that a particular
feature, structure, or characteristic described in connection
with the embodiment is included in at least one embodiment
of the present invention. Thus, the appearances of the phrases

US 2010/0023552 A1

“in one embodiment' or “in an embodiment” in various
places throughout this specification are not necessarily all
referring to the same embodiment. Furthermore, the particu
lar features, structures, or characteristics may be combined in
any Suitable manner in one or more embodiments.
0028 FIG. 2 is a schematic diagram illustrating a mesh
interconnect between traffic and compute modules of a net
work service element 200, inaccordance with an embodiment
of the invention. The illustrated embodiment of network ser
vices element 200 includes a mesh interconnect 205 coupling
traffic modules 210 and compute modules 215. Each of the
traffic and compute modules 210 and 215 provide the pro
cessing power to implement packet processing, routing, and
other functionality. In one embodiment, network service ele
ment 200 is a service node intended to be connected between
two or more networks (e.g., between core networks providing
services and aggregation networks providing access to clients
consuming the services), which may implement additional
functionality Such as traffic shaping, guarantee quality of
service (“OoS), admission protocols, or otherwise.
0029. In the illustrated embodiment, network service ele
ment 200 is implemented using an Advanced Telecommuni
cation and Computing Architecture (ATCA) chassis. Mesh
interconnect 205 may provide cross-connectivity between
traffic and compute modules 210 and 215 with the ATCA
backplane. In the exemplary configuration shown in FIG. 2,
the ATCA chassis is fully populated with 14 ATCA blades
(i.e., traffic and compute modules 210 and 215), with each
blade installed in a respective chassis slot in an actual
implementation, the chassis may be populated with less
blades or may include other types of blades in addition to
compute and traffic blades. The illustrated configuration
includes four compute modules 21514, and 10 traffic modules
210, with one of the compute modules being provisioned
to provide operations, administration, maintenance and pro
visioning functionality (“OAMP) functions. As depicted by
interconnection mesh 205, each module is communicatively
coupled with every other module under the control of fabric
Switching operations performed by each module's fabric
switch. In one embodiment, mesh interconnect 205 provides
a 10 Gbps connection between each pair of modules, with an
aggregate bandwidth of 280 Gbps.
0030. In the illustrated embodiments, network service ele
ment 200 is implemented using a distributed architecture,
wherein various processor and memory resources are distrib
uted across multiple modules. To Scale a system, one simply
adds another module (e.g., blade). The system is further
enabled to dynamically allocate processor tasks, and to auto
matically perform fail-over operations in response to a mod
ule failure or the like. Furthermore, under an ATCA imple
mentation, modules may be hot-swapped without taking the
system down, thus Supporting dynamic scaling.
0031 FIG. 3A is a block diagram illustrating a layered
software stack 300 executing on a module of network service
element 200, inaccordance with an embodiment of the inven
tion. The illustrated embodiment of layered software stack
300 includes a hardware abstraction layer (“HAL) 305, a
runtime layer 310, a management layer 315, and an interface
layer 320.
0032 HAL 305 abstracts the underlying hardware
resources to the software layers above and may include Vari
ous device drivers, a kernel, software buffers, or the like.
Runtime layer 310 is used to maintain dynamic state infor
mation for the modules of network service node 200, which

Jan. 28, 2010

may be in a state of flux during operation. For example,
routing demons may execute in runtime layer 310 to setup and
tear down route changes, to receive and process open shortest
path first (“OSPF) protocol packets, or service other
dynamic change requests coming up from HAL 3.05.
0033. Management layer 315 services application pro
gramming interface (API) calls from interface layer 320
and translates the calls into data, typically to be stored into a
provisioning database 325 or occasionally into a runtime
database 330. The APIs are published into interface layer320
via a management layer API (“MLAPI), which may provide
a variety of APIs for accessing the databases. For example, the
MLAPI may publish five APIs into interface layer320 includ
ing a set API, a get API, a get multiple API, a create API, and
a remove API. Management layer 315 typically facilities the
provisioning of static attributes assigned to the modules of
network service node 200. For example, static attributes may
include port assignments, the existence (or lack thereof) of a
module in a slot, power settings, a registry of applications
executing on each module, and the like.
0034 Finally, interface layer 320 proves an access layer to
enable a user (e.g., network administrator or other Informa
tion Technology (IT) technician) to interface with network
service element 200 and the lower layers of layered software
stack 300. For example, the user may invoke any of the APIs
published by the MLAPI using a command line interface
(“CLI) to get (e.g., retrieve) one or more records stored in
provisioning database 325 or runtime database 330, create a
new record, remove (e.g., delete) an existing record there
from, or set an attribute of an object existing in lower layers of
layered software stack 300. In other cases, the interface layer
320 may enable the user to push user/data files (e.g., exten
sible markup language (XML) files, etc.) downto the lower
layers through one or more converters.
0035. As mentioned, interface layer 320 enables a user to
push in data files 340 from external sources. Data files 340
may be XML files, C objects, C++ objects, C# objects, Java
objects, or otherwise. As a data file 340 is pushed down to
management layer 315, layered software stack 300 may con
vert data file 340 into a serializable object 345. A serializable
object (“SO) is a software object that lends itself well to
serialization and which is typically a complex of linked
memory structures. As SO 345 is pushed further down to
runtime layer 310, SO 345 may be converted into a flat struc
ture 350. Flat structure 350 typically is a fixed length con
tiguous memory structure which may be quickly and easy
manipulated in memory and therefore well suited for the high
speed, dynamic environment of runtime layer 310.
0036 Provisioning database 325 may be used to store
provisioning data for setting static or semi-static attributes of
network service element 200, while runtime database 330
may be used to store runtime data arriving on datapaths rising
up from HAL305. In one embodiment, provisioning database
325 may convert SO 345 into variable length, compressed,
flat memory structures, prior to storing SO345, while runtime
database 330 may simply store flat structure 350 as a fixed
length, uncompressed, flat structure. Since runtime layer 310
manages high speed, dynamically changing events, it is rea
sonable to tradeoff memory consumption (e.g., fixed length,
uncompress structures) in exchange for low latency, high
speed access to runtime database 330. In contrast, manage
ment layer 315 typically manages static or semi-static
attributes, therefore compressed, variable length structures

US 2010/0023552 A1

are advantages, even at the expense of incurring some pro
cessing overhead related to accessing variable length struc
tures.

0037 FIG. 3B is a table illustrating how software compo
nents of layered software stack 300 may be distributed across
multiple modules of network service element 200, in accor
dance with an embodiment of the invention. As illustrated, an
OAMP module (which may be one of compute modules 215
selected to implement OAMP functionality) includes runtime
layer 310, management layer 315, and interface layer 320. In
contrast, ordinary compute modules 215 and traffic modules
210 may only execute runtime layer 310.
0038 FIG. 4A is a block diagram illustrating how convert
ers can convert serializable objects into a variety of different
data formats, in accordance with an embodiment of the inven
tion. As illustrated, an SO 400 may be written to or retrieved
from a database 405 via a database (“DB) converter (“CV)
410, may read in commands from a CLI 415 via a CLI CV
420, may write to or read from a network connection 425 via
a network (“NET) CV 430, may write to or read from a
variety of file formats (e.g., generic file 435, C++ code 440,
C# code 445, XML file 450, etc.) via a variety of correspond
ing converts (e.g., generic file CV 455, C++CV 460, C# CV
465, XML CV 470, etc.), output text to a display 475 via a
print CV 480, or the like.
0039 SO 400 may operate as a sort of intermediary
between the various file formats and provides a sort of com
mon currency within a processing system between various
entities, which otherwise communicate in a different lan
guage or format. SO 400 is amenable to serialization and
conversion between some or all of the various file formats
listed above, as well as others. Generic file CV 455 is included
in FIG. 4A to illustrate that converters may be provided to
convert SO 400 to a number of different file types beyond
those illustrated in FIG. 4A. For example, file 435 may rep
resent a Java file or any other file type or format. In one
embodiment, the converters are software modules that are
generated and linked to endpoints (e.g., DB405, CLI 415,
network 425, file 435, C++ code 440, CH code 445, XML file
450, display 475, etc.) and may be invoked by SO 400 to read
from or write to the selected endpoint.
0040 FIG. 4B is a block diagram illustrating how two or
more converters may be linked in series, in accordance with
an embodiment of the invention. In one embodiment, mul
tiple CVs may be linked together or "daisy chained to enable
multiple CVs to act upon data communicated between two
endpoints without generating an intermediary serializable
object. For example, FIG. 4B illustrates an encryption CV
490 and a file CV 492 coupled together between an SO 494
and an encrypted file 496. In one embodiment, encryptionCV
490 and file CV 492 are linked to encrypted file 496. In this
embodiment, SO 494 may write to or read from encrypted file
496 simply by invoking encryption CV 490. To write to
encrypted file 496, SO 494 may output data to encryptionCV
490, which encrypts the data. Encryption CV 490 then passes
the encrypted data to file CV 492, which converts/formats the
encrypted data into encrypted file 496. To read from
encrypted file 496, SO 494 may invoke read methods within
encryption CV 490, which in turn may invoke read methods
within file CV 492, which in turn retrieve the encrypted file
data from encrypted file 496. As the data is passed back to SO
494, it is converted/formatted by file CV 492 and decrypted

Jan. 28, 2010

by CV 490. It should be appreciated that in other embodi
ments, the order of encryption CV 490 and file CV 492 may
be swapped.
0041. In one embodiment, converters may be used to per
form software upgrades of serializable objects. The convert
ers could be inserted in the execution runtime to perform “in
service software upgrades' to translate the serializable
objects between version v1 to version v2. Updating an SO
may include removing a field with the SO, rearranging the
order of one or more fields, adding new fields, or changing the
type of a field (i.e., translating the field from one basic type to
another). As illustrated in FIG. 4B, upgrades from version V1
to a version V4 may be implemented by linking or daisy
chaining converters in series. In this manner, each Software
release need only create a converter for converting from the
previous release.
0042 FIG.5A illustrates an SO 500, inaccordance with an
embodiment of the invention. SO 500 represents one possible
embodiment of SO 400 or 494 illustrated in FIGS 4A and 4B.
The illustrated embodiment of SO 500 includes a read
method, a write method, a to struct method, a from struct
method, and a plurality of fields 505 (e.g., field 1, field 2, field
3, field 4, etc.). Each field 505 includes a declared variable
510 (e.g., VARA, VAR B, VARC, VAR D, etc.), which
may or may not be assigned a field value 515 (e.g., VALUE
A. VALUE B, VALUE C, etc.). Assigning a field value 515
to a variable 510 may interchangeably be referred to hereinas
“setting a field' or “setting a variable.”
0043. One or more fields 505 may be marked with an index
520. Indexes 520 are substitute identifiers that may be used to
reference the corresponding marked field 505. Indexes 520
enable SO 500 to write out subsets of its fields 505, through a
converter, into any other form. In one embodiment, indexes
520 may either represent a primary index or a secondary
index. A primary index 520 is an index 520 which may be
used to uniquely identify SO 500 from all other SO's. Accord
ingly, the primary index marks a field 505 having a unique
field value 515. In one embodiment, an index value of 1 is
reserved for the primary index. The same index value may be
used to mark multiple fields 505, as illustrated by index value
2 marking fields 2 and 3. By invoking index value 2, the
field values 515 (e.g., VALUE A and VALUE B) corre
sponding to the fields 505 marked with an index 520 having
an index value of 2 are referenced.

0044. The to struct method and the from struct method
may be invoked by SO 500 to convert itself into a fixed length,
flat, contiguous memory structure or generate itself from a
fixed length, flat, contiguous memory structure, respectively.
These methods may be useful for manipulating flat contigu
ous memory structures in runtime layer 310 (see FIG. 3A),
and particularly, for converting an SO in interface layer320 or
management layer 315 into flat structure 350 in runtime layer
310. The to struct method enables a user to quickly push an
SO down into runtime database 330. The to struct method
pre-allocates memory and defines how to map the complex
linked memory structures of SO 500 into fixed length, flat,
contiguous memory structures, which are amenable to high
speed manipulation. The from struct method may be invoked
by a blank or empty SO to populate its fields 505 with data
from a flat structure.

0045. In one embodiment, fields 505 may include flags
(not illustrated) for identifying each field 505 as “set',
“unset', or “modified.” When an object reads in an unset field
505 from source object, the reader will simply read in a

US 2010/0023552 A1

default value for the unset field, as opposed to reading the
unset field 505 from the source object. In contrast, the reader
will actually read in field values 515 from a source object for
fields 505 marked as “set'. The modified flag may be used to
indicate whether or not a particular field 505 has been
changed, whether or not it is set or unset. For example, a field
505 marked as “unset and “modified’ indicates that a user
has explicitly unset a field 505, as opposed to a field 505 that
was initialized as “unset with a default value.
0046. In one embodiment, SO 500 may include a merger
function to merger its field values 515 with the field values
515 from another SO. In this case, if a field 505 is flagged as
“modified, then it field value 515 is retained, while fields 505
flagged as unmodified will retain existing values. In one
embodiment, SO 500 may include a comparison function
(e.g., diff struct), which may be invoked to compare SO 500
against another SO. The output of the comparison function
may be a bit field for each field 505, where a 1 represents “is
different and a “0” represents “is same.”
0047 FIG. 5B is a table 530 illustrating the basic types of
a serializable object, in accordance with an embodiment of
the invention. As discussed above, SO 500 may include a
number of fields 505 having associated variables 510. Vari
ables 510 may be declared as having one of the basic types
listed in table 530. It is noteworthy that basic type number
(“BTH) 11, labeled as "complex’, is a hierarchical or linked
structure basic type that can be defined as a combination of
other basic types, including a complex basic type. In this
manner, serializable objects may be embedded within other
serializable objects as a complex basic type. While table 530
lists 11 basic types, it should be appreciated that table 530 is
merely representative and not intended to be a definitive or
exhaustive list. Rather, Some embodiments may include
more, less, or alternative basic types than those listed in table
S30.

0048 FIG. 5C illustrates a converter 540, in accordance
with an embodiment of the invention. Converter 540 repre
sents one possible embodiment of the converters illustrated in
FIGS. 4A and 4B (e.g., DB CV 405, CLI CV 420, NET CV
430, C++CV 460, file CV 455, C# CV 465, print CV 480, or
XML CV 470). The illustrated embodiment of converter 540
includes a plurality of read methods 550 for reading each of
the basic types listed in table 530 (e.g., read BT(1), read
BT(2) ..., read BT(N)) and a plurality of write methods 555
for writing each of the basic types listed in table 530 (e.g.,
write BT(1), write BT(2) ..., write BT(N)). Converter 540
accepts field values 515 and their corresponding variable
names 510 as inputs and converter these inputs to a specific
form. Accordingly, SO 500 can call converter 540 on each of
its fields 505 or a subset of its fields 505 to convert itself, in
whole or in part, to some other form.
0049 Operation of converter 540 to write from or read into
SO 500 is now described with reference to FIGS. 6A, 6B, and
6C. FIG. 6A is a flow chart illustrating a process 605 for
writing from SO 500, in accordance with an embodiment of
the invention. In a process block 610, one or more fields
within SO 500 are “set' or assigned specific field values 515.
In a process block 520, the write method within SO 500 is
invoked, which in turn will invoke converter 540 (process
block 620).
0050. Once invoked, converter 540 will execute a corre
sponding one of its write methods on each set field 505 in SO
500. For example, if VAR A was declared as basic type
INT64 (i.e., 64 bit integer), then converter 540 will invoke

Jan. 28, 2010

WRITE BT(4), corresponding to INT64 in table 530. Simi
larly, if VAR B was declared as basic type BOOLEAN, then
converter 540 will invoke WRITE BT(10), corresponding to
basic type BOOLEAN in table 530. Each write method 555
invoked by converter 540 will access the corresponding field
505, convert the contents of the field based on the converter
type, and write out the converted field to the destination
object/file (process block 625).
0051. In one embodiment, specific fields 505 of SO 500
may be referenced to be written out by specifying corre
sponding indexes 520. For example, by invoking a write
method, identifying a particular converter, and passing one or
more index values to the write method, specified fields 505
may be written out from SO 500, while skipping others. In
one embodiment, the default setting is writing out all fields
505 when a write method is invoked, without specifying
index values. In one embodiment, all fields 505 may be writ
ten out by passing a default index number, Such as 0.
0.052 FIG. 6B illustrates how each fields 505 of SO 500
are independently passed into the corresponding write meth
ods 555 of converter 540. In one embodiment, if CV 540 is a
database converter (e.g., DB CV 405), then fields 505 are
serialized and flattened into a flat database structure 630. In
one embodiment, if CV 540 is a C++ converter (e.g., C++CV
460), then fields 505 are converted into fields of a C++ object/
file 635. In one embodiment, if CV 540 is an XML converter
(e.g., XML CV 470), then fields 505 are converted into
attributes of an XML object/file 640.
0053 FIG. 6C is a flow chart illustrating a process 650 for
reading field values into SO 500, in accordance with an
embodiment of the invention. To commence reading field
values 515 into SO 500, the read method of SO 500 is invoked
(process block 655) and a converter identified (process block
660). As discussed above, converters (e.g., CV 540) may be
pre-generated and linked to a source file or object. Therefore,
once the read method is invoked and a specific converter
identified, data from the source object/file is read into SO 500
through the specified converter (process 655). In one embodi
ment, the read method of SO 500 invokes corresponding read
methods 550 within converter 540 to read in each field value
515. As each read method 550 of converter 540 is invoked, it
converts the basic types from the format of the source object/
file to the format of SO 500.

0054. In one embodiment, only specified fields 505 may
be populated with read in values by passing index values 520
to the read method of SO 500.

0055 As discussed above, to translate SO 500 from inter
face layer 320 or management layer 315 to runtime layer 310,
SO 500 may be converted into a flat structure using the
to struct method (). There may be some scenarios where it
may be desirable to store more than one type of SO into
runtime database 330. This may be achieved using a concept
referred as “union'. From interface layer 320 or management
layer 315 records may be passed down to runtime layer 310
that contain multiple types. For example,

Class Foo

Key *key:
Record *data:

US 2010/0023552 A1

The types Key and Record are base classes of a serializable
object language ("SOL). The class Foo can contain many
different types of Key and many different types of Record,
Such as,

My Record: public Record

if My special data;
}:
MyKey: public Key
{

..My special data:
3.

So, there could be MyKey, YourKey. HisKey, My Record,
YourRecord, HisRecord, or the like. Therefore, the class Foo
could be made up of any mixture of these types, since they
inherit from Key and Record. This is referred to as “polymor
phism.” In order to translate Foo into runtime database 330,
Foo is converted into a flat structure, which then gets stored
into runtime database 330. This may beachieved by marking
the class Foo with a special attribute, such as,

class Foo
{

SOField(union=MyKey, YourKey, HisKey)
Key *key:
SOField(union=MyRecord, YourRecord, HisRecord)
Record * data:

With this special attribute an SOL compiler can automatically
generate code that will result in,

class Foo

struct type

enum which t{MYKEY.YOURKEY, HISKEY };
which key tisset;
union ul

MyKey: type mykey:
YourKey: type yourkey:
HisKey: type hiskey:

enum which t MYRECORD, YOURRECORD, HISRECORD :
which record tisset1;
union u2
{
My Record: type myrecord;
YourRecord: type yourrecord;
HisRecord: type hisrecord;

}:
Key *key:
Record *data:

The type structure represents the flat union for storage into
runtime database 330. The SOL compiler may generate seri
alization code that will move back and forth from the type:
u1 and type: u2 into the correct kind of objects in the Key
*key and Record data fields. For example, if key contained a
MyKey, then the generated code may perform a to struct()

Jan. 28, 2010

call from the key (which is a MyKey) into the field type:
u1::mykey. Next, the generated code would set the which
key t field to be equal to MYKEY. On the way back, the
generate code would look at the which key t field and switch
on the type,

Switch (which)
{
Key *whichkey:
case MYKEY:

Whichkey = new MyKey:
Whichkey -> fromstruct (type: u1::mykey);

case YOUR KEY:
case HISKEY:

key = whichkey.

In one embodiment, the above functionality may be embed
ded within SO 500 and invoked by calling a to union (
)method or a from union ()method. The to union () and
from union ()methods enable moving from a choice of struc
tures into a union automatically and facilitates transferring
objects from interface layer 320 through management layer
315 and downto runtime layer 310 into runtime database 330.
0056 FIGS. 7 and 8 illustrate a technique for reading a
serializable object from a database 705, in accordance with an
embodiment of the invention. FIG. 7 is a block diagram
illustrating the technique, while FIG. 8 illustrates a process
800 for the same. The order in which some or all of the
process blocks appear in each process described herein
should not be deemed limiting. Rather, one of ordinary skill in
the art having the benefit of the present disclosure will under
stand that some of the process blocks may be executed in a
variety of orders not illustrated.
0057. In a process block 805, an empty SO 710 is created
(illustrated in FIG. 7 by arrow 1). An empty SO is a serializ
able object where none of the fields have been set or assigned
field values. Empty SO 710 may be created by instantiating a
new SO based on a class definition file 715. In a process block
810, one or more fields of empty SO 710 (e.g., fields 505) are
set or assigned field values (illustrated in FIG. 7 by arrow 2)
to create set SO 715. In the embodiment illustrated in FIG. 7,
field 1 is set with a field value “VALUE A.” In a process
block 815, a GET command is issued on database 705 (illus
trated in FIG.7 by arrow 3) to retrieve data from database 705.
In one embodiment, the GET command may be invoked from
interface layer 320 via the MLAPI.
0058. In one embodiment, the GET command is passed set
SO 715, a destination address or pointer 720 to a destination
object to which database 705 should return the data, and one
or more index values 725. The destination object may be set
SO 715 itself, or some other object or file. Index value(s) 725
passed into the GET command indicates to database 705
which fields 505 of all the objects stored in database 705 it
should inspect and attempt to match against the set fields of
set SO 715. The set field value (e.g., VALUE A) operates as
the key for searching database 705 to find any SO stored
therein having a field marked with an index value matching
index value 725 (e.g., index 1) and having a corresponding
field value matching field value VALUE A. Accordingly, a
user of database 705 can query database 705 using the data,
itself, rather than using an extraneous or separate key. Fur
thermore, even though multiple fields of set SO 715 may be
set with field values, by selecting different index values cor

US 2010/0023552 A1

responding to different fields, a particular record (e.g., seri
alizable object) stored in database 705 can be searched for
using a variety of different data as the key. Fields 505 marked
with the primary or secondary indexes provide search flex
ibility to the end user to query database 705 based on a variety
of different Subsets of the data/fields within set SO 715.
0059 For example, database 705 may store phone records
that include the following three fields: a name field, a phone
number field, and an address field. If the name fields are
marked with index value 1, the phone number fields are
marked with index value 2, and the address fields are marked
with index value 3, then a user who wishes to determine the
phone number associated with a particular name would set the
first field with the name and pass the set SO to the GET
command. Since the name field is marked with an index value
1, index value 725 would be passed as a 1 into the GET
command. Of course, the user could also set the address field
and/or phone number field, pass the set SO to the GET com
mand, and retrieve the corresponding name.
0060 Returning to FIG. 8, in a process block 820, the one
or more set fields marked with index value(s) 725 is/are
converted to flat contiguous memory structure(s) 730 by data
base CV 405. As illustrated, serializable objects that exist
outside of database 705 may exist as link memory structures
735, which are serialized into flat contiguous memory struc
tures 730 prior to passing into database 705. Although DB CV
405 is illustrated as external to database 705, it should be
appreciated that DB CV 405 may in fact be an internal com
ponent to database 705. Once passed into database 705 by the
GET command, a query is executed to determine whether a
matching record index value/field value pair exists (decision
block 825). If such a record is not found, then an empty set,
null, or Void response is returned to the destination object in a
process block 830. If such a record is found, then process 800
continues to a process block 835.
0061. In process block 835, the matching record (or
records) is converted from a flat contiguous memory structure
740 into a more complex linked memory structure 745 by DB
CV 405 and returned to the destination object (illustrated as
set SO 715 in FIG. 7). Finally, in a process block 840, the data
from the matching record is written into the destination object
to populate the empty fields of set SO 715 with field values
from the matching record stored in database 705.
0062 FIGS.9 and 10 illustrate a technique for writing SO
500 into database 705, in accordance with an embodiment of
the invention. FIG. 9 is a block diagram illustrating the tech
nique, while FIG. 10 illustrates a process 1000 for the same.
In a process block 1005, one or more fields 505 within SO500
are set. Once fields 505 are set, the write method within SO
500 may be invoked (process block 1010) and database CV
405 identified (process block 1015). Once invoked, database
CV 405 converts the complex linked memory structures 905
of SO 500 into a flat contiguous memory structure 910 (pro
cess block 1020) and stores flat contiguous memory structure
910 in database 705 (process block 1025). In one embodi
ment, database CV 405 may be internal to database 705,
rather than external as illustrated. In one embodiment, an SO
identifier (“SOID) is tagged onto flat contiguous memory
structure 910 prior to storing flat contiguous memory struc
ture 910 into database 705 as a record. The SOID is a unique
ID, which may also be referenced when retrieving a stored
record.

0063. In one embodiment, SO 500 may be written into
database 705 by invoking the CREATE command published

Jan. 28, 2010

by the MLAPI into interface layer 320. In this embodiment,
the CREATE command may be passed SO 500 and one or
more index values to identify which fields 505 are to be
written into database 705. In this manner, a subset of the data
or fields 505 within SO500 may be written into database 705.
0064. In accordance with architecture aspects of some
embodiments, the aforementioned functions may be facili
tated by various processing and storage resources hosted by
associated line cards and the like, which are mounted in a
common chassis. As shown in FIG. 11, from a datapath per
spective, the hardware architecture of one embodiment of
network service node 200 can be decomposed into three
entities, Traffic Blades (TB) 210, Compute Blades (CB) 215
and the chassis 1104. ATB210 can be further reduced to its
physical and link layer portions 1106 and 1108, network layer
components 1110, and infrastructure components 1112.
Similarly, a CB 215 provides Service Layer termination 1113
and infrastructure components 1114. In one embodiment, a
CB can be further re-defined to be an OAMP Blade based on
its slot index (within chassis 1104). OAMP blades are a
functional Superset of CBS, adding operations, administra
tion, maintenance, and provisioning functionality (collec
tively referred to as OAMP card function or OAMPCF).
0065. As illustrated in the embodiments herein, chassis
1104 comprises an Advanced Telecommunication and Com
puting Architecture (ATCA or AdvancedTCAR) chassis. The
ATCA Chassis provides physical connectivity between the
blades via a passive backplane 1116 including a full-mesh
interconnect 1118. It is noted that the ATCA environment
depicted herein is merely illustrative of one modular board
environment in which the principles and teachings of the
embodiments of the invention described herein may be
applied. In general, similar configurations may be deployed
for other standardized and proprietary board environments,
including but not limited to blade server environments.
0066. The ATCA 3.0 base specification (approved Dec.
30, 2002), which is being carried out by the PCI Industrial
Computer Manufacturers Group (“PICMG'), defines the
physical and electrical characteristics of an off-the-shelf,
modular chassis based on Switch fabric connections between
hot-swappable blades. (As used herein, the terms “board.”
“blade, and “card,” are interchangeable.) This specification
defines the frame (rack) and shelf (chassis) form factors, core
backplane fabric connectivity, power, cooling, management
interfaces, and the electromechanical specification of the
ATCA-compliant boards. The electromechanical specifica
tion is based on the existing IEC60297 EuroCard form factor,
and enables equipment from different vendors to be incorpo
rated in a modular fashion with guaranteed interoperability.
The ATCA 3.0 base specification also defines a power budget
of 200 Watts (W) per board, enabling high performance serv
ers with multi-processor architectures and multi gigabytes of
on-board memory.
0067. In addition to power input to ATCA boards, mating
connectors on the boards and backplane are employed for
coupling input/output (I/O) signals. Many of the ATCA
boards, as well as other modular boards used for telecommu
nications and computer, Such as but not limited to Compact
PCI, employ very-high speed I/O channels. For example,
Advanced Switching (AS) employs a serial communication
channel operating at Gigahertz+frequencies. ATCA boards
may also provide one or more I/O ports on their front panels,
enabling an ATCA board to be coupled to other network
SOUCS.

US 2010/0023552 A1

0068 An exemplary architecture 1200 for a compute
blade 215 is shown in FIG. 12. In one embodiment, a single
compute blade (physical) architecture is employed for both
Compute Blades and OAMPCF's. More particularly, under
architecture 1200, a corresponding blade may be deployed to
support both Compute Blade and OAMP functionality.
0069 Compute Blade 215 employs four multiple proces
Sor compute nodes 1202. In general, each of compute
nodes 1202 functions as multiple processor resources, with
each processor resource being associated with a logical pro
cessor. Accordingly, such processor resources may be imple
mented using separate processors, or processor chips employ
ing multiple processor cores. For example, in the illustrated
embodiment of FIG. 13, each of compute nodes 1202 is
implemented via an associated symmetric multi-core proces
sor. Exemplary multi-core processors that may be imple
mented include, but are not limited to Broadcom 1480 and
1280 devices. Each of the compute nodes 1202 is enabled
to communicate with other compute nodes via an appropriate
interface (e.g., bus or serial-based interfaces). For the Broad
com 1480 and 1280 devices, this interface comprises a
“HyperTransport (HT) interface. Other native (standard or
proprietary) interfaces between processors may also be
employed.
0070. As further depicted in architecture 1200, each com
pute nodes 1202 is allocated various memory resources.
including respective RAM 1204. Under various imple
mentations, each of compute nodes 1202 may also be allo
cated an external cache 1206, or may provide one or more
levels of cache on-chip. In one embodiment, the RAM com
prises ECC (Error Correction Code) RAM. In one embodi
ment, each compute node employs a NUMA (Non-Uniform
Memory Access) cache coherency scheme. Other cache
coherency schemes, such as MESI (Modified, Exclusive,
Shared, Invalidated), may also be implemented for other
embodiments.
0071. Each Compute Blade 215 includes a means for
interfacing with ATCA mesh interconnect 1118. In the illus
trated embodiment of FIG. 12, this is facilitated by a Back
plane Fabric Switch 1208. Meanwhile, a field programmable
gate array (“FPGA') 1210 containing appropriate pro
grammed logic is used as an intermediary component to
enable each of compute nodes 1202 to access backplane
fabric switch 1208 using native interfaces for each of the
compute nodes and the fabric switch. In the illustrated
embodiment, the interface between each of compute nodes
1202 and the FPGA 1210 comprises an SPI (System Packet
Interface) 4.2 interface, while the interface between the
FPGA and backplane fabric switch 1208 comprises a Broad
com HiGigTM interface. It is noted that these interfaces are
merely exemplary, and that other interface may be employed
depending on the native interfaces of the various blade com
ponents.
0072. In addition to local RAM (e.g., RAM 1204), the
compute node associated with the OAMP function (depicted
in FIG. 12 as Compute Node #1) is provided with local
SRAM 1212 and a non-volatile store (depicted as Compact
flash 1214). The non-volatile store is used to store persistent
data used for the OAMP function, such as provisioning infor
mation and logs. In Compute Blades that do not support the
OAMP function, each compute node is provided with local
RAM and a local cache.

0073. In the embodiment illustrated in FIG. 12, compute
blade 215 is provisioned as an OAMP blade. In one configu

Jan. 28, 2010

ration (as shown), one of the compute nodes is employed for
performing OAMP functions (e.g., compute node 1202),
while the other three compute nodes (e.g., compute nodes
1202) perform normal compute functions associated with
compute blades, as described in further detail below. When a
compute blade 215 is provisioned as a compute blade, each of
compute nodes 1202 is available for performing the com
pute functions described herein.
(0074 FIG. 13 shows an exemplary architecture 1300 for a
traffic blade 210. Architecture 1300 includes a PHY block
1302, an Ethernet MAC block 1304, a network processor unit
(NPU) 1306, a host processor 1308, a SERDES interface
1310, an FPGA 1312, a backplane fabric switch 1314, RAM
1316 and 1318 and cache 1319. The traffic blade further
includes one or more I/O ports 1320, which are operatively
coupled to PHY block 1320. Depending on the particular use,
the number of I/O ports may vary from 1 to N ports. For
example, under one traffic blade type a 10x1 Gigabit Ethernet
(GigE) port configuration is provided, while for another type
a 1x10 GigE port configuration is provided. Other port num
ber and speed combinations may also be employed.
0075 PHY block 1302 and Ethernet MAC block 1304
respectively perform layer 1 (Physical) and layer 2 (Data
Link) functions, which are well-known in the art. In general,
the PHY and Ethernet MAC functions may be implemented
in hardware via separate components or a single component,
or may be implemented in a combination of hardware and
software via an embedded processor or the like.
0076) One of the operations performed by a traffic blade is
packet identification/classification. As discussed above, a
multi-level classification hierarchy scheme is implemented
for this purpose. Typically, a first level of classification, Such
as a 5-Tuple signature classification scheme, is performed by
the traffic blade's NPU 1306. Additional classification opera
tions in the classification hierarchy may be required to fully
classify a packet (e.g., identify an application flow type). In
general, these higher-level classification operations may be
performed by the traffic blade's host processor 1308 and/or a
processor on a compute blade, depending on the particular
classification.

0077 NPU 1306 includes various interfaces for commu
nicating with other board components. These include an Eth
ernet MAC interface, a memory controller (not shown) to
access RAM 1316, Ethernet and PCI interfaces to communi
cate with host processor 1308, and an XGMII interface. SER
DES interface 1310 provides the interface between XGMII
interface signals and HiGig signals, thus enabling NPU 1306
to communicate with backplane fabric switch 1314. NPU
1306 may also provide additional interfaces to interface with
other components, such as an SRAM (Static Random Access
Memory) interface unit to interface with off-chip SRAM
(both not shown).
0078 Similarly, host processor 1308 includes various
interfaces for communicating with other board components.
These include the aforementioned Ethernet and PCI inter
faces to communicate with NPU 1306, a memory controller
(on-chip or off-chip—not shown) to access RAM 1318, and a
pair of SPI 4.2 interfaces. FPGA 1312 is employed to as an
interface between the SPI 4.2 interface signals and the HiGig
interface signals.
007.9 Typically, NPUs are designed for performing par
ticular tasks in a very efficient manner. These tasks include
packet forwarding and packet classification, among other
tasks related to packet processing. To Support Such function

US 2010/0023552 A1

ality, NPU 1306 executes corresponding NPU software 1322.
This software is shown in dashed outline to indicate that the
Software may be stored (persist) on a given traffic blade (e.g.,
in a flash device or the like), or may be downloaded from an
external (to the traffic blade) store during initialization opera
tions, as described below. During run-time execution, NPU
software 1322 is loaded into internal SRAM 1323 provided
by NPU 1306.
0080 Host processor 1308 is employed for various pur
poses, including lower-level (in the hierarchy) packet classi
fication, gathering and correlation of flow statistics, and
application of traffic profiles. Host processor 1308 may also
be employed for other purposes. In general, host processor
1308 will comprise a general-purpose processor or the like,
and may include one or more compute cores (as illustrated, in
one embodiment a two-core processor is used). As with NPU
1306, the functionality performed by host processor is
effected via execution of corresponding Software (e.g.,
machine code and or virtual machine byte code), which is
depicted as host software 1324. As before, this software may
already reside on a traffic blade, or be loaded during blade
initialization.
0081. In one embodiment, host processor 1308 is respon
sible for initializing and configuring NPU 1306. Under one
initialization scheme, host processor 1308 performs network
booting via the DHCP (or BOOTP) protocol. During the
network boot process, an operating system is loaded into
RAM 1318 and is booted. The host processor then configures
and initializes NPU 1306 via the PCI interface. Once initial
ized, NPU 1306 may execute NPU software 1322 on a run
time basis, without the need or use of an operating system.
0082. The processes explained above are described in
terms of computer software and hardware. The techniques
described may constitute machine-executable instructions
embodied within a machine (e.g., computer) readable
medium, that when executed by a machine will cause the
machine to perform the operations described. Additionally,
the processes may be embodied within hardware. Such as an
application specific integrated circuit (ASIC) or the like.
0083. A machine-accessible medium includes any mecha
nism that provides (i.e., stores and/or transmits) information
in a form accessible by a machine (e.g., a computer, network
device, personal digital assistant, manufacturing tool, any
device with a set of one or more processors, etc.). For
example, a machine-accessible medium includes recordable/
non-recordable media (e.g., read only memory (ROM), ran
dom access memory (RAM), magnetic disk storage media,
optical storage media, flash memory devices, etc.), as well as
electrical, optical, acoustical or other forms of propagated
signals (e.g., carrier waves, infrared signals, digital signals,
etc.).
0084. The above description of illustrated embodiments of
the invention, including what is described in the Abstract, is
not intended to be exhaustive or to limit the invention to the
precise forms disclosed. While specific embodiments of, and
examples for, the invention are described herein for illustra
tive purposes, various modifications are possible within the
scope of the invention, as those skilled in the relevant art will
recognize.
0085. These modifications can be made to the invention in
light of the above detailed description. The terms used in the
following claims should not be construed to limit the inven
tion to the specific embodiments disclosed in the specifica
tion. Rather, the scope of the invention is to be determined

Jan. 28, 2010

entirely by the following claims, which are to be construed in
accordance with established doctrines of claim interpretation.
What is claimed is:
1. A method to communicate data between two objects in a

computing environment, comprising:
invoking a write method of a first object;
invoking a converter associated with a second object hav

ing a second format for storing the data, the converter to
convert field values associated with first fields of the first
object to the second format; and

writing the converted field values to second fields of the
second object.

2. The method of claim 1, further comprising:
setting a selected field from among the first fields of the first

object to indicate that the selected field is to be con
verted; and

writing only the selected field from among the first fields to
the second object.

3. The method of claim 1, wherein the first fields of the first
object represent a subset of the total fields within the first
object marked with one or more index values, the method
further comprising:

passing the one or more index values to the write method so
as to indicate to the write method to only convert the field
values of the first object marked with the one or more
index values.

4. The method of claim 1, wherein the first object com
prises a serializable object capable of being serialized into a
flat contiguous memory structure.

5. The method of claim 1, wherein the converter comprises
a first converter, the method further comprising:

invoking a read method of the first object;
invoking a second converter associated with a third object

having a third format for storing the data, the second
converter to convert field values associated with third
fields of the third object to the first format; and

reading the field values associated with the third fields into
the first fields of the first object via the second converter.

6. The method of claim 4, wherein the converter comprises
one of an Extensive Markup Language (XML) converter
for converting to or from XML files, a network converter to
serialize the data for communication over a network, a print
converter for printing the data to a screen, or a database
converter for storing the data into a database.

7. The method of claim 1, wherein the first object com
prises one of a C, C++, or C# language object and the second
object comprises a Java language object.

8. The method of claim 1, wherein the converter comprises
a file converter and the first object comprises a serializable
object, the method further comprising:

linking a second converter in series with the first converter
between the serializable object and the second object.

9. The method of claim 8, wherein second converter com
prises a encryption converter and the second object comprises
an encrypted file.

10. The method of claim 1, wherein the first fields of the
first object each include flags to indicate whether each of the
first fields is “set, “unset, or “modified’.

11. A computer-readable storage medium that provides
instructions that, if executed by a computer, will cause the
computer to perform operations comprising:

invoking a write method of a first object;
invoking a converter associated with a second object hav

ing a second format for storing the data, the converter to

US 2010/0023552 A1

convert field values associated with first fields of the first
object to the second format; and

writing the converted field values to second fields of the
second object.

12. The computer-readable storage medium of claim 11,
further providing instructions that, if executed by the com
puter, will cause the computer to perform further operations,
comprising:

setting a selected field from among the first fields of the first
object to indicate that the selected field is to be con
verted; and

writing only the selected field from among the first fields to
the second object.

13. The computer-readable storage medium of claim 11,
wherein the first fields of the first object represent a subset of
the total fields within the first object marked with one or more
index values, the method further comprising:

passing the one or more index values to the write method so
as to indicate to the write method to only convert the field
values of the first object marked with the one or more
index values.

14. The computer-readable storage medium of claim 11,
wherein the first object comprises a serializable object
capable of being serialized into a flat contiguous memory
Structure.

15. The computer-readable storage medium of claim 11,
wherein the converter comprises a first converter, the method
further comprising:

invoking a read method of the first object;
invoking a second converter associated with a third object

having a third format for storing the data, the second

Jan. 28, 2010

converter to convert field values associated with third
fields of the third object to the first format; and

reading the field values associated with the third fields into
the first fields of the first object via the second converter.

16. The computer-readable storage medium of claim 14,
wherein the converter comprises one of an Extensive Markup
Language (XML) converter for converting to or from XML
files, a network converter to serialize the data for communi
cation over a network, a print converterfor printing the data to
a screen, or a database converter for storing the data into a
database.

17. The computer-readable storage medium of claim 11,
wherein the first object comprises one of a C, C++, or C#
language object and the second object comprises a Java lan
guage object.

18. The computer-readable storage medium of claim 11,
wherein the converter comprises a file converter and the first
object comprises a serializable object, the method further
comprising:

linking a second converter in series with the first converter
between the serializable object and the second object.

19. The computer-readable storage medium of claim 18,
wherein second converter comprises a encryption converter
and the second object comprises an encrypted file.

20. The computer-readable storage medium of claim 11,
wherein the first fields of the first object each include flags to
indicate whether each of the first fields is “set”, “unset', or
“modified.

