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(57) ABSTRACT 
This invention is a computerized method which unites 
multivariate dataset and then performs various operations 
including data analytics. The set is stored in a “bipartite 
synthesis matrix” (BSM), e.g., a rectangular matrix with 
rows of data objects and columns of variable attributes 
defined by a plurality of partitions. Data objects are linked 
to one or more attributes within the matrix based on shared 
correspondences that occur within attribute partitions (each 
with a numerical range and a characteristic scale). Links 
within the matrix between data objects and attribute(s) are 
based on shared correspondences within partitions. The 
process exploits mode reduction in which shared correspon 
dences of a BSM (or its graph) interrelate data objects by 
producing an adjacency matrix or its associated graph. The 
partition scale is repeatedly and incrementally altered, vary 
ing the density of shared correspondences within the data, 
based on partition number and size; therefore, a fully con 
nected and weighted unipartite network may be established. 
Shared correspondences given scale and variable attribute 
provide distance metrics for edges within the network. 
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MULTIVARATE DATA ANALYSIS METHOD 

CROSS-REFERENCE TO RELATED 
APPLICATION(S) 

0001. The present application is a division of U.S. patent 
application Ser. No. 14/052,288 filed on Oct. 11, 2013 which 
is incorporated herein by reference. U.S. patent application 
Ser. No. 14/052,288 in turn derives priority from U.S. 
Provisional Patent Application Ser. No. 61/795,127, filed 11 
Oct. 2012. 

BACKGROUND OF THE INVENTION 

0002 1. Field of the Invention 
0003. The present invention relates generally to data 
analysis and, more particularly, to a computer-implemented 
method for analyzing multivariate data comprising a plural 
ity of samples each having a plurality of measurement 
variables. 
0004 2. Description of the Background 
0005. Many technical fields require complex data analy 
ses of large datasets, including multivariate datasets (involv 
ing a large number of measured variables). Often the goal of 
Such analyses is to identify hidden structures or relationships 
between the measured samples of the measurement vari 
ables. Where the datasets are extremely large finding hidden 
structures and/or relationships may take excessive time on 
existing computer hardware, or may not be possible at all 
due to limited hardware resources of conventional comput 
CS 

0006. There are different approaches for performing 
analysis and computation on numbers and other datasets. 
Arguably the largest and most pervasive approach is that of 
the axis-based virtual coordinate assignment protocol. This 
comprises a data storage table linked to a means of interre 
lating the data for visualization and computation (e.g., a 
scatter plot) even if the coordinate framework is implicit. 
The coordinate-based systems apply tables to store data, and 
axial-based constructs defined by scales are the representa 
tions of the data tables that show relationships to the data. 
The axis is thus the intermediary that interrelates data, and 
this permits data analysis and computation on the data. 
Every datum is related indirectly to other data via a rela 
tionship established with an axis with an established dis 
tance metric. As such, it is a device, and axes and dimensions 
do not necessarily represent any physical or natural mani 
festations of distance when using variables that lack distance 
values, for instance temperature. The relationship between 
an axis and the axial delineations representing different 
lengths or values that can be chosen to be linear or non 
linear, and the numbers themselves can be integers, real or 
complex. The simplest is a single column of data quantifying 
measurements of a single variable that is then displayed as 
a diagram with a single axis and a scale that is a one 
dimensional representation like a timeline. Two-dimensional 
orthogonal axes were developed to apply to geometry and 
broadened with the representation of space as a three 
dimensional manifold described with coordinate system 
using x, y, Z. notation or polar coordinates. The geometrical 
system has been adapted so that any variable could be 
represented by an axis representing a dimension whether or 
not it represents spatial information. It has been expanded by 
using more than three dimensions to encompass and inter 
relate larger numbers of variables that are usually considered 
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orthogonal but with the potential for varying degrees of 
correlation. The data table consisting of columns of vari 
ables and rows of values can be represented, for instance, as 
a scatter plot. In practice, this plot reinforces the notion that 
data occurs on a continuous manifold where each datum is 
positioned in respect to each of the coordinate axes and thus 
indirectly via the axes to each other by a distance metric. 
There are major advantages to this. The basis for storage is 
the most compact because n data instances can be stored in 
a table of on the order of proportional to size n. The 
coordinate system joins data by proximity based on metrics. 
However, there are also limitations. The human ability to 
visualize is limited to three dimensions, but the application 
of additional dimensions beyond three may be necessary to 
increase the number of variables to apply to, for instance, 
many dynamical processes (e.g. fluid flow). Visualizations 
beyond three dimensions is not intuitive. Compression of 
dimensions is the process of reducing the dimensions that 
takes advantage of redundant or correlated variables that add 
no significant information content. Unfortunately, compres 
sion based on statistics and functions often loses or distorts 
information. 

0007. The second major limitation of axis-based virtual 
coordinate assignment protocol is the use of an axis as an 
intermediary to relate data. This enables relative position 
and distance measurements to be made relative to the axis. 
Usually this involves a geometric functional relationship 
such as the Pythagorean theorem in which x+y=z. For 
path-dependent calculations, this can be computationally 
problematic. Uncertainty in relating data must be accounted 
for in terms of accuracy and precision in relationship to the 
axes. Heteroscedasticity is another issue in which non-linear 
behavior exists, especially in high-dimensional data sets. 
High dimensional data sets are by definition sparse, but 
Smooth axis-based systems require dense data and often 
impractical levels of data collection to achieve statistically 
valid or useful interpolation or prediction. Each datum must 
contain information related to each axis to provide a position 
on the manifold. Missing or erroneous data attributes are not 
tolerated well with these constructs. For instance, if a datum 
involves three attributes (e.g., values of x, y and Z), and the 
value of the Z attribute is erroneously missing or different 
than the true value, the spatial position of the point in a 
scatter plot could be at significant variance with the true 
value. 

0008 Stemming from the use of axes conceptually is the 
application of regression-based statistical processes to relate 
data for analysis and prediction. This is at its simplest 
mapping the data to a line, curve or Surface in the data space. 
Large data requirements are often necessary for statistical 
validity, but large sets usually are accompanied by noise and 
errors ascribed usually to accuracy and precision with 
respect to the measurement axis. Because of the distortion 
statistical performance can be negatively impacted due to 
introduced uncertainty between the statistical model and the 
data. Data cleansing (removing undesirable data) and 
appending data can be challenging because the approaches 
used by regression require significant re-calculation. This is 
because regression usually involves evaluating every datum 
with respect to the Sum of the whole (e.g. using a mean 
value). 
0009. The application of functions to represent com 
pactly the behavior of data on manifolds is also problematic. 
The same heteroscedasticity, issues of uncertainty, non 
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linearity, and non-continuity of many real systems present 
problems for applying functions. Many real systems exhibit 
path dependency that results in, for instance, chaotic behav 
iors resulting in bifurcation (two potential outputs for a 
given input), which is not conducive to functional descrip 
tion. Functions can be developed that have accuracy over 
only small regions of the problem space. Some functions can 
be developed that require integration, differentiation or other 
complex methods to solve in order to generate predictions, 
but the mathematical function is too complex or impossible 
to solve without approximations or possibly invalid assump 
tions. 

0010. Another problem is the use of algorithms on the 
data in this form operate inefficiently with large data sets. 
Search routines to find, for example, a global maximum 
must evaluate all of the data instances individually to 
distinguish local maxima from the global one. For large data 
sets, this becomes computationally challenging. 
0011. A second major approach to data analysis distinc 
tive from the coordinate-based approach, graph theory, has 
become an indispensable tool in studying complex datasets, 
and a graph system can exist that is an analog to the 
coordinate geometry system to perform analysis and com 
putation. Graphs have the potential near-universal applica 
bility to data analysis. Washio, Takashi and Hiroshi Motoda, 
State of the Art of Graph-based Data Mining, SIGKDD 
Explorations. 5:59-68 (2003). Ordinary graphs are the pre 
dominant type, but bipartite graphs have been shown to be 
more robust as a description of real entities. A bipartite graph 
or “bigraph' is a set of graph vertices decomposed into two 
disjoint sets Such that no two graph vertices within the same 
set are adjacent. The multivariate approach to generate the 
bipartite graph from an attribute table is detailed in De 
Leeux, Jan and Michaildis, George, Data Visualization 
Through Graph Drawing, Comput. Statist. Vol. 16, pp. 
435-450 (2001). Bipartite graphs (or bipartite matrices) offer 
a means of representing information for analysis but it is not 
particularly intuitive for human viewing because of the 
missing distance metric. Large numbers of correspondences, 
links between the disjoint sets, can make evaluating rela 
tionships within data difficult, and statistical analysis is 
generally simpler when performed on ordinary graphs. 
0012 Bipartite matrices and bigraphs can be converted to 
an ordinary graph by “mode reduction' where nodes (aka 
“vertices”) of one mode become the vertex or node of the 
ordinary graph. Shared correspondences occur when mul 
tiple objects in the first disjoint set share attributes in the 
second disjoint set. Shared correspondences are used as the 
basis for links or "edges' within the ordinary graph. An 
ordinary graph is a visual representation of an adjacency 
matrix. Again, the concept of distance between nodes of an 
ordinary graph, as with a bipartite graph, does not represent 
a distance metric as established with coordinate geometrical 
techniques. Links or edges represent relationships that can 
be directed, weighted, or unweighted. However, there is a 
general problem with mode reduction in that either the 
correspondences are too dense, too many to manage, or too 
sparse and fragmented, which results in a graph that is not 
visually appealing, too difficult to render, or too big to 
manage. Various approaches to reducing dense graphs have 
been applied including filtering links randomly or based on 
limiting the degree (number of links sharing a common 
node) of nodes within the graph. This risks losing informa 
tion and distorting the graph as well as any Subsequent 
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statistical assessment of it. Furthermore, techniques for 
mode reduction of multivariate bipartite graphs have not 
been established that enable edges to represent different 
variables with distance metrics. Thus, ordinary graphs have 
been considered poor alternatives for managing multiple 
variables and multivariate data. 

0013 Ordinary graphs containing multivariate compo 
nents are sometimes placed in a statistical coordinate system 
and converted to a spatial representation statistically (2 or 3 
dimensions) through a statistical compression algorithm 
Such as Principal Component Analysis to achieve a axis 
based distance metric between data with the subsequent 
distortion and loss of information. The major problem with 
ordinary graphs is the concept of distance. Two nodes not 
directly inter-linked or joined by a common edge are related 
in terms of a quasi-distance by the minimum number of links 
or the average number of hops, but this can be complicated 
by directed edges or edge weighting. Furthermore, this path 
dependency might involve evaluating every possible path or 
some statistically value number of them to establish the 
shortest path. This can become computationally intractable 
for large data sets. No system of applying a physical distance 
inherent within a data set analogous to that of coordinate 
systems has been devised without some sort of statistical 
compromise as described above. 
0014. The concept of all-to-all weighted graphs repre 
senting relative distances between all nodes has been con 
sidered that would enable said distance metrics to be 
applied, but as mentioned this has remained computationally 
impossible for any but relatively small data sets. The simul 
taneous linkage of every node to every other node becomes 
computationally challenging for large sets of nodes because 
the number of required relationships increase proportion 
ately to the square of the number of vertices. The calcula 
tions to determine each edge distance requires some expo 
nential set of measurements. As mentioned above, each 
distance would require the measurement of every possible 
series of pathways to establish a minimum path length. The 
visualization of such a graph would be unappealing for large 
data sets because of the clutter of So many relationships. 
Navigation and statistical analysis would be excessively 
challenging. Dealing with more than one variable would be 
problematic because of the potential for differing distance 
metrics and weighting, which would require blending or 
Some sort of statistical filtering. 
0015. Two major limitations have hindered the develop 
ment of a graph theory-based analog to coordinate geometry. 
For one, a satisfactory distance metric that is not path 
dependent has not been established analogous to that in 
coordinate geometry. The second hindrance has been a lack 
of means to handle more than a few variables with the same 
type of ordinary graph that distances must be evaluated on. 
As a result of these shortcomings graphs have not been used 
as an alternative to coordinate geometry to perform compu 
tation. The current invention is a graph analytical process 
that solves this. 

SUMMARY OF THE INVENTION 

0016. It is therefore, an object of the invention to provide 
a computer-implemented method for managing large, sparse 
data sets, and to update large data sets without having to 
adjust mean-based regression or other statistical assign 
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ments that would otherwise require learning algorithms to 
undergo significant computational and Supervised change to 
adapt to new data. 
0017. It is another object to provide a computer-imple 
mented method for analyzing large multivariate data sets 
that resolves issues of noise, missing data and non-linearity 
which would otherwise distort most regression-based pro 
cesses and frustrate statistical and function-based modeling. 
0018. It is another object to provide a computer-imple 
mented method for handling multivariate data with graph 
theoretical approaches in a way that generates an inherent 
distance metric without excessive computational burdens. 
0019. It is another object to provide a computer-imple 
mented method for managing large data sets that applies 
graph theoretical methods to computations and software 
development for use against hard computational challenges 
Such as optimization problems. 
0020. It is another object to create an equivalent frame 
work to the coordinate system that establishes a simultane 
ous distance metric and relative position using graph theo 
retical methods. 
0021 Still another object of the present invention is to 
provide a random number generation process, the generation 
of truly random numbers by algorithms that generates arbi 
trarily large, non-looping number sets in a way that cannot 
be reverse-engineered or otherwise compromised if a one 
time pad is compromised or if the seed is known. 
0022. In accordance with the foregoing object, the pres 
ent invention is a method of uniting data through the means 
of a bipartite matrix. The method begins with a multivariate 
data set comprising a series of data objects that depend on 
multiple variables or attributes. 
0023. In a first step the multivariate data set is stored in 
a rectangular matrix called a “bipartite synthesis matrix 
(BSM) represented as a large table with rows of data objects 
or measurements and columns defined by a plurality of 
partitions representing intervals over a fixed range of a 
variable. In accordance with the invention the partitions 
have an adjustable scale that governs partition size and thus 
the number of partitions fitting within a fixed range of the 
variable. The scale R can be changed to adjust partition 
width as a consequence affect the aggregation of data within 
the bipartite matrix. 
0024. The scale governing the partition width and thus 
the number of partitions in a fixed range is adjusted to 
achieve coarse-to-granular aggregation of data within the 
bipartite matrix (or granular-to-coarse). This manipulates 
the occupancy levels of the data by aggregating or disag 
gregating correspondences within partitions, which makes 
the aggregation hierarchical from coarse (highest in hierar 
chy) to most granular (lowest in hierarchy) and Supports 
relative distance determination and relative position. This 
multi-granular data aggregation operation is achieved by a 
suitable multi-scale, hierarchical or other adjustable data 
aggregation mechanism. For multivariate operations, each 
variable has a distinct range with adjustable partitions. Any 
number of variables and partitions can coexist within the 
bipartite synthesis matrix. A decision process must be estab 
lished to define the extent of scales for each variable from 
most coarse through most granular. This can be devised 
based on the maximum range of numerical data and repeat 
edly halved until the finest granularity is achieved that 
matches the finest values of the data measurements. Each 
variable could undergoing the process of aggregation sepa 
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rately, but it is more likely that at each scale, the variables 
will be evaluated in parallel to establish a broader range of 
shared correspondences. It is the number of shared corre 
spondences at given scales that are manipulated by Super 
vised or unsupervised algorithms to achieve the conversion 
from bipartite or unipartite graph structures. 
0025. In a second step a series of one or more “adjacency 
matrices” are generated from the BSM at different scales of 
the data. Shared correspondences identified on the right side 
of the BSM become the basis for assigning edges within the 
ordinary graph, and these correspondences are used to build 
the adjacency matrices. The changing numbers of the cor 
respondences that exist at different scales can be used for 
extracting information with minimal computation and stor 
age requirements. Shared correspondences in terms of num 
ber and scale can be used to prioritize or exclude relation 
ships based on relative importance. For instance, a 
relationship at a coarse scale could be deemed to be unim 
portant relative to a correspondence established at a more 
granular level based on greater uncertainty of relative data 
relationships within the coarse scale. Moreover, a large 
number of interrelated links between a cluster of nodes 
generates symmetry. Each link within an all-to-all cluster 
might be of lower importance compared to asymmetrical 
links joining two clusters, that could be ranked as more 
important. Thus, a prioritization framework can be achieved 
to avoid the problems of complete graphs representing 
all-to-all distances by only representing distances that are 
important (and data proximity is established even if an 
explicit link between two data objects is not shown). 
0026. In a third step each adjacency matrix is rendered as 
an ordinary adjacency graph that is engineered to establish 
path-independent distance metrics (i.e., to establish simul 
taneously relative position and distance independent of 
conventional path evaluative techniques mentioned earlier). 
The adjacency graphs can be consolidated into a single 
adjacency matrix and rendered using standard graph draw 
ing processes by algorithms such as those termed force 
directed or spring-based. Scale could be used to define the 
weight of links. The weights would be expressed in terms of 
a physical distance. This could be accomplished by having 
a series of springs in an edge equal to the scale. Thus a small 
scale would result in a short length and larger scales in 
proportionately longer lengths. Alternatively, the spring con 
stant could be adjusted for different scales: tighter for small 
scales and progressively looser for larger ones. 
0027. In an alternate embodiment, the above-described 
method is implemented as a less costly means of generating 
random numbers capable of generating large, non-looping 
sets of numbers and that could not be compromised even if 
the algorithms and the seed are both compromised. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0028. Other objects, features, and advantages of the pres 
ent invention will become more apparent from the following 
detailed description of the preferred embodiments and cer 
tain modifications thereof when taken together with the 
accompanying drawings in which: 
0029 FIG. 1 is a flow diagram of the present method. 
0030 FIG. 2 is an exemplary multivariate data set with 
40 measurements and 3 variables A, B and C. 
0031 FIG. 3 shows the data set of FIG. 2 in a scatter plot 
defined by three axes. 
0032 FIG. 4(A) is an exemplary BSM at a first scale R. 
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0033 FIG. 4(B) shows the BSM of FIG. 4(A) with the 
variable scale R halved to generate two child partitions. 
0034 FIG. 4(C) is a partial attribute table containing the 
synthetic data generated for one variable A as a result of the 
multi-scale process described above. 
0035 FIG. 5(A) shows a BSM of a single, larger data set 
consistent with that used in FIGS. 2-3 and also in FIGS. 6-9 
at a first scale. 
0036 FIG. 5(B) shows the BSM of FIG. 5(A) with the 
scale partitioned. 
0037 FIG. 6 shows a multivariate bipartite graphical 
illustration of the attribute table of FIG. 4C. 
0038 FIG. 7 is a depiction of the same bipartite graph but 
applying coarser, 32-unit value attributes of variable A. 
0039 FIG. 8 is an adjacency matrix derived from the 
multilevel process applied to the multivariate data. 
0040 FIG. 9 is an exemplary graph rendered from step 
300 using a force-directed method with the associated 
parameter settings depicted from the screen capture. 
0041 FIG. 10 is a more detailed software process flow 
diagram of the process of FIG. 1. 
0042 FIG. 11 is a graph illustrating how the rate of 
increase of the present method decays Substantially as data 
set size increases. 
0043 FIG. 12 is a portion of the BSM for the Stochastic 
Birthday problem. 
0044 FIG. 13 shows correspondences generated at dif 
ferent scales for the 30 random birth dates from the BSM of 
FIG.S. 
004.5 FIG. 14 is a Degree Connectivity Table which 
calculates the numbers of correspondences that exist per 
date partition at different partition scales, again for the BSM 
of FIG. S. 
0046 FIG. 15 illustrates the stochastic calculations for 
the BSM of FIG. 5. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

0047. The present invention is a computerized method of 
analysis by use of a bipartite matrix and a multi-granular 
data aggregation operation (multi-scale, hierarchical or other 
adjustable data aggregation mechanism) in order to sort, 
partition, rank, aggregate, display, filter, and otherwise relate 
data to promote a broad range of activities. The invention 
also contemplates an improved pseudo-random numbergen 
erator using the same approach. The invention partitions, 
aggregates or otherwise processes the attributes and the 
populations of occupancies within the attributes or the 
correspondences which are multiple shared occupancies. 
This is used to manipulate the occupancy levels of the data 
by aggregating or disaggregating correspondences. As one 
aggregates attributes, the number of occupancies and cor 
respondences tends to increase for any particular attribute. If 
one disaggregates attributes into finer categories, the density 
of occupancy tends to decrease. 
0048. The software method is preferably implemented on 
a hardware foundation comprising at least one processor, at 
least one storage device, and miscellaneous interfaces to 
Support data collection, storage and exchange between vari 
ous participants. The processor may be of any Suitable type 
Such as a PC, a server, a mainframe, or an array of processors 
working in parallel. The storage device also may be of any 
Suitable non-transitory type, including magnetic, electronic, 
and/or optical media. The miscellaneous interfaces may 
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include interfaces to user input/output devices such as 
keyboards, screens, pointer devices, printers. In addition the 
miscellaneous interfaces may include interfaces to networks 
such as LAN networks or the Internet. The storage device 
stores program code for informing operation of the proces 
Sor, including a modular array of Software for data aggre 
gation, storage and exchange between the various partici 
pants. In accordance with the invention, the Software method 
is implemented on a multivariate data set, which may be 
externally aggregated and compiled but is locally stored on 
the storage device. The multivariate data set comprises a 
series of data objects that depend on multiple variables or 
attributes. A data “object' is herein defined as any event, 
measurement, number, or anything else to which “attributes' 
can be ascribed. Attributes may be any discrete entity 
associated with the object. The attributes could be different 
types of variables or even mixed variables with some 
attributes being numerical ranges and others representing 
non-numerical features. Attributes could be Boolean or 
binary and some attributes might remain unalterable while 
others are aggregated or disaggregated. For example, a 
dataset of people may have multiple attributes Such as 
height, weight, shoe size, etc. A dataset of weather may have 
multiple attributes such as temperature, humidity, wind 
speed, visibility, UV index, etc. The present invention pro 
vides a Software solution for analyzing large, complex 
multivariate data sets quickly, easily and accurately. 
0049 FIG. 1 is a flow diagram of the present method. 
0050. The method begins with a multivariate data set 
comprising a series of data objects that depend on multiple 
variables or attributes. FIG. 2 is an exemplary multivariate 
data set with 40 measurements and 3 variables A, B and C. 
FIG. 3 shows the data set of FIG. 2 in a scatter plot defined 
by three axes that is a conventional method of presentation 
for analysis. Each point represents a measurement (indepen 
dent variable). 
0051. The method comprises a first step 100 of storing 
the multivariate data set in a rectangular matrix called a 
“bipartite synthesis matrix' (BSM) or equivalent device 
stored on a computer. The bipartite synthesis matrix can be 
represented as a large table, and there can be any number of 
objects and attributes. Thus, for example, the left column of 
the bipartite synthesis matrix may contain the objects, and 
the top row of the matrix contains partitions of attribute 
values, with partition-size having an adjustable-scale. The 
partitions collectively span the entire range of attributes of 
the data set. At any given partition scale if an object has a 
particular attribute, then the matrix will contain a “one' 
entered in the row-column intersecting cell. Otherwise, if an 
object lacks an attribute the cell would have a null or empty 
notation. 

0.052 Scale is defined as the number of regular partitions 
or intervals within a variable range of the bipartite matrix. 
For instance, if a range is 1-32 and there are 8 partitions, the 
scale is 4; the number of partitions can increase to 32 when 
each interval is reduced to unit 1 in size. As such, any data 
object occupying an interval at that scale corresponds with 
any other data object that shares that interval. This sharing 
does not mean that the corresponding data objects are 
identical, just that they correspond at that scale for that 
variable's attribute. 
0053. The partition scale of the bipartite synthesis matrix 
(BSM) is incrementally adjusted to establish data correspon 
dences throughout a range of scales from lower scales (finer 
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granularity) to higher scales (more coarseness). This way, if 
a data object (measurement) and a given scale occupies the 
same partition/interval as another data object at a given 
scale, the data object is related and for all intents and 
purposes indistinguishable. This relationship is established 
by the scale of the data, which is adjusted as above to make 
the relationships evident. Progressive scaling establishes 
different clusters of data objects and allows extraction of the 
maximum information content from the data set without 
distortion from regression or other forms of multidimen 
sional analysis that Suffers from missing data and heterosce 
dasticity. 
0054 The foregoing BSM approach establishes two 
related data metrics: 1) absolute distance between two data 
objects; and 2) relative position within a hierarchical frame 
work via different scales. Close proximity data objects share 
correspondences at lower Scales (finer granularity) when 
they are more proximate to each other. For instance, a data 
object of value three is more proximate to a data object of 
value ten than to a third of value 300. Nevertheless, at 
partition unit Scale one, all three data objects are unrelated 
per se. Data objects with respective values of 3 and 10 
become associated at Some scale equaling or exceeding 
seven. However, it is not until a scale approaching 300 is 
reached that all three data objects are associated. The change 
in Scale necessary to achieve this association, or relative 
position within the hierarchical framework, represents “rela 
tive proximity.” Both distance and relative proximity are 
simultaneously captured. 
0055 FIG. 4(A-C) is an exemplary BSM of object set 
size S (left column), an attribute range of 1-8, and a single 
attribute interval or “partition size spanning 1-8 (top row), 
and with notation “1” indicating occupancy. The left-most 
column is the integer set S. In this case S is a random set of 
numbers ranging from one to eight so that the interval range 
encompasses the sets range of values. Correspondences 
occur when rows share occupancy of a particular range 
column. Thus for each enumerated partition there is a 
notation in a row indicating if an integer occupies a par 
ticular partition (“1”) or is not present within the partition 
(empty). The matrix is termed bipartite because the data set 
(left column) represents one of two modes, and partition 
interval represents a second mode. Each interval 1-8 (top 
row) is a sequentially ordered and spans a defined range 
from one integer value on up to a predefined integer scale 
Such that a single interval spans the entire range of the 
integer set S. The other columns arrayed to the right of the 
integer column represent occupancy partitions, the topmost 
row denoting the value assignments. The occupancy parti 
tions are columns that always extend vertically to include all 
of the integers from one unit up to the complete interval of 
integers. 
0056. In accordance with the present invention the occu 
pancy partitions of the BSM are set along an adjustable scale 
R. The adjustable scale R is a whole number that governs 
partition size and thus the number of partitions fitting within 
an interval. The scale R can be changed to adjust partition 
width as a consequence affect the aggregation of data within 
the bipartite matrix. Scale is varied to change partition size, 
from a course scale 8 (at A) to an intermediate scale 4 (at B) 
to a most granular scale 1 (at C). Note how the density of 
shared correspondences declines as the scale is reduced. The 
maximum R is conveniently a value that equals or exceeds 
some value 2 so that repeated halving will eventually reach 
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the unit scale exactly. As the adjustable scale R becomes 
coarser the correspondences increase at coarser scales. Thus, 
in FIG. 4(A) there is a single partition extending from 1 to 
8 over the entire range, which would be the coarsest scale. 
However, in FIG. 4(B) the variable scale R is halved to 
generate two child partitions labeled C. and C. In this case 
each partition C. and C has fewer correspondences although 
an increase in its information content. For example, all 
correspondences shown in FIG. 4A are within eight integers 
from each other, but partition C. in FIG. 4B contains four 
corresponding integers indicating that the associated inte 
gers are within 1-4 in value based on that occupancy state 
and are all within four units of each other. Partition C. on the 
other hand also shares four correspondences with distances 
of 4 units, but the integers are a value of between 5-8. FIG. 
4(C) shows this process the matrix for the same data set with 
eight, unit-scale partitions to show how the multi-scale 
process affects correspondence density over a series of 
granulation stages. In this chart the attributes are at the most 
granular and contains no correspondences. From this it is 
evident that the correspondence density decreases with 
granularity from FIG. 4(A) to (C). The ability to adjust scale 
R of partition width to achieve coarse to granular aggrega 
tion of data within the bipartite matrix is an essential feature 
of the present invention. This effectively makes the parti 
tions hierarchical in an unsupervised way that can intercon 
nect every data object and simultaneously enables Scale 
based distance metrics and relative position establishment. 
The scale R is adjusted in stages so that, at each stage of 
the multi-scale process, R halves until the unit scale is 
reached and each partition’s maxima and minima becomes 
identical. 

0057 Various heuristics can be devised for approaching 
the coarsening in terms of attribute divisions. One simple 
unsupervised method is through progressively doubling the 
number of partitions from one until the interval reaches unit 
value (1, 2, 4, 8, 16 . . . ). Another option could be to apply 
the Fibonacci sequence to the number of partitions going 
from 1, 2, 3, 5, 8... until the number of partitions exists that 
are of unit value and span the range. Granulation can be 
standardized by normalizing the data to a predetermined 
value range and pre-determined rate of coarsening. The 
bipartite graph can be re-drawn successively for every level 
of granularity to Support drawing of the ordinary graph. 
Coarsening affects the topological properties of the unipar 
tite graph to be developed. 
0058. One skilled in the art should understand that any 
other Suitable data aggregation scheme may be employed 
including a hierarchical approach to the attribute modal data, 
as a Substitute to multi-scaling. Thus, “multi-granular data 
aggregation operation” means multi-scale, hierarchical or 
any other Suitable adjustable data aggregation mechanism. 
0059. The process of evaluating relationships by the scale 
and quantity of links between nodes can be supplemented 
with other rules to perform computation (find subsets of 
data) analogous to those algorithms that apply functions to 
perform computation in coordinate systems. Instead of indi 
vidual values, interval partitions are evaluated to determine 
if they obey a set of rules. This is exemplified in the solving 
of the Subset Sum Problem (Example 2). The filtering 
requires the extremes of the partition intervals to bracket the 
target value of the Subset Sum problem. This is a fundamen 
tal rule-based filtration that could be applied to factoring 
primes for instance or doing different so-called optimization 
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problems. The same approach to filtering by rules can also 
be applied with addition, subtraction, multiplication, divi 
Sion, or various combinations to achieve a desired rule just 
as a function involves those relationships applied to numeri 
cal variables. However, any other suitable formula may be 
mathematically devised to filter correspondences, including 
binary (e.g. Boolean true-false) comparison to include or 
exclude correspondences. For non-numerical relationships 
but ones that occur in some hierarchy, the positions in the 
hierarchy can be used to prioritize filtration of correspon 
dences. For instance, speciation is a hierarchical classifica 
tion system whereby a network can be established. All-to-all 
distance relationships can be established, but it is preferred 
to filter based on level in the hierarchy. The level in the 
hierarchy is used as a proxy for numerical scale. For 
correspondences that share the finest granularity and for 
which no distinguishing feature is available, it may be 
necessary to use stochastic processes to cap the number of 
correspondences “displayed or to otherwise denote that the 
data objects are indistinguishable by collapsing them into a 
single node/cluster. For instance, if a group of species within 
a genera are all related but no information exists to put any 
in hierarchy of precedence over any other, then they must be 
related all-to-all. There are many ways to express the 
correspondence relationship including making them a single 
cluster with a group link to other elements of the network or 
a single node or a cluster with all or a few links represented. 
0060. The BSM (FIG. 4A-C) can contain any number of 
variables and attributes. There is no order for which attribute 
occurs first although there may be some heuristic approaches 
devised for large numbers of variables. Other variable 
attributes can be appended by extending the table, and the 
entire assemblage could be contained in a relational data 
base. The number of attributes should be just enough to 
produce separation within the data similarly to how a scale 
is adjusted on a coordinate axis for effect. Numerical data 
could be normalized, and a standard set of values increments 
progressing from low to high could be established. For the 
example, the variable attributes range from 1 to 100 with 
unit attribute values as the minimum range. The attribute 
value range is shown with linear progression, but other kinds 
could be used including, for example, a logarithmic pro 
gression. 
0061 The following examples provide detailed imple 
mentations of the method: 

Example #1 

Data Visualization and Graph-Based Distance 
Metrics 

0062. This example describes a process by which a data 
set is used as a basis for developing a fully connected 
weighted graph that is multivariate in nature and that mini 
mizes or otherwise optimizes the amount of edges while 
establishing inherent distance metrics analogous to a coor 
dinate system. 
0063 FIGS. 5 (A and B) show a BSM of a single, larger 
data set consistent with that is used in FIGS. 2-3 and also in 
subsequent FIGS. 6-9. This FIG. 5(A) contains a portion of 
the single data set of 40 “measurements, notional values 
arrayed on the far left column. Not all values are shown. In 
this case, the BSM is displayed at the unit different scales 
indicate the correspondences between data and unit-scale 
partitions. Few shared correspondences exist. FIG. 5(B) has 
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a scale of four units and an increase in density in shared 
correspondences. It should be evident that the number of 
correspondences increases as fewer partitions are used. 
0064 FIG. 6 shows a bipartite graphical illustration of 
the attribute table of the BSM of FIG. 5, representing only 
a portion of the graph because it only contains attributes for 
variable A. The bipartite graph could have the additional 
data objects linked to other attributes including those of 
other variables on the right, each subdivided into value 
partitions. The edges extending between the two tiers of 
vertices represent correspondences between the data objects, 
left, and attributes are the nodes on the right. Measurements 
that share attribute vertices indicate a relationship, a shared 
correspondence, which is used Subsequently to establish 
graphical connections. The multi-scale approach described 
above prioritizes edge link relationships based on proximity 
as established by scale, and is thus resistant to random noise, 
missing data and erroneous information. For instance, if a 
data error were to occur, it is more likely that an erroneous 
data value would be filtered out through the multi-scale 
process because the noise would result in variations that 
would occur over large values that would generate relation 
ships at only large scales. The exclusion would not damage 
the network graph because of the integrity established within 
the network of other data. Because the system is discrete, it 
is Suitable for sparse datasets and non-linear behavior asso 
ciated with continuous data is not an issue. 
0065. Moreover, the bipartite relationships can be con 
verted into an ordinary graph through the aforementioned 
one-mode reduction. Referring back to FIG. 1, in a second 
step 200 a series of one or more “adjacency matrices” are 
generated from the bipartite multivariate matrix of step 100. 
Just as the attribute table is the basis for the bipartite graph, 
the adjacency table is the mathematical tool commonly used 
to describe a unipartite or ordinary graph. The vertices of the 
ordinary graph are the same as the vertices on the left side 
of the bipartite graph. The shared correspondences identified 
on the right side of the bipartite graph become the basis for 
assigning edges within the ordinary graph. 
0066. The foregoing correspondences are used to build an 
adjacency matrix, the basis for visualizing the ordinary 
graph. In a third step 300 (FIG. 1) each adjacency matrix is 
rendered as an ordinary adjacency graph that is engineered 
to establish universal distance metrics (i.e., to establish 
simultaneously relative position and distance). The adja 
cency graphs can be rendered using standard graph drawing 
processes by algorithms such as those termed force directed 
or spring-based. 
0067. In the bipartite graph of FIG. 6 there are 40 data 
objects to the left. On the right are 35 intervals of scale value 
4 that serve as attributes of a variable “A”. The relationships 
between objects and attributes are diagrammed through 
edges that span the two sides. Even at this coarseness there 
are still Some data elements that are not interconnected (e.g., 
data element 29). For purposes of demonstration the bipar 
tite graph with the finest granularity is used to start filling the 
adjacency matrix using a one-mode reduction approach. 
Because this is the highest granularity, it should be expected 
to produce the sparsest graph. This step of “filtering based on 
scale' determines each shared correspondence from the 
bipartite graph which is captured in a cell of the adjacency 
matrix. If a shared correspondence occurs for two data 
objects for attribute A at a coarseness of 1, a code is entered 
into the matrix in the illustration as “A1. For drawing the 
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graph, only the shared correspondences using variable attri 
bute of the finest granularity are entered into the matrix. The 
process continues with increasing attribute coarseness, 
which gradually fills in the adjacency matrix. 
0068 Filtering based on scale is just one exemplary 
method of mapping the number of correspondences using an 
all-to-all representation. However, other approaches to fil 
tering may be used to further reduce excessive information 
content. For example, filtering may include capping the 
number of correspondence links per vertex (in graph theory 
parlance this would be degree limitation) due to the obvi 
ousness of many all-to-all relationships, for instance. Once 
a few links are established, the proximity and interrelation 
ships are identifiable, and the additional links are unneces 
sary. The process for removing extraneous links within a 
cluster could be established randomly if only a single 
variable is evaluated and there is no other basis for selection. 
If there are more variables, then other variables could be 
used to generate information about filtering correspondences 
of the variable in question. 
0069 FIG. 7 is a depiction of the same bipartite graph but 
applying coarser, 32-unit value attributes of variable A. 
Bipartite graphs of coarser attributes would be expected to 
have more common attributes and thus be more intercon 
nected. At this coarser level, data elements are in one of 
three clusters. 

0070. It should now be clear that the BSM described 
above facilitates bipartite mode reduction to ordinary graph. 
The method is suitable for multivariate data because of the 
nature of the multi-scale prioritization process. Because the 
system is not regressive or based on modeling of functions 
or on compression, the system can be appended, which 
simplifies processing and updating/learning. 
0071. If desired, the entire process can be repeated to 
revise the resulting adjacency matrices in order to change 
the appearance or add additional data. 
0072. In addition, data objects can be appended to the 
BSM by adding them to the bottom of the rectangular matrix 
and developing the additional correspondences as already 
described. The correspondences can be established by 
employing new and existing variables within the bipartite 
matrix and just providing the notations of which partition 
occupancies are shared by the new data objects. Fusing data 
is accomplished by adding different data objects to the 
bottom (conceptually) of the bipartite matrix and adding 
variables to extend the horizontal expanse of the matrix. 
Fusing is limited to related data because there must be some 
overlap in data objects relationships established by shared 
variables in order to extend correspondences among differ 
ent data sets. 
0073 FIG. 8 is an adjacency matrix derived from the 
multilevel process applied to the multivariate data. The 
example adjacency matrix shows correspondences from the 
coarsening process described (Table 3). With the multilevel 
process a link between two vertices (data objects) is estab 
lished using the finest granularity correspondence of a 
variable attribute. The edge correspondences shown include 
the attribute unit granularity and variable. Code 2A for 
instance signifies that the finest shared correspondence is for 
Variable A and granularity Scale of 2 units. The adjacency 
matrix does not represent a complete (all-to-all) graph 
although the process could be continued until all cells in the 
matrix are filled. Here the process was continued for mul 
tiple levels of granularity and halted when it became fully 

Feb. 16, 2017 

connected. Heuristics, statistics and visualization tools can 
be used to determine automatically or semi-automatically 
when a graph network is fully interconnected in addition to 
simply filling in a complete adjacency matrix. All of the 
matrix could be completed because of the inherent nature of 
the process of increasing coarsening. If the edges established 
in the adjacency matrix were to be used in a weighted graph, 
it might be worthwhile to complete a fully connected graph. 
For this example, an unweighted graph was drawn, and the 
increasing number of edges would distort the graph. 
0074 The coarsening is applied simultaneously to all 
attributes and the order of attributes is arbitrary. It might 
occur that two or more attributes each share the same 
correspondence at the same level of granularity. Those 
correspondences typically would represent stronger relation 
ships, and multiple correspondences could be inserted into 
the matrix cell. The prioritization based on multiple corre 
spondences and levels of granularity provides a robust 
means of selecting edges and assigning weights for a graph. 
For this example, that was not shown. The priority of edges 
and direction by which the adjacency matrix can be modified 
for local or global rules for different reasons. Other con 
straints may be placed on the adjacency matrix to filter links 
based on topological properties such as degree connectivity. 
0075. The graphs can be rendered using standard graph 
drawing processes by algorithms such as those termed force 
directed or spring-based. 
0076 For example, FIG. 9 is an exemplary graph ren 
dered from step 300 using a force-directed method with the 
associated parameter settings depicted from the screen cap 
ture. The BSM eliminated distant coarse links and extrane 
ous links through the filtration process. Even though the 
drawing process applied links that were unweighted based 
on the scale-based associations of the process, the process 
nevertheless produced a graph that shows proximity and 
trending if not quantitative distance metrics. This graph was 
produced by PrefuseTM Beta (an open source force-directed 
algorithm) and the vertices were adjusted in orientation 
similar to the arrangement of the scatter plot. The numbers 
correspond to the objects enumerated in FIGS. 2-6. The edge 
colors correspond to the key and the attribute relationship 
correspondences. The force-directed model is one whereby 
edges are represented as springs with attractive (stretch) and 
repulsive (compressive) forces. These serve to provide ad 
hoc adjustment of distances and generate a visual arrange 
ment of the enumerated data elements as the vertices with 
the edges relating shared attributes. The data seen in FIG. 9 
are notional but they represent a trend, the same trend seen 
in the scatter plot of FIG. 3. Recall in FIG. 3 that there are 
three variable A, B, and C. The present example only refers 
to Variable A of the three, but the others are handled the 
same way. The multiple different colors of edges distinguish 
which attributes constitute the closest relationships between 
the two data elements. The difference in thickness indicates 
a quantitative difference in granularity of attribute, with the 
thicker constituting a smaller unit-value difference and the 
thinner representing a greater attribute value difference. FIG. 
9 benefits from a sparse graph where the addition of edges 
was stopped at the point it is fully connected. 
0077. The present invention contemplates using multiple 
springs or varied spring constants to adjust for different edge 
relationship lengths as determined by the scale-based 
method. This could achieve the desired distance metrics. 
This was not done inherently by the software, but there are 
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multiple strategies for accomplishing this including modi 
fication of the adjacency matrices and Software modifica 
tions. 

Example #2 

Computational Data Analytics 

0078. This example describes how computation can be 
applied to analyze data and develop a sub-graph from the 
data. In this case rules are applied to establish what sub 
graphs or Subsets of data within the larger network of 
interrelated data satisfy a defined criterion: in the example, 
determining Subsets that sum to a given target value. The 
significance of this method is that the totality of the data is 
used and generates a complete, brute force solution without 
the exponential growth of current state of the art. This 
solution has been developed into a C++ algorithm for which 
pseudocode has been created to explicitly lay out the 
approach and for which data have been generated to dem 
onstrate sub-exponential growth. 
0079 A proof-of-concept prototype was created to dem 
onstrate a method of generating complete Solutions for a 
version of the well-known Subset Sum Problem (SSP) with 
significantly lower run time complexity than the state of the 
art. Generally, the SSP problem is: given a set of integers, is 
there a non-empty Subset whose Sum is Zero'? For example, 
given the set {-7, -3, -2, 5, 8, the answer is yes because 
the subset {-3, -2, 5 sums to zero. This particular SSP 
requires the determination of all subsets S of a set of 
integers S that Sum to a target value t. All Solutions to the 
SSP can be placed in the following notation: 

Xeat 

0080 where a, is the set of S integers, and t is a target 
integer value. The equation is a special case of the more 
general class of knapsack problems detailed by Martello, S. 
and P. Toth, Knapsack Problems: Algorithms and Computer 
Implementation, John Wiley and Sons (1990). For the SSP 
the factor e, is either Zero or one. The SSP is one of many 
equivalent combinatorial optimization problems of impor 
tance to the field of computation and data analysis. The SSP 
is one of the recognized Non-deterministic Polynomial-time 
Complete (NPC) problems for which solutions are achiev 
able at Small values of S, but the computational requirements 
compound quickly with increasing set size. In the case of the 
SSP, the simplest brute force algorithm requires on the order 
of N2Y combinations to arrive at a complete solution. 
Various heuristic-based algorithms have improved on this 
naive approach. Two well-known approaches, used alone or 
in combination, are the branch and bound method and 
dynamic programming. See, Martello, S. and C. Minoux, 
Surveys in Combinatorial Optimization, North Holland 
Mathematical Studies, Elsevier Press, ISBN 0080872433 
(2011). These methods expand the size of S that can be 
feasibly solved, but the algorithm run time still grows at 
Some exponential value of the input size. The exponential 
increase in computational burden with set size S has been a 
feature of the NPC class of problems, and approximate 
Solutions often provide the only practical ways of solving 
these problems. Approximate solutions approach the optimal 
Solution. These approximate solutions are typically statisti 
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cal, and they can be nearly as computationally expensive as 
the exact solutions because they retain an exponential 
increase with input size. For example a method has produced 
an algorithm that produces approximated results with steps 
proportional to 2'. See, Nick Howgrave-Graham and 
Antoine Joux, New Generic Algorithms For Hard Knap 
sacks. In Eurocrypt 2010, pages 235-256 (2010). 

I0081 Finding an exact solution to an NPC problem while 
avoiding the exponential run-time growth has been a long 
standing mathematical issue. The prototype algorithm was 
developed within Microsoft(R) Excel(R), and the spreadsheet 
based prototype was created for a small SSP to promote ease 
of description while simultaneously showing that it produces 
correct results with the desired growth characteristics. The 
conceptual implementation is presented below using 
pseudocode. An analysis of the run time growth is presented 
based on increasing set sizes to demonstrate the methods 
constrained growth. 

Software Coding Implementation of Example 2 

I0082. A process flow diagram of the multi-scale imple 
mentation of the three constraints is depicted in FIG. 10. 
Two primary loops are needed, one 102 to evaluate every 
Subset, i, and one 104 to apply the multi-scale process 
involving repeatedly halving the value of partition range, j. 
At step 106 a partition mapping table is created. The 
partition mapping table defines positions of partitions within 
the BSM, and the number of mappings can be determined 
based on the scale R and the maximum extent of the BSM. 
A coefficient input table is created at step 108, and this 
contains initial coefficients each of which are used to gen 
erate a coefficient combinatorial table at step 110. A coef 
ficient input is of size related to the number of partitions, and 
from that initial group any and all coefficient combinations 
are generated and placed in the coefficient combinatorial 
table 110. The coefficient combinations from coefficient 
combinatorial table 110 are tested by constraint tests at step 
112. The check constraint test 112 is a generic constraint test 
that requires the value of each coefficient combinations from 
coefficient combinatorial table 110 to satisfy a Boolean 
(truth-value) expression. The successful coefficient-partition 
pairings from step 112 are transferred to an output table at 
step 114. For subsequent iterations the output table 114 is the 
basis for each new coefficient input table 108. The process 
ends for every subset value when the unit scale is reached, 
after which the output table 114 is sent to a solutions table 
116. 

I0083 Exemplary source code reflecting the process out 
lined in FIG. 10, and applied to the Computational Example 
#2, is described below. Generally, the source code initializes 
the parameters of the SSP and enables interact with the BSM 
which the source code populates. The Source code calls 
subroutines within two primary loops (FIG. 10, 102, 104) 
accounting for different subset sizes and different interval 
values. For convenience, the interval is some value of 2" 
greater than the largest integer of the set S. This achieves a 
granularity of one by the repeated halving. The Source code 
uses a number of arrays that are equivalent to tables used in 
the spreadsheet prototype. 
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Begin Program 
W 
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Declare Set Size as integers Wolescribing the set size containing integers within 1 to Max of Range 
Declare tas integer \\describing the target value of the problem 
Declare BSM as bipartite matrix of Set Size W BSM is a matrix Set Size X (max of Range:Min of range) 
Declare Min of Range, Max of Range as integers 
Min of Range = 1 
Max of Range = next higher value of 2" that is > maximum value of S 
For i = 1 to Set Size Step +1 
Number of solutions = 0 \\initialize variable specifying row of Solutions Table 
For j = max of range to min of Range Step down by halving 
Number of Outputs j = 0 \\initializing variable associated with Output Table row 
Run Partition Map Subroutine to define partitions with BSM for scale 
Run Coefficient Table Creation subroutine Wmake consolidated coefficient table 
Run Constraint Testing subroutine W if all are true send coefficients to output table 
If = min of range 
Run Output to Solutions Table subroutine 

End if 
Next 

End for 
Next i 

End For 
Run Deliver Solutions 
End program 

0084. The partition maps are references to describe the 
extent of a partition interval mapping to the BSM horizon 
tally. There is at least one partition. Each partition has the 
same length S of the BSM. Each partition is bounded by a 
leftmost cell (minimum of range) and a rightmost boundary 
(maximum of range). These cells are defined by the Min 
of Range cell and offsets determined by the value of range 
i establish Successive Min of Range and Max of Range 
mappings. The partition information is stored in arrays for 
each scale levelj. There is one mapping group for each scale 
j, and the number of partitions mapped are determined by 
for a given range of integer values. 
0085. Every partition must have at least one coefficient 
mating. Except for the first level, the coefficients associated 
with the partitions must be developed by generating various 
combinations. When initialized and equals the full Interval 

of data, the single coefficient is subset i and mated with the 
single partition. This is the only table and only combination 
to test. For subsequent levels, there may be more coefficient 
input tables 108 corresponding to the number of output 
results from the previous level. The input coefficient arrays 
are used to generate coefficient tables 108, which are con 
solidated for testing at step 112. The initial coefficient is 
stored in the coefficient input table 108. Subsequent values 
of produce additional partitions. Additional columns must 
be added to the coefficient input table 108 to accommodate 
the additional partition-coefficient pairings. 
I0086. The coefficient input table 108 is the basis for 
creating the various coefficient combinations. For iterations 
of j, the conversion of a coefficient output table into a 
coefficient input table 108 involves transferring the parent 
coefficient to one of the two child partitions. The other child 
partition receives a default coefficient value of Zero. 

Begin Coefficient Table Creation 
WInputs Number of Outputs Previous j, array Output...L.MW from previous iteration 
Declare integers M, Previous Level j, Coefficient Tables, Rows of Input Coefficent Table, 
Coefficient Table Development 
Declare array Input Coefficient, L, M \\Output of Subroutine 

If Number of Partitions j = 1 then 
Input Coefficient, 1, 1 = i 
Coefficient Tables= 1 

WVariable from Partition Map Subroutine 
W i is equal to the subset size S' 

Coefficient Table Development j = 'Complete' \\for this scale level 
Else 

Coefficient Table Development j = Not Complete' 
WBelow creates new set of coefficients from previous output table with expanded numbers of 
Wcoefficients to take into account increase in numbers of partitions at new j. 
Rows of Input Coefficient Table = Number of Outputs Previous 
For L = 1 to Length of Input Coefficient Table step +1 \\Count from previous Output Table 

For M = 1 to Number of Partitions step +1 
If M is odd Wolefault coefficient is set to previous parent coefficient 

Previous Level j = 2 \\used to reference the previous iteration of j 
output table 
Previous Partition= M- (M-1)/2 
Input Coefficient j, L, M = Output Previous Level, L, 
Previous Partition 

Else WM is even and default coefficient is initialized to zero 

Input Coefficient j, L, M= 0 
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-continued 

End if 
Next M 

End for 
Next L. 

End for 
Run Expand Coefficient Tables 

End Coefficient Table Creation 

I0087. The generated coefficient combinatorial table 110 
contains all possible arrangements of coefficients based on 
each set of coefficients from the coefficient input table 108. 
The coefficient combinatorial table 110 is the prospective list 
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of all combinations to be evaluated by the constraint testing 
stage. It is lengthy to incorporate particular rules for the first 
row of each coefficient array as well as the first partition and 
the partition pairings. 

Begin Expand Coefficient Tables 
WInputs: Input coefficient.Lp, Coefficient Table Development 
Declare integers Coefficient Table Row, p, Previous row, Sum, Test, Test done Prev partition, 
Coefficient Table 
Declare p odd, previous odd p 
Declare array Coefficient.q,Coefficient Table Row,p) \\Output of Subroutine 
For q = 1 to Rows of Input Coefficient Table \\One table for every row of Input Table 

Coefficient Table Row = 0 
Repeat until Coefficient Table Development j = 'complete' 

Coefficient Table Row = Coefficient Table Row +1 
If Coefficient Table Row = 1 Then 

Reset p = 1 
For p = 1 to Number of Partitions do step +1 
Coefficientic, Coefficient Table Row p = Input Coefficientop 
Next p 

End For 
Else \\ Coefficient Table Row is not first row of coefficient table q. 

\\Check to see if coefficient table q is completed 
Previous row = Coefficient Table Row - 1 
Sum = 0 Winitialize variable 
For p odd = 1 to Number of Partitions Step +2 
Sum odd partitions = Sum odd partitions + 
Coefficient.dprevious row.p. odd 
Next p odd 

End For 
f Sum odd partitions = 0 
Coefficient Table Development j = 'complete' 

End if 
Reset p = 1 
For p = 1 to Number of Partitions do Step +1 

If p = 1 do 
f Coefficient.q.Previous row,1) = 0 
Coefficient.g., Coefficient Table Row p = 
Coefficientic,1,1] 

Else 
Coefficient.g., Coefficient Table Row p = 
Coefficient.dprevious row.pl - 1 

End if 
End if 
W get all Subsequent odd partitions after p=1 
If p < 1 and p is odd then 

Previous odd p = p-2 
Test = 1 WInitialize war 
For Partition = 1 to Previous odd p step--2 

If Coefficient.g., Coefficient Table Row Partition 
Coefficientic, 1.Partition 

Test= 2 + Test 
Else 

Test-O 
End if 
If Test = Previous odd p is true then 

If coefficient.d.Previous row.pl = 0 
Coefficient.g., Coefficient Table Row 
p = coefficient.g., 1p 

Else 
Coefficient.g., Coefficient Table Row 
p = Coefficient.cprevious row,p-1 

End if 
Else 

Coefficient.g., Coefficient Table Row 
p=coefficient.cprevious row.pl 
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-continued 

End if Test 
Next Partition 

End for 
End if \\Odd p 
If p is even 

Prev partition = p-1 
Coefficient.cCoefficient Table Row.p=coefficientic,1, 
Prev partition-coefficient.g., Coefficient Table Row, 
Prev partition 

End if 
Next p 

End For 
End if 

End Repeat 
Coefficient Table Lengthq = Coefficient Table Row 
Next q 

End for 
End Coefficient Table Development 

0088. The three constraint tests 112 are applied for each three tests. Those partition-coefficient combinations that 
coefficient set (row) in the consolidated coefficient tables. evaluate to “true’ for all three tests are sent to the coefficient 
One coefficient is matched to each partition for a series of output table 114. All others are discarded. 

Begin Constraint Testing 
WTesting of constraints 
WInputs Coefficient.L.n.p, Partition minip, Partition maxip, Number of partitions 
Declare as integers: n,p.L., Pop Test, Min Test, Max Test, Number of Outputs 
Declare arrays Output table, Number of Outputs ju 
For L = 1 to Coefficient Table Lengthq 

For n=1 to Coefficient Table Row Step +1 
Min Test = 0 
Max Test = 0 
Pop Test = "True" 
For p = 1 to Number of partitions step--1 

Population = Count integers occurring in the BSM within range 
Partition minp:Partition maxip 
if Population < Coefficient.L.np 
Pop Test ="False" 

End if 

Min Test = Min Test + Coefficient.L.np“Partition minip 
Max Test = Max Test + Coefficient.L.np“Partition maxip 
Next p 

End For 

If the following are true 
Min Test <= t, and 
Max Test >= t, and 
Pop Test = "True" 

Then 

Number of Outputs j = Number of Outputs i + 1 
For p = 1 to Number of Partitions Step +1 

Output table, Number of Outputs p = Coefficient.L.n.p 
Next p 

End for 

WElse nothing as the coefficient set tested fails and is discarded 
End if 

Next in 

End for 

Next L. 

End for 

End Constraint Testing 



US 2017/0046392 A1 

0089 Based on the constraint tests 112, any coefficient 
array the meets the conditions is transferred to the output 
table 114. The number of outputs is quantified. 

Begin Output to Soulutions Table 
Declare variables 
For s = 1 to Number of Outputs Step +1 \\potential 
for multiple solutions 

For p = 1 to Number of Partitions Step +1 
SolutionsSp=Outputs.p 
Next p 

End for 
Number of solutions = Number of solutions + 1 
Nexts 

End for 
End Output to Solutions Table 

0090. The solutions table 116 receives the coefficients for 
every subset i. The results can be formatted in which they are 
mated to the unit integer mappings for evaluation. The 
results will contain all solutions. 

Begin Deliver Solutions 
Declare integer v 
For v = 1 to Number of solutions Step +1 

For p = 1 to Max of Range step +1 
Print Solutions v.p. 
Next p 

End For 
Next w 

End for 
End Deliver Solutions 

0091 FIG. 11 is a graph illustrating that the processing 
time for the kind of applications envisioned can be managed 
so that the computational burden does not overwhelm com 
puter resources. The data are extracted from the subset sum 
Solver application of Example 2. It shows an estimate of 
run-time complexity versus set size of a group of numbers. 
The Complexity is calculated by counting the size of the 
coefficient tables that constitute the combinatorial portion of 
the algorithm. This is a proxy for the length of the evaluative 
process for filtering all of the links during the one-mode 
conversion from bipartite matrix to ordinary adjacency 
matrix. It is demonstrative that the number of relationships 
developed through the process can be managed as the data 
set increases in size. The graph depicts how the rate of 
increase in computational complexity of the present method 
decays Substantially as data set size increases, which is 
distinguished from the linear trend of the naive approach of 
conventional brute force algorithms (expansion proportional 
to n2"). Because the graph is presented in a logarithmic scale 
for Complexity C, the expansion of the naive conventional 
algorithm is exponential and the new BSM algorithm 
expands at Some rate below an exponential increase. It can 
be seen that in a software context the present method reduces 
program size and/or run time. 

Example #3 

Stochastic Processes 

0092. There exist several broad processes that can be 
enabled by the present invention which fall into the category 
of stochastic-related processes. The first is prediction and 
interpolation, and a spreadsheet-based prototype may be 
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implemented using Microsoft(R) Excel(R) that could also be 
rendered into an algorithm similar to that described in 
Example 2. The processes for prediction versus interpolation 
are identical because prediction is just a time-dependent 
multivariate problem whereas interpolation is a broader 
generalization of relating data with unknown variables to 
data with known variables by distance. 
0093. A second technique is one related to generating 
random numbers. A third, also reduced to practice via 
spreadsheet is a so-called Monte Carlo acceleration, which 
applies random processes to evaluate complex probabilistic 
tasks. 

0094. In all such cases the data sets are placed in a 
Bipartite Synthesis Matrix that is intended to undergo the 
coarse to fine granularization process. There exist multiple 
attributes to each datum. A new datum that is missing one or 
more attributes is appended to the data set. This is called the 
datum of interest. It is desired to predict the range of value(s) 
for the missing attribute(s). The process starts at a coarse 
level. The data are evaluated for the attributes that are shared 
among the data including the datum of interest but not the 
missing attributes of the datum of interest. The data that 
share the attributes are retained and the other data are 
excluded as too remote, irrelevant, or uncertain to be con 
tributory to the analysis. The process is repeated for finer 
granulations. Once an attribute range fails to contain corre 
spondence with the datum of interest and at least one other 
datum, the granularization process for that attribute is ter 
minated, and the parent attribute where correspondence 
exists is accepted. The process continues until all attributes 
are terminated either because they become empty or because 
the finest granularity is reached. It could be that multiple 
data correspondences exist in the aforementioned parent 
attribute, whereby a probabilistic condition exists. 
0.095 A stochastic process for generating random num 
bers involves generating binary data using a conventional 
pseudorandom number generator (PRNG), also known as a 
deterministic random bit generator (DRBG), for generating 
a sequence of numbers from a seed value. These pseudo 
random binary numbers are applied determine which of a 
pair of partitions is selected over a large range of values. 
This is the coarsest stage. The partition selected is in turn 
halved to create two new child partitions and the other 
coarse partition discarded. The process of pseudo-randomly 
selecting one of two partitions is repeated until a unit scale 
partition is selected and this partition has a numerical value 
attribute. The attribute number value is captured as a random 
sequence, and the whole process is repeated to generate a 
new number, which is of variable length and is appended to 
the first. Through n processes, a number range of 2" can be 
achieved. Because the scale is exponential, the process can 
quickly scale to large values and lengths of numbers. Each 
resulting number is appended to generate a long series of 
numerical digits (binary, base-ten etc.) in a string that may 
serve as a one-time pad for use in encryption or for use as 
a random variable for other applications. Because the num 
bers are strung together and are of variable length and long 
repeat time, the knowledge of the seed and the algorithm are 
insufficient to decrypt a message encrypted by a one-time 
pad generated by this system. Alternatively, the compromise 
of a one-time pad would also compromise the message 
encrypted by the pad, but the loss would not alone compro 
mise the entire system (provided other reasonable security 
safeguards are in place). This has been validated by a chi 
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square test which indicated Suitable randomness. The use of 
the multi-scale process reduces the threat of the pseudo 
random number looping because of a poorly chosen seed 
value for the algorithm. 
0096. The accelerated Monte Carlo process was reduced 

to practice by solving the so-called Birthday problem. The 
example process generated 30 random numbers from 1-365 
to determine the probability of any two people sharing a 
birthday. The random numbers are placed in a Bipartite 
Synthesis Matrix. 
0097 FIG. 12 is a portion of the BSM for the Stochastic 
Birthday problem (the date attribute columns extend to the 
right from 1 to 365 but full extent is not shown). This BSM 
is stored in the spreadsheet as Scale=1 but other scales are 
determined simply by aggregating columns computation 
ally. The days are simply listed as 1-365 but they could 
easily be broken into day, week, and month Sub-divisions. 
The random numbers generated on the right are repeatedly 
revised to generate new instances and achieve the Monte 
Carlo acceleration. At the coarsest level (scale=365), all data 
are correspondences with each other. 
0098 FIG. 13 shows correspondences generated at dif 
ferent scales for the 30 random birth dates. The scales were 
adjusted to achieve a series of scale reductions (coarse 
descending to more granular) that were modified from the 
standard halving process because 365 is not of the a value 
related to 2. The numbers across the top are the date 
attributes from the BSM but only the 1-35 day portion of the 
larger 365-day range. The numbers within this matrix (in this 
case variously 0-14) represent correspondence populations 
in each partition at a given scale. The different partitions are 
not explicitly shown but it should be evident that the lowest 
scale tallies correspondences in each single column cell for 
unit-size partitions. Likewise, the scale 2 row above the unit 
scale evaluates for correspondences within coarser, 2-day 
partitions. For each partition the population of correspon 
dences is calculated at the cell corresponding with the first 
day of the partition. At the most coarse, 183-day scale, the 
partition covering 1-183 has 14 correspondences. Corre 
spondences exist if there is a one or greater. Only if there is 
a value greater than 1 is there a “shared correspondence' 
indicative at Scale 1 of two people sharing a birthday. At 
scale 2, of course, there is a shared correspondence when 
two people share a 2-day birthday window, etc. 
0099 FIG. 14 is a Degree Connectivity Table which 
calculates the numbers of correspondences that exist per 
date partition at different partition scales. At each scale from 
the previous table the number of correspondences are tallied. 
In this case the row across the top are not day attributes but 
instead it is the degree level of correspondences that occur 
at a given scale. For instance, the number of single corre 
spondences that are present among all of the partitions (no 
shared correspondence) are calculated in column 1. Shared 
correspondences in which 2 individuals co-occur within a 
partition are listed in column 2. Likewise, shared correspon 
dences in which 3 individuals share a partition are listed in 
column 3 and so forth. For instance, at scale 1 there are 26 
instances of the 30 people who have unique birthdays and 
two instances of two people sharing birthdays. At scale 2 
there are 24 people with unique 2-day birthday windows and 
2 pairs of individuals with birthdays within a common 2-day 
window. At the coarsest scale there is a group of 12 who 
share one window and a group of 18 who share the other of 
the two window/partitions. 
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0.100 FIG. 15 illustrates the stochastic calculations. At 
each scale the same basic calculation can be devised to 
converge on a Monte Carlo accelerated Solution. In the case 
of Scale 2 the number of shared correspondences of three or 
more individuals sharing a 2-day window are determined. If 
there is any, then the probability of a shared birthday is 
100% certain. As in the example diagram previous, there is 
no instance of this, then the simple probability determination 
is calculated: P=(1-0.5Number of 2-person shared corre 
spondences). This calculation is performed in the cell to the 
right of “Scale 2 probability”. The cells below this are 
statistical measurements of which the average is used to 
evaluate the Monte Carlo probability of co-occurrence as 
repeated runs are used to converge to a solution. At more 
granular levels, the density of correspondences is reduced 
for the partitions and some partitions will contain no corre 
spondences. Although the presence of correspondences are 
coarser than unit Scale do not guarantee that a correspon 
dence exists at the finer scale, a probabilistic calculation can 
be made based on the number of correspondences shared in 
a given attribute and the number of attributes that have these 
correspondences. This probabilistic estimate can be used 
with repeated trials of random numbers just like a traditional 
Monte Carlo scenario. 
0101 The above-referenced accelerated Monte Carlo 
need only be applied at a scale different than the most 
granular scale. If for instance the scale of value two is 
applied, there are different occupancy scenarios. If at Scale 
two, there is Zero or one occupancy, then the likelihood of 
a correspondence at Scale one is nil. If there is three or 
greater, then the likelihood is total. If the occupancy is two, 
the likelihood is probabilistic based on three possible states 
at Scale one, two of the three that would contain correspon 
dences. Because this is an increase in information that is not 
captured by the traditional Monte Carlo method, this can 
achieve faster convergence to the Solution and could be 
useful for various applications where sparse data is 
involved. Those skilled in the art will understand that 
various modifications and variations can be made in the 
present invention without departing from the spirit or scope 
of the invention. It is to be understood, therefore, that the 
invention may be practiced otherwise than as specifically set 
forth in the appended claims. 
What is claimed is: 
1. A method for generating random numbers using a 

programmable controller including software comprising 
computer instructions stored on non-transitory computer 
media for performing the steps of: 

generating binary data using a pseudorandom number 
generator, 

creating a bipartite data synthesis matrix comprising a 
table with at least one row corresponding to said at least 
one variable, and columns defined by a plurality of 
partitions fitting within an interval according to an 
adjustable scale; 

generating a random number; 
determining a scale for said partitions based on said 

random number; and 
populating said bipartite data synthesis matrix with said 

binary data. 
2. A method of analyzing data by use of a programmable 

controller including software comprising computer instruc 
tions stored on non-transitory computer media for perform 
ing the steps of 
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inputting a data set comprising a series of data objects 
each of which depend on at least one variable; 

creating a bipartite data synthesis matrix comprising a 
table with at least one row corresponding to said at least 
one variable, and columns defined by a plurality of 
partitions fitting within an interval according to an 
adjustable scale; 

populating said bipartite data synthesis matrix with said 
data set; 

incrementally changing the adjustable scale of the col 
umns of said bipartite data synthesis matrix to achieve 
aggregation of said data within the bipartite matrix: 

identifying data correspondence based on the aggregated 
data within the bipartite matrix synthesis matrix: 

applying a filter to selectively identify a significant Subset 
of said data correspondences; 

populating a plurality of adjacency matrices, each said 
adjacency matrix being populated from said bipartite 
data synthesis matrix with data objects having signifi 
cant data correspondences at each of said incremental 
Scales. 


