a2 United States Patent

Triantafillou et al.

US009270657B2

US 9,270,657 B2
*Feb. 23, 2016

(10) Patent No.:
(45) Date of Patent:

(54) ACTIVATION AND MONETIZATION OF
FEATURES BUILT INTO STORAGE
SUBSYSTEMS USING A TRUSTED CONNECT
SERVICE BACK END INFRASTRUCTURE

(75) Inventors: Nicholas D. Triantafillou, Portland, OR
(US); Terry Ryun Bradfield, Tigard,
OR (US); Paritosh Saxena, Portland,
OR (US); Paul J. Thadikaran, Rancho
Cordova, CA (US); David Owen
Novick, Beaverton, OR (US)

(73) Assignee: Intel Corporation, Santa Clara, CA
(US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 103 days.

This patent is subject to a terminal dis-
claimer.

(*) Notice:

(21) Appl. No.: 13/976,258

(22) PCT Filed: Dec. 22,2011

(86) PCT No.:

§371 (),
(2), (4) Date:

PCT/US2011/067032

Jun. 26,2013

(87) PCT Pub. No.: WO02013/095573
PCT Pub. Date: Jun. 27,2013

(65) Prior Publication Data
US 2013/0291070 Al Oct. 31, 2013
(51) Imt.ClL
GO6F 3/00 (2006.01)
HO4L 29/06 (2006.01)
(Continued)
(52) US.CL
CPC ..o HO4L 63/08 (2013.01); GO6F 21/12

(2013.01); GO6F 21/606 (2013.01); GOGF
21/56 (2013.01); GO6F 21/78 (2013.01); HO4L
2463/101 (2013.01)

(58) Field of Classification Search
USPCccoenee 726/4,5, 16, 19; 713/193; 380/277
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,473,692 A * 12/1995 Davisccoecveciennennne. 705/59
5,826,012 A 10/1998 Lettvin
(Continued)

FOREIGN PATENT DOCUMENTS

EP 2249254 A2 11/2008
KR 1020070030931 A 3/2007
(Continued)
OTHER PUBLICATIONS

PCT “Notification of Transmittal of the International Search Report
and the Written Opinion of the International Searching Authority, or
the Declaration”, Application No. PCT/US2011/067032 mailed Jul.
30, 2012, 10 pages.

(Continued)

Primary Examiner — Joseph P Hirl

Assistant Examiner — Sayed Beheshti Shirazi

(74) Attorney, Agent, or Firm — Nicholson De Vos Webster
& Elliott LLP

(57) ABSTRACT

Embodiments of systems, apparatuses, and methods to enable
a value-added storage service of a storage system coupled to
aclient are described. In some embodiments, a system estab-
lishes a secure root of trust for the client. In addition, the
system establishes a secure tunnel between an application of
the client and a storage system of the client. Furthermore, the
system securely downloads a license for the value-added
storage service to the storage system and provides the license
from the storage system to an application via the secure
tunnel.

17 Claims, 25 Drawing Sheets

BACKEND
SERVER(S)
148

TUNNEL 150

=

‘ DISPLAY
! 128

ISV APPLICATION 130

[ANTHMAL KIT 132]
A

[TRUSTED OPS 134]

APPLICATION 144

% [PRVATESDyZgLANEL ISR [FILESYSTEN 124

DRIVER STACK 122

HW SWITCH 14;

TRUSTED API 146
FIW 120 TRUSTED SYSTEM FAW 118

STORAGE
WEMORY 110] | AREA 112 SECURE STORAGE 114
NORMAL STORAGE 116
-~

COMPUTER
102

US 9,270,657 B2

Page 2

(51) Int.Cl 2009/0172379 Al* 7/2009 Rothman GOG6F 9/4401
GOGF 21/12 2013.01 71372

GOGF 21/60 (2013 01) 2009/0178141 A1 7/2009 Panasyuk

(2013.01) 2000/0187763 Al 7/2009 Freericks et al

GOG6F 21/56 (2013.01) 2009/0204964 Al* 82009 TFoley ..ccccooovvrvennnn. GO6F 21/53
GO6F 21/78 (2013.01) 718/1
2009/0222910 Al* 9/2009 Le Bihan GO6F 21/445
. 726/19

(56) References Cited 2009/0235349 Al 92009 Lai et al.
2009/0293118 Al* 11/2000 Yancccoeve.... GO6F 21/12
U.S. PATENT DOCUMENTS 726/19

6021510 A 22000 Nachenberg 2009/0312093 Al 12/2009 Walker et al.

D2, 2010/0011350 A1 1/2010 Zayas

6,289.455 BL* 9/2001 Kocher ..o GOﬁfgé/lzgg 2010/0061552 AL* 3/2010 Becker ovvorvvnn... HO4L 9/0894

380/44

6,357,008 Bl 3;2002 Nl*_mhenbefg 2010/0083381 Al 4/2010 Khosravi et al.

%gg’zgg gi 2/%882 gﬂll_t 2010/0106928 Al 4/2010 Toda et al.

7206899 B2 42007 S"h‘n. 2010/0138924 Al 6/2010 Heim et al.

<0, f C.I.Inésse‘“ 2010/0154061 Al 6/2010 Ollmann

;’gg?’ggé g% 3/3885 g’ﬂzf sky 2010/0154062 Al 6/2010 Baram

281, 2010/0154064 Al 6/2010 Fanget al.

7,636,441 B2* 12/2009 Vembu G063Fg§/12/§(1) 2010/0198788 Al 82010 Sim-Tang

. 2010/0299744 Al 11/2010 Mardiks
7,657,941 BL* 22010 Zaitsev GOOF %;;65/2; 2011/0016214 AL* 1/2011 JackSon GOGF 9/505
. 709/226
7,711,605 Bl1* 5/2010 Santeufemia G06Q 73005/5)2662; 2011/0047618 Al 22011 Evans ef al.
. 2011/0078799 Al 3/2011 Sahita

;;ggg‘l‘ g% gggig]SD.urh%m et al. 2011/0107423 Al 572011 Kolar Sunder et al.

»/ 98, y m- da“gl 2011/0154023 Al 6/2011 Smith et al.

Q?Zi’?é? g% %85 if;meta~ " 20110202751 Al 82011 Kim

2319724 BL 72012 C Ssetl : 2011/0252468 Al 10/2011 Tas et al.

=17) a“és" etla~ 2011/0277013 Al 11/2011 Chinta

e Daw 103 Soedetal ’ 2011/0289306 Al 112011 Khosravi

3"7‘32’855 g% g /383 Ehan d‘;tﬂfa~ ~~~~~~~~~~~~~~~~~~~~~~~~ 726/5 2012/0036287 Al* 22012 Lee wovverrcerrerrrrrrn, GOGF 3/061

2120, 710/22

8,769,228 B2 7/2014 Saxena et al. :

2109, X 2012/0054751 Al* 3/2012 Tikura G06Q 10/06

8,832,813 B1* 9/2014 Cai .covvvovrcerereerean. GO6F %/63/% 718/100

. 2012/0060217 Al 3/2012 Sallam

8,881,282 Bl 11/2014 Azizetal. .

1001, 2012/0117348 Al* 5/2012 Triantafillou GO6F 21/566
2003/0055994 Al* 3/2003 Herrmann HOo4L %/gz/ggg J11/163
20030208670 AL 112003 Dainset ol 20120130041 AT §3013 Savems ... GOGE 2179

. 711/103
2004/0236960 Al 11/2004 Zimmer et al. .
2013/0275479 Al 10/2013 Thadikaran et al.
2004/0255145 AL1™ 12/2004 Chow ..ocoococccce S 1%16‘%2 2013/0276091 Al 1072013 Saxena et al.
. 2013/0276123 Al 10/2013 Thadikaran et al.
2005/0138404 AL* 6/2005 Weik ..cocccoecec. GOGF 1;/1339(1)85 2013/0276146 Al 10/2013 Gilani et al.
2005/0144254 Al 62005 Kameda 2013/0283381 Al 10/2013 Thadikaran et al.
2005/0154890 Al* 7/2005 Vembu 713/171 20130291110 AL 1072013 Thadikaran ot al
0080005256 AL 19006 ComDH s 2014/0096260 Al* 4/2014 Triantafillou GO6F 21/57
2006/0015731 Al 1/2006 Lakshmi Narayanan 726/26
2006/0052921 Al 3/2006 Bodin etal.
2006/0143362 Al 6/2006 Li etal. FOREIGN PATENT DOCUMENTS
2006/0174352 Al 82006 Thibadeau
2006/0184717 Al 8/2006 Rothman et al. KR 1020110084693 A 7/2011
2006/0184806 Al 8/2006 Luttmann et al. ™ 200400468 A 1/2004
2006/0259785 Al* 11/2006 Thibadeau GOGF 21/80 ™ 201025004 A 7/2010
713/193 ™ 386535 M 8/2010
2006/0294589 Al 12/2006 Achanta et al. W 201129042 A 8/2011
2007/0092082 Al 4/2007 Rush WO 2006124239 A2 112006
2007/0180210 Al 8/2007 Thibadeau WO 2012082413 Al 6/2012
2007/0282751 Al* 12/2007 Zhang G06Q 90/00 WO 2013048492 Al 4/2013
205/57 WO 2013095565 Al 6/2013
2008/0016313 Al 1/2008 Murotake et al. WO 2013095566 Al 6/2013
2008/0021839 Al 1/2008 Peinado et al. WO 2013095568 Al 6/2013
2008/0046997 Al 2/2008 Wang WO 2013095571 Al 6/2013
2008/0098212 Al 4/2008 Helms et al. WO 2013095574 Al 6/2013
2008/0104348 Al 5/2008 Kabzinski et al.
2008/0162353 Al 7/2008 Tom et al. OTHER PUBLICATIONS
%882;832232 ﬁ} lggggg ﬁ}lﬁlﬁgi;;} al. PCT/US2011/067032 Notification Concerning Transmittal of Inter-
2008/0267399 Al 10/2008 Medvinsky et al. national Preliminary Report on Patentability, mailed Jul. 3, 2014, 7
2009/0086978 Al 4/2009 McAvoy et al. pages.
2009/0089863 Al* 4/2009 Vanniarajan HO4L 63/0272 Office action and Search Report with summarized English translation
726/5 from Taiwan Patent Application No. 101144701, mailed Oct. 22,
2009/0089879 Al 4/2009 Wang et al. 2014, 7 pages.
2009/0150631 Al 6/2009 Wilsey et al. Office action and Search Report with summarized English translation
2009/0165099 Al* 6/2009 Eldar ... HO4L 41/0869 from Taiwan Patent Application No. 101144701, mailed May 29,
726/5 2015, 8 pages.

US 9,270,657 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Extended European Search Report from European Patent Applica-
tion No. 11877627.7, mailed Jul. 30, 2015, 7 pages.

Office action from U.S. Appl. No. 13/976,255, mailed Sep. 26,2015,
41 pages.

Final Office action from U.S. Appl. No. 13/976,255, mailed Apr. 6,
2015, 41 pages.

Office action from U.S. Appl. No. 13/976,255, mailed Sep. 22,2015,
28 pages.

PCT/US2011/067034 Notification of Transmittal of the International
Search Report and the Written Opinion of the International Searching
Authority, mailed Dec. 26, 2012, 8 pages.

Office action and Search Report with English translation from Tai-
wan Patent Application No. 101143998, mailed Dec. 8, 2014, 12
pages.

Office action with English translation from Taiwan Patent Applica-
tion No. 101143998, mailed Jun. 29, 2015, 6 pages.

Extended European Search Report from European Patent Applica-
tion No. 11877735.8, mailed Jul. 30, 2015, 7 pages.

“Secure Implementations of Content Protection (DRM) Schemes on
Consumer FElectronic Devices Contents”, May 1, 2011,
XP055203999, retrieved from URL: http://www.arm.com/files/pdf/
Secure_ Implementation_of Content_ Protection_ Schemes_on__
Consumer_Electronic_ Devices.pdf, retrieved on Jul. 22, 2015, pp.
6-11.

Office action from U.S. Appl. No. 13/976,378, mailed Mar. 12,2015,
12 pages.

Final Office action from U.S. Appl. No. 13/976,378, mailed Jul. 16,
2015, 18 pages.

PCT/US2011/067016 Notification of Transmittal of International
Search Report and the Written Opinion of the International Searching
Authority, mailed Aug. 30, 2012, 9 pages.

PCT/US2011/067016 Notification Concerning Transmittal of Inter-
national Preliminary Report on Patentability, mailed Jul. 3, 2014, 6
pages.

Office action and Search Report with summarized English translation
from Taiwan Patent Application No. 101146371, mailed Aug. 29,
2014, 12 pages.

Office action with summarized English translation from Taiwan
Patent Application No. 101146371, mailed Mar. 30, 2015, 7 pages.

Extended European Search Report from European Patent Applica-
tion No. 11878131.9, mailed Jun. 23, 201, 8 pages.

Office action from U.S. Appl. No. 13/976,373, mailed Feb. 26, 2015,
9 pages.

PCT/US2011/067015 Notification of Transmittal of the International
Search Report and the Written Opinion of the International Searching
Authority, mailed May 8, 2012, 9 pages.

PCT/US2011/067015 Notification Concerning Transmittal of Inter-
national Preliminary Report on Patentability, mailed Jul. 3, 2014, 6
pages.

Office action and Search Report with English translation from Tai-
wan Patent Application No. 101146619, mailed Mar. 3, 2015, 11
pages.

Notice of Allowance from Taiwan Patent Application No.
101146619, mailed Sep. 4, 2015, 2 pages.

European Search Report from FEuropean Patent Application No.
118778554, mailed Jul. 29, 2015, 6 pages.

Office action from U.S. Appl. No. 13/976,382, mailed Feb. 25, 2015,
9 pages.

Notice of Allowance from U.S. Appl. No. 13/976,382, mailed Jun.
22,2015, 10 pages.

PCT/US2011/067020 Notification of Transmittal of the International
Search Report and the Written Opinion of the International Searching
Authority, mailed May 7, 2012, 9 pages.

PCT/US2011/067020 Notification Concerning Transmittal of Inter-
national Preliminary Report on Patentability, mailed Jul. 3, 2014, 6
pages.

Office action and Search Report with English translation from Tai-
wan Patent Application No. 101144302, mailed Oct. 21, 2014, 7
pages.

Office action and Search Report with English translation from Tai-
wan Patent Application No. 101144302, mailed Apr. 22, 2015, 14
pages.

Extended European Search Report for European Patent Application
No. 11878266.3, mailed Jul. 27, 2015, 9 pages.

Office action from U.S. Appl. No. 13/976,249, mailed Feb. 25, 2015,
13 pages.

Notice of Allowance from U.S. Appl. No. 13/976,249, mailed Jul. 7,
2015, 11 pages.

PCT/US2011/067026 Notification of Transmittal of the International
Search Report and the Written Opinion of the International Searching
Authority, mailed Jul. 31, 2012, 10 pages.

PCT/US2011/067026 Notification Concerning Transmittal of Inter-
national Preliminary Report on Patentability, mailed Jul. 3, 2014, 7
pages.

Office action from U.S. Appl. No. 13/977,666, mailed Dec. 1, 2014,
16 pages.

Final Office action from U.S. Appl. No. 13/977,666, mailed Apr. 24,
2015, 18 pages.

PCT/US2011/054420 International Search Report, dated Mar. 23,
2012, 3 pages.

PCT/US2011/054420 Written Opinion of the International Search-
ing Authority, mailed Mar. 26, 2012, 5 pages.
PCT/US2011/054420 Notification Concerning Transmittal of Inter-
national Preliminary Report on Patentability, mailed Apr. 10,2014, 7
pages.

Messmer, Ellen, Disk-drive encryption gets boost from Opal stan-
dards effort, Jan. 29, 2009, Available at: http://www.networkworld.
com/article/2259215/data-center/disk-drive-encryption-gets-boost-
from-opal-standards-effort. html.

Office action from U.S. Appl. No. 12/971,670, mailed Apr. 17, 2013,
15 pages.

Final Office action from U.S. Appl. No. 12/971,670, mailed Sep. 30,
2013, 14 pages.

Notice of Allowance from U.S. Appl. No. 12/971,670, mailed Feb.
12, 2014, 9 pages.

PCT/US2011/063175 International Search Report, mailed May 4,
2012, 3 pages.

PCT/US2011/063175 Written Opinion of the International Search-
ing Authority, mailed May 4, 2012, 4 pages.

Extended European Search Report from European Patent Applica-
tion No. 11848952.5, mailed Sep. 15, 2014, 3 pages.

“TCG Storage Security Subsystem Class: Opal”, Jan. 27, 2009, pp.
1-81, XP055050453, Retrieved from Internet: URL: http://www.
trustedcomputinggroup.org/files/resource_ files/88023378-1D09-
3519-AD740D9CA8DFA342/Opal_SSC__1.0_rev1.0-Final.pdf.

* cited by examiner

U.S. Patent Feb. 23, 2016 Sheet 1 of 25

BACKEND
SERVER(S)
148

US 9,270,657 B2

Y TUNNEL 150

DISPLAY ISV APPLICATION 130
128
[ANTI-MAL KIT 132 | | TRUSTED OPS 134 |
i ,
|
?03 [PRIVATE SDK @L}Mﬂi _ FILE SYSTEM 124 |
o [APPLICATION 144 | 'DRIVER STACK 122
[HW SWITCH 142 |
STORAGE —— ¥
106 STORAGE TRUSTED APl 146 |
o FIW 120 TRUSTED SYSTEM F/W 118
SOC 108 STORAGE t
NORMAL STORAGE 116
\
FIGURE 1 T~ COMPUTER

102

U.S. Patent Feb. 23,2016 Sheet 2 of 25 US 9,270,657 B2

AUTHED AGENT IN OS 202

TUNNEL USING T

|

MAILBOXING 210
SECURE STORAGE v
SYSTEM 204
ACTION LBA 206 | | RESULT LBA
208
FIGURE 2A
AUTHED AGENT IN 0S 252

TUNNEL USING SECURE

SATA 256

STORAGE
SYSTEM 254

FIGURE 2B

U.S. Patent Feb. 23, 2016

Sheet 3 of 25

US 9,270,657 B2

AUTHED AGENT
IN OS 302
WRITE TOACTION LBATO
INITIATE ACTION 308
h 4
AUTH CMD CODE | CMD SEQ# | OPERATORS | PKT INTEG
306A 3068 306C 306D 306E
ACTION LBA 304
FIGURE 3A
AUTHED AGENT
IN OS 352
READ FROM RESULT LBATO
RETRIEVE RESULTS 358
AUTH CMD CODE | CMD SEQ# | OPERATORS DATA
356A 356B 356C 356D 356E
RESULTS LBA 354

FIGURE 3B

U.S. Patent Feb. 23,2016 Sheet 4 of 25 US 9,270,657 B2

SETUP ACTION
AND RESULTS
400 LBA
402

\ 4

MONITOR
ACTION LBA |«
404

RETRIEVE CMD
FROM ACTION
LBA
408

A 4

PROCESS CMD
410

FIGURE 4

U.S. Patent Feb. 23,2016 Sheet 5 of 25 US 9,270,657 B2

DECODE
COMMAND
500 502
-
RETRIEVE DATA FROM
RITE CMD? YES—» RESULTS LBA AND COPY TO
504 STORAGE LOCATION
510
NO
TRANSFER DATA FROM
READ CMD? YES-» STORAGE LOCATION TO
506 RESULTS LBA
512
CONFIGURE TUNNEL
ACCORDING TO CMD
FIGURE S 514

v
TAKE ALTERNATE
ACTION
516

U.S. Patent Feb. 23,2016 Sheet 6 of 25 US 9,270,657 B2

SET UP TUNNEL W/AGENT
USING SECURE SATA
602

600 RECEIVE MSG

N 604 X

RITE MSG? PROCESS WRITE
606 YES—» 612 -

NO

READ MSG? PROCESS READ
608 YES—» 51

CONFIGURE TUNNEL
ACCORDING TO MSG
616

FIGURE 6

TAKE ALTERNATE
ACTION
618

U.S. Patent Feb. 23,2016 Sheet 7 of 25 US 9,270,657 B2

BACKEND
SERVER(S)
148
A TUNNEL 150A
DispLay || 'SVAPPLICATION 130
128
"] ANTIMAL KIT 132 | [TRUSTED OPS 134 |
A
| ,
" [APPLICATION 144 | | [DRIVER STACK 122]
[AW SWITCH 142 | —
STORAGE S
105 | STORAGE TRUSTED API 146 |
T FIW 120 TRUSTED SYSTEM F/W 118
SOC108 | | STORAGE t ‘
MEMORY 110] | AREA 112 SECURE STORAGE 114 | |
NORMAL STORAGE 116 » |
»
FIGURE 7
100 STORAGE

702

U.S. Patent Feb. 23,2016 Sheet 8 of 25 US 9,270,657 B2

800 COMPUTER BOOTUP
INITIATED
N 802
v
MBR ACCESSED, OS BOOT

STRAPPING STARTED
804

v
BOOT STRAPPING CODE SENDS SIGNAL TO
DRIVE TO LOCK SEPCIFIC SECTORS (E.G. MBR)
806

v
CONTINUE BOOT STRAPPING, LOCKING SECTORS
AS NO LONGER NEEDED TO BE WRITTEN TO
808

v

OS FULLY BOOTED AND KEY OS FILES HAVE BEEN
LOCKED DOWN TO PREVENT FURTHER WRITING
810

v

BLOCK MALWARE ATTEMPTS TO INFECT OS FILES BECAUSE
DRIVE PREVENTION MODIFICAITON OF OS FILES ON STORAGE
812

FIGURE 8

U.S. Patent Feb. 23,2016 Sheet 9 of 25 US 9,270,657 B2

900 RECEIVE COMMAND TO
UPGRADE 0S
\ 902
v
EST SECURE TUNNEL W/

STORAGE SYSTEM
04

v

USE SECURE TUNNEL TO UPGRADE OS
906

v

RESTART DEVICE W/ UPGRADED 0S
908

FIGURE 9

U.S. Patent Feb. 23,2016 Sheet 10 of 25 US 9,270,657 B2

RECEIVE DATA TO STORE IN SECURE STORAGE
1002

y
1000 RECEIVE USER LOCKDOWN CONFIGURATION
1004

v
RECEIVE INDICATION A USER LOCKDOWN HAS BEEN ACTIVATED
1006

A

TRIGGER INTERRUPT ON SYSTEM WHICH THE
SOFTWARE ON THE SYSTEM IS LISTENING FOR
1008

y

SEND MESSAGE TO STORAGE SYSTEM TO PERFORM USER LOCKDOWN
1010

v

INDICATE USER LOCKDOWN COMPLETED
1012

v
EXECUTE APPLICATION IN USER LOCKDOWN ENVIRONMENT
1014

v

RECEIVE INDICATION OF A USER UNLOCK
1016

v

SEND MESSAGE TO STORAGE SYSTEM TO PERFORM USER UNLOCK
1018

v
INDICATE USER LOCKDOWN REMOVED
1020

FIGURE 10

U.S. Patent Feb. 23,2016 Sheet 11 of 25 US 9,270,657 B2

SERVICE
PROVIDER/ISV
1102
1o SECURE PATH
11148
PLATFORM
AGENT (CPU) GPUDISPLAY
1104 1112
0S 1106
 — YN TN
0S VISIBLE STORAGE
(WIASSOC HW, FW)
I
STORAGE 1118
0S INVISIBLE
SECURE STORAGE

FIGURE 11 1110

U.S. Patent Feb. 23,2016 Sheet 12 of 25 US 9,270,657 B2

EST SECURE ROOT
OF TRUST
1200 1202

|

EST SECURE
TUNNEL
1204

|

SECURE EXECUTION
1206

FIGURE 12

U.S. Patent Feb. 23, 2016

%PROVISlON ISV PUBLIC KEY INTO SECURE STORE|
ﬁ 1302 ‘

|
Y
RECEIVE REQUEST FOR PREMIUM CONTENT
1304

v

Sheet 13 of 25

US 9,270,657 B2

1300

/

Vi

x

ALLOW DISCOVERY OF DRM STORAGE PROTECTION
1306

[

NO—»

|
|

| PREMIUM CONTENT
NOT ALLOWED

1320

YES
Y

AUTHENTICATE USING PUBLIC KEY
1310

Y

NEGOTIATE CONTENT SPECIFIC KEY
1312

Y

STORE CONTENT SPECIFIC KEY IN SECURE STORE
1314

|

i

Y

‘ RECEIVE ENCRYPTED CONTENT
1316

'

: STORE ENCRYPTED CONTENT AND METADATA IN SECURE STORE

1318

1
o v o
I RECEIVE REQUEST FOR ENCRYPTED CONTENT | DISPLAY/AUDIO DECRYPTS USING
| FROM AGENT PATH PROTECTION KEY
1320 1324

PROTECTION PUBLIC KEY

|
}[
| 1322

v
DECRYPT ENCRYPTED CONENT AND RE-ENCRYPT AS PER ROQT
OF TRUST PROTOCOL EST WITH DISPLAY/AUDIO USING PATH

FIGURE 13

U.S. Patent Feb. 23,2016 Sheet 14 of 25 US 9,270,657 B2

SECURE STORE
ISV (USING AGENT) PROVISIONS ISV 1422 pgenT
PUBLIC KEY INTO THE SECURE STORAGE 1420 1400
1418 /
»
CLIENT REQUESTS AGENT IN
PREMIUM STORAGE FW
CONTENT SERVICE SENDS MSG W/
FROM ISV FOR | DRIVE
MACHINE W/ | CAPABILITIES
SECURE STORAGE ; 1412
1408 ;
ISV INSTALLS

AGENT AND ISV

COMMUNICATES

WITH AGENT TO

i DETERMINE
CAPABILITIES/SIGN
_, ISVISERVER | | MSG W/ PRIVATE
1404 KEY
1410
[y

PROVISIONING SERVER
1406

ISV DETERMINES THAT STORAGE IS DRM
PROTECTED STORAGE & REQUESTS L. ——
PROVISIONING KEYS BY SIGNING MSG
1414

PROVISIOING SERVER AUTHENTICATES
AND SIGNS USING PRIVATE KEY
1416

FIGURE 14

U.S. Patent Feb. 23,2016 Sheet 15 of 25 US 9,270,657 B2

SECURE STORE
1510 AGENT

1500

A J

ISV/SERVER
1504 |

PROVISIONING SERVER
1506

FIGURE 15

U.S. Patent Feb. 23,2016 Sheet 16 of 25 US 9,270,657 B2

APPLICATION FOR LICENSE
1610A
ISV CLIENT 16108 ; ’
APPLICATION
ISV PROXY 1610C L | || LICENSE
REQUEST
HEC 1610D / 1600
CLIENT 1608 /
0S 1612 /]
i
APPLICATION APPLET 1616A
JVM CORE 15168 * APPLICATION
'« LICENSE
JYM ISV PLUGIN 1616C \ ¢ RESPONSE
ISV CORE ~" 1604
1616D
COMPUTER | MANAGEABILITY ENGINE 1614
1606

FIGURE 16

U.S. Patent Feb. 23, 2016 Sheet 17 of 25

PROVISION ISV PUBLIC KEY INTO SECURE STORE
1702

Y

RECEIVE REQUEST FOR STORAGE FEATURE LICENSE
FROM AN APPLICATION
1704

SYSTEM

US 9,270,657 B2

1700

FOR ENABLING

SOTRAGE FEATUREEV—NO—»
SUPPORTED?

STORAGE FEATURES

NOT ENABLED
1718

N

N

YES
I

‘ AUTHENTICATE USING PUBLIC KEY
1708

Y

FORWARD THE REQUEST TO STORAGE AUTH SERVER
1710

Y

RECEIVE LICENSE FROM STORAGE AUTH SERVER
1712

Y

STORE LICENSE IN SECURE STORE
1714

Y

PROVIDE LICENSE TO REQUSESTING APPLICATION
1716

FIGURE 17

US 9,270,657 B2

Sheet 18 of 25

Feb. 23, 2016

U.S. Patent

A

98k 1], /8l
1NN LINN JHOVQ Yivad | 081 LINN
JHOVD zi8l AJOWAN
Al LINN 971 Y1v¥a
e *
098} {S)43LSNTI NOILND3X3
981
(SILINN awmm_w_,ﬂa
85300V
RUOWIN NOILNDIX3
r A

8581 (S)LINN $3T14 ¥ALSIOFY TWOISAHd

e _C———A__ |

q
;!

ye8l

LINM INJN3AIL3Y]

ll.,l.H. IIIII \ o=
fm—— e e e
| 2981 LINN L 0981 LINN

A E

2081
HO134

— — HOIYOQTIY/INWNIY_ _ | INIONI NOILNO3X3
088}
0¥81 LINN 300030 LINT QNG LNOM4
y
[8c8) HOL3d NOILONMISNI | /
i 0681 JHOD
968} LINN &1L NOLLONYLSNI 2681 LINN
7680 LINN 3HOVD NOILONULSNI NOILOIA3Hd HONYXE
T T T T T T
| 028 || UM 9181 VI ANONIN 2181 oig | sogs | soar fo P
| LINNOD ey ms| AOWAM | 39¥1S3U003X | /va¥ | 3N3HOS NINYNZY 00T |30003q| > 23
T s [T ETTNY wasosy | || AR
V8l '9ld 008} INTdId

US 9,270,657 B2

Sheet 19 of 25

Feb. 23, 2016

U.S. Patent

V9061
JHOVD viva |1

2061
ANHOMLIN ONIY

¥061
JHOVYO
¢13HL 40 1389NS 1vo01

A

A

9061
3HOVO 11

v16l cl6l
SH3LSIOTY SHALSIOTY

HOLO3A HY1V3S
A

R e I

d¢c61 Vel
1H3IANOD 1H3ANOD
J™H3INNN O-Y3IANN
A
vi6l
SY31SI193d
HJOLI3A
P A
/ i i
0261 12412
J1ZZIMS 31VOId3y
' Y V¥ /
8261

NV JOLO03A 3AIM-91

A

o161 8061
1INN 1INN
HJOLO3IA YvYIvosS

9¢61
SHILSIOTAY HSYIN FLIMM

A
y

461 'Old

0061
3d0030 NOILONYLSNI

V6l "Old

US 9,270,657 B2

Sheet 20 of 25

Feb. 23, 2016

U.S. Patent

910Z (S)LINN
HITIOHLINOD
snd

| #10Z (S)LINN

| Y3ITIOMINOD
Eo\,_ms_
_

QaLVHOINI

010¢ LINN
INIOY W3LSAS

i

07 Ol4
—_— s T T T AT T T T
ANAE } _
9002 (S)LINN IHOVD AIYVHS “
il |
| NPO0Z | V1002
| (SILIND | lemal [GUNN| | goozo007 |
L JHVO _ FHIVO 350d¥Nd “
NZ00Z 340D | W00z 0D | WIDIdS
/OSN ¥0SS300¥d

U.S. Patent Feb. 23,2016 Sheet 21 of 25 US 9,270,657 B2

—— 11—
|
[— I-:'— PROCESSOR [— T
| — 2195 |
| 215 /—/ | _— 2140
| o CONTROLLER
CO- LB 1 EmoRy
| PROCESSOR | GMCH 2190 I_
l |
2160 —_ I___ J'__/:I
/o . I0H 2150 |
|
| |

FIG. 21

US 9,270,657 B2

Sheet 22 of 25

Feb. 23, 2016

U.S. Patent

V1va 229l
8¢C —t— 0£2C
Y 3009 | s3oma | 3snow
JOVHOIS VIVa Lece WINOD ¢cee /YO8N
0222
6122 vz b2z 9122
¥0$$300d o/l olany S30IA3A O 300148 SN9
aizz— — — ||_
96zz — N | 262z — | eezz
o677 — dd 0622 135dIHD / dd L ezz _%mmmoo%oo_
62z — _— —
Y522 2522
082¢ dd dd n_.n_ d-d o Ve
9872 — 0822 A \ \ oze
0522
4144 clee —7
M M
VEZ A4
AMOWAW AMOWIW
¥0SSIV0Ud0D
H0SSIN0Yd ¥0SS3004d

\ oz

US 9,270,657 B2

Sheet 23 of 25

Feb. 23, 2016

U.S. Patent

4444
AHOW3N

[AYA4
AHOW3IN

£Z'9ld
Glez
Ol ADYOT
0622 9627 —1
diHO
g6gg — dd 138 ypgz —1 dd
SNNI\» « N@NT\» «
-
owNN n_un_ &-n_ n_-n_ n_-n_ 0 NNN
%NNL%NNL \ \ o7z U@
05z7
— 8% cee—z
B 10
¥0SS300Nd H0SSIO0Nd
—
7162 |

_ S30IA3Q O/l

— — —

/ 00€C

US 9,270,657 B2

Sheet 24 of 25

Feb. 23, 2016

U.S. Patent

7102 (S)LINN
0rie 08hZ Y TIONLNOD
LNN AYTdsia | | SEPELNAYAT Y e s AHONIW
Q3LYHO3INI
910Z (S)ILINN
mmjwowmzoo 2072 (SILINN L 3NNOJIaIN
— IIIIIIIIIIIII -
o "
_ 9002 (S)LINN FHOYD GIMVHS
[|F===—r———
— — — 1
1 nvooz | | V00¢
_ | (S)LNN | _ cea | |(SILNN
0402 LINN R 3HOVO
IN3OV W3LSAS _ mwﬁwmmmolo N Y00¢ 3402

01¥¢ Y0SSIO0Ud NOILYIINddY

0272 (S)40SSID0Hd0D

/ 0042

dIHO V NO W3LSAS

¥¢ 9Old

US 9,270,657 B2

Sheet 25 of 25

Feb. 23, 2016

U.S. Patent

¥09¢ 4371dNOD 98X

90G¢ 3000 AYVNIG 98X

¢09¢ 3OVNONVT 13A3THOH

806¢ ¥ T1dINOD
L3S NOILONYLSNI
JALLYNYILTY

2152 ¥3L4AANOD
NOILONYLSNI '
¢'oi 0152 300D A¥YNIE
13S NOILONYLSNI
YLAOS JAILYNYALTY
TUYMANYH
\ A
o 7162 3400 L3S NOILONYLSNI
3409 L3S NOLLONHLSNI
98 INO LSV 98X NV LNOHLIM ¥0SSI00¥d
1V HLIM 40SS3004d

US 9,270,657 B2

1
ACTIVATION AND MONETIZATION OF
FEATURES BUILT INTO STORAGE
SUBSYSTEMS USING A TRUSTED CONNECT
SERVICE BACK END INFRASTRUCTURE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This patent application is a U.S. National Phase Applica-
tion under 35 U.S.C. §371 of International Application No.
PCT/US2011/067032, filed Dec. 22,2011, entitled ACTIVA-
TION AND MONETIZATION OF FEATURES BUILT
INTO STORAGE SUBSYSTEMS USING A TRUSTED
CONNECT SERVICE BACK END INFRASTRUCTURE.

FIELD OF INVENTION

The field of invention relates generally to storage devices,
and, more specifically, to structure and uses of secure storage.

BACKGROUND

Today, host side applications (e.g. antivirus software) use
an operating system application programming interface
(AP]) to read in data (e.g. malware definition data) from
storage to detect malware. Additionally, other storage specific
commands can be used to read, write, and otherwise manage
stored data. For example, vendor specific commands,
SMART Command Transport (SCT), negative logical block
addresses (LBA), etc., can be used to process stored data.
However these methods can be easily subverted by malware
to give wrong information to the caller. In addition, there is no
provision for configuring the methods to provide application
specific protection. Furthermore, data that is stored in can
easily be attacked by malware, or that stored content that is
protected by digital rights management (DRM) may be cop-
ied or altered. In addition, storage coupled to a computer may
offer additional services that are not easily activated in the
field.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example and
not limitation in the figures of the accompanying drawings, in
which like references indicate similar elements and in which:

FIG. 1 illustrates an example of a system that includes
secure storage.

FIG. 2AB illustrate examples of an agent that communi-
cates information to a secure storage system using a tunnel.

FIG. 3AB illustrate example of an agent communicating
information to a secure storage system using mailboxing.

FIG. 4 illustrates an embodiment of a method for commu-
nicating information with an agent using mailboxing.

FIG. 5 illustrates an embodiment of a method for process-
ing mailboxing communication commands.

FIG. 6 illustrates an embodiment of a method for process-
ing tunnel messages that are transmitted using secure Serial
Advanced Technology Attachment (SATA).

FIG. 7 illustrates an example of a system that includes
lockable storage.

FIG. 8 illustrates an embodiment of a method for selec-
tively locking operating system assets stored in lockable stor-
age.

FIG. 9 illustrates an embodiment of a method for upgrad-
ing an operating system that has operating system data stored
in locked storage.

20

25

30

35

40

45

50

55

60

65

2

FIG. 10 illustrates an embodiment of a method for locking
user storage.

FIG. 11 illustrates an example of a system to secure digital
rights managed content.

FIG. 12 illustrates an embodiment of a method for securely
storing digital rights managed content.

FIG. 13 illustrates an embodiment of a method for request-
ing, storing, and providing digital rights managed content.

FIG. 14 illustrates an example of a system that includes a
client that requests and is granted a root of trust.

FIG. 15 illustrates an example of a system that includes a
client that requests and is granted activation of value-added
storage features.

FIG. 16 illustrates an example of an application that
requests a license for a value-added storage feature via a
manageability engine.

FIG. 17 illustrates an embodiment of a method for request-
ing a license for a value-added storage feature.

FIG. 18A is a block diagram illustrating an exemplary
in-order pipeline and an exemplary register renaming, out-of-
order issue/execution pipeline according to embodiments of
the invention.

FIG. 18B is a block diagram illustrating an exemplary
embodiment of an in-order architecture core and an exem-
plary register renaming, out-of-order issue/execution archi-
tecture core to be included in a processor according to
embodiments of the invention.

FIGS. 19A and 19B are block diagrams illustrating an
exemplary in-order core architectures according to embodi-
ments of the invention.

FIG. 20 is a block diagram illustrating a processor that may
have more than one core according to embodiments of the
invention.

FIG. 21 is a block diagram of a system in accordance with
one embodiment of the invention.

FIG. 22 is a block diagram of a second system in accor-
dance with an embodiment of the invention.

FIG. 23 is a block diagram of a third system in accordance
with an embodiment of the invention.

FIG. 24 is a block diagram of a SoC in accordance with an
embodiment of the invention.

FIG. 25 is a block diagram contrasting the use of a software
instruction converter to convert binary instructions in a source
instruction set to binary instructions in a target instruction set
according to embodiments of the invention.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth. However, it is understood that embodiments of the
invention may be practiced without these specific details. In
other instances, well-known circuits, structures and tech-
niques have not been shown in detail in order not to obscure
the understanding of this description.

References in the specification to “one embodiment,” “an
embodiment,” “an example embodiment,” etc., indicate that
the embodiment described may include a particular feature,
structure, or characteristic, but every embodiment may not
necessarily include the particular feature, structure, or char-
acteristic. Moreover, such phrases are not necessarily refer-
ring to the same embodiment. Further, when a particular
feature, structure, or characteristic is described in connection
with an embodiment, it is submitted that it is within the
knowledge of one skilled in the art to affect such feature,
structure, or characteristic in connection with other embodi-
ments whether or not explicitly described.

US 9,270,657 B2

3

Storage Tunnels

As described above, malware can attack stored data and
can subvert operating system calls to a storage system.
Described below is a system that creates a secure tunnel
between an application and a secure storage system that hides
the data storage by encrypting the data communicated to the
secure storage system and storing data beyond the accessibil-
ity of an operating system. FIG. 1 illustrates an example of a
system 102 that includes secure storage 114. In FIG. 1, com-
puter system 102 includes storage system 106, operating
system 104, independent software application 130, display
128, and hardware switch 142. In one embodiment, the com-
puter 102 is coupled to backend servers 148, where the back-
end servers 148 are used to authorize storage features or to
download premium content (e.g., content managed by a digi-
tal rights management scheme). In one embodiment, the
operating system 104 is used to control the execution of one
or more processes and/or applications for the computer 102.
Examples of an operating system 102 is known in the art
(Microsoft Windows, Apple Macintosh OS X, etc.) In one
embodiment, the operating system 104 includes a private
software developer’s kit (SDK) 126, filesystem 124, driver
stack 122, and application 144. In one embodiment, the file-
system 124 is a filesystem that is known in the art that is used
to manage files that are stored in storage 106. For example and
in one embodiment, a filesystem 124 is a way to organize data
in storage 106 using driver stack 122. In one embodiment, the
driver stack 122 is a set of driver(s) that is used to operate with
storage 106. The driver stack 122 may include multiple soft-
ware layers in the form of drivers that take on different func-
tional roles and act as an overall interface between an appli-
cation/process and one or more storage devices.

Application 144 is an application that runs in the operating
system 104. One example of an application can be e-mail
client, word processor, image management, media manage-
ment, anti-virus, operating system functions, etc., or any
other type of application as known in the art. As is known in
the art, each application may interact with the storage system
106 using the filesystem 124, and driver stack 122.

In one embodiment, the storage 106 includes storage firm-
ware 120, system-on-a-chip (SOC) 108, memory 110, and
storage area 112. In one embodiment, the storage can be any
type of storage known in the art (solid state drive (SSD), hard
disk (HD), flash drive (FD), etc.). In one embodiment, the
system-on-a-chip 108 is a chip that includes a processor and
other circuits that are used to support the storage 106. An
example of a SOC 108 is further described below in FIG. 21
below. In one embodiment, memory 110 is memory used to
temporarily store data. The storage firmware 120 is firmware
that is used to operate and manage the different functions of
the storage 106.

In one embodiment, the storage includes a trusted applica-
tion programming interface (API) 146 and a trusted system
firmware 118. In one embodiment, the trusted AP1 146 is used
by processes executing in the operating system or ISV appli-
cation 130 to access the secure storage of 114 of storage area
112. In one embodiment, the secure storage 114 is not visible
to the operating system through the filesystem 124 and driver
stack 122. Instead the secure storage 114 is accessed using the
trusted API 146. Trusted system firmware 118 is firmware
that is used to manage the secure storage 114. In this embodi-
ment, the trusted AP1146 is used by local or remote entities to
create a tunnel between that entity and the secure storage. A
tunnel is used to securely transmit information between an
entity and the secure storage. For example one embodiment,
the ISV application creates a tunnel 150B via trusted AP 146
and trusted system firmware 118 to secure storage 114.

20

25

30

35

40

45

50

55

60

65

4

In one embodiment, the secure storage 114 is used to store
important data (e.g. anti-virus definition files, digital rights
managed content, financial data, operating system compo-
nents etc.), enabling storage features, or securely download-
ing data outside of the operating system, or any other types of
secure storage. In one embodiment, the secure storage 114
stores data that is invisible to the operating system. For
example and in one embodiment, the secure storage 114 is at
storage addresses that are beyond the maximum addressable
storage available to the operating system and/or applications
that are accessing the storage 106 via the filesystem 124 and
driver stack 122. While in one embodiment, the secure stor-
age 114 is physically separate from the normal storage 116, in
an alternate embodiment, the secure storage 114 is a partition
of the normal storage 116.

In one embodiment, the storage area 112 includes secure
storage 114 and normal storage 116. In one embodiment, the
normal storage 116 is the storage that is accessed by the
operating system 104 and has the filesystem 124 defined on
top of this normal storage 116. In this embodiment, the oper-
ating system 104 accesses files and/or other data in the normal
storage 116 through the driver stack 122. For example and in
one embodiment, application 144 (or other applications that
are operating system) can access files in the normal storage
116 via the filesystem 124 and driver stack 122.

As described above, the data in the secure storage 114 is not
visible to an application except through the trusted API 146.
In one embodiment, the ISV application 130 accesses the
secure storage 114 using the tunnel 150B (via the anti-mal-
ware kit 132, private SDK 126, trusted API 146, and trusted
system firmware 118). For example and in one embodiment,
the ISV application 130 is an agent that can securely down-
load a premium content that is managed by digital rights
management using the anti-malware kit 132 and trusted ops
134. In one embodiment, the trusted ops 134 are trusted
operations with secure storage 114, such as a trusted read
and/or trusted write. In this embodiment, a trusted read/write
means that the identity of the entity requesting the operation
is known and trusted. In another embodiment, application 130
is an agent that is authorized to securely communicate data
with the secure storage 114 using a tunnel as described below.

As described above, the data stored in the secure storage
114 is invisible to the operating system 104 or an application
executing in the operating system 104. Thus, neither the oper-
ating system 104 nor the application 144 can view, alter, or
delete the data stored in secure storage 114. In one embodi-
ment, this scheme is used to secure data from potential mal-
ware that may want to change, alter, or delete the data stored
in secure storage 114.

For example and in one embodiment, data such as the
master boot record of the operating system 104 or other
important operating system 104 components can be stored in
the secure storage 114 and locked such that a potential mal-
ware work cannot read, alter, or delete these important oper-
ating system components. In another embodiment, important
user data such as anti-virus definition data, financial data, etc.
can be stored in the secure storage 114, thus preventing mali-
cious processes (e.g., malware, virus, etc.) from accessing,
altering, or deleting the important user data. In one embodi-
ment, the user data is data that is not part of the operating
system.

As described above, a tunnel can be formed between an
application (e.g., ISV application 130) and the secure storage
114 through private SDK 126, trusted API 146, and trusted
system firmware 118. As will be described later, this tunnel
can be formed in two ways: (1) through a mailboxing scheme
in which logical block addresses are set aside for communi-

US 9,270,657 B2

5

cation between the application and the storage system, or (2)
the tunnel can be formed based on a trusted sends and receives
that are supported by the storage system. While in one
embodiment, a tunnel 150A is formed between the secure
storage 114 and an application running on the same computer
that includes the secure storage 114, in another embodiment
atunnel 150B can be formed between the storage system with
a backend server 148 that is coupled to the computer 102
across a network. In this embodiment, trusted system firm-
ware 118 (via trusted API 146) creates its own network con-
nection that is used to communicate information with the
backend server 148. For example and in one embodiment,
trusted storage firmware 118 can be used to create a tunnel
such that the backend server(s) 148 can download DRM
content to the secure storage 114 of storage 106. This is
described further in FIGS. 7-10 below.

As described above, FIGS. 2A and 2B illustrate examples
of'an agent that communicates information to a secure storage
system using a tunnel. In FIG. 2A, an authorized agent (that is
executing the operating system) 202 securely communicates
with secure storage system 204 using a mailboxing-based
tunnel. In one embodiment, the secure storage system 204 is
a secure storage as described in FIG. 1, block 114 above. In
one embodiment, the agent 202 is authorized to communicate
with secure storage 204. In one embodiment, the tunnel is
based on a mailbox in scheme, in which requested actions of
the secure storage system 204 are written to a dedicated area
in the secure storage system 204, action logical block address
(LBA) 206. The results of the requested actions are commu-
nicated using the results LBA 208, which is a dedicated area
of secure storage system 204. In one embodiment these logi-
cal block addresses are beyond the maximum addressable
storage. A storage address that is below a maximum storage
address can be seen by operating system such as operating
system 104 as described in FIG. 1. Because both of the LBAs
206 and 208 are above the maximum address space that is
accessible by an operating system, these LBAs (and the data
stored at the LBAs) are invisible to the operating system.

In this embodiment, the agent 202 can access the data or
write to the data from these LBAs by using the tunnel 210. As
will be described further below, the action LBA 206 is used to
communicate action requests to the storage system 204. In
one embodiment, these action requests can include write,
read, and/or tunnel configuration commands or other com-
mands as known in the art for accessing or managing data in
a storage system. The results of these commands are stored in
the results LBA 208.

For example and in one embodiment, the agent 202 wishes
to write data to the secure storage system 204. In this embodi-
ment, the agent 202 writes a write command to the action
LBA 206 and the data the agent wishes to store is written into
the results LBA 208. The secure storage system 204 processes
the command stored in the action LBA 206 and stores the data
in into the location indicated in the action LBA 206 by redi-
recting the data being written to results LBA 208. In another
embodiment, the agent 202 wishes to read data from secure
storage system 204. In this embodiment, the agent 202 writes
the read command into action LBA 206. The secure storage
system 204 processes the read command and redirects the
data to be read as if coming from the result LBA 208. The
agent 202 reads the data from result LBA 208 to complete the
read command. In one embodiment, the mailboxing based
tunnel 210 can be built upon many different storage protocols
(e.g., trusted send/receive, overloaded write/read, Common
Storage Management Interface (CSMI), etc.). The agent com-
municating with the secure storage system using a mailbox-
ing tunnel is further described FIGS. 3A-6 below.

20

25

30

35

40

45

50

55

60

65

6

As described above, the secure storage systems can use a
tunnel based on a trusted send messaging system with the
agent. In FIG. 2B, an agent authorized in an OS 252 securely
communicate with a secure storage system 254 using a tunnel
256 based on a trusted send facility. In one embodiment, the
tunnel 256 can be based on the trusted send facility of secure
SATA. In this embodiment, the agent in the secure storage
system 254 would negotiate a session key with the secure
storage system 254 that can be used for transmitting the
messages back and forth. In one embodiment, the negotiated
session key is used to encrypt/decrypt the data stored in each
message transmitted using the tunnel 256. An agent 252 com-
municating information with the secure storage system 254
using a trusted send type tunnel 256 is further described in
FIG. 7 below.

FIGS. 3A and 3B illustrate example of an agent commu-
nicating information to a secure storage system using mail-
boxing. In FIG. 3A, an agent authorized in the OS 302 writes
a command to action LBA 304 to initiate an action 308 with
the secure storage. In one embodiment, the action written to
action LBA 308 contains several fields: authorization mes-
sage field 306A, command code 306B, command sequence
number 306C, operators 306D, and package integrity 306E.
In one embodiment, the authorization message field 306 A
includes data that is used to identify and authorize the action
requested by the agent 302. For example and in one embodi-
ment, the authorization message field 306 A includes a private
key that is specific for the data communicated between the
agent 302 and the secure storage.

In one embodiment, the command code 3068 is a code that
indicates what type of command is being written to the action
LBA 304. For example and in one embodiment, the command
code can be a code that write, read, configure, and/or some
other command code use to indicate another type of action
that it would be used between an agent and a storage system
for accessing or managing the data stored in the storage
system. In one embodiment, the command sequence number
306C is a number that can be used to identify a specific
command message. In one embodiment, the operators 306D
are flags or bits that signal the firmware to take some kind of
specific action associated with a given command type. In one
embodiment, packet integrity 306E is data that is used to
ensure the integrity of the data written to action 308A. For
example and in one embodiment, the data in packet integrity
306E can be a checksum or some other form of data that
ensures that the data was correctly written to action LBA 304.

In FIG. 3B, the agent authorized in the OS 352 reads the
data from results LBA 354 to retrieve the results 358 from an
action written to an action LBA. In one embodiment, the
results LBA 354 has fields authorization message 356 A, com-
mand 3568, command sequence 356C, operators 356D, and
data 356E. In one embodiment, authentication message
356A, command code 356B, command sequence 356C, and
operators 356D perform the same function as described above
in FIG. 3A. Furthermore, in one embodiment, data 356E is
used to communicate data that results from the action that was
originally written to the action LBA. In another embodiment,
the data from the results is retrieved differently (e.g., directly
through the secure tunnel, etc.). For example and in one
embodiment, data 356E includes the data that is retrieved
from a read. In other embodiments, data 356E can include
other data such as a return code, error code or other type of
data that would be communicated as a result of command
written to the action LBA.

FIG. 4 illustrates an embodiment of a method 400 for
communicating information with an agent using mailboxing.
In one embodiment, method 400 is executed by a secure

US 9,270,657 B2

7

storage system (e.g., secure storage 114 as described above in
FIG. 1) to process commands written to an action LBA. In
FIG. 4, method 400 begins by setting up the action and results
LBA at block 402. In one embodiment, method 400 config-
ures the action and result LBA for communication with an
agent that is authorized to communicate with the secure stor-
age. For example and in one embodiment, the method 400
configures an action LBA and result LBA that are beyond the
maximum read of maximum addresses that an operating sys-
tem can access. By having the action and results LBAs invis-
ible to the system, any agent that wishes to communicate
information via the action results LBA is required to go
through an alternate channel of communication such as a
tunnel to use the action and result LBAs. In one embodiment,
method 400 uses a different pair of the action and results LBA
for a different agent that wishes to communicate with the
secure storage. In another embodiment, method 400 sets up
an action and result LBA that can be used more than one
agent.

At block 404, method 400 monitors the action LBA to
determine if an action has been written to the action LBA in
order to initiate an action with the secure storage system. In
one embodiment, an agent writes an action (e.g. to the action
LBA 304 as in FIG. 3A above) to do a read, write, or other
type of action with the secure storage system. In one embodi-
ment, method 400 monitors the action LBA by scanning and
analyzing incoming commands for specific bit patterns. At
block 406, method 400 determines if data is written to the
action LBA. If data has been written to the action LBA, at
block 408, method 400 retrieves the command that was writ-
ten to the action LBA. In one embodiment, the data written to
the action LBA has a data structure such as fields 306A-E as
described above in FIG. 3A. Method 400 processes the
retrieved command at block 410. Processing the retrieved
command written to the action LBA is further described in
FIG. 5 below. Execution proceeds to block 404 above. If no
data has been written to the action LBA at block 406, execu-
tion proceeds to block 404 above.

FIG. 5 illustrates an embodiment of a method 500 for
processing mailboxing communication commands. In one
embodiment, method 500 is executed by method 400 at block
410 above. In FIG. 5, method 500 begins by decoding the
command at block 502. In one embodiment, method 500
decodes the command by retrieving the authorization mes-
sage from the command. In one embodiment, method 500
determines if the command is authorized by analyzing the
authorization message. In one embodiment, if the authenti-
cation fails, the message is ignored, and if the authentication
is found to be valid, the message is acted upon. For example
and in one embodiment, method 500 retrieves the authenti-
cation message from command and validates the message as
being a valid message received from the authorized agent. In
one embodiment, each agent that communicates with secure
storage system has a unique set of authentication credentials
that is used to identify the agent and to encrypt/decrypt the
contents of a command and results. Furthermore, method 500
uses the authentication message to decrypt the data in the
command. If the command is authorized, method 500 seg-
ments the command into separate fields as described in FIG.
3A above.

At block 504, method 500 determines if the command is a
write command. In one embodiment, method 500 determines
the type of command by reviewing the data in the command
code field (e.g., command code field 306C as described in
FIG. 3A above). If the command is a write command, at block
510, method 500 directs the data that is to be written in the
results LBA to the storage location indicated in the command.

5

20

25

30

40

45

50

55

60

8

For example and in one embodiment, the agent wishes to
write data to sector 2000 of the secure storage system. In this
example, the agent writes a command to the action LBA that
data is to be stored at sector 2000. Furthermore, method 500
decodes the command as a write command to determine that
the data to be written to the results LBA is to be written to
sector 2000. Method 500 detects this write to the results LBA
and redirects this data being written to the results LBA to
sector 2000 of the secure storage system.

If the command is not a write command, at block 506,
method 500 determines if the command is read command. In
one embodiment, method 500 determines if the command is
a read command by interrogating the command code of the
command. If so, method 500 redirects the read from the
results LBA to the storage location at block 512. For example
and in one embodiment, if the read command is to read data
from sector 1000 of the secure storage system, method 500
decodes the command to determine that the read is from
sector 1000 and also amount of data that is to be read. Method
500 redirects the incoming read of the results LBA to read the
correct amount of data from sector 1000 to the results LBA. In
this example, the agent that initiated the read command reads
the data from the results LBA and method 500 redirects this
read from the desired sector.

If the command is not a read command, at block 508,
method 500 determines if the command is a configure com-
mand. If this command is a configure command, method 500
configures the tunnel according to the data in the command. If
the command is not a configure tunnel command, at block
516, method 500 takes alternative action. In one embodiment,
the method 500 could ignore the command, store an error
code in the results LBA indicating the command is not under-
stood, or take another action as known in the art.

As stated above, there are two different ways that the agent
and a secure storage system could use a tunnel to communi-
cate information between the agent and the secure storage
system. One way, as described above, is based on mailboxing
scheme that uses an action and results LBA to securely com-
municate information between the agent and the secure stor-
age system. This type of scheme can be used by many difter-
ent storage communication protocols as known in the art
(SATA, ATA, e-SATA, Universal Serial Bus (USB), Thunder-
bolt, PCI, etc.). Another way is to set up a tunnel between an
agent in the secure storage using trusted send and receive
facility (“trusted send facility”) of the storage communication
protocol. In one embodiment, the agent and the secure storage
system use the trusted send facility of the secure SATA pro-
tocol to negotiate a session key between the agent and the
secure storage system.

FIG. 6 illustrates an embodiment of a method for process-
ing tunnel messages that are transmitted using secure Serial
Advanced Technology Attachment (SATA). In one embodi-
ment, method 600 is executed by the secure storage system
(e.g., secure storage 114 of FIG. 1, above) to securely com-
municate information with an agent. In FIG. 6, method 600
begins by setting up a tunnel with agent using the secure
SATA trusted send facility at block 602. In one embodiment,
the agent would negotiate a session key with method 600 that
is unique to that agent and method 600, such that data can be
securely communicated between the agent and method 600 is
using the session key. In one embodiment, the session key is
used to identify the agent to method 600 and to encrypt/
decrypt the data communicated using the tunnel. While in one
embodiment, method 600 uses the trusted send facility of the
secure SATA, in alternate embodiments, another storage pro-
tocol that offers a trusted send facility can be used to set up a
tunnel between the agent and the secure storage system.

US 9,270,657 B2

9

At block 604, method 600 receives a message from the
agent. In one embodiment, the message includes the authen-
tication data that identifies the message as originating from
the agent and includes on authentication credentials such as
the session key that can be used to decrypt the data in the
message. For example and in one embodiment, the message
can include the authentication data such as negotiated session
and the data that is encrypted using that key. Furthermore, at
block 604, methods 600 decrypts the data contained in the
message so that method 600 can further process the received
message.

Atblock 606, method 600 determines if the received mes-
sage is a write message. I[f so, method 600 processes the write
message at block 612. In one embodiment, method 600 pro-
cesses the write message by determining which data is to be
written and where the data is to be written to and writing that
data using the location and data to be written from the mes-
sage. For example and in one embodiment, if the write mes-
sage indicates that the 100 bytes of data is to be written to
sector 2000 of the secure storage system, method 600
retrieves the 100 bytes of data from the message payload and
stores that 100 bytes of data to sector 2000 of the secure
storage system. In addition and in one embodiment, method
600 sends a message back to the agent via the tunnel indicat-
ing the results of the write (e.g., success, failure, etc.).

If the received message is not a write message, at block
608, method 600 determines if the received message is a read
message. If the received message is read message, at block
614, method 600 processes the read message. In one embodi-
ment, method 600 retrieves the location of the read and that
the amount of data to be read from that location. For example
and in one embodiment, methods 600 receives aread message
that indicates that the 200 bytes of data should be read from
sector 1000 of the secure storage system. In this embodiment,
method 600 would read 200 bytes of data from sector 1000.
Furthermore, method 600 sends a message back to the agent
with the 200 bytes of data that was read from sector 1000. In
this embodiment, method 600 encrypts the data using the
negotiated session key and stores this encrypted data in the
message to be sent back to the agent. In addition, method 600
sends that data back to the agent using the formed message.

If the message received at block 604 was not a read mes-
sage, at block 610, method 600 determines if that received
message is a configure tunnel message. If the received mes-
sage is a configure tunnel message, at block 616, method 600
configures the tunnel according to configuration parameters
in the message. In one embodiment, after configuring the
tunnel according to the received configuration tunnel mes-
sage, method 600 sends a return message back to the agent
indicating the success or failure of the command in that mes-
sage. If the received message is not a configure tunnel mes-
sage, at block 618, method 600 alternative action (e.g., drops
the received message, sends a message back indicating the
received message is not understood, etc.).

Lockable Storage

FIGS. 7-10 describes a system and methods for locking
storage at the storage device level so that the stored data
cannot be altered by a process (e.g., malware, virus, etc.) that
may be executing in the operating system. For example, if a
user wanted to open a file or access data that the user does not
trust (e.g., e-mail attachments, executables from unknown
websites, etc.), how can a user ensure that the file or data does
not infect or otherwise damage the existing stored data? The
user may not trust many applications or executables because
malware is readily present in downloaded data. The user may
have personal data they want to protect when operating in an
insecure environment such as while opening untrusted files.

20

25

30

35

40

45

50

55

60

65

10

When in insecure areas, some users may turn off a com-
puter’s wireless network card in order to prevent being
attacked by malicious hackers nearby. Similarly, with mal-
ware on a system, a user may want to be able to open untrusted
files while at the same time having personal, sensitive data
inaccessible or locked. Thus a “data safe mode” is useful,
such as the ability to have an external switch on your laptop to
lockdown key assets on a system (Operating System files,
configurable data such as credit card information, passwords
and other sensitive private information) or locking down key
components of an operating system during boot time.

FIG. 7 illustrates an example of a system that includes
lockable storage. In FIG. 7, computer 700 is similar to com-
puter 102 as in FIG. 1, except that the computer 700 includes
lockable storage 702 that can be locked so as to prevent the
data stored in the locked region. In one embodiment, the
lockable storage is part of the normal storage 116. In another
embodiment, the lockable storage is part of the secure storage
114. In one embodiment, the lockable storage is used to store
important operating system components (Master boot record,
drivers, other operating system files, etc.). In another embodi-
ment, a user may store data in a lockable storage such as
antivirus data definition, financial records, personal items
(photos, etc.), and/or other important data.

For example and in one embodiment, there can be two
types of storage, a secure storage and modification locked
storage. In one embodiment, the secure storage itself consists
of'two modes: fixed, always on secure storage that is inacces-
sible to normal users and hidden via normal methods of
storage access (e.g., operating system calls to storage); and
there is configurable secure storage in normally addressable
ranges of a drive. The configurable secure storage in normally
addressable ranges of the drive would be specific LBA ranges
that have been configured by the user as to which parts of the
drive to protect. In one embodiment, either type of secure
storage disallows normal writes and reads with this type of
storage whereas, authenticated reads or writes are allowed
with the secure storage.

As another example and in another embodiment, for modi-
fication locked storage, anyone can read the data in that
region, but only an authenticated entity (to the drive, for that
region) can modify (e.g., write to) the data in that region. In
this embodiment, the lockable storage would be configurable
ranges of either secure storage or modification locked storage
because the fixed the secure storage is inaccessible to normal
users anyways. In a further embodiment and in addition to the
locking storage, a physical switch (e.g., hardware switch 142
for FIG. 1 above) could be employed to make an “always on”
secure storage inaccessible even to authenticated users while
the switch is on. In one embodiment, locking down secure
storage to all others is actually is a useful feature because a lot
of malware can attack other, potentially (normally) trusted
applications that may have access to the secure store.

In one embodiment, two ways to lock the lockable storage
are possible. In one embodiment, the user can initiate the lock
by using a switch that is outside the control of the operating
system. In this embodiment, this action creates a system
interrupt that would be communicated via trusted API 146
and trusted firmware 118 to lock the lockable storage 702. As
described above, this could be used to lock important user
files such as antivirus data files, financial files, and personal
files. The user locking mechanism is further described in FIG.
10 below. In another embodiment, data in the lockable storage
can be locked down by the operating system. In one embodi-
ment, the operating system selectively locks different parts of
lockable storage during boot time. This embodiment can be
used to lock down important operating system data (including

US 9,270,657 B2

11

master boot record, and other important operating system
components) during the computer boot time.

FIG. 8 illustrates an embodiment of a method for selec-
tively locking operating system assets stored in lockable stor-
age. In FIG. 8, method 800 begins by initiating the computer
bootup sequence. In one embodiment, the computer boot
sequence is a sequence of actions that bring a computer from
downstate to a fully operational state. At block 804, method
800 accesses the master boot record of computer and starts the
boot strapping process. In one embodiment, the master boot
record (MBR) contains information that is used for bootstrap-
ping the operating system. In one embodiment, the MBR is a
single sector of 512 bytes.

At block 804, method 800 sends a signal to the secure
storage system to lock the master boot record. In one embodi-
ment, method 800 locks the sector of the lockable storage that
stores the master boot record. By locking the specific sectors
that store the master boot record, these sectors (and the master
boot record itself) cannot be altered via processes executing
in the operating system such as malware. In another embodi-
ment, the boot sequence is based on a user extensible firm-
ware interface (UEFI). In this embodiment, UEFI is another
way to boot up a system. UEFI is similar to the MBR-based
boot up, but there is more involved. In UEF]I, to boot up, there
is a boot manager, which boots the system up. Fir example,
UEFI boot up uses the a Globally Unique Identification
(GUID) Partition Table (GPT) which is similar to a MBR, but
it is a different format and rather than being a single sector
(e.g., LBA 0 for MBR), a GPT takes up 34 or 35 sectors at the
beginning and 34 or 35 sectors at the end of the drive. In this
embodiment, method 800 would lock the relevant sectors
storing the GPT at block 802.

Method 800 continues the boot strapping process and
selectively locking sectors storing the operating system com-
ponents, as the operating system components are no longer
needed to be written to, at block 808. In one embodiment,
there is a plurality of important operating system components
that could be stored in lockable storage and each of these
operating system components can be stored in the same or
different sector of the lockable storage. The plurality of
important operating system components can include the
entire operating system or a subset of the operating system.
As these operating system components are used and are not
needed to be written to, method 800 locks the sectors associ-
ated with the operating system components. In one embodi-
ment, method 800 locks these sectors by sending a signal to
the storage system that certain sectors of the lockable storage
need to be locked. In one embodiment, the method 800 sends
the signals via a tunnel as described with reference to FIGS.
1-6 above.

At block 810, method 800 determines that the operating
system is fully booted and that important operating system
components have been locked to prevent further altering. In
one embodiment, some or all of the important operating sys-
tem components are further locked so as to prevent reads. In
this embodiment, locking read access to the secure storage
can beused to locked read access certain types of keys that the
drive stores on the drive (e.g., keys that are loaded into
memory (and presumably protected in memory as well) and
the operating system does not want to let this key be readable
from the drive anymore).

In one embodiment, the lockable storage is locked at the
storage level such that any operating system command to
override the unalterable status of these of sectors is ignored.
In one embodiment, a write lock would maintain a table of
protected regions within the firmware of the storage device
(e.g., storage firmware 120 and/or trusted system firmware

20

25

30

35

40

45

50

55

60

65

12

118 of FIG. 1 above) and disallow any unauthorized attempts
to write to those regions. In another embodiment, a write lock
would be implemented by maintaining a table of protected
regions within the firmware of the storage device, and disal-
low any unauthorized attempts to write to those regions.

At block 812, attempts to infect or otherwise alter these
locked operating system files fail because the device firmware
prevention modification prevents any alteration of these oper-
ating system files. In one embodiment, if a specified region of
the drive is locked, the storage firmware can monitor incom-
ing write commands for attempts to write to the “locked”
LBA/LBAs and return a write error when such an attempt is
made. In another embodiment, the storage firmware redirects
the data in the write attempt to a special quarantine area for
further analysis. In these embodiments, the normal operating
system commands which would typically alter or replace
these locked operating system files on the locked sectors will
fail because the device firmware prevention modification
overrides the storage access commands the operating system
or other applications can use.

As described above, certain components of the operating
system will be locked, so they can no longer be altered by
normal operating system commands. While in many cases,
this is a favorable situation because this disallows malware,
viruses, etc. from infecting these operating system files. The
problem is that there are times that these operating system
files would need to be altered. In one embodiment, an oper-
ating system upgrade will likely need to alter the operating
system files that are locked in a lockable storage.

FIG. 9 illustrates an embodiment of a method 900 for
upgrading an operating system that has operating system data
stored in locked storage. In one embodiment, an operating
system upgrade will likely need to alter the operating system
files that are locked in a lockable storage. In FIG. 9, method
900 is a method to upgrade an operating system by using an
application programming interface (API) that has been
authenticated with the storage system (e.g., the secure storage
114 via trusted API 146 as described in FIG. 1 above). By
communication through the API, the locks on the storage
remain in place and method 900 accesses data in the locked
storage using a secure channel. This allows method 900 to
make writes to the locked regions, where the writes a signed
by an authenticated user of the API so that the firmware could
verify that the changes came from the owner of the locked
regions, not anyone else such as malware.

Method 900 begins by receiving the command to upgrade
the operating system that includes locked files storing the
some or all of the operating system components. In one
embodiment, the command to upgrade the operating system
is from a user initiated request or an automatic service pro-
vider request to upgrade the operating system as is known in
the art. At block 904, method 900 establishes a secure tunnel
with the storage system. In one embodiment, the secure tun-
nel is a secure tunnel between the secure storage system and
an agent (such as an agent performing method 900) using the
mailboxing scheme or the negotiated tunnel using SATA
trusted sends and receives, as described above in FIGS. 1-6
above. At block 906, method 900 uses a secure tunnel to
upgrade the operating system. In one embodiment, method
900 uses the secure tunnel to update the operating system
components that need to be upgraded that are in the lockable
storage. After these operating system components are
updated, method 900 proceeds to upgrade the rest of the
operating system as is known in the art. At block 908, method
900 restarts the device with the upgraded operating system.

As described above, there are two ways that a computer can
lock data stored in the lockable storage. In one embodiment,

US 9,270,657 B2

13

the operating system locks data in the lockable storage during
a boot sequence. In another embodiment, the user initiates a
lockdown of the lockable storage to lock some or all of the
user data. In one embodiment, either way to lock data can be
used. In another embodiment, both ways to lock data in the
lockable storage are available. FIG. 10 illustrates an embodi-
ment of a method 1000 for locking user storage. In FIG. 10,
method 1000 begins by receiving the data to be stored in the
lockable storage. In one embodiment, the data to be stored in
the lockable storage is important user data such as antivirus
definition data, personal data, financial records, etc. At block
1004, method 1000 receives a user lockdown configuration.
In one embodiment, this lockdown configuration specifies
which data is to be locked in the lockable storage. While in
one embodiment, the configuration is to lock all data in lock-
able storage, in another embodiment, the configuration can
specify certain files and/or physical sectors of the lockable
storage to be locked. In one embodiment, the lockdown con-
figuration is defined by the user. In an alternate embodiment,
a manufacturer of the computer device could use this mecha-
nism to define which data is included in the lockable storage
during a user lockdown request.

At block 1006, method 1000 receives an indication that a
user lockdown has been activated. In one embodiment, a user
may initiate a lockdown of lockable storage by activating a
dedicated switch for the lockdown, a keyboard combo (e.g.,
ALT+FS5, etc.), a touch sequence if using a touch user inter-
face, or any other way to indicate a command to a computer as
known in the art. At block 1008, method 1000 triggers system
interrupt on the computer system, which the software on the
system is listening for. In one embodiment, by triggering
interrupt, method 1000 that executes a lockdown is outside of
the operating system control. This is useful if malware, virus,
etc., may be present on the computer system so that the
malware cannot defeat the user initiated lockdown.

Atblock 1010, method 1000 sends a message to the storage
system to perform the user lockdown. In one embodiment,
method 1000 uses a tunnel between an agent executing
method 1000 in the operating system to the secure storage
system to perform the user lockdown. In one embodiment,
method 1000 uses the tunnel as described above in FIGS. 1-6
above. At block 1012, method 1000 indicates that the user
lockdown is completed. In one embodiment, method 1000
displays on this display of the computer system an icon or
other graphical image that indicates that the user lockdown
mode is initiated.

Atblock 1014, method 1000 executes an application in the
user lockdown environment. In one embodiment, the user
may initiate the lockdown, such that the user would like to
execute a file or retrieve a file in an environment that may
include malware, virus, or other potentially damaging soft-
ware. By executing application during the user lockdown
environment the data that is stored in the locked storage is
prevented from being altered because the drive mechanism
prevents an operating system process, (e.g., a malware, virus,
etc.) from altering or deleting the data that is locked inside the
lockable storage.

At block 1016, method 1000 receives an indication of the
user unlock. In one embodiment, a user wants to unlock the
lockable storage. At block 1018, method 1000 sends a mes-
sage to the storage system to perform the user unlock. In one
embodiment, method 1000 uses the tunnel between the agent
that executes method 1000 and the secure storage system to
perform the user unlock. At block 1020, method 1000 indi-
cates a user lockdown has removed. In one embodiment,

20

25

30

35

40

45

50

55

60

65

14

method 1000 removes the icon or image that is displayed on
the user’s display for indicating the user lockdown is in pro-
cess.

Secure Download and Processing of Premium Content

Online media and streaming is a growing area and this
increases the demand of having secure platforms to offer
premium services to enhance end user experience and open
new channels of distribution of content for content providers
to help them increase their Total Available Market (TAM).
Currently, personal computer (PC) platforms are not consid-
ered robust enough to allow content providers (e.g. Netflix™,
movie and/or television studios, etc.) to permit download
and/or stream of premium and most recent content onto a
computing device (e.g., computer, set-top box, mobile
device, etc., and/or any other type of device capable of receiv-
ing and/or presenting content). Content providers fear loss of
intellectual property due to piracy and DRM violations. Due
to these issues, content providers do not capture a sizeable
chunk of customer segment that primarily uses PC platforms
as their entertainment hub.

In addition, content providers and ISVs also want to make
sure that their data is secure from point of origin till point of
consumption, especially involving entertainment device seg-
ments offering an array of options for consumption of online
and streaming content.

Described below is a system that allows content providers
and ISVs to securely store and stream their content on PC and
alternative platforms by enhancing the capabilities of storage
platforms (e.g. premier content providers for latest movies,
games, audio, books, etc.). The system would also offer to
provision for secure execution by using the secure storage and
tunnel capabilities of a storage platform to offer a trusted
computing environment. In addition, the data path is secured
from point of origin to the point of consumption through a
secured tunnel, thereby minimizing the risk of snooping and
DRM violation on exposed data in memory or platform.

FIG. 11 illustrates an example of a system 1100 to secure
digital rights managed content. In FIG. 11, system 1100
includes system provider/ISV 1102, platform agent 1104,
storage 1118, and graphics processing unit (GPU)/display
1112. In one embodiment, the system provider/ISV 1102 is an
entity that provides content that is protected by digital rights
management (DRM). Examples of DRM protected content
can be video, audio, images, book, game, software, etc. and/
or any type of content whose use is meant to be restricted by
the system provider/ISV 1102. In one embodiment, the sys-
tem provider/ISV 1102 includes a server that is used to down-
load the DRM protected content to the platform agent 1104.

In one embodiment, the platform agent 1104 includes an
operating system 1106, where the platform agent is a com-
puter and/or device as described above in FIG. 1 above. In one
embodiment, the platform agent 1104 establishes a root of
trust with the system provider/ISV 1102, so that the system
provider/ISV 1102 can securely download the DRM pro-
tected content to the platform agents 1104. Furthermore, the
platform agent is coupled to storage 1118. In one embodi-
ment, the storage includes operating system visible storage
1108, where the operating system visible storage 1108
includes associated hardware and firmware. For example and
in one embodiment, operating system visible storage 1108 is
the normal storage 116 as described in FIG. 1 above. Further-
more, storage 1118 includes operating system invisible
secure storage 1110 that, in one embodiment, is used to
securely store the DRM protected content. For example and
in one embodiment, operating system invisible storage 1110
is secure storage 114.

US 9,270,657 B2

15

In one embodiment, the platform agent 1104 stores the
DRM protected content to the operating system invisible
secure storage 1110 using secure path 1114A. In one embodi-
ment, the secure path 1114A is a tunnel that is formed
between the platform agent 1104 and the operating system
invisible secure storage 1110. An example of the tunnel is
described in FIGS. 1-6 above. The platform agent is further
coupled to the GPU/display 1112 via a secure path 1114B. In
one embodiment, the secure path 1114B is a tunnel between
the platform agent 1104 and GPU/display 1112.

FIG. 12 illustrates an embodiment of a method 1200 for
securely storing and processing digital rights managed con-
tent. In one embodiment, a platform agent 1104 executes
method 1200 to securely store and process the DRM content.
In FIG. 12, method 1200 begins by establishing a secure root
of trust with a system provider/ISV at block 1202, such as
system provider/ISV 1104 as described in FIG. 11 above. In
one embodiment, the system provider/ISV authenticates the
platform agent as a trusted agent using a third party provi-
sioning service. For example and in one embodiment, the
system provider/ISV classifies the platform agent as a trusted
agent using a key or certificate issued by a third party, such as
a third party provision service. By classifying the platform
agent as the trusted agent, method 1200 establishes a secure
root of trust with the system provider/ISV and further estab-
lishes a secure path to download the DRM protected content
that can be used to store in the secure storage.

At block 1204, method 1200 establishes a secure tunnel
with the secure storage. In one embodiment, the secure stor-
age is the operating system invisible storage 1110. In one
embodiment, method establishes a secure tunnel with the
storage as described in FIGS. 1-6 above. In this embodiment,
the secure tunnel between the secure storage and the platform
agent allows platform to securely download DRM protected
content to the secure storage. Furthermore, method 1200
establishes a tunnel between the operating system invisible
storage and the GPU/display. In one embodiment, the second
tunnel is established with operating system invisible storage
and the GPU/display using a key exchange mechanism.

Using the two tunnels, method 1200 securely executes the
downloading and processing of the DRM protected content.
In one embodiment, method 1200 securely downloads the
DRM protected content from the system provider/ISV to the
operating system invisible storage. Method 1200 further
decrypts and re-encrypts the DRM protected content so that
the GPU/display can process this content. Securely executing
the downloading and processing of the DRM content is fur-
ther described in FIG. 13 below.

FIG. 13 illustrates an embodiment of a method 1300 for
requesting, storing, and providing DRM content. In FIG. 13,
method 1300 begins by provisioning the ISV key into the
secure storage at block 1302. In one embodiment, method
1300 provisions the ISV public key by receiving a client
certificate from a remote server of a certificate provisioning
service. Provisioning the public key is further described in
FIG. 14 below. At block 1304, method 1300 receives a request
for premium content. In one embodiment, premium content is
content that is managed using a digital rights management
scheme. For example and in one embodiment, the premium
content could be a video, audio, images, book, document,
game, software, etc. or any other type of media that can be
protected by digital rights management. For example and in
one embodiment, method 1300 can be used to tie premium
content to a single device, such as the device that accesses this
premium content.

Method 1300 allows discovery of the DRM storage pro-
tection at block 1306. In one embodiment, the DRM storage

5

20

25

30

35

40

45

50

55

60

65

16

protection is the secure storage system, as described above in
FIG. 1. The DRM storage protection allows a content pro-
vider to securely store, stream, and/or otherwise process the
premium content without a fear of the content being copied,
viewed and/or made available without permission. At block
1308, method 1300 determines if the DRM storage protection
is supported. If the DRM storage protection is not supported,
atblock 1320, the premium content is not allowed to be stored
on the device that is executing method 1300. If the DRM
storage protection is supported at block 1308, at block 1310,
method 1300 authenticates using the public key. In one
embodiment, the public key is a key that allows the premium
content to be downloaded from the premium content provider
or ISV (e.g., service provider/ISV 1202 as described above in
FIG. 12). In one embodiment, the public key is provisioned at
block 1302 above. At block 1312, method 1300 negotiates a
content specific key with the premium content service pro-
vider/ISV. In one embodiment, negotiating the content spe-
cific key generates a key that is specific to the requested
premium content.

Atblock 1314, method 1300 stores the content specific key
in the secure storage. In one embodiment, method 1300 uses
a tunnel to the secure storage system to store the specific
content key. At block 1316, method 1300 receives an
encrypted content that corresponds to the request of the pre-
mium content. As described above, the encrypted content
could be video, audio, images, book, game, software, etc., or
any other type of DRM protected content. Furthermore, the
retrieved content is encrypted and can be decrypted using the
content specific key retrieved at block 1312. At block 1318,
method 1300 stores encrypted content and associated content
metadata in the secure storage. In one embodiment, method
1300 uses the tunnel between the agent that is executing
method 1300 and the secure storage to securely store the
encrypted content and associated metadata. In one embodi-
ment, the metadata is data that describes the encrypted con-
tent (e.g., title, artist, author, genre, length, size, encoding,
etc. and/or other parameters associated with premium content
as known in the art).

A block 1320, method 1300 receives a request for
encrypted content from the agent. In one embodiment, the
agent is a software entity that is party to secure transactions
between content providers and secure storage system. In one
embodiment, the agent is further described above in FIG. 12.
At block 1322, method 1300 decrypts the encrypted content
and re-encrypts this content as per the root of trust protocol
established with the display/audio using a path protection
public key. By re-encrypting the content with the root of trust
protocol, the downloaded premium content can be viewed
using the using the pass protection public key with the dis-
play/audio. At block 1324, method 1300 decrypts the re-
encrypted content using the pass protection key.

As described above, in order for a client to receive premium
content, the client will need a root of trust. FIG. 14 illustrates
an example of a system 1400 that includes a client that
requests and is granted a root of trust. In FIG. 14, client 1402
is a client that can request the premium content from ISV/
server 1404, where the ISV/server 1404 requests a provision-
ing key from a provisioning server 1406 for the client 1402.
The system 1400 is used to securely download and display,
execute, etc., the premium content by agent 1420.

In FIG. 14, the client requests the premium content (1408)
from the ISV/server 1404. In one embodiment, the client
1402 includes secure storage 1422. In response to receiving
the client request for premium content, the ISV/server 1404
installs the agent 1420 on the client 1402 in the secure storage
and communicates with the agent 1420 to determine capa-

US 9,270,657 B2

17
bilities of the client 1402 (1410). In addition, the ISV/server
1404 signs this message with a private key

The agent 1420 in the secure storage sends a message with
drive capabilities back to the ISV/server 1404 (1412). In
response, the ISV/server 1404 determines if the storage is
DRM protected storage at 1414. If the storage is DRM pro-
tected storage, the ISV/server 1404 requests the provisioning
key by signing the message and sending the signed message
to the provisioning server 1406. In one embodiment of pro-
visioning server 1406 provides the provisioning key. In addi-
tion, the provisioning server 1406 signs the provisioning key
using the private key of the provisioning server 1406. The
provisioning server 1406 may be a third party provisioning
server or may belong to part of the ISV. The provisioning
server 1406 sends the provisioning keys to the ISV/server
1404.

In response to receiving the provisioning keys, the ISV/
server 1404 provisions the ISV public key with the provision-
ing key at 1418. In one embodiment, the ISV public key is
unique to the client. In one embodiment, the ISV public key is
unique to the ISV/server 1404 for that client. In one embodi-
ment, the ISV/server 1406 authenticates the client 1402 and
stores the public key using the agent 1420 of the secure
storage 1422. In one embodiment, the ISV public key is
stored in the secure storage 1422 ofthe client 1402. Atthe end
of this sequence, the ISV/server store 1404 has provisioned
public key into the secure storage 1422 of the client 1402 and
the rest of the steps as indicated in method 1300 may be
performed to download and process the premium content.
Activation and Monetization of Value-Added Storage Ser-
vices

Hard drive companies are struggling to monetize features
and capabilities built into their hardware. In their effort to
minimize and contain their number of different models, stor-
age companies may end up selling hardware for a lowest
common denominator price, which in turn negatively impacts
the storage companies’ profitability. This is because storage
companies cannot securely activate and/or revoke value-
added storage services of devices in the field not to generate
secondary revenue sources. In one embodiment, revocation
transfers management rights of physical resources (e.g., stor-
age devices) from one service provider to another. For
example and in one embodiment, vendor A would revoke
management services for a given device, while vendor B
would activate new services for the same device. Potential
value-added storage services can include additional storage
enablement, anti-theft technology, secure storage, storage
device encryption, etc.

FIG. 15 illustrates an example of a system 1500 that
includes a client 1502 that requests and is granted activation
of value-added storage services. In FIG. 15, the system 1500
includes a client 1502 that requests the activation (and/or
revocation) of value-added storage feature to ISV/server
1504. In response to receiving the client 1502 request, the
ISV/server 1504 sends a request to the provisioning server
1504 to determine if the client 1502 is authorized for that
request. In one embodiment, possible value-added storage
services may include enablement of extra storage for the
client, allowing DRM premium content stored on the client
1502, anti-theft technology, secure storage, etc. In one
embodiment, the provisioning server 1506 determines if the
client 1502 is authorized to activate the requested value-
added storage feature. If so, the provisioning server 1506
sends the authorization to the ISV/server 1504. The ISV/
server 1504 installs an agent 1508 on the client 1502 that is
used to make a request for a license for a possible value-added

20

25

30

35

40

45

50

55

60

65

18

storage services. By provisioning the public key and agent to
the client, a secure root of trust is created for the client.

Once the secure root of trust is established, an application
running on the client 1502 may request a license for a value-
added storage service using the agent 1508. In this embodi-
ment, the agent 1508 sends a request to the ISV/server 1504
in response receiving a request for a value-added storage
services license from that application. In one embodiment,
the ISV/server 1504 forwards this request to the provisioning
server 1506. The provisioning server 1506 authorizes the
license request and sends this authorization back to the ISV/
server 1504. The ISV/server 1504 receives the authorization
from the provisioning server 1506 and issues a license for the
requested value-added storage feature to the client 1502. How
the agent 1508 works in association with the client is further
described in FIG. 16 below

FIG. 16 illustrates an example of an application that
requests a license for a value-added storage feature via a
manageability engine 1614. In FIG. 16, computer 1606
includes client 1608, OS 1612, and manageability engines
1614. In one embodiment, the manageability engine 1614 is
the agent as described above in FIG. 15. In one embodiment,
the client 1608 requests includes an application 1610A that
makes a request of license for a value-added storage service.
In this embodiment, client 1608 includes the application for
license 1610A, the ISV client 1610B, the ISV proxy 1610C,
and Host Embedded Controller Interface (HEC) 1610D.
These components of the client 1608 are used to make the
application license request 1602 to the manageability engine
1614. In one embodiment, OS 1612 is an operating system is
known in the art and is further described in FIG. 1 above.

In one embodiment, manageability engine 1614 includes
application applet 1616 A, JVM core 16168, JVM ISV plugin
1616C, and ISV core 1616D. In one embodiment, the client
1606 makes a request for a value-added storage service
license to the application applet 1616 A via the ISV core
1616D, ISV plugin 1616C, and JVM core 1616B. In one
embodiment, the client 1610 uses the components 1610A-D
to communicate with the manageability engine 1614 and to
make a license request with the ISV/server. In one embodi-
ment, the application applet 1616 A is an application to con-
trol the license request process to the ISV/server. In one
embodiment, JVM core 16168 is a Java virtual machine core
as known in the art and is used to execute the application
applet 1616A. In one embodiment, the JVM ISP plugin
1616C is a plug-in that runs in the manageability engines
1614 and is used to communicate data between the ISP core
1616B and the JVM core 1616D.

The ISV core 1616D, in one embodiment, is a module that
communicates directly with the remote ISV/server such as
remote ISV/server 1506 as described above in FIG. 15 above.
In one embodiment, the ISV core 1616D includes a TCP/IP
network stack that allows the ISV core 1616D to directly
communicate via the Internet or some other networking pro-
tocol to request and receive the licenses that the application
for license 1610A is requesting. In one embodiment, the
management engine 1614 is part of the secure storage of the
computer 1606. In this embodiment, the manageability
engine 1514 is a process that runs outside of OS 1612 and is
used to securely communicate and download the license for
the storage feature. Requesting the license is further
described in FIG. 17 below.

FIG. 17 illustrates an embodiment of a method for request-
ing a license for a value-added storage feature. In FIG. 17,
method 1700 begins provisioning the ISV public key to the
secure storage of the client. In one embodiment, provisioning
of the ISV public key into the secure storage is further

US 9,270,657 B2

19

described in FIG. 14 above. At block 1704, method 1700
receives a request for value-added storage feature license
from an application. In one embodiment, the value added
storage service can be video, audio, images, book, game,
software, etc. At block 1706, method 1700 determines if the
system for enabling storage services is supported. For
example and in one embodiment, if method 1700 determines
that a client has a secure storage to store the requested
licenses, the client then has a system for enabling storage
services.

If'the system for enabling storage features is not supported,
at block 1718, method 1700 determines that storage features
are not enabled. No further action is taken. If the system for
enabling storage features is supported, at block 1708, method
1700 authenticates using the public key. In one embodiment,
method 1700 authenticates using the public key that was
stored in the secure storage at block 1702 above. A block
1710, method 1704 receives and forwards a request for a
value-added storage service to the storage authorization
server. In one embodiment, the storage authorization server is
the ISV/server 1504 as illustrated in FIG. 15 above. In this
embodiment, the secure storage enables requests for value-
added storage feature license and handles the requests.

In a block 1712, method 1700 receives a license from the
storage authorization server. Method 1700 stores the
requested license in the secure storage at block 1714. In one
embodiment, method 1700 uses a tunnel such as a tunnel as
described in FIGS. 1-6 above to store the license in the secure
storage. At block 1716, method 1700 provides a license to the
requesting application. In one embodiment, method 1700
provides license as described above in FIG. 16 above.

Exemplary Core Architectures, Processors, and Computer
Architectures

Processor cores may be implemented in different ways, for
different purposes, and in different processors. For instance,
implementations of such cores may include: 1) a general
purpose in-order core intended for general-purpose comput-
ing; 2) a high performance general purpose out-of-order core
intended for general-purpose computing; 3) a special purpose
core intended primarily for graphics and/or scientific
(throughput) computing Implementations of different proces-
sors may include: 1) a CPU including one or more general
purpose in-order cores intended for general-purpose comput-
ing and/or one or more general purpose out-of-order cores
intended for general-purpose computing; and 2) a coproces-
sor including one or more special purpose cores intended
primarily for graphics and/or scientific (throughput). Such
different processors lead to different computer system archi-
tectures, which may include: 1) the coprocessor on a separate
chip from the CPU; 2) the coprocessor on a separate die in the
same package as a CPU; 3) the coprocessor on the same die as
a CPU (in which case, such a coprocessor is sometimes
referred to as special purpose logic, such as integrated graph-
ics and/or scientific (throughput) logic, or as special purpose
cores); and 4) a system on a chip that may include on the same
die the described CPU (sometimes referred to as the applica-
tion core(s) or application processor(s)), the above described
coprocessor, and additional functionality. Exemplary core
architectures are described next, followed by descriptions of
exemplary processors and computer architectures.

Exemplary Core Architectures

In-Order and Out-of-Order Core Block Diagram

FIG. 18A is a block diagram illustrating both an exemplary
in-order pipeline and an exemplary register renaming, out-of-
order issue/execution pipeline according to embodiments of
the invention. FIG. 18B is a block diagram illustrating both an
exemplary embodiment of an in-order architecture core and

20

25

30

35

40

45

50

55

60

65

20

an exemplary register renaming, out-of-order issue/execution
architecture core to be included in a processor according to
embodiments of the invention. The solid lined boxes in FIGS.
18A-B illustrate the in-order pipeline and in-order core, while
the optional addition of the dashed lined boxes illustrates the
register renaming, out-of-order issue/execution pipeline and
core. Given that the in-order aspect is a subset of the out-of-
order aspect, the out-of-order aspect will be described.

In FIG. 18A, a processor pipeline 1800 includes a fetch
stage 1802, a length decode stage 1804, a decode stage 1806,
an allocation stage 1808, a renaming stage 1810, a scheduling
(also known as a dispatch or issue) stage 1812, a register
read/memory read stage 1814, an execute stage 1816, a write
back/memory write stage 1818, an exception handling stage
1822, and a commit stage 1824.

FIG. 18B shows processor core 1890 including a front end
unit 1830 coupled to an execution engine unit 1850, and both
are coupled to a memory unit 1870. The core 1890 may be a
reduced instruction set computing (RISC) core, a complex
instruction set computing (CISC) core, a very long instruction
word (VLIW) core, or a hybrid or alternative core type. As yet
another option, the core 1890 may be a special-purpose core,
such as, for example, a network or communication core,
compression engine, coprocessor core, general purpose com-
puting graphics processing unit (GPGPU) core, graphics
core, or the like.

The front end unit 1830 includes a branch prediction unit
1832 coupled to an instruction cache unit 1834, which is
coupled to an instruction translation lookaside buffer (TLB)
1836, which is coupled to an instruction fetch unit 1838,
which is coupled to a decode unit 1840. The decode unit 1840
(or decoder) may decode instructions, and generate as an
output one or more micro-operations, micro-code entry
points, microinstructions, other instructions, or other control
signals, which are decoded from, or which otherwise reflect,
or are derived from, the original instructions. The decode unit
1840 may be implemented using various different mecha-
nisms. Examples of suitable mechanisms include, but are not
limited to, look-up tables, hardware implementations, pro-
grammable logic arrays (PLAs), microcode read only memo-
ries (ROMs), etc. In one embodiment, the core 1890 includes
a microcode ROM or other medium that stores microcode for
certain macroinstructions (e.g., in decode unit 1840 or other-
wise within the front end unit 1830). The decode unit 1840 is
coupled to a rename/allocator unit 1852 in the execution
engine unit 1850.

The execution engine unit 1850 includes the rename/allo-
cator unit 1852 coupled to a retirement unit 1854 and a set of
one or more scheduler unit(s) 1856. The scheduler unit(s)
1856 represents any number of different schedulers, includ-
ing reservations stations, central instruction window, etc. The
scheduler unit(s) 1856 is coupled to the physical register
file(s) unit(s) 1858. Each of the physical register file(s) units
1858 represents one or more physical register files, different
ones of which store one or more different data types, such as
scalar integer, scalar floating point, packed integer, packed
floating point, vector integer, vector floating point, status
(e.g., an instruction pointer that is the address of the next
instruction to be executed), etc. In one embodiment, the
physical register file(s) unit 1858 comprises a vector registers
unit, a write mask registers unit, and a scalar registers unit.
These register units may provide architectural vector regis-
ters, vector mask registers, and general purpose registers. The
physical register file(s) unit(s) 1858 is overlapped by the
retirement unit 1854 to illustrate various ways in which reg-
ister renaming and out-of-order execution may be imple-
mented (e.g., using a reorder buffer(s) and a retirement reg-

US 9,270,657 B2

21

ister file(s); using a future file(s), a history buffer(s), and a
retirement register file(s); using a register maps and a pool of
registers; etc.). The retirement unit 1854 and the physical
register file(s) unit(s) 1858 are coupled to the execution clus-
ter(s) 1860. The execution cluster(s) 1860 includes a set of
one or more execution units 1862 and a set of one or more
memory access units 1864. The execution units 1862 may
perform various operations (e.g., shifts, addition, subtraction,
multiplication) and on various types of data (e.g., scalar float-
ing point, packed integer, packed floating point, vector inte-
ger, vector floating point). While some embodiments may
include a number of execution units dedicated to specific
functions or sets of functions, other embodiments may
include only one execution unit or multiple execution units
that all perform all functions. The scheduler unit(s) 1856,
physical register file(s) unit(s) 1858, and execution cluster(s)
1860 are shown as being possibly plural because certain
embodiments create separate pipelines for certain types of
data/operations (e.g., a scalar integer pipeline, a scalar float-
ing point/packed integer/packed floating point/vector integer/
vector floating point pipeline, and/or a memory access pipe-
line that each have their own scheduler unit, physical register
file(s) unit, and/or execution cluster—and in the case of a
separate memory access pipeline, certain embodiments are
implemented in which only the execution cluster of this pipe-
line has the memory access unit(s) 1864). It should also be
understood that where separate pipelines are used, one or
more of these pipelines may be out-of-order issue/execution
and the rest in-order.

The set of memory access units 1864 is coupled to the
memory unit 1870, which includes a data TLB unit 1872
coupled to a data cache unit 1874 coupled to a level 2 (L2)
cache unit 1876. In one exemplary embodiment, the memory
access units 1864 may include a load unit, a store address unit,
and a store data unit, each of which is coupled to the data TL.B
unit 1872 in the memory unit 1870. The instruction cache unit
1834 is further coupled to a level 2 (L.2) cache unit 1876 in the
memory unit 1870. The L2 cache unit 1876 is coupled to one
or more other levels of cache and eventually to a main
memory.

By way of example, the exemplary register renaming, out-
of-order issue/execution core architecture may implement the
pipeline 1800 as follows: 1) the instruction fetch 1838 per-
forms the fetch and length decoding stages 1802 and 1804; 2)
the decode unit 1840 performs the decode stage 1806; 3) the
rename/allocator unit 1852 performs the allocation stage
1808 and renaming stage 1810; 4) the scheduler unit(s) 1856
performs the schedule stage 1812; 5) the physical register
file(s) unit(s) 1858 and the memory unit 1870 perform the
register read/memory read stage 1814; the execution cluster
1860 perform the execute stage 1816; 6) the memory unit
1870 and the physical register file(s) unit(s) 1858 perform the
write back/memory write stage 1818; 7) various units may be
involved in the exception handling stage 1822; and 8) the
retirement unit 1854 and the physical register file(s) unit(s)
1858 perform the commit stage 1824.

The core 1890 may support one or more instructions sets
(e.g., the x86 instruction set (with some extensions that have
been added with newer versions); the MIPS instruction set of
MIPS Technologies of Sunnyvale, Calif.; the ARM instruc-
tion set (with optional additional extensions such as NEON)
of ARM Holdings of Sunnyvale, Calif.), including the
instruction(s) described herein. In one embodiment, the core
1890 includes logic to support a packed data instruction set
extension (e.g., AVX1, AVX?2), thereby allowing the opera-
tions used by many multimedia applications to be performed
using packed data.

20

25

30

35

40

45

50

55

60

65

22

It should be understood that the core may support multi-
threading (executing two or more parallel sets of operations
orthreads), and may do so in a variety of ways including time
sliced multithreading, simultaneous multithreading (where a
single physical core provides a logical core for each of the
threads that physical core is simultaneously multithreading),
or a combination thereof (e.g., time sliced fetching and
decoding and simultaneous multithreading thereafter such as
in the Intel® Hyperthreading technology).

While register renaming is described in the context of
out-of-order execution, it should be understood that register
renaming may be used in an in-order architecture. While the
illustrated embodiment of the processor also includes sepa-
rate instruction and data cache units 1834/1874 and a shared
L2 cache unit 1876, alternative embodiments may have a
single internal cache for both instructions and data, such as,
for example, a Level 1 (I.1) internal cache, or multiple levels
of internal cache. In some embodiments, the system may
include a combination of an internal cache and an external
cache that is external to the core and/or the processor. Alter-
natively, all of the cache may be external to the core and/or the
processor.

Specific Exemplary In-Order Core Architecture

FIGS. 19A-B illustrate a block diagram of a more specific
exemplary in-order core architecture, which core would be
one of several logic blocks (including other cores of the same
type and/or different types) in a chip. The logic blocks com-
municate through a high-bandwidth interconnect network
(e.g., aring network) with some fixed function logic, memory
1/O interfaces, and other necessary /O logic, depending on
the application.

FIG. 19A is a block diagram of a single processor core,
along with its connection to the on-die interconnect network
1902 and with its local subset of the Level 2 (1.2) cache 1904,
according to embodiments of the invention. In one embodi-
ment, an instruction decoder 1900 supports the x86 instruc-
tion set with a packed data instruction set extension. An L1
cache 1906 allows low-latency accesses to cache memory
into the scalar and vector units. While in one embodiment (to
simplify the design), a scalar unit 1908 and a vector unit 1910
use separate register sets (respectively, scalar registers 1912
and vector registers 1914) and data transferred between them
is written to memory and then read back in from alevel 1 (L1)
cache 1906, alternative embodiments of the invention may
use a different approach (e.g., use a single register set or
include a communication path that allow data to be trans-
ferred between the two register files without being written and
read back).

The local subset of the 1.2 cache 1904 is part of a global 1.2
cache that is divided into separate local subsets, one per
processor core. Each processor core has a direct access path to
its own local subset of the L2 cache 1904. Data read by a
processor core is stored in its .2 cache subset 1904 and can be
accessed quickly, in parallel with other processor cores
accessing their own local L2 cache subsets. Data written by a
processor core is stored in its own .2 cache subset 1904 and
is flushed from other subsets, if necessary. The ring network
ensures coherency for shared data. The ring network is bi-
directional to allow agents such as processor cores, 1.2 caches
and other logic blocks to communicate with each other within
the chip. Each ring data-path is 1012-bits wide per direction.

FIG. 19B is an expanded view of part of the processor core
in FIG. 19A according to embodiments of the invention. FIG.
19B includes an [.1 data cache 1906A part of the [.1 cache
1904, as well as more detail regarding the vector unit 1910
and the vector registers 1914. Specifically, the vector unit
1910 is a 16-wide vector processing unit (VPU) (see the

US 9,270,657 B2

23

16-wide ALU 1928), which executes one or more of integer,
single-precision float, and double-precision float instruc-
tions. The VPU supports swizzling the register inputs with
swizzle unit 1920, numeric conversion with numeric convert
units 1922 A-B, and replication with replication unit 1924 on
the memory input. Write mask registers 1926 allow predicat-
ing resulting vector writes.

Processor with Integrated Memory Controller and Graph-
ics

FIG. 20 is a block diagram of a processor 2000 that may
have more than one core, may have an integrated memory
controller, and may have integrated graphics according to
embodiments of the invention. The solid lined boxes in FIG.
20 illustrate a processor 2000 with a single core 2002A, a
system agent 2010, a set of one or more bus controller units
2016, while the optional addition of the dashed lined boxes
illustrates an alternative processor 2000 with multiple cores
2002A-N, a set of one or more integrated memory controller
unit(s) 2014 in the system agent unit 2010, and special pur-
pose logic 2008.

Thus, different implementations of the processor 2000 may
include: 1) a CPU with the special purpose logic 2008 being
integrated graphics and/or scientific (throughput) logic
(which may include one or more cores), and the cores
2002A-N being one or more general purpose cores (e.g.,
general purpose in-order cores, general purpose out-of-order
cores, a combination of the two); 2) a coprocessor with the
cores 2002A-N being a large number of special purpose cores
intended primarily for graphics and/or scientific (through-
put); and 3) a coprocessor with the cores 2002A-N being a
large number of general purpose in-order cores. Thus, the
processor 2000 may be a general-purpose processor, copro-
cessor or special-purpose processor, such as, for example, a
network or communication processor, compression engine,
graphics processor, GPGPU (general purpose graphics pro-
cessing unit), a high-throughput many integrated core (MIC)
coprocessor (including 30 or more cores), embedded proces-
sor, or the like. The processor may be implemented on one or
more chips. The processor 2000 may be a part of and/or may
be implemented on one or more substrates using any of a
number of process technologies, such as, for example, BiC-
MOS, CMOS, or NMOS.

The memory hierarchy includes one or more levels of
cache within the cores, a set or one or more shared cache units
2006, and external memory (not shown) coupled to the set of
integrated memory controller units 2014. The set of shared
cache units 2006 may include one or more mid-level caches,
such as level 2 (1.2), level 3 (L3), level 4 (1.4), or other levels
of cache, a last level cache (LLC), and/or combinations
thereof. While in one embodiment a ring based interconnect
unit 2012 interconnects the integrated graphics logic 2008,
the set of shared cache units 2006, and the system agent unit
2010/integrated memory controller unit(s) 2014, alternative
embodiments may use any number of well-known techniques
for interconnecting such units. In one embodiment, coher-
ency is maintained between one or more cache units 2006 and
cores 2002-A-N.

In some embodiments, one or more of the cores 2002A-N
are capable of multi-threading. The system agent 2010
includes those components coordinating and operating cores
2002A-N. The system agent unit 2010 may include for
example a power control unit (PCU) and a display unit. The
PCU may be or include logic and components needed for
regulating the power state of the cores 2002A-N and the
integrated graphics logic 2008. The display unit is for driving
one or more externally connected displays.

20

25

30

35

40

45

50

55

60

65

24

The cores 2002A-N may be homogenous or heterogeneous
in terms of architecture instruction set; that is, two or more of
the cores 2002A-N may be capable of execution the same
instruction set, while others may be capable of executing only
a subset of that instruction set or a different instruction set.

Exemplary Computer Architectures

FIGS. 21-24 are block diagrams of exemplary computer
architectures. Other system designs and configurations
known in the arts for laptops, desktops, handheld PCs, per-
sonal digital assistants, engineering workstations, servers,
network devices, network hubs, switches, embedded proces-
sors, digital signal processors (DSPs), graphics devices,
video game devices, set-top boxes, micro controllers, cell
phones, portable media players, hand held devices, and vari-
ous other electronic devices, are also suitable. In general, a
huge variety of systems or electronic devices capable of
incorporating a processor and/or other execution logic as
disclosed herein are generally suitable.

Referring now to FIG. 21, shown is a block diagram of a
system 2100 in accordance with one embodiment of the
present invention. The system 2100 may include one or more
processors 2110, 2115, which are coupled to a controller hub
2120. In one embodiment the controller hub 2120 includes a
graphics memory controller hub (GMCH) 2190 and an Input/
Output Hub (IOH) 2150 (which may be on separate chips);
the GMCH 2190 includes memory and graphics controllers to
which are coupled memory 2140 and a coprocessor 2145; the
IOH 2150 is couples input/output (/O) devices 2160 to the
GMCH 2190. Alternatively, one or both of the memory and
graphics controllers are integrated within the processor (as
described herein), the memory 2140 and the coprocessor
2145 are coupled directly to the processor 2110, and the
controller hub 2120 in a single chip with the IOH 2150.

The optional nature of additional processors 2115 is
denoted in FIG. 21 with broken lines. Each processor 2110,
2115 may include one or more of the processing cores
described herein and may be some version of the processor
2000.

The memory 2140 may be, for example, dynamic random
access memory (DRAM), phase change memory (PCM), or a
combination of the two. For at least one embodiment, the
controller hub 2120 communicates with the processor(s)
2110, 2115 via a multi-drop bus, such as a frontside bus
(FSB), point-to-point interface such as QuickPath Intercon-
nect (QPI), or similar connection 2195.

In one embodiment, the coprocessor 2145 is a special-
purpose processor, such as, for example, a high-throughput
MIC processor, a network or communication processor, com-
pression engine, graphics processor, GPGPU, embedded pro-
cessor, or the like. In one embodiment, controller hub 2120
may include an integrated graphics accelerator.

There can be a variety of differences between the physical
resources 2110, 2115 in terms of a spectrum of metrics of
merit including architectural, microarchitectural, thermal,
power consumption characteristics, and the like.

In one embodiment, the processor 2110 executes instruc-
tions that control data processing operations of a general type.
Embedded within the instructions may be coprocessor
instructions. The processor 2110 recognizes these coproces-
sor instructions as being of a type that should be executed by
the attached coprocessor 2145. Accordingly, the processor
2110 issues these coprocessor instructions (or control signals
representing coprocessor instructions) on a coprocessor bus
or other interconnect, to coprocessor 2145. Coprocessor(s)
2145 accept and execute the received coprocessor instruc-
tions.

US 9,270,657 B2

25

Referring now to FIG. 22, shown is a block diagram of a
first more specific exemplary system 2200 in accordance with
anembodiment of the present invention. As shown in FIG. 22,
multiprocessor system 2200 is a point-to-point interconnect
system, and includes a first processor 2270 and a second
processor 2280 coupled via a point-to-point interconnect
2250. Each of processors 2270 and 2280 may be some version
of the processor 2000. In one embodiment of the invention,
processors 2270 and 2280 are respectively processors 2110
and 2115, while coprocessor 2238 is coprocessor 2145. In
another embodiment, processors 2270 and 2280 are respec-
tively processor 2110 coprocessor 2145.

Processors 2270 and 2280 are shown including integrated
memory controller (IMC) units 2272 and 2282, respectively.
Processor 2270 also includes as part of'its bus controller units
point-to-point (P-P) interfaces 2276 and 2278; similarly, sec-
ond processor 2280 includes P-P interfaces 2286 and 2288.
Processors 2270, 2280 may exchange information via a point-
to-point (P-P) interface 2250 using P-P interface circuits
2278, 2288. As shown in FIG. 22, IMCs 2272 and 2282
couple the processors to respective memories, namely a
memory 2232 and a memory 2234, which may be portions of
main memory locally attached to the respective processors.

Processors 2270, 2280 may each exchange information
with a chipset 2290 via individual P-P interfaces 2252, 2254
using point to point interface circuits 2276, 2294, 2286, 2298.
Chipset 2290 may optionally exchange information with the
coprocessor 2238 via a high-performance interface 2239. In
one embodiment, the coprocessor 2238 is a special-purpose
processor, such as, for example, a high-throughput MIC pro-
cessor, a network or communication processor, compression
engine, graphics processor, GPGPU, embedded processor, or
the like.

A shared cache (not shown) may be included in either
processor or outside of both processors, yet connected with
the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the
shared cache if a processor is placed into a low power mode.

Chipset 2290 may be coupled to a first bus 2216 via an
interface 2296. In one embodiment, first bus 2216 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
as a PCI Express bus or another third generation 1/O inter-
connect bus, although the scope of the present invention is not
so limited.

As shown in FIG. 22, various /O devices 2214 may be
coupled to first bus 2216, along with a bus bridge 2218 which
couples first bus 2216 to a second bus 2220. In one embodi-
ment, one or more additional processor(s) 2215, such as
coprocessors, high-throughput MIC processors, GPGPU’s,
accelerators (such as, e.g., graphics accelerators or digital
signal processing (DSP) units), field programmable gate
arrays, or any other processor, are coupled to first bus 2216. In
one embodiment, second bus 2220 may be a low pin count
(LPC) bus. Various devices may be coupled to a second bus
2220 including, for example, a keyboard and/or mouse 2222,
communication devices 2227 and a storage unit 2228 such as
a disk drive or other mass storage device which may include
instructions/code and data 2230, in one embodiment. Further,
an audio 1/0O 2224 may be coupled to the second bus 2220.
Note that other architectures are possible. For example,
instead of the point-to-point architecture of F1G. 22, a system
may implement a multi-drop bus or other such architecture.

Referring now to FIG. 23, shown is a block diagram of a
second more specific exemplary system 2300 in accordance
with an embodiment of the present invention. Like elements
in FIGS. 22 and 23 bear like reference numerals, and certain

20

25

30

35

40

45

50

55

60

65

26

aspects of FIG. 22 have been omitted from FIG. 23 in order to
avoid obscuring other aspects of FIG. 23.

FIG. 23 illustrates that the processors 2270, 2280 may
include integrated memory and I/O control logic (“CL”) 2272
and 2282, respectively. Thus, the CL 2272, 2282 include
integrated memory controller units and include I/O control
logic. FIG. 23 illustrates that not only are the memories 2232,
2234 coupled to the CL. 2272, 2282, but also that /O devices
2314 are also coupled to the control logic 2272,2282. Legacy
1/0 devices 2315 are coupled to the chipset 2290.

Referring now to FIG. 24, shown is a block diagram of a
SoC 2400 in accordance with an embodiment of the present
invention. Similar elements in FIG. 20 bear like reference
numerals. Also, dashed lined boxes are optional features on
more advanced SoCs. In FIG. 24, an interconnect unit(s) 2402
is coupled to: an application processor 2410 which includes a
set of one or more cores 202A-N and shared cache unit(s)
2006; a system agent unit 2010; a bus controller unit(s) 2016;
an integrated memory controller unit(s) 2014; a set or one or
more coprocessors 2420 which may include integrated graph-
ics logic, an image processor, an audio processor, and a video
processor; an static random access memory (SRAM) unit
2430; a direct memory access (DMA) unit 2432; and a display
unit 2440 for coupling to one or more external displays. Inone
embodiment, the coprocessor(s) 2420 include a special-pur-
pose processor, such as, for example, a network or commu-
nication processor, compression engine, GPGPU, a high-
throughput MIC processor, embedded processor, or the like.

Embodiments of the mechanisms disclosed herein may be
implemented in hardware, software, firmware, or a combina-
tion of such implementation approaches. Embodiments of the
invention may be implemented as computer programs or pro-
gram code executing on programmable systems comprising
at least one processor, a storage system (including volatile
and non-volatile memory and/or storage elements), at least
one input device, and at least one output device.

Program code, such as code 2230 illustrated in FIG. 22,
may be applied to input instructions to perform the functions
described herein and generate output information. The output
information may be applied to one or more output devices, in
known fashion. For purposes of this application, a processing
system includes any system that has a processor, such as, for
example; a digital signal processor (DSP), a microcontroller,
an application specific integrated circuit (ASIC), or a micro-
processor.

The program code may be implemented in a high level
procedural or object oriented programming language to com-
municate with a processing system. The program code may
also be implemented in assembly or machine language, if
desired. In fact, the mechanisms described herein are not
limited in scope to any particular programming language. In
any case, the language may be a compiled or interpreted
language.

One or more aspects of at least one embodiment may be
implemented by representative instructions stored on a
machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium and
supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the logic
O Processor.

Such machine-readable storage media may include, with-
out limitation, non-transitory, tangible arrangements of
articles manufactured or formed by a machine or device,
including storage media such as hard disks, any other type of

US 9,270,657 B2

27

disk including floppy disks, optical disks, compact disk read-
only memories (CD-ROMs), compact disk rewritable’s (CD-
RWs), and magneto-optical disks, semiconductor devices
such as read-only memories (ROMs), random access memo-
ries (RAMs) such as dynamic random access memories
(DRAMs), static random access memories (SRAMs), eras-
able programmable read-only memories (EPROMs), flash
memories, electrically erasable programmable read-only
memories (EEPROMs), phase change memory (PCM), mag-
netic or optical cards, or any other type of media suitable for
storing electronic instructions.

Accordingly, embodiments of the invention also include
non-transitory, tangible machine-readable media containing
instructions or containing design data, such as Hardware
Description Language (HDL), which defines structures, cir-
cuits, apparatuses, processors and/or system features
described herein. Such embodiments may also be referred to
as program products.

Emulation (Including Binary Translation, Code Morphing,
Etc.)

In some cases, an instruction converter may be used to
convert an instruction from a source instruction set to a target
instruction set. For example, the instruction converter may
translate (e.g., using static binary translation, dynamic binary
translation including dynamic compilation), morph, emulate,
or otherwise convert an instruction to one or more other
instructions to be processed by the core. The instruction con-
verter may be implemented in software, hardware, firmware,
ora combination thereof. The instruction converter may be on
processor, off processor, or part on and part off processor.

FIG. 25 is a block diagram contrasting the use of a software
instruction converter to convert binary instructions in a source
instruction set to binary instructions in a target instruction set
according to embodiments of the invention. In the illustrated
embodiment, the instruction converter is a software instruc-
tion converter, although alternatively the instruction con-
verter may be implemented in software, firmware, hardware,
or various combinations thereof. FIG. 25 shows a program in
a high level language 2502 may be compiled using an x86
compiler 2504 to generate x86 binary code 2506 that may be
natively executed by a processor with at least one x86 instruc-
tion set core 2516. The processor with at least one x86 instruc-
tion set core 2516 represents any processor that can perform
substantially the same functions as an Intel processor with at
least one x86 instruction set core by compatibly executing or
otherwise processing (1) a substantial portion of the instruc-
tion set of the Intel x86 instruction set core or (2) object code
versions of applications or other software targeted to run on
an Intel processor with at least one x86 instruction set core, in
order to achieve substantially the same result as an Intel
processor with at least one x86 instruction set core. The x86
compiler 2504 represents a compiler that is operable to gen-
erate x86 binary code 2506 (e.g., object code) that can, with or
without additional linkage processing, be executed on the
processor with at least one x86 instruction set core 2516.
Similarly, FIG. 25 shows the program in the high level lan-
guage 2502 may be compiled using an alternative instruction
set compiler 2508 to generate alternative instruction set
binary code 2510 that may be natively executed by a proces-
sor without at least one x86 instruction set core 2514 (e.g., a
processor with cores that execute the MIPS instruction set of
MIPS Technologies of Sunnyvale, Calif. and/or that execute
the ARM instruction set of ARM Holdings of Sunnyvale,
Calif.). The instruction converter 2512 is used to convert the
x86 binary code 2506 into code that may be natively executed
by the processor without an x86 instruction set core 2514.
This converted code is not likely to be the same as the alter-

20

25

30

35

40

45

50

55

60

65

28

native instruction set binary code 2510 because an instruction
converter capable of this is difficult to make; however, the
converted code will accomplish the general operation and be
made up of instructions from the alternative instruction set.
Thus, the instruction converter 2512 represents software,
firmware, hardware, or a combination thereof that, through
emulation, simulation or any other process, allows a proces-
sor or other electronic device that does not have an x86
instruction set processor or core to execute the x86 binary
code 2506.

Alternative Embodiments

While embodiments have been described which have the
function of these embodiments as being performed from
within the storage system (e.g., trusted API, lockable storage,
downloading and managing of premium content, activation of
value-added storage service, etc.), alternative embodiments
of'the invention may have these functions being performed in
a different part of the device. For example and in one embodi-
ment, one or more of these described functions could be
performed in different hardware (chipset, a secure core of the
device, secure processor, a coupled device (USB stick, etc.),
etc., and/or some other hardware block) and/or in software.
Also, while the flow diagrams in the Figures show a particular
order of operations performed by certain embodiments of the
invention, it should be understood that such order is exem-
plary (e.g., alternative embodiments may perform the opera-
tions in a different order, combine certain operations, overlap
certain operations, etc.).

In the description above, for the purposes of explanation,
numerous specific details have been set forth in order to
provide a thorough understanding of the embodiments of the
invention. It will be apparent however, to one skilled in the art,
that one or more other embodiments may be practiced with-
out some of these specific details. The particular embodi-
ments described are not provided to limit the invention but to
illustrate embodiments of the invention. The scope of the
invention is not to be determined by the specific examples
provided above but only by the claims below.

What is claimed is:
1. A method to enable a value-added storage service of a
storage system coupled to a client, comprising:
establishing a secure root of trust for the client, wherein the
secure root of trust establishes a secure path to download
a license for the value-added secure storage from a pro-
vider of the value-added storage service;
establishing a secure tunnel between an application of the
client and the storage system of the client, wherein the
secure tunnel uses an action and results mailbox;
securely downloading the license for the value-added stor-
age service from the provider to the storage system,
wherein the storage system includes secure storage that
is used to store the license; and
securely providing the license from the storage system to
the application via the secure tunnel.
2. The method of claim 1, wherein the storage system
includes secure storage that is used to store the license.
3. The method of claim 1, wherein the license stored in the
secure storage is accessible via a private interface.
4. The method of claim 1, wherein establishing of the
secure root of trust comprises:
provisioning a public key into the storage system.
5. The method of claim 1, wherein securely downloading
the license comprises:
authenticating with a service that manages the license.

US 9,270,657 B2

29

6. The method of claim 1, wherein the securely download-
ing the license comprises:

receiving the license; and

storing the license in the storage system.

7. A device to enable a value-added storage service of a
storage system coupled to a device, comprising:

the storage system, including,

an agent to establish a secure root of trust for the device,
wherein the secure root of trust establishes a secure
path to download a license for the value-added secure
storage from a service provider of the value-added
storage service,

physical storage that includes a secure storage to estab-
lish a secure tunnel with the service provider, to
securely download a license for the value-added stor-
age service from the service provider, and to securely
provide the license from the storage system to an
application via the secure tunnel, wherein the secure
tunnel to use an action and results mailbox.

8. The device of claim 7, wherein the secure storage is not
accessible to an operating system of the device.

9. The device of claim 7, wherein the license stored in the
secure storage is accessible via a private interface.

10. The device of claim 7, wherein the agent is further
configured to authenticate with service provider.

11. The device of claim 10, wherein the agent, to securely
download the license, is configured to receive the license and
to store the license in the storage system.

12. A system to enable a value-added storage service of a
storage system coupled to a device, comprising:

a service provider that manages and stores a license for the

value-added storage service; and

the storage system, including,

an agent that establishes a secure root of trust for the
device with the service provider, wherein the secure
root of trust establishes a secure path to download a

10

20

25

30

35

30

license for the value-added secure storage from a ser-
vice provider of the value-added storage service, and
physical storage including a secure storage that estab-
lishes a secure tunnel with the service provider,
securely downloads the license for the value-added
storage service from the service provider, and
securely provides the license from the storage system
to an application via the secure tunnel, wherein the
secure tunnel to use an action and results mailbox.

13. The device of claim 12, wherein the secure storage is
not accessible to an operating system of the device.

14. The device of claim 12, wherein the license stored in the
secure storage is accessible via a private interface.

15. The system of claim 12, wherein the service provider
provisions a public key for the agent.

16. The system of claim 12, wherein the agent further
authenticates with service provider.

17. A non-transitory machine-readable medium having
executable instructions to cause one or more processing units
to perform a method to enable a value-added storage service
of a storage system coupled to a client, the method compris-
ing:
establishing a secure root of trust for the client, wherein the

secure root of trust establishes a secure path to download
a license for the value-added secure storage from a pro-
vider of the value-added storage service;
establishing a secure tunnel between an application of the
client and the storage system of the client, wherein the
secure tunnel uses an action and results mailbox;

securely downloading the license for the value-added stor-
age service from the provider to the storage system,
wherein the storage system includes secure storage that
is used to store the license; and

securely providing the license from the storage system to
the application via the secure tunnel.

#* #* #* #* #*

