发明名称
由基于二噁烷的二(烯酮缩二醇)制备可生物侵蚀的聚原酸酯以及含有它们的嵌段共聚物

摘要
本发明提供了由基于二噁烷的二(烯酮缩二醇)制备的可生物侵蚀(降解)的聚原酸酯，其在作为整形外科植入体或用于药物、化妆品和农药的持续递送的载体时是有用的。本发明还提供了含有这类可生物降解的聚原酸酯的嵌段共聚物。这类嵌段共聚物具有亲水性嵌段和疏水性嵌段。它们在水溶液中形成胶束，使得它们适用于亲水性或水溶性材料的包封或增溶；并且它们还形成用于活性药剂的持续释放的可生物降解基质。
1. 一种化学式 I 的聚原酸酯:

\[
\begin{align*}
\text{其中} \\
n & \text{是至少为 5 的整数;} \\
R & \text{是线。} - (CH_2)_a - \text{或} - (CH_2)_b - O - (CH_2)_c - ; \text{其中} a \text{是 1 至 10 的整数，而} b \text{和} c \text{独立是 1 至 5 的整数;} \\
R^a & \text{是} C_1 - C_4 \text{的烷基;} \\
R^b & \text{是氢或} C_1 - C_2 \text{的烷基；且} \\
\text{每一个 A 独立选自} R^1, R^2, R^3 \text{和} R^4 \text{，其中} \\
R^1 & \text{是:} \\
\end{align*}
\]

\[
\begin{align*}
\text{其中:} \\
p & \text{是 1 至 20 的整数} \\
R^5 & \text{是氢或} C_1 - C_4 \text{烷基；且} \\
R^6 & \text{是:} \\
\end{align*}
\]
其中：

s 是 0 至 30 的整数；

t 是 2 至 200 的整数；且

R^7 是氢或 C_1-C_4烷基；

R^2 是：

R^3 是：

其中：

x 是 0 至 30 的整数；

y 是 2 至 200 的整数；

R^8 是氢或 C_1-C_4烷基；

R^9 和 R^{10} 独立为 C_1-C_{12} 亚烷基；

R^{11} 是氢或 C_1-C_6烷基而 R^{12} 是 C_1-C_6烷基；或 R^{11} 和 R^{12}
一起为 C_3-C_{10} 亚烷基；以及
R⁴ 是 (i) 在其中含有至少一个氨基官能团的二醇残基；
或
(ii) 含有至少一个独立选自酰胺、酰亚胺、脲和尿
烷基团中的官能团的二醇残基。

2. 根据权利要求 1 所述的聚原酸酯，其中 n 是从大约 5 至大约
500。

3. 根据权利要求 1 或权利要求 2 所述的聚原酸酯，其中 R 是
-CH₂OCH₂-。

4. 根据权利要求 1 所述的聚原酸酯，其中 R² 是乙基。

5. 根据权利要求 1 所述的聚原酸酯，其中 R³ 是乙基。

6. 根据权利要求 1 所述的聚原酸酯，其包括至少 0.1 mol% 的其
中 A 为 R¹ 的单元。

7. 根据权利要求 6 所述的聚原酸酯，其包括约 0.5 mol%–50 mol%
的其中 A 为 R¹ 的单元。

8. 根据权利要求 7 所述的聚原酸酯，其由大约 1 mol%–30 mol%
的其中 A 为 R¹ 的单元。

9. 根据权利要求 1 所述的聚原酸酯，其中 p 是 1 至 2。

10. 根据权利要求 1 所述的聚原酸酯，其中 R⁵ 是氢或甲基。

11. 根据权利要求 1 所述的聚原酸酯，其中 R⁶ 是
-CH₂CH₂OCH₂CH₂OCH₂CH₂-。
12. 根据权利要求 1 所述的聚原酸酯，其中 HO-R²-OH 是 1,4-环己烷二甲醇。

13. 根据权利要求 1 所述的聚原酸酯，其中 HO-R³-OH 是三甘醇或 1,10-癸二醇。

14. 一种制备化学式 I 的聚原酸酯的方法:

\[
\begin{align*}
\text{(I)} \\
\end{align*}
\]

其中

\(n \) 是一至少为 5 的整数；

\(R \) 是键、-\((CH₂)ₐ\)-或-\((CH₂)ₐ\)-O-(CH₂)ₐ-；其中 \(a \) 是 1 至 10 的整数，而 \(b \) 和 \(c \) 独立为 1 至 5 的整数；

\(R^a \) 是 C₁-C₄ 的烷基；

\(R^b \) 是氢或 C₁-C₂ 烷基；且

每一 A 独立选自 R¹, R², R³ 或 R⁴，其中

\(R^¹ \) 是:

\[
\begin{align*}
\text{(II)} \\
\end{align*}
\]

其中:

\(p \) 是 1 至 20 的整数；

\(R^⁵ \) 是氢或 C₁-C₄ 烷基；且

\(R^⁶ \) 是:
其中:

s 是 0 至 30 的整数；

t 是 2 至 200 的整数；且

R^7 是氢或 C_1-C_4 烷基；

R^2 是:

x 是 0 至 30 的整数；

y 是 2 至 200 的整数；

R^8 是氢或 C_1-C_4 烷基；

R^9 和 R^{10} 独立为 C_1-C_{12} 亚烷基；
R^{11} 是氢或 C_{1-6} 烷基而 R^{12} 是 C_{1-6} 烷基；或 R^{11} 和 R^{12} 一起为 C_{3-10} 亚烷基；以及

R^4 是 (i) 在其中含有至少一个氨基官能团的二酰残基；

或

(ii) 含有至少一个独立选自酰胺、酰亚胺、脲和尿

烷基团中的官能团的二酰残基；

所述方法包括：化学式 III 的二（烯酮缩二醇）与化学式

为 HO-R^1-OH、HO-R^2-OH、HO-R^3-OH 或 HO-R^4-OH 的二醇

或它们的混合物反应，

其中 L 是氢或 C_{1-3} 烷基。

15. 一种聚原酸酯，所述聚原酸酯是由 (a) 化学式 III 的二（烯酮

缩二醇）和 (b) 一种多羟基化合物或多羟基化合物的混合物

反应生成的产物，其中

其中:

R 是键、-(CH_2)_a-或-(CH_2)_b-O-(CH_2)_c-；其中 a 是 1 至 10

的整数，而 b 和 c 独立为 1 至 5 的整数；

R^b 是氢或一个 C_{1-2} 烷基；

L 是氢或一个 C_{1-3} 烷基。

16. 根据权利要求 15 所述的聚原酸酯，其中多羟基化合物中的至

少一种是具有多于 2 个羟基官能团的多羟基化合物。
17. 一种包括权利要求 1 所述的聚原酸酯的用于整形修复或组织再生的装置。

18. 一种药物组合物，包括:
 (a) 一种活性药剂；以及
 (b) 权利要求 1 所述的聚原酸酯，作为载体。

19. 根据权利要求 18 所述的药物组合物，其中所述活性药剂的分数占所述组合物重量的 1% 至 60%。

20. 根据权利要求 19 所述的药物组合物，其中所述活性药剂的分数占所述组合物重量的 5% 至 30%。

21. 根据权利要求 18 所述的药物组合物，其中所述活性药剂选自抗感染药、抗菌剂、类固醇、治疗多肽、抗炎药、癌症化疗药物、麻醉剂、局部麻醉药物、抗血管生成药物、疫苗、抗原、DNA 和反义寡聚核苷酸。

22. 根据权利要求 18 所述的药物组合物，其中所述活性药剂是一种治疗多肽。

23. 根据权利要求 18 所述的药物组合物，其中所述活性药剂是一种局部麻醉药物。

24. 根据权利要求 23 所述的药物组合物，进一步包括一种糖皮质激素。

25. 根据权利要求 18 所述的药物组合物，其中所述活性药剂是一种抗血管生成药物。
26. 根据权利要求 18 所述的药物组合物，其中所述活性药剂是一种癌症化疗药物。

27. 根据权利要求 18 所述的药物组合物，其中所述活性药剂是一种抗生素。

28. 根据权利要求 18 所述的药物组合物，其中所述活性药剂是一种抗炎药。

29. 一种通过活性药剂的受控释放局部给药治疗可治疗的疾病的的方法，包括以权利要求 18 所述的药物组合物的形式局部给予有效治疗量的所述活性药剂。

30. 一种在哺乳动物的某部位防止或减缓局部疼痛的方法，包括以权利要求 23 所述的药学可接受组合物的形式给予所述部位有效治疗量的局部麻醉药物。

31. 一种化学式 X、化学式 Y 或化学式 Z 的嵌段共聚物:

\[
R^A-[OCH_{2}CH_{2}]_f-[POE]_g\cdot H \quad (X), \\
R^A-[OCH_{2}CH_{2}]_f-[POE]_g\cdot [OCH_{2}CH_{2}]_h\cdot OR^B \quad (Y), \\
H-A-[POE]_g\cdot [OCH_{2}CH_{2}]_h\cdot [POE]_j\cdot H \quad (Z),
\]

其中:

- \(R^A\) 是 C\(_1\)-C\(_4\)烷基；
- \(R^B\) 是 C\(_1\)-C\(_4\)烷基；
- \(f\) 和 \(h\) 独立为从 2 至 1000 的的整数；
- \(g\) 和 \(j\) 独立为从 2 至 200 的的整数；
- POE 是一种化学式 II 的聚原酸酯单元；
其中:

R 是键、-(CH₂)ₐ-或-(CH₂)ₐ-O-(CH₂)ₖ-；其中 a 为 1 至 10 的整数，而 b 和 c 独立为 1 至 5 的整数，且

Rₐ 是 C₁-C₄ 烷基；
Rₖ 是 H 或 C₁-C₂ 烷基；

每一 A 独立选自 R¹、R²、R³ 和 R⁴，其中

R¹ 是:

其中:

p 是 1 至 20 的整数；
R₅ 是氢或 C₁-C₄ 烷基；且
R₆ 是:

其中:

s 是 0 至 30 的整数；
t 是 2 至 200 的整数；且

R^7 是氢或 C_1-C_4 烷基；

R^2 是:

-
-
-

R^3 是:

-

其中:

x 是 0 至 30 的整数；

y 是 2 至 200 的整数；

R^8 是氢或 C_1-C_4 烷基；

R^9 和 R^{10} 独立为 C_1-C_{12} 烷基；

R^{11} 是氢或 C_1-C_6 烷基而 R^{12} 是 C_1-C_6 烷基；或 R^{11} 和 R^{12}

一起为 C_3-C_{10} 烷基；以及

R^4 是 (i) 在其中含有至少一个氨基官能团的二醇残基；

或

(ii) 含有至少一个独立选自酰胺、酰亚胺、脲和尿

烷基团中的官能团的二醇残基。

32. 根据权利要求 31 所述的共聚物，其中 R^A 和 R^B 都是甲基。

33. 根据权利要求 31 或权利要求 32 所述的共聚物，其中 R 是

-CH_2OCH_2^-。
34. 根据权利要求 31 所述的共聚物，其中 R^a 是乙基。

35. 根据权利要求 31 所述的共聚物，其中 R^b 是乙基。

36. 根据权利要求 31 所述的共聚物，其中包括至少 0.1 mol% 的其中 A 是 R^1 的单元。

37. 根据权利要求 36 所述的共聚物，其中包括约 0.5 mol% - 50 mol% 的其中 A 是 R^1 的单元。

38. 根据权利要求 37 所述的共聚物，其中包括约 1 mol% - 30 mol% 的其中 A 是 R^1 的单元。

39. 根据权利要求 31 所述的共聚物，其中 p 是 1 至 2。

40. 根据权利要求 31 所述的共聚物，其中 R^5 是氢或甲基。

41. 根据权利要求 31 所述的共聚物，其中 R^6 是 \(-\text{CH}_2\text{CH}_2\text{OCH}_2\text{CH}_2\text{OCH}_2\text{CH}_2\text{-}\)。

42. 根据权利要求 31 所述的共聚物，其中 HO-R^2-OH 是 1,4-环己烷二甲醇。

43. 根据权利要求 31 所述的共聚物，其中 HO-R^3-OH 是三甘醇或 1,10-癸二醇。

44. 根据权利要求 31 所述的共聚物，其为化学式 X 的化合物。

45. 根据权利要求 44 所述的共聚物，其中 f 是从 10 至 500 的整数，而 g 是从 5 至 100 的整数。

46. 根据权利要求 31 所述的共聚物，其为化学式 Z 的化合物。
47. 根据权利要求 46 所述的共聚物, 其中 \(h \) 是从 10 至 500 的整数，
而 \(g \) 和 \(j \) 独立为从 5 至 100 的整数。

48. 一种用于疏水性或水不溶性活性药剂递送的胶束药物组合物，
包括物理性包裹在药物载体中而不是共价键合至药物载体上的
所述活性药剂，所述药物载体包括权利要求 31 所述的嵌段
共聚物。

49. 根据权利要求 48 所述的组合物，其中所述活性药剂是一种抗
癌药。

50. 一种用于持续释放活性药剂的组合物，包括分散在包括权利要
求 31 所述的嵌段共聚物的基质中的所述活性药剂。

51. 根据权利要求 18 所述的药物组合物，通过所述活性药剂的受
控释放而局部给药来用于治疗可治疗的疾病。

52. 根据权利要求 23 所述的药物组合物，用于防止或减缓哺乳动
物某一部位的局部疼痛。

53. 根据权利要求 1-3 中任一权利要求所述的聚原酸酯，其中 \(R^a \)
是乙基。

54. 根据权利要求 1-4 和权利要求 53 中任一权利要求所述的聚原
酸酯，其中 \(R^b \) 是乙基。

55. 根据权利要求 1-5、53 和 54 中任一权利要求所述的聚原酸酯，
其包含至少 0.1 mol\%的其中 A 为 \(R^1 \) 的单元。

56. 根据权利要求 55 所述的聚原酸酯，其包含约 0.5 mol\%-50
mol\%其中 A 为 \(R^1 \) 的单元。
57. 根据权利要求 56 所述的聚原酸酯，其包括约 1 mol%-30 mol% 其中 A 为 R^1 的单元。

58. 根据权利要求 1-8 和 53-57 中任一权利要求所述的聚原酸酯，其中 p 为 1 至 2。

59. 根据权利要求 1-9 和 53-58 的聚原酸酯，其中 R^5 是氢或甲基。

60. 根据权利要求 1-10 和 53-59 中任一权利要求所述的聚原酸酯，其中 R^6 是-CH_2CH_2OCH_2CH_2OCH_2CH_2-。

61. 根据权利要求 1-11 和 53-60 中任一权利要求所述的聚原酸酯，其中 HO-R^2-OH 是 1,4-环己烷二甲醇。

62. 根据权利要求 1-12 和 53-61 中任一权利要求所述的聚原酸酯，其中 HO-R^3-OH 是三甘醇或 1,10-癸二醇。

63. 一种用于整形修复或组织再生的装置，包括权利要求 1-13 和 53-62 中任一权利要求所述的聚原酸酯。

64. 一种药物组合物，包括:
 (a) 一种活性药剂；以及
 (b) 权利要求 1-13 和 53-62 中任一权利要求所述的聚原酸酯，作为运载媒介。

65. 根据权利要求 64 所述的药物组合物，其中所述活性药剂的分数为所述组合物重量的 1%-60%。

66. 根据权利要求 65 所述的药物组合物，其中所述活性药剂的分数为所述组合物重量的 5%-30%。
67. 根据权利要求 18-20 和 64-66 中任一权利要求所述的药物组合物，其中所述活性药剂选自抗感染药、抗菌剂、类固醇、治疗多肽、抗炎药、癌症化疗药物、麻醉剂、局部麻醉药物、抗血管生成药物、疫苗、抗原、DNA 和反义寡聚核糖核酸。

68. 根据权利要求 67 所述的药物组合物，其中所述活性药剂是一种治疗多肽。

69. 根据权利要求 67 所述的药物组合物，其中所述活性药剂是一种局部麻醉药物。

70. 根据权利要求 69 所述的药物组合物，其中进一步包括一种糖皮质激素。

71. 根据权利要求 67 所述的药物组合物，其中所述活性药剂是一种抗血管生成药物。

72. 根据权利要求 67 所述的药物组合物，其中所述活性药剂是一种癌症化疗药物。

73. 根据权利要求 67 所述的药物组合物，其中所述活性药剂是一种抗生素。

74. 根据权利要求 67 所述的药物组合物，其中所述活性药剂是一种抗炎药。

75. 一种通过活性药物的受控释放而局部给药来治疗可治疗的疾病的方法，包括局部给予有效治疗量的权利要求 1-12 和 64-74 中任一权利要求所述的药物组合物形式的所述活性药剂。
76. 一种防止或减缓哺乳动物某一部位局部疼痛的方法，包括给予所述部位有效治疗剂量的药学可接受的权利要求 69 所述的药物组合物形式的局部麻醉药物。

77. 根据权利要求 31-33 中任一权利要求所述的共聚物，其中 R^4 是乙基。

78. 根据权利要求 31-33 和 77 中任一权利要求所述的共聚物，其中 R^6 是乙基。

79. 根据权利要求 31-34、77 和 78 中任一权利要求所述的共聚物，其中包括至少 0.1 mol% 的其中 A 为 R^1 的单元。

80. 根据权利要求 79 所述的共聚物，其中包括约 0.5 mol% -50 mol% 的其中 A 为 R^1 的单元。

81. 根据权利要求 80 所述的共聚物，其中包括约 1 mol% -30 mol% 的其中 A 为 R^1 的单元。

82. 根据权利要求 31-38 和 77-81 中任一权利要求所述的共聚物，其中 p 是 1 至 2。

83. 根据权利要求 31-39 和 77-82 中任一权利要求所述的共聚物，其中 R^5 是氢或甲基。

84. 根据权利要求 31-40 和 77-83 中任一权利要求所述的共聚物，其中 R^6 是 -CH_2CH_2OCH_2CH_2OCH_2CH_2^+。

85. 根据权利要求 31-41 和 77-84 中任一权利要求所述的共聚物，其中 HO-R^2-OH 是 1,4-环己烷二甲醇。
86. 根据权利要求 31-42 和 77-85 中任一权利要求所述的共聚物，其中 HO-\(R^3\)-OH 是三甘醇或 1,10-癸二醇。

87. 根据权利要求 31-43 和 77-86 中任一权利要求所述的共聚物，是一种化学式 X 的化合物。

88. 根据权利要求 87 所述的共聚物，其中 f 是从 10 至 500 的整数，而 g 是从 5 至 100 的整数。

89. 根据权利要求 31-45 和 77-88 中任一权利要求所述的共聚物，是一种化学式 Z 的化合物。

90. 根据权利要求 89 所述的共聚物，其中 h 是从 10 至 500 的整数，而 g 和 j 独立为从 5 至 100 的整数。

91. 一种用于疏水或水不溶性活性药剂递送的胶束药物组合物，包括物理性包裹在药物载体中活性药剂，而不是共价连接到药物载体上的所述活性药剂，所述药物载体包括一种权利要求 31-47 和 77-90 中任一权利要求所述的嵌段共聚物。

92. 根据权利要求 91 所述的组合物，其中所述活性药剂是一种抗癌药。

93. 一种用于活性药剂的持续释放的组合物，包括分散在包括权利要求 31-47 和 77-90 中任一权利要求所述的嵌段共聚物的基质中的活性药剂。

94. 根据权利要求 18-20 和 64-74 中任一权利要求所述的药物组合物，通过活性成份受控释放的局部给药用于治疗可治疗的疾病。
95. 根据权利要求 69 的药物组合物，用于防止或减缓哺乳动物某一部位的局部疼痛。
由基于二噁烷的二（烯酮缩二醇）制备
可生物侵蚀的聚原酸酯以及含有它们的嵌段共聚物

技术领域

本申请涉及聚原酸酯。在本申请的一个具体实施例中所提供的
是一种由基于二噁烷的二（烯酮缩二醇）制备的可生物侵蚀的聚原
酸酯；以及含有它们的嵌段共聚物。

背景技术

从七十年代早期开始，随着 Yolles 等人用聚乳酸尝试治疗药剂
的全身递送以来（Ploymer News 1:9-15（1970）），越来越多的人开
始对合成用于治疗药剂的全身递送的可生物降解的聚合物感兴趣。
从那时起，人们制备和研究了许多其它的聚合物作为可生物侵蚀的
基质用于治疗药剂的受控释放。

美国专利第 4,079,038 号、第 4,093,709 号、第 4,131,648 号、
第 4,138,344 号和第 4,108,646 号披露了可生物降解或可生物侵蚀的
聚原酸酯。这些聚合物是通过一种原酸酯（或原碳酸酯）如 2,2-二
乙氧基四氢呋喃和一种二醇如 1,4-环己烷二甲醇反应生成的。该反
应需要高温、减压，并且反应时间较长。当该聚合物因不稳定化学
键的水解而发生生物降解时，滞留在聚合物基质中的药物或其它活
性药剂就被释放出来了。

美国专利第 4,304,767 号披露了由一种多羟基化合物（多元醇）
和一种多官能团的乙烯酮缩二醇反应而制备的聚合物。这些聚合物
比美国专利第4,079,038号、第4,093,709号、第4,131,648号、第4,138,344号和第4,108,646号中的聚合物有了显著的进步，因为该合成过程能在室温和常压下容易地进行，并且得到的聚合物也具有更优越的性能。

在美国专利第4,957,998号中披露了进一步的聚合物。这些聚合物含有缩醛键、羧基-缩醛键和羧基-原酸酯键，并通过两步反应过程来制备，首先由一种多官能团的乙烯酮缩二乙醇与一种含有乙烯醚的化合物反应，然后与一种多羟基化合物或多元酸反应。

在美国专利第4,946,931号中披露了更进一步的相似类型的聚合物。该聚合物是由一种含有多个羧酸酯官能团的化合物和一种多官能团的乙烯酮缩二乙醇反应而生成的。得到的聚合物具有非常快的腐蚀时间。

尽管对原酸酯键进行水解非常容易，当将现有技术中已知的聚原酸酯放置在缓冲液中或将其残留在体内时，其是极其稳定的物质。该稳定性得益于该聚原酸酯的极度的疏水性，这极大地限制了能够渗透该聚合物的水量。因此，为了达到有效的腐蚀速率，必须在该聚合物中物理性地加入酸性赋形剂。该物理性加入的酸性赋形剂能够以不同的速率在聚合物基质中扩散，而这使得我们能够对腐蚀速率进行控制，然而当聚合物的基质中完全没有赋形剂时，该聚合物就会有较长的保留寿命。

美国专利第4,764,364号和第4,855,132号描述了一些可生物侵蚀聚合物，包括含有一个氨基官能团的聚原酸酯。据报道这些聚合物在酸性水溶液环境中，在低pH值下比在高pH值下具有更快的腐蚀速率。
用于肿瘤靶向定位的胶束体系

在治疗癌症的过程中的一个主要问题是很难在肿瘤部位提供足够浓度的抗癌药物。这是由于有时这些药剂的毒性非常大，从而极大限制了可使用的量。然而，在癌症化疗领域一个重大的发现是所谓的 EPR（增强的渗透和滞留）作用。这种 EPR 作用是基于对肿瘤血管系统（脉管系统）的观察而得到的。新生成的血管系统具有未完全形成的上皮细胞，其对于大分子具有好得多的透过性，而以前形成的上皮的血管系统对于大分子基本上是不可透过的。而且，肿瘤中的淋巴管引流非常糟糕，这有利于递送到肿瘤的抗癌药物的贮存。

美国专利第 5,412,072 号；第 5,449,513 号和第 5,510,103 号和第 5,693,751 号描述了一些作为胶束递送体系的有用的嵌段共聚物。其中亲水嵌段是聚乙二醇而疏水嵌段是聚天冬氨酸、聚谷氨酸和聚赖氨酸的各种衍生物。美国专利第 5,412,072 号和第 5,693,751 号描述了一种方法，其中药物被化学连接到疏水部分上。而美国专利第 5,449,513 号和第 5,510,013 号描述了另一种方法，其中疏水的药物被物理性地包裹在胶束的疏水部分之中。后一种方法显然是更优选的方法，因为药物的化学修饰是不必要的。

用于受控药物递送的可生物侵蚀的嵌段共聚物基质

在由亲水性 A 嵌段和疏水性 B 嵌段组成的 AB、ABA 或 BAB 的嵌段共聚物中，A 嵌段和 B 嵌段是不相容的，并在微观尺度上将会发生相分离。该相分离给与了这种物质独特且有用的热学特性。

美国专利第 5,939,453 号描述了由聚乙二醇和某种聚原酸酯制备的嵌段共聚物。

将在这一部分中列出的文献及本申请全文其它部分列出的文献通过引用的方式合并于本申请中。

发明内容

在本发明的第一个方面，提供了化学式 I 的聚原酸酯:

\[
\begin{array}{c}
\text{R}^a \text{O} \text{O} \text{R}^b \text{R}^c \text{O} \text{O} \text{R}^a \\
\text{O} \text{O} \text{R} \text{O} \text{A}^- \text{n}
\end{array}
\]

(l)
其中

n 为不小于 5 的整数；

R 为键、-(CH₂)ₙ-或-(CH₂)ₙ-O-(CH₂)ₙ-，其中 a 为 1 至 10 的整数，
而 b 和 c 独立为 1 至 5 的整数；

R¹ 为 C₁-C₄ 烷基；

R² 为氢或 C₁-C₂ 烷基；

每一 A 独立地选自 R¹、R²、R³ 或 R⁴，其中

R¹ 为：

```
[       O          ]
[ R⁵         ]
```

其中:

p 是 1 至 20 的整数；

R⁵ 是氢或 C₁-C₄ 烷基；

R⁶ 是：

```
      ,       ,        ,
```

```
      ,        ,
```

```
      ,        ,
```

```
      ,        ,
```

```
      ,        ,
```

24
其中：

s 是 0 至 30 的整数；

t 是 2 至 200 的整数；以及

R^7 是氢或 C_1-C_4 烷基；

R^2 是：

-

R^3 是：

-

其中：

x 是 0 至 30 的整数；

y 是 2 至 200 的整数；

R^8 是氢或 C_1-C_4 烷基；
R^9 和 R^{10} 独立为 C_1-C_{12} 亚烯基；

R^{11} 是氢或 C_1-C_6 烷基而 R^{12} 是 C_1-C_6 烷基；或者 R^{11} 和 R^{12} 一起为 C_3-C_{10} 亚烯基；且

R^4 是 (i) 在其中含有至少一个氨基官能团的二醇残基；或

(ii) 含有至少一个独立选自酰胺、酰亚胺、脲和尿烷基团中的官能团的二醇残基。

在本发明的第二方面，提供了受控释放的药物组合物，包括：

(a) 一种活性药剂；以及

(b) 如在上文中所描述的聚酰酸酯，作为运载媒介。

在本发明的第三个方面，提供了一种通过活性药剂的受控局部释放来治疗可治疗的（可愈的）疾病状态的方法，如通过给予局部麻醉剂来治疗疼痛，或通过化疗药物或抗肿瘤药的给药来治疗癌症，该方法包括将有效治疗量如上所述的受控释放药物组合物形式的活性药剂进行局部给药。

在本发明的第四个方面，提供了制备本发明第一方面的聚酰酸酯的方法以及制备本发明第二方面的受控释放药物组合物的方法。

在本发明的第五个方面，提供了化学式 X、化学式 Y 和化学式 Z 的嵌段共聚物。

\[R^A-[OCH_2CH_2]_r-[POE]_g-H \quad (X), \]
\[R^A-[OCH_2CH_2]_r-[POE]_g-[OCH_2CH_2]_h-OR^B \quad (Y), \]
\[H-A-[POE]_g-[OCH_2CH_2]_h-[POE]_g-H \quad (Z), \]
其中:

R^A 是 C$_1$-C$_4$ 烷基；

R^B 是 C$_1$-C$_4$ 烷基；

f 和 h 独立为 2 至 1000 的整数；

g 和 j 独立为 2 至 200 的整数；

POE 是一种化学式 II 的聚原酸酯单体：

$$
\begin{array}{c}
\text{R}^a \text{O} \text{O} \text{R}^b \text{O} \text{R}^b \\
\text{R} \text{O} \text{O} \text{A} \text{R}^a
\end{array}
$$

其中

R 是键、-(CH$_2$)$_a$-或-(CH$_2$)$_b$-O-(CH$_2$)$_c$-；其中 a 是 1 至 10 的整数，而 b 和 c 独立为 1 至 5 的整数；

R^a 是 C$_1$-C$_4$ 烷基；

R^b 是氢或 C$_1$-C$_2$ 烷基；

每一 A 独立选自 R^1、R^2、R^3 和 R^4，其中

R^1 为：

$$
\begin{array}{c}
\text{R}^5 \text{R}^6 \\
\text{R}^5 \text{R}^6
\end{array}
$$
其中：

p 是 1 至 20 的整数

\(R^5 \) 是氢或 C\(_1\)-C\(_4\) 烷基；以及

\(R^6 \) 是：

\[\begin{align*}
\text{苯} & , \\
\text{环己烷} & , \\
\text{甲基苯} & , \\
\text{二苯甲烷} & , \\
\text{三苯甲烷} & ,
\end{align*} \]

或

\[\begin{align*}
\text{三苯甲烷} & , \\
\text{二苯甲烷} & ,
\end{align*} \]

其中：

s 是 0 至 30 的整数；

t 是 2 至 200 的整数；以及

\(R^7 \) 是氢或 C\(_1\)-C\(_4\) 烷基；

\(R^2 \) 是：

\[\begin{align*}
\text{苯} & , \\
\text{环己烷} & , \\
\text{甲基苯} & , \\
\text{二苯甲烷} & ,
\end{align*} \]

或

\[\begin{align*}
\text{二苯甲烷} & ,
\end{align*} \]
\(R^3 \) 是:

\[
\begin{align*}
\text{[O]_x} & \quad , \quad \text{[R^8]}_y \quad , \quad \text{R}^9 \quad \text{O} \quad \\
\text{[R^{11}]}_x & \quad \text{O} \quad \text{[R^{12}]}_x \quad \text{R}^{10}.
\end{align*}
\]

其中:

x 是 0 至 30 的整数;

y 是 2 至 200 的整数;

\(R^8 \) 是氢或 C\text{1}-C\text{4} 亚烷基;

\(R^9 \) 和 \(R^{10} \) 独立为 C\text{1}-C\text{12} 亚烷基;

\(R^{11} \) 是氢或 C\text{1}-C\text{6} 亚烷基而 \(R^{12} \) 是 C\text{1}-C\text{6} 亚烷基；或 \(R^{11} \) 和 \(R^{12} \) 一起为 C\text{3}-C\text{10} 亚烷基；且

\(R^4 \) 为 (i) 含有至少一个氨基官能团的二醇残基，或

(ii) 含有至少一个独立选自酰胺、酰亚胺、脲和尿烷基团中的官能团的二醇残基。

在本发明的第六个方面，提供了一种用于疏水或不溶于水的活性药剂递送的胶束药物组合物，包括物理性地包裹在其中而不是共价连结到药物载体上的活性药剂，该载体包括化学式 X、化学式 Y、化学式 Z 或其混合物的嵌段共聚物。

在本发明的第七个方面，提供了一种用于持续释放活性药剂的组合物，包括分散在包括化学式 X、化学式 Y、化学式 Z 或其混合物的嵌段共聚物基质中的活性药剂。
在本发明的第八个方面，提供了一种用于制备化学式 X、化学式 Y 或化学式 Z 的嵌段共聚物的方法，如在 “具体实施方式” 中所述。

具体实施方式

定义

除非在本说明书的其它部分另外定义，在本申请中的所有的科技术语是根据其传统定义使用的，它们是如被合成化学和药物化学领域的普通技术人员所通常使用和理解的那样。

“活性药剂” 包括任何能够产生有益效果或有用效果的化合物或化合物的混合物。活性药剂明显不同于象运载媒介运载媒介、载体、稀释剂、润滑剂、粘合剂这类组分，同时也不同于其它的配方助剂、成胶囊成分或其它保护成分。活性药剂的实例为药物组分、用药药剂或化妆品组分。适宜的药物组分包括局部或全身起作用的药物活性组分，它们可以通过局部施药或病灶内施药（包括，例如施于擦伤的皮肤、裂伤、刺伤等，以及施用于外科切口），或通过注射，如皮下注射、皮内注射、肌肉注射、眼内注射或关节内注射而对受治疗者给药。这些药物的例子包括但不限于，抗感染药（包括抗生素、抗病毒药、杀真菌剂、灭疥螨药或灭虱药），杀菌剂（如苯扎氯铵、苄索氯铵、葡萄糖酸洗必太、醋酸磷胺米隆、甲苯素氯铵、呋喃西林、硝酸羟泵和类似物质），类固醇（如，雌激素、孕酮、雄激素、肾上腺类皮质激素和类似物质），治疗多肽（如胰岛素、红细胞生成素、形态形成蛋白如骨形态形成蛋白、以及类似物质），镇痛剂和抗炎药（如阿斯匹林、布洛芬、萘普生、酮洛酸、COX-1 抑制剂、COX-2 抑制剂、以及其它类似物），癌症化疗药物（如，二氯甲基二乙胺（氮芥）、环磷酰胺、氟尿嘧啶、硫鸟嘌呤、卡莫司汀（亚硝基脲氮芥）、罗莫司汀、美法仑、苯丁酸氮芥、链
脲霉素、甲氨蝶呤、长春新碱、博来霉素、长春碱、长春碱酰胺、放线菌素D（更生霉素）、正定霉素、阿霉素、他莫昔芬、以及类似物质）、麻醉剂（如，吗啡、度冷丁、可待因、以及类似物质）、局部麻醉剂（如，酰胺-或苯胺-型局部麻醉剂，如布比卡因、丁卡因、甲哌卡因、普鲁卡因、利多卡因、丁卡因、以及类似物质）、抗血管生成药（如，康姆伯勒斯亭(combrestatin)）、13 500 二聚体蛋白（contortrostatin）、抗-VEGF、以及类似物质）、多糖、疫苗、抗原、DNA 和其它的多核苷酸，反义寡聚核苷酸，以及类似物质。其它的局部起作用的活性药剂在本专利中也同样适用，如收敛剂、止汗药、刺激剂、发红药、起疱剂、硬化剂、腐蚀性剂、毒性剂（腐蚀药）、角质层分离剂、遮光剂和各种皮肤病药物，包括色素减退剂（hypopigmenting agent）和止痒剂。术语“活性药剂”还包括杀生物剂，如杀真菌剂、杀虫剂和除草剂。植物生长促进剂或抑制剂、防腐剂、消毒剂，空气净化剂和营养物质。

“烷基”是指具有从1到所标明的碳原子数目的直链形饱和烃基，或具有从3到所标明的碳原子数目的带支链或环状结构的饱和烃基（如 C₁-C₄ 烷基）。烷基的具体例子包括甲基、乙基、正丙基、异丙基、环丙基、正丁基、叔丁基、环丙基甲基和类似结构。

“亚烷基”是指具有从1到所标明的碳原子数目的带支链的或不带支链的饱和的二价基团（如 C₁-C₁₂ 亚烷基）。亚烷基的具体例子包括亚甲基（-CH₂-）、亚乙基（-CH₂CH₂-）、亚异戊基（-CH₂-CH(CH₃)-CH₂-CH₂-）、正辛基（-(CH₂)₈-）和类似结构。

“可生物降解”和“可生物侵蚀”是指通过生物环境的作用对聚原酸酯的降解、分解或菌致分解。该生物环境包括活生物体的作用，其最显著的特点是在生理 pH 值和温度下起作用。在本申请中所给出的一种用于聚原酸酯生物侵蚀的主要机制是聚原酸酯单元内或单元间的化学键的水解。
“包括”是一种统称，一般解释为含有、包含、覆盖或包括在该术语后面所列出的各个组成部分，但不排除其它没有列举的组成部分。

“受控释放”、“持续释放”和其它类似的术语是用来指一种活性药物的递送模式，此时活性药物在一段时间内从递送运载媒介中以一种确定的可控制的速率释放，而不是在施药或注射后立即分散。受控释放或持续释放可能持续数小时、数天或者数月，会因多种因素的影响而发生改变。对于本申请中所给出的药物组合物，其释放速率取决于组合物中所选择的运载媒介的类型及其浓度。释放速率的另外一种决定性因素是聚原酸酯单元内和单元间的键的水解速率。该水解速率反过来又可以被聚原酸酯的组成和聚原酸酯中可水解键的数量所控制。其它决定活性药物从本发明的药物组合物中释放速率的因素包括颗粒大小。（对于该基质内部或外部的）介质的酸度和在该基质中的活性药物的物理和化学性质。

“基质”是指聚原酸酯或嵌段共聚物的物理结构，它主要是以阻止活性药物释放的方式来达到有效保留活性药物的目的，直到聚原酸酯或嵌段共聚物腐蚀或分解后，活性药物才能全部释放。

“PEG”是指聚乙二醇和具有用数字下标表明的标称数的平均分子量 Mn 的 H-[OCH₂CH₂]ₖ-OH。除非在本文中其他地方需要，“PEG”也包括聚乙二醇单（C₁-C₄烷基）醚和 R-[OCH₂CH₂]ₖ-OH，其中 R 是 C₁-C₄烷基，有时被称作“PREG”。

“POE”是指聚原酸酯；或者在嵌段共聚物的情况下，是指聚原酸酯单元。

“螯合（sequestration）”是将活性药物限制或滞留在聚原酸酯或嵌段共聚物基质的内部空间中。在基质中活性药物的螯合可以限
制该药剂的毒性作用，以受控方式延长该药剂的作用时间，使得该药剂在有机体内准确限定的部位释放、或者保护不稳定的药剂免受环境作用的影响。

“有效治疗量”是指当给动物给药用于治疗疾病时，所给予的量对于有效治疗该疾病是足够的。

疾病的“治疗”或“处治”包括阻止该疾病在动物体上发生，该动物可能易于患这种疾病但是并没有经历或表现出该疾病的症状（预防性处理），抑制疾病（减缓或阻止病情的发展），减缓该疾病的症状或副作用（包括缓解治疗或姑息疗法），和减缓疾病（使疾病消退）。出于本申请的目的，“疾病”包括疼痛。

“单元”是指聚原酸酯链的独立片段，它由二（烯酮缩二醇）分子的残基和多羟基化合物的残基组成。

“含有 α-羟基酸”单元是指一种单元，其中 A 是 R¹，例如，其中的二醇是由一种 α-羟基酸或其环二酯与一种化学式为 HO-R⁶-OH 的二醇制备而成的。聚原酸酯部分是含有 α-羟基酸单元，它影响含有它的该聚原酸酯或嵌段共聚物的水解速率（或可生物侵蚀速率），接着还影响活性药剂的释放速率。

“含有氨基”单元是指一种单元，其中在该二醇中含有至少一个氨基官能团，它是其中 A 为 R⁴ 的两类单元之一。聚原酸酯部分是含有氨基单元，它影响含有它的该聚原酸酯或嵌段共聚物的水解速率（或可生物侵蚀速率）的 pH-敏感度，接着还影响活性药剂的释放速率。

“刚性”和“柔性”单元是指聚原酸酯的单个单元，该部分相对于聚原酸酯整体而言，决定了含有它的聚原酸酯或嵌段共聚物的
机械-物理状态。“刚性”单元是其中 A 是 R^2 的单元，而“柔性”单元是其中 A 为 R^3 的单元。

“氢键”单元是指这样一种单元，其中该二醇含有至少一个独立选自酰胺、酰亚胺、脲和尿烷基团中的官能团，它是其中 A 为 R^4 的两类单元之一。聚原酸酯部分是氢键单元，其决定含有它的聚原酸酯或嵌段共聚物的机械-物理状态。

“运载媒介”和“载体”是指一种包含在组合物中的成分，如在药物或化妆品制备过程中起到治疗或其它生物作用以外的作用。运载媒介和载体担负的功能包括将活性药剂输送到目的部位，通过螯合或其它方法来控制活性药剂的接触速度或释放速度，并有利于将该药剂施用到需要该活性的区域。运载媒介或载体的例子包括固体，如微粒、微球、棍，和圆片；以及半固体，它们不必要通过注射器及其类似物，或用如涂药的棉棒这样的工具来涂布。

所给出的范围，如温度、时间、尺寸及类似条件，除非作特殊的说明，应该理解为是大致的量。

聚原酸酯

聚原酸酯是化学式 I 的物质:

![化学式](image)

其中

\(n \) 为不小于 5 的整数;
R 为键、-(CH₂)ₐ-或-(CH₂)ₐ-O-(CH₂)ₐ-, 其中 a 为 1 至 10 的整数，而 b 和 c 独立为 1 至 5 的整数；

R⁺ 为 C₁-C₄ 烷基；

R⁻ 为氢或 C₁-C₂ 烷基；

每一 A 独立地选自 R¹、R²、R³ 或 R⁴，其中

R¹ 为：

其中：

p 是 1 至 20 的整数；

R⁻ 是氢或 C₁-C₄ 烷基；

R⁶ 是：

其中：

R⁻ 是氢或 C₁-C₄ 烷基；

R⁶ 是：
其中：

s 是 0 至 30 的整数；

t 是 2 至 200 的整数；以及

R^2 是氢或 C_1-C_4 烷基；

R^2 是：

- [结构图]

R^3 是：

- [结构图]

其中：

x 是 0 至 30 的整数；

y 是 2 至 200 的整数；

R^8 是氢或 C_1-C_4 烷基；

R^9 和 R^{10} 独立为 C_1-C_{12} 亚烯基；
R^{11} 是氢或 C_{1-6} 烷基而 R^{12} 是 C_{1-6} 烷基；或者 R^{11} 和 R^{12} 一起为 C_{3-10} 亚烯基；且

R^4 是 (i) 在其中含有至少一个氨基官能团的二醇残基；或

(ii) 含有至少一个独立选自酰胺、酰亚胺、脲和尿烷基团中的官能团的二醇残基。

因为这些聚原酸酯是聚合物，因此聚原酸酯中重复单元的数字 n 必然代表分布的平均值，而不是一个精确的数字。同样，含有 α-羟基酸单元中的 α-羟基酸基团的数字 p、环氧乙烷基团中的数字 s 以及 R^6 和 R^3 基团中的 x 也必然代表分布的平均值，而不是一个精确的数字。

如化学式 I 所示，本申请中用的聚原酸酯的结构是二（烯酮缩二醇）和二醇残基中的任意一个，每一对相邻的二（烯酮缩二醇）残基由一种多元醇残基隔开，在一个实施例中是二醇。本申请提供的聚原酸酯是由二（烯酮缩二醇）和多元醇经缩合反应而制备的，在一个实施例中是二醇，并通过不同类型的二醇组合的选择和使用来改变机械-物理状态和水解速率（生物侵蚀速率）。

该聚原酸酯可以用这样的方法来制备，通过向聚原酸酯链中加入短链的 α-羟基酸酯（如乙醇酸酯、乳酸酯、或乙醇酸-共-乳酸共聚物的酯），并同时改变这些酯相对于聚原酸酯整体的量，从而达到在不加入外源酸的情况下在正常体温和 pH 条件下通过与体液接触而使该聚原酸酯的水解速率和水解程度都可以被控制的目的。

在水存在的情况下，加入到聚原酸酯链中的这些酯在 37℃ 的体温和生理 pH 下容易水解（在一个实施例中，pH 值为 7.4），从而生成相应的 α-羟基酸。然后将该 α-羟基酸作为酸性赋形剂用来控制聚
原酸酯的水解速率。当将该聚碳酸酯用作捕获活性药剂的载体或基质时，聚碳酸酯的水解引发了活性药剂的释放。

拥有更高的“含有 α-羟基酸”单元的摩尔百分比的聚碳酸酯将会有更高的生物降解速率。在一个实施例中，用于增加降解速率的聚碳酸酯是那些“含有 α-羟基酸”单元为至少 0.1 mol%，例如大约 0.1-99 mol%，如大约 0.5-50 mol%的聚碳酸酯，在另外一个实施例中，为大约 1-30 mol%，如大约 5-30 mol%，包括大约 10-30 mol%的聚碳酸酯。

在这些聚碳酸酯中，使用含有氨基官能团的二醇的作用是使得该聚碳酸酯相对于不含有这样的二醇的聚碳酸酯对 pH 更敏感。从而在低 pH 下比在高 pH 下更容易水解。也就是说，例如，在酸性水溶液环境中（如动物细胞内的情况），这种性质使得该聚碳酸酯能够在动物体内细胞外环境中（如血液中）相对稳定，而当在细胞内环境中则迅速水解。这使得这些聚碳酸酯适用于在一个实施例中在细胞内递送活性药剂。

具有高摩尔百分比的“含有氨基”单元的聚碳酸酯比不“含有氨基”单元的聚碳酸酯会具有对 pH 更加敏感的生物侵蚀速率，并且在低 pH 值下速率会提高。在一个实施例中，具有更大的 pH 敏感性的聚碳酸酯是“含有氨基”单元的摩尔百分比在 0.1-99.9 mol%的范围内，在另一个实施例中，大约 1-80 mol%，例如大约 5-50 mol%，包括大约 10-30 mol%。

另外，对该聚碳酸酯的机械-物理状态也可以进行控制。这通过以选定的相对于聚碳酸酯整体的比例来引入某些二醇残基来实现。例如，相对于“柔性”二醇（定义见后述）而言的高含量的 1,4-环己烷二甲醇残基（以反式异构体或顺/反异构体混合物形式），或一种类似的“刚性”二醇残基或一种“氢键”二醇残基生成一种相对
刚性的聚合物链和一种更为坚固的物质，而通过降低相对于“柔性”二醇而言的“刚性”和“氢键”二醇的含量，则该聚原酸酯将经历由刚性热塑性物质、柔性热塑性物质、低熔点固体、到一种膏状（粘稠液体）物质、以及介于它们之间的任何阶段的逐步改变过程。

相对于聚原酸酯整体而言的“刚性”或“氢键”单元摩尔百分比的文字表述，在一个实施例中用于液体或膏状组合物的聚原酸酯，是这些其中“刚性”或“氢键”单元构成为 20 mol% 或更少的聚原酸酯。类似地，在一个实施例中，用于更坚固的组合物的聚原酸酯是那些其中“刚性”或“氢键”单元构成为 60 mol% 或更多的聚原酸酯。

因此，由化学式 III 的二（烯酮缩乙醇）和一种二醇混合物反应而制备得到的聚原酸酯的两种特性是由该二醇混合物中的两种或四种类型的二醇的量的比率来控制的。

对于独立的“含有α-羟基酸”单元，p 在一个实施例中为 1 至 6，在另一个实施例中为 1 至 4，在另一个实施例中为 1 至 2，在另一个实施例中为 1；而 R^5 在一个实施例中为氢或甲基，在另一个实施例中为氢；R^6 在一个实施例中为：

\[\text{O} \]

或

\[\text{R}^7 \]

并且在 R^6 的上述定义中，s 在一个实施例中为 2 至 12，在另一个实施例中为 2 至 6，在另一个实施例中为 2；R^7 在一个实施例中为氢，而 t 在一个实施例中为 4 至 12，在另一个实施例中为 4 至 6，在另一个实施例中为 6。

对于独立的“刚性”单元，R^2 在一个实施例中是环己烷二甲醇。
对于独立的“柔性”单元，R³在一个实施例中为:

![化学结构式]

其中 x 在一个实施例中是 2 至 12；在一个实施例中是 2 至 6，在另一个实施例中是 2；R⁸ 在一个实施例中是氢，y 在一个实施例中是 4 至 12，例如 10；另外 R⁹ 和 R¹⁰ 在一个实施例中是相同的，在另一个实施例中，是支链的 C₄-C₁₂ 亚烷基，在另一个实施例中是支链的 C₆-C₁₂ 亚烷基，R¹¹ 在一个实施例中是氢，R¹² 在一个实施例中是甲基。

对于独立的“含氨基”单元，化学式 HO-R⁴-OH 的二醇包括由一个或两个氨基基团插入的 2 至 20 个碳原子的脂肪族二醇，在一个实施例中是 2 至 10 个碳原子；以及二羟基环烷或二羟烷基环胺，其在烃基基团之间具有 4 至 20 个，在一个实施例中为 4 至 10 个碳原子或氮原子；并且该胺基基团为仲胺基团，或在一个实施例中为叔胺基团。

在一个实施例中，聚原酸酯是那些满足了一个或多个下述条件的聚合物:

(1) n 是 5 至 500 的整数，在一个实施例中为 20 至 500，包括 30 至 300;

(2) R 是-CH₂OCH₂-;

(3) R⁸ 是 C₂-C₄ 烷基，包括乙基；以及

(4) R⁹ 是乙基;
并且独立单元的比例如上所述。

本申请所披露的保护范围包括上述实施例的所有组合。

聚原酸酯的制备

聚原酸酯是根据在美国专利第 4,764,364 号、第 4,855,132 号和第 5,968,543 号中所描述的方法制备的。尤其是通过化学式 III 的二（烯酮缩二醇）与化学式 HO-R^1-OH 的二醇和任选的至少一种化学式为 HO-R^2-OH、HO-R^3-OH 和 HO-R^4-OH 的二醇反应来制备聚原酸酯；

![化学式III](image)

其中，L 是氢或 C_1-C_3 烷基。

为了用各种类型二醇的混合物来生成聚原酸酯，该混合物是基于所需要的聚原酸酯的特性来选择一定配比而形成的。增加其中 A 是 R^1 的二醇的用量，则增加了该聚原酸酯的生物侵蚀速率，而其中 R^6 是一种聚环氧乙烷部分或一种烷基这样的二醇的使用则增加了该聚合物的柔性；增加其中 A 是 R^2 的二醇的使用量则增加了该聚原酸酯的刚性；而其中 A 是 R^3 的二醇的使用则增加了该聚原酸酯的柔性，特别是当这些二醇是低分子量的聚乙二醇或脂肪族二醇时。含有氨基的二醇的使用作用是则增加了该聚原酸酯生物侵蚀速率的 pH 敏感性，在低 pH 值时敏感性增加，而氢键二醇的使则增加了该聚原酸酯的刚性。

象化学式 III 的那些二（烯酮缩二醇）的制备在美国专利第 4,394,767 号、第 4,532,335 号和第 5,968,543 号加以披露，并且对于本领域普通技术人员而言是公知的。一种典型的方法是将一个化学
2-卤代醛二烷基乙缩醛（2-halocarboxaldehyde dialkyl acetal）（如2-溴乙醛二乙基乙缩醛）进行缩合，然后经过脱卤化氢而生成烯醇缩二乙醇。

该烯醇缩二醇也可以通过二烯基缩醛的异构化反应来制备，例如，通过化学式IV的双二醇与两个相同的乙烯基醛（如丙烯醛、巴豆醛或它们的二烷基乙缩醛，如丙烯醛二甲基乙缩醛）的缩合反应来制备，而这样的缩合反应是人所共知的。例如，Crivello等人在《J. Polymer Sci., Part A: Polymer Chemistry》，34，3091-3102（1996）中披露了制备多种烯醇缩二醇和二（烯醇缩二醇）的方法，包括2,2'-二亚乙基-4,4'-双[1,3]二氧戊环和3,9-二亚乙基-2,4,8,10-四氧代乙酰水杨基[5,5]十一烷（DETOUS），这两种产物都是通过由相关的四醇和丙烯醛来制备相应的二（烯基缩醛），并在三（三苯基膦）-二氯化铑的作用下异构化。

该异构化反应可以通过本领域任何一种已知的方法来进行。除了使用上文刚提到的三（三苯基膦）-二氯化铑之外，这些方法还包括在低级正烷基碘金属/水溶性伯胺溶液中进行异构化（美国专利第4,513,143号），以及在碱金属醇盐/乙烯胺溶液中进行异构化（美国专利第4,532,335号）。其他的异构化方法是在惰性环境下，在烷烃（如戊烷、己烷或庚烷）溶剂中的过渡金属的有机金属化合物（如五羰基铁）这样的感光剂存在下进行光异构化。
其中 R 是键而每一 R^b 是氢的化学式 IV 的双二醇可以通过购买于 Aldrich 公司的 1,1,2,2-乙烷四羧酸四甲酯与一种如 LiAlH_4 的还原剂在一种如乙醚的溶剂中，在一个实施例中于如 0℃的低温下经还原反应来制备该双二醇。这种类型的一种还原反应在 Haydock 等人发表于 J. Med. Chem. 15:447-448 (1972) 的对于 1,1,4,4-丁烷四羧酸四乙酯还原反应中进行了描述。

化学式 IV 的双二醇（其中 R 是 -(CH_2)_a- 而每一 R^b 是氢），可以通过化学式 X-(CH_2)_a-X 的 α,ω 二卤烷（其中 X 是 Cl 或 Br，如 1,3-二溴丙烷或 1,5-二溴戊烷）与化学式 CH_2(COOR^3)_2 的丙二酸二烷基酯（其中 R^3 是 C_1-C_4 烷基）在碱金属或碱土金属（如乙醇钠或乙醇镁）这样的强碱存在下、在低级烷醇（如乙醇）这样的溶液中反应而生成该 α,α,ω,ω-烷基四羧酸四烷基酯这样的方法来制备。这种类型的偶合反应被描述于 Meincke 等人发表于 J. Amer. Chem. Soc., 57, 1133 (1935) 的关于在乙醇中在乙醇镁存在下由丙二酸二乙酯和 1,2-二溴乙烷来制备 1,1,4,4-丁烷四羧酸四乙酯的文章中。这样形成的四羧酸酯再经过还原生成双二醇。其它的双二醇（其中每一 R^b 不是氢）可以由相应的烷基丙二酸二烷基酯来制备，也可以购于 Aldrich 公司。化学式 IV 的双二醇（其中 R 是 -CH_2- 而每个 R^b 是氢）也可以通过甲醛和丙二酸二烷基酯（如丙二酸二乙酯）反应来制备，如在 Haworth 等人发表于 J. Chem. Soc., 73:330-345 (1898) 中所描述的那样，这样生成的 1,1,3,3,-丙烷四羧酸四乙酯随后经过还原反应生成该双二醇。

化学式 IV 的双二醇（其中 R 是 -(CH_2)_b-O-(CH_2)_c-）可以通过类似过程制备，将 α,ω-二卤烷用化学式 X-(CH_2)_b-O-(CH_2)_c-X（其中 X 是 Cl 或 Br）的二 (ω-卤烷) 醚来代替。

化学式 IV 的双二醇（其中 R 是 -CH_2-O-CH_2- 而每个 R^2 是乙基）是二 (三羟甲基丙烷)，可以购于 Aldrich 公司和 Perstorp 公司。化
学式 II 的二（烯基缩醛）（其中 R 是-CH₂-O-CH₂-而每个 R² 是氢、甲基或乙基）也可以用商用的三羟甲基甲烷、三羟甲基乙烷和三羟甲基丙烷以下述的方法来制备：

其中三羟甲基烷烃首先通过与烯醛或它的二烷基缩醛（示出的是丙烯醛二乙基缩醛）反应而转化成烯基缩醛，然后将得到的产物中的某些醇基转化成离去基团如苯甲磺酸盐（示出的）或其它烷烷磺酸盐或芳烃磺酸盐，并将这些化合物用碱和醇处理以得到二（烯基缩醛）。

聚原酸酯的刚性或柔性是由该聚原酸酯结构中“刚性”单元和“柔性”单元的比例决定的，在该聚原酸酯中“刚性”单元的比例越高，则刚性越好。

化学式 HO-R¹-OH、HO-R²-OH、HO-R³-OH 和 HO-R⁴-OH 的二醇根据本领域已知的方法来制备，例如，在美国专利第 4,549,010 号和第 5,968,543 号中描述的方法。一些二醇也是可以商用的。

化学式 HO-R¹-OH 的二醇可以通过化学式 HO-R⁶-OH 的二醇与 0.5-1.0 摩尔当量的 α-羟基酸环二酯（例如丙交酯或醚脂类）反应来制备，该反应在 100-200°C 下进行约 12-48 小时。尽管该反应不需要溶剂，但也可以使用如二甲基乙酸胺、二甲亚砜、二甲基甲酰胺、乙腈、吡咯啉、四氢呋喃和甲基丁基醚这些有机溶剂。
HO-R²-OH 的二醇一般通过方法获得。化学式 HO-R³-OH 的二醇可以通过方法获得，或者也可以根据美国专利第 5,968,543 号中披露的一般方法来制备，即用适当的二烯基醚与过量的适当的二醇反应。

化学式 HO-R⁴-OH 的含有氨基的二醇是含有至少一个仲胺或叔胺（如在一个实施例中的情况）的二醇。它们包括如下的二醇，其中 R⁴ 是如 R’NR”R”’或 R’N=R”’的胺，其中每个 R’和 R”’独立是脂肪族芳香族、或芳香族/脂肪族直链或支链的烃基，该烃基被连接到该二醇的一个烃基团上，其中 R’和 R”’可以任选被键合，而使得该胺是一个环胺，优选为 2 至 10 个碳原子的直链或支链的烷基，更优选为 2 至 5 个碳原子的直链或支链的烷基。而 R”’是氢 C₁-C₆ 烷基，C₆-C₁₀ 芳基或芳烃基，优选为烷基，更优选为甲基。其它的二醇包括那些在同一个环胺中存在两个这样的氨基的二醇。因此化学式 HO-R⁴-OH 的有代表性的环胺基二醇包括 (二羟基或双羟烷基) 取代的环胺，如取代的吡啶、哌啶、哒嗪、嘧啶、吡嗪、哌嗪、和其它类似结构。化学式 HO-R⁴-OH 的一些有代表性的二醇包括 N,N-双(2-羟乙基)胺、N,N-双(2-羟乙基)氨基、N-甲基-N,N-双(2-羟乙基)胺、N-丁基-N,N-双(2-羟乙基)胺、N-丙基-N,N-双(2-羟乙基)胺、N-2-丙基-N,N-双(2-羟乙基)胺、N-环己基-N,N-双(2-羟乙基)胺、N-苯基-N,N-双(2-羟乙基)胺、3-二甲胺基-1,2-丙二醇、3-叔丁胺基-1,2-丙二醇、1,4-双(2-羟乙基)哌啶、1,4-双(2-羟乙基)哌嗪、1,4-双(2-羟乙基)哌啶、3,6-二羟基乳酸、2,3-二羟基吡啶、2,4-二羟基-吡啶、2,6-二羟基-吡啶、4,6-二羟基乳酸、N-乙基-N,N-双(2-羟乙基)胺、及其它类似物。这些二醇包括那些含有仲胺和叔胺的结构，在另一个实施例中，是含有叔胺的结构。含有氨基的多羟基化合物包括 N-3-羟丙基-N,N-双(2-羟乙基)胺、1,3-双[三(羟甲基)甲胺基]丙烷、2,2-双(羟甲基)-2,2’,2”-氮丙三乙醇、三(2-羟乙基)胺、三(3-羟丙
基）胺，和其它类似物。这些二醇在本领域的合成报告中是公知的，而且许多都可以商购获得。

氢键二醇包括如下二醇，其中 R\(^4\) 是 R'\(\text{C}(=\text{O})\)NR''R'（酰胺）、R'\(\text{C}(=\text{O})\)NR''\(\text{C}(=\text{O})\)R'（酰亚胺）、R'NR''\(\text{C}(=\text{O})\)NR''R'（脲）和 R'OC(=O)NR''R'（尿烷），其中每个 R'独立为脂肪族、芳香族、或芳香族/脂肪族直链或支链烃基，优选为 2 至 22 个碳原子的直链或支链烷基，更优选为 2 至 10 个碳原子的直链或支链烷基，最优选为 2 至 5 个碳原子的直链或支链烷基，R'' 是氢或 C\(_1\)-C\(_6\) 烷基，优选为氢或甲基，更优选为氢。一些有代表性的化学式 HO-R\(^4\)-OH 的二醇包括 N,N'-双-（2-羟乙基）对苯二甲酰胺、N,N'-双-（2-羟乙基）均苯四甲酰二亚胺、1,1'-亚甲基二（对-亚苯基）双- [3-（2-羟乙基）脲]、N,N'-双-（2-羟乙基）草酰胺、1,3-双（2-羟乙基）脲、3-羟基-N-（2-羟乙基）丙酰胺、4-羟基-N-（3-羟丙基）丁酰胺，和双（2-羟乙基）亚乙基二氨基甲酸酯。这些二醇在本领域的合成报告中是公知的，而且许多是可以商购获得的。有代表性的化学式 HO-(CH\(_2\))\(_n\)-NHCO-(CH\(_2\))\(_m\)-OH 的二醇（其中 n 是 2 至 6 的整数，且 m 是 2 至 5 的整数）是由 2-氨基乙醇、3-氨基丙醇、4-氨基丁醇、5-氨基戊醇或 6-氨基己醇与 β-丙酪酸内酯、γ-丁内酯、δ-戊内酯或 ε-己内酯反应制备的。有代表性的化学式 HO-(CH\(_2\))\(_n\)-NHC (=O) O-(CH\(_2\))\(_m\)-OH 的二醇（其中 n 和 m 分别是 2 至 6 的整数）是由刚才提到的同样的氨基醇与化学式:

![结构式]

如碳酸-(1,2)亚乙酯的环碳酸酯反应来制备的。化学式 HO-A-NHC (=O)-B-C (=O) NH-A-OH 的双酰胺基二醇是由一当量的二酸（其任选的活性形式，如二酰基二卤化物）与两当量的羟基胺反应
制备的。其它的制备化学式 HO-R^4-OH 的二醇的方法是本领域公知的。

制备结束后，化学式 HO-R^1-OH、HO-R^2-OH、HO-R^3-OH 和 HO-R^4-OH 的二醇以需要的比例与化学式 III 的二（烯酮缩二醇）在适宜的溶剂和环境温度下混合，二（烯酮缩二醇）的总摩尔数与二醇的总摩尔数的比例约为 1:1。二（烯酮缩二醇）和该二醇的缩合反应是在例如美国专利第 4,764,364 号、第 4,855,132 号和第 5,968,543 号中所描述的条件下进行的，并为本领域技术人员所共知，并且从反应物本身的结构也容易明白。合适的溶剂是质子惰性溶剂，如二甲基乙酰胺、二甲基亚砜、二甲基甲酰胺、乙腈、丙酮、乙酸乙酯，吡咯啉、四氢呋喃、甲基叔丁基醚、和其它类似的物质。该反应不需要催化剂，但是如果使用的话，适宜的催化剂是碘的吡啶溶液，对-甲苯磺酸；水杨酸，Lewis 酸（如三氟化硼、三氯化铝、三氯化铝合乙醚、三氯化铝合乙醚、二氯氧化铝、氟化锌、五氯化磷、五氯化锑、辛酸化铝、氟化铝、二乙基锌、及其混合物）和 Brønsted 催化剂（如多磷酸、交联聚苯乙烯磺酸、酸性硅胶、及其混合物）。催化剂的典型用量相对于二（烯酮缩二醇）重量而言为约 0.2%。用量少一点或多一点也是可以的，如（相对于二（烯酮缩二醇）重量）为约 0.005%至 2.0%。当反应完成后，反应混合物在真空条件下通过旋转蒸发来冷却和浓缩，用于形成一种半固态的聚原酸酯；或者在一种如烷醇（例如甲醇、乙醇、和类似物质）或烷烃（例如，乙烷、庚烷、和类似物质）这样的非溶剂中沉降，用以形成一种固态聚原酸酯。该聚原酸酯可以在高温及真空条件下进一步干燥。

此外，围绕本申请的主题是交联的聚原酸酯，其是通过使用一种或多种具有两个以上羟基官能团的多羟基化合物来制备的。该交联聚原酸酯可以通过首先将该二（烯酮缩二醇）与一种二醇（其中 A 是 R^1、R^2、R^3、R^4、及其混合物）反应，随后加入该含有两个以
上甘基官能团的多羟基化合物来制备。另外一种方法是，该含有两个以上甘基官能团的多羟基化合物可以与二醇同时加入。含有两个以上甘基官能团的适于制备该交联聚原酸酯的多羟基化合物可以是链型或支链型，包括多羟基化合物（如 1,2,3-丙三醇、1,2,5-己三醇、1,2,6-己三醇、1,3,5-丙三醇、1,2,4-丁三醇、1,4,7-庚三醇、1,5,10-癸三醇、1,5,12-十二烷三醇、1,2,3,4,5,6-己六醇），或这样的含有氨基的多羟基化合物（如二（2-羟乙基）胺）和类似结构。其它的这种类型的有代表性的多羟基化合物在美国专利第 4,304,767 号中进行了描述。制备该交联聚原酸酯的反应条件（例如适宜的溶剂和反应温度）和反应过程与上文描述的只用二醇制备聚原酸酯是相似的，并且在美国专利第 4,304,767 号和第 5,968,543 号中也有描述。

该聚原酸酯也可以由二（烯酮缩二醇）与所选择的二醇在相似的反应条件下反应制备，但是存在“链式反应终止剂”（一种终止聚原酸酯链式反应的试剂）。合适的链式反应终止剂是 C₅-C₂₀烷醇，优选是 C₁₀-C₂₀烷醇。在一个实施例中，该链式反应终止剂以相对于二（烯酮缩二醇）1-20 mol%的量而存在。这种方法制备的聚原酸酯与只用二醇和二（烯酮缩二醇）反应制备的聚原酸酯相比较，具有更低的分子量及更低的分子量分布。

本申请中包括的聚原酸酯是含有所有类型单元的单元以及只含有第一、二、三或四种类型单元的聚原酸酯。本申请中还包括由一种含有两个或两种以上同一类型二醇的单元混合物制备的聚原酸酯。此外，如前所述本申请中还包括含有三醇或更高级的多羟基化合物和/或“链式反应终止剂”单醇的聚原酸酯。

嵌段共聚物

本申请的第五个方面，提供了化学式 X、化学式 Y 和化学式 Z 的嵌段共聚物：
其中：

\(R^A \) 是 C_1-C_4 烷基；

\(R^B \) 是 C_1-C_4 烷基；

f 和 h 独立为 2 至 1000 的整数；

g 和 j 独立为 2 至 200 的整数；

POE 是一种化学式 II 的聚原酸酯单体：

![POE结构式](image)

其中

R 是键、\(-(CH_2)_a-\) 或 \(-(CH_2)_b-O-(CH_2)_c-\)；其中 a 是 1 至 10 的整数，而 b 和 c 独立为 1 至 5 的整数；

\(R^a \) 是 C_1-C_4 烷基；

\(R^b \) 是氢或 C_1-C_2 烷基；

每一 A 独立选自 \(R^1 \)、\(R^2 \)、\(R^3 \) 和 \(R^4 \)，其中

\(R^1 \) 为：
其中:

p 是 1 至 20 的整数

R^5 是氢或 C_1-C_4 烷基；以及

R^6 是:

其中:

s 是 0 至 30 的整数；

t 是 2 至 200 的整数；以及

R^7 是氢或 C_1-C_4 烷基；

R^2 是:
R^3 是:

其中:

x 是 0 至 30 的整数;

y 是 2 至 200 的整数;

R^8 是氢或 C_1-C_4 烷基;

R^9 和 R^{10} 独立为 C_1-C_{12} 亚烷基;

R^{11} 是氢或 C_1-C_6 烷基而 R^{12} 是 C_1-C_6 亚烷基; 或 R^{11} 和 R^{12} 一起为 C_3-C_{10} 亚烷基; 且

R^4 为 (i) 含有至少一个氨基官能团的二醇残基, 或

(ii) 含有至少一个独立选自酰胺、酰亚胺、脲和尿烷基团中的官能团的二醇残基。

由于这些分子的聚合物的特性, 因此, 嵌段中重复单元的数字, f、g、h 和 j 必然代表分布的平均值而不是确切的数字; 比如在一个
实施例中，当 f 和 h 或 g 和 j 的值被描述成是相同的时候，这表明 f 和 h 或 g 和 j 的平均值也应该大致相同的。同样，其它聚合物链的长度（如 R^6 的聚乙二醇的长度、R^6 长链二醇的长度和 R^1 的聚 a-羟基酸基团的长度）必然代表了分布的平均值而不是确切数字。

该嵌段共聚物为 AB（化学式 X）、ABA（化学式 Y）和 BAB（化学式 Z）嵌段共聚物，其中 A 嵌段是亲水的聚乙二醇，B 嵌段是疏水的聚原酸酯。在这些共聚物中，该聚原酸酯嵌段是由一种二（烯酮缩二醇）残基和一种二醇残基组成的。

该嵌段共聚物的性质，包括机械物理性质和生物可降解能力，都是由该嵌段共聚物的类型（是 AB 二嵌段、ABA 三嵌段还是 BAB 三嵌段）、PEG 和 POE 嵌段的长度以及在 POE 嵌段中所使用的二醇（在一个实施例中，与在 POE 嵌段中所使用的二醇的 HO-R^1-OH 的二醇的比例相关）决定的。

在一个实施例中，嵌段共聚物是指满足下述一个或多个条件的嵌段共聚物

(1) f 和 h 独立为从 10 至 500 的整数，包括从 50 至 250，例如 100，用于胶束的递送；且 f 和 h 独立为从 50 至 1000 的整数，包括从 100 至 1000，例如，从 250 至 1000，用于可生物降解基质，并且在一个实施例中如果同时出现，则 f 和 h 的数值是相同的；

(2) g 和 j 独立为从 5 至 100 的整数；包括从 10 至 50，例如 15，用于胶束的递送；同时 g 和 j 独立为从 10 至 200 的整数，包括从 20 至 200，例如从 50 至 200，用于可生物降解基质；并且在一个实施例中，如果同时出现，则 g 和 j 数值相同；

(3) R^A 和 R^B 为甲基；
（4）R 为 -CH₂OCH₂⁻；

（5）R^a 为 C₂-C₄烷基，包括乙基；且

（6）R^b 为乙基；

并且用于聚原酸酯的独立的 POE 单元的比例如前所述。

本申请中披露的嵌段共聚物包括上述实施例的所有组合。

嵌段共聚物的制备

化学式 X 的二嵌段共聚物是由两步合成方法来制备的。

第一步，将化学式为 R^a-[OCH₂CH₂]₇-OH 的 PEG 低级烷基醚（其中 R^a 为 C₁-C₄烷基（一种 RPEG））与过量的化学式 III 的二（烯酮缩二酯）反应，用以生成化学式 V 的中间体。

![化学结构式 III](image)

![化学结构式 V](image)

各种链长度（分子量）的聚乙二醇和聚乙二醇低级烷基醚可以从中很多来源得到，包括 Aldrich Chemical Company, Inc., Milwaukee, WI 公司和 Shearwater Ploymers, Huntsville, AL 公司。

第二步，将化学式为 HO-R¹-OH、HO-R²-OH、HO-R³-OH 或 HO-R⁴-OH 的二醇、或它们的混合物与第一步的反应溶液（含有化
学式 V 的中间体和过量的二（烯酮缩二醇）反应，用以延长该 POE
嵌段，从而形成化学式 X 的二嵌段共聚物。

因为该二（烯酮缩二醇）和该二醇以 1:1 的比例反应，用以形
成该二嵌段共聚物的 POE 嵌段，RPEG, 二（烯酮缩二醇）和二醇
的量都是选定的，从而该二（烯酮缩二醇）的摩尔数与 RPEG 和二
醇的摩尔数总和是相等的。

在 PEG 嵌段中的 f 值，即该 PEG 嵌段的长度，是由所选择的
RPEG 决定的。在 POE 嵌段中的 g 值，即该 POE 嵌段的长度，是
由二醇摩尔数相对于 RPEG 摩尔数的比决定的：二醇（假定该二（烯
酮缩二醇）是至少等摩尔的量存在的）的摩尔数越大，则该 POE
嵌段越长。

化学式 Y 的三嵌段共聚物也可以用两步合成的方法制备。

第一步，将过量的化学式 III 的二（烯酮缩二醇）与化学式
HO-R^1-OH、HO-R^2-OH、HO-R^3-OH 或 HO-R^4-OH 的二醇、或它们
的混合物反应，用以形成在每一末端用二（烯酮缩二醇）单元结束
的 POE 嵌段，给出化学式 VI 的中间体。

第二步，将化学式 VI 的中间体与两当量的 PEG 或 RPEG 反应，
用以生成化学式 Y 的三嵌段共聚物。

因为二（烯酮缩二醇）与二醇的反应基本上是以 1:1 的比例进
行的，用以形成三嵌段共聚物的 POE 嵌段，但是该 POE 嵌段的二
（烯酮缩二醇）末端是需要的，由于二（烯酮缩二醇）和二醇的量
是可选择的，所以二（烯酮缩二醇）的摩尔数要比二醇的摩尔数稍
多一点。PEG/RPEG 与 POE 嵌段的摩尔比应该是大约 2:1，但是可以使用过量的 PEG/RPEG，因为反应结束之后可以很容易地将其从该聚合物中分离出来。

用于 PEG 嵌段的 f 和 h 值是由所选择的 PEG/RPEG 决定的。在使用单一的 PEG/RPEG 时，通常 f 和 h 是相同的；但是如果使用两种或多种不同长度的 PEGs/RPEGs 时，则得到的则是含有不同 PEG 嵌段长度的共聚物的混合物；如果需要的话，这些混合物可以通过如分子量分级技术（如凝胶渗透色谱法）来分离。用于 POE 嵌段的 g 值主要由用于生成该 POE 的二（烯酮缩二醇）与二醇的比例来决定。

化学式 Z 的三嵌段共聚物也可以用两步合成的方法来制备。

第一步，将化学式 H-[OCH_2CH_2]_h-OH 的 PEG 与过量的化学式 III 的二（烯酮缩二醇）反应，用以生成化学式 VII 的中间体。

第二步，将化学式 HO-R^1-OH、HO-R^2-OH、HO-R^3-OH 或 HO-R^4-OH 的二醇，或它们的混合物与第一步得到的溶液（含有化学式 VII 的中间体和过量的二（烯酮缩二醇））反应，用以延长该 POE 嵌段，从而形成化学式 Z 的三嵌段共聚物。

因为二（烯酮缩二醇）和二醇是以 1:1 的比例反应，用以生成该二嵌段共聚物的 POE 嵌段，因此，PEG、二（烯酮缩二醇）和二醇的量是选定的，以致二（烯酮缩二醇）的摩尔数与 PEG 和二醇的摩尔数总和是相等的。
用于该 PEG 嵌段的 h 值是由所选定的 PEG 决定的。用于该 POE 嵌段的 g 和 j 值是由二醇的摩尔数相对于 PEG 的摩尔数的比决定的：二醇（假设该二（烯酮缩二醇）是以至少一等摩尔的量存在的）的摩尔数越大，则该 POE 嵌段越长。通常该 POE 嵌段平均而言是相同长度的。

在另一可选的合成化学式 Z 的三嵌段共聚物的方法中，制备出以二（烯酮缩二醇）单元（化学式 V 的中间体）为末端的 POE 嵌段，并与 0.5 摩尔当量的 PEG 反应从而用该 POE 嵌段终止该 PEG 的每个末端。

在任何一种合成方法中，该共聚物中可以含有一个未反应的二（烯酮缩二醇）末端基团，该共聚物可以与含有羟基的化合物（如 C₁-C₄ 醇）反应，用以用烷氧基单元来终止该共聚物；这样的烷氧基终止的共聚物也包括在本申请的保护范围内。该含有羟基的化合物，优选为 C₁-C₄ 醇，可以过量使用，并且未反应的过量物质很容易在该聚合物的纯化过程中被分离出去。

用于生成该共聚物的合适的反应条件与熟知的用于生成聚原酸酯的那些条件是一样的，如在美国专利第 5,968,543 号和在本申请的“背景技术”部分中所引述的其它文献中所作的描述。通常，该反应在一种极性的质子溶剂溶液中进行，如以前提及的用于制备含有α-羟基的共聚物或者的那些溶液，优选为四氢呋喃。如果需要或必要的话，可以使用催化剂，而且可以从本领域用于生成聚原酸酯的公知的催化剂中选择。这样合适的催化剂包括：磺/吡啶、强酸（如对-甲基苯磺酸）；Lewis 酸（如三氯化硼合乙醚、三氯化硼合乙醚、二氯氧化锡、三氯氧化磷、氯化锌、五氯化磷、五氯化锑、氯化锡、和类似物质）；和 Brønsted 酸（如多磷酸、聚苯乙烯磺酸、和类似物质）。适宜的催化剂是对-甲基苯磺酸。所使用的催化剂的量相对
于二（烯酮缩二醇）为重量的约 0.2%，尽管可以使用的量为约 0.005%至 2%之间。

适宜的反应温度是从室温至所使用的溶剂的沸点温度，例如从 20°C 至 70°C；且适宜的反应时间是几分钟至 48 小时，通常是 15 分钟至 24 小时。

当该嵌段共聚物合成结束后，可以将该共聚物在非极性性质惰性溶剂（如己烷）中进行沉降分离。通常将含有该共聚物的反应混合物（其在加入前可以被冷却）在室温下缓慢加入到约十倍体积的快速搅拌的溶剂中。沉降的嵌段共聚物可以通过过滤，倾析或其它合适的方法来收集，将其洗涤以除去未反应的单体或其它杂质，并加以干燥（通常在低于其熔点的温度下于真空烘箱中进行）。

本申请提供的嵌段共聚物的可生物侵蚀能力是由两个因素决定的：首先，是该聚合物在水性介质中溶解/变成完全悬浮状态的程度，即，该共聚物的溶解性；第二，是该共聚物或更确切的说是该 POE 嵌段在其暴露的环境中降解的程度。在水性环境中，如果在该嵌段中存在的话，该共聚物的 POE 嵌段的降解速率是由该共聚物的亲水性和 α-羟基酸酯基团的比例决定的。在一个实施例中，在用于形成 POE 嵌段的二醇混合物中，通过引入更高比例的化学式 HO-R¹-OH 的二醇来实现更强的可生物降解能力。

聚原酸酯的用途

本发明的聚原酸酯可以用于任何可生物降解聚合物所适用的用途，如用于活性药剂持续释放的载体。

为了将聚原酸酯用作持续释放的运载媒介或载体，必须将活性药剂合并到聚原酸酯的基质中或者将其封装入一种聚原酸酯的胶囊（或“微胶囊”或“毫微胶囊”，如有时使用的那些术语）中。
用可生物降解聚合物用于制作可持续释放的剂型的方法是本领域所熟知的，如同在本申请的“背景技术”部分所引用的参考文献中以及在其它本领域技术人员所熟悉的参考文献中所讨论的那样。因此，本领域技术人员在中国的知识和本发明所披露的内容的帮助下，将毫无困难地使用本申请所提供的聚原酸酯来制备持续释放的剂型。适宜的活性药物包括：治疗药物（如具有药学活性或药理学活性的药物，例如药物和药剂），以及预防药物、诊断试剂和其它在预防及治疗疾病方面有用的化学物品或材料。在本申请的一个实施例中所提供的组合物是用于有效治疗人或其他哺乳动物的疾病的，但也可以用于其它动物。另外，本申请所提供的可持续释放组合物也可以用于化妆品或内用试剂的释放，或者用于杀生物剂（如杀真菌剂或其它的杀虫剂）的释放，可以将其用于希望延长活性药物在环境中的释放过程的领域中。

在基质剂型的情况下，聚原酸酯首先与活性药剂混合。通过将聚原酸酯在其热软化状态下与活性药剂混合，然后降低温度使该组合物硬化，可以得到高度的均匀性。另一种可选的方法是，可以将聚原酸酯溶解在适宜的铸型溶剂（casting solvent）中，如四氢呋喃、二氯甲烷、氯仿或乙酸乙酯，然后可以将活性药剂分散或溶解在该聚原酸酯溶液中，然后通过蒸发溶剂而得到最终的组合物。另外一种方法是将固体的聚原酸酯物质磨成粉末，然后将其与粉末化的活性药剂混合。如果活性药剂在聚合的条件下是稳定的并且不影响聚合反应，也可以将该活性药剂在聚合反应之前混入到单体混合物中。

如果活性药剂在升高的温度下（例如超过 40°C），或在有机溶剂或有机溶剂/水混合物存在下是一种不稳定的物质，例如蛋白质，则需要特殊的制备技术以便减少活性药剂在有损的条件的暴露。这样的技术在如美国专利第 6,20,697 号中（该专利披露了用超声溶化法用以生成基质类型的药物组合物）和第 5,518,730 号中（该专利
披露了溶体纺丝技术）进行了阐述。这两种技术的设计出发点都是为了减少聚合物和活性药剂在高温中的暴露。其它的方法在本申请中和本申请其它地方所引用的参考文献中进行了阐述。

另外一种可选的用于敏感治疗药剂的混合及释放的方法，是采用具有适于这种混合的物理性质的可生物降解聚原酸酯。例如，可以选择聚原酸酯以使其为半固体且具有膏状的稠度，而不完全是固体。因此，可以选择在正常休姆 37℃下具有非常高的粘度的聚原酸酯，以使在该温度下发生任何变形的话改变也是很小的。然而聚原酸酯的粘度在温度不超过 45℃的情况下（或在一个实施例中为 40℃）会极大的降低，以使在活性药剂保持其活性的温度下该物质的注入是可能的。

由上述任何一种方法得到的组合物都可以很容易被制成各种形状和形式以用于将其移植、嵌于或放于体表或置于体内管道中。例如，该聚原酸酯组合物可以被注模、挤压或压制成薄膜或制成各种几何形状或形式的装置，如平的、方的、圆的、圆柱形的、管状的、圆盘形的、环形的、或其他形状或形式的。棒状或小球状的装置可以通过套管针（如已知的、用于 Norplant®移植物的）进行移植，而且这些或其它形状的装置可以通过小外科手术来移植。另一种可选的方法，可以将该装置在大外科手术过程（如在手术治疗癌症中将肿瘤去除的过程）之后进行移植。含有抗癌药物的聚合物晶片的移植的相关描述请参见例如美国专利第 5,626,862 号和第 5,651,986 号，以及在其中所引用的参考文献；而本申请所提供的聚原酸酯将会在这些应用领域中找到用途。

该聚原酸酯组合物也可以以悬浮在一种药学可接受的注射介质中的 0.1-1000 μm 的微粒（在一个实施例中为 0.5-200 μm，在另一个实施例中为 1-150 μm），用注射器进行皮下注射或肌肉注射。用于将用于注射的药物-聚原酸酯组合物悬浮的液态载体包括等渗
盐溶液或油类（如玉米油、棉籽油、花生油和芝麻油），如果需要的话，可以含有其它的辅助剂。

另外一种可注射的剂型可以由一种活性药剂与一种本申请所提供的具有半固体稠度的聚原酸酯混合来制备，或者当活性药剂与一种适宜的液态赋形剂混合时形成一种半固体的组合物，如在美国专利申请第 09/854,180 号（国际公开号为 WO 01/85139）中所描述的组合物。这样的剂型可以通过注射给药。这样的剂型也可以通过直接施用于待治疗的区域来给药，如用涂药的棉棒将其涂布在伤口中。

通过注射或移植所给予的该聚原酸酯组合物在体内经历生物降解而成为无毒和无反应活性的物质。通过控制该聚原酸酯中可水解键的数量，可以使该活性药剂以需要的速率释放。由本发明的聚原酸酯制备的移植物也具有这样的优点，在其中该聚原酸酯构成了含有一种活性药剂的基质，即因为该聚原酸酯具有可生物降解能力，因此不需要将它们从体内除去。

在一些实施例中，可以将核心为由各种厚度的本发明的聚原酸酯涂布的纯活性药剂的微粒用于该活性药剂的持续释放。该活性药剂分散颗粒的涂层或封装可以用传统的方法来实现，这些对于本领域技术人员都是公知的。例如，可以将细分散的药物颗粒悬浮在一种含有所溶解的聚原酸酯和其它赋形剂的溶剂体系中（药物在其中是不溶的），然后通过喷雾干燥而获得。另外一种可选的方法是，可以将该药物颗粒置于转盘或流化床干燥器中，并将溶解于载体溶剂中的聚原酸酯涂在药物颗粒上，直到将为了达到所需要的厚度的适宜的涂层量沉积在该颗粒上为止。该涂层也可以通过将药物颗粒悬浮在一种含有所溶解的聚原酸酯的溶剂体系中，随后向该悬浮物中加入一种非溶剂而引起聚原酸酯沉降，并在药物颗粒外形成一层涂层而实现。
对于可释放的组合物，因为该活性药剂将经历一受控时间段而被释放，因此，通常该药剂要以比传统的单剂形式更大量的形式存在。活性药剂和聚原酸酯的相对比例可以在很宽的范围内变化（如0.1-50 wt%），这依赖于治疗药剂和所期望的效果。

化妆品和农用药剂的持续释放的组合物也可以使用本申请所提供的聚原酸酯通过上述方法中的任何一种来制备。

固态的聚原酸酯（那些含有高百分含量的“刚性”单元和/或高比例的“氢键”单元）对于各种整形外科应用领域也是有非常有用的。例如，它们可以用于骨折固定装置用于软骨缺陷的修复、韧带和肌腱的重建以及骨的替代品。另外，本申请的聚原酸酯允许同时对所希望达到的机械-物理状态水平和所期望的生物降解速率进行选择，这也使得它们作为移植物或支架（scaffold）非常具有吸引力。在进行移植物之前，可以在其上进行体外细胞培养，用以再生组织。能够用这种方法再生的组织包括但不限于骨、肌腱、软骨、韧带、肝脏、肠、输尿管和皮肤组织。例如，该聚原酸酯可以用于烧伤患者或皮肤溃疡患者的皮肤再生。可以通过首先从患者（或捐献者）体内分离出软骨细胞，然后使它们在由本发明的聚原酸酯制备的支架上增殖，并将这些细胞再移植到病人体内，从而达到修复软骨的目的。

该聚原酸酯支架或移植物可以进一步含有其它的生物活性物质或合成的无机材料，如用于增强支架或移植物的机械性能的增强型填充材料（例如偏磷酸钙钠纤维）、抗生素或骨生长因子，用于诱导和/或促进整形恢复和组织再生。

该组合物也是稳定的。活性药剂的释放速率不受用于杀菌的辐照的显著影响。
典型组合物及其用途

本申请所提供的典型组合物及其用途，包括：

（1）含有局部麻醉药物的组合物，可选与糖皮质激素（如地塞米松、可的松、氢化可的松、强的松、强的松龙、倍他米松、氟氢松、醋酸氟轻松、氟轻松、倍丙氟松，和类似物质）联合使用，用于延长缓解局部疼痛或延长神经阻滞；

（2）含有如那些列于上文中的“活性药剂”部分的癌症化疗药物的组合物，通过使用注射器或通过在肿瘤或切除肿瘤的手术部位注入的方式给药，用于肿瘤控制或治疗和/或抑制肿瘤切除术之后由残余的肿瘤细胞引发的肿瘤再生；

（3）含有如氟孕酮、甲羟孕酮、甲基炔诺酮、炔诺肟酯、炔诺酮及类似物质的孕激素的组合物，用于动情期同步化或避孕；

（4）含有如氟尿嘧啶及类似物质的抗代谢产物的组合物，作为青光眼滤除手术的助剂；含有如康姆伯勒斯亭（combrestatin）、13 500 二聚体蛋白（contortrostatin）和抗-VEGF 药物的抗血管生成药的组合物，用于治疗黄斑退化和视网膜血管生成；以及其它组合物用于眼部眼部眼用药物的受控释放；

（5）含有治疗多肽（蛋白）的组合物，如胰岛素、黄体化激素释放因子拮抗剂、及类似物质，用于这些多肽的受控释放，从而避免了每天对药物的需求或其它频繁的注射；

（6）含有抗炎药（如 NSAIDs（例如布洛芬、萘普生、COX-1 或 COX-2 抑制剂、及类似物质）或抗炎类固醇）的组合物，用于通过注射入发炎组织或关节内注射而施用药物；
（7）含有抗生素的组合物，用于预防或治疗感染，优选用于沉积在手术部位以便抑制术后感染，或沉积在伤口中或创面上，用于抑制感染（例如由外来物体进入伤口）；

（8）含有形态形成蛋白，如骨形态形成蛋白的组合物；以及

（9）含有DNA或其它多核苷酸，如反义寡聚核苷酸的组合物。

嵌段共聚物的用途

本申请所提供的嵌段共聚物在任何可生物降解聚合物起作用的地方都是有用的，包括用于活性药剂可持续释放的载体、整形移植物、可降解的缝合线、以及其它类似情况，在某些应用实施例中显示了其用途，作为嵌段共聚物，它们的特性含有疏水嵌段和亲水嵌段两者，这赋予了它独特的优点，而且这些用途随后将会更详细地加以介绍，因为本领领域普通技术人员会非常熟悉可生物降解聚合物的用途，因此在这样的知识背景和本申请所披露的内容的启示下，其可以毫无困难的将本发明所提供的嵌段共聚物用于这些用途。

具有EPR作用用于靶向组织（肿瘤和炎症组织）的胶束体系

用作胶束递送系统的有用的聚合物可以通过形成二嵌段（AB）或三嵌段（ABA或BAB）共聚物来制备，它们都含有一个亲水的聚乙二醇A嵌段和一个疏水的聚原酸酯B嵌段。

当将这样的嵌段共聚物置于水中时，其中的聚乙二醇片断是可溶的而聚原酸酯片断是不可溶的，该嵌段共聚物链将会自发地自聚集用以形成胶束结构。这些胶束的流体动力学直径，其可以通过如动态光学扫描的方法来测量，是10-30 nm的数量级。当使用如静态光学扫描的方法来测量时，这些胶束将含有几百个聚合物链。这些
胶束将经历次级的、可逆的缔合，从而得到平均直径为约 100 nm
的微粒。这样的胶束太大了以至于不能够被肾脏排出，而单个的嵌
段共聚物则不是这样。更进一步而言，因为该聚原酸酯片断可以被
制成可生物降解的形式，因此会发生顺畅的肾脏排泻。

这种胶束体系的主要用途在于它们在疏水的内核中用以捕获
和溶解疏水性药物的能力。这样的捕获可以轻松的以多种方式进行。
因而，可以将药物加入到含有胶束的水溶液中，并通过简单的
搅拌、通过加热到适当的温度、或通过超声破碎而进入到胶束中。
这些胶束对于各种疏水的或不溶性的活性药剂而言是有效的载体，
并且在某些实施例中作为用于抗癌药物的载体也是适宜的，其通过
胞吞过程而使这些抗癌药物在肿瘤内累积。

疏水性药物的有效捕获需要一个高度疏水的内核。使用 AB、
ABA、或 BAB 嵌段共聚物，其中疏水性 B 嵌段形成了一个可生物
降解的、高度疏水的聚原酸酯内核，将会使得制备的系统的捕获效
率相对于其它可生物降解的片段如聚（L-乳酸-共-乙酸酯）共聚物
而言大为增强，。

任何能够形成胶束复合物的抗癌药物都适用于这种用途。适用于
胶束肿瘤定位的抗癌药物包括那些具有低水溶性或高芳香含量
的药物，诸如葱环霉素抗生素（如阿霉素、正定霉素和表柔霉素（表
柔吡星）、丝裂霉素 C，紫杉醇及其类似物（如泰索蒂），铂类似
物（如顺铂和碳铂），和类似物质。其它药物可以包括抗癌蛋白如
新制癌药物 L-天冬酰胺酶及类似物质，以及用于光动力学治疗的光
敏剂。与之类似的，任何能够形成胶束复合物的抗炎药都适用于这
种用途。适用于胶束定位的抗炎药包括那些具有低水溶性或高芳香
含量的药物，诸如抗炎类固醇（如，可的松、氢化可的松、地塞米
松、强的松、强的松龙、丙酸倍氯米松、倍他米松、氟尼松、醋
酸氟轻松、氟轻松、已酸丙炎松、和类似物质）和非离子的 NSAIDs
（如茶普生、茶豆美酮、酮基布洛芬、甲酚那酸（扑痛痛）、芬布芬、吡罗昔康、美洛昔康、塞来昔布（西乐葆）、罗非考昔、和类似物质）。

可生物降解的嵌段共聚物基质用于受控药物递送

在本申请所提供的嵌段共聚物中，当在连续的 A-相中形成 B 嵌段区域时，将发生相分离，反之亦然。这种相分离的材料会具有独特和有用的热性质。特别是，与在聚原酸酯中含有短片段的 PEG 的聚原酸酯不同，当将其加热时含有短片段 PEG 的聚原酸酯将会逐渐软化，而 PEG/POE 的 AB、ABA 或 BAB 嵌段共聚物则具有相对明显的熔点。进一步而言，具有低软化温度的含有聚乙二醇短片段的聚原酸酯具有很差的机械性能，而本申请所提供的共聚物，即使具有很低的熔化温度，它们仍然保持了足够的适用于移植物的机械性能。

该共聚物可以以如上所述的用于聚原酸酯相同的方式用来作持续释的载体。

通过注射或移植而给予的该聚合物组合物，在体内经过生物降解变成无毒的且无反应活性的物质。可以通过控制聚合物中可水解键的数量，而使活性药剂可以以所需要的速率来释放。由本申请的共聚物制备的移植物也具有同样的优点，在移植物中该共聚物形成了含有活性药剂的基质，由于该共聚物具有可生物降解能力因而不需要将其从体内除去。

化妆品和农用药剂持续释放的组合物也可以使用本申请所提供的共聚物，通过任意一种上述方法来制备。

此外，固态共聚物对于各类整形外科应用同样有用，可以以前述的用于聚原酸酯的同样的方法来应用。
该组合物同样是稳定的。活性药剂的释放速率不受用于杀菌的
辐照的影响。

通过注射来进行受控释放局部麻醉药物的递送

局部麻醉药物导致临时神经传导的阻滞，并且提供了持续几分钟至几小时的缓解疼痛的作用。在外科手术过程中、牙科操作或受
伤时经常会用它们来止痛。

合成的局部麻醉药物可以分为两类：几乎不溶的化合物和可溶
性的化合物。一般而言，可溶性的局部麻醉药物可以用注射的方法
来局部施用，而几乎不溶的局部麻醉药物则仅仅在表面施用。通常
由注射给药的局部麻醉药物，也可以分为两类：酯类和非酯类。酯
类包括：(1) 苯甲酸酯（哌罗卡因、美普卡因、异布卡因）；(2) 对
- 氨基苯甲酸酯（普鲁卡因、丁卡因、丁胺卡因、丙氯卡因、氯普
鲁卡因)；(3) 间- 氨基苯甲酸酯（间丁胺卡因（美布他明）、间丁氧
卡因）；以及 (4) 对- 乙氨基苯甲酸酯（对乙氧卡因）。非酯类主要
是 N- 酰苯胺（酰胺），并且包括布比卡因、利多卡因、甲哌卡因、
吡咯卡因和丙胺卡因。

很多局部麻醉药物通常是以其酸性附加盐的形式被使用，因为
这样保证了其在水溶性注射介质中的溶解性。然而，由于在这样一
种局部麻醉酸性附加盐中的大量酸的存在，将会导致本发明的聚原
酸酯或嵌段共聚物更迅速地降解并释放出局部麻醉药物，因此通常
在理想情况下是以自由碱的形式使用该局部麻醉药物，或者仅有少
量的酸性附加盐存在（如果希望的话，加入少量的酸性附加盐可以
提供增强的释放。）

本申请所提供的一种半固体可注射形式的局部麻醉药物是通
过将局部麻醉药物以上文所述描述的方式加入到递送载体中而制备
的。局部麻醉药物的浓度可以在 1-60 wt% 的范围内变化，在一个实施例中为 5-30 wt%，如大约 10 wt%。然后将这种半固体组合物充入带有 18-25 标准注射针头的注射器中，并将其注入疼痛部位或要进行外科手术的部位。可以将本申请所提供的这种半固体可注射组合物用于几乎不溶的和可溶的局部麻醉药物的受控递送。

由于局部麻醉药物的作用时间与它与神经组织的实际接触时间成正比，因此本申请的可注射递送系统可以用于长时间地保持神经局部麻醉，从而极大地延长了麻醉药物的功效。

很多作者，包括美国专利第 6,046,187 号和相关专利的作者，提出：一种糖皮质激素的共同给药可以延长或者增强局部麻醉药物的功效，尤其是受控释放的局部麻醉药物；以及含有局部麻醉药物和糖皮质激素的制剂，和它们用于局部麻醉药物的受控释放都是在本申请所保护的主题范围内。

实施例

下面的制备过程和实施例描述了本申请所提供的聚原酸酯和嵌段共聚物的制备过程。

制备过程 1：二[（5-乙基-2-亚乙基-[1,3]二噁烷-5-基）甲基]醚
（一种化学式 III 的化合物，其中 R 是-CH₂OCH₂-而 R¹ 是乙基）的制备
在氮气保护下，向置于 500 mL 带有冷凝器的烧瓶中的 300 mL 甲苯中加入 30 g（120 mmol）的二（三羟甲基丙烷）、45.6 mL（38.9 g、300 mmol）的丙烯醛二乙基缩醛和 1.5 g（6 mmol）的对-甲苯磺酸吡啶鎓。将该混合物回流 4 小时，然后冷却到室温，并加入 0.67 g（6 mmol）的叔丁醇钾。在减压下通过蒸发除去甲苯，而将残留物在一个 Kugelrohr 装置（压力 1-3 mbar、釜温 142-180℃）中蒸馏，得到 35.35 g（产率 91%）的粗二[（5-乙基-2-乙烯基-[1,3]二𫫇烷-5-基）甲基]醚的两种异构体，为浅黄色油状物。将 30 g 的该粗产品在置于 2 L 玻璃烧结漏斗中的 1 Kg 的 Merck 硅胶 60 上通过层析来进行提纯，用 20:80 的乙酸乙酯/庚烷洗脱，得到 27.8 g（产率 71%）的更纯的产物，之后将其在置于 2 L 玻璃烧结漏斗中的 1 Kg 的 Merck 硅胶 60 上通过二次层析进行再提纯，用 10:90 的乙酸乙酯/庚烷洗脱，得到 16.44 g（产率 42%）的基本上是纯的二[（5-乙基-2-乙烯基-[1,3]二𫫇烷-5-基）甲基]醚。将该物质用于光异构化过程。

向置于 500 mL 的光化学反应器中的 220 mL 戊烷中加入 14.32 g（43.9 mmol）由上一步反应得到的二[（5-乙基-2-乙烯基-[1,3]二
噻烷-5-基)甲基]醚。将溶液剧烈的回流 20 分钟用以脱除气体，然后加入 115 μL (171 μg, 0.87 μmol, 0.2 mol%) 的戊碳基铁，将该溶液再回流 20 分钟。将得到的溶液辐照一个半小时，直到当 NMR 显示没有乙烯基信号时为止。冷却至室温并加入 0.5 mL 的三乙胺之后，将溶液用干燥空气鼓泡 4 小时。在减压下经蒸发除去戊烷，并将残留的油状物在 Kugelrohr 装置（釜温 220℃、压力 1-3 mbar）中蒸馏，得到 9.04 g (产率 63%) 的二[(5-乙基-2-亚乙基-[1,3]二噻烷-5-基)甲基]醚，为无色的油状物。该产物的识别可以通过 1H NMR 和质谱来加以确认（观测到的数据为：363，345，对 C_{18}H_{35}O_{7} (M+2H_{2}O+H^{+}) 经计算所得的数据为363; 对 C_{18}H_{35}O_{6}(M+H_{2}O+H^{+}) 经计算所得的数据为345）。

实施例 1：化学式 I 的聚原酸酯的制备

在 100 mL 的圆底烧瓶中加入 1.143 g (3.5 mmol) 的二[(5-乙基-2-乙缩醛-[1,3]二噻烷-5-基)甲基]醚 (DEEDME)、0.743 g (4.95 mmol) 的三甘醇 (TEG)、0.013 g (0.05 mmol) 的三甘醇单乙交酯 (TEG-GL) 和 5 mL 的四氢呋喃 (THF)。通过在 THF 中加入少量的水杨酸溶液来引发反应。大约 30 分钟之后，加入 0.1 mL 的三乙胺用以中和该酸性催化剂，并经蒸发去除溶剂之后得到一种化学式 I 的聚原酸酯，其中 R 是-CH_{2}OCH_{2}-，R^{a} 是乙基，R^{b} 是乙基，A 是一种 1 mol% 的 R^{1} (其中 p 是 1，R^{5} 是氢，且 R^{6} 是-CH_{2}CH_{2}OCH_{2}CH_{2}OCH_{2}CH_{2}CH_{2}-) 和 99% 的 R^{3} (其中 R^{3} 是-CH_{2}CH_{2}OCH_{2}OCH_{2}CH_{2}CH_{2}-) 的混合物。[需要满足粘度和分子量的指标]

采用同样的步骤，使用 0.98 g (3.0 mmol) 的 DEEDME、0.743 g (4.95 mmol) 的 TEG 和 0.013 g (0.05 mmol) 的 TEG-GL 用来得到一种化学式 I 的聚原酸酯，其中 R 是-CH_{2}OCH_{2}-，R^{a} 是乙基，R^{b} 是乙基，且 A 是一种 1 mol% 的 R^{1} (其中 p 是 1，R^{5} 是氢，且 R^{6}
是 -CH₂CH₂OCH₂CH₃OCH₂CH₂₉和 99% 的 R₃ (其中 R₃ 是 -CH₂CH₂OCH₂CH₃OCH₂CH₂₉) 的混合物。[需要满足粘度和分子量的指标]。

采用同样的步骤，使用 1.469 g (4.5 mmol) 的 DEEDME、0.863 g (4.95 mmol) 的 1,10-癸二醇和 0.013 g (0.05 mmol) 的 TEG-GL 用来得到一种化学式 I 的聚原酸酯，其中 R 是 -CH₂OCH₂-，Rₐ 是乙基，R₈ 是乙基，且 A 是一种 1 mol% 的 R¹ (其中 p 是 1，R₅ 是氢，且 R₆ 是 -CH₂CH₂OCH₂CH₃OCH₂CH₂₉) 和 99% 的 R₃ (其中 R₃ 是 -(CH₂)₁₀⁻) 的混合物。分子量是 5,700 Da 而粘度是 78,000 泊。

采用同样的步骤，使用 1.469 g (4.5 mmol) 的 DEEDME、0.743 g (4.95 mmol) 的 TEG 和 0.013 g (0.05 mmol) 的 TEG-GL 用来得到一种化学式 I 的聚原酸酯，其中 R 是 -CH₂OCH₂-，Rₐ 是乙基，R₈ 是乙基，而 A 是一种 1 mol% 的 R¹ (其中 p 是 1，R₅ 是氢，且 R₆ 是 -CH₂CH₂OCH₂CH₃OCH₂CH₂₉) 和 99% 的 R₃ (其中 R₃ 是 -CH₂CH₂OCH₂CH₃OCH₂CH₂₉) 的混合物。分子量为 4,700 Da，而粘度为 32,000 泊。

其它的化学式 I 的聚原酸酯可以用类似的方法来制备。

实施例 2：基于 DEEDME 和 DETOSU 的聚原酸酯的比较

采用实施例 1 的操作过程，使用 1.632 g (5.0 mmol) 的 DEEDME 和 0.721 g (5.0 mmol) 的反式-环己烷二甲醇 (CDM) 用来得到一种聚原酸酯。其分子量是 11,400 Da 且玻璃转化温度为 31.9℃。用 DETOSU 代替 DEEDME 得到一种玻璃转化温度为 115℃的相似的聚原酸酯。这表明通过使用化学式 III 的柔性二 (乙烯基缩二乙醇) 可以大幅度地降低聚原酸酯的玻璃转化温度。
实施例 3：化学式 X 的二嵌段共聚物的制备

在非水条件下，称取 2 g（1 mmol）的 PEG2000 单甲醚（MPEG 2000）和 3.26 g（10 mmol）的 DEEDME 并加入到 50mL 的烧瓶中，并将其溶于 5 mL 的 THF 中。向该 MPEG 2000/DEEDME 溶液中加入溶于 THF 中的对-甲苯磺酸溶液（5μL、20mg/mL）来引发 MPEG 2000 和 DEEDME 之间的反应，并将该反应混合物搅拌约 20 分钟。将溶于 5 mL 的 THF 中的 CDM（1.32 g、9.15 mmol）和 0.021 g（0.1 mmol）的 TEG-mGL 加入到该烧瓶中，随后加入另外的 5 μL 对-甲基苯磺酸溶液。将该反应混合物搅拌约 30 分钟，然后在剧烈搅拌下将其滴加到约 100 mL 的己烷中，过滤分离得到生成的二嵌段共聚物沉淀，并在真空烤箱中干燥。

实施例 4：化学式 Z 的三嵌段共聚物的制备

在非水条件下，称取 1.5 g（1.5 mmol）的 PEG 1000 和 3.26 g（10 mmol）的 DEEDME 并加入到 50 mL 烧瓶中，并将其溶于 5 mL 的 THF 中。将对-甲基苯磺酸的 THF 溶液（5μL、20 mg/mL）加入到该 PEG 1000/DEEDME 溶液中来引发 PEG 1000 和 DEEDME 之间的反应，并将该反应混合物搅拌约 20 分钟。将溶于 5 mL 的 THF 中的 CDM（1.15 g、8 mmol）和 0.226 g（0.85 mmol）的 TEG-mGL 加入到该烧瓶，随后加入另外 5 μL 的对-甲基苯磺酸溶液。将该反应混合物搅拌约 30 分钟，然后在剧烈搅拌下将其滴加到约 100 mL 的己烷中，过滤分离得到生成的三嵌段共聚物沉淀，并在真空烤箱中干燥，得到一种三嵌段 POE-PEG-POE 共聚物。

其它的化学式 X、Y 和 Z 的共聚物用类似的方法来制备。

前文所述主要用于举例说明的目的。应该明了对于本领域技术人员而言，本申请所描述的分子结构、反应物的比例、使用的方法
和本发明主题的其它参数都可以在不背离本申请所描述的发明主题的精神和范畴的前提下进一步进行修改，或者用其他方法替代。