(19) AUSTRALIAN PATENT OFFICE

(11) Application No. - AU 2002240200 B8

(54) Title
A digital television application protocol for interactive
television
(51)6 International Patent Classification(s)
HO4L 29-06 060101BHAU
(2006.01) HO4N 7/173
HO4N 7173 20060101ALTI20
{2006.01) 060101BHAU
HO4L 29/06 PCT/US02/0282
20060101AFI20 9
21 Application No: 2002240200 (22) Application Date: 2002 .02 .01
(87) WIPONo: W002-063851
(30) Priority Data
(31) Number (32) Date (33) Country
09-858,379 2001 .05.16 us
60-266,210 2001 .02.02 us
60-269,261 2001 .02.15 us
60-279,543 2001 .03.28 us
60-265,986 2001 .02.02 us
60-267.,876 2001 .02.09 s
20060831
(43) Publication Date : 2002 .08.19
(43) Publication Journal Date : 2003 .02 .13
(71) Applicant(s)
OPENTV, IHNC.
(72) Inventor(s)
Henrard, Jose:; Lam, Waiman: Delpuch, Alain: Dur=au,
Vincent ; Huntington, Matthew: Alao, Rachad
(74) Agent/Attorney
Callinan Lawrie, 711 High Street, Kew, VIC, 3101
(56) Related Art

W0 2000-024192 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

00O

(43) International Publication Date (10) International Publication Number

15 August 2002 (15.08.2002) PCT WO 02/063851 A2
(51) International Patent Classification”: HO04L 29/06, 94306 (US). HENRARD, Jose; 14, rue de Liege, I-75005
HO4N 7/173 Paris (I'R). HUNTINGTON, Matthew; 23 Gordon Av-
cnue, Twickenham TW1 INH (GB). LAM, Waiman,
(21) International Application Number: PCT/US02/02829 2137 Sunsprite Drive, Union City, CA 94587 (US).

(22) International Filing Date: 1 February 2002 (01.02.2002) (74) Agent: ROEBUCK, G., Michael; Madan, Mossman &

Stiram P.C., 2603 Augusta, Suile 700, Houston, TX 77057
(25) Filing Language: English (A Lo, 2002 Augusla, Sulle ouston

(us).

26) Publication L : English)

(26) Publication Language "8 (81) Designated States (national): AL AG, AL, AM, AT, AU,

(30) Priority Data: AZ, BA, BB, BG, BR, BY, B, CA, CII,CN, CO, CR, CU,
60/265,986 2 liebruary 2001 (02.02.2001) US CZ, DE, DK, DM, DZ, EC, EE, ES, F1, GB, GD, GE, Gl1,
60/266.210 2 bebruary 2001 (UZ02.2001) US GM, TR, TIU, 1D, 11, IN, I8, J, KE, KG, KI, KR, KZ, 1.C,
601267876 9 February 2001 (09.02.2001) US T, TR, IS, IT, T, TV, MA, MD, MG, MK, MN, MW,
60/269,261 15 liebruary 2001 (15.02.2001) US MX, MZ, NO, NZ, OM, PIL PL, P1, RO, RU. SD, SE, 8G.
601279.543 28 March 2001 (28.03.2001) US SL SK, SL. TJ, TM, TN, TR, T, 1% UA, UG, UZ, VN,
09/858,379 16 May 2001 (16.05.2001) US YU, 7A, 7M, 7W.

(71) Applicant: OPENTY, INC. |US/US]: 401 Hast Middle- (34) Designated States fregional): ARIPO patent (GII, GM,

field Road, Mountain View, CA 94043-4005 (US). KB, 1S, MW. M7, SD, 8L, §7, T7, UG, 7M, 7W),

linrasian patent (AM, AZ, BY, KG. K7, MD, RL., TJ, TM),

(72) Inventors: ALAO, Rachad; 330 Angel Avenue, Sun- Liuropean patent (A1, BI, CH, CY, DI, DK, Ii$, Iil, I'R,

nyvile, CA 94086 (11S). DELPUCH, Alain; 20, avenue GB, GR, TE, IT, L1, MC, NI, PT, SE, TR), OAPT patent

André Prothin, 1-92927 Paris la Défense Cedex (I'R). (BI; BI, CI, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
DUREAU, Vincent; 3519 South Court, Palo Alto, CA N, SN, TD, TG).

[Continved on next page|

(54) Title: A DIGITAL TELEVISION APPLICATION PROTOCOL FOR INTERACTIVE TELEVISION

/-50

3]
=
g
2
= i 1o s
] g
102 2 S| 210 212
= LB o
2 =
COMMZ%CATVON g § E COMMZ%{CATIDN CUENT
S & @
2 e
> -
< g
04" 106 108~
-

) (57) Abstract: A common communication language that can address all the applications running in a multitude of sct top hoxes

QO (STBs) or client devices and application servers. The present invention, DATP protocol encapsulates a Meta language that provides

a generic portable communication application programmer interface that requires light process or utilization and is well suited for a

typical STB posscssing limited processing power. DATP requires relatively few processing cycles compared to typical Internet com-

~~ munication protocols. DATP reduccs the overhead of the communication protocol handler at the STB and makes the communication
protocol handler common for all STBs applications. The preferred DATP protocol is portable for all STBs since it is written in a
native language thar interfaces with the underlying operating system of the STB. A SGW (SGW) performs as a DATP scrver. The
SGW translatc between DATP messages and standard communication protocols. SGW cnables SP clients at STBs utilizing DATP

3 to communicate with service applications using a variety of communication protocols. A content converter is provided to convert
standard Web content into content snitable for display on a client-viewing device, ¢.g., a TV.

063

w0 02/063851 A2 I N0 O 000 A

Published: For two-letter codes and other abbreviations, refer ta the "Guid-
— without international search repori and lo he republished ance Noles on Codes and Abbreviations” appearing al ihe begin-
upon receipt of that veport

ning of each regular issue of the PCT Gazette.

WO 02/063851 PCT/US02/02829

15

20

TITLE: A DIGITAL TELEVISION APPLICATION PROTOCOL

FOR INTERACTIVE TELEVISION

Copyright Notice

A portion of the disclosure of this patent document contains material (code
listings and message listings) to which the claim of copyright protection is made. The
copyright owner has no objection to the facsimile reproduction by any person of the
patent document or the patent disclosure, as it appears,in the U.S. Patent and
Trademark Office file or records, but reserves all other rights whatsoever. Copyright
2001 OpenTV, Inc.

Background of the Invention

Field of the Invention

The present invention relates to the field of communications in the interactive
television environment and specifically relates to a method and apparatus for
providing a generic Meta language and digital television application protocol for
interactive television.

Summary of the Related Art

Interactive television systems can be used to provide a wide variety of
services to viewers. Inieractive television systems are capable of delivering typical
video program streams, interactive television applications, text and graphic images,
web pages and other types of information. Interactive television systems are also
capable of registering viewer actions or responses and can be used for such purposes
as marketing, entertainment and education. Users or viewers may interact with the

systems by ordering advertised products or services, competing against contestants in

WO 02/063851 PCT/US02/02829

20

25

30

a game show, requesting specialized information regarding particular programs, or
navigating through pages of information.

Typically, a broadcast service provider or network operator generates an
interactive television signal for transmission to a viewer’s television. The interactive
television signal may include an interactive portion comprising of application code or
control information, as well as an audio/video portion comprising a television
program or other informational displays. The broadcast service provider combines
the audio/video (A/V) and interactive portions into a single signal for transmission to
a receiver connected to the user’s television. The signal is generally compressed prior
to transmission and transmitted through typical broadcast channels, such as cable
television (CATV) lines or direct satellite transmission systems.)

Typically, the interactive functionality of the television is controlled by a set
top box (STB) connected to the television. The STB receives a broadcast signal
transmitted by the broadcast service provider, separates the interactive portion of the
signal from the A/V portion of the signal and decompresses the respective portions of
the signal. The STB uses the interactive information, for example, {0 execute an
application while the A/V information is transmitted to the television. The STB may
combine the A/V information with interactive graphics or audio generated by the
interactive application prior to transmitting the information to the television. The
interactive graphics and audio may present additional information to the viewer or
may prompt the viewer for input. The STB may provide viewer input or other
information to the broadcast service provider via a modem connection or cable.

In accordance with their aggregate nature, interactive television systems
provide content in various content forms and communication protocols the must be
understood and displayed by the STB/client that receives the information from the
broadeast service provider/network operator. Typically the client is a STB having a
processor possessing limited processing power. Translation of the various contents
and protocols is beyond the limited processing capability available in the typical STB
processor. Thus there is a need for a simple communication protocol which can be
easily understood by the client/STB processor and communicate in the various

protocols used by service providers.

10

15

20

WO 02/063851 PCT/US02/02829

Summary of the Invention

The present invention addresses the needs of the interactive television
environment discussed above. The present invention satisfies a long felt need to
provide a simple content and communication protocol than can be easily handled by a
STB processor and enables complex communication with the SP and service
providers, While the following discussion uses the example of a client/STB, the
present invention applies to all client devices including digital assistants, cell phones,
pocket personal computers or any other types of electronic device capable of
receiving an electronic signal. The present invention resides in a service platform
(SP) or server. The SP enables a network operator, who provides television signals to
its subscriber clients, to create and provide business, transpert and communication
functions that enable communication between service providers and the client or STB
viewer.

The interactive television environment must deal with and solve problems
that are unique to interactive television, such as the intermittent return path from the
client to the SP. That is, thc client device is not always connected to the
communication link as when the STB is tumned off. Thus, there is not always an
active return path from the client. The present invcnﬁon provides a store and forward
function to alleviate this intermittent return path problem.

Bandwidth and processing limitations and communication complexities are
also problematic in the interactive television environment. On one hand the network
operator typically provides a broadcast channel with a relatively large data
transmission capacity (typically a satellitc and dish) to send data and programming to
the client. On the other hand, the client return path has a relatively low data
transmission capacity, usually in the STB scenario; a telephone line is the return path.
Even if the return path happens to have a larger bandwidih, STBs/clients. typically
possess a low speed modem to send data up the return path. These and other issues
are addressed by the present invention.

Brief Description of the Drawings

10

15

20

25

30

WO 02/063851 PCT/US02/02829

Other objects and advantages of the invention will become apparent upon
reading the following detailed description and upon reference to the accompanying
drawings in which:

Figure 1 iHusuateé a high-level architecture diagram for a preferred

embodiment of a service platform in which the present invention resides;

Figure' 2 illustrates an architecture for the service platform in which the

present invention resides.

Figure 3 illustrates an example of a preferred application backend framework

of the present invention;

TFigure 4 illustrates an example of a preferred DATP STB Stack architecture

of the present invention;

Figure 5 iliustrates the Service Gateway (SGW), Digital TV Application

Transport Protocol (DATP) of the present invention as a subset of the Digital

TV Application Protocol (DAP) used to standardize back channel

communications between application scrvers and the SGW;

Figure 6 illustrates DAML and DATP as a subset of DAP,

Figure 7 illustrates an example of a preferred architecture for the SGW of the

present invention;

Figure 8 illustrates the sliding rejection window of the present invention;

Figure 9 illustrates a sample DATP session between a STB and an application

Server.

Figures 10-13 illostrate state machines for DATP;

Tigure 14 illustrates an architecture for content translation, H20; and

Figures 15 - 19 illustrate message scenarios between the client/STB, SGW,

H20 and application service providers.

While the invention is susceptible to various modifications and alternative
forms, specific embodiments thereof are shown by way of example in the drawings
and will herein be described in detail. It should be understood, however, that the
drawings and detailed description thereto are not intended to limit the invention to the

particular form disclosed, but on the contrary, the invention is to cover all

10

15

20

25

30

WO 02/063851 PCT/US02/02829

modifications, equivalents and alternatives falling within the spirit and scope of the
present invention as defined by the appended claims.

Detailed Description of A Preferred Embodiment

Overview

The present invention, a digital television application protocol DAP/DATP
resides in service platform (SP) and interacts with the content transcsoder, H20 and a
service gateway (SGW). In a typical interactive television environment, there are a
multitude of clients, typically STBs that must communicate with a multitude of
application servers providing content over a multitude of networks using various
communication protocols. Typically the STB has limited processing power so that it
is undesirable to place a multitude of communication protocol handlers in the STB
processor or STB stack. Thus, there is a need for a common communication
interface that can address all the STBs and application servers. The present
invention, DATP protocol provides a generic portable communication application
programmer interface (API) that requires light processor utilization, well suited for a
typical STB possessing limited processing power. DATP requires relatively few
processing cycles compared to typical Intemet communication protocols. DATP
reduces the overhead of the communication protocol handler at the STB and makes
the communication protocol handler common for all STBs. The preferred DATP
protocol is portable for all STBs since it is written in O-code, a STB independent byte
code that interfaces with the operating system of the STB.

In the present invention, a SGW performs as a DATP server. SGW enables
SP clients at STBs to connect to application servers using DATP protocol. An
HTML to native code proxy, H20O is provided that can be considered in this context
as an SP application server. H2O performs specific content translation, such as
HTML to SP O-codes. O-codes are the STB independent bytecode of the virtual
machine running on the SP. In a preferred embodiment, an O-code implementation
of the DATP protocol stack exists in the client, typically a STB. The client
communicates using DATP protocol to a DATP server, SGW. The H20 proxy exists
on the other side of the SGW performing content translation such as HTML to O-
code. An O-code implementation of a DATP stack in the client/STB issues

10

15

20

25

30

WO 02/063851 PCT/US02/02829

communication requests and communicates with SGW using DATP protocol.
Content translated by H20 is passed through the SGW to the client where content is
displayed.

SGW is a DATP server, which creates execution threads to handle each
individual STB and process each related conmtent. The SGW server stack
communicates with the client/STB using DATP protocol. SGW also applies the
appropriate protocol needed to enable the STB to communicate back and forth
between the STB and different application servers. Interactive television
applications typically utilize well-known Internet based protocols (HTML, etc.) to
communicate back and forth between the client/STB and application servers. The
present invention provides a generic and well-suited asymmetrical communication
protocol between the client/STB and application servers via the SGW. The present
invention accommodates the minimal processing and memory available at the
client/STB.

The present invention provides an asymmetrical solution to data compression.
The bandwidth of the bi-directional path from the client/STB to the network operator

is relatively small, typically a rcgular tclephone line or a retumn channel in a cable and

“usually connected to a low speed modem. Thus, to incrcasc the bandwidth available

over the low speed modem, the content down loaded from the server to the
client/STB is compressed. At the client/STB, however, data compression is
preferably not performed. The client/STB data returned is relatively small and not in
need of data compression by the STB processor which typically does not have the
processing power to perform data compression. In an alternative embodiment, there
are, however, instances where data compression from the client/STB is desired and in ‘
this case data compression is performed at the SGW. Data compression, with respect
to the client/STB is asymmetric in that data is compressed going down stream to the
client/STB and is not compressed coming upstream from the STB. Thus, the
architecture of the present invention is asymmetric, unlike typical Internet-based
protocols where both entities comnmmicating are assumed to be symmetrically

powered.

10

15

20

25

30

WO 02/063851 PCT/US02/02829

The SGW and client/STB communicate with application servers utilizing
session identifiers for clients rather than user identifiers so that the client users remain
anonymous. The present invention also provides multicasting to clients. A multicast
message can be sent to multiple clients via a broadcast link, when broadcast
bandwidth and a tuner is in the STB and broadcast messages are available and sensed
by a particular filter setup in the STB. In this case DATP requests that the STB
receives a message from a specific entry on the broadcast. If no tuner is available to
receive the broadeast in the STB, message fragments are also sent on each point-to-
point individual link to the STBs without a tuner. If the STBs are on a LAN,
messages are sent to a well-known address on the LAN to the STBs.

The present invention also provides a novel structure and method for handling
cookies from Internet applications and provides a "light" HTTP protocol, LHTTP,
which encapsulatés HTTP requests within DATP messages. LHTTP is a simplified
version of HTTP that runs on top of DATP. The novel LHTTP runs on top of DATP
and does not implement any part of the TCP/IP specification.

SGW establishes a link or a socket connection with a STB. To implement
User Datagram Protocol (UDP), however, UDP is not performed directly. For a STB
that can output UDP, the present invention encapsulates DATP on top of UDP. The
DATP-encapsulated UDP is sent to the SGW. In the case of UDP, a socket in the
SGW and a socket in the STB are effectively bound together in a simulated
connection on top of UDP. Through this simulated connection, DATP packets are
sent from the STB to the SGW server and from the SGW server to the STB.

Many STB modems do not provide data compression, possess minimal
processing capability aﬁd cannot afford the processing cost to perform data
compression in the STB. Thus in a preferred embodiment, asymmetrical data
compression is performed at the STB. STB receives compressed data and
decompresses it, however, the STB does not perform data compression. Data
decompression, however, is less compute intensive than data compression, thus, the
STB preferably performs decompression. The STB does not perform data
compression. Compressed data is sent to the DATP stack at the STB but
uncompressed data is sent from the STB to the SGW. SGW performs data

-10-

20

25

30

WO 02/063851 PCT/US02/02829

compression on the uncompressed data sent from the STB and SGW returns the
compressed data to application servers. Thus, the preferred DATP/SGW asymmetric
compression increases the bandwidth of the return path from the STB through the
SGW to the application servers. '

The present invention provides asymmetrical routing hy SGW. In
asymmetrical routing a portion of the bandwidth is allocated to SGW to send data to
the broadcast stream for broadcast. SGW has the ability to decide whether to send
data to one or more STBs over the broadcast stream or a point-to-point (PTP)
connection between the SGW and the STB(s). SGW routes data via broadcast or
PTP, based on the amount of data, the speed of the point to point link to the STB(s)
and the current communication links loading conditions. Thus SGW may decide not
to send a data set over the point-to-point link because the data set is too large and
instead send it over the broadcast stream. The data can be compressed by SGW
before sending it to the recipient siream or point-to-point link to increase the
bandwidth of the link between SGW and the link or stream and to accommodate
memory limitations in the STB.

DATP is computationally lightweight because it is designed so that all STB
stack operations require a minimum of processing power. For example, in the DATP
encryption scheme, when using Rivest, Shamir and Alderman (RSA) public key
encryption, the key that comes from the server is chosen so that the its exponent is
small (3 or greater) so that exponentiation phase takes a minimal amount of time and
processing power. Thus the heavy computation is reserved for the SGW server and
the STB or client processor requires minimum processing capability, Likewise the
LHTTP layer on top of DATP in the STB does not have to perform any heavy parsing
or other processing intensive operations. Instead, HTTP data is encapsulated in
DATP messages by LHTTP and the HTTP compute intensive functions, such as
conversion to HTTP protocol are handled by SGW.

DATP performs more than transactions. Rather, DATP is a message-based
protocol rather than a transaction oriented protocol, thus, when a user sends a
message from a STB to an application server, the application sérver does not have to

respond. That is, thers is not a one-to-one correspondence between STB and service

11-

10

15

20

30

WO 02/063851 PCT/US02/02829

provider messages. All DATP messages except the class of unreliable DATP
messages is processed through a DATP reliably layer. All DATP messages have
unique identifiers, which can be used as the basis of a transaction.

In a transaction using DATP, for example a HTTP request, the STB sends a
DATP message to SGW requesting a Web page. SGW converts LHTTP to HTTP
and sends it to the Internet via H20. Once the response containing the Web page
returns from the Internet to SGW via H20, which converts the content, SGW sends a
LHTTP DATP message to the STB refurning the content of the requested Web page
to the STB. Another example of a transaction is a Fetchmail request sent from a
STB. The Fetchmail request is encapsulated in 8 DATP message. DAML is used on
top of the DATP message. DAML is a domain specific instance of XML.

Thus, the STB sends a DATP message to Fetchmail containing a DAML
(XML) request. Fetchmail reads the DATP message and extracts the content from
the message, passes the content to the application server, which processes the
transaction and returns a message to Fetchmail. Fetclunail then sends a DATP
message containing requested content to the STB. ‘

DATP is flexible because of its mapping onto .the Open Systems
Interconnection (OST) model. The OSI model comprises seven layers for computer-
to-computer communication. Each of the seven layers builds on the layer below it.
The seven OSI layers are, from bottom to top, as follows: physical, data link,
network, transport, session, presentation and application layers, DATP is flexible as
it spans four of the seven layers of the OSI model. DATP spans the data link,
network, transport and session layers of the OSI model. The OSI model assumes
symmetrical processing capability at each computer server and host communicating
using the OSI model. That is, the OSI model provides a symmetrical communication
model. This symmetrical model is not stitable for the weak processing capability of
the STB. DATP provides an asymmetrical communication protocol based on the
“fat” (large bandwidth and processing power) server/thin (small bandwidth and
processing power) client paradigm, designed to be particularly well suited for the

interactive television environment.

12-

10

15

20

30

WO 02/063851 PCT/US02/02829

DATP substantially reduces the overhead per byte transmitted to a minimum.
DATP protacol is implemented in a binary format having its own DATP packet
format so that the packet overhead is roughly twenty bytes, which is half of that of
required in TCP/IP format framing. DATP provides a reliability layer. DATP also
provides "unreliable DATP packets" to send to messages to STBs that will not be
acknowledged and will not be made reliable through the reliability layer. Unreliable
DATP packets are useful for multicasting,

SGW also provides a store and forward function to handle peaks in mumbers
of orders sent in from multiple users, while rapidly reacting to the user order request.
SGW quickly sends an "order acknowledge” to the user in response to user's order
and stores the order for transmission later to the application server, which will
actually process the order transaction. By sending the order later, a large number of
orders can be spread out over time and not have to be sent all at once to the
application server. Thus, bandwidth is efficiently utilized DATP also provides a
sliding rejection window based on sequence numbers versus time. DATP/SGW are

discussed in detail below.

The Service Platform

Turning now to Figure 1, the SP in which the present invention resides is
presented. The SP 50 comprises a group of applications roughly divided into three
categories, Content Conversion 204, Transaction Control/Business Functions 106 and
Transport Conversion 108. The SP enables services 200 to interact with a client 212.
The services 200 communicate through a communication link 102 to the SP 50. The
SP 50 in turn communicates with a client 212. The client 212 may be a STB, a digital
assistant, a cellular phone, or any other communication device capable of
communicating with the SP through communication link 210, The content
conversion 204 and transport conversion 108 services provide the transport and
communication function, and the business function services provide the business

control functions.

Figure 2 illustrates an example of a preferred implementation of Service

Platform 50. Services 200 provide shopping, chat, and other services either over the

10

13-

10

20

25

30

WO 02/063851 PCT/US02/02829

Internet or over another nelwork or communication channel accessible to the network
operator. Using the SP, the network operator accesses those services. Business
functions 206, comprising service manager 238, interact with carousel manager 254
to retrieve content from a service 200. The carousel comprises a repeating stream of
audio/video/interactive data broadcast to clients from the SP 50. Carousel manager
254, transaction manager 242 and service manager 238 control the content insertion
and deletion from the broadcast carousel. Service content is retrieved and converted
into a SP suitable format by H20 248. H20 248 is a possible implementation of
content conversion 204. H20 converts HTML content into SP/client readable content.
The converted content is formatted into a data carousel and multiplexed by the Open
Streamer 256 for broadcast to the client 212. Client 212 interacts with the services
and if necessary communicates with the SP and the services 200. PTP communication
goes through SGW 246. SGW 246 performs transport convetsion to convert the STB
DATP protocol into a form Platform Business Agents 226 and H20 248 expect and
understand. Load balancer 236 interacts with business functions 206, carousel
manager 254, and SGW 246 to determine the optimal load between the broadcast link
241 and the PTP communication link 210. Business functions 206 interact with the
platform business agents 226 to control access and information exchange between the

services 200 and client 212,

SP hides the operator's valuable subscriber profile databasc by requiring
viewer information is given to a service exclusively by the network operator, and
under the network operator's control. To protect the subscriber's identity, an
abstracted user identifier (i.c., session identifier) is transmitted to the service during
the session that the service transmits transaction details to the SP. The user identifier
is session specific. There can be more than one user identifier associated with a
client, as when different family members use the same STB. Each family member
and the household STB can be individually assigned a viewer identifier, category,
tracked as to transactions for purchases/movie requests/viewing habits/etc. and
profiled by the SP Viewer Manager. The service only knows the client or STB
identifier through a session identifier. Only the network operator, by way of the

SGW can resolve a session identifier into viewer information details (name, address,

11

14-

10

15

25

30

WO 02/063851 PCT/US02/02829

shipping information, etc.) needed for fulfilling an order. An exception can be made
for a credit card number or other information, when the operator does not wish to

perform credit card collections or other transactions.

The present invention enables network operators to control access to the
viewer information database and allow only those service providers who have an
agreement with the network operator to access privileged information (e.g., credit
card numbers, viewer actual name, home address, telephone number, social security
number, etc.). Viewer manager 252 enables access to personal and profile information
stored on the client devices and enables the client devices or SP to select user-
preferred content and purchasing habits based on viewing stored in the viewer profile,
Clients or the SP select user-preferred content based on viewer profiling via business

filters activated in the client device by the client, SGW. or another SP component.

The viewer manager 252 provides household/subscriber/STB (or other client
device) identification and authentication in support of the SGW and parental control
fimctions. The viewer manager 252 supports multiple viewer identification and
registration authentication at a single STB through nicknames and/or personal
identification numbers (PINs) plus, the viewer identifier derived from the client
device identifier number(s), transaction history, viewer profiles, nicknames and
personal identification numbers. The viewer manager 252 performs household and
individual viewer profiling through logging, generation, and matchmaking linked to
observed cumulative TV viewing and purchasing habits. The viewer manager
supports distributed data capture and storage between the SP and the STB, and

supports bi-dircctional synchronisation.

The viewer manager 252 enables distributed profile usage between all SP
applications and provides synchronisation with an external SMS/CRM. The viewer
manager 252 enables multiple viewer registrations for a single STB or client device
using abstract viewer identifiers comprising pseudonyms or nicknames, full names
and PIN storage in the STB or other client device. Business agents 226 enforce
transactional business rules for interaction between service providers and viewers.

Based on business rules, which are defined by the network operators and based on

12

-15-

10

15

20

25

20

WO 02/063851 PCT/US02/02829

agreements with the service providers, the business agents 226 control transactions
and service provider access to user information. Business agents 226 supplement,
add, replace and delete viewer information during a transaction based on the service

provider agreements and abstract session identifier.

Business agents 226 create scssions between client subscﬁberg and service
providers. Business agents 226 control access to viewer information details and
manipulate viewer information by inclusion, replacement and removal of viewer
information presented to service providers. The business agents 226 provide default
values and control access to user information. The business agents 226 also perform
transaction logging, messaging logging, and load/transaction monitoring.

Advertising manager 244 provides an interface with both the broadcast and
PTP links, which enables complimentary advertising interaction between the two
delivery channels. For example, a broadcast (push) advertisement can trigger a PTP
connection to the advertising service via the SP so that the user can buy the product or
get more information related to the product. A broadcast advertisement can also be
placed in the PTP content to inform a user of the availability of broadcast services
(e.g., an infomercial). ‘

In some instances, several products or advertising segments are pushed or
broadcast to the client without the client requesting the information. Business filters
associated with the client, preferably located in a STB are used to sclect the best
advertisement for the viewer based on user profiles. For example, during a cooking
show, the SP may schedule a group of cooking advertiscments for broadcast to
viewers. This group of advertisements may comprise cooking ads on Italian, Frencl,
Indian and German cuisinc. The business filter associated with or located in the STB
or client will select which type of cuisine advertisement to present to the client. One
viewer may see a French cooking advertisement while another viewer may see the
Indian cooking advertisement depending on the STB filter set by the client or SP
based on user preferences and client profiles.

The SP enables reuse of Web Commerce infrastructure. The SP replaces the
‘usual’ HTML templates with an SP friendly format . The business agents receive
the order requests from the STB or client through the SGW. SGW queues messages

13

-16-

20

WO 02/063851 PCT/US02/02829

(to manage peaks), some orders are received by the business agenis with a delay
(preferably orders that do not need any form of confirmation would use this scheme).
The business agents add viewer information to orders. The amount and type of the
viewer information provided in a order/message is guided by business rules
dependiﬁg on the service/retail agreement.

As communications between services and viewers/clients the information are
sent to either separate carousels with a single carousel per transport stream or merged
into the existing application carousels. Orders then may proceed, if desired through a
‘credit card clearance’ function provided by the SP. As confirmations are sent back
from the retailers, the orders are sent real-time back to the user sent via email to the

user or made available on-demand through some form of customer care application.

The SP also provides offline viewer identification (OVT), which enables a
viewer to be identified or authenticated without an online viewer connection
established. This ensures that the connection delay (e.g., 10 — 40 seconds) can be
placed at the most appropriate place within the purchase process. This also enables
viewer identification along with the store and forward function. OVI enables
communications and completion of orders/operations with a client device that is

intermittently on and off.

An offline order form function is provided which enables the SP to provide T-
Commerce services for a viewer to add items to an order form (shopping cart) without
being online. The store and forward function is important for achieving greater
scalability. Store and forward may be either forwarding in off peak hours or simply
spreading the load over a given time period afier a transaction has been initiated. The
full store and forward solution is integrated with the so that responses can be
forwarded from any channel at any time. Store and forward can be used for
enhanced E-Commerce, T-Commerce transactions. The offline viewer authentication
enables offline payment selection. Offline payment selection is provided by the SP to
improve the purchase process and to enable use of the store and forward function with

T-Commerce/E-Commerce.

14

A7-

20

25

30

WO 02/063851 PCT/US02/02829

The SP uses standard Web transport where applicable, i.e., it uses HTTP for
real-time requests, and SMTP for asynchronous communication where applicable
(e.g. merchant reporting, store and forward). Even when going online, the SP
provides the ability to connect for a short period of time to access data (e.g., email)
then uses the data locally. The SP provides session-based identifiers instead of the
typical Web cookies to protect the operator viewer database. Instead of Web cookies,
the SP provides a session-based identifier that cannot be used by the scrvice to
identify the user, only the session. The service must request the viewer information
from the SGW (and be charged for it by the network operator).

The SP optionally informs the viewer when a connection takes place, and also
can optionally ask for the viewer's approval to maintain the comection. The SP also
displays a "Connection ON" status on the viewer's screen. The SP uses broadcast
bandwidth for PTP communication when it is more efficient. A load balancer is
provided that determines which information goes over the broadcast and which
information goes over the PTP connection. Load balancing decisions are based on
the urgency of the data, the delivery latency of the broadcast versus PTP transmission
links, the comparative load on the broadcast and PTP paths and the number of
viewers receiving the data. Generally, data going to a large number of viewers is
broadeast, and small data quantities that need to be sent immediately are sent over the
PTP link. STBs without a broadband tuner will receive PTP messages sent out along
with broadband.

SP provides STBs and/or clients with filters which selectively receive
information in the broadcast path based on viewer profiling, so that only selected
viewers having a particular filter set up in their STB captures content (advertising,
information or A/V programming, etc.) in the broadcast stream. These filters enhance
the adaptive and selective delivery asﬁects of the SP. The Carousel Manager
provides a data carousel for Open Streamer. The Carousel Manager manages a
carousel of data in real-time. The Carousel Manager complements Open Sireamer.
Carousel Manager provides a server component and an STB client OCOD library.
The Carousel Server receives requests from applications to add to, remove from or

otherwise change the carousels contents. As Carousel Manager receives a request, it

15

18-

10

15

20

25

WO 02/063851 PCT/US02/02829

treats it as a single transaction, and obtains all necessary data (usually through
HTTP). The Carousel Manager generates new carousel index or carousel directory
file as needed. Carousel Manager publishes the updated carousel directory to Open

Streamer, thereby controlling Open Streamer's broadeast priorities and tracks,

Open Streamer is a software/hardware product that enables network operators
to broadcast SP applications and data in their network broadcast. Open Streamer
enables SP data and applications to be transmitted simultaneously with the network
operator A/V programs. Open Streamer enables a data stream to be updated in real
time to match the A/V contents. For example, a network operator can broadcast an
interactive sports application along with the live broadcast of a sporting event. Open
Streamer comprises two components, a common server DLL and a broadcast
streamer. An application server (e.g., a weather application server) or the Carousel
Builder in the SP calls the common server DLL to send the carousel data to the
broadcast streamer. The broadcast streamer then performs multiplexing (according to
code/data ratio and bit rate requirements) of the applications and A/V data and sends

the multiplexed data to the broadcast equipment for broadcast.

DAP/DATP Protocol Scheme Overview

The present invention enables communication between STBs and service
providers associated with a SP. DATP protocol is a message-based protocol where an
entity sends a message to another entity with a delivery guarantee. Any time the STB
sends a message to the SGW, STB receives an acknowledgement message once the
message has reached its final destination (SGW or an application server). When an
application server has processed the message, a response message may be sent to the
STB provided that the STB session with SGW is still open. The DATP message
transmission phase will be preceded with a DATP login phase and followed by a
DATP logout phase needed to establish a DATP session. DATP is a session-oriented
protocol. Figure 9 illustrates a simple example of DATP session.

DATP supports multiple sessions on top on the same STB Transport layer
connection. STB clients can send in the middle of an open session with the SGW

login packets to start a new session on the same STB transport link used for the first

16

19-

10

15

20

25

WO 02/063851 PCT/US02/02829

session. Both DATP session management modules in the STB client and in the SGW

multiplexes the various session messages over the same link.

DATP Packet content overview

The DATP Protocol packet comprises a fixed size header, a variable size data
payload (DAML messages) and a trailer. The Header comprises the following
elements: Protocol Version Number; Packet type (Login/Logout Handshake, Ping,
Data, Acknowledge, etc.); Actual Transport Info (Raw, TCP/IP, UDP, etc.); Message
Sequence Number (DATP message number generated by STB or SG); Service
Identifier (ID of the service to receive the data). The service id is an 8-bit identifier
defined in the DATP protocol. Session ID (Sessioﬁ ID is provided by SGW at
handshake); Encryption Flags for encrypted sessions; and Payload Data Size.

The Payload Data may contain the following depending on the packet type:
Login/Logout info for Handshake packets; Acknowledge Info for Acknowledge
packet; Data Payload for data packet. The trailer will contain at least the 32 bits CRC
checksum of the DATP packet. The DATP protocol byte ordering is BIG ENDJAN.

Packet Fields Specification

The Protocol Versien field is the version of the DATP protocol used by the
transmitting entity. It’s the first byte of a DATP packet. The DATP packet format
may vary based on the DATP protocol version number. When new versions of the
DATP protocol are specified, this version number is increased to reflect the changes.
DATP communications between two entities will use the highest version of DATP

available on both entities. The version negotiation will be part of the login process.

The Packet Type Info field is the second byte of a DATP packet. It indicates
what type of DATP packet is being sent. STB transport Info field is the third byte of
a DATP packet. It provides information on the transport used on the STB side. It is
divided in 3 sub-fields: STB_transport_info[7,.4]: The four MSB bits of the field
represent the STB native transport protocol type. STB_transport_info [3]: This bit
indicates if the underlying transport is reliable. Note that this bit has is set to the

17

-20-

10

15

20

25

WO 02/063851 PCT/US02/02829

correcl value even if the native transport protocol type value can provide a good
indication of the protocol reliability. STB_transport_info [2..1]: This bit indicates the
speed class of the native STB transport.

The Service ID is the forth byte in a DATP packet and indicates the id of the
destination (STB to SGW packets) or transmitting (SGW to STB packets) host of a
DATP packet. The session ID is the second quadlet (double word) of a DATP packet.
It indicates the session id of the DATP packet. Session id values are generated by the
SGW during the login process. Login packets have their session id field set to 0.

In DATP, a sequence number is the first word of the third quadlet of a DATP
packet. It indicates the DATP message sequence number. This humber identifies a
DATP “transaction” from a packet sent to its corresponding acknowledge. Message
sequence numbers are generated by the transmitting entity and are unique only across
the messages sent on one leg of a DATP connection. This means that a DATP
message sent from the STB client to the SGW and a message sent from the SGW to
the STB client can have the same sequence nmumber but still correspond to two
separate “{ransactions”.

In DATP data size is the second double word of the third quadlet of a DATP
packet. It indicates the size of the payload data of the packet in bytes. By construction
this size is limited to 64KB to accommodate various commion factor on low end STBs
such as slow modem links, extremely noisy communication channels, limited RAM
memory resources, etc. In DATP, encryption flags constitute the first bytc of the
fourth quadlet of a DATP packet. The DATP data payload starts from thc first byte
after the 16 bytes fixed size header up to the size of the Data payload as indicated in
the header data size field. In DATP, CRC is the first quadlet aftcr the data payload. It
contains the value of the 32 CRC checksum of the whole DATP packet (header
included).

The Login packet is sent by the STB client to initiate a DATP session with the
SGW. Tt represents the first phase of the login process negotiation where the STB
introduces itself to the SGW. The SGW answers to a login request with an

18

21-

10

15

20

25

30

WO 02/063851 PCT/US02/02829

acknowledge packet in case of success. It will decide on the negotiable attributes of

the DATP connection and it will assign a session id to the newly created session.

The SGW will answer to a login request with a negative acknowledge packet
in case of failure. This packet is sent by the STB to close a DATP session with the
SGW. The SGW will answer to a logout request with Logout Acknowledge packet in
case of success.

The SGW answers a logout request with Logout Negative Acknowledge
packet in case of failure. Cases of failure include errors like unknown session id, bad
cre, etc. A data packet can be sent by any entity of a DATP connection. A STB
client application can send DATP data packets to Application Severs and Application
Servers can respond back to a STB forciilg the transmission of a data packet from the
SGW to the Client STB. An entity that received a Data Packet will answer with Data
Acknowledge Packet on successful reception. An entity that received a Data Packet

" will answer with Data Negative Acknowledge Packet on unsuccessful reception. If

no packet has been received from a remote DATP entity for a configurable period of
time, the other remote entity could test the DATP link by sending a DATP ping
packet and waiting for a reply. A remote entity that received a ping packet must send
a Ping Acknowledge packet to its remote peer if the ping packet was successfully
received. A remote entity that received a ping packet must send a Ping Negative
Acknowledge packet to its remote peer in case of unsuccessful reception of a ping
packet. Cases of failure include errors like unknown session id, bad CRC, etc.
Turning now to Figure 3, the following summarizes the architecture for
DATP/SGW as shown in Figure 3. A large number of SP and STB client applications
have common needs that are more transport specific than application specific that are
addressed in the DATP architecture. DATP performs encryption, data compression,
HTTP routing, and many other functions discussed below. The architecture for the
DATP application backend framework is illustrated in Figure 3. DATP provides
Lightweight HTTP (LHTTP) at the O-code application level, store and forward
function, STB Identification (using the OpenTV Central Registry [OCR]), and many
other functions. These functions are provided as part of or on top of the DATP

protocol.

19

22

10

15

20

25

30

WO 02/063851 PCT/US02/02829

As shown in Figure 3, the SGW server 1018 provides a robust
communication link between the STB 1008 and a variety of application servers 1026,
1028, 1030 and 1032, including the FetchMail server 1026. SGW 1018 routes
requests back and forth from the STB to application services. SGW receives DATP
packets from the client/STB 1018, contacts the appropriate application server, and
sends/receives data to the application server via TCP/IP connection. SGW enables a
Third-Party server, or SP specific servers such as the FetchMail server 1026, to send
messages to the STB.

As shown in Figure 4, the STB/client stack architecture features a plurality of
modules as well as an extra layer, message manager 1104 between the application and
the native STB/client transport. APIs are provided to STB applications such as an
LHTTP API 1106 and a store and forward API 1108. The server uses an
asynchronous version of the PAL layer, implements pools of threads and process

isolation techniques.

In a preferred embodiment, DATP provides increased message sizes while
guaranteeing delivery reliability and addressing complex memory issues duc to
constrained embedded environments in the STB. In order to increase DATP message
size, large messages are divided into smaller sections, transmitted, reordered and
delivered in a reconstructed DATP message. On a non-reliable link with a binary
etror rate (BER) of 10 %, the probability of having an crror on a 64KB message is

roughly 7% (1 message out of 14). Knowing that transferring 64KB takes a bit more

* than five minutes over a 2400 bits/s modem, DATP avoids retransmitting the same

message for another five minutes just because one of its bits is corrupted. To avoid
refransmission, the following implementation guidelines for DATP are preferably as

follows.

In a preferred embodiment, large messages, that is messages over 64Kb, are
fragmented into smaller DATP packets. Smaller fragment thresholds less than 64kb
may be used. BEach DATP fragment is acknowledged separately. As shown in
Figure 8, DATP keeps track of message sequence numbers and the time at which the

sequence number was last used. DATP messages with a “recently” used sequence

20

23-

WO 02/063851 PCT/US02/02829

10

15

20

25

30

number are réjected as "already received." To implement this policy DATP hosts
maintain a sliding window of recently used sequence numbers with a timestamp on
each sequence number. Older sequence numbers are removed from the window of the
remote host if they are older than (host_max_retry+1)*host_timeout. In a preferred

embodiment the time out value is programmable and can be set to any value desired.

The rejection window keeps track of the sequence numbers of packets
received in a certain time frame starting from current time. When the DATP core
layer receives a packet, its sequence number is looked up in the rejection window. If
the sequence number is found in the window, it is discarded, that is, the packet or
fragment associated with that sequence number is ignored. 1f the sequence number of
the packet is not found in the window, the new sequence number is added to the
window. The window or "rejection window" is periodically cleaned to get rid of
packet numbers older than a certain date depending on the time used on the
communication link. The packet rejection window algorithm provides an efficient
protection against multiple receptions of identical packets which can occur frequently

with retransmission/timeout based reliable message oriented transport protocols.

DATP messages are sent based on remote host memory conditions. Each
acknowledged packet of a DATP message contains a memory available field that
indicates current memory condition of the receiving entity. Utilizing DATP, to send
a message to a peer, a remote entity first checks to see if the size of the DATP
message is smaller than the memory available in the receiving entity. If there is
sufficient memory available at the receiving entity to receive the message, the
fragments of the DATP message are sent to the receiving host. Upon receipt of the
message, the receiving host acknowledges receipt of the message. Otherwise the
transmitting host sends control packets to the receiving host to query for the remote or
receiving host's memory availability. Partial delivery based on available memory
holding only a portion of a message may also be implemented if desired. In this case,
partial messages are cached until completed. The control packets are sent until
sufficient memory is available in the remote entity or until the maximum number of
message send retries is exceeded. If the maximum number of retries is exceeded and

there is still not enough memory available at the receiving host to complete message

21

24-

20

25

30

WO 02/063851 PCT/US02/02829

transmission, then the message transmission fails (unless partial message delivery is

authorized).

DATP protocol is a message-based protocol where an entity sends a message
to the other entity with a delivery guarantee. Any time the STB sends a message to
the service gateway it will receive an Acknowledge message once the message has
reached its final destination (The Service Gateway itself or an Application Server).
When an Application Server has processed the message, a response message may be
sent to the STB provided that the STB session with the Service Gateway is still open.
The DATP message transmission phase will be preceded with a DATP login phase
and followed by a DATP logout phase needed to establish a DATP session. It is
important to note that messages sent through DATP are fragmented into DATP
packets of at most MTU (Medium Transmission Unit) bytes that are fransmitted and
acknowledged independently. This allows DATP messages to be as large as
physically manageable by DATP entities. Figure 9 presents a simple example of
DATP session.

DATP supports multiple sessions on {op on the same STB Transport layer
connection. STB clients can send in the middle of an open session with the Service
Gateway login packets to start a new session on the same exact STB transport link
they are using for the first session. Both DATP session management modules in the
STB client and in the Service Gateway will be in charge of multiplexing the various
session messages on the same link.

To support large DATP message transmission, DATP relies on a packet
fragmentation / reconstruction scheme. Large messages are fragmented into small
DATP packets of at most MTU size. Each host has a MTU size and each DATP
entity can have a different one. Each fragment (DATP packet) of a DATP message is
acknowledged separately.

DATP message with “recently” used sequence number will be rgjected to
avoid “multiple reception of identical fragments” type of race conditions. To
implement this policy DATP hosts maintain a sliding window of recently used

(sequence number, fragment id) with a timestamp on each entry in the window. Old

22

25-

WO 02/063851 PCT/US02/02829

25

(sequence number, fragment id) entries will be removed from the window of a DATP
host if they are older than (host_max_retry+1)*host timeout.

A Defanlt DATP fragment size (i.e. MTU size) is limited to 4KB to
accommodate constrained STB environment where memory fragmentation is an
issue. Fragment size can be increased to a maximum 64KB at the application
discretion.

DATP supports up to 65536 fragments per DATP message. This gives a
maximum theoretical message size of 4GB. A DATP message’s first fragment
provides a marker indicating that the fragment is a new message first fragment and its
fragment identification (id) field is set to the number of fragments composing this
DATP message.

Incomplete DATP messages should be discarded by remote entities after
(host_max_retry+1)*host_timeout.

DATP provides encryption to enable applications to send sensitive data back
to their respective application servers. Providing encryption at the transport level
addresses the challenge of providing encryption in STB or client low proccssing
capacity environment. Thus, encryption is addressed with a carcfully designed
cneryption scheme and a preforred DATP scourc APL Security/encryption is
provided at a scssion level. Applications open a sccurc scssion using DATD secure
API. DATP encryption parameters are negotiated at session login. Secure session
negotiation is provided in at least two phases: during a standard DATP login phase,

and during a key negotiation phase.

A Trief description of the main steps of the key negotiation phase follows.
The DATP Server sends its public key server_epk to a client or STB. DATP
preferably uses Rivest, Shamir, & Adleman (public key encryption technology) RSA
(others may be used). DATP chooses the RSA exponent server_epk = (e, n) so that
e=3 or greater while maintaining a robust level of security (security depends only on
n). Since to encrypt a message with RSA the STB needs to compute (m ®) mod n. A
small "e" means that the exponentiation phase will be small, leading to a faster
computation of the encrypted message. The STB or client initializes its random

number generator with the system time plus any random source available to the O-

23

-26-

15

20

25

30

WO 02/063851 PCT/US02/02829

code layer (example: current video frame, etc.). The STB/client picks an STB/client
secret key (stb_sk). The STB encrypts the secret key, stb_sk with server_epk using
RSA. The STB sends encrypted secret key, stb_sk to the DATP scrver. The DATP
server decrypts encrypted stb_sk with its private key server_dpk. ’

The DATP server (e.g., SGW) initializes its random generator and picks a
server secret key server_sk. The DATP server (e.g., SGW) encrypts server_sk with
stb_sk using a secret key encryption scheme. The DATP server sends encrypted
server_sk to DATP server. The STB decrypts encrypted server_sk with its secret key
stb_sk. Once the keys have been successfully ekchanged, secret encrypted data can
be exchanged between the two entities via DATP using each other's secret keys. In a
preferréd embodiment, a DATP server authentication slep is added to the protocol, to
enhance key exchange scheme and make it robust against "man in the middle"
attacks. Thus, signing DATP stacks and managing authentication certificates is
provided in the DATP protocol.

To minimize communication time with SGW, the public key of the server is
preferably embedded in the stack so that encryption of the STB private key can be
performed off-line. This infroduces a new key management issue since the DATP
server should know the server public key used by the STB or client. Messages sent
over a secure session will preferably be encrypted at the fragment level. This means
that each individual fragment of a DATP mes'sagg will be encrypted independently.

A DATP Secure API is provided with the ability to send unencrypted
messages over a secure DATP session, which provides SP applications the option of
saving CPU cycles by not encrypting non—senéitive data sent over a secure session.
This is useful for clients or STBs with limited processing power, such as the Motorola
DCT 2000.

Once a secure session is established between a DATP server and a DATP
client or STB, messages sent by the client/STB to any application server are first
decrypted in the DATP server (e.g., SGW) and then forwarded to application servers
using a secure socket layer (SSL) connection. The encryption layer is based on a
cryptographic library available to O code developers as well as application server

developers. This library can be used by applications to manage encryption at the

24

27-

10

15

20

25

30

WO 02/063851 PCT/US02/02829

application level. This ability might be useful to manage end-to-end encryption for

security in critical applications such as banking applications.

Data compression on slow links such as the ones available on most STBs and
clients (2400 to 33600 bps) it is desirable to send compressed data to increase the
total throughput of the line. In some cases modem data compression is available at
OSI link level. Higher-level protocols do not gain appreciably by compressing their
payload. A large number of client/STB modems do not offer compression at the link
level so compression is provided by higher-level protocols. The present invention

provides data compression at DATP server level.

The challenge is that STBs or client processors lack capacity to perform
efficient pattern searches (or other CPU-intensive operations) needed by most
compression algorithms. Decompression, however, is a relatively easy task and
decompression APIs are provided to the client/STB at the O code level. Based on
these considerations DATP support for compression is asymmetric, that is, only the
downlink from the DATP server to the STB or client is preferably compressed using

standard SP compression tools.

Compressed DATP packets possess a "data compressed” flag in the packet
header indicating that the payload data is compressed. Packet headers are not
compressed. Compression and decompression will use standard provided SP
compression and decompression tools and APIs. DATP packet size indicates the size
of the compressed payload. The decompressed size of the payload will be indicated in
the payload’s compression header. Compression of DATP messages is performed at
the fragment level. Each individual DATP packet of a DATP message is compressed
independently. This is preferred since DATP message fragments are not necessarily
stored contiguously when received, thus, it is preferred that DATP decompress each
fragment separately. Independent decompression is possible since each DATP
fragment is compressed independently. The DATP STB stack and the DATP
application server API can disable or enable data compression on the downlink. Thié
feature provides application servers at least two important capabilities, the ability to

transfer large amounts of data to clients or STBs using the high-speed broadcast

25

-28-

WO 02/063851 PCT/US02/02829

10

15

20

25

30

channel and the ability to send multicast data to a collection of clients or STBs

through the broadcast channel saving overall SP bandwidth.

DATP server provides an Open Sireamer application server module that
manages a configurable number of broadcast streams. These streams are used to send
large chunks of data as well as multicast data to clients and/or STBs. Multicasting is
provided as a feature important as routing over broadcast since it enables application
servers to send data to a group of STBs without addressing each STB individually.
Multicast support in DATP provides unreliable DATP packets. The SP maintains
multicast group’s list of session identifiers and handles cases where an STB or client
with no broadcast tuner available is a member of a multicast group.

DATP Name Service (DNS) provides a mapping between application server
names and service identifiers. Though well known services have reserved service
identifiers, a large number of user-defined service identifiers are available and can be
used by various applications. To avoid hard coding of service identifiers in STB or O-
code applications, applications have the ability to refer to services by name after a
name resolution stage. This way the application is less dependent upon the SGW

configuration file.

The following is a description of how DNS capabilities are provided to DATP
clients. DNS is viewed as just another service from a DATF protocol standpoint. A
specific service identifier is reserved for the DNS service. The DNS service is hosted
within the SGW or may be hosted elsewhere in the SP or in a STB or other client.
The DATP client provides a simple API to resolve names of application servers.
Preferably, the main call (datp_get_asid by_name (as_name)) returns a request
number synchronously. An asynchronous notification returns the status of the name
resolution including the application server identifier in successful cases. Concurrent
name resolutions are possible with no significant detrimental consequences on
performance. Users are able to dispatch name server notifications based on a request
identifier tagged to each request. The Application Servers’ name parameter is added
to the current DNS configuration file. The same name is not be used for different
service identifiers. To achieve redundancy or satisfy scalability issues registering

several machines per service identifier are supported.

26

-29-

10

15

20

25

30

WO 02/063851 PCT/US02/02829

In the preferred implementation, DNS is considered as an instance of a yet to
be defined directory service. DNS request packet format comprises the following
fields: Query Type (indicating the type of query (0 for DNS query for instance)),
Query Tag (user provided tag to be matched against directory service responses),
Query Data (data used to perform the query operation (typically the name of the
service for DNS)). The DNS response packet format comprises the following fields:
answer type (indicating the type of answer (0 for DNS resolve OK)), answer tag
(same as the query tag that generated the answer) and answer data (query’s response
data (typically the id of the service for DNS)).

In an alternative embodiment of DATP, the assumption is all DATP clients
are behind a modem rack and for each connected client the modem rack terminal
server opens a dedicated TCP/IP connection with the SGW and forwards whatever it
receives from a given STB to this TCP commection. With the possible deployment in
older generation cable boxes with no TCP/IP support, but with User Datagram
Protocol (UDP) the DATP server (e.g., SGW) provides the abilily to listen on a UDP
port. UDP is supported as follows. On the Server a new datp_socket_listener class is
created to handle UDP connections. A socket type absiraction layer is created to

accommodate UDP sockets (PAL _udp_socket).

UDP connections are processed as follows. UDP listener reads the new
connection request datagram and creates a new AL _udp socket. TUDP_listener
replies to the connection, sending the datagram using newly created
PAL _udp_socket. UDP_listener creates a new Session Manager thread passing the
newly created PAL_udp_socket as an attributel The new session manager talks back
directly to DATP client using pal udp socket send with the provided
PAL udp_socket. Note that the remote address of the datagram need not be
specified. It is already set by the UDP_listener while answering the connection

request.

On the client side a UDP stb_transport module is created that implements the
already specified stb_transport‘ API on top of whatever UDP API is available in the
targeted STB or client. This UDP stb_transport preferably sends a connection request
datagram to the SGW UDP listener port and waits until it receives a reply from the

27

-30-

WO 02/063851 PCT/US02/02829

10

15

20

25

30

SGW before notifying the DATP core that the STB transport link is up. Subsequent
datagrams are sent using the port specified in the connection request reply from the
SGW. '

HTTP routing is provided to provide an interface for the SGW with standard
application servers that use Web servers as their front-end. In this case, DATP
preferably does not use the standard DATP application server API that is provided to
application server developers, but instead interfaces directly with these application
servers by forwarding DATP messages to their Web server front-end using the HTTP
POST (HTTPP) mechanism. In this scheme, client and/or STB applications use the
DATP API unaware that they are talking to an HTTP server.

In order to support HTTPP, a DATP application server type is provided. All
servers of this type are provided with an extra entry in the name server configuration
file to specify their post URL. The application server communication module
provides the ability to post DATP messages to HTTP servers depending on the
targeted server type. Preferably, this module is divided into an application server
(AS) communication manager and two AS data senders. One AS data sender sends
data to the DATP AS API compatible application servers and another one sends data
to HTTP based application scrvers. HTTP cookies received from the HTTP server
arc stored in the SGW and are resent to the HTTP server as needed. DATP messages
received on a secure DATP session are forwarded to HTTP servers using HTTPS.
DATP login and logout are preferably not anonymous, to enable the SGW to control
access to SP interactive services and to offer a way for application servers access to
the identity of a conneoted client.

The following further describes STB or client identification as part of DATP.
DATP stacks contain a STB or client dependent unique hardware identifier (HID). In
the case of an STB this hardware identifier is retrieved from the STB/Network
dependent STB transport layer. The HID format is a variable length character string.
The HIDs for a given network are stored in a HID list. The network operator, via SP
updates the HID list from its customer database using APTs. In the case in which one
cannot interface directly with the network operator subscriber database, the SP

imports the subscriber information (including their HID) from a flat file.

28

-31-

WO 02/063851 PCT/US02/02829

20

25

30

To establish DATP scssions, STB or client DATP stacks include their HID
within the DATP login packet. The SGW checks the validity of the HID using a
ceniral repository. Once the central repository clears the ITID, access is granted to the
STB stack. The HID enables the SGW to dctennjne the identity of a connected STB
or client. Similar to HTTP cookies, HID does not “strongly” authenticate a remote
STB or client. Thus, formal authentication of remote users preferably will be
performed by applications that require more robust authentication of their remote
peers.

DATP provides LHTTP of HTTP functions to O code application developers
that enable them to interact with remote HTTP servers. LHTTP is provided to enable
development of Web-like HTTP based applications. LHTTP completes the current
H20 strategy by offering an OS independent simplified HTTP interface for back
channel communications between the client, the network operator and services. The
LHTTP interface is based on the DATP stack, encapsulating HTTP rcquosts into
DATP messages. A special DATP service identifier is assigned to the LHTTP layer
and DATP messages received on this service identifier, which are routed fo the
destination HTTP server using a specific LHTTP data sender module in SGW.

Preferably, a limited set of HTTP commands is supported, comprising GET
and POST commands. Additional HTTP commands can be added to LHTTP.
LHTTP requests are transformed into real HTTP requests at SGW. HTTP requests
are made from the SGW on the behalf of LHTTP clients. Cookies are forwarded to
LHTTP clients. SGW caches the cookies and maintains a cookie to session 1D
translation table. DNS answers HID resolve requests from HTTP servers using this
translation table. HTTP servers preferably use the HID to extract user information
from the central regisﬁ'y server. LHTTP also provides a secure API, LHTTPS. This
API is based on the DATP encryption layer. LHTTPS requests are automatically
translated to HTTPS requests at SGW.

Simple Mail Transfer Protocol (SMTP) routing or simply forwarding
messages by email are provided to the interface between the SGW and application

servers, This interface can be used for non real-time transactions where an application

29

-32-

WO 02/063851 PCT/US02/02829

10

15

20

25

30

sends DATP messages to SMTP-based application servers and these messages are

forwarded by e-mail to the targeted application servers.

In order to support SMTP routing, a DATP application server type is created
for SMTP application servers. Servers of this type have exira enfries in the name
server configuration file to specify their cmail address as well as the email subject of
forwarded messages. The application server communication module posts DATP
messages to SMTP based application servers depending on the targeted server type.
A SMTP application server data sender module is provided to support this type of
transaction. DATP messages sent to SMTP application servers are attached to
multipart Multipurpose Internet Mail Extensions (MIME) encoded emails. The first
part of the message contains the hardware identifiers of the senders as well as the
DATP message ID of the messages being forwarded. The second part of the message
contains MIME encoded DATP messages.

DATP messages sent to an SMTP application server are acknowledged once
the message is decoded by a session manager and is ready to be sent by email to the
targeted application server. Subsequent SMTP related errors might occur once the
SGW makes an email delivery attempt of the DATP message to the targeted
application server. Messages sent using the DATP encryption layer would be
forwarded unencrypted to the final host. PGP encryption is also supported to securely
route DATP messages over SMTP.

The DATP store and forward service provides functionality for applicatioﬁs to
send non real-time messages to a specific application server. A store and forward
library is provided on top of DATP. Application uses the store and forward module
to send messages with different timing constraints depending on their needs. Timing
constraints vary from “as soon as possible”, “a specified time”, “a specified
occurrence, event or message” to “whenever we get connected” including “after a

random period of time”.

The store and forward module stores undelivered DATP messages into the file
system along with some specific attributes (time stamp, timing constraints, targeted
AS identifier, ete.). The file system storage path is configurable at least at compile

time to accommodate a specific network. Messages not forwarded while a given

30

-33-

10

15

20

25

30

WO 02/063851 PCT/US02/02829

DATP store and forward enabled application is running are not forwarded until
another store and forward enabled application starts running. The store and forward
module does not alter the content of the forwarded DATP message. The message is

forwarded without alteration to the targeted application server.

Turning now to Figure 4, the DATP architecture of the client stack
comprising a plurality of modules is illustrated. Modules below line 1121 are written
in native client code while modules above line 1121 are written in O-code. The
lightweight HTTP module 1106 provides lightweight HTTP capabilities to O code
applications. It is implemented on top of the DATP API. The store and forward
module 1108 provides store and forward capabilities to O code applications. It is
implemented on top of the DATP API. The DNS module 1110 utilizes the DATP
message manager module 1104 to provide DATP name resolution services. The
DATP message manager module 1104 provides the front end of DATP. All DATP
message-relaied API calls go through the DATP message manager module. This
module divides messages into DATP packets and reconstructs DATP packets into
messages. The DATP transport core module 1102 manages DATP sessions, sends
and receives DATP packets, and manages DATP module reception from broadcast.
The DATP secure transport extension module 1120 handles secure DATP sessions.
The DATP packet library 1134 provides the functionality for reading (parsing) and
writing (composing) DATP packets to the DATP STB transport module 1132 based
on the DATP packet format specification. Upon reading a complete DATP packet,
this module will notify the DATP Transport core with the parsed DATP packet.

The DATP broadcast library 1126 listens on selected SP streams based on the
DATP transport core 1102 specifications, waiting for modules intended for a given
STB or client and notifying the DATP transport core 1102 with the parsed DATP
modules. The DATP STB transport module 1132 provides a link-level packet
interface on top of whatever native transport or data link is available on the DATP
host. The event-loop stub 1116 provides a stubbed version of the message API
specified in the DATP portability later. This stub is based on the common library
event-loop. The role of the portability layer 1114 is to abstract the DATP stack from

application dependent issues such as message dispatching mechanism, encryption

31

-34-

10

20

25

30

WO 02/063851 PCT/US02/02829

APIs, etc. The cryptographic library stub 1118 is a stubbed version of the
cryptographic API specified in the DATP portability layer. This stub is based on the
common library cryptography package. The module lib stub 1124 is a stubbed
version of the multi-track module downlo’ad API specified in the DATP portability
layer. This stub is based on the common library’s multi-track module download
package.

Turning now to Figure 6, DATP is a subset of the Digital TV Application
Protocol (DAP). DAP/DATP is depicted in Figure 6. DAP is used to standardize
back channel communications between SP applications and SGW. DATP and SGW
provide a generic virtual transport mechanism to SP applications, since not afl SP
enabled STBs provide a TCP/IP stack extension. Moreover, some of the STBs run
their own proprietary stack or provide no communication stack at all.

DAP is a simple lightweight application protocol suite. DAP’s main purpose is
to provide a simple and effective way to leverage existing application protocols, such
as POP3, SMTP, internet message access protocol (IMAP) and others onto low-end
STB’s. STBs often possess low capacity processing resources and/or proprietary
communications protocols. DAP is designed to abstract communications complexity
from the application providers, which in turn leverages existing network

infrastructure for today’s application standards.

As shown in Figure 6, DAP is divided into two parts: DAML 1610 — digital TV
application Meta langnage and DATP 1620 - digital TV application transport
protocol. DAML 1610 is a Meta language that spans many SP applications, Each SP
application has its own domain of DAML. The client application responds to and
requests messages encapsulated in a DAML domain. These request messages are
translated by application servers into the appropriate protocol for existing
applications, such as SMTP or IMAP.

DATP 1620 is a lightweight, simple transport protocol designed for low
bandwidth applications when TCP/IP or another known protocol is not available.
DATP is designed to interface with existing communication protocols in current
STBs. DAP comprises: DATP, DAML-Mail (XML domain for mail); DAML- Regi

32

-35-

WO 02/063851 PCT/US02/02829

10

15

20

25

30

(XML domain for account registration); and DAML-Acct (XML domain for
accessing SP VMS/AMS system).

Typical STBs arc based on a thin client architecture, that is, possessing
minimal processing capability. The services provided by today’s STBs are often
low-end, "dumb" applications. Today’s resource intensive applications such as email,
chat and Internet browsers require more powerful processing appliances. Today’s
STB cannot provide this type of processing power, hence the need for a low-end,
lightweight application protocol. DAP is simple enough to hide or abstract the
client/server network complexity from the application developer.

DAP is modular, flexible and adaptable to today’s emerging software
architectures. Which could be either a Common Object Request Broker Architecture
(Object Managément Group) (CORBA) based model or Common Object Module
(COM)/ Distributed Component Object Module (DCOM) model. DAP is flexible
enough to accommodate and integrate with existing third party legacy systems. DAP
provides an interface to various open and proprietary protocols. These protocols cxist
for service systems where the PC is the main client, for example, IMAP or POP3
services. DAP leverages the SP middle ware technology. DAP server ware translatcs
DAP protocol to existiﬂg application specific protocols.

DAP and its subset DAML 1610 are designed to be lightweight and capable of
supporting low-end bandwidth sensitive STBs. DAML tags are preferably no larger
then 4 characters and when possible limited to 2 or 3 characters. DAML incorporates
binary XML to facilitate DAML tags. DAP is used as a communication protocol
between applications running on the STB and service sub-systems. DATP 1620
controls the communication handshaking, routing and transport specific
authentication, where as DAML manages the application specific requirements.
DAML. requests and responses are communicated between a STB client and a service
provider over an existing communication protocol, for example, TCP, UDP, DATP or
a proprietary communications protocol.

The DAP protocol and its subset DAML can be a session oriented or
"sessionless" protocol suite. DAML domains are application dependent. New

domains of the DAP protocol can be used for new types of applications. The addition

33

-36-

10

15

20

25

30

WO 02/063851 PCT/US02/02829

of new DAP domains have little effect on existing DAP domains. Thus, DAP
provides a unique and simplistic SP for network operators to add additional services
without impacting existing services. Bach DAML domain can be based on either a
simplistic human readable tag or a cryptic abbreviated tag for increasing protocol
performance by decreasing the packet size when performance is a critical factor.

The following outlines the role of DAML in the DAP architecture. DAML is an
application level communication protocol, utilized to specify communication
behavior and communication data for interactive TV services. The service level
communication protocol is above the transport level protocol. It defines how the
application specific content is encapsulated between client/server communications.

DAML is a collection of domain specific protocols that enables a modular design
of the SP. For example, DAML-Mail is a subset of DAP. DAML-Mail is a mail
domain specific protocol. New domain-specific protocols can be added as a subset of
DAP simply by creating new DTD’s. DAP specifies communication behaviors
through the sending and receiving of DAP messages. The application specific data is
encapsulated in an XML format. The syntax of each XML application domain
specifies the actions for the application servers to performa. This enables design of
very lightweight simplistic protocols that today’s STBs can utilize to interface with
existing infrastructure such as SMTP services and IMAP services.

DATP is a transport/service level protocol that provides a commumication
platform between SGW and multiple STBs or clients. DAML is encapsulated in a
DATP packet. In general service level protocols are above iransportation protocols,
but DATP is unique in that it can sit in a typical network model either at the service
level, data link level or transport level. This makes DATP very flexible. DATP
interfaces with the underlying transportation protocols, such as TCP, UDP, X.25, raw
sockets, or other protocols.

SGW provides routing and SGW technology for low-end STBs to connect to a
network backend infrastructure. SGW provides transport level protocol support
between the STB/clients and SGW, for example, a sequential-stream protocol over
raw sockets. DAML leverages this feature.

34

-37-

10

15

20

25

30

WO 02/063851 PCT/US02/02829

DAML-Mail is a protocol subset of DAP, DAML-Mail is a mail domain specific
protocol. This protocol is used to link STBs with IMAP, POP3 and SMTP setvices.
DAMI-Regi is a DAP service domain protocol that specifies a generic method for the
registration of accounts for multiple services. DAML-Regi is a simple protocol
between a STB and the registration server. This enables complex interaction between
an STB and a variety of different application systems, with only a single point of
integration, the registration server.

DAML-Acct is a DAP service domain protocol that communicates with the
SP VMS/AMS database. DAML-Acct enables the STB/client to query and return user
specific data from the VMS/AMS system. All the DAML domains are defined using
XML document type definition (DTD) synta).c. DTDs describe the message syntax but
not the logic for the exchanges of requests and responses. XML is useful in defining
the markup of a block of text. Specific DAML requests and responses are
interactions that are related to each other. The rules for their interaction are
modularized in the STB and application server components.

The messaging manager provides various types of message communications
among the users and with outsiders (those that are not network service subscribers).
For example, it enables users to send and receive email, to chat with other non-
subscribers and to receive instant messages from non-subscribers. The email portion
of the messaging manager contains a Fetchmail component connected to an Internet
based email server such as IMAP, POP3 and other Webmail messages for the
appropriate mail-hosting server.

Fetchmail manages all SP server-side mail management. Fetchmail translates
DAP messages to IMAP, POP3 or Webmail messages for the appropriate mail
hosting server. SGW routes DAP mail messages to “Fetchmail” for processing.
Fetchmail responds with the appropriate response to the request. Fetchmail interfaces
with IMAP servers. An email application is provided by the SP. All SP applications

can ‘send’ email via the email service offered by SGW.

The chat SP service interfaces to a chat server or alternative includes a chat
server. Chat service is accessible through a dedicated chat application, but also from

any SP application linking with the SP chat client DLL. By providing an interface

35

-38-

WO 02/063851 PCT/US02/02829

10

15

20

25

30

between a chat and a program listing, a chat room can be created dynamically with a
broadcast show. Applications and other services can use the SP "alert" service to
trigger STB resident mini-applications. Alert utilizes the SP OMM extension and
functionality of Open Streamer. The Email service uses alert triggers to inform the

viewer of an incoming message.

Figure 10 describes the DATP connection state machine. This state machine
describes the behavior of a DATP session connection state machine from the STB
client side. A session must be in connected state before sending any data packet to the
SGW and must be disconnected after a logout request from the client. Figure 11
describes the message send state. This state machine describes how a DATP entity
sends a DATP data packet to another DATP entity. Figure 12 describes the message
receive state machine. This state machine describes how a DATP entity receives a
DATP data packet from another DATP entity. Figure 13 describes the keep alive
state machine. This state machine describes how a DATP entity should use ping
packets to ensure that a DATP link to the other entity is still up. If it tums out that the
link is down a logout is initiated.

SGW

Turming now to Figure 5, SGW incorporates a plurality of modules to support
DATP features. The SGW architecture is a multi-process based architecture
providing pools of threads. The entire server runs on an asynchronous version of a
platform abstraction layer (PAL). The PAL implements a message queue process.
PAL communicates using message passing techniques. SGW uses three types of

processes, as shown in Figure 5.

As shown in Figure 5, application servers or services communicate with
multiple clients/STBs through the SGW using a domain-specific DAP protocol. In
certain cases, clients/STBs can directly connect to the application services. For
example, if the transport protocol between the STB and the network is TCP/IP, the
STB is TCP/IP enabled, and there is no requirement to perform complex common
services provided by SGW, faster network performance can be improved via the

client/STB communicating directly to a service via TCP/IP.

36

-39-

20

25

30

WO 02/063851 PCT/US02/02829

Turning now to Figure 7, thc DATP Server, SGW main process is the main
DATP server process described above. SGW hosts several key modules. The TCP
socket listener module 1204 is a simple TCP socket listener thread that waits for
connections on the DATP TCP listen port, accepts them and requests the creation of
new session managers to handle new connections. The UDP socket listener 1202
waits on a well-known port for UDP connections. Once a connection request is
received, the UDP socket listener 1202 creates a new socket and ;sends a connection
request acknowledge to the remote host. UDP socket listener 1202 then requests the

creation of a new session manager to handle the connection.

The session manager monitor 1206 module is part of the main thread. The
primary role of this component is to monitor session manager (SM) processors 1214
population (creating and deleting SM Processors based on load), and to forward
session manager crcation requests to the least busy SM Processor 1215. Each SM
processor (0-n) 1215 comprises a DATP application server communication module
(ASCM) 1217 and a separate application server data sender (ASDS) for DATP,
HTTPP, LHTTP and SMTP.

The DNS name server 1212 thread maintains a matching table between
application server identificrs and their attributes (hostname, port, type, etc.) as well a
matching table between session identifiers and session manager message quene
identifiers. The name server module, DNS answers name resolve queries posted to its
message queue. The application server socket listener thread 1208 is in charge of
waiting for message post requests coming from application servers. The name server
1212 then forwards the post requests to the targeted session managers based on the

post request session identifier.

The session manager processor process 1214, 1216 hosts a pool of session
manager threads 1215. New session manager threads are created based on requests
from the session manager monitor 1206 to the session manager processor thread. The
session manager processor 1214, 1216 thrcad honors requests from the session
manager processors 1214, 1216 and creates or deletes session managers based on
requests from the SM monitor and notifies the session manager processor with the

result of its requests. Session manager threads 1215 manage DATP sessions and

37

-40-

WO 02/063851 PCT/US02/02829

15

25

30

forward DATP messages from STBs or clients to application servers and vice-versa.
There will be one thread per STB or client. These threads utilize several key modules
to handle DATP sessions (Packet library; Application Server Communication
Module; DATP Application Server Data Sender; HTTPP Application Server Data
Sender; LHTTP Application Server Data Sender; and SMTP Application Server Data
Sender).

The broadcast manager process 1210 is the main component of DATP routing
over broadcast. This process is an Opensireamer application server that manages
DATP server carousels. Broadcast Manager Process updates these carousels
dynamically depending on requests it receives from other components of the DATP
Server.

The SP and SGW are preferably supported on Sun Solaris 7 data processing
system with memory, monitor, GUIL, mouse, keyboard and processor, which is well
known in the art and available from Sun Microsystems. SGW runs as a UNIX
daemon, is configured using a configuration file, and is started from the command
line. Once a connection has been made between the SGW and the STB/client over a
network, TCP/IP handles all communications between the other services. Besides
handling different transport protocols, the SGW also routes messages to different

service sub-systems depending on the configuration of SGW.

SGW performs its functions at the point of entrance to the application servers.
This enables features to be easily configured and/or added since network and
messaging functionality is isolated on SGW. This frees the service sub-systems to
function on core application functionality and leaves network connectivity issues to
SGW. This also enables greater scalability by isolating specific functionality to
separate hosts: email message delivery and receiving (using the FetchMail server) from
network routing and security using SGW,

SGW is sized to support hundreds of simultaneous connections on a single
server. SGW is configurable to handle more comnections depending upon the
processing power of the processor hosting SGW. This limit is based on the number
of modems (typically several hundred) per POP (Point of Presence) for major ISPs.
In the case of a WAN architecture where the SGW is located at one central point, a

38

-41-

15

20

25

30

WO 02/063851 PCT/US02/02829

hardware network address translation (NAT) based load balancing device is provided
(o connect several SGWs in parallel to distribute the load.
Content Translation - H20

The following is an overview of the H20 Proxy environment using a logical
view of H20 architecture and sample transactions. Requests for URI may come
either from different H20 components — for example: STB/SGW and Carousel. The
following context overview focuses on the STB/SGW issuing the requests — but the

general flow of information stays the same.

A viewer chooses to interact with its TV Web page, thus issuing a request
from the STB to the H20 system and waiting for a reply. STB requests are sent to
the SGW, using lightweight HTTP requests (LHTTP) encapsulated in DATP
messages as transport protocol. The requested object is returned through the same
channel and protocol. The SGW converis the LHTTP protocol to standard HTTP
over TCP/IP and issues the request to a Web Cache.

The Compiled Object Cache (COC) uses its internal disk space to service any
request it can serve (following a heuristic taking into account the time-to live of
objects). Its role is to service all static objects (standard URLs without queries, no
posted form) without querying the H20 proiy, thus reducing it’s processing load. In
this architecture, the COC will only store compiled objects (H20 modules). The
COC machine is I/0 driven.

Now turning to Figure 14, H20 proxy 248 provides a scalable environment
for the different H20 compilers (or filters) to run. It is processing HITP request and
responses “on the fly” and thus the H20 Proxy machine is process driven. The H20
HTML Compiler 1420 is in charge of HIML to SP resource compilation. To
compute the TV Layout to render 1422, this component issues HTTP requests by
itself based on the size of the embedded images. This compiler rearranges the Web
based image to fit onto the client display device, e.g. a TV.

The MPEG Compiler 1426 charge of the conversion from regular web images
format to SP H20 MPEG resources. Source format includes JPEG and GIF and may
include PNG. Passing arguments through the URL may drive the conversion process.

39

-42-

15

20

25

30

WO 02/063851 PCT/US02/02829

The PIXMAP Compiler is in charge of the conversion from regular web images to SP
H20 resources. Source format comprises GIF and may include PNG.

The Request Patcher 1424 charge of completing or modifying the request or
responses to incotporate data coming from another system (e.g. credit card
number...). It communicates with an external process or database to fetch customer
information. The SP component provides a central repository of user information.
The Request Patcher communicates with this component to get the data necessary to
patch the requests / responses.

The Not Compiled Object Cache 1430 will use its internal disk space to
service any request he can serve (following an heuristic taking into account the time-
to live of objects). The objects cached comprise static HTML, GIF images, JPEG
images and all standard web formats files. Iis role is to service all static objects
(standard URLs without queries, no posted form) without querying the Internet, thus
reducing latency time to get an object and giving a kind of fault-tolerance to the
system. The Customer web site holds the web site to publish throngh the H20

system.

Figure 15 illustrates a request for a static page, already cached. The STB user
issues a request to load an HTML page 1520. This request is sent to the SGW 248
using LITTTP over DATP. The SGW converts the request to HTTP over TCP/IP and
forwards it 1522 to the Compiled Object Cache 1410. The Compiled Object Cache
1410 has the requested (compiled to a module) HTML page stored in its internal hard
disk space; if the object’s time to live has not expired and the compiled object cache
service the request with the compiled HTML page. It transmits the HTTP response
1424 to the SGW, using HTTP over TCP/IP, The SGW translates the protocol from
HTTP over TCP/IP to LHTTP over DATP. The STB loads the requested page 1526
(compiled) in its memory and gives it to the H20 browser engine for interpretation.
The H20 browser engine requests 1528 the SGW to get the images necessary to
render the screen on TV, with conversion options (mpeg or pixmap, width, height...)
on the url. The SGW transmits the HTTP request 1530 to the Compiled Object
Cache. The Compiled Object Cache has the requested (compilced to a module) image

stored in its internal hard disk space; the objects time to live has not expired and the

40

-43-

WO 02/063851 PCT/US02/02829

10

15

20

25

30

compiled object cache service 1532 and 1534 the request with the compiled image.
In this sceﬁario, the H20 Proxy was spared of the request and thus can process other

requests.

As shown in Figure 16, the STB 212 user issues a request 1610 to load an
HIML page (home.asp), the host and user info of the request header hold [STB
Model+ STB Serial number] and [Access Card Id] of the user. This request 1610 is
sent to the SGW using LHTTP over DATP. The SGW converts the request to HTTP
over TCP/IP and forwards it 1612 to the Compiled Object Cache. The requested
object is not available in the disk space of the Web cache. The Web Cache then
forwards the request 1614 to the H20 Proxy. The H20 Proxy asks 1616 the SP to
return 1620 the name of the user (for the amazon.com service). The H20 Proxy
patches the request with the name of the user, and issues this request 1622 to the “Not
Compiled Object Cache”. The “Not Compiled Object Cache” does not hold the
requested HTML page in its disk space and then issues the request 1624 to the
targeted web server here amazon.com. The targeted web server computes the HTML
page, given the user information and returns 1626 it to the “Not Compiled Object
Cache”. The “Not Compiled Object Cache” returns the HTML page 1628 to the H20
Proxy.

The H20 Proxy sends the HTTP request 1630 to the “Not Compiled Object
Cache” to get the images 1632, 1634, 1636 necessary for it’s layout computations
(gif, jpeg...). The H20 Proxy compiles the HTML page; computcs the layout,
patches the embedded images urls and sends back to the “Compiled Object Cache”
the resulting OpenTV resource 1646 (with an SP resource mime-type). The
Compiled Object Cache stores the object in its internal disk space and sends back the
compiled HTML 1648 page to the SGW. The SGW converts the response to LHTTP
over DATP and sends it back to the 1650 STB. The STB loads the requested object
iﬁ its memory and gives it to the H20 browser engine for interpretation.

The H20 browser engine issues requests 1652 to the SGW to get the images
necessary for the rendering (through the patched urls: here the logo.gif url include a
directive for pixmap resource format): pix/logo.gif. The SGW converts the request
1652 to HTTP over TCP/IP and forwards it to the Compiled Object Cache. The

41

-44-

10

15

20

25

30

WO 02/063851 PCT/US02/02829

“Compiled Object Cache™ already has the requested gif image, in the correct resource
format — because a user already requested this image at a previous time — and the

image is directly returned 1654 to the SGW. The SGW converts the response to

'LHTTP over DATP and sends it 1656 back to the STB. The H20 browser engine

issues requests 1658 to the SGW to get the images necessary for the rendering:
mpg/bamner,jpg. The “Compiled Object Cache” does not hold the requested image in
its disk space and therefore issues the request 1660 to the H20 Proxy. The H20
Proxy sends the HTTP request 1662 to the “Not Compiled Object Cache™ to get the
/banner.jpg image.

The “Not Compiled Object Cache” holds the image in its cache and returns it
1664 immediately to the H20 Proxy. The H20 Proxy converts the image, using the
parameters given in the url (mpg format, width, height...) and returns the result to the
Compiled Object Cache 1668. The Compiled Object Cache stores the object in its
internal disk space and sends back 1668 the converted mpeg image to the SGW. The
SGW converls the response to LHTTP over DATP and sends it back 1670 to the
STB. The STB renders the HIML page to screen.

The H20 Proxy component provides to other H2O components or compilets,
A robust and scalable architecture and an interface for “compilers” configuration
Other service provided is: the ability to log errors; the ability to alert an administrator
on defined events; and the ability to debug-trace the “compilers”. From the provided
H20 Proxy environment and APIs the compilers “patch” HTTP requests and
responses on the fly, eventually accessing an external database, file or process to do
s0. The compilers patch HTTP requests by removing specific HTTP Header (STB
identifier, Access Card Identifier...); by adding specific HTTP Header (Username,
Credit Card Number...); by adding HTML Form fields to incoming post request
(Visa Card number...); and by performing string substitution (UID > User
Identifier) the compilers convert web objects formats and mime types “on the fly” in
HTTP responses and issue HTTP requests by themselves and get a response object in
return.

As shown in Figure 17, in a preferred embodiment, the H20 Proxy is

implemented by developing an extension of enclosing software (Web Proxy, Firewall,

42

-45-

20

25

30

WO 02/063851 PCT/US02/02829

web server or other...). This host software provides H20 threading and scheduling of
the H20 tasks as well as some of the needed functionalities to implement H20
“compilers” and patching components.

Using the API provided by the Proxy Host Software, a set of API (the H20
Proxy API) is provided to implement the functionalities needed by the H20 compilers
missing from the H20 Proxy Host Software Services, and provide a higher
abstraction level for the services available from the H20 Proxy Host Software. The
request patcher 1424 component reads incoming HI'TP requests for HTML pages and
completes them with information from another process or file or database. The
HTML2RES Compiler 1420 compiles returned HTML pages into SP resources files
and change the mime type of the HTTP response header to suit new format: Mime-
Type: text/otvres.

The GIF2PIX Compiler 1422 converts a returned GIF image into an SP
resource file and changes the mime type of the HTTP response header to suit new
format: Mime-Type: image/otvpix. The 2MPEG Compiler 1426 converts a returned
GIF or JPEG image into an SP resource file and change the mime-type of the HTTP
response header. to suit new format: Mime-Type: image/otvmpg. Turning now to
Figure 18, a dynamic request for an HTML page sequence diagram is illusirated.
The Object Caches are not displayed in the Sequence diagram, being “passive”
components in this interaction. The User STB 212 issues a request 1810 for a page
(home.asp) through HTTP request. The Request Patcher 1424 accesses an external
process/file/database/ur] 1812, 1814 to get user name, patches the request and sends
1816 it to the HTML2RES Compiler. The HTML2RES Compiler sends the request
1818 to the targét web site (amazon.com). The Web site computes the request and
sends back 1820 the resulting HTML page to the HTML2RES Compiler. The
HTML2RES Compiler parses the file to get the image links URL and issue the
requests 1822 to the web site to get 1824 the image files (logo.gif, banner.jpg). The
HTML2RES Compiler computes the TV layout for the page, compiles it into SP
resource file, and sends it 1830 back to the STB. The STB renders the HTML page
onTV.

43

-46-

10

20

25

30

WO 02/063851 PCT/US02/02829

Turning now to Figure 19, a request for an image file, sequence diagram is
illustrated. An HTML page being loaded in the User STB needs an image to render
its screen. It issues an HTTP request 1910 for the image (URL embedded conversion
options) to the 2MPG Compiler. The 2MPG Compiler requests the image 1912 from
the target site (amazon.com). The target site, retuns the banner.jpg image file 1914
to the 2MPG Compiler. The 2MPG Compiler converts the bammer.jpg file, using the
options given on the URL and returns the result 1916, with an image/otvmpg mime-
type, to the STB. The STB renders the image on screen.

The different identified H20 compilers inherit from the class H20Compiler
and provide an implementation for the different pure virtual entry points of the class.
Memory functions are given to compilers to allocate and free the requests/responses
buffers. The size of the allocated buffer is given to a FreeBuffer function so that
different schemes can be used to free the buffer (for a certain size, the bulfer might be
implemented as a temporary file mapped in memory whereas for smaller sizes, it is
preferably implemented as in memory buffer).

The buffer is passed to an Execute function containing the full HTTP request /
response the compiler parses the request headers, mime-types and takes the
appropriate actions. This buffer is preferably read-only. The buffer can be writeable
as well to enable augmentation by the compiler or other functions after, The buffer
returned by the Execute functions contains a valid HTTP request / response, the
memory will be freed by the H20 proxy using the appropriate FreeBuffer function
and has to be allocated by the provided AllocBuffer function. Debug member is
provided for compiler implementers to be able to get a debug trace from within the
H20 Proxy environment.

The parameters functions are used to get the names of the parameters, get the
current values (string) of the parameters, set a new value for a parameter, and validate
a parameter set. The URL functions are provided for the HTML compiler to fetch
images. Those functions are available to the other compilers to provide extra services
to the components whenever needed.

For example, a network with 1 Million STBs, with an average 20,000 users

connected, generates 2,000 requests per second for HTML pages lo the SGW and

44

-47-

10

15

20

25

30

WO 02/063851 PCT/US02/02829

“Compiled Object Cache” (unless part of the requested pages come from broadband).
Assuming of those pages should be static and should be served immediately from the
“Compiled Object cache”, the H20 Proxy will have to serve 200 requests per second.
Assuming that a typical HTML page embeds 10 images, 8 out of 10 being JPEG H20
Proxy issues 10 outgoing requests for each incoming request. The “Not Compiled

Object cache” serves 2,000 requests per second.

The MPG conversion is preferably performed in advance whenever possible.
A Web crawler may request the HTML pages and images at night to have them
converted in advance, leveraging this issue, The compilers thus interact with H20.
H20 248 is the preferred client/server solution provided in the SP that enables
Internet content developers to create interactive TV content, applications and services
for network operators running on the SP. Thus, via H20 enables the larger pool of
Internet talent and content is made available to the vast growing worldwide market of
iiltel‘acﬁve TV applications. The H20 server converts Internet content (HTML pages,
BCMA scripts, and HTML page formatting) into SP assets. The H20 client, H20C
renders the assels and inleracts with the clients. In the T-Commerce/E-Commerce
case scenario, H20 enables E/T-Commerce shops to utilize existing Web tools to
create shopping services and to interface with the preferred SP (operator), using
standard Web protocols. Thus the present invention is user friendly providing APIs
through known methodologies.

H20 acts as a proxy to the SGW and the broadcasting tools to convert Web
content to SP content. Thus, Web sites developers can use their current HTTP servers
and application servers to generate interactive TV content inexpensively, In a
preferred embodiment, H20 converts HTML, JavaScript, and Internct graphics,
however, any other known or developed Internet or other content or protocol can also
be added to the proxy functionality of H20. H2O0 enables the SP to display Web
pages on STBs that are not fully browser capable and to create original user
interfaces. H20 enables SP connection to any commerce engine that uses only
HTML. H20 is responsible for converting all now or future broadband and Web

content such as HTML pages, JPG picturés, wav audio files, etc. into SP resources.

45

-48-

WO 02/063851 PCT/US02/02829

10

20

25

30

The server side of H20, H20S is an HTTP proxy. For other purposes, it can
be packaged as a dynamic link library (DLL) or batch tool. The client side of H20,
H20C is an STB O-Code application. H2OC is built on top of other SP client
components, such as the SGW library or the Carousel Load library. H2O enables
TURLs to be used to address documents and services. H2O also enables tracking in
the broadcast and online environments. H20S provides HTTP proxy functionality.
SP applications request a document through H20, upon which H20 refrieves the
document, parses it, compiles it, and returns the document to the requester. This H20
functionality enables use of the same engine for different uses, online and broadcast,
facilitates scalability, and enables flexible use of H20. The parsing depends on the
type of document, parsing can be HTML parsing, a GIF picture, or JPEG images, etc.
To make it expandable, H20 is able to "plug-in" and run new third party filters.

-H20 enables scripting using different langnages. Preferably, all SP server
components standardize around monitoring, especially the ability to remotely manage
the different processes. SNMP is used to handle basic functions ("process OK", and
traps on major problems). A command-line interpreter is provided on socket for
inspecting status. Sefting parameters enables remote management and provides an
interface with the Web through Web scripts. In a preferred embodiment, standardized
warnings and error logs are provided.

HTML/IS does not allow sharing of information from one page to another for
the Web, as the server takes care of the context. In broadcast mode, this arrangement
is insufficient. The present invention provides a broadcast mode, preferably, wherein
a global permanent object is provided, that is not cleared when starting a new page.
The permanent object maintains context between pages. Other base objects provided
by the SP are also made permanent on transition (e.g., station control, OSD). Gadgets
are defined through an interface definition language to enable creation of new
gadgets, modification of gadgets and to enable adding methods without modifying the
compiler.

The H20 Carousel feature provides reai—time updating of catalogs,
maintaining consistency of catalogs during updatos, and providing safc transactional

models. H2O carousel enables updating a single page, or an entire set of pages in a

46

-49-

WO 02/063851 PCT/US02/02829

20

25

30

single transaction. Carousel management provides management of a carousel index
or directory. The index contains information for accessing and fetching data from the
carousel. That is, for a given page, Carouse! vManagement contains a list of all
modules necessary, so that H20C requests all necessary modules at once to expedite
the process.

Carousel provides data compression, Meta data on pages (e.g.. page relative
priority, how often the page is sent) and page tracking (elementary stream). The
carousel client is a STB OCOD library, handling the loading of resources. Carousel
client manages dynamics of resources, i.e., new resources, deleted resources, and
changed resources. Dynamic resource management enables the client (H20C) of this
library to present dynamic content. The carousel client manages memory allocation,
pre-fetching and caching of resources, and decompression of modules. The carousel
client manages sub-index/directories and manages a 'set' of resources instead of a
'tree’ of resources, which facilitates sharing of assets. Subsets of a single troc of
resources can be assigned to separate processes thereby enabling shared resources.

H20 monitors TV triggers performance and bandwidth, e.g. shared resources
in shared modules. H20 optimizes bandwidth ufilization. H2O provides multi-
tracks, multi-priorities, and management of bid volume of data. H20 provides run-
time pre-fetching and caching at the module level. H20 supports compressed
modules. H20 supports arrow and direct key navigation (e.g. digit or color),
handling international (Chinese), Meta data on pages, (e.g., page relative priority,
how often it is sent) and page tracking (elementary stream). Global GUI is shared,
that is, a direct key linking is provided so that any information page can be shared by
every other page. ‘

H20 manages pages and sub-pages to handle cases where pages are too large
to fit on one screen without the need for scrolling. H20 enables use of HTML to
present content, online, point-to-point, and broadcast. H20 enables composition of a
page with a mixture of broadcast and online components. For example, a page can
come from an online server, while its background is broadcast. H2O enables merger
of content in the STB. For example, a bank application can send a viewer's last 20

credit card transactions from its server while the HTML page is broadcast. Preferably

47

-50-

WO 02/063851 PCT/US02/02829

a Java Script function request (HTTP like) the server some XML, using the result and
some DOM functions patches a table with the result.

Preferably, security is provided for secured authentication of the viewer,
which is performed at SGW rather than at H20. However, H20 can alternatively
comprise authentication functionality. H2O also sends encrypted data to (e.g.,
sending a credit card number) and from a STB to an online server. For some services,
it is appropriate to go through a security proxy near the HTML to SP conversion. SP
can utilize HTTPS from the proxy to the service provider, and an SSL like 0COD
library from the STB to the proxy. In other cases (e.g., banks), security is provided
from end to end, in which case H20 does not usually perform translation. That
scenario is preferably reserved for data the STB is able to process without translation
through H20. Encryption can alternatively be performed at SGW or STB.

The present invention has been described in interactive television in a preferred
embodiment, however, the present invention may also be embodied in a distributed
computer system comprising a server and a client device. In another embodiment, the
present invention is implemented as a set of instructions on a computer readable
medium, comprising ROM, RAM, CD ROM, Flash or any other computer readable
medium, now known or unknown that when executed by a distributed computer
system cause a distributed computer system to implement the method of the present
invention.

While a preferred embodiment of the invention has been shown by the above
invention, it is for purposes of example only and not intended to limit the scope of the

invention, which is defined by the following claims.

.48

-51-

2002240200 23 May 2006

20

25

30

-49 -

The claims defining the invention are as follows:

1. A method for providing communication in an interactive television system
including; receiving at a service platform a first message directed to an application
server, the first message being received from a client device and including a user
identifier;
mapping the received user identifier to a session identifier; and
conveying to the application server a second message which corresponds to
the first message;
wherein the second message contains the session identifier and does not
contain the user identifier.

2. The method as recited in claim 1, further including resolving a session

identifier to a user identifier, wherein only the service platform resolves session

identifiers to corresponding user identifiers.

3. The method as recited in claim 2, wherein the service platform further

includes a subscriber profile database configured to store user information, and

wherein the method further includes:
receiving in the service platform a message which indicates a request for
access to the database; and
granting or denying the requested access based upon rules established within
the service platform;
wherein said rules specify particular access rights for an application which
originated the message.

4. The method as recited in claim 3, further including accessing said database
using a user identifier which corresponds to said message.

5. The method as recited in claim 4, further including mapping a session
identifier included in said message to a user identifier, in response to
detecting said message originated with said application server.

6. The method as recited in claim 3, wherein said rules correspond to business
agreements made between an operator of the service platform and an operator

of the application server.

22/05/06,f513500speci, 49

-52-

2002240200 23 May 2006

20

25

30

-50-

7. The method as recited in claim 3, further including converting a client device
transport protocol to a form which is compatible with an application server
transport protocol.

8. The method as recited in claim 7, further including:
converting content received from the application server to a format
compatible with the client device; and converting content received from the
client device to a format compatible with the application server.

9. An apparatus for facilitating communication in an interactive television
system, said apparatus including:

a client device coupled to communicate via a first communication link,
an application server coupled to communicate via a second communication
link and
a service platform coupled to receive a first message including a user
identifier from the client device, said service platform being configured to:
map the received user identifier to a session identifier; and
convey a second message to the application server, said second
message corresponding to the first message; wherein the
second message contains the session identifier and does not
contain the user identifier.

10. The apparatus as recited in claim 9, wherein only the service platform is

configured to resolve a session identifier to a user identifier.

11. The apparatus as recited in claim 10, wherein the service platform further

includes a subscriber profile database configured to store user information.

12, The apparatus as recited in claim 11, wherein the service platform further
includes a transaction control mechanism configured to:
receive a message which indicates a request for access to the database; and

grant or deny the requested access based upon rules established within
the service platform;
wherein said rules specify particular access rights for an application which

originated the message.

22/05/06,{5135005peci, SO

-53-

2002240200 23 May 2006

20

25

30

13.

14

16.

-51-

The apparatus as recited in claim 12, wherein said service platform is further
configured to access said database using a user identifier which corresponds
to said message.

The apparatus as recited in claim 13, wherein in response to detecting said
message originated with an application server, said service platform is further
configured to map a session identifier included in said message to a user
identifier.

The apparatus as recited in claim 12, wherein said rules correspond to
business agreements made between an operator of the service platform and an
operator of the application server.

The apparatus as recited in claim 12, wherein said service platform further

includes a transport conversion mechanism configured to convert a transport

protocol of the client device to a form which is compatible with a transport protocol

of the application server.

17.

19.

The apparatus as recited in claim 16, wherein said service platform further

includes a content control mechanism configured to:

convert content received from the application server to a format compatible
with the client device; and

convert content received from the client device to a format compatible with
the application server. ’

The apparatus as recited in claim 9, wherein the client device includes a

communication transport protocol residing on at least one of the client device

data link, network, transport and session layers of a network model, and

wherein the client device further includes an application level communication

protocol running on top of the client compatible communication transport

protocol.

The apparatus as recited in claim 18, wherein the application level

communication protocol is configured to enable the addition of a domain

specific protocol as a subset of the application level protocol by creating a

new XML document type definition for the added domain specific protocol.

22/05/06,£5135005peci,51

-54-

2002240200 23 May 2006

20

25

30

-52-

20. The apparatus as recited in claim 9, wherein the service platform is
configured to communicate with the client device via a broadcast channel and
a point-to-point channel.
21. A computer readable medium containing instructions that when executed by a
distributed computer system cause a distributed computer system to:
convey a first message directed to an application server from a client
device, said first message including a user identifier;
receive the first message at a service platform, said service platform:
mapping the received user identifier to a session identifier; and
conveying a second message which corresponds to the first message;
wherein the second message contains the session identifier and does
not contain the user identifier;

receive the second message at an application server.

22. The computer readable medium as recited in claim 21, wherein when

executed said instructions are further configured to cause the service platform to

resolve a session identifier to a user identifier, wherein only the service platform is
configured to resolve session identifiers to corresponding user identifiers.

23. The computer readable medium as recited in claim 22, wherein the service
platform further includes a subscriber profile database configured to store
user information, and wherein when executed said instructions are further
configured to cause the service platform to:
receive a message which indicates a request for access to the database; and
grant or deny the requested access based upon rules established within the
service platform;
wherein said rules specify particular access rights for an application which

originated the message.

24. The computer readable medium as recited in claim 23, wherein when
executed said instructions are further configured to cause the service platform
to access said database using a user identifier which corresponds to said
message.

25. The computer readable medium as recited in claim 24, wherein when

executed said instructions are further configured to cause the service platform

22/05/06,f513500s peci, 52

-55-

2002240200 23 May 2006

20

25

-53-

to map a session identifier included in said message to a user identifier, in
response to detecting said message originated with an application server.

26. The computer readable medium as recited in claim 24, wherein said rules

correspond to business agreements made between an operator of the service platform

and an operator of the application server.

27. The computer readable medium as recited in claim 24, wherein when

executed said instructions are further configured to cause the service platform to

convert a client device transport protocol to a form which is compatible with an
application server transport protocol.

28. The computer readable medium as recited in claim 27, wherein when
executed said instructions are further configured to cause the service platform
to:
convert content received from the application server to a format compatible
with the client device; and
convert content received from the client device to a format compatible with
the application server.

29. A method for providing communication in an interactive television system

substantially hereinbefore described with reference to the accompanying drawings.

30. An apparatus for facilitating communication in an interactive television

system substantially hereinbefore described with reference to the accompanying

drawings.

DATED this 22™ day of May 2006
OPENTV, INC.

By their Patent Attorneys:
CALLINAN LAWRIE

22/05/06,{513500speci, 53

-56-

WO 02/063851 PCT/US02/02829

1715

212
;E
CLIENT

=3

P

o

COMMUNICATION
LINK

/-—50

[TRANSPORT CONVERSION l\
o
S

rTHANSACTION CONTROL/BUSINESS FUNCTIONS l\

FIG. 1

l CONTENT CONVERSION

204 — 106

COMMUNICATION
LINK

102

SERVICES

RVICES
SERVICES
200—"

Ls[

SUBSTITUTE SHEET (RULE 26)

-57-

PCT/US02/02829

WO 02/063851

¢ Hid

2/15

v

99¢ |/ 892 —~ S30INGFS
1YHD
AT Sre~ YIVNTIY ENAWV
NOLLYIINAWINGD SONIDYSSIN T
\nﬁsm ' e~ e~ gre—, U
SINIDY —
ALY MR \-0/2
SSINISNE OzH fF——
mosﬁm WHOA1YTd o .
ge~ | — VAL -
2/ STING | BNOVeL]
_ FHOVD _ say E WWM
QMN PN \)\l“’ll\)\ = [
YIONVT7d e~ ——
avo1 HIDVNYI AYILSIOTH
[} say HIMTIA 5 102
FGVNTIGaIN INTT H—2 1€ T 112 = y
ST00L p—5ic mwyxss m EITS
[WH011v1d 3017635 T —-E4¢ NOILOVSNYHL siamoa)| || | |99,
[_3nsSddv__—1tic ‘ 9oz o k| doms
03119 §16~ 86~ 010740 %mlwd e
az— HSIG FUTIALYS INIONT HFOVNYN F0ine3S STIINHTS
X JOHINNOD- TYNOILDO F0INHTS J0HINN0D-3
hr.
_
192 71899 HINYIHLS mmw__\”_qs 56z % o
e fﬂ N3dO goz LS00 [jez | X7 F fL
WHISIHIL 178 —95¢ N-r5e -8z 292 N

SUBSTITUTE SHEET (RULE 26)

-58-

PCT/US02/02829

WO 02/063851

3/15

€ ol

BEAGIS ISY0706E 01~ NOILIINN0T " SININOIAOT 70 SININOIMOI g
NOILOINNGD YHONMLIN ™™~ ¥HOMIIN ™"~ JynyIIxXd A NIdOS;
geol NHONFAIVET —~=9001 810}
[v HIAYTS dINS |~ GNTHIVE AL N3O e | mw\@ama
ONIddOHS ga SIUSIYIS JOINH3S
HINGIS dLIH
veol /| 0oL zeot [d~Lozos
9201 _1EE3S ddv VKO mw\(@\K
HIAHIS ddV TV
2201 EQEE&E mﬁtemm
SH3SN SH3SN
910! (\,@%\(- 0101
X09
e dJOLL3S
WHINID ALNIJO "7 04 Ey
/P00t 8001
TINNVED Ve
TINNVHO 1SVIav0Hg
ool
/(m:: 8601

E:.mﬁ.\w

SUBSTITUTE SHEET (RULE 26)

-50-

PCT/US02/02829

WO 02/063851

4/15

¥ 914

"013 SIDVSSIN ‘STIVO IdY ~—~

FINAOW TYNOILO diva [|

FINA0N 8NLS LINY43G dLY!

(91T dIfdIL HIVLS MYE)
ININOIINOD LHOJSNYHL FAILYN

FINAOW JiH1D3dS
GISHHOMIIN JLYT

% FINAOW JIH3INTI di¥d D

zeii— szt T)_ YOVIS QVOINMOQ 81S FAILYN _ _ LHOdSNVL 81S FAILYN — 0611
Jao3 3N Rebb~ o T L 9
30090 n
021 I | 7naow tHodsnvuL 815 diva 2§ o)
bell-—1— anis 811 IINAON =——] T
8 geLi~ advuarisvoavosg | [awvearivovd |—vell
; h f i
Q1) =) 8NIS JOOTINIAT | . _ }
NOISNIIXT HNIIS dIva _ _l_ FHOD LHOISNYYL JLVT 2011
. [] [)
1 ‘
! FINGON HIDYNYIV FDYSSIN dIvd _\J\ vOLL
L~ ' [Fmnaomeaagas | [Findow aavameod FINAON dLLH
HIAYT ALTISYIHOL 305-0 INVN dLvd any 3H01S AHIIIMUHON
1 1 \
N-0LL) \-8011 \-9011

SUBSTITUTE SHEET (RULE 26)

-60-

WO 02/063851 PCT/US02/02829

§/15
APPLICATION PROTOCOL 1 [APPLICATION
r— SERVER 1
1540~ 1510
OPENTV
ceeneaies |- APPLICAZON PROTOCOL2
| 1521 SERVER 2
STB EN2 OPEN TV i 1811
| SERVICEGATEWAY ™ ApRLICATION
1530~ (DAMLIDATP) PROTOCOL 3 APPLICATION
1018 SERVER 3
N-1512
APPLICATION PROTOCOL 4 [APPLICATION
o SERVER 4
\—_1513
FIG. 5
DAP
DAML-APPLICATION

PROTOGOLS-XML MESSAGES ~ [~1610

DATP LAYER ~1620

TRANSPORT LAYER (TCP/IF, RAW
MODEM, UDP

PHYSICAL LINK (CABLE RETURN, PSTN)

FIG. 6

SUBSTITUTE SHEET (RULE 26)

-61-

PCT/US02/02829

WO 02/063851

6/15

L7914

Jin

Y7438 NOIYOITddY -SASY

HIOVNVIA NOISSTS -NS
HINYIS NOLLYOIIddY -SY

YIONTS ViV
qon NOLYIINANNOI

SININOJNGD
TWNHIIXT HLM
YIAH3S NOLYIIIddY WISV SHNIT NOILYIINNININOD =~
dIHSNOILY 134 NOILYIHO

SSF00Hd HO AVIHHL

SIOVSSTIN ‘STIVD Idi =~

§57004d QevanviS [|
ay3dHL auyamIs []

S Qv3uHL 439V NoisSS)

avdHL §naisn 134205]

HINHIS AAA HUMINIT

dl/do1

HINHIS XXX 01 1S0d dLIH

Sl

YINHIS X 0L JLIH

HIAHTS XXX 0L GNIS NS |

Sasy| sasv| sasy
SIS IEIHT T IH

2181~

WS
f 51211

NI WS

LWHS
ONNS
W HOSSII08d
WS

HINFLISTT
13IX¥205 SV

HOLINOW
HIIYNVIN
NOISS3S
Qv3HHL NIV

(1754 SN i
' 3Inaon

ASYOavosd

—c0c!

—¥0C

SUBSTITUTE SHEET (RULE 26)

-62-

WO 02/063851 PCT/US02/02829

L/
RN

SEQ | SEQ | SEFQ | SEQ | SEQ | SfQ
NUM | NUM | NUM | NUM | NUM | NUM

830—' 840—'850—860—" 870 880—"
REJECTION LIST

FIG. 8

'DATP TIMEOUT && NUMBER

DATP LOGIN REQUEST F RETRY <= MAX RET%
: SEND DATP LOGIN PACKET : SEND DATP LOGIN PAC

DISCONNECTED LOGIN IN PROGRESS

REGEIVED DATP LOGIN NACK PACKET I NUMBER

F RETRY >MAX RETRY
'SHHD DA™ L0 ERROR NOTFRaTON
- RECEIVED DATP LOGIN
ACK PACKET
: SEND DATP LOGIN
SUCCESS NOTIFICATION

(RECEIVED DATP LOGOUT ACK PACKET
INUMBER OF RETRY >MAX RETRY

11578 TRANSPORT DISCONNECTED STB TRANSPORT DISCONNECTED
: SEND DATP LOGOUT NOTIFICATIO : SEND DATP CONNECTION LOST NOTIFICATION

LOGOUT IN
PROGRESS

DATP TIMEOUT && NUMBER ~ DATP LOGOUT REQUEST

F RETRY <= MAX RETR : SEND DATP LOGOUT PAGKET
: SEND DATP LOGOUT PACKET EVENT: ACTION

FIG. 10

SUBSTITUTE SHEET (RULE 26)

-63-

WO 02/063851 PCT/US02/02829
8/15

STB 0ot STBDATP Mocem Serve Apgﬁcation

Applcatin Engie Rack Gatawgy e
DATP login request

B)AT{J; STB bansportlogi request
: STB tansport ogn ack
DATP login hancshake

DATP login nofy DATP ogin hanahek ack with sesson i

DATP message send servjd

DATP fragment(s msg.i frag i) send fosew id

DATP rgmentfs_msg id frag o+ 1) stnd foseyy id

DATP hagment(st msg i fag i) ack

DA messegesendnotly | DATP imgmentsy g i g i+ 1) ok DATP message (sessio
s sy seq numbgrjsend
Megggg DATP ragmentsg msg g i sendbosession i DATP message sead
Send DA gt mog I, fiag 1) send o sssion stson
ezte VTP fegrenty g i e J6+2) sndo sesson
DA fagment(sg msg 1t fag i) ack
DATPragmentsg s i g id+ 1) ok
DATP message receie for 4P ffagmem{sg_még_iq fiag id+2) ack
session id
DATP iogo! request DATP logout nandstate
pae DATP hogout handshake ack
Massage
Lot ST g o et
DATP logoutnotfy | STR ranspat ogout ack
FIG. 9

SUBSTITUTE SHEET (RULE 26)

-64-

WO 02/063851 PCT/US02/02829

9/15
(DATP MESSAGE SEND REQUEST (1 [RECEIVED DATP DATA PACKET NACK
&&DATP NOT CONNEGTED, | DATP TIMEQUT) && NUMBER OF
: SEND DATP MESSAGE SEND FAILURE RETRY <= MAX REIR
NOTIFICATION - SEND DATP DATA PACKET WITH MESSAGE

DATP MESSAGE SEND REQUEST
: SEND DATP DATA PACKET WITH
IDLE MESSAGE

RECEIVED DATP DATA PACKET ACK
: SEND DATP MESSAGE SEND SUCCESS NOTIFICATION

(((RECEIVED DATP DATA PACKET NACK

I| DATP TIMEOUT) && NUMBER OF RETRY > MAX RETRY)
Il DATP CONNEGTION LOST)

. SEND DATP MESSAGE SEND FAILURE NOTIFIGATION

EVENT: ACTION
FIG. 11

DATP DATA PACKET AVAILABLE

: (READ DATA PACKET

&& COMPUTE CRC RECEVING MSG

&& RESET KEEP ALIVE TIMER)

(CRC IS OK && MESSAGE ID > = CURRENT MESSAGE ID)
: (SEND DATP DATA PACKET ACK
&& SEND DATP MESSAGE AVAILABLE NOTIFICATION)

CRCISBAD
: SEND DATP DATA PACKET NACK

EVENT: ACTION

—————

FIG. 12

SUBSTITUTE SHEET (RULE 26)

-65-

WO 02/063851 PCT/US02/02829

- 10/15

DATP TIMEQUT && NUMBER
F RETRY <=MAX RETR
: SEND DATP PING PACKE

KEEP ALIVE TIMER TIMEOUT EVENT
. SEND DATP PING PACKET
KEEP ALIVE

RECEIVED DATP PING PCAKET ACK
: RESET KEEP ALIVE TIMER

(DATP TIMEQUT && NUMBER OF RETRY>MAX RETRY)
: SEND DATP LOGOUT REQUEST

EVENT: ACTION

FIG. 13

SUBSTITUTE SHEET (RULE 26)

-66-

WO 02/063851 PCT/US02/02829

11/15

246 ~
GATEWAY

|

COMPILED
1410~ 0BJECT CACHE

| o 50

H20 PROXY 7 SERVICE
PLATFORM

1420~

HTML COMPILER
PIX COMPILER
REQ PATCHER

1426 \
CUSTOMER WEB SITE I [I [1424

NOT COMPILED
amazon.com. OBJECT CACHE [~1430

FIG. 14

SUBSTITUTE SHEET (RULE 26)

-67-

PCT/US02/02829

WO 02/063851

12/15

Pt
‘wod‘uozewe

SL 914

419°0907/93dW
9/9°0907/93dW NP
ze51
[=
4190907934 139 @w&
05—
| 419090153dw 139
mmﬁﬂmmﬁ
v.mﬁ/ R
TLH FNOH
2261~ @
TLH INOH 139 : cle
\ L 300H 139
0251
FHOVD
IHov9 L07rd0 | | WOy 1d AXOHd
aTaNo0 10N | | Joinuas 0cH g, AvaLY9
N\—_geri N—g5 _grz _otp1 N_gre

SUBSTITUTE SHEET (RULE 26)

-68-

WO 02/063851 PCT/US02/02829

13/15
246~ 1410~ 248~ 30~ 1430~
= COUPLED | | s | |norcoweien
GATEHAY WA\ ooty ||l | |omeCTOACRE aqon.com.
1610 T OR D
1612 ¥ 1
CTHOMEASY | | oo | 1614 | ot e
2~ —~1{ GETHOMEASP | SERIL 12432
= WAL
|
G 2%
W \Glygggﬁ
SERAL 122422 1676 | CETHOMEASP | G HOUEASP

(BILBUSH | (6.1 BUSH

\-1622 1624
16261 L

HOE AP
1628}, uasy | (e

AL
1630 6710606k | 7632

FREACH
HAGEGF |LCETLOOGE f | s ey

1636\ 10608F N omar | | oo
1634 | |NHERGEA

were | B [0 | DR
HOMEASP | (G B ERPG ‘
1650 (61 BUSH (GWBUSWJ TEXT/UTVRfy B
212~ 1648 1046
Z2 |
1652 R
1656~ 1652 ryioggor Y1694
PIVIOGOGF | IMAGEOTVPK
SETMPG)
1658~ BANNERUPG | g ey
BANNERJPG
212 1660 1662~ | GETBAMNER PG
@ 1666~
e 16647 | s
IMAGE1IPG
670 1668~ | WHBEIOTIPG
AW MPG/BANNERPG
BANER PG

212

FIG. 16

SUBSTITUTE SHEET (RULE 26)

-69-

WO 02/063851

14/15

PCT/US02/02829

249 —~—— H20 PROXY HOST SOFTWARE

4241

1422
1426 17

Pt

—

H20 PROXY

HTMLZRES COMPILER

REQ PATCHER

GIF2PIX COMPILER

2MPEG COMPILER

~-1"248
1T 1420

1424~

FIG. 17

1420~

1422~

GET HOME ASP ﬁfo PATCHEB] | Hma2Res | | e | amazom.com.

MODEL: PACE
CARD: 1234

GET HOME.ASP
~, (G.W BUSH)

1812

HOME ASP
TEXT/OTVRES

212

GET HOME ASP
(G.W BUSH)

1818

HOME ASP
TEXT)

HTML 11820

,—1828

GET LOGO.GIF

16826

LOGO.GIF

1824

GET BANNER.JPG

— 1822

BANNER.JPG

FIG. 18

SUBSTITUTE SHEET (RULE 26)

-70-

PCT/US02/02829

WO 02/063851

19/15

61914

cie

9dr/AOYNI | BdINALO/TOVINY
9dr HINNYE Bdr HINNYS 9461
ri6L—+"
AT
BdrHINNYS 139

9drHINNYE
J0EEHI0ZIMID3dVIILTD

‘woo'uoseuie | SHIIHO7

_ _ savey | | uaorvd o3

/llﬁmvh

N—pzpl

SUBSTITUTE SHEET (RULE 26)

71-

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

