发明名称

一种用于测试材料在高温高压气体下拉伸性能的试验装置

摘要

本发明公开了一种用于测试材料在高温高压气体下拉伸性能的试验装置，包括试样室、上压紧螺母、下压紧螺母等；所述试样室的内部设置有一个中空的腔体，腔体两端通过上压紧螺母和下压紧螺母压紧密封圈密封。所述试样室的一侧设置有与腔体连接的进气口，另一侧设置有与腔体连接的出气口；使用该装置对材料的作用效果，完全不同于材料在常温高压下贮存后，在大气下拉伸试验，或对材料单独进行常压高温拉伸试验的作用效果。使用该装置可对材料进行综合的高温、高压及腐蚀性气体环境中进行力学性能测试，对材料在应用中的安全性与可靠性论证有实际的意义，装置为首创设计。
1. 一种用于测试材料在高温高压气体下拉伸性能的试验装置，其特征为包括试样室、上压紧螺母、下压紧螺母等；所述试样室的内部设置有一个中空的腔体，腔体两端通过上压紧螺母和下压紧螺母挤压密封圈密封，所述试样室的一侧设置有与腔体连接的进气口，另一侧设置有与腔体连接的出气口。

2. 根据权利要求1所述的一种用于测试材料在高温高压气体下拉伸性能的试验装置，其特征为所述上压紧螺母与腔体之间通过螺纹连接，并通过平垫圈、O形密封圈、双V形压环实现密封效果，所述上压紧螺母中心设置有通孔。

3. 根据权利要求1所述的一种用于测试材料在高温高压气体下拉伸性能的试验装置，其特征为所述下压紧螺母与腔体之间通过螺纹连接，并通过压紧密封圈实现密封，所述下压紧螺母中心设置有通孔，所述通孔中设置有内螺纹；所述下压紧螺母设置有外螺纹。

4. 根据权利要求1所述的一种用于测试材料在高温高压气体下拉伸性能的试验装置，其特征为所述试样室内腔体从上压紧螺母到下压紧螺母之间分为三段，中间段腔体的直径小于其余两段的腔体直径。

5. 根据权利要求4所述的一种用于测试材料在高温高压气体下拉伸性能的试验装置，其特征为所述试样室内两边的腔体中，V型压环两侧分别设置有两个O形密封圈。

6. 根据权利要求1或5所述的一种用于测试材料在高温高压气体下拉伸性能的试验装置，其特征为所述平垫圈、O形密封圈、上压紧螺母、下压紧螺母之间分别设置有一个双V形压环。
一种用于测试材料在高温高压气体下拉伸性能的试验装置

技术领域
【0001】本发明涉及拉伸性能试验，尤其是一种可用于原位测试材料在高温高压气体环境下拉伸性能的试验装置，气体环境为高压气体，适合于屈服强度大于测试压力的材料。

背景技术
【0002】在军事、航空航天、核能等领域中，高温高压容器的应用已经非常广泛，而容器材料在氢气、水蒸汽等含有腐蚀性的高压气体环境中应用时，使用环境会加速容器材料的腐蚀和损伤，从而带来发生事故的隐患。

目前缺乏在高温、高压气体环境下原位测试材料力学性能的试验装置，为满足广泛的社会需求，设计了高温、高压气体环境下原位测试材料拉伸性能的试验装置。该装置安装在万能材料试验机上，测试试验气体环境的最高压力可以达到50MPa，使用该装置可测试在不同气体压力与温度环境下，材料的强度及塑性指标。

发明内容
【0003】本发明的目的是在现有技术的基础上，提出一种试验装置，能满足在高温、高压环境下，原位进行材料的拉伸性能试验。
【0004】本发明采用的技术方案：一种用于原位测试材料在高温高压气体环境下拉伸性能的试验装置。包括试样室、上压紧螺母、下压紧螺母等，所述试样室的内部设置有一个中空的腔体，腔体两端通过上压紧螺母和下压紧螺母压紧密圈封密封，所述试样室的一侧设置有与腔体连接的进气口，另一侧设置有与腔体连接的出气口。
【0005】在上述技术方案中，所述上压紧螺母通过设置的外螺纹与腔体之间螺纹连接并通过压紧密圈实现密封，所述上压紧螺母中心设有通孔。
【0006】在上述技术方案中，所述下压紧螺母通过设置的外螺纹与腔体之间螺纹连接并压紧密圈密封，所述下压紧螺母中心设有通孔，所述通孔在拧紧端（六角端）设置有内螺纹。
【0007】在上述技术方案中，所述试样室内部的腔体从上压紧螺母到下压紧螺母之间分为三段，中间段腔体的直径小于其余两段的腔体直径。
【0008】在上述技术方案中，所述试样室两端的腔体内分别设置有两个O形密封圈。
【0009】在上述技术方案中，所述平垫圈、O形密封圈、上压紧螺母、下压紧螺母之间分别设置有一个双V形压环。
【0010】综上所述，由于采用了上述技术方案，本发明的有益效果是：在试验气压为0～50MPa，试验温度为室温～150℃（测温范围：-40～150℃）条件下的拉伸试验中，试样可以实现好的动态密封效果。该拉伸试验装置结构简单，使用方便，技术便于推广，拉伸试验中装置可承受的高温高压气体环境试验范围国内领先，解决了高温、高压气体环境中，材料原位拉伸性能试验数据难以获得的具体问题，及测试中试样容易随试样的拉伸而产生移动的问题。
说明书

附图说明

本发明将通过例子并参照附图的方式说明，其中：

图 1 是本发明试样室的结构示意图；

其中，1 是试样，2 是上压紧螺母，3 是试样室，4 是垫圈，5 是 V 形压环，6 是 O 形密封圈，7 是出气口，8 是下压紧螺母，9 是进气口。

具体实施方式

如图 1 所示，本发明的试验装置包括试样室 3，在试样室 3 的左右两侧设置有进气口 9 和出气口 7。试样室 3 的内部设置有一个中空的腔体，腔体分别于进气口 9 与出气口 7 连接，腔体在试样室 3 内分为三段，中间一段直径最小，腔体两端部分直径一致，且均设置有内螺纹。上压紧螺母 2 和下压紧螺母 8 分别通过腔体的内螺纹与试样室 3 密封连接；为了起到更好的密封效果，在上压紧螺母 2 和下压紧螺母 8 与中间段腔体之间依次设有平垫圈 4、双 V 形压环 5 和 O 形密封圈 6。双 V 形压环 5 采用金属制成，当上压紧螺母 2 和下压紧螺母 8 通过螺纹旋入腔体并压紧垫圈时，双 V 形压环 5 两面的 O 形密封圈 6，会在 V 形压环 5 向心推力的作用下与试样紧密的贴在一起，获得好的密封效果。

本发明中需要进行拉伸试验的试样 1，该试样 1 的外形结构与试样室 3 的腔体结构相匹配，试样 1 两端的光滑部分为密封区，试样下端通过外螺纹分别与上压紧螺母 8 的内螺纹及试验机下夹具相连接，从而使试样下端与下压紧螺母 8 及试验机下夹具之间形成固定连接。由于试样下端固定，故密封区设置较短。试样上端螺纹与试验机拉伸梁夹具相连接，试验时由于试样中间（测量区域）、上端密封区和螺纹部分试验机拉伸梁移动，故密封区的设计较长，这样可使试样在满足试验要求的前提下具有最短的长度。

为了能满足试验目的，本发明中下压紧螺母 8 广泛用于内外双向螺纹，也就是说下压紧螺母 8 的外螺纹与试样室 3 的腔体螺纹连接，通过压紧垫圈实现密封，下压紧螺母 8 的中心加工出可穿过试样 1 的通孔，并在螺纹拧紧端（六角端）加工出约 10mm 的内螺纹，这样可使安装及的试样 1，通过其外螺纹同时连接下压紧螺母 8 和试验机下夹具形成固定连接，防止试验时试样室随试样的拉伸而产生移动。

上压紧螺母 2 与下压紧螺母 8 有所不同，上压紧螺母 2 中心设置有可穿过试样 1 的通孔，且上压紧螺母 2 只有外螺纹，用于与试样室 3 的腔体连接。

在进行试样 1 安装时，如图 1 通过外螺纹旋入下压紧螺母 8 的内螺孔，并漏出约 10mm，再将下压紧螺母 8 通过外螺纹与试样室 3 连接，压紧垫圈实现密封。然后再试样室 3 的另一端穿过上压紧螺母 2，拧紧螺母 2 实现密封，这样就将拉伸试验密封安装在试样室中了，然后再将下压紧螺母 8 中，试样 1 的漏出部分旋入拉伸试验机下夹具的螺孔，从而使试样、试样室及试验机下夹具形成固定连接。

本发明在进行具体拉伸试验时，连接管路全部采用抗氢钢材料，可以防止进行高...
压气等腐蚀气体实验时，试验装置发生氢脆等现象。在进行高压气体环境试验时，利用增压泵将所需压力的高压气体打入贮气罐，将贮气罐接入该装置的充气系统。将系统抽真空后打开贮气罐阀门放出发高压气体，通过压力变送器监测室内的实际气体压力值，便可以进行试样在高压气体环境下的拉伸性能测试。

[0019] 若需进行高温、高压气体环境下的拉伸试验，本装置可以根据需要加热高压贮气罐，通过温度压力一体化变送器观察系统中气体温度与压力的变化，在保证系统处于安全压力的前提下，测试试样在高温、高压蒸气环境中的拉伸性能。

[0020] 本说明书中公开的所有特征，或公开的所有方法或过程中的步骤，除了互相排斥的特征和／或步骤以外，均可以以任何方式组合。

[0021] 本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合，以及披露的任一新的方法或过程的步骤或任何新的组合。
图 1