06/017584 A2 IR OO0 RO

<

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
16 February 2006 (16.02.2006)

(10) International Publication Number

WO 2006/017584 A2

(51) International Patent Classification : GOG6F 3/06
(21) International Application Number:
PCT/US2005/027587

(22) International Filing Date: 4 August 2005 (04.08.2005)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

10/911,398 4 August 2004 (04.08.2004) US

(71) Applicant (for all designated States except US): VIR-
TUAL IRON SOFTWARE, INC. [US/US]; 900 Chelms-
ford Street, Tower 1, Floor 2, Lowel, MA 01851 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): VASILEVSKY,
Alexander, D. [US/US]; 5 Gooseneck Lane, Westford,
MA 01886 (US). TRONKOWSKI, Kevin [US/US]; 109
Noons Quarry Road, Milford, NH 03055 (US). NOYES,
Steven, S. [US/US]; 294 Upper North Row Road, Sterling,
MA 01564 (US).

(74) Agent: RUSSAVAGE, Edward, J.; Lowrie, Lando &
Anastasi, LLP, One Main Street, Cambridge MA 02142
(US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: VIRTUAL HOST BUS ADAPTER AND METHOD

9024~ Node 9028 Node
see [Proc] [Proc]
804 — 9035 | —g018 System
9014 —| { ot |[Mem][Int | [(int J[Mem] s00
SIJA\ & L
9034 /sas
814 815 916 N S A e A - Network(s)
[t} / 9058 Fabric v, 809
B P { | Communicati Communicati s
= /| System System }/\ Network >
- 917. | Communication | | Fdlbl’,lg(s)
-, | 905(;\ ’ 905A ‘ '
= i 907 \
i e i teatl 905D \
| System System !
System \en - 906A. -~~~ Ny | ;9068
\, 1 7 T
= N 7 \ —= !
5"8\ il N ! /0 Coménu?wctron 1
h / System yotem ! system
[b JSystem | N /
B-8—H % oo | | L L TN | L L T
Storage
5-87 System | o, 2{
o138 919 |
77 y LYY
SCSI Network FC Graphics Video
920 921”922/ 9237 924~

(57) Abstract: A virtualized storage adapter architecture and method is provided wherein lower level details of the storage adapter
@ architecture are isolated from an operating system and its applications that execute on a virtualization architecture. This isolation
& may be performed, for example, by providing a virtual storage adapter that is backed by one or more physical storage adapters. The
virtual storage adapter may be referenced by a globally unique identifier. For example, the virtual storage adapter may be referenced
by a World Wide Node Name (WWNN). In another example, changes may be made to the underlying physical storage configuration
without the need for changes in the virtual storage adapter or its interface to an operating system or its applications.

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

VIRTUAL HOST BUS ADAPTER AND METHOD

Realated Annlicatiore

Field of the Invention

The field of the invention relates generally to computer storage, and more particularly,

to storage in a virtual computing environment.

Backeground of the Invention

Conventional datacenters include a complex mesh of N-tier applications. Each tier
typically includes multiple servers (nodes) that are dedicated to each application or application
portion. These nodes generally include one or more computer systems that execute an
application or portion thereof, and provide computing resources to clients. Some systems are
general purpose computers (e.g., a Pentium-based server system) having general purpose
operating systems (e.g., Microsoft Server 2003) while others are special-purpose systems (e.g.,
a network attached storage system, database server, etc.) that are specially developed for this
particular purpose using custom operating system(s) and hardware. Typically, these servers
provide a single function (e.g., file server, application server, backup server, etc.) to one or
more client computers coupled through a communication network (e.g., enterprise network,
Internet, combination of both).

Configurations of datacenter resources may be adjusted from time to time depending on
the changing requirements of the applications used, performance issues, reallocation of
resources, and other reasons. Configuration changes are performed, for example, by manually
reconfiguring servers, adding memory/storage, etc., and these changes generally involve a
reboot of affected computer systems and/or an interruption in the execution of the affected
application. There exist other techniques such as server farms with front-end load balancers
and grid-aware applications that allow the addition and deletion of resources. Operating
systems or applications on which grid-aware applications are supported must be specifically
developed to operate in such an environment.

One conventional datacenter technique used for sharing resources is referred to in the
art as clustering. Clustering generally involves connecting two or more computers together
such that they behave as a single computer to enable high availability of resources. In some

cases, load balancing and parallel processing are provided in some clustered environments.

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-2

Clustering is generally performed in software (e.g., in the operating system) and allows
multiple computers of the cluster to access storage in an organized manner. There are many
applications and operating systems that implement clustering techniques such as, 10r example,
the Microsoft Windows NT operating system.

In a conventional cluster configuration, computers (nodes) are coupled by
communication links and communicate using a cluster communication protocol. In a
traditional clustered machine environment having nodes connected by communication links to
form a cluster, each node in the cluster has its own storage adapter (e.g., a Host Bus Adapter
(HBA)). These adapters are typically connected to storage entities by one or more
communication links or networks. For example, one or more nodes of the cluster may be
configured to use storage systems, devices, etc. configured in a storage network (e.g., a Storage
Area Network (SAN) connected by a switched fabric (e.g., using FibreChannel)).

In one example, each node HBA includes a unique World Wide Node Name (WWNN)
defined within, for example, a FibreChannel (FC) network. The unique WWNN allows
storage entities to identify and communicate with each other. To enable cluster coherent
storage access, each HBA WWNN needs to be correctly referenced in the storage network.

For instance, in a SAN, a Storage Area Network (SAN) zoning configuration is used to control
access from HBA resources. Adding nodes to or removing nodes from the cluster, or replacing
failed Host Bus Adapters (HBAS) in cluster nodes, requires parallel modifications to the SAN

zoning configuration to assure correct storage access.

Summary of the Invention

According to one aspect of the present invention, it is realized that creation of a virtual
adapter (e.g., a virtual Host Bus Adapter device (VHBA)) used by one or more nodes in a
distributed system (such as, for example, a cluster, grid, multi-node virtual server, etc.) allows
just one storage identifier to be assigned. Because one storage identifier is assigned across
multiple nodes, the need for modifying a configuration associated with the storage network is
eliminated. For example, when software or hardware changes are made in a FC-based storage
network, a configuration referred to as a zone configuration may need to be modified so that
storage devices may be properly referenced. According to one embodiment of the present
invention, a single WWNN may be assigned to a Virtual Host Bus Adapter (VHBA), and
underlying hardware and software constructs may be hidden from the operating system and its

applications. Because the WWNN is assigned to a virtual adapter which does not change,

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-3-

storage network zone modification is eliminated when nodes are added or removed from the
cluster, grid or multi-processor virtual server.

" A virtual adapter according to vafious erbodiments of the present invention may be
defined and used, for example, in a conventional cluster-based or grid computing system for
accessing storage. In another embodiment of the present invention, such a virtual adapter may
be used in a single or multiprocessor computer system. In yet another embodiment of the
present invention, such a virtual adapter may be implemented in a Virtual Multiprocessor
(VMP) machine. A VMP machine may be, for example, a Symmetric Multiprocessor (SMP)
machine, an Asymmetric Multiprocessor (ASMP) machine such as a NUMA machine, or other
type of machine that presents an SMP to an operating system or application in a virtualized
manner.

In a traditional SMP or cluster environment, high-availability (e.g., using redundant
connections) host access to SAN storage requires multiple physical HBAs on each cluster node
and high-availability sofiware within the operating system (OS) to manage access of storage
resources over multiple paths. Such high-availability software generally requires drivers to be
loaded by the OS to enable multi-path /O (MPIO) based storage access.

By creating a virtual adapter (e.g., a VHBA device) across multiple nodes in a multi-
node system (including but not limited to configurations such as a cluster, grid, or VMP) or
single node system (e.g., having one or more processors), underlying structures of the
underlying multi-path connection to be hidden from the OS. For instance, redundant node
interconnects, a FC fabric, and high-availability logic may be isolated from the OS. By
isolating the underlying structures from the OS, additional SAN zone configuration is not
necessary when changes are made to the underlying hardware (e.g., physical HBAs or other
hardware and software). Further, high-availability MPIO drivers are no longer required to be
installed and accessed by the operating system.

In a traditional SMP machine, load balancing of storage I/O is also accomplished by
adding multiple physical HBAs (i.e., to act as multi-initiators) and sofiware to the operating
system to manage the balancing of storage operations across the initiators. According to one
embodiment of the invention, in a multi-node machine that involves multiple physical nodes,
the operating system running on the one or more of the nodes is provided access to a node local
component of the VHBA device. For instance, the node local component of the VHBA device
may correspond to a physical HBA device or other physical adapter device that has been

abstracted through software. The node local component may be local to a particular node, but

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-4 -

the abstraction, however, allows access to other components (e.g., HBA devices) associated
with other nodes in the machine. This abstraction inherently provides multiple-initiator storage
access fo the operating systein on the machine (€.g:, muiti-node) without additional pnysical -
HBAs and operating system software.

According to another embodiment of the present invention, a virtual adapter (e.g., a
VHBA device) is used in conjunction with a Virtual Multiprocessor (VMP) machine supported
by multiple physical nodes. In such a machine, for example, a single instance of an operating
system may be executed across physical nodes. In this case, the single instance of the
operating system may be provided access to a node local component of the VHBA device. For
example, as discussed above with respect to multi-node systems, the node local component of a
VHBA device may correspond to a physical HBA device or other physical adapter device that
has been abstracted through software. In the case of a VMP machine, the node local
component may be local to a particular node, but the abstraction allows access to other
components (e.g., HBA devices) associated with other nodes in the VMP machine. This
abstraction inherently provides multiple-initiator storage access to the operating system on the
VMP machine (e.g., virtual SMP, virtual ASMP, etc.) without additional physical HBAs and
operating system software.

According to one aspect of the invention, a computer is provided which comprises one
or more storage entities, at least one of which is capable of servicing one or more requests for
access to the one or more storage entities, one or more physical storage adapters used to
communicate the one or more requests for access to the one or more storage entities, and a
virtual storage adapter adapted to receive the one or more requests and adapted to forward the
one or more requests to the one or more physical storage adapters. According to one
embodiment, the virtual storage adapter is associated with a virtual server in a virtual
computing system. According to another embodiment, the computer system includes a multi-
node computer system, at least two nodes of which are adapted to access the virtual storage
adapter. According to another embodiment, the virtual storage adapter is identified by a
globally unique identifier. According to another embodiment, the unique identifier includes a
World Wide Node Name (WWNN) identifier. According to another embodiment, the virtual
storage adapter is a virtual host bus adapter (HBA).

According to one embodiment, the computer system further comprises a plurality of
communication paths coupling a processor of the computer system and at least one of the one

or more storage entities, the virtual storage adapter being capable of directing the one or more

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-5-

requests over the plurality of communication paths. According to another embodiment, at least
one of the one or more requests is translated to multiple request messages being transmitted in
parallel over the plufality of communication patns. According to another embodiment, at least
one of the plurality of communication paths traverses a switched communication network.
According to another embodiment, the switched communication network includes an
InfiniBand switched fabric. According to another embodiment, the switched communication
network includes a packet-based network.

According to one embodiment, the computer system further comprises a virtualization
layer that maps the virtual storage adapter to the one or more physical storage adapters.
According to another embodiment, the computer system further comprises a plurality of
processors and wherein the virtualization layer is adapted to define one or more virtual servers,
at least one of which presents a single computer system interface to an operating system.
According to another embodiment, the single computer system interface defines a plurality of
instructions, and wherein at least one of the plurality of instructions is directly executed on at
least one of the plurality of processors, and at least one other of the plurality of instructions is
handled by the virtualization layer. According to another embodiment, the computer system
further comprises a plurality of processors, wherein each of the plurality of processors executes
a respective instance of a microkernel program, and wherein each of the respective instances of
the microkernel program are adapted to communication to cooperatively share access to
storage via the virtual storage adapter.)

According to one embodiment, the virtual storage adapter is associated with the one or
more virtual servers. According to another embodiment, the computer system further
comprises a manager adapted to assign the unique identifier to the virtual storage adapter.
According to another embodiment, a change in at least one of the one or more physical storage
adapters is transparent to the operating system. According to another embodiment, the
computer system further comprises configuration information identifying a storage
configuration, and wherein a change in at least one of the one or more physical storage
adapters is transparent to the operating system. According to another embodiment, the
computer system further comprises at least one I/O server, wherein the parallel access requests
are serviced in parallel by the I/O server.

According to one embodiment, the at least one of the one or more storage entities
receives the multiple request messages and services the multiple request messages in parallel.

According to another embodiment, the virtual storage adapter is associated with a node in a

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-6 -

multi-node computing system. According to another embodiment, the multi-node computing
system is a grid-based computing system. According to another embodiment, the multi-node
computing system is a clistér-based computing system. According to another embodinient, the
virtual storage adapter is associated with a single computer system. According to another
embodiment, the multi-node computing system supports a virtual computing system that
executes on the multi-node computing system, and wherein the virtual computing system is
adapted to access the virtual storage adapter. According to another embodiment, the single
computer system supports a virtual computing system that executes on the single computer
system, and wherein the virtual computing system is adapted to access the virtual storage
adapter.

According to one embodiment, the virtual storage adapter is identified by a globally
unique identifier. According to another embodiment, the globally unique identifier includes a
World Wide Node Name (WWNN) identifier. According to another embodiment, the virtual
storage adapter is identified by a globally unique identifier. According to another embodiment,
the globally unique identifier includes a World Wide Node Name (WWNN) identifier.

According to another aspect of the present invention, a computer-implemented method
is provided in a computer system having one or more storage entities, at least one of which is
capable of servicing one or more requests for access to the one or more storage entities, and
having one or more physical storage adapters used to communicate the one or more requests
for access to the one or more storage entities. The method comprises an act of providing for a
virtual storage adapter, the virtual adapter adapted to perform acts of receiving the one or more
requests, and forwarding the one or more requests to the one or more physical storage adapters.

According to one embodiment, the method further comprises an act of associating the
virtual storage adapter with a virtual server in a virtual computing system. According to
another embodiment, the computer system includes a multi-node computer system, and
wherein at least two nodes of the computer system each perform an act of accessing the virtual
storage adapter. According to another embodiment, the method further comprises an act of
identifying the virtual storage adapter by a globally unique identifier. According to another
embodiment, the act of identifying the virtual storage adapter includes an act of identifying the
virtual storage adapter by a World Wide Node Name (WWNN) identifier. According to
another embodiment, the act of providing for a virtual storage adapter includes an act of
providing a virtual host bus adapter (HBA). According to another embodiment, the computer

system further comprises a plurality of communication paths coupling a processor of the

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-7

computer system and at least one of the one or more storage entities, and wherein the method
further comprises an act of directing, by the virtual storage adapter, the request over the
plurality of communication paths.

According to one embodiment, the computer system further comprises a plurality of
communication paths coupling a processor of the computer system and at least one of the one
or more storage entities, and wherein the method further comprising acts of translating at least
one of the one or more requests to multiple request messages and transmitting the multiple
request messages in parallel over the plurality of communication paths. According to another
embodiment, at least one of the plurality of communication paths traverses a switched
communication network. According to another embodiment, the switched communication
network includes an InfiniBand switched fabric. According to another embodiment, the
switched communication network includes a packet-based network. According to another
embodiment, the method further comprises an act of mapping the virtual storage adapter to the
one or more physical storage adapters.

According to one embodiment, the act of mapping is performed in a virtualization layer
of the computer system. According to another embodiment, the computer system further
comprises a plurality of processors, and wherein the method further comprises an act of
defining one or more virtual servers, at least one of which presents a single computer system
interface to an operating system. According to another embodiment, the computer system
further comprises a plurality of processors, and wherein the method further comprises an act of
defining one or more virtual servers, at least one of which presents a single computer system
interface to an operating system. According to another embodiment, the act of defining is
performed by the virtualization layer. According to another embodiment, the act of defining is
performed by the virtualization layer. According to another embodiment, the single computer
system interface defines a plurality of instructions, and wherein the method further comprises
an act of executing at least one of the plurality of instructions directly on at least one of the
plurality of processors, and handling, by the virtualization layer, at least one other of the
plurality of instructions.

According to one embodiment, the computer system comprises a plurality of
processors, and wherein each of the plurality of processors performs an act of executing a
respective instance of a microkernel program, and wherein each of the respective instances of
the microkernel program communicate to cooperatively share access to storage via the virtual

storage adapter. According to another embodiment, the method further comprises an act of

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-8-

associating the virtual storage adapter with the one or more virtual servers. According to
another embodiment, the computer system further comprises a manager, and wherein the
‘method further comprises an act of assigning, by the manager, the unique idéntitier to'the
virtual storage adapter. According to another embodiment, a change in at least one of the one
or more physical storage adapters is transparent to the operating system. According to another
embodiment, the method further comprises an act of maintaining configuration information
identifying a storage configuration, and wherein a change in at least one of the one or more
physical storage adapters is transparent to the storage configuration.

According to one embodiment, the computer system further comprises at least one /O
server, wherein the parallel access request messages are serviced in parallel by the I/O server.
According to another embodiment, the method further comprises acts of receiving, by the at
least one of the one or more storage entities, the multiple request messages, and servicing the
multiple request messages in parallel. According to another embodiment, the method further
comprises an act of associating the virtual storage adapter with a node in a multi-node
computing system. According to another embodiment, the multi-node computing system isa
grid-based computing system. According to another embodiment, the multi-node computing
system is a cluster-based computing system. According to another embodiment, the method
further comprises an act of associating the virtual storage adapter with a single computer
system.

According to one embodiment, the multi-node computing system supports a virtual
computing system that executes on the multi-node computing system, and wherein the method
further comprises an act of accessing, by the virtual computing system, the virtual storage
adapter. According to another embodiment, the single computer system supports a virtual
computing system that executes on the single computer system, and wherein the method
further comprises an act of accessing, by the virtual computing system, the virtual storage
adapter. According to another embodiment, the method further comprises an act of identifying
the virtual storage adapter by a globally unique identifier. According to another embodiment,
the act of identifying the virtual storage adapter includes an act of identifying the virtual
storage adapter by a World Wide Node Name (WWNN) identifier. According to another
embodiment, the method further comprises an act of identifying the virtual storage adapter by a
globally unique identifier. According to another embodiment, the globally unique identifier
includes a World Wide Node Name (WWNN) identifier.

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-9-

Further features and advantages of the present invention as well as the structure and

operation of various embodiments of the present invention are described in detail below with

reference to the accompanying drawings. In the drawings, like reterence numerals indicate”

like or functionally similar elements. Additionally, the left-most one or two digits of a

reference numeral identifies the drawing in which the reference numeral first appears.

BRIEF DESCRIPTION OF DRAWINGS

The accompanying drawings are not intended to be drawn to scale. In the drawings,

each identical or nearly identical component that is illustrated in various figures is represented
by a like numeral. For purposes of clarity, not every component may be labeled in every
drawing. In the drawings:

Figure 1 is a block diagram of a virtual server architecture according to one
embodiment of the present invention;

Figure 2 is a block diagram of a system for providing virtual services according to one
embodiment of the present invention;

Figure 3 is a block diagram showing a mapping relation between virtual processors and
physical nodes according to one embodiment of the present invention;

Figure 4 is a block diagram showing scheduling of virtual processor tasks according to
one embodiment of the present invention;

Figure 5 is a block diagram showing scheduling of virtual processor tasks in
accordance with another embodiment of the present invention;

Figure 6 is a block diagram showing an example memory mapping in a virtual server
system in accordance with another embodiment of the present invention;

Figure 7 is a block diagram showing an example execution level scheme in accordance
with another embodiment of the present invention;

Figure 8 is a block diagram showing an example distributed virtual machine monitor
architecture in accordance with another embodiment of the present invention;

Figure 9 is a block diagram showing an example system architecture upon which a
virtual computing system in accordance with another embodiment of the present invention may
be implemented; and

Figure 10 is a block diagram showing a virtual storage architecture according to one

embodiment of the present invention.

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-10 -

Detailed Description

In one aspect, a virtualized storage adapter architecture is provided wherein lower level
details of the storage adapter architecture are isolated from the operating system and
application executing on the computing system. That is, the storage adapter used to access
storage is virtualized. Such a virtual storage adapter architecture contrasts to conventional
virtual storage architectures where actual storage entities (e.g., volumes, disks, etc., but not the
adapters used to access such entities) are virtualized. Isolation from the operating system and
applications may be performed, for example, by providing a virtual storage adapter that is
backed by one or more physical adapters.

Such a virtualized storage adapter architecture may be used with a single or multinode
computing system as discussed above. For instance, a virtual storage architecture may be
implemented in cluster-based or grid computing systems. Further, various aspects of the
present invention may be implemented in a virtual computing system as discussed in further
detail below. However, it should be appreciated that a virtual storage adapter architecture may
be used with any computing architecture (e.g, single node, multi-node, cluster, virtual, VMP,
etc.), and the invention is not limited to any computer system type or architecture. An
example virtual storage architecture according to one embodiment of the present invention is
discussed below with more particularity in reference to Figure 10.

According to another embodiment of the present invention, a horizontal virtualization
architecture is provided wherein applications are distributed across virtual servers, and the
horizontal virtualization architecture is capable of accessing storage through a virtual storage
adapter. In one example system, an application is scaled horizontally across at least one virtual
server, comprised of a set of virtual processors, each of which is mapped to one or more
physical nodes. From the perspective of the application, the virtual server operates like a
shared memory multi-processor, wherein the same portion of the application is located on one
or more of the virtual processors, and the multiple portions operate in parallel. The resulting
system allows applications and operating systems to execute on virtual servers, where each of
these virtual servers span a collection of physical servers (or nodes) transparent to the
applications and operating systems. That is, the virtual server presents, to the operating system
and application a single system where single instance of an operating system runs. Sucha
system according to one embodiment is contrasted by conventional clustered computing
systems that support single system image as typically understood in the art, in that multiple

instances of an operating system are clustered to create an illusion of a single system to the

10

15

25

30

WO 2006/017584 PCT/US2005/027587

-11-

application programmers. Further, such a system according to one embodiment is unlike
conventional “grid” computing systems as typically understood in the art, as no application
modifications are required for the applications to execute on the virtualization architecture.

Figure 1 shows one example system 101 that may be used to execute one or more data
center applications. System 101 may include one or more system layers providing layers of
abstraction between programming entities. As discussed above, a virtualization layer 104 is
provided that isolates applications on a guest operating system (GOS) operating in layers 102
and 103, respectively, from an underlying hardware layer 105. Such applications may be, for
example, any application program that may operate in a data center environment. For instance,
a database server application, web-based application, e-mail server, file server, or other
application that provides resources to other systems (e.g., systems 107A-107C) may be
executed on system 101. Such applications may communicate directly with virtualization layer
104 (e.g., in the case of a database server application, wherein the application is part of the
operating system) or may communicate indirectly through operating system layer 103.
Virtualization layer 104 in turn maps functions performed by one or more virtual processors to
functions performed by one or more physical entities in hardware layer 105. These entities
may be, for instance, physical nodes having one or more processors.

In one aspect, virtualization layer 104 presents, to application layer 102 and operating
system layer 103 a single system presented in the form of a virtual server. In one embodiment,
a single instance of an OS is executed by the virtual server. In particular, a distributed virtual
machine monitor creates a single system image, upon which a single instance of a virtual
server is executed. The virtual server acts as a single system, executing a single instance of the
OS. This architecture contrasts to conventional clustering systems where multiple OS entities
executing on multiple systems cooperate to present a single system (e.g., to an application
programmer that develops programs to be executed on a clustered OS). According to another
embodiment of the present invention, this virtual server includes one or more constructs similar
to a physical server (storage, memory, I/O, networking), but these constructs are virtual and are
mapped by virtualization layer 104 to one or more hardware entities.

Physical entities may communicate with each other over an interconnect (not shown)
for the purpose of sharing access to resources within hardware layer 105. For instance, a
distributed memory architecture may be used to allow hardware devices (e.g., nodes to share
other non-local memory. Other hardware entities (e.g., network, storage, I/O, etc.) may also be

shared by nodes through an interconnect.

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-12 -

System 101 may be coupled to one or more external communication networks (e.g.,
network 106) for the purpose of sharing resources with one or more systems (e.g., systems
107A-107C). System 101 may function as part ot an overall computing system 1UU 10 perform
one or more tasks. For instance, system 100 may function as a client-server, n-tiers, or other
type of architecture that executes one or more applications in a cooperative system. It should
be appreciated that system 100 may include any number and type of computing systems,
architecture, application, operating system or network, and the invention is not limited to any

particular one(s).

Example Architecture

Figure 2 shows an example architecture of a system 201 according to one embodiment
of the invention. System 201 includes an upper layer 202 including one or more operating
systems 207A-207C executed by one or more virtual servers 208A-208C, respectively.
According to one embodiment, virtual servers 208A-208C present, to their respective operating
systems 207A-207C, single system regardless of the number of hardware nodes (e.g., nodes
210A-210D) included in a particular virtual server.

Operating systems 207A-207C may be, for example, commodity operating systems that
may be ported to a Virtual Machine Architecture (VMA) presented by a distributed virtual
machine monitor. A virtual server may be an instance of an architecture presented by a
virtualization layer (e.g., layer 104). A virtual server may have a persistent identity and
defined set of resource requirements (e.g., storage, memory, and network) resource access
privileges, and/or resource limits.

Distributed virtual machine monitor (or DVMM) 203 provides an abstraction layer for
mapping resources presented by each virtual server to other upper layer 202 programs to
underlying hardware 204. In one embodiment, DVMM 203 includes one or more microkernel
209A-209E, each of which are pseudo-machines, each of which runs on a single node and
manages the resources associated with that node. Each microkernel 209A-209E may include a
virtual memory which it manages, this memory space spanning one or more portions of
available physical memory associated with participating nodes.

Hardware layer 204 may include, for example, one or more nodes 210A-210E coupled
by a network 211. These nodes may be, for example, general-purpose processing systems

having one or more physical processors upon which tasks are performed.

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-13 -

According to one embodiment, an organizational concept of a frame may be defined,
the frame identifying a set of nodes and other hardware entities that may be used to operate as
an organizational unit. Elements within the Irame may b€ capable 01 communicating between
each other over a network 211. In one example, network 211 may include a low-latency high-
bandwidth communication facility (e.g., InfiniBand, PCI-Express, GigiNet, Ethernet, Gigabit
Ethernet, 10 Gigabit Ethernet, etc.). However, it should be appreciated that the invention is not
limited to low-latency communication facility, as other communication methods may be used.
Network 211 may also include one or more elements (e.g., switching or routing elements) that
create an interconnected frame.

In one embodiment, nodes (e.g., nodes 210A-210E) are restricted to participating in one
and only one frame. A defined frame and its associated hardware may be associated with a
distributed server, and the entities of that frame may perform the physical operations associated
with that virtual distributed server.

In one embodiment, a distributed server is a collection of software and hardware
components. For example, hardware components may include commodity servers coupled to
form a cluster. Software associated with each distributed server runs on this cluster and
presents a multi-processor system architecture two upper layers, defining a virtual server that is
capable of hosting a guest operating system (GOS). Components of a distributed server may
include a distributed virtual machine monitor program, interconnects, processors, memory, /O
devices and software and protocols used to bind them. A guest operating system (GOS), such
as, for example, UNIX (e.g., Linux, SUSE, etc.), Microsoft Windows Server, or other
operating system executes upon the virtual server. In one embodiment, the guest operating
system operates as if it was running on a non-cluster multi-processor system having coherent
shared memory.

System 201 may also include a manager 212 that manages the configuration of system
201. Manager 212 may include an associated management database 213 that stores
information relating to the configuration of system 201. Manager 212 may also communicate
with a management agent (not shown) executed by one or more virtual servers of system 201
for the purpose of performing configuration changes, monitoring performance, and performing
other administrative functions associated with system 201. The following section discusses an
example management architecture for managing a virtual computing architecture, and various

advantages of a scalable virtual computing system according to various embodiments of the

10

15

25

30

WO 2006/017584 PCT/US2005/027587

-14 -

present invention.

Management Architecture

As discussed above, the virtualization architecture allows for an expansion (or a
contraction) of resources used by an executing virtual computing system. Such expansion or
contraction may be needed from time to time as customer and business needs change. Also,
applications or the operating systems themselves may need additional (or less) resources as
their requirements change (e.g., performance, loading, etc.). To this end, a capability may be
provided for changing the amount and allocation of resources, both actual and virtual, to the
virtual computing system. More specifically, additional resources (e.g., nodes, network,
storage, 1/0, etc.) may be allocated (or deallocated) in real time to a frame and these resources
may then be used (or not used) by a distributed server. Similarly, virtualized resources (e.g.,
virtual processors, virtual I/O, virtual networking, etc.) as well as physical resources may be
allocated or deallocated to a virtual server. In this manner, the virtual computing system may
be scaled up/scaled down as necessary.

The ability for allocating or deallocating resources may be provided using, for example,
manager 212 and one or more management agents. Such a system is described with more
particularity in the co-pending U.S. patent application filed April 26, 2004 entitled “METHOD
AND APPARATUS FOR MANAGING VIRTUAL SERVERS” under Attorney Docket
Number K2000-700100, which is incorporated by reference in its entirety.

According to one aspect of the present invention, a management capability is provided
for a virtual computing platform. This platform allows scale up and scale down of virtual
computing systems, and such a management capability provides for control of such scale up
and scale down functions. For instance, a capability is provided to allocate and/or deallocate
resources (e.g., processing, memory, networking, storage, etc.) to a virtual computing system.
Such control may be provide, for example, to an administrator through an interface (e.g., viaa
CLI, or GUI) or to other programs (e.g., via a programmatic interface).

According to one aspect of the present invention, an interface is provided that allows
for the addition or removal of resources during the execution of a virtual computing system.
Because resource allocation may be changed without restarting the virtual computing system, a
flexible tool is provided for administrators and programs for administering computing
resources.

In the case where such a virtual computing system is provided in a datacenter, an

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-15-

administrator may be capable of provisioning resources in real time to support executing
virtual servers. Conventionally, data center server resources are hard-provisioned, and
typically require interruption of server operation tor resources 10 be changed (€.g8., change in
memory, network, or storage devices).

According to one embodiment of the present invention, a virtual computing system is
provided that allows a network administrator to provision computing resources in real-time
(“on-the-fly”) without a restart of a virtual computing system. For instance, the administrator
may be presented an interface through which resources may be allocated to a virtual server
(e.g., one that emulates a virtual multiprocessor computer). The interface may display a
representation of an allocation of physical resources and mapping to virtual resources used by a
virtual server. For example, the interface may provide an ability to map virtual servers to sets
of physical resources, such as a virtual processor that is mapped to a physical processor.

According to another embodiment, a capability is provided to allocate and/or deallocate
resources (e.g., processing, memory, networking, storage, etc.) to a virtual computing system.
Such control may be provide, for example, to an administrator through an interface (e.g., viaa
CLL or GUI) or to other programs (e.g., via a programmatic interface). According to another
embodiment, an interface is provided that allows for the addition or removal of resources
during the execution of a virtual computing system. Because resource allocation may be
changed without restarting the virtual computing system, a flexible tool is provided for
administrators and programs for administering computing resources. This tool permits an
administrator to grow or shrink the capabilities of a virtual server system graphically or
programmatically.

For instance, the administrator may be presented an interface through which resources
may be allocated to a virtual server (e.g., one that emulates a virtual multiprocessor computer).
The interface may display a representation of an allocation of physical resources and mapping
to virtual resources used by a virtual server. For example, the interface may provide an ability
to map virtual servers to sets of physical resources, such as a virtual processor that is mapped
to a physical processor. In one embodiment, a virtual server can span a collections ofa
physical nodes coupled by an interconnect. This capability allows, for example, an arbitrarily-
sized virtual multiprocessor system (e.g., SMP, Numa, ASMP, etc.) to be created.

Such capabilities may be facilitated by a management agent and server program that
collectively cooperates to control configuration of the virtual and distributed servers.

According to one embodiment, the management server writes information to a data store to

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-16 -

indicate how each node should be configured into virtual and distributed servers. Each
management agent may then read the data store to determine its node's configuration. The
configuration may be, for example, pushed to a parucuiar management agent, puiiea from the
management server by the management agent, or a combination of both techniques. The
management agent may pass this information to its virtual machine monitor program which
uses the information to determine the other nodes in its distributed server with whom it is
tasked to cooperatively execute a set of virtual servers.

An administrator or other program may, using one or more interfaces (e.g., UL, CLIL,
programmatic, etc.) to allocate or deallocate resources to virtual servers or distributed servers.
More particularly, the interface may allow an administrator or program to associate a hardware
resource (e.g., an I/O device, network interface, node having one or more physical processors,
etc.) to a distributed server of a frame. As discussed further below with reference to Figure 3,
a frame (e.g., frame 302A, 302B) may define a partitioned set of hardware resources, each of
which sets may form multiple distributed servers, each of which sets may be associated with
one or more virtual servers. Alternatively, a hardware resource may be allocated directly to a
virtual server.

A hardware device may be unassigned to a particular distributed server within a frame
in which the hardware device is coupled, for example, during initial creation of the distributed
server (e.g., with unassigned resources), by adding new hardware to the frame, or by virtue of
having previously unassigning the hardware resource to a distributed server or virtual server.
Such unassigned resources may be, for example, grouped into a “pool” of unassigned resources
and presented to an administrator or program as being available for assignment. Once
assigned, the virtual computing system may maintain a 'representation of the assignment (or
association) in a data structure (e.g., in the data store described above) that relates the hardware
resource to a particular distributed server or virtual server.

Once an actual resource (e.g., hardware) is assigned, virtual resources associated with
the hardware resource may be defined and allocated to virtual servers. For instance, one or
more VNICs (virtual network interface cards) may be defined that can be backed by one or
more actual network interface devices. Also, a new node may be assigned to a partition upon
which a virtual server is executed, and any CPUs of the newly-assigned nodes may be assigned
as additional virtual processors (VPs) to the virtual server.

In one example, the management server may use an object model to manage

components (e.g., resources, both physical and virtual) of the system. Manageable objects and

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-17 -

object collections may be defined along with their associations to other manageable objects.
These objects may be stored in a data structure and shared with other management servers,
agents, or other software entities. The management architecture may implement a locking
mechanism that allows orderly access to configurations and configuration changes among
multiple entities (administrators, programs, etc.).

According to one embodiment, a management agent at each node interacts with the
virtual machine monitor program and with outside entities, such as, for example, a
management server and a data store. In one example, the management server provides
command and control information for one or more virtual server systems. The management
agent acts as the virtual machine monitor program tool to communicate with the management
server, and implement the actions requested by the management server. In one example, the
management agent is a virtual machine monitor user process. According to another
embodiment, the data store maintains and provides configuration information upon demand.
The data store may reside on the same or different node as the management server, or may be
distributed among multiple nodes.

The management agent may exist within a constrained execution environment, such
that the management agent is isolated from both other virtual server processes as well as the
virtual machine monitor program. That is, the management agent may not be in the same
processor protection level as the rest of the virtual machine monitor program. Alternatively,
the management agent may operate at the same level as the virtual machine monitor program
or may form an integral part of the virtual machine monitor program. In one embodiment, the
management agent may be responsible for a number of tasks, including configuration
management of the system, virtual server management, logging, parameter management, and
event and alarm propagation.

According to one embodiment, the virtual machine monitor management agent may be
executed as a user process (e.g., an application on the virtual server), and therefore may be
scheduled to be executed on one or more physical processors is similar to an application.
Alternatively, the management agent may be executed as an overhead process at a different
priority than an application. However, it should be appreciated that the management agent
may be executed at any level of a virtual computing system hierarchy and at any protection or
priority level.

According to one embodiment, interactions between the management agent and the

management server may be categorized as either command or status interactions. According to

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-18 -

one embodiment, commands originate with the management server and are sent to the
management agent. Commands include, but are not limited to, distributed server operations,
instructions to add or remove a node, processor, memory and/or /O device, instructions to
define or delete one or more virtual servers, a node configuration request, virtual server
operations, status and logging instructions, heartbeat messages, alert messages, and other
miscellaneous operations. These commands or status interactions may be transmitted, for
example, using one or more communication protocols (e.g., TCP, UDP, IP or others). It should
be appreciated that the virtual computing platform may be managed using a different
architecture, protocols, or methods, and it should be understood that the invention is not

limited to any particular management architecture, protocols, or methods.

Mapping of Virtual Servers

Figure 3 shows in more detail an example mapping of one or more virtual servers to a
grouping of hardware referred to hereinafter as a partition according to one embodiment of the
invention. A collection of one or more virtual processors is arranged in a set. In one
embodiment, a virtual server (VS) may be viewed as a simple representation of a complete
computer system. A VS, for example, may be implemented as a series of application
programming interfaces (APIs). An operating system is executed on a virtual server, and a
distributed virtual machine monitor may manage the mapping of VPs onto a set of physical
processors. A virtual server (e.g., VS 301A-301E) may include one or more VPs (e.g., 303A-
303C), and the number of VPs in a particular VS may be any number.

Hardware nodes and their associated resources are grouped together into a set referred
to herein as a frame. According to one embodiment, a virtual server is associated with a single
frame, and more than one virtual server may be serviced by a frame. In the physical realm,
nodes (e.g., nodes 304A-304C) may be associated with a particular frame (e.g., frame 302A).
In one example, a frame (e.g., frame 3024, 302B) may define a partitioned set of hardware
resources, each of which sets may form multiple distributed servers, each of which sets may be
associated with one or more virtual servers. In one embodiment, virtual processors are mapped
to physical processors by the distributed virtual machine monitor. In one embodiment, there
may be a one-to-one correspondence between virtual processors and physical processors.
Nodes within a frame may include one or more physical processors upon which virtual

processor tasks may be scheduled. Although several example mappings are shown, it should

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587
19

be appreciated that the invention is not limited to the shown mappings. Rather, any mapping
may be provided that associates a virtual server to a frame.

However, there may be configurations tﬁét ;re nth allt_);ved for reasons havmg to do
with security, performance, or other reasons. For iqstance, according to one embodiment,
mapping of a virtual server to more than one frame may not be permitted (e.g., nodes outside
of a frame are not connected to the internal frame interconnect). Other configurations may not
be permitted based on one or more rules. For instance, in one example, a physical processor
may not be permitted to be allocated to more than one distributed server. Also, the number of
active physical processors in use may not be permitted to be less than the number of virtual
processors in the virtual processing systexh. Other restriction rules may be defined alone or in

combination with other restriction rules.

Schedulin
Figure 4 shows an example scheduling relation between virtual processors and physical

processors according to one embodiment of the invention. As shown, virtual server 401
includes two virtual processors VP 403A-403B. Each of these VPs are mapped to nodes
404A-404B, respectively in frame 402. Node 404A may include one processor 405A upon
which a task associated with VP 403A may be scheduled.

There may be a scheduler within the distributed virtual machine monitor that handles
virtual processor scheduling. In one example, each virtual processor is mapped to one process
or task. The scheduler may maintain a hard affinity of each scheduled procesé (a VP) to areal
physical processor within a node. According to one embodiment, the distributed virtual
machine monitor may execute one task per virtual processor corresponding to its main thread
of control. Tasks in the same virtual server may be simultaneously scheduled for execution.

Figure 5 shows a more detailed example showing how virtual server processes may be
scheduled according to one embodiment of the present invention. In the example, there are
four virtual servers, VS1 (item 501), VS2 (item 502), VS3 (item 503), and VS4 (item 504)
defined in the system. These virtual servers have one or more virtual processors (VPs)
associated with them.

These four virtual processors are mapped to two nodes, each of which nodes includes

~ two physical processors, P1-P4. The distributed virtual machine monitor maps each virtual

server to an individual process. Each virtual processor (VP) within a virtual server is a thread

within this process. These threads may be, for example, bound via hard affinity to a specific

RECTIFIED SHEET (RULE 91)
ISA/EP

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-20 -

physical processor. To the distributed virtual machine monitor, each of the virtual servers
appears as a process running at a non-privileged level. Each of the individual virtual
processors included in a virtual server process are component threads of this process and may
be scheduled to run on a separate, specific physical processor. '

With the example configuration having two dual processor nodes (four physical
processors total), in one embodiment of the invention there may be up to a maximum of four
VPs created in any virtual server. Also, with a total number of eight VPs, there are eight
threads. As shown in Figure 5, the distributed virtual machine monitor may run each virtual
server process at approximately the same time (e.g., for performance reasons as related
processes running at different times may cause delays and/or issues relating to
synchronization). That is, the VS4 processes are scheduled in one time slot, VS3 processes in
the next, and so forth. There may be “empty” processing slots in which management functions
may be performed or other overhead processes. Alternatively, the scheduler may rearrange
tasks executed in processor slots to minimize the number of empty processor slots.

Further, the scheduler may allow for processors of different types and/or different
processing speeds to perform virtual server tasks associated with a single virtual server. This
capability allows, for example, servers having different processing capabilities to be included
in a frame, and therefore is more flexible in that an administrator can use disparate systems to
construct a virtual computing platform. Connections between different processor types are
facilitated, according to one embodiment, by not requiring synchronous clocks between

Processors.

Memo

Figure 6 shows a block diagram of a memory mapping in a virtual computer system
according to one embodiment of the invention. In general, the distributed virtual machine
monitor may make memory associated with hardware nodes available to the guest operating
system (GOS) and its applications. The distributed virtual machine monitor (DVMM), through
a virtual machine architecture interface (hereinafter referred to as the VMA), offers access to a
logical memory defined by the distributed virtual machine monitor and makes available this
memory to the operating system and its applications.

According to one embodiment, memory is administered and accessed through a
distributed memory manager (DMM) subsystem within the distributed virtual machine

monitor. Memory may, therefore, reside on more than one node and may be made available to

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-21-

all members of a particular virtual server. However, this does not necessarily mean that all
memory is distributed, but rather, the distributed virtual machine monitor may ensure that local
memory of a physical node is used to pertorm processing associated on that node. In this way,
local memory to the node is used when available, thereby increasing processing performance.
One or more “hint” bits may be used to specify when local memory should be used, so that
upper layers (e.g., virtual layers) can signal to lower layers when memory performance is
critical.

Referring to Figure 6 and describing from left to right, a node’s physical memory 601
may be arranged as shown in Figure 6, where a portion of the node’s physical memory is
allocated to virtual memory 602 of the distributed virtual machine monitor memory. As
shown, distributed memory associated with the node may be part of a larger distributed
memory 603 available to each distributed server. Collectively, the distributed memories of
each node associated with the distributed server may be made available to a virtual server as
logical memory 604 and to the operating system (GOS), as if it were a physical memory.
Memory 604 is then made available (as process virtual memory 605) to applications.

GOS page table manipulation may, for example, be performed by the distributed virtual
machine monitor in response to GOS requests. Because, according to one embodiment, the
GOS is not permitted direct access to page tables to ensure isolation between different virtual
servers, the distributed virtual machine monitor may be configured to perform page table
manipulation. The distributed virtual machine monitor may handle all page faults and may be
responsible for virtual address spaces on each virtual server. In particular, the DMM
subsystem of the distributed virtual machine monitor (DVMM) may perform operations on
page tables directly.

Memory operations that may be presented to the operating system through the virtual
machine architecture (VMA). According to one embodiment of the present invention, the
VMA may include memory operations that are similar in function to that of conventional
architecture types (e.g., Intel). In this manner, the amount of effort needed to port a GOS to
the VMA is minimized. However, it should be appreciated that other architecture types may
be used.

In the case where the architecture is an Intel-based architecture, memory operations that
may be presented include management of physical and logical pages, management of virtual
address spaces, modification of page table entries, control and modification of base registers,

management of segment descriptors, and management of base structures (e.g., GDT (global

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-22.

descriptor table), LDT (local descriptor table), TSS (task save state) and IDT (interrupt
dispatch table)).

According to one embodiment, access to such memory intormation may be isolated.
For instance, access to hardware tables such as the GDT, LDT, and TSS may be managed by
the VMA. More particularly, the VMA may maintain copies of these tables for a particular
virtual server (providing isolation), and may broker requests and data changes, ensuring that
such requests and changes are valid (providing additional isolation). The VMA may provide
as a service to the GOS access to instructions and registers that should not be accessed at a
privileged level. This service may be performed by the VMA, for example, by a function call
or by transferring data in a mapped information page. ’

It can be appreciated that although the VMA may expose logical memory to the GOS,
actual operations may be performed on memory located in one or more physical nodes.
Mapping from virtual to logical memory may be perforrhed by the VMA. For instance, a
virtual address space (or VAS) may be defined that represents a virtual memory to logical
memory mapping for a range of virtual addresses.

Logical memory may be managed by the GOS, and may be allocated and released as
needed. More particularly, the GOS may request (e.g., from the VMA) for an address space to
be created (or destroyed) through the VMA, and the DMM subsystem of the DVMM may
perform the necessary underlying memory function. Similarly, the VMA may include
functions for mapping virtual addresses to logical addresses, performing swapping, perform
mapping queries, etc.

Remote Direct Memory Access (RDMA) techniques may also be used among the nodes
to speed memory access among the nodes. Remote Direct Memory Access (RDMA) is a well-
known network interface card (NIC) feature that lets one computer directly place information
into the memory of another computer. The technology reduces latency by minimizing

demands on bandwidth and processing overhead.

Input/Output
Regarding I/O, the VMA may provide isolation between the GOS and distributed

virtual machine monitor. According to one embodiment of the present invention, the VMA
functions as a thin conduit positioned between the GOS and a DVMM I/O subsystem, thereby
providing isolation. In one embodiment, the GOS is not aware of the underlying hardware I/O

devices and systems used to support the GOS. Because of this, physical I/O devices may be

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

=23 -

shared among more than one virtual server. For instance, in the case of storage I/O, physical
storage adapters (e.g., HBAs, IB HCA with access to TCA I/O Gateway) may be shared among
multiple virtual servers.

In one implementation, GOS drivers associated with I/O may be modified to interface
with the VMA. Because the size of the distributed virtual machine monitor should, according
to one embodiment, be minimized, drivers and changes may be made in the GOS, as there is
generally more flexibility in changing drivers and configuration in the GOS than the
distributed virtual machine monitor.

/O functions that may be performed by the distributed virtual machine monitor in
support of the GOS may include I/O device configuration and discovery, initiation (for both
data movement and control), and completion. Of these types, there may be varying I/O
requests and operations specific to each type of device, and therefore, there may be one or
more I/O function codes that specify the functions to be performed, along with a particular
indication identifying the type of device upon which the function is performed. I/O support in
the VMA may act as a pipe that channels requests and results between the GOS and underlying
distributed virtual machine monitor subsystem. .

I/O devices that may be shared include, for example, FibreChannel, InfiniBand and
Ethernet. In hardware, I/O requests may be sent to intelligent controllers (referred to
hereinafter as I/O controllers) over multiple paths (referred to as multipathing). 1/O controllers
service the requests by routing the request to virtual or actual hardware that performs the I/O
request possibly simultaneously on multiple nodes (referred to as multi-initiation), and returns
status or other information to the distributed virtual machine monitor.

In one example I/O subsystem, the distributed virtual machine monitor maintains a
device map that is used to inform the GOS of devices present and a typing scheme to allow
access to the devices. This I/O map may be an emulation of a bus type similar to that of a
conventional bus type, such as a PCI bus. The GOS is adapted to identify the device types and
load the appropriate drivers for these device types. Drivers pass specific requests through the
VMA interface, which directs these requests (and their responses) to the appropriate distributed
virtual machine monitor drivers.

The VMA configuration map may include, for example, information that allows
association of a device to perform an operation. This information may be, for example, an

index/type/key information group that identifies the index of the device, the device type, and

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-24 -

the key or instance of the device. This information may allow the GOS to identify the /O
devices and load the proper drivers.

Once the GOS has determined the 1/O configuration and loaded the proper drivers, the
GOS is capable of performing I/O to the device. I/O initiation may involve the use of the
VMA to deliver an I/O request to the appropriate drivers and software within the distributed
virtual machine monitor. This may be performed, for example, by performing a call on the
VMA to perform an I/O operation, for a specific device type, with the request having device-
specific codes and information. The distributed virtual machine monitor may track which I/O
requests have originated with a particular virtual server and GOS. I/O commands may be, for
example, command/response based or may be performed by direct CSR (command status
register) manipulation. Queues may be used between the GOS and distributed virtual machine
monitor to decouple hardware from virtual servers and allow virtual servers to share hardware
/O resources.

According to one embodiment of the present invention, GOS drivers are virtual port
drivers, presenting abstracted services including, for example, send packet/get packets
functions, and write buffer/read buffer functions. In one example, the GOS does not have
direct access to I/O registers. Higher level GOS drivers, such as class drivers, filter drivers and
file systems utilize these virtual ports.

In one embodiment of the present invention, three different virtual port drivers are
provided to support GOS I/O functions: console, network and storage. These drivers may be,
for example, coded into a VMA packet/buffer interface, and may be new drivers associated
with the GOS. Although a new driver may be created for the GOS, above the new driver the
GOS kernel does not access these so called “pass-through” virtual port drivers and regular
physical device drivers as in conventional systems. Therefore, virtual port drivers may be
utilized within a context of a virtual system to provide additional abstraction between the GOS
and underlying hardware.

According to another embodiment, the use of virtual port drivers may be restricted to
low-level drivers in the GOS, allowing mid-level drivers to be used as is (e.g., SCSI multi-path
drivers). With respect to the I/O bus map, virtual port drivers are provided that present
abstracted hardware vs. real hardware (e.g., VHBA v. HBA devices), allowing the system
(e.g., the distributed virtual machine monitor) to change the physical system without changing
the bus map. Therefore, the I/O bus map has abstraction as the map represents devices in an

abstract sense, but does not represent the physical location of the devices. For example, in a

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-25 -

conventional PC having a PCI bus and PCI bus map, if a board in the PC is moved, the PCI
map will be different. In one embodiment of the present invention, a system is provided
wherein if the location of a physical device changes, the /U map presented to higher layers
(e.g., application, GOS) does not change. This allows, for example, hardware
devices/resources to be removed, replaced, upgraded, etc., as the GOS does not experience a

change in “virtual” hardware with an associated change in actual hardware.

Example 1/O Function

The following is an example of an I/O function performed in a virtual server as
requested by a GOS (e.g., Linux). The I/O function in the example is initially requested of the
Guest Operating System. For instance, a POSIX-compliant library call may invoke a system
service that requests an I/O operation.

The I/O operation passes through a number of layers including, but not limited to:

« Common GOS I/O processing. A number of common steps might occur including request
aggregation, performance enhancements and other I/O preprocessing functions. The request
may be then passed to a first driver level referred to as an “Upper Level” driver.

« “Upper Level” drivers that are not in direct hardware contact, but provide support

for a particular class of devices. The request is further processed here and passed

on to Lower Level drivers.

« “ Lower Level” drivers are in direct hardware contact. These drivers are specific to a virtual
server and are modified to work in direct contact with the VMA I/O interface as discussed
above. These drivers process the request and pass the request to the VMA I/O component as if
the I/O component was a specific hardware interface.

« The VMA 1/O component routes the request to the praper distributed virtual machine monitor
(DVMM) drivers for processing.

« The DVMM I/O layer now has the request and processes the request as needed. In this
example, a set of cooperating drivers moves the request onto network drivers (€.g., InfiniBand
drivers) and out onto the hardware (e.g., storage adapters, network interfaces, etc.).

In a virtual server according to one embodiment, all processors may initiate and
complete I/O operations concurrently. All processors are also capable of using multipath I/O
to direct I/O requests to the proper destinations, and in turn each physical node can initiate its
own I/O requests. Further, the network (e.g., an interconnect implementing InfiniBand) may /

offer storage devices (e.g., via FibreChannel) and networking services (e.g., via IP) over the

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-26-

network connection (e.g., an InfiniBand connection). This set of capabilities provides the
distributed virtual machine monitor, and therefore, virtual servers, with a very high
performance I/O system. An example architecture that shows some of these concepts is
discussed further below with reference to Figure 9. A specific virtual architecture that shows

these concepts as they relate to storage is discussed further below with reference to Figure 10.

Interrupts and Exceptions

Other interfaces to the GOS may also provide additional isolation. According to one
aspect of the present invention, interrupts and exceptions may be isolated between the GOS
and distributed virtual machine monitor (DVMM). More particularly, interrupts and
exceptions may be handled, for example, by an interface component of the VMA that isolates
the GOS from underlying interrupt and exception support performed in the DVMM. This
interface component may be responsible for correlation and propagation of interrupts,
exceptions, faults, traps, and abort signals to the DVMM. A GOS may be allowed, through the
VMA interface, to set up a dispatch vector table, enable or disable specific event, or change the
handler for specific events.

According to one embodiment, a GOS may be presented a typical interface paradigm
for interrupt and exception handling. In the case of an Intel-based interface, an interrupt
dispatch table (IDT) may be used to communicate between the GOS and the DVMM. In
particular, an IDT allows the distributed virtual machine monitor to dispatch events of interest
to a specific GOS executing on a specific virtual server. A GOS is permitted to change table
entries by registering a new table or by changing entries in an existing table. To preserve
isolation and security, individual vectors within the IDT may remain writeable only by the
distributed virtual machine monitor, and tables and information received from the GOS are not
directly writable. In one example, all interrupts and exceptions are processed initially by the
distributed virtual machine monitor.

As discussed above, a virtual machine architecture (VMA) may be defined that is
presented as an abstraction layer to the GOS. Any OS (e.g., Linux, Windows, Solaris, etc.)
may be ported to run on a VMA in the same manner as would be performed when porting the
OS to any other architecture (e.g., Alpha, Intel, MIPS, SPARC, etc.). According to one aspect
of the present invention, the VMA presented to the GOS may be similar to an Intel-based
architecture such as, for example, [A-32 or IA-64.

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-27-

In an example VMA architecture, non-privileged instructions may be executed natively
on an underlying hardware processor, without intervention. In instances when privileged
registers or instructions must be accessed, the distributed virtual machine monitor may
intervene. For examples, in cases where there are direct calls from the operating system, trap
code in the VMA may be configured to handle these calls. In the case of exceptions
(unexpected operations) such as device interrupts, instruction traps, page faults or access to a
privileged instruction or register may cause an exception. In one example, the distributed
virtual machine monitor may handle all exceptions, and may deliver these exceptions to the

GOS via a VMA or may be handled by the VMA.

Execution Privilege Levels

Figure 7 shows an execution architecture 700 according to one aspect of the invention.
In particular, architecture 700 includes a number of processor privilege levels at which various
processes may be executed. In particular, there is defined a user mode level 705 having a
privilege level of three (3) at which user mode programs (e.g., applications) are executed. At
this level, GOS user processes 701 assoc;iated with one or more application programs are
executed. Depending on the access type requested, user processes 701 may be capable of
accessing one or more privilege levels as discussed further below.

There may also be a supervisor mode 706 that corresponds to a privilege level one (1)
at which the GOS kernel (item 702) may be executed. In general, neither the GOS nor user
processes are provided access to the physical processor directly, except when executing non-
privileged instructions 709. In accordance with one embodiment, non-privileged instructions
are executed directly on the hardware (e.g., a physical processor 704 within a node). This is
advantageous for performance reasons, as there is less overhead processing in handling normal
operating functions that may be more efficiently processed directly by hardware. By contrast,
privileged instructions may be processed through the distributed virtual machine monitor (e.g.,
DVMM 703) prior to being serviced by any hardware. In one embodiment, only the DVMM is
permitted to run at privilege level 0 (kernel mode) on the actual hardware. Virtual server
isolation implies that the GOS cannot have uncontrolled access to any hardware features (such
as CPU control registers) nor to certain low-level data structures (such as, for example, paging
directories/tables and interrupt vectors).

In the case where the hardware is the Intel [A-32 architecture, there are four processor

privilege levels. Therefore, the GOS (e.g., Linux) may execute at a level higher than kernel

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-28-

mode (as the distributed virtual machine monitor, according to one embodiment, is only
permitted to operate in kernel mode). In one embodiment, the GOS kernel may be executed in
supervisor mode (privilege level 1) fo take advantage oI 1A-32 memory protection natrdware to
prevent applications from accessing pages meant only for the GOS kernel. The GOS kernel
may “call down” into the distributed virtual machine monitor to perform privileged operations
(that could affect other virtual servers sharing the same hardware), but the distributed virtual
machine monitor should verify that the requested operation does not compromise isolation of
virtual servers. In one embodiment of the present invention, processor privilege levels may be
implemented such that applications, the GOS and distributed virtual machine monitor are
protected from each other as they reside in separate processor privilege levels.

Although the example shown in Figure 7 has four privilege levels, it should be
appreciated that any number of privilege levels may be used. For instance, there are some
architecture types that have two processor privilege levels, and in this case, the distributed
virtual machine monitor may be configured to operate in the supervisor mode (privilege level
(or ring) 0) and the user programs and operating system may be executed at the lower privilege
level (e.g., level 1). It should be appreciated that other privilege scenarios may be used, and

the invention is not limited to any particular scenario.

Example Distributed Virtual Machine Monitor Architecture

Figure 8 shows an example of a DVMM architecture according to one embodiment of
the present invention. As discussed above, the DVMM is a collection of software that handles
the mapping of resources from the physical realm to the virtual realm. Each hardware node
(e.g., a physical processor associated with a node) executes a low-level system software that is
a part of the DVMM, a microkernel, and a collection of these instances executing on a number
of physical processors form a shared-resource cluster. As discussed above, each collection of
cooperating (and communicating) microkernels is a distributed server. There is a one-to-one
mapping of a distributed server to a distributed virtual machine monitor (DVMM). The
DVMM, according to one embodiment, is as thin a layer as possible. The DVMM may be, for
example, one or more software programs stored in a computer readable medium (e.g., memory,
disc storage, or other medium capable of being read by a computer system).

Figure 8 shows a DVMM architecture 800 according to one embodiment of the present
invention. DVMM 800 executes tasks associated with one or more instances of a virtual server

(e.g., virtual server instances 801A-801B). Each of the virtual server instances store an

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-29 -

execution state of the server. For instance, each of the virtual servers 801A-801B store one or
more virtual registers 802A-802B, respectively, that correspond to a register states within each
respective virtual server.

DVMM 800 also stores, for each of the virtual servers, virtual server states (e.g., states
803A, 803B) in the form of page tables 804, a register file 806, a virtual network interface
(VNIC) and virtual fiber channel (VFC) adapter. The DVMM also includes a packet scheduler
808 that schedules packets to be transmitted between virtual servers (e.g., via an InfiniBand
connection or other connection, or direct process-to-process communication).

I/O scheduler 809 may provide I/O services to each of the virtual servers (e.g., through
1/O requests received through the VMA). In addition, the DVMM may support its own J/O,
such as communication between nodes. Each virtual device or controller includes an address
that may be specified by a virtual server (e.g., ina VMA I/O request). /O devices is abstracted
as a virtual device to the virtual server (e.g., as a PCI or PCI-like device) such that the GOS
may access this device. Each VIO device may be described to the GOS by a fixed-format
description structure analogous to the device-independent PCI config space window.

Elements of the descriptor may include the device address, class, and/or type
information that the GOS may use to associate the device with the proper driver module. The
descriptor may also include, for example, one or more logical address space window
definitions for device-specific data structures, aﬁalogous to memory-mapped control/status
registers. The I/O scheduler 809 schedules requests received from virtual servers and
distributes them to one or more I/O controllers that interface to the actual I/O hardware. More
particularly, the DVMM I/O includes a set of associated drivers that moves the request onto a
communication network (e.g., InfiniBand) and to an I/O device for execution. I/O may be
performed to a number of devices and systems including a virtual console, CD/DVD player,
network interfaces, keyboard, etc. Various embodiments of an I/O subsystem are discussed
further below with respect to Figure 9.

CPU scheduler 810 may perform CPU scheduling functions for the DVMM. More
particularly, the CPU scheduler may be responsible for executing the one or more GOSs
executing on the distributed server. The DVMM may also include supervisor calls 811 that
include protected supervisor mode calls executed by an application through the DVMM. As
discussed above, protected mode instructions may be handled by the DVMM to ensure

isolation and security between virtual server instances.

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-30 -

Packet scheduler 808 may schedule packet communication and access to actual
network devices for both upper levels (e.g., GOS, applications) as well as network support
within DVMM 800. In particular, packet scheduler $U8 may schedule the transmission of
packets on one or more physical network interfaces, and perform a mapping between virtual
interfaces defined for each virtual server and actual network interfaces.

DVMM 800 further includes a cluster management component 812. Component 812
provides services and support to bind the discrete systems into a cluster and provides basic
services for the microkernels within a distributed server to interact with each other. These
services include cluster membership and synchronization.' Component 812 includes a
clustering subcomponent 813 that defines the protocols and procedures by which microkernels
of the distributed servers are clustered. At the distributed server level, for example, the
configuration appears as a cluster, but above the distributed server level, the configuration
appears as a non-uniform memory access, multi-processor single system.

The DVMM further includes a management agent 815. This component is responsible
for handling dynamic reconfiguration functions as well as reporting status and logging to other
entities (e.g., a management server). Management agent 815 may receive commands for
adding, deleting, and reallocating resources from virtual servers. The management agent 815
may maintain a mapping database that defines mapping of virtual resources to physical
hardware.

According to various embodiments of the invention microkernels, which form parts of
a DVMM, communicate with each other using Distributed Shared Memory (DSM) based on
paging and/or function shipping protocols (e.g., object-level). These techniques are used to
efficiently provide a universal address space for objects and their implementation methods.
With this technology, the set of instances executing on the set of physical processors
seamlessly and efficiently shares objects and/or pages. The set of microkernel instances may
also provide an illusion of a single system to the virtual server (running on DVMM), which
boots and run a single copy of a traditional operating system.

Distributed shared memory 816 is the component that implements distributed shared
memory support and provides the unified view of memory to a virtual server and in turn to the
Guest Operating System. DSM 816 performs memory mapping from virtual address spaces to
memory locations on each of the hardware nodes. The DSM also includes a memory allocator
817 that performs allocation functions among the hardware nodes. DSM 816 also includes a

coherence protocol 818 that ensures coherence in memory of the shared-memory

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-31 -

multiprocessor. The DSM may be, for example, a virtual memory subsystem used by the
DVMM and as the foundation for the Distributed Memory Manager subsystem used by virtual
servers.

DSM 816 also includes a communication subsystem that handles distributed memory
communication functions. In one example, the DMM may use RDMA techniques for
accessing distributed memory among a group of hardware nodes. This communication may
occur, for example, over a communication network including one or more network links and
switches. For instance, the cluster may be connected by a cluster interconnect layer (e.g.,
interconnect driver 822) that is responsible for providing the abstractions necessary to allow
microkernels to communicate between nodes. This layer provides the abstractions and
insulates the rest of the DVMM from any knowledge or dependencies upon specific
interconnect features.

Microkernels of the DVMM communicate, for example, over an interconnect such as
InfiniBand. Other types of interconnects (e.g., PCI-Express, GigaNet, Ethernet, etc.) may be
used. This communication provides a basic mechanism for communicating data and control
information related to a cluster. Instances of server functions performed as part of the cluster
include watchdog timers, page allocation, reallocation, and sharing, I/O virtualization and other
services. Examples of a software system described below transform a set of physical compute
servers (nodes) having a high-speed, low latency interconnect into a partitionable set of virtual
multiprocessor machines. These virtual multiprocessor machines may be any multiprocessor
memory architecture type (e.g., COMA, NUMA, UMA, etc.) configured with any amount of
memory or any virtual devices.

According to one embodiment, each microkernel instance of the DVMM executes on
every hardware node. As discussed, the DVMM may obtain information from a management
database associated with a management server (e.g., server 212). The configuration
information allows the microkernel instances of the DVMM to form the distributed server.
Each distributed server provides services and aggregated resources (e.g., memory) for
supporting the virtual servers.

DVMM 800 may include hardware layer components 820 that include storage and
network drivers 821 used to communicate with actual storage and network devices,
respectively. Communication with such devices may occur over an interconnect, allowing
virtual servers to share storage and network devices. Storage may be performed, for example,

using FibreChannel. Networking may be performed using, for example, a physical layer

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-32-

protocol such as Gigabit Ethernet. It should be appreciated that other protocols and devices
may be used, and the invention is not limited to any particular protocol or device type. Layer
s.u may also include an interconnect ariver 822 (e.g., an IntiniBand driver) to allow individual
microkernel of the DVMM running on the nodes to communicate with each other and with
other devices (e.g., [/O network). DVMM 800 may also include a hardware abstraction 823
that relates virtual hardware abstractions presented to upper layers to actual hardware devices.
This abstraction may be in the form of a mapping that relates virtual to physical devices for
I/0, networking, and other resources.

DVMM 800 may include other facilities that perform system operations such as
software timer 824 that maintains synchronization between clustered microkernel entities.
Layer 820 may also include a kernel bootstrap 825 that provides software for booting the
DVMM and virtual servers. Functions performed by kernel bootstrap 825 may include loading
configuration parameters and the DVMM system image into nodes and booting individual
virtual servers.

In another embodiment of the present invention, the DVMM 800 creates an illusion of
a Virtual cache-coherent, Non-Uniform Memory Architecture (NUMA) machine to the GOS
and its application. However, it should be appreciated that other memory architectures (e.g.,
UMA, COMA, etc.) may be used, and the invention is not limited to any particular
architecture. The Virtual NUMA (or UMA, COMA, etc.) machine is preferably not
implemented as a traditional virtual machine monitor, where a complete processor ISA is
exposed to the guest operating system, but rather is a set of data structures that abstracts the
underlying physical processors to expose a virtual processor architecture with a conceptual ISA
to the guest operating system. The GOS may be ported to the virtual machine architecture in
much the same way an operating system may be ported to any other physical processor
architecture.

A set of Virtual Processors makes up a single virtual multiprocessor system (e.g., a
Virtual NUMA machine, a Virtual COMA machine). Multiple virtual multiprocessor systems
instances may be created whose execution states are separated from one another. The
architecture may, according to one embodiment, support multiple virtual multiprocessor
systems simultaneously running on the same distributed server.

In another example architecture, the DVMM provides a distributed hardware sharing
layer via the Virtual Processor and Virtual NUMA or Virtual COMA machine. The guest
operating system is ported onto the Virtual NUMA or Virtual COMA machine. This Virtual

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-33-

NUMA or Virtual COMA machine provides access to the basic I/O, memory and processor
abstractions. A request to access or manipulate these items is handled via APIs presented by
the DVMM, and this API provides isolation between virtual servers and allows transparent

sharing of the underlying hardware.

Example System Architecture

Figure 9 is a block diagram of an example system architecture upon which a virtual
computing system in accordance with one embodiment of the present invention may be
implemented. As discussed above, a virtual computing system may be implemented using one
or more resources (e.g., nodes, storage, I/O devices, etc.) linked via an interconnect. As shown
in the example system 900 in Figure 9, a system 900 may be assembled having one or more
nodes 901A-901B coupled by a communication network (e.g., fabric 908). Nodes 901A-901B
may include one or more processors (e.g., processors 902A-902B) one or more network
interfaces (e.g., 903A-903B) through which nodes 901A-901B communicate through the
network.

As discussed above, nodes may communicate through many different types of networks
including, but not limited to InfiniBand and Gigabit Ethernet. More particularly, fabric 908
may include one or more communication systems 905A-905D through which nodes and other
system elements communicate. These communication systems may include, for example,
switches that communicate messages between attached systems or devices. In the case of a
fabric 908 that implements InfiniBand switching, interfaces of nodes may be InfiniBand host
channel adapters (HCAS) as are known in the art. Further, communication systems 905A-
905D may include one or more InfiniBand switches.

Communication systems 905A-905D may also be connected by one or more links. It
should be appreciated, however, that other communication types (e.g., Gigabit Ethernet) may
be used, and the invention is not limited to any particular communication type. Further, the
arrangement of communication systems as shown in Figure 9 is merely an example, and a
system according to one embodiment of the invention may include any number of components
connected by any number of links in any arrangement.

Node 901A may include local memory 904 which may correspond to, for example, the
node physical memory map 601 shown in Figure 6. More particularly, a portion of memory
904 may be allocated to a distributed shared memory subsystem which can be used for

supporting virtual server processes.

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-34 -

Data may be stored using one or more storage systems 913A-913B or 920, 921 and
922. These storage systems may be, for example, network attach storage (NAS) or a storage
area network (SAN) as are well-known in the art. Such storage systems may include one or
more interfaces (e.g., interface 918) that are used to communicate data between other system
elements. Storage system may include one or more components including one or more storage
devices (e.g., disks 914), one or more controllers (e.g., controllers 915, 919), one or more
processors (e.g., processor 916), memory devices (e.g., device 917), or interfaces (e.g.,
interface 918). Such storage systems may implement any number of communication types or
protocols including Fibre Channel, SCSI, Ethernet, or other communication types.

Storage systems 913 may be coupled to fabric 908 through one or more interfaces. In
the case of a fabric 908 having an InfiniBand switch architecture; such interfaces may include
one or more target channel adaptors (TCAs) as are well-known in the art. System 900 may
include one or more I/O systems 906A-906B. These I/O systems 906A-906B may include one
or more I/O modules 912 that perform one or more I/O functions on behalf of one or more
nodes (e.g., nodes 901A-901B). In one embodiment, an I/O system (e.g., system 906A)
includes a communication system (e.g., system 911) that allows communication between one
or more I/O modules and other system entities. In one embodiment, communication system
911 includes an InfiniBand switch.

Communication system 911 may be coupled to one or more communication systems
through one or more links. Communication system 911 may be coupled in turn to I/O modules
via one or more interfaces (e.g., target channel adapters in the case of InfiniBand). I/O
modules 912 may be coupled to one or more other components including a SCSI network 920,
other communication networks (e.g., network 921) such as, for example, Ethernet, a
FibreChannel device or network 922.

For instance, one or more storage systems (e.g., systems 913) or storage networks may
be coupled to a fabric though an I/O system. In particular, such systems or networks may be
coupled to an I/O module of the I/O system, such as by a port (e.g., SCSL, FibreChannel,
Ethernet, etc.) of an I/O module coupled to the systems or networks. It should be appreciated
that systems, networks or other elements may be coupled to the virtual computing system in
any manner (e.g., coupled directly to the fabric, routed through other communication devices
or I/O systems), and the invention is not limited to the number, type, or placement of

connections to the virtual computing system.

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-35-

Modules 912 may be coupled to other devices that may be used by virtual computing

systems such as a graphics output 923 that may be coupled to a video monitor, or other video

‘output 924.” Other /O modules may pertorm any number of tasks and may mnclude any number ~ =

and type of interfaces. Such I/O systems 906A-906B may support, for virtual servers of a
virtual computing system, I/O functions requested by a distributed virtual machine monitor in
support of the GOS in its applications.

As discussed above, I/O requests may be sent to I/O controllers (e.g., I/O modules 912)
over multiple communication paths within fabric 908. The I/O modules 912 service the
requests by routing the requests to virtual or actual hardware that performs the I/O request, and
returns status or other information to the distributed virtual machine monitor.

According to one embodiment, GOS I/O devices are virtualized devices. For example,
virtual consoles, virtual block devices, virtual SCSI, virtual Host Bus Adapters (HBAs) and
virtual network interface controllers (NICs) may be defined which are serviced by one or more
underlying devices. Drivers for virtual I/O devices may be multi-path in that the requests may
be sent over one or more parallel paths and serviced by one or more I/O modules. These multi-
path drivers may exist within the GOS, and may be serviced by drivers within the DVMM.
Further, these multi-path requests masl be serviced in parallel by parallel-operating DVMM
drivers which initiate parallel (multi-initiate) requests on hardware.

In one embodiment, virtual NICs may be defined for a virtual server that allow multiple
requests to be transferred from a node (e.g., node 901A) through a fabric 908 to one or more
I/O modules 912. Such communications may occur in parallel (e.g., over parallel connections
or networks) and may occur, for instance, over full duplex connections. Similarly, a virtual
host bus adapter (HBA) may be defined that can communicate with one or more storage
systems for performing storage operations. Requests may be transmitted in a multi-path
manner to multiple destinations. Once received at one or more destinations, the parallel
requests may be serviced (e.g., also in parallel). One example virtual storage architecture is
discussed below with respect to Figure 10.

System 900 may also be connected to one or more other communication networks 909
or fabrics 910, or a combination thereof. In particular, system 900 may connect to one or more
networks 909 or fabrics 910 through a network communication system 907. In one
embodiment, network communication system 907 may be switch, router or other device that
translates information from fabric 908 to outside entities such as hosts, networks, nodes or

other systems or devices.

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-36 -

Virtual Storage Adapter Architecture

Figure 10 is a block diagram of an example system architecture for a virtual storage
system according to one embodiment ot the present mvention. As discussed above, a virtual
computing system may implement a virtual storage adapter architecture wherein actual storage
interfaces are virtualized and presented to an operating system (e.g., a GOS) and its
applications. According to one embodiment of the present invention, a virtual storage adapter
may be defined that is supported by one or more physical hardware (e.g., FibreChannel (FC)
adapter (HBA), IB Fabric) and/or software (e.g., high-availability logic) resources. Because
such an adapter is virtualized, details of the underlying software and hardware may be hidden
from the operating system and its associated software applications.

More particularly, a virtual storage adapter (e.g., an HBA) may be defined that is
supported by multiple storage resources, the storage resources being capable of being accessed
over multiple data paths. According to one aspect of the present invention, the fact that there
are more than one resource (e.g., disks, paths, etc.) that are used to support the virtual adapter
may be hidden from the operating system. To accomplish this abstraction of underlying
resources, the operating system may be presented a virtualized adapter interface that can be
used to access the underlying resources transparently. Such access may be accomplished, for
example, using the I/O and multipath access methods discussed above.

As discussed, a virtual adapter abstraction may be implemented in traditional multi-
node, cluster or grid computing systems as are known in the art. Alternatively, a virtual
adapter abstraction may be implemented in single node systems (e.g., having one or more
processors) or may be implemented in a virtual computing system as discussed above. In any
case, underlying software and/or hardware resources may be hidden from the operating system
(e.g., a GOS in the case of the virtual computing system examples described above). However,
it should be appreciated that a virtual storage adapter architecture may be used with any type of
computing system, and that the invention is not limited to any particular computing
architecture type.

Figure 10 shows a particular example of storage architecture 1000 that may be used
with a virtual computing system according to various embodiments of the present invention.
More specifically, one or more nodes 1001A-1001Z supporting a virtual server (VS) may
access a virtual adapter according to one embodiment'of the invention to perform storage
operations. As discussed above, tasks executiI;g on a node may access a virtual device (e.g. a

virtual storage adapter) using a virtual interface associated with the virtual device. The

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-37-

interface may be presented by, for example, software drivers as discussed above. According
to one embodiment, these software drivers do not provide direct hardware contact, but provide
support for a particular set of devices (e.g., storage). 'Lhese drivers may include upper level
and lower level drivers as discussed above with respect to I/O functions. A Distributed Virtual
Machine Monitor (DVMM) I/O layer may receive requests for access to the virtual device
(e.g., virtual storage adapter) from lower level drivers and process the requests as necessary.
For instance, the DVMM I/O layer translates requests for access to a virtual storage adapter
and sends the translated requests to one or more I/O systems (e.g., system 1003) for
processing.

As discussed, processors of a node (e.g., processor 1005) may initiate and complete I/O
operations concurrently. Processors may also be permitted to transmit requests over multiple
paths to a destination storage device to be serviced. For instance, node 1001A may send
multiple requests from one or more interfaces 1006 through a communication network (e.g.,
fabric 1002) to an I/O system 1003 for processing. System 1003 may include one or more
interfaces and I/O processing modules (collectively 1007) for servicing I/O requests. These
1/0 requests may be storage requests directed to a storage device coupled to I/O system 1003.
For example, I/O system may serve as a gateway to a FibreChannel (1011) or other type of
storage network (1012). Parallel requests may be received at a destination device, and
serviced. Responses may also be sent over parallel paths for redundancy or performance
reasons. Further, fabric 1002 may have any number of storage entities (1013) coupled to fabric
1002, including one or more storage systems or storage networks. Such storage entities may
be directly attached to fabric 1002 or be coupled indirectly by one or more communication
devices and/or networks.

According to one embodiment of the present invention, the virtual adapter (e.g., a
virtual HBA or VHBA) may be defined for a particular virtual server (VS). The virtual adapter
is assigned a virtual identifier through which storage resources are referenced and accessed. In
one embodiment, the virtual identifier is a World Wide Node Name (WWNN) that uniquely
identifies a VHBA. For instance, a virtual HBA may defined in the virtual computing system
as “VHBA-1” or some other identifier having a WWNN address of 01-08-23-09-10-35-20-18,
for example, or other valid WWWN identifier. In one example, virtual WWNN identifiers are
provided by a software vendor providing virtualization system software. It should be
appreciated, however, that any other identifier used to identify storage may be used, and that

the invention is not limited to WWNN identifiers.

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-38 -

VHBASs having WWNN identifiers may be assigned to virtual servers (VSs), for
example, using an interface of a management program. For instance, a user or program may
present an interface through which one or more VHBAs may be assigned to a particula}‘V-S.
Because WWNN indentifiers must be globally unique within a system, the identifiers may be
administered centrally by a management server (e.g., manager 1004). In one embodiment, the
management server maintains a database 1008 of available WWNN identifiers that may be
used by the virtual computing system. These WWNN identifiers may be associated with
corresponding virtual adapters defined in the virtual computing system, and allocated to virtual
servers. Manager 1004 may communicate with one or more components of the virtual
computing system through one or more links. For instance, manager 1004 may be coupled to
fabric 1002 and may communicate using one or more communication protocols. Further,
manager 1004 may be coupled to the virtual computing system through a data communication
network 1013. More particularly, manager 1004 may be coupled to fabric 1002 through a data
communication network 1013 through I/O system 1014. It should be appreciated that manager
1004 may be coupled to the virtual communication system in any manner, and may
communicate using any protocol.

In one embodiment, a particular VHBA has only one WWNN assigned. This is
beneficial, as mappings to underlying resources may change, yet the VHBA (and its assigned
WWNN) do not change. A user (e.g., an administrator) may assign an available WWNN to the
VHBA using a management interface associated with a management server (e.g., manager
1004).

Also, within the management interface, the user may be permitted to associate storage
entities with one or more VHBAs. For instance, SCSI Target/LUNs may be associated with a
VHBA. The Target (or Target ID) represents a hardware entity attached to a SCSI FC
interconnect. Storage entities, referred to by a Logical Unit Number (LUN), may be mapped to
a VHBA which then permits the VS associated with the VHBA to access a particular LUN.
Such mapping information may be maintained, for example, in a database by the management
server. It should be appreciated that any storage element may be associated with a virtual
adapter, and that the invention is not limited to any number or particular type of storage
element or identification/addressing convention.

In support of multi-pathing to various storage entities, there may be one or more
options by which data is multi-pathed. For example, associated with each storage entity may

be path preference (e.g., path affinity) information that identifies a preferred path among a

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-39-

number of available paths. For example, if the number of outstanding I/O requests becomes
excessive, or if a path fails, an alternate path may be used. Another option may include a load
balancing feature that allows an I/O server to distribute /U among one or more gateway ports
to a storage entity. For instance, an I/O server may attempt to distribute requests (or data
traffic) equally among a number of gateway ports. Further, an I/O server having multiple
gateway ports to a particular destination entity may allow gateway port failover in the case
where a primary gateway port fails.

According to one embodiment, each of these multi-pathing features are transparent to
the GOS and its applications. That is, multi-pathing configuration and support (and drivers)
need not exist within the GOS. Yet, according to one embodiment of the present invention,
because multi-pathing is performed at lower levels, the GOS is provided the performance and
reliability benefits of multi-pathing without the necessity of exposing underlying support
structures of multi-pathing hardware and software. Such a feature is beneficial, particularly for

operating systems and applications that do not support multi-pathing.

Conclusion

Tn summary, a virtual storage adapter architecture is provided. This virtual storage
adapter architecture allows, for example, redundancy, multi-pathing features, and underlying
hardware changes without the necessity of changes in the application or operating system that
uses the virtual storage adapter architecture. Such virtual storage adapter architecture may be
used, for example, in single-node or multi-node computer systems (e.g., grid-based, cluster-
based, etc.). Further, such virtual storage adapter architecture may be used in a virtual
computing system that executes on one or more nodes.

In one such virtual computing system as discussed above that executes on one or more
nodes, a level of abstraction is created between a set of physical processors among the nodes
and a set of virtual multiprocessor partitions to form a virtualized data center. This virtualized
data center comprises a set of virtual, isolated systems separated by boundaries. Each of these
systems appears as a unique, independent virtual multiprocessor computer capable of running a
traditionai operating system and its applications. In one embodiment, the system implements
this multi-layered abstraction via a group of microkernels that are a part of a distributed virtual
machine monitor (DVMM) to form a distributed server, where each of the microkernels

communicates with one or more peer microkernel over a high-speed, low-latency interconnect.

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-40 -

Functionally, a virtual data center is provided, including the ability to take a collection
of servers and execute a collection of business applications over the compute fabric.
Processor, memory and I/O are virtualized across this 1apric, providing a single system image,
scalability and manageability. According to one embodiment, this virtualization is transparent
to the application.

Ease of programming and transparency is achieved by supporting a shared memory
programming paradigm. Both single and multi-threaded applications can be executed without
modification on top of various embodiments of the architecture.

According to one embodiment, a part of the distributed virtual machine monitor
(DVMM), a microkernel, executes on each physical node. A set of physical nodes may be
clustered to form a multi-node distributed server. Each distributed server has a unique memory
address space that spans the nodes comprising it. A cluster of microkernels form a distributed

server which exports a VMA interface. Each instance of this interface is referred to as a virtual

. SErver.

Because there is isolation between the operating system and its application from the
underlying hardware, the architecture is capable of being reconfigured. In one embodiment,
capability for dynamically reconfiguring resources is provided such that resources may be
allocated (or deallocated) transparently to the applications. In particular, capability may be
provided to perform changes in a virtual server configuration (e.g., node eviction from or
integration to a virtual processor or set of virtual processors). In another embodiment,
individual virtual processors and partitions can span physical nodes having one or more
processors. In one embodiment, physical nodes can migrate between virtual multiprocessor
systems. That is, physical nodes can migrate across distributed server boundaries.

According to another embodiment of the invention, copies of a traditional
multiprocessor operating system boot into multiple virtual servers. According to another
embodiment of the invention, virtual processors may present an interface to the traditional
operating system that looks like a pure hardware emulation or the interface may be a hybrid
software/hardware emulation interface.

It should be appreciated that the invention is not limited to each of embodiments listed
above and described herein, but rather, various embodiments of the invention may be practiced
alone or in combination with other embodiments.

Having thus described several aspects of at least one embodiment of this invention, it is

to be appreciated that various alterations, modifications and improvements will readily occur to

WO 2006/017584 PCT/US2005/027587

-41 -

those skilled in the art. Such alterations, modifications, and improvements are intended to be
part of this disclosure, and are intended to be within the spirit and scope of the invention.

Accordingly, the foregoing description 1s by way o1 examptie only.

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-4 -

CLAIMS
1. A computer comprising:
one or more storage entities, at least one ot which is capable of servicing one or more
requests for access to the one or more storage entities;
one or more physical storage adapters used to communicate the one or more requests
for access to the one or more storage entities; and
a virtual storage adapter adapted to receive the one or more requests and adapted to

forward the one or more requests to the one or more physical storage adapters.

2. The computer system according to claim 1, wherein the virtual storage adapter is

associated with a virtual server in a virtual computing system.

3. The computer system according to claim 1, wherein the computer system includes a
multi-node computer system, at least two nodes of which are adapted to access the virtual

storage adapter.

4. The computer system according to claim 1, wherein the virtual storage adapter is

identified by a globally unique identifier.

5. The computer system according to claim 4, wherein the unique identifier includes a
World Wide Node Name (WWNN) identifier.

6. The computer system according to claim 1, wherein the virtual storage adapter is a

virtual host bus adapter (HBA).

7. The computer system according to claim 1, further comprising a plurality of
communication paths coupling a processor of the computer system and at least one of the one
or more storage entities, the virtual storage adapter being capable of directing the one or more

requests over the plurality of communication paths.

8. The computer system according to claim 7, wherein at least one of the one or more
requests is translated to multiple request messages being transmitted in parallel over the

plurality of communication paths.

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-43 -

9. The computer system according to claim 7, wherein at least one of the plurality of

communication paths traverses a switched communication network.

10. The computer system according to claim 9, wherein the switched communication

network includes an InfiniBand switched fabric.

11. The computer system according to claim 9, wherein the switched communication

network includes a packet-based network.

12. The computer system according to claim 1, further comprising a virtualization layer

that maps the virtual storage adapter to the one or more physical storage adapters.

13. The computer system according to claim 12, further comprising a plurality of
processors and wherein the virtualization layer is adapted to define one or more virtual servers,

at least one of which presents a single computer system interface to an operating system.

14. The computer system according to claim 13, wherein the single computer system
interface defines a plurality of instructions, and wherein at least one of the plurality of
instructions is directly executed on at least one of the plurality of processors, and at least one

other of the plurality of instructions is handled by the virtualization layer.

15. The computer system according to claim 1, further comprising a plurality of processors,
wherein each of the plurality of processors executes a respective instance of a microkernel
program, and wherein each of the respective instances of the microkernel program are adapted

to communication to cooperatively share access to storage via the virtual storage adapter.

16. The computer system according to claim 13, wherein the virtual storage adapter is

associated with the one or more virtual servers.

17. The computer system according to claim 4, further comprising a manager adapted to

assign the unique identifier to the virtual storage adapter.

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-44 -

18. The computer system according to claim 16, wherein a change in at least one of the one

or more physical storage adapters is transparent to the operating system.

19. The computer system according to claim 16, further comprising configuration
information identifying a storage configuration, and wherein a change in at Jeast one of the one

or more physical storage adapters is transparent to the operating system.

20. The computer system according to claim 8, further comprising at least one I/O server,

wherein the parallel access requests are serviced in parallel by the I/O server.

21. The computer system according to claim 8, wherein the at least one of the one or more
storage entities receives the multiple request messages and services the multiple request

messages in parallel.

22. The computer system according to claim 1, wherein the virtual storage adapter is

associated with a node in a multi-node computing system.

23. The computer system according to claim 22, wherein the multi-node computing system

is a grid-based computing system.

24. The computer system according to claim 22, wherein the multi-node computing system

is a cluster-based computing system.

25. The computer system according to claim 1, wherein the virtual storage adapter is

associated with a single computer system.

26. The computer system according to claim 22, wherein the multi-node computing system
supports a virtual computing system that executes on the multi-node computing system, and

wherein the virtual computing system is adapted to access the virtual storage adapter.

27. The computer system according to claim 25, wherein the single computer system
supports a virtual computing system that executes on the single computer system, and wherein

the virtual computing system is adapted to access the virtual storage adapter.

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-45-

28. The computer system according to claim 22, wherein the virtual storage adapter is

identified by a globally unique identifier.

29. The computer system according to claim 28, wherein the globally unique identifier
includes a World Wide Node Name (WWNN) identifier.

30. The computer system according to claim 25, wherein the virtual storage adapter is

identified by a globally unique identifier.

31. The computer system according to claim 30, wherein the globally unique identifier
includes a World Wide Node Name (WWNN) identifier.

32. A computer-implemented method in a computer system having one or more storage
entities, at least one of which is capable of servicing one or more requests for access to the one
or more storage entities, and having one or more physical storage adapters used to
communicate the one or more requests for access to the one or more storage entities, the
method comprising an act of:
providing for a virtual storage adapter, the virtual adapter adapted to perform acts of:
receiving the one or more requests; and
forwarding the one or more requests to the one or more physical storage

adapters.

33. The method according to claim 32, further comprising an act of associating the virtual

storage adapter with a virtual server in a virtual computing system.

34, The method according to claim 32, wherein the computer system includes a multi-node
computer system, and wherein at least two nodes of the computer system each perform an act

of accessing the virtual storage adapter.

35. The method according to claim 32, further comprising an act of identifying the virtual
storage adapter by a globally unique identifier.

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

- 46 -

36. The method according to claim 35, wherein the act of identifying the virtual storage
adapter includes an act of identifying the virtual storage adapter by a World Wide Node Name
(WWNN) identifier.

37. The method according to claim 32, wherein the act of providing for a virtual storage

adapter includes an act of providing a virtual host bus adapter (HBA).

38. The method according to claim 32, wherein the computer system further comprises a
plurality of communication paths coupling a processor of the computer system and at least one
of the one or more storage entities, and wherein the method further comprises an act of

directing, by the virtual storage adapter, the request over the plurality of communication paths.

39. The method according to claim 32, wherein the computer system further comprises a
plurality of communication paths coupling a processor of the computer system and at least one
of the one or more storage entities, and wherein the method further comprising acts of
translating at least one of the one or more requests to multiple request messages and
transmitting the multiple request messages in parallel over the plurality of communication

paths.

40. The method according to claim 38, wherein at least one of the plurality of

communication paths traverses a switched communication network.

41. The method according to claim 40, wherein the switched communication network

includes an InfiniBand switched fabric.

42. The method according to claim 40, wherein the switched communication network

includes a packet-based network.

43. The method according to claim 32, further comprising an act of mapping the virtual

storage adapter to the one or more physical storage adapters.

44. The method according to claim 43, wherein the act of mapping is performed in a

virtualization layer of the computer system.

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

-47 -

45. The method according to claim 44, wherein the computer system further comprises a
plurality of processors, and wherein the method further comprises an act of defining one or
more virtual servers, at least one of which presents a single computer system interface to an

operating system.

46. The method according to claim 44, wherein the computer system further comprises a
plurality of processors, and wherein the method further comprises an act of defining one or
more virtual servers, at least one of which presents a single computer system interface to an

operating system.

47. The method according to claim 45, wherein the act of defining is performed by the

virtualization layer.

48. The method according to claim 46, wherein the act of defining is performed by the

virtualization layer.

49. The method according to claim 46, wherein the single computer system interface
defines a plurality of instructions, and wherein the method further comprises an act of
executing at least one of the plurality of instructions directly on at least one of the plurality of
processors, and handling, by the virtualization layer, at least one other of the plurality of

instructions.

50. The method according to claim 32, wherein the computer system comprises a plurality
of processors, and wherein each of the plurality of processors performs an act of executing a

respective instance of a microkernel program, and wherein each of the respective instances of
the microkernel program communicate to cooperatively share access to storage via the virtual

storage adapter.

51. The method according to claim 46, further comprising an act of associating the virtual

storage adapter with the one or more virtual servers.

10

15

20

25

30

WO 2006/017584 PCT/US2005/027587

- 48 -

52. The method according to claim 35, wherein the computer system further comprises a
manager, and wherein the method further comprises an act of assigning, by the manager, the

unique identifier to the virtual sforage adapter.

53. The method according to claim 45, wherein a change in at least one of the one or more

physical storage adapters is transparent to the operating system.

54. The method according to claim 45, further comprising an act of maintaining
configuration information identifying a storage configuration, and wherein a change in at least

one of the one or more physical storage adapters is transparent to the storage configuration.

55. The method according to claim 39, wherein the computer system further comprises at
least one I/O server, wherein the parallel access request messages are serviced in parallel by

the I/O server.

56. The method according to claim 39, further comprising acts of receiving, by the at least
one of the one or more storage entities, the multiple request messages, and servicing the

multiple request messages in parallel.

57. The method according to claim 32, further comprising an act of associating the virtual

storage adapter with a node in a multi-node computing system.

58. The method according to claim 57, wherein the multi-node computing system is a grid-

based computing system.

59. The method according to claim 57, wherein the multi-node computing system is a

cluster-based computing system.

60. The method according to claim 32, further comprising an act of associating the virtual

storage adapter with a single computer system.

61. The method according to claim 57, wherein the multi-node computing system supports

a virtual computing system that executes on the multi-node computing system, and wherein the

10

15

20

WO 2006/017584

PCT/US2005/027587

-49 .

method further comprises an act of accessing, by the virtual computing system, the virtual

storage adapter.

62. The method according to claim 60, wherein the single computer system supports a
virtual computing system that executes on the single computer system, and wherein the method
further comprises an act of accessing, by the virtual computing system, the virtual storage

adapter.

63. The method according to claim 57, further comprising an act of identifying the virtual
storage adapter by a globally unique identifier.

64. The method according to claim 63, wherein the act of identifying the virtual storage
adapter includes an act of identifying the virtual storage adapter by a World Wide Node Name
(WWNN) identifier.

65. The method according to claim 60, further comprising an act of identifying the virtual
storage adapter by a globally unique identifier.

66. The method according to claim 65, wherein the globally unique identifier includes a
World Wide Node Name (WWNN) identifier.

WO 2006/017584 PCT/US2005/027587

1/10
System
100 \
/101
oo e e e S e 1
H System :
1 I
! ! 102
E Application Layer /T’
| i
i Operating System /3’”703
: Layer |
g i
' | 104
! Virtualization Layer L
i i
: :
3 1
! Hardware Layer T 105
; i
1 1
B i ! Network
l 106
|
/ \
e 107A /1073 /1070
System System System

FIG. 1

B [B v
SEOTIFIED

PCT/US2005/027587

WO 2006/017584

[
N Q\k wayshs waysAs wayshg &
oo’ sor” vZoL %01 Am@
| 1 %omiaN @J
1 | %
< ~N
e
8sDpqDIR(Q "/ . { IOM}2
JusWobDUDH . . \ ‘ / /x N
clz— CWIZ |ees aoiz 201z a0iz voIZ
opoN opoN 9poN opoN apoN
JobBouppyy —
¥0Z 9/DMPJDH
= /N& — — — — —
Ny 602 ... 0602 260z 860z v60Z
N [OUISNOIOIN [9UISNOIOIN [oUIBNOJOIN [ouJox0JOIN [OUIONOJOIN
0z JOUUOW SUIYODW [DNIAA PBINGLISIQ 102
£02 vﬂco«mxw‘
JaAJes JoAIBS JoAISS
80— |onJIA 80— |onyIA v80Z—1 |pnJIA
20z
J18ko wia)sAs waysAs wayshs
sddn 9£02— Buposedo | gzoz—{ 6uLIed0 | yz0z—1 Ouiapsedo
002— 2902— uonoayddy | oonr uoj3poy|ddy v90Z— uonoolddy
WwolsAs J

RBECTIFIED SHEET (RULE 91)
ISAVEP

PCT/US2005/027587

WO 2006/017584

jod1sAyd

e e e e - — - o fmt W S MY G 4 A e e SN WS G W G S N S N S M e s G oY S G R SN G e e S S S S W M e e e S e =S =

IDAYIA

- —_——— —— - —— — - — 0t W we Gt M WS e Y . aa

—— . — - — —— M P G T WP S SUe me om 4w ey My -

——— foh G G T S . ——— i v . S (o - - " ey O W A S

——— - - - > v w—— - Y~

RECTIFIED SHEET (RULE g1)
ISA/EP

WO 2006/017584 PCT/US2005/027587

N
&
N
5

| RS |

K AN

FIG. 4

RECTIFIED SHEET (RULE 91)
ISA/EP

WO 2006/017584

PCT/US2005/027587
5/10
VSi
Vs2
VS3
VsS4
Operating
System
Hardware
lP4' I
PO BN cqsoger pmpmnpneymagsqave pympdUUIGI PINPMEEEY EUSPII gy gd_.e...z.. _________________
7 7 Distributed
Virtual
1 | Thread1| IThrTadﬂ IThre_IodBI IThread{l Mochine
VS4 Process—Node2 Monitor

VS4 Process—Nodel

I Thread1j] Threadzl
l

VS3 Process—Nodel

l Thread1 l

' VS2 Process—Nodel

VS1 Process—Nodel

VS3 Process—Node2

VS2 Process—Node2

| Thread1]

VS1 Process—Node2 |

FIG. 5 &

RECTIFIED SHEET (RULE g1)

ISA/EP

PCT/US2005/027587

WO 2006/017584

6/10

9 Ol

|ouJeN " o/1 yopou
a8
o04d |u| : NG gepou
d
d puAo
Zapou
O e
0 | [ousay
o) |apou
~ | °
[-
§09 »09 £09
.A_%._ﬂ_m>§ Liowap Kiowsi
1021607 psinquysiag
§s300.d Jonssg JoAleg
IONJIA paynquysig

LA

na

PYAC

AN

[
209
AJows |y
IONYJIA
WINAQ

\

o/

Ad

o/l

Ad

0

{
109
Aiowasp
joo1sAud
3pON

RECTIFIED SHEET (RULE 91}

E

IS

PCT/US2005/027587

WO 2006/017584

7/10

£ 9l

JOoSsad04d [0oi1sAyd

0L —1 o7 3
T 80s
suoi}onsIsu
vom“vo__n_._n__ 9JDMPJOH B
502 - 707 0 [8A87 Ald
JOJIUOJ SUIYODW [DNYIIA PayNQIRsIQ suonRoNIsy| . ©PpoN
coL— . pabpsajialid—UoON [puta}
...... 0 YV VP
904 .
joudsy SO Spon
202 , Josiaiadng
... T e et Ad
) os g0L
598899044 49S() SO9 oporasn
({074

S— 00,

24N308}IYoIY

RECTIFIED SHEET (RULE ¢1)
ISAVEP

PCT/US2005/027587

WO 2006/017584

8/10

AECTIFIED SHEET (RULE 91)
ISA/EP |

s,
. .
g old Y,
A
N
deAlQ ¢
dosysyoog Jewy - uoj3oD4}SqY et iy 5 8P
[ouJey 2.0M}J0S 8DMPJDH
< SIOAIG NIOM}ON
N sze 28 Nezo Pup 8b0Jo}s [t428
, _1g 08 608
v; jusby 4 VA VA
EWW wn:w JUsWEBDUDHy %) Jo|npayos | [Jeinpayos | [Jeinpayss
9 Slg— Josiadadng Ndo o/1 . 1900d [~ 008
6181 10003044 : .
90UsJ4o40) . efld 708 JF] ,
e ALY OdA | | eysibe Soy [T~
81811 Mioyoooyy : i O isibey s08
KJowap n\ Bupeisniy sa{qo| G08 CEIC
218 »d £lg " QINA abog JINA 8bod T r~#08
juswabouDby. oIS - S 910}S -
nSa 38N > A d3d 10}S -~ SA ¥3d -
gc08 — ~
9ig cle sJosibay s19)s168Yy veos
4—1 jomuy
o0@ dcoe [ONUIA PRUIA - vZ02
JOHUOW SUIYoDJ . :
IoN}IA peynqisIq _..wbw_m _..wh%
8108 : . S~ vi08

PCT/US2005/027587

WO 2006/017584

. 7
6 9l V26 536 226 %6 006 &_\. A,
0%pIA soildoiy D4 . OMOMeN [SOS /7
AN N A Z gw\v
= AN { 7 Vi Y
o/l o/t| {o/1] |o/i o/1 o/i| |o/1} |0/t |0/l 616\ &m
vee AL ey
Wi wr| [[wr| | [a] [[Mwwwmmm L&
B ik D WU SR DNe===be_ : 4130
) " ~ NSO \,,l\\ —ag
wajshs / WoysAs \ wayshs / weysks S N
o/ ! | uoppouUNWWOY \ o/ ! | uopybojunwiwo) /, TR g-d
. \ .
.“ < S Vi S N
~ \\ 5 ! \ s
mmcm\ “ //{\ Y906 / dad \,\ woeisAs 375 ()
] g ebo.ols =
_ we}sAs waisAs . 3
o 1 asos —1 Uolipdlunuwiwioy uoI}DJJUNWILIOY ITI -
N RN N 510
? gle=—" UOHDOUNLILLIOY eﬁom// 2608 | A9 o
$)9119D, 13091 |
(spHaps MomBN [T waysks - wayshg ; 416 Eivlg®
“ UOI}ODIUNUILLCY uoppIIURWIWOY | |/ Jossedold MGl
606 \._ oMdod 8506 — / ——
(s)romaN \lﬂ gl G§I6 ¥i6
806 /
velé
oos _— [][y]
waysAs - 8106 —
9pON gcoe6

RECTIFIED SHEET (RULE 91)

ISA/EP

PCT/US2005/027587

10/10

WO 2006/017584

ISA/EP

abouols 04
zio—" H H/:S g QN Q\\M
o/ £l01 <
o/ o/ \N\
ot 200! ANWV
) |weyshs| ju o/!
o/l
S104
£00! 0l | weyshs
o/1
\\ / 6004
vi0} /
(s4omyeN
'SWa3sks) o1Iq0 4 ommmoom__w%«o £89.4ppY |153dopy
mm:zcm : [ONIA | [ONIIA
SEois 1960UDI /22

/32
WS&

w3

L B 4

§00} —
vi00!

9poN apoN

Zi00l—

RECTIFIED SHEET (RULE 91)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

