(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number WO 2015/103620 A1

(43) International Publication Date 9 July 2015 (09.07.2015)

(51) International Patent Classification: *A41H 1/02* (2006.01)

(21) International Application Number:

PCT/US2015/010343

(22) International Filing Date:

6 January 2015 (06.01.2015)

(25) Filing Language:

English

(26) Publication Language:

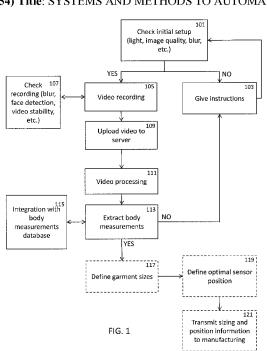
English

(30) Priority Data:

61/924,086 6 January 2014 (06.01.2014)

US

- (72) Inventors; and
- (71) Applicants: ALIVERTI, Andrea [IT/IT]; Como (IT). LONGINOTTI-BUITONI, Gianluigi [PA/PA]; Calle Ira, Parque Lefevre, PH Golf Tower, No. 2 (PA).
- (74) Agents: SHOOP, Richard D. et al.; SHAY GLENN LLP, 2755 Campus Drive, Suite 210, San Mateo, CA 94403 (US).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,


BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

(54) Title: SYSTEMS AND METHODS TO AUTOMATICALLY DETERMINE GARMENT FIT

(57) Abstract: Systems and methods for automatically determining of garment sizing (e.g., fit) using a video. The method may perform non-contact estimations of garment fit from visual (e.g., video) input by receiving an video of the subject's head and face and profile and determining a scaling factor from the subject's intraocular spacing and using this scaling factor when analyzing images of other body regions to determine garment sizing.

SYSTEMS AND METHODS TO AUTOMATICALLY DETERMINE GARMENT FIT

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This patent application claiming the benefit of priority to U.S. provisional patent application no. 61/924,086, titled "SYSTEMS AND METHODS TO DETERMINE GARMENT FIT", and filed on January 6, 2014, which is herein incorporated by reference in its entirety.

5

20

25

30

INCORPORATION BY REFERENCE

[0002] All publications and patent applications mentioned in this specification are herein incorporated by reference in their entirety to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

FIELD

[0003] The present invention, in some embodiments thereof, relates to methods and apparatuses (e.g., systems) for determining a subject's measurements (e.g., garment "fit") using non-contact techniques by examining images of the subject. These methods typically generate anthropometric measurements of the subject that may be useful for many purposes, including but not limited to assisting in fitting garments or other wearable devices.

[0004] Thus, the invention(s) described herein, in some embodiments thereof, may relate to communication, commerce (including e-commerce), garments, and more particularly to measuring an item or person using an image capturing device.

BACKGROUND

[0005] There are many instances in which it would be helpful to measure a subject's body remotely, or via non-contact means. In one (non-limiting) example, it would be beneficial to determine a subject's measurements (and therefore garment size(s)) when shopping online, or in other situation where it is not practical or desired to take conventional measurements. It is highly desirable to determine a garment (e.g., shirt, shorts, etc.) size which fits a subject well, which can be difficult when relying on the subject measuring themselves, guessing or requiring manual assistance.

- [0006] Although techniques for determining a subject's measurements remotely have been proposed by others, such as, for example, U.S. patent application 2013/0179288 to Moses et al., such systems and methods are not accurate or (as in the case with U.S. 2013/0179288), require an external reference object to define a scale and to correct distortions in the image acquired by the webcam to determine the subject's measurements. However, external reference items are often inconvenient or not available, and may not be properly positioned or selected by the subject.
- 35 [0007] Described here are apparatuses (e.g., systems and devices, including computer implemented apparatuses) and methods that address many of these issues. In particular, described herein are apparatuses and methods to evaluate a subject's size on the basis of anthropometric imaging that can be easily performed by any user with a PC/smartphone equipped with a camera/webcam. These apparatuses and methods may automatically scale and measure the subject, and may thereby determine the subject's sizing (e.g., apparel sizes). The apparatuses and methods described herein do not require any external reference object, but may instead uses one or more anthropometric parameters, such as interocular distance (IOD), that can be determined automatically. The inter-

subject variability of IOD is very low and therefore should introduce an error (<5%) that is acceptable for the purpose.

SUMMARY OF THE DISCLOSURE

In general, described herein are methods and apparatuses for automatically determining a subject's measurements using one or more images of the subject, where at least one image includes the subject's eyes so that an interocular distance can be determined. In any of the apparatuses (e.g., systems) and methods described, the interocular distance can be used to scale the image(s) so that measurements from the images can provide calibrated (scaled) measurements of the patient's body. These calibrated (scaled) measurements may then be used for any appropriate purpose, including estimating or otherwise determining a subject's garment size(s). Other purposes may include biometric (e.g., identity confirmation, etc.) and/or medical monitoring or identification.

[0009] In general, interocular distance may refer to the distance between a subject's eyes, typically measured face-on (e.g., in a frontal image). Interocular distance (IOD) may be interpupillary distance (IPD). Interpupillary distance (IPD) may refer to the distance between the centers of the pupils of the two eyes, and may help determine the stereo separation of the two images which are combined in the brain to produce stereo perception. Surprisingly, the inter-subject variability of IOD is very low and therefore should introduce an error (<5%) that is acceptable for the scaling/normalizing purposes described herein.

15

20

25

30

35

40

[00010] Although a single average (mean) IOD may be used to calibrate as described herein, in some variations the apparatuses or methods may select the appropriate mean IOD based on other factors, including age, race, sex, or the like. In general, any appropriate estimate for mean IPD (IOD) may be used. For example, mean IPD has been quoted in the stereoscopic literature as being from 58 mm to 70 mm, and is known to vary with respect to age, gender and race. According to some literature values (e.g., Dodgson, N. A. (2004). Variation and extrema of human interpupillary distance. *Proceedings of SPIE: Stereoscopic Displays and Virtual Reality Systems XI*, Vol. 5291, pp. 36–46), mean adult IPD is around 63 mm (>17 years old); by gender, the mean is 64.67 mm for men and 62.31 mm for women.

[00011] Thus, for example, described herein are methods of automatically determining measurements (e.g., garment sizes) for a subject using a computing device having a camera, the method comprising: determine the subject's interocular distance from a frontal image of the subject; determine a scaling factor from the subject's interocular distance; determine measurements for the subject's body from the frontal image using the scaling factor; and provide an estimate of the subject's body measurements. These body measurement estimates may be used to determine garment size(s); thus the method may also include providing estimates of garment sizes using the measurements.

[00012] Any of the methods described herein may be methods of automatically determining garment sizing for a subject using a computing device having a camera, the method comprising: receiving a frontal image of the subject including the subject's eyes; determining a scaling factor from the subject's interocular distance; scaling the frontal image using the scaling factor; determining measurements of the subject's body from the scaled frontal image; and providing an estimate of the subject's garment size using the scaling factor and subject's measurements.

[00013] Any of the methods described herein may use more than one image of the subject. In general, at least one image (a first image) shows the subject's body including at least the eyes and one other body part (e.g., the head), from which IOD may be determined to determine a scaling factor. Dimensions (measurements) of the other body part (e.g., head) may then be calculated from the first image and used to scale any other (e.g., second, third,

etc.) images that include at least the one other body part, by using the calculated dimensions of the (scaled) other body part to scale the other images. The first image may generally be a frontal image (or at least the front of the face) so that the IOD can be estimated. The additional images, e.g., second image, typically show other angles or views of the subject's body, including the sagittal (side), back, etc.

- 5 [00014] For example, described herein are methods of automatically determining garment sizing for a subject using a computing device having a camera; any of these methods may include: receiving a frontal image of the subject including the subject's eyes and a first body part; determining a scaling factor from the subject's interocular distance; receiving a second image of the subject including the subject's first body part, wherein the second image is taken from a perspective different than the first image; scaling the frontal image including the first body part using the scaling factor; scaling the second image using a dimension of the scaled first body part; determining measurements of the subject's body from the scaled second and frontal images; and providing an estimate of the subject's garment size using the measurements.
 - [00015] Any or all of the methods described herein (including some or all of these steps) may be performed by a computer processor, e.g., microprocessor. In particular, these methods may be performed by software, firmware, hardware, or some combination thereof. Any of these methods may be performed, for example, as part of an executable (non-transient) program, or "application" that may configure the processor of computer, including particularly a mobile telecommunications device such as a smartphone, tablet (e.g., iPhoneTM) or the like.

15

20

25

35

40

- [00016] Any of these methods may also include the step of taking the one or more (including the frontal) image of the subject. The method may automatically recognize the subject's eyes. Determining the scaling factor may comprise determining the distance between the centers of the subject's pupils, the distance between a "center" of the eyes, or the like.
- [00017] Any of these methods may also include the step of receiving one or more of: a subject's age, gender, and race; as mentioned above, these parameters may further refine the reference IOD used to normalize the image(s). For example, determining the scaling factor may comprises using the subject's interocular distance (IOD) and one or more of the subject's age, gender, and race, e.g., by selecting a reference IOD based on one or more of the subject's age, race and gender (sex).
- [00018] Scaling of the second image may comprise using the scaling factor to determine a size of the first body part from the frontal image and scaling the first body part in the second image using the size of the first body part from the frontal image.
- 30 **[00019]** Also described herein are non-transitory computer-readable storage medium storing a set of instructions capable of being executed by a computing device, that when executed by the computing device causes the computing device to determine a subject's body measurements from one or more images of the subject using the IOD to scale the images.
 - [00020] For example a non-transitory computer-readable storage medium storing a set of instructions capable of being executed by a computing device, that when executed by the computing device causes the computing device to determine a subject's interocular distance from a frontal image of a subject that includes the subject's eyes; determine a scaling factor from the subject's interocular distance; determine measurements of the subject's body from the frontal image using the scaling factor; and provide an estimate of the subject's garment size using the measurements. As mentioned, the computing device may be a smartphone. The set of instructions, when executed by the computing device, may further cause the computing device to take a frontal image of the subject and/or additional images of the subject, and/or guide an operator (e.g., the subject) in taking the appropriate images.

[00021] The set of instructions, when executed by the computing device, may further cause the computing device to automatically recognize the subject's eyes. The set of instructions, when executed by the computing device, may further cause the computing device to determine the scaling factor using the subject's interocular distance and one or more of the subject's age, gender, and race.

- In some variations, a non-transitory computer-readable storage medium storing a set of instructions capable of being executed by a computing device, that when executed by the computing device causes the computing device to: determine a subject's interocular distance from a frontal image of a subject that includes the subject's eyes; determine a scaling factor from the subject's interocular distance; determine a scaled dimension of a first body part from the frontal image of the subject and the scaling factor; scale a second image of the subject using the scaled dimension of the first body part; determine measurements of the subject's body from the frontal image using the scaling factor and the scaled second image; and provide an estimate of the subject's garment size using the measurements.
 - [00023] For example, described herein are methods of automatically determining garment sizing for a subject from a video of the subject, the methods comprising: determining the subject's interocular distance from a frontal image of the subject in the video; determining a scaling factor from the subject's interocular distance; using the scaling factor to determine measurements for the subject's body from a plurality of images of the subject's body extracted from the video; and providing an estimate of the subject's measurements appropriate for garment sizing.

15

20

25

- [00024] Any of these method may include: receiving a video of the subject, wherein the video includes at least one frontal image of the subject including the subject's eyes, frontal images of a portion of the subject's body to be fitted, and side images of the subject's head and portion of the subject's body to be fitted; determining a scaling factor from the subject's interocular distance; using the scaling factor to scale the images of the subject's body; determining measurements of the subject's body from the scaled images; and providing an estimate of a garment size using the subject's measurements.
- [00025] For example, a method of automatically determining garment sizing for a subject from a video of the subject may include: receiving a video of the subject, wherein the video includes at least one frontal image of the subject including the subject's eyes, and a plurality of images of the portion of the subject's body to be fitted, including frontal and side images; determining a scaling factor from the subject's interocular distance to convert image space measurements to distance measurements; measuring the portion of the subject's body to be fitted from the video; scaling the measurements using the scaling factor; and providing an estimate of the subject's measurements appropriate for garment sizing using the measurements of the portion of the body to be fitted.
 - [00026] Any of these methods may include automatically recognizing the subject's eyes. Determining the scaling factor may include determining the distance between the centers of the subject's pupils. In some variations the pupillary size (distance) may also or alternatively be used.
- [00027] Any of the methods described herein may also include asking and/or receiving one or more of: a subject's age, gender, and race; further, one or more of age, gender and race may be used to estimate the scaling factor based on interpupilary distance (interocular distance) by selecting a value for the subject's actual interpupilary distance based on published values linked values within an age, gender and/or race matched group. For example, determining the scaling factor may generally comprise using the subject's interocular distance and one or more of the subject's age, gender, and race.

[00028] In any of the methods described herein, the video may comprise a continuous video scanning the subject's body including frontal and sagittal regions. As used herein a continuous video means a video that is taken without interruption, so that each frame is separated from each other by a predetermined time unit.

[00029] Providing an estimate of the subject's measurements appropriate for garment sizing may include providing measurements for one or more of: shoulder length, arm length, arm circumference, neck circumference, upper torso circumference, lower torso circumference, wrist circumference, waist circumference, hip circumference, inseam, and thigh measurement, calve measurement, etc.

5

10

15

20

35

40

[00030] Any of the methods described herein may also include providing a garment adapted to fit the subject's estimated measurements. The garment may be a stretch fabric (e.g., compression fabric) garment. In some variations, the garment may include one or more electrical elements, such as sensors and other chips, wires, or the like. Thus, any of these methods may also include determining a location for one or more biosensors to be integrated into the garment using the subject's measurements. Sensors may include electrodes, which may be specifically positioned over a subject's muscles (e.g., pectoral, bicep, etc.) for EMG measurements, and/or over the subject's heart in specific (e.g., 12-lead ECG) positions, and/or over the subject's chest (e.g., respiration sensors).

[00031] Thus, also described herein are methods of automatically determining garment sizing and positions for one or more biosensors on the garment from a video of a subject, the method comprising: determining the subject's interocular distance from a frontal image of the subject in the video; determining a scaling factor from the subject's interocular distance; using the scaling factor and a plurality of images of the subject's torso from the video taken at different angles to determine measurements for the subject's torso; and providing measurements for a compression garment to be worn by the subject using the measurements of the subject's torso, and indicating the locations for one or more biosensor to be integrated into the compression garment.

[00032] Thus, providing the measurements may comprise indicating the locations of a plurality of ECG electrodes to be integrated into the compression garment. In some variations, providing the measurements comprises indicating the locations of a plurality of respiration sensors to be integrated into the compression garment.

25 [00033] Also described herein are apparatuses for performing any of the methods described herein. For example, an apparatus may include software, hardware or firmware configured to control a device (e.g., a hand-held device such as a smartphone, tablet, laptop or the like) to perform any of the functions described herein. In some variations, a non-transitory computer-readable storage medium storing a set of instructions capable of being executed by a computing device, that when executed by the computing device causes the computing device to:
30 determine the subject's interocular distance from a frontal image of a subject in a video; determine a scaling factor from the subject's interocular distance; use the scaling factor and a plurality of images of the subject's body extracted from the video to determine measurements for the subject's body; and provide an estimate of the subject's measurements appropriate for garment sizing.

[00034] The set of instructions, when executed by a computing device, may cause the computing device to provide garment sizing information for a compression garment having one or more biosensors integrated therein. For example, the biosensor may comprise a plurality of ECG electrodes, and/or a plurality of respiration sensors.

[00035] The set of instructions, when executed by the computing device, may further cause the computing device to automatically recognize the subject's eyes, and/or determine the scaling factor using the subject's interocular distance and one or more of the subject's age, gender, and race, as discussed above. The set of instructions may further cause the computing device to use the scaling factor and a plurality of frontal and sagittal images from the video of a portion of the subject's body to determine measurements for the subject's body.

[00036] Also described herein are non-transitory computer-readable storage medium storing a set of instructions capable of being executed by a computing device, that when executed by the computing device causes the computing device to: determine the subject's interocular distance from a frontal image of a subject in a continuous video of the subject's head and body including at frontal and sagittal views; determine a scaling factor from the subject's interocular distance; use the scaling factor and a plurality of images of the subject's body extracted from the video to determine measurements for the subject's body; and provide an estimate of the subject's measurements appropriate for garment sizing of a compression garment including a biosensor sensor.

5

10

25

[00037] Any of the apparatuses or methods described herein may be configured to automatically (e.g., without additional human intervention) transmit the measurements determined directly to a fabrication device for manufacture of the garment, along with identifying information (e.g., name address, etc. for delivery). For example, a fabrication device may include a fabric cutter (e.g., a laser machine that will cut the fabric), a robotic device (robot) that may position the components, and particularly electronic components (e.g., sensors, wires, pcb, etc.), or a 3D printer that will produce the garment. In some variations the measurements may be encoded as manufacturing-device readable instructions for manufacture.

[00038] In addition, any of the methods described herein may including steps of taking the video and/or guiding the user to take the video. For example, as described in greater detail herein, a method may include a step of instructing the subject how to position the camera for taking the video. The methods and apparatuses may also include reviewing (after the video is taken or while it is taken) the video to confirm that there are sufficient views to take accurate measurements.

20 [00039] Any of the steps described herein may be performed remotely, e.g., by a remote server. For example, any of the steps may be performed by a remote server that analyzes the video. Because the analysis and calculation of the scaling factor, as well as the steps for determining measurements are processor-intensive, and my therefore require processing time and power that exceeds currently available mobile devices (e.g., smartphones), these steps may be performed remotely or in a distributed manner.

BRIEF DESCRIPTION OF THE DRAWINGS

[00040] FIG. 1 is a schematic overview of a method of determining a sizing for garments, and particularly garments including one or more biosensors.

[00041] FIG. 2 is a schematic of one variation of a method for determining a subject's measurements using a frontal image to determine interocular distance (IOD).

[00042] FIGS. 3A and 3B illustrate a first variation of a compression garments including biosensors that may be automatically fitted using any of the methods and apparatuses described herein. FIG. 3A shows a front view of a garment including a plurality of ECG sensors and FIG. 3B shows a back view of the same garment. FIGS. 3C and 3D show front and back views, respectively, of another variation of a garment including a plurality of respiration sensors that may be automatically fitted using any of the methods and apparatuses described herein.

DETAILED DESCRIPTION

30 [00043] Described herein are apparatuses and methods for non-contact (and remote) measurements of a subject's body that are automatically and scaled without the necessity of an external (non-intrinsic) reference. Specifically, described herein are apparatuses, including methods and devices, that use interocular distance to

automatically scale one or more images to measure the dimensions of a subject's body to provide sizing information for garments (e.g., clothing).

[00044] For example, described herein are method and apparatuses (including systems and devices) to calculate precise body measurements of a potential customer in order to ensure best possible fit of apparel components (e.g., shirts, shorts, thighs, gloves, socks, hats, balaclavas, etc.) or the optimal location on the subject's body for a device and/or garment (e.g., a collar or other component). In particular, described herein are methods of automatically determining body measurements in order to provide a fitted garment (and particularly a fitted compression garment including one or more electronic biosensors) to a subject.

5

10

30

35

40

[00045] In general, these methods may use a video of the user that incudes images of the users head (including the eyes) and at least the portion of the body onto which the garment will be worn (e.g., from the waist to the neck for shirts, from the waist down for pants, etc.). The video may be taken as a single (continuous) video of the subject, including the front views, at least one side, and optionally the back (e.g., in a mirror or directly). The video may be taken by the user herself/himself, or it may be taken by a third party. The video may be taken, for example, using a smartphone.

[00046] In some variations the apparatus described herein may include an application (e.g. software or firmware) for controlling a computing device, such as a handheld computing device including a smartphone, tablet, etc. that includes a camera. The apparatus (e.g., application) may guide the user in taking the video, may pre-review the video to confirm it is adequate, may edit the video to remove unwanted portions, and may alert the user if the video is not sufficient.

20 [00047] Typically, the system automatically recognizes the two medial canthi of each eye and calculates their distance in pixels from the image showing the eyes (e.g., a frontal image). This measured distance may be transformed or correlated from pixels into known units of length (e.g., mm, inches, etc.) on the basis of known mean anthropometric parameters, such as interocular distance (IOD). In this manner, the systems and methods do not need any outside reference object in order to calibrate/scale the images. Because the inter-subject variability of IOD is very low (see, e.g., Dodgson, N. A. (2004). Variation and extrema of human interpupillary distance. *Proceedings of SPIE: Stereoscopic Displays and Virtual Reality Systems XI*, Vol. 5291, pp. 36–46; and Smith, G., & Atchison, D. A. (1997). *The eye and visual optical instruments*. Cambridge UK: Cambridge University Press) the use of a predetermined reference IOD such as 64.67 mm for males and 62.31 mm for females, may be sufficiently accurate, particularly for sizing garments, and may introduce little error (<5%).</p>

[00048] Thereafter, the conversion factor (which may be referred to as a principle conversion factor or an IOD conversion factor may be used for all of the images in the video to covert pixels (virtual distance) to actual measurements (in distance units, such as mm, inches, etc.); when switching between the video images, the method (or any apparatus implementing the method) may also generate and/or use a second conversion factor for adjusting between video images (e.g., as the camera is moved, etc.); the second conversion factor may be used to normalize the pixel sizes between images, and then the primary or IOD conversion factor may be applied as well. By using a continuous video (e.g., taking uninterrupted video) this may be made conceptually easier. In addition, the use of continuous video may allow for virtual rotation of the individual to accurately project the subject's torso onto a normal measurement space which may reduce or eliminate errors due to viewing angle of the video images.

[00049] Thus, in general the images taken herein may be taken by one or more of a photo/video-camera on a smartphone, a photocamera, a videocamera, a webcam, or the like. In the examples described herein a video camera is used rather than a photo camera. The use of video allows the apparatus to easily determine the sequence from one

frame to the next in terms of time and position between one frame to the previous or the next one. This is less reliable when performed from a sequence of non-video photos since it is difficult to calculate the time and position distance from a shot to the next. Video may also allow determination of complex measurements over highly contoured body regions (e.g., that enabling the apparatus and method to fit a shirt or pair of tights).

- [00050] In any of the methods described herein, the video should generally include at least one (though multiple are preferred) image of a frontal view including the eyes and a lateral view including the head. In addition, it is helpful to provide continuous frames of imaging transitioning between these images, as well as multiple images of the body region to be measured (e.g., torso, for shirts, etc.) from multiple different angles. From these information, the calculated the size ratio (calibration factor) in mm/pixel may be determined.
- 10 [00051] Thus, the same images may also show all the body segments that are needed to be determined in order to take all the sizes, e.g. the width of the shoulder, the length of the arms, the width of the trunk, the width of the neck, etc. These images may then be used to project measurements of these body regions based on the video, and the conversion factor (IOD conversion factor) may allow these virtual measurements to be converted into real units (mm, inches, etc.). This may allow the method and apparatuses using these methods to correctly fit shirts, tights or other types of garments rather than simple accessories such as glasses, bracelets, watches, necklaces, belts, etc. 15 Thus, although garments such as shirts and parts complex (and substantially more complex than jewelry and accessories such as glasses) because they cover a much wider part of the body and because there are more variances from person to person (for example a shirt could fit two difference persons as far as shoulders and arms measurements but not in stomach or chest dimensions that could present extreme variations), the methods described 20 herein may be used to accurately determine sizing. Furthermore computerized sizing/fitting of compression garments and/or garments including electrical/electronic components such as sensors present added challenges to fitting of traditional clothes because of their enhanced functionalities: for example, they may include many sensors to gather physiological data, which may need to touch the skin where the signal is strongest. In some variations, a garment including ECG sensors (e.g., ECG electrodes) must be correctly placed near the heart a complex area since it presents substantial variances due to different sizes and positions in men's pectorals or women's breasts. Those 25 sensors also need to function mostly in movement thus they need to be positioned in a way that they can continue to record reliable data even when changing position because of body parts movements. In addition, while traditional apparel are made of 'soft' material such as fabric, cotton, wool, etc. "smart" garments including integrated electronics may include also 'hard' materials such as wires, microchips, connectors, PCB, etc. or other 'hard' 30 components that are not comfortable to wear. Thus to minimize discomfort it is important to locate and properly measure those parts of the body where those 'hard' materials/parts should best be located, as described herein. One challenge in automatically determining sizing is in preparing the correct and appropriate input
 - [00052] One challenge in automatically determining sizing is in preparing the correct and appropriate input images. For example, one challenge of such a system that may automatically measure a body region for a garment is that the images should be easily taken by the user himself or herself, without the need for complex equipment, such as dedicated instruments to take body size measurements. Described herein are simple methods for performing these automatic measurements that may be based on devices which may be generally available to most individuals (e.g., general-purpose smartphone, photo/video cameras, webcam, etc.). Further, as another parameter, the methods descried herein may be completely automatized methods, which do not require any user intervention and that provides all final measurements in a completely automatic manner.

35

40 **[00053]** In general, these methods may be used to measure for garments that normally cover parts of the body that are traditionally difficult to measure virtually, such as shirts (upper body), hoodies (upper body and head),

slacks and pants (lower body including thighs, buttocks, etc.); gloves (wrists and hands), socks (ankles and feet), balaclava (neck and head), etc.

[00054] In addition, the video methods described herein may also be used to measure parts of the body in movement. These methods and apparatuses may calculate the measurements to maximize the fit and the comfort of the garment, and may filter the measurements so that they can maximize fit and comfort while accepting users fashion desires.

5

10

15

20

25

30

35

40

[00055] Finally, these method and apparatuses are particularly helpful for configuring and fitting so-called 'smart' garments which may electronic components integrated into the garment, including one or more sensors (e.g., "biosensors"). For example, these methods and apparatuses may, in addition to determining fit, determine the correct sensors positioning after defining the garment measurements based on the body dimensions. Some sensors, such as ECG and EMG electrodes, must be precisely positioned in specific parts of the body in order to acquire a meaningful physiological signal. For example, pairs of EMG electrodes should be precisely placed on each muscle, to avoid noise coming from other close muscles. Similarly, ECG electrodes should not be placed on muscles such as pectorals in order to avoid the EMG noise that could override the ECG waves. Positioning of these sensors may therefore be important (e.g., for skin conductance sensing, sensors may be located from arm pits to latissamus muscles, while for EMGs, sensors may be positioned near the center of biceps).

[00056] In any of the variations described herein, the video of the subject's body may be taken so that it includes at least one image in which the eyes (in frontal images) and the head (in lateral images) are clearly framed. In addition, it would be useful to take video including these views and stay in a position which is at sufficiently 'frontal' or 'lateral' with respect to the sensor of the photo/video-camera, and to allow the photo/video camera to frame all the body segments which are needed to customize the garment, and specifically multiple views of the body regions over which the garment is to be worn (e.g., to customize a shirt, it is needed to have all the trunk, the arms and the neck).

[00057] In general, any of the apparatuses and methods described herein may be configured to take images of the head, including the face and in some variations the side of the head, to determine a scaling factor, but the same video may also provide images of the body regions, generally the trunk and/or limbs, that are being fitted automatically as described herein. The subject's trunk may generally refer to the person's body apart from the limbs and head, and may specifically include the chest, shoulders, abdomen, back, waist, hips, crotch region, buttocks, etc. The limbs typically include the arms and legs.

[00058] For example, any of the method and apparatuses described herein may include taking the video and/or instructing the user (subject) in a way to take the video to acquire the images used. As mentioned above, in some variations instructions may be provided in which the user is instructed to take a video to have, in at least one image, and preferably more images, the information described above (e.g., frontal views including the face and eyes, and body region to be fitted, transitioning to/from side/sagittal views including the head and body regions to be fitted.

[00059] In some variations the method, or an apparatus for performing the method, may include instructing a subject to take the video themselves. As mentioned, the subject may be instructed to take the video either without clothing over the region to be fitted, or in tight fitting and/or minimal clothing. For example, for measuring the torso, the subject may be instructed to remove any loose upper body clothing (e.g. ideally they should be nude and/or wearing only tight underwear or a bra, alternatively, wearing a tight compression shirts and compression tights, or less optimally, wearing a tight shirt and tight pants). For privacy sake, the video may be encrypted to prevent viewing by third parties, and the user may be provided information indicating confidentiality. In some

variations the system is configured so that the video is erased or otherwise destroyed after determining measurements. In some variations the video may be modified before transmitting remotely.

[00060] For example, in some variations the video may be analyzed locally (e.g. on a handheld device such as a smartphone) to determine the interocular distance and a scaling factor before transmitting the rest of the video, including the body (e.g., all or a portion of the truck and/or limbs) to a remote server for later analysis; however the video may be modified to remove the subject's head and/or face, or to obscure the subject's head and/or face, prior to transmitting the video, e.g., to a remote server for analysis. In this example, the scaling factor and/or the interocular distance may be indicated on one or more frames of the video so that body measurements generated from the video can be properly scaled.

[00061] In one variation, the subject may be instructed to perform a series of movements to capture a continuous video with the images useful for the methods described herein. As mentioned above, in some variation the apparatus may talk the user through this process, for example, providing audible guidance to the user as they hold the video device and take the images.

In one variation the subject may be instructed to hold the video camera (e.g., phone camera, etc.) with [00062] two hands in front of them (in order to have even shoulders position, rather than holding the video camera with only 15 one hand), with their arms extended as forward or as far as possible. This may allow them to film a larger part of the body, and may include the head and face, neck, shoulders, and upper body, including down to the belly region. The subject may tilt the video camera (e.g., phone) to capture the face and body in the video. The subject may be instructed to hold the video camera as parallel to the body as possible, for between 1-5 seconds (e.g., 3 seconds). The subject may then be instructed to hold the video camera in the right arm (e.g., straight out from the body), and 20 lift the left arm from the side of the body and up as straight as possible to be parallel to the body, and held for 1-5 seconds (e.g., 3 seconds). Next, the user may be instructed to take the video camera in their left hand and hold the camera out from the body and move their right arm, raising the right arm from the side of the body up to a position straight out and parallel from the body (and held for 1-5, e.g., 3, seconds). The subject may then be instructed to lower the right arm and rotate the extended the left arm to their side, holding the camera parallel to the floor and in 25 the same plane as the front of the torso to film the left side of the head, and then in a continuous movement bend your elbow to touch the trunk so as to film the left side of the head and the left shoulder. This step may be repeated with the camera a in the other hand to film the right side of the head and of the right shoulder. The subject may then bet told to bring the right arm (holding the video camera) in front of the body to take hold of the video camera with 30 both hands again to return to the initial position and hold for the appropriate time (e.g., 1-5 seconds, such as 3 seconds). The user may then be instructed to, while preserving video camera position parallel to the body, lower it to record rest of the front lower-trunk to include upper legs (and hold for 1-5, e.g., 3 seconds). Users may also be instructed to stand with their back facing a mirror and to take a 3 seconds video of their back of the body: head, shoulders, upper trunk and lower trunk all the way down to back of upper legs. The total video typically takes no more than 20 seconds. Movements should be as steady and continuous as possible. To facilitate the operation users 35 can play a tutorial video from the smartphone (e.g., if using an application on the smartphone) or be guided to a website providing a guide of the movements).

[00063] In some variations the user may work with a third party to take the images. The images may be similar to those taken as described above, except that user may start in a "crucifix" position, with arms as extended as possible, then rotate the arms form the side to over the head, lower the arms along the body and rotate the entire body 90° to the left for a video of the left side of the body, and further rotate the body to the left by 90° to be taken a video of the back. From the back, both arms may be lifted into the 'crucifix' position and then the arms may be

10

lifted in an extended parallel position over the head, the hands may be lowered along the body, and the body may be rotated by 90° to the left for a video of the right side of the body.

[00064] Other movements for imaging the body either by a third party or by the user alone (and/or in front of a mirror) may be used. Generally, it is important that as much of the region of the body to be covered by the garment be imaged in the video as smoothly as possible, without stopping (introducing discontinuities in the video). In some variations the apparatus may detect problems with the video (e.g. focus, magnification, lighting levels, etc.) or may perform some image processing (e.g., detecting body position, separation of the body from background, etc.) and may instruct the subject to adjust or re-take the video accordingly.

5

10

15

20

25

30

35

40

[00065] The video may then be transmitted to a remote server (e.g., over an internet connection) for automated analysis, and/or analyzed locally (e.g., on the smartphone or computer). In some variations the apparatus may include one or more functions to allow automatic uploading of the video, including securing the transmission (e.g., by encryption, etc.). In some variations the video may be analyzed to determine the quality prior to transmission, so that the subject may be instructed to take another image. Quality may be improved by using high resolution cameras, using more frames to calculate an average size ratio (mm/pixels) instead of a single image, and/or by automatic detection and/or recognition of body features (face, eyes, head, torso, etc.) to confirm the video includes sufficient views. In general, the subject may be provided with instructions in order to improve image acquisition.

[00066] As used herein, a server may refer to an application (e.g., software, firmware, etc.) capable of accepting requests from a client and giving responses accordingly. Servers can run on any computer, including dedicated computers, which individually are also often referred to as "the server". A computer can have several servers running simultaneously. The server maybe run on a dedicated computer. Client devices (e.g., remote devices) may connect to a server through a network but may run on the same computer. In the context of Internet Protocol (IP) networking, a server is a program that operates as a socket listener.

[00067] In any of the variations described herein, the user may also provide the apparatus with additional information (e.g., gender, height, weight, etc.), which may be used by the method to refine the analysis, including the determination of a scaling factor from the interocular distance.

[00068] The video images may be filtered by digital filters in order to enhance the contrast between the body and the background, and/or to eliminate image noise. These methods may also allow the user to acquire multiple images from multiple points of views. Measurements obtained through video may be filtered through existing libraries of body measurements to further refine the measurements.

[00069] When additional information (e.g., height, weight, gender, etc.) are included, this information about the user may help to improve the measuring process. For example, weight, height and age can help the system to preassign the user to a specific anthropometric measurements cluster, in order to filter outliers and false positive given by external sources of noise that could affect the measurements (e.g. low light, blur).

[00070] In general, the program requires just one tool on the user's side: a device that can record video, handle basic video processing and get access to the Internet. For instance this device could be represented by the user smartphone. FIG. 1 illustrates one example of a process flow the functionalities described herein. For example, a method of automatically determining a subject's measurements for garment including wearable electronics, the method may include preparing the video (e.g., preparing the subject to take the video), including checking the initial video set-up 101. The apparatus (e.g., an application running on a smartphone) may be configured to perform this step initially, checking the video camera settings against predefined preferences for taking the video, and alerting the user if they need to adjust and/or automatically adjusting them. The apparatus may also provide instructions and/or

guidance on what movements should be done to record the video. Once prepared, the video may be taken 105. The video may be vetted either during recording or after recording 107 to determine that it is sufficient for the detection, as mentioned above. Once it passes, it may be uploaded to a remote server for processing 109, 111. This generally include determining the interocular distance and measuring the body regions to fit a garment (e.g., for a shirt, measuring neck, arm length, shoulder width, upper torso, lower torso, torso length, etc.). Measurement may be made by rendering/projecting the body region of interest and using this virtual/reconstructed body to determine lengths. These measurements may then be converted to actual length measurements using the interocular distance based on the standard interocular distance parameter values and particular the intraocular distance values specific to the gender and/or age of the subject.

5

25

30

35

40

10 [00071] Video processing may be performed in parts, for example, normalizing the video images to be used to each other and in particular to the image(s) used to determine the scaling factor from the interocular distance, and/or projecting or calculating surface dimensions providing measurements of the subject's body. For example, the video processing 111 may include determining dimensions of the surface of the subject's body (e.g., by modeling and/or reconstructing a model of the subject from the video images), and then using the dimensions and the scaling factor 15 (or alternatively, but scaling the model and/or images forming the model first, so that the dimensions are already expressed in the correct units) to determine a measurement for the body in real-world units 117 for length or areas (e.g., inches, cm, etc.). In some variations the methods and apparatuses for using them may alternatively convert these measurements into garment sizes, including standard or custom sizing units. As described in detail herein, any of the methods and apparatuses for performing them described herein may optionally include defining optimal 20 positioning for electrical components 119 used in wearable electronics, such as sensors (e.g., electrodes, etc.), wiring (e.g., conductive traces, inks, etc.), processing elements (chips, circuits, processors, etc.), and connectors (multi-pin connectors, etc.).

[00072] Further, any of the methods and apparatuses described herein may transmit the measurements directly to a fabrication device 121. For example, any of these methods and/or systems may be connected or connectable (including directly connected or connectable) to one or more fabrication devices, such as 3D printers, laser cutters, sewing machines, etc.

[00073] In variations in which sensors will be positioned on the body, the sensor positions may be located onto the device in predetermined locations relative to body landmarks (e.g., pectoral regions, etc.). For example, FIGS. 3A-3B illustrate one variation of a compression garment that includes a series of sensors, including sensors specific to ECG measurements. A dual series of ECG electrodes 303 may be positioned on the chest in the predetermined regions typically corresponding to the lead positions (e.g., 12 lead ECG positions). FIG. 3A shows a front view and FIG. 3B shows a back view of a garment including a shirt and pants that may be connected to each other. The location of the sensors on the chest (and writs, shoulder, ankles, etc.) may be precisely determined in an individualized and customized way using the methods and apparatuses described herein.

[00074] Similarly, FIG. 3C and 3D shows front and back views, respectively, of a shirt having respiration sensors 319 around the torso. The garment 303 is a compression garment, and may include additional sensors 333, 335. The methods and apparatuses described herein may be used to precisely and customizable locate the position of the sensors on the body so that respiration may be accurately determined.

[00075] As described herein the main processing stage used to determine the body measurements and calculate the garment dimensions may be handled by a server-based program. Thus, this may be done after recording the video. The server-based program may process the video without any additional requirement for the subject and may ensure a cross-platform compatibility (because the core processing will not be dependent by different OS and

hardware architectures). However in some variations, the processing may be done at least in part, if not entirely, locally (e.g., in the smartphone, laptop, desktop, etc.).

[00076] Further, even if processing of the video is done remotely, some basic checking and calculations may be performed in real-time by the part of the program responsible for recording the video, thus on the tool required on the user side, as described above. For example, the apparatus may tell the subject if the setup (e.g. environment light, image quality, blur) is suitable or not for this application. In case any parameter does not fulfill the expected requirements, the program may give instruction to the users on how to improve the setup.

5

10

15

20

25

30

35

40

[00077] After automatically checking environment parameters, the user may be allowed or instructed to start recording the video by following one of the procedure above. To facilitate the operations, users may be able to play a tutorial video that will guide them through all the necessary video steps. During the whole recording phase, other processing stages may be performed by the apparatus. For example, the apparatus may implement a face (and head) recognition feature to help the users to correctly acquire the video. In addition, this may also continuously check for some recording parameters such as blur or video stability. These parameters could affect the server-based processing, thus the users may be notified in case one of them will exceeds the expected ranges.

[00078] Once the video recording is complete, the video may be uploaded to a remote server, where it will may processed to determine the body measurements and determinate the garments sizes following the steps shown in FIG. 2, described below. The server-based processing may integrate the measurements with anthropometric database in order to filter any outliers and false positives.

[00079] When fitting for garments including electronics (e.g., wearable sensors and/or electronics), once the garment sizes are determined, the program may continue to the last processing phase in which the garment dimensions and the body measurement are used to define model that will be used to determine the optimal sensors positioning.

[00080] FIG. 2 is a flowchart that schematically illustrates one methods of determining a subject's measurements (and therefore sizes) using IOD to scale/normalize images of the subject. For example, in FIG. 2, the subject stands first facing the camera of their PCs or smartphones nude or wearing compression apparel or just tight undergarment (underwear, bra, etc.). The system can then automatically calculates his/her corporeal measurements without the need of a reference object by rescaling the image based on the distance between the subject's eyes. Additional views of the subject may be used. For example, the subject can stand in profile (on a side) in order to allow the calculation of additional dimensions in the sagittal view, such as antero-posterior diameters of the abdomen, of the chest, of the breast, etc. These further calculations will be based on another scaling factor calculated by referring to dimensions of body parts that are present in both the frontal and sagittal view (e.g. the height of the head).

[00081] Terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. For example, as used herein, the singular forms "a", "an" and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms "comprises" and/or "comprising," when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items and may be abbreviated as "/".

[00082] Spatially relative terms, such as "under", "below", "lower", "over", "upper" and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if a device in the figures is inverted, elements described as "under" or "beneath" other elements or features would then be oriented "over" the other elements or features. Thus, the exemplary term "under" can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly. Similarly, the terms "upwardly", "downwardly", "vertical", "horizontal" and the like are used herein for the purpose of explanation only unless specifically indicated otherwise.

5

10

15

20

25

30

35

40

[00083] Although the terms "first" and "second" may be used herein to describe various features/elements, these features/elements should not be limited by these terms, unless the context indicates otherwise. These terms may be used to distinguish one feature/element from another feature/element. Thus, a first feature/element discussed below could be termed a second feature/element, and similarly, a second feature/element discussed below could be termed a first feature/element without departing from the teachings of the present invention.

[00084] As used herein in the specification and claims, including as used in the examples and unless otherwise expressly specified, all numbers may be read as if prefaced by the word "about" or "approximately," even if the term does not expressly appear. The phrase "about" or "approximately" may be used when describing magnitude and/or position to indicate that the value and/or position described is within a reasonable expected range of values and/or positions. For example, a numeric value may have a value that is +/- 0.1% of the stated value (or range of values), +/- 1% of the stated value (or range of values), +/- 2% of the stated value (or range of values), +/- 5% of the stated value (or range of values), +/- 10% of the stated value (or range of values), etc. Any numerical range recited herein is intended to include all sub-ranges subsumed therein.

[00085] Although various illustrative embodiments are described above, any of a number of changes may be made to various embodiments without departing from the scope of the invention as described by the claims. For example, the order in which various described method steps are performed may often be changed in alternative embodiments, and in other alternative embodiments one or more method steps may be skipped altogether. Optional features of various device and system embodiments may be included in some embodiments and not in others. Therefore, the foregoing description is provided primarily for exemplary purposes and should not be interpreted to limit the scope of the invention as it is set forth in the claims.

[00086] The examples and illustrations included herein show, by way of illustration and not of limitation, specific embodiments in which the subject matter may be practiced. As mentioned, other embodiments may be utilized and derived there from, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Such embodiments of the inventive subject matter may be referred to herein individually or collectively by the term "invention" merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept, if more than one is, in fact, disclosed. Thus, although specific embodiments have been illustrated and described herein, any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.

CLAIMS

What is claimed is:

1. A method of automatically determining garment sizing for a subject from a video of the subject, the method comprising:

determining the subject's interocular distance from a frontal image of the subject in the video; determining a scaling factor from the subject's interocular distance;

using the scaling factor to determine measurements for the subject's trunk, limbs, or trunk and limbs from a plurality of images of the subject's body extracted from the video; and providing an estimate of the subject's measurements appropriate for garment sizing.

2. A method of automatically determining garment sizing for a subject from a video of the subject, the method comprising:

transmitting the video to a remote server;

determining, in the server, the subject's interocular distance from one or more frontal image of the subject in the video;

determining a scaling factor from the subject's interocular distance;

using the scaling factor to determine measurements for the subject's trunk, limbs, or trunk and limbs from a plurality of images of the subject's body extracted from the video, wherein the server normalizes the scale of the plurality of images with the one or more images used to determine the scaling factor; and

providing an estimate of the subject's measurements appropriate for garment sizing.

3. A method of automatically determining garment sizing for a subject from a video of the subject, the method comprising:

receiving a video of the subject, wherein the video includes at least one frontal image of the subject including the subject's eyes, frontal images of a portion of the subject's body to be fitted on the subject's trunk, limbs or trunk and limbs, and side images of the subject's head and portion of the subject's body to be fitted;

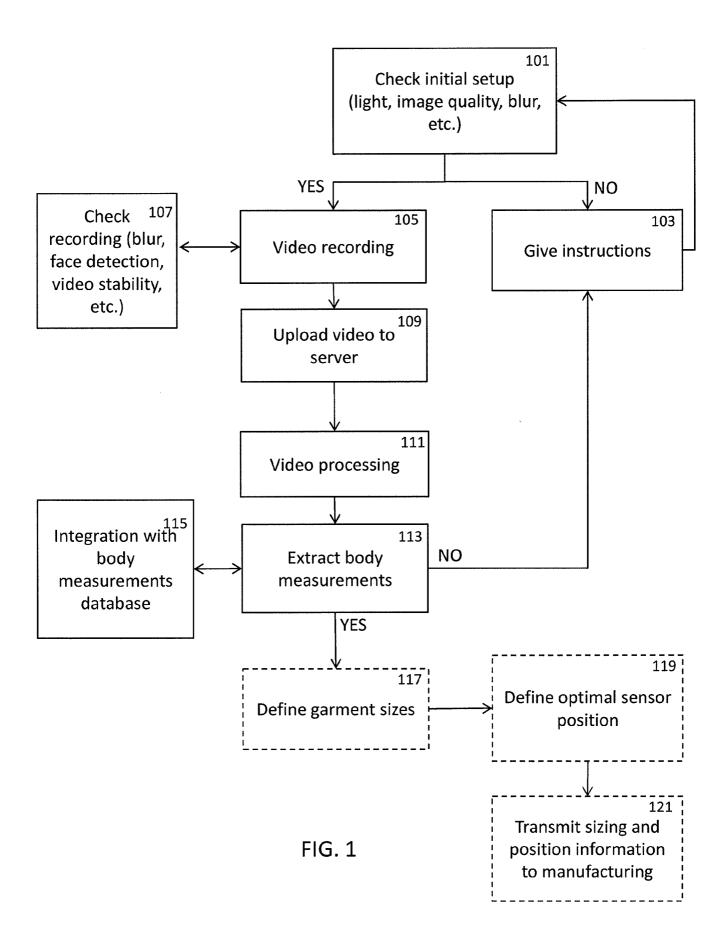
determining a scaling factor from the subject's interocular distance; using the scaling factor to scale the images of the subject's body; determining measurements of the subject's body from the scaled images; and providing an estimate of a garment size using the subject's measurements.

4. A method of automatically determining garment sizing for a subject from a video of the subject, the method comprising:

receiving a video of the subject, wherein the video includes at least one frontal image of the subject including the subject's eyes, and a plurality of images of the portion of the subject's body to be fitted, including frontal and side images;

determining a scaling factor from the subject's interocular distance to convert image space measurements to distance measurements;

measuring the portion of the subject's body to be fitted from the video;


scaling the measurements using the scaling factor; and providing an estimate of the subject's measurements appropriate for garment sizing using the measurements of the portion of the body to be fitted.

- 5. The method of claims 1, 2, 3 or 4, further comprising automatically recognizing the subject's eyes.
- 6. The method of claims 1, 2, 3 or 4, wherein determining the scaling factor comprises determining the distance between the centers of the subject's pupils.
- 7. The method of claims 1, 2, 3 or 4, further comprising receiving one or more of: a subject's age, gender, and race.
- 8. The method of claims 1, 2, 3 or 4, wherein determining the scaling factor comprises using the subject's interocular distance and one or more of the subject's age, gender, and race.
- 9. The method of claim 1, 2, 3 or 4wherein the video comprises a continuous video scanning the subject's body including frontal and sagittal regions.
- 10. The method of claims 1, 2, 3 or 4, wherein providing an estimate of the subject's measurements appropriate for garment sizing comprises providing a shoulder, arm measurement, neck, upper torso, and lower torso measurement.
- 11. The method of claims 1, 2, 3 or 4, further comprising providing a garment adapted to fit the subject's estimated measurements.
- 12. The method of claim 1, 2, 3 or 4, further comprising determining a location for one or more biosensors to be integrated into a garment using the subject's measurements.
- 13. The method of claim 1, 2, 3 or 4, further comprising automatically transmitting the subject's measurements to a machine configured to fabricate the garment.
- 14. A method of automatically determining garment sizing and positions for one or more biosensors on the garment from a video of a subject, the method comprising:
 - determining the subject's interocular distance from a frontal image of the subject in the video; determining a scaling factor from the subject's interocular distance;
 - using the scaling factor and a plurality of images of the subject's torso from the video taken at different angles to determine measurements for the subject's torso; and
 - providing measurements for a compression garment to be worn by the subject using the measurements of the subject's torso, and indicating the locations for one or more biosensor to be integrated into the compression garment.
- 15. The method of claim 12, wherein providing the measurements comprises indicating the locations of a plurality of ECG electrodes to be integrated into the compression garment.

16. The method of claim 12, wherein providing the measurements comprises indicating the locations of a plurality of respiration sensors to be integrated into the compression garment.

- 17. A non-transitory computer-readable storage medium storing a set of instructions capable of being executed by a computing device, that when executed by the computing device causes the computing device to:

 determine the subject's interocular distance from a frontal image of a subject in a video;
 determine a scaling factor from the subject's interocular distance;
 use the scaling factor and a plurality of images of the subject's body extracted from the video to determine measurements for the subject's body; and provide an estimate of the subject's measurements appropriate for garment sizing.
- 18. The non-transitory computer-readable storage medium of claim 15, wherein the set of instructions, when executed by a computing device, cause the computing device to provide garment sizing information for a compression garment having one or more biosensors integrated therein.
- 19. The non-transitory computer-readable storage medium of claim 16, wherein the biosensor comprises a plurality of ECG electrodes.
- 20. The non-transitory computer-readable storage medium of claim 16, wherein the biosensor comprises a plurality of respiration sensors.
- 21. The non-transitory computer-readable storage medium of claim 14, wherein the set of instructions, when executed by the computing device, further causes the computing device to automatically recognize the subject's eyes.
- 22. The non-transitory computer-readable storage medium of claim 14, wherein the set of instructions, when executed by the computing device, further causes the computing device to determine the scaling factor using the subject's interocular distance and one or more of the subject's age, gender, and race.
- 23. The non-transitory computer-readable storage medium of claim 14, wherein the set of instructions, when executed by the computing device, further causes the computing device to use the scaling factor and a plurality of frontal and sagittal images from the video of a portion of the subject's body to determine measurements for the subject's body.
- 24. A non-transitory computer-readable storage medium storing a set of instructions capable of being executed by a computing device, that when executed by the computing device causes the computing device to: determine the subject's interocular distance from a frontal image of a subject in a continuous video of the subject's head and body including at frontal and sagittal views; determine a scaling factor from the subject's interocular distance; use the scaling factor and a plurality of images of the subject's body extracted from the video to determine measurements for the subject's body; and provide an estimate of the subject's measurements appropriate for garment sizing of a compression garment including a biosensor sensor.

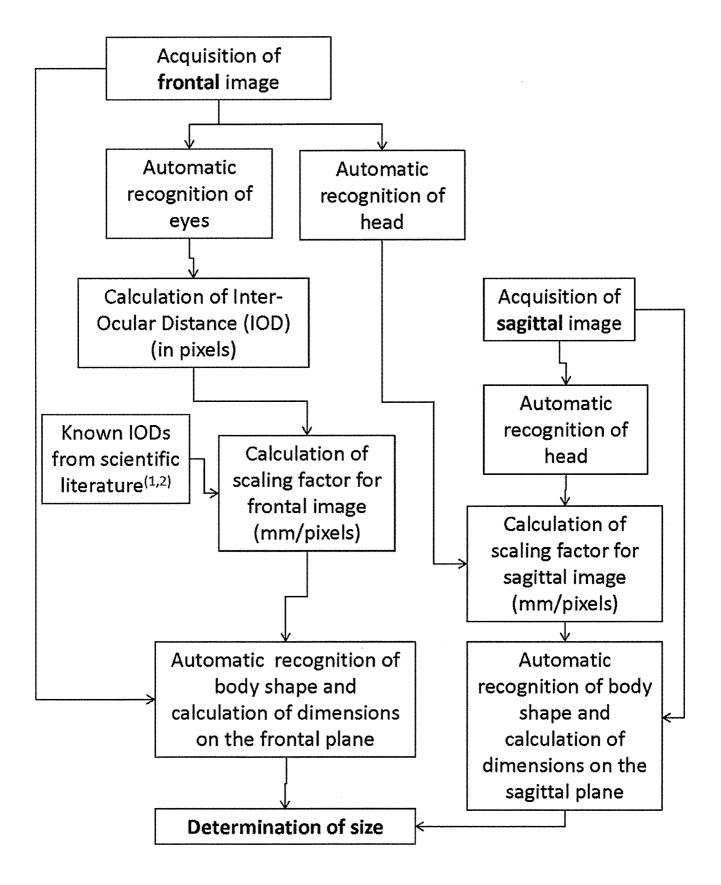
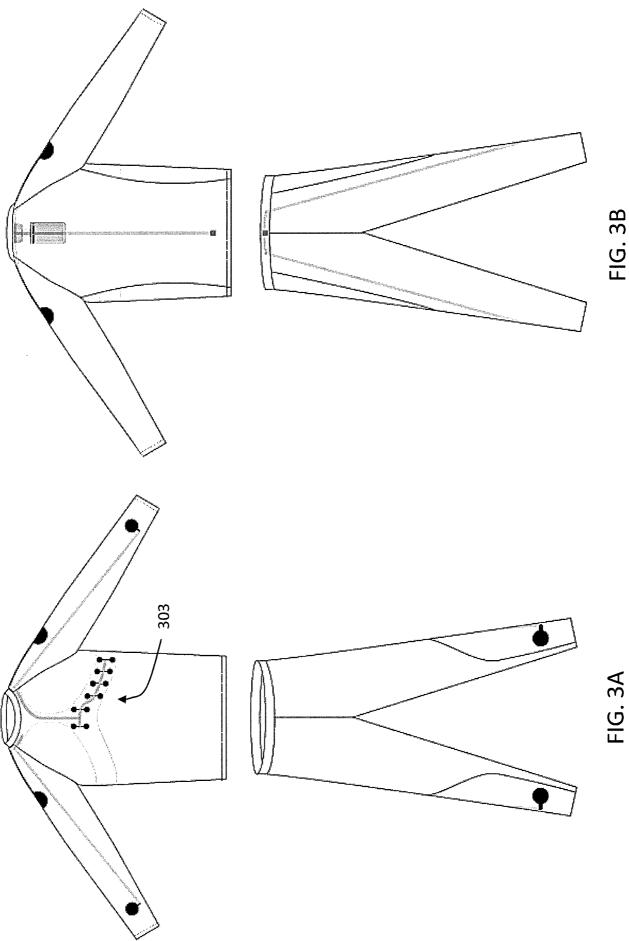



FIG. 2

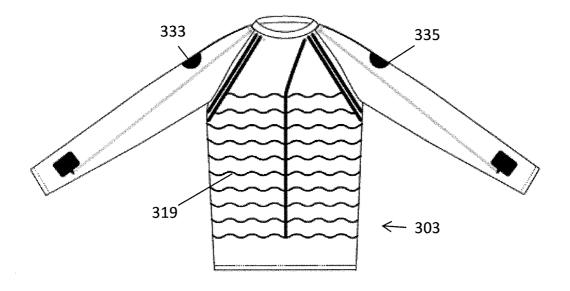


FIG. 3C

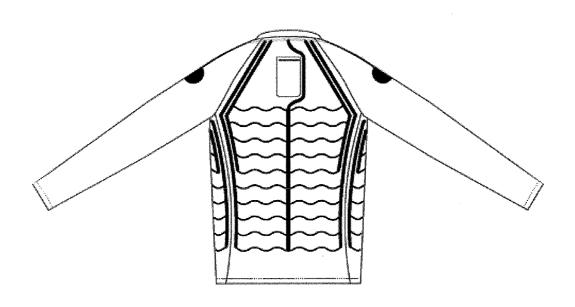


FIG. 3D

INTERNATIONAL SEARCH REPORT

International application No.

CLASSIFICATION OF SUBJECT MATTER

IPC(8) - A41H 1/02 (2015.01)

CPC - G01B 11/022 (2014.12)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC(8) - A61B 3/10; A41H 1/02; G01B 11/02 (2015.01)

USPC - 348/135; 351/204, 351/246; 705/26.1

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched CPC - A61B 3/11; A61B 3/111; A61B 5/0077; G02C 13/005; G06T 7/60; G06T 2207/30041 (2014.12) (keyword delimited)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Questel Orbit, Google Patents, Google Scholar, Google.

Search terms used: determine, interocular distance, image, subject, video, scaling factor, measurements, trunk, limb, video, garment, sizing

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 2013/0179288 A1 (Moses et al.) 11 July 2013 (11.07.2013) Entire document	1 - 24
Υ	US 2011/0267578 A1 (Wilson) 03 November 2011 (03.11.2011) Entire document	1 - 24
Y	US 2012/0246795 A1 (Scheffler et al.) 04 October 2012 (04.10.2012) Entire document	12, 14-16, 18-20 and 24
Α	US 5,163,006 A (Deziel) 10 November 1992 (10.11.1992) Entire document	1 - 24
Α	US 2013/0314668 A1 (Haddadi et al.) 28 November 2013 (28.11.2013) Entire document	1 - 24
Α	US 2002/0093515 A1 (Fay et al.) 18 July 2002 (18.07.2002) entire document	1-24
		·
i		

Further documents are listed in the continuation of Box C.					
*	Special categories of cited documents:	"T"	later document published after the international filing date or priority		
"A"	A" document defining the general state of the art which is not considered to be of particular relevance		date and not in conflict with the application but cited to understand the principle or theory underlying the invention		
"E"	earlier application or patent but published on or after the international filing date		document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive		
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)		step when the document is taken alone		
			document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is		
"0"	document referring to an oral disclosure, use, exhibition or other means		combined with one or more other such documents, such combination being obvious to a person skilled in the art		
"P"	document published prior to the international filing date but later than the priority date claimed	"&"	document member of the same patent family		
Date of the actual completion of the international search		Date of mailing of the international search report			
02 March 2015		0 1 MAY 2015			
Name and mailing address of the ISA/US		Authorized officer:			
Mail Stop PCT, Attn: ISA/US, Commissioner for Patents P.O. Box 1450, Alexandria, Virginia 22313-1450 Facsimile No. 571-273-3201		Blaine R. Copenheaver			
		PCT Helpdesk: 571-272-4300 PCT OSP: 571-272-7774			