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ABSTRACT 

The storage system exports logical storage volumes that are provisioned as storage 

objects. These storage objects are accessed on demand by connected computer systems using 

standard protocols, such as SCSI and NFS, through logical endpoints for the protocol traffic that 

are configured in the storage system. To facilitate creation and management of logical storage 

volumes, special application programming interfaces (APIs) have been developed. The special 

APIs include commands to create a logical storage volume, bind, unbind, and rebind the logical 

storage volume, extend the size of the logical storage volume, clone the logical storage volume, 

and move the logical storage volume.
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"Data storage system and data storage control method" 

[0001] This application is a divisional application of Australian Patent Application No 

2012300402, the contents of which are incorporated herein by reference.  

Background 

[0002] As computer systems scale to enterprise levels, particularly in the context of supporting 

large-scale data centers, the underlying data storage systems frequently employ a storage area 

network (SAN) or network attached storage (NAS). As is conventionally well appreciated, SAN 

or NAS provides a number of technical capabilities and operational benefits, fundamentally 

including virtualization of data storage devices, redundancy of physical devices with transparent 

fault-tolerant fail-over and fail-safe controls, geographically distributed and replicated storage, 

and centralized oversight and storage configuration management decoupled from client-centric 

computer systems management.  

[0003] Architecturally, the storage devices in a SAN storage system (e.g., disk arrays, etc.) are 

typically connected to network switches (e.g., Fibre Channel switches, etc.) which are then 

connected to servers or "hosts" that require access to the data in the storage devices. The 

servers, switches and storage devices in a SAN typically communicate using the Small Computer 

System Interface (SCSI) protocol which transfers data across the network at the level of disk data 

blocks. In contrast, a NAS device is typically a device that internally contains one or more 

storage drives and that is connected to the hosts (or intermediating switches) through a network 

protocol such as Ethernet. In addition to containing storage devices, the NAS device has also 

pre-formatted its storage devices in accordance with a network-based file system, such as 

Network File System (NFS) or Common Internet File System (CIFS). As such, as opposed to a 

SAN which exposes disks (referred to as LUNs and further detailed below) to the hosts, which 

then need to be formatted and then mounted according to a file system utilized by the hosts, the 

NAS device's network-based file system (which needs to be supported by the operating system 

of the hosts) causes the NAS device to appear as a file server to the operating systems of hosts, 

which can then mount or map the NAS device, for example, as a network drive accessible by the 

operating system. It should be recognized that with the continuing innovation and release of new 

products by storage system vendors, clear distinctions between SAN and NAS storage systems 

continue to fade, with actual storage system implementations often exhibiting characteristics of 

both, offering both file-level protocols (NAS) and block-level protocols (SAN) in the same 

system. For example, in an alternative NAS architecture, a NAS "head" or "gateway" device is 

networked to the host rather than a traditional NAS device. Such a NAS gateway device does 

not itself contain storage drives, but enables external storage devices to be connected to the NAS
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gateway device (e.g., via a Fibre Channel interface, etc.). Such a NAS gateway device, which is 

perceived by the hosts in a similar fashion as a traditional NAS device, provides a capability to 

significantly increase the capacity of a NAS based storage architecture (e.g., at storage capacity 

levels more traditionally supported by SANs) while retaining the simplicity of file-level storage 

access.  

[0004] SCSI and other block protocol-based storage devices, such as a storage system 30 

shown in Figure 1A, utilize a storage system manager 31, which represents one or more 

programmed storage processors, to aggregate the storage units or drives in the storage device and 

present them as one or more LUNs (Logical Unit Numbers) 34 each with a uniquely identifiable 

number. LUNs 34 are accessed by one or more computer systems 10 through a physical host bus 

adapter (HBA) 11 over a network 20 (e.g., Fiber Channel, etc.). Within computer system 10 and 

above HBA 11, storage access abstractions are characteristically implemented through a series of 

software layers, beginning with a low-level device driver layer 12 and ending in an operating 

system specific file system layers 15. Device driver layer 12, which enables basic access to 

LU7Ns 34, is typically specific to the communication protocol used by the storage system (e.g., 

SCSI, etc.). A data access layer 13 may be implemented above device driver layer 12 to support 

multipath consolidation of LUNs 34 visible through HBA 11 and other data access control and 

management functions. A logical volume manager 14, typically implemented between data 

access layer 13 and conventional operating system file system layers 15, supports volume

oriented virtualization and management of LUNs 34 that are accessible through HBA 11.  

Multiple LUNs 34 can be gathered and managed together as a volume under the control of 

logical volume manager 14 for presentation to and use by file system layers 15 as a logical 

device.  

[0005] Storage system manager 31 implements a virtualization of physical, typically disk 

drive-based storage units, referred to in Figure 1 A as spindles 32, that reside in storage system 

30. From a logical perspective, each of these spindles 32 can be thought of as a sequential array 

of fixed sized extents 33. Storage system manager 31 abstracts away complexities of targeting 

read and write operations to addresses of the actual spindles and extents of the disk drives by 

exposing to connected computer systems, such as computer systems 10, a contiguous logical 

storage space divided into a set of virtual SCSI devices, known as LUNs 34. Each LUN 

represents some capacity that is assigned for use by computer system 10 by virtue of existence of 

such LUN, and presentation of such LUN to computer systems 10. Storage system manager 31 

maintains metadata that includes a mapping for each such LUN to an ordered list of extents,
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wherein each such extent can be identified as a spindle-extent pair <spindle #, extent #> and may 

therefore be located in any of the various spindles 32.  

[0006] Figure lB is a block diagram of a conventional NAS or file-level based storage system 

40 that is connected to one or more computer systems 10 via network interface cards (NIC) 11' 

over a network 21 (e.g., Ethernet). Storage system 40 includes a storage system manager 41, 

which represents one or more programmed storage processors. Storage system manager 41 

implements a file system 45 on top of physical, typically disk drive-based storage units, referred 

to in Figure 1B as spindles 42, that reside in storage system 40. From a logical perspective, each 

of these spindles can be thought of as a sequential array of fixed sized extents 43. File system 45 

abstracts away complexities of targeting read and write operations to addresses of the actual 

spindles and extents of the disk drives by exposing to connected computer systems, such as 

computer systems 10, a namespace comprising directories and files that may be organized into 

file system level volumes 44 (hereinafter referred to as "FS volumes") that are accessed through 

their respective mount points.  

[0007] Even with the advancements in storage systems described above, it has been widely 

recognized that they are not sufficiently scalable to meet the particular needs of virtualized 

computer systems. For example, a cluster of server machines may service as many as 10,000 

virtual machines (VMs), each VM using a multiple number of "virtual disks" and a multiple 

number of "snapshots," each which may be stored, for example, as a file on a particular LUN or 

FS volume. Even at a scaled down estimation of 2 virtual disks and 2 snapshots per VM, this 

amounts to 60,000 distinct disks for the storage system to support if VMs were directly 

connected to physical disks (i.e., 1 virtual disk or snapshot per physical disk). In addition, 

storage device and topology management at this scale are known to be difficult. As a result, the 

concept of datastores in which VMs are multiplexed onto a smaller set of physical storage 

entities (e.g., LUN-based VMFS clustered file systems or FS volumes), such as described in U.S.  

Patent 7,849,098, entitled "Providing Multiple Concurrent Access to a File System," 

incorporated by reference herein, was developed.  

[0008] In conventional storage systems employing LUNs or FS volumes, workloads from 

multiple VMs are typically serviced by a single LUN or a single FS volume. As a result, 

resource demands from one VM workload will affect the service levels provided to another VM 

workload on the same LUN or FS volume. Efficiency measures for storage such as latency and 

input/output operations (IO) per second, or IOPS, thus vary depending on the number of 

workloads in a given LUN or FS volume and cannot be guaranteed. Consequently, storage 

policies for storage systems employing LUNs or FS volumes cannot be executed on a per-VM
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basis and service level agreement (SLA) guarantees cannot be given on a per-VM basis. In 

addition, data services provided by storage system vendors, such as snapshot, replication, 

encryption, and deduplication, are provided at a granularity of the LUNs or FS volumes, not at 

the granularity of a VM's virtual disk. As a result, snapshots can be created for the entire LUN 

or the entire FS volume using the data services provided by storage system vendors, but a 

snapshot for a single virtual disk of a VM cannot be created separately from the LUN or the file 

system in which the virtual disk is stored.  

[0008a] Any discussion of documents, acts, materials, devices, articles or the like which has 

been included in the present specification is not to be taken as an admission that any or all of 

these matters form part of the prior art base or were common general knowledge in the field 

relevant to the present disclosure as it existed before the priority date of each claim of this 

application.  

[0008b] Throughout this specification the word "comprise", or variations such as 

"comprises" or "comprising", will be understood to imply the inclusion of a stated element, 

integer or step, or group of elements, integers or steps, but not the exclusion of any other 

element, integer or step, or group of elements, integers or steps.  

Summary 

[0009] One or more embodiments are directed to a storage system that is configured to isolate 

workloads running therein so that SLA guarantees can be provided per workload, and data 

services of the storage system can be provided per workload, without requiring a radical redesign 

of the storage system. In a storage system that stores virtual disks for multiple virtual machines, 

SLA guarantees can be provided on a per virtual disk basis and data services of the storage 

system can be provided on a per virtual disk basis.  

[0010] According to embodiments of the invention, the storage system exports logical storage 

volumes, referred to herein as "virtual volumes," that are provisioned as storage objects on a per

workload basis, out of a logical storage capacity assignment, referred to herein as "storage 

containers." For a VM, a virtual volume may be created for each of the virtual disks and 

snapshots of the VM. In one embodiment, the virtual volumes are accessed on demand by 

connected computer systems using standard protocols, such as SCSI and NFS, through logical 

endpoints for the protocol traffic, known as "protocol endpoints," that are configured in the 

storage system.  

[0011] A method for provisioning a logical storage volume for an application running in a 

computer system that is connected to a storage system via input-output command (IO) paths and 

non-IO paths, according to an embodiment of the present invention, includes the steps of
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selecting a logical storage container created in the storage system, issuing a request to the storage 

system via a non-IO path to create the logical storage volume in the selected logical storage 

container, and storing a unique identifier for the logical storage volume received from the storage 

system in response to the request and associating the unique identifier with the application 

running in the computer system.  

[0012] A method for reprovisioning a logical storage volume for an application running in a 

computer system that is connected to a storage system via 10 paths and non-IO paths, according 

to an embodiment of the present invention, includes the steps of issuing a request to the storage 

system via a non-JO path to increase a size of the logical storage volume provisioned in the 

selected logical storage container, receiving acknowledgement of the increase in size from the 

storage system, and updating a metadata file associated with the logical storage volume to 

indicate the increased size.  

[0013] In accordance with another embodiment of the invention, a computer system connected 

to a storage system via 10 paths and non-IO paths, includes a management interface in a non-JO 

path, and a storage interface in an IO path. The management interface is configured to: (i) 

generate a request to create a logical storage volume in the storage system and to receive in 

response to the request a unique identifier for the logical storage volume, and (ii) generate a bind 

request to generate a valid 10 session between the logical storage volume to a protocol endpoint 

configured in the storage system and to receive in response to the request first and second 

identifiers generated for the protocol endpoint, and wherein the storage interface encodes JO 

issued to the logical storage volume with the first and second identifiers.  

[0013a] In accordance with a still further embodiment, a method is provided of operating a 

computer system connected to a storage system via input-output command (IO) paths and non

JO paths, wherein the computer system comprises a management interface in a non-JO path and 

a storage interface in an JO path, the method comprising the management interface performing 

steps of: (i) generating a request to create a logical storage volume in the storage system and to 

receive in response to the request a unique identifier for the logical storage volume, and (ii) 

generating a bind request to generate a valid IO session between the logical storage volume and a 

protocol endpoint configured in the storage system and to receive in response to the request first 

and second identifiers generated for the protocol endpoint, and wherein the storage interface 

encodes JO issued to the logical storage volume with the first and second identifiers.  

[0014] Embodiments of the present invention further include a non-transitory computer

readable storage medium storing instructions that when executed by a computer system cause the 

computer system to perform one of the methods set forth above.
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Brief Description of the Drawings 

[0015] Figure 1 A is a block diagram of a conventional block protocol-based storage device that 

is connected to one or more computer systems over a network.  

[0016] Figure 1B is a block diagram of a conventional NAS device that is connected to one or 

more computer systems over a network.  

[0017] Figure 2A is a block diagram of a block protocol-based storage system cluster that 

implements virtual volumes according to an embodiment of the invention.  

[0018] Figure 2B is a block diagram of a NAS based storage system cluster that implements 

virtual volumes according to an embodiment of the invention.  

[0019] Figure 3 is a block diagram of components of the storage system cluster of Figures 2A 

or 2B for managing virtual volumes according to an embodiment of the invention.  

[0020] Figure 4 is a flow diagram of method steps for creating a storage container.  

[0021] Figure 5A is a block diagram of an embodiment of a computer system configured to 

implement virtual volumes hosted on a SAN-based storage system.  

[0022] Figure 5B is a block diagram of the computer system of Figure 5A configured for 

virtual volumes hosted on a NAS-based storage system.  

[0023] Figure 5C is a block diagram of another embodiment of a computer system configured 

to implement virtual volumes hosted on a SAN-based storage system.  

[0024] Figure 5D is a block diagram of the computer system of Figure 5C configured for 

virtual volumes hosted on a NAS-based storage system.
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[0025] Figure 6 is a simplified block diagram of a computer environment that illustrates 

components and communication paths used to manage virtual volumes according to an 

embodiment of the invention.  

[0026] Figure 7 is a flow diagram of method steps for authenticating a computer system to the 

storage system cluster of Figures 2A or 2B.  

[0027] Figure 8 is a flow diagram of method steps for creating a virtual volume, according to 

one embodiment.  

[0028] Figure 9A is a flow diagram of method steps for discovering protocol endpoints that are 

available to a computer system.  

[0029] Figure 9B is a flow diagram of method steps for the storage system to discover protocol 

endpoints to which a computer system is connected via an in-band path.  

[0030] Figure 10 is a flow diagram of method steps for issuing and executing a virtual volume 

bind request, according to one embodiment.  

[0031] Figures llA and 11 B are flow diagrams of method steps for issuing an 10 to a virtual 

volume, according to one embodiment.  

[0032] Figure 12 is a flow diagram of method steps for performing an 10 at a storage system, 

according to one embodiment.  

[0033] Figure 13 is a flow diagram of method steps for issuing and executing a virtual volume 

rebind request, according to one embodiment.  

[0034] Figure 14 is a conceptual diagram of a lifecycle of a virtual volume.  

[0035] Figure 15 is a flow diagram of method steps for provisioning a VM, according to an 

embodiment using the storage system of Figure 2A.  

[0036] Figure 16A is a flow diagram of method steps for powering ON a VM.  

[0037] Figure 16B is a flow diagram of method steps for powering OFF a VM.  

[0038] Figure 17 is a flow diagram of method steps for extending the size of a vvol of a VM.  

[0039] Figure 18 is a flow diagram of method steps for moving a vvol of VM between storage 

containers.  

[0040] Figure 19 is a flow diagram of method steps for cloning a VM from a template VM.  

[0041] Figure 20 is a flow diagram of method steps for provisioning a VM, according to 

another embodiment.  

[0042] Figure 21 illustrates sample storage capability profiles and a method for creating a 

storage container that includes a profile selection step.  

[0043] Figure 22 is a flow diagram that illustrates method steps for creating a vvol and defining 

a storage capability profile for the vvol.
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[0044] Figure 23 is a flow diagram that illustrates method steps for creating snapshots.  

Detailed Description 

[0045] Figures 2A and 2B are block diagrams of a storage system cluster that implements 

"virtual volumes" according to embodiments of the invention. The storage system cluster 

includes one or more storage systems, e.g., storage systems 1301 and 1302, which may be disk 

arrays, each having a plurality of data storage units (DSUs), one of which is labeled as 141 in the 

figures, and storage system managers 131 and 132 that control various operations of storage 

systems 130 to enable embodiments of the invention described herein. In one embodiment, two 

or more storage systems 130 may implement a distributed storage system manager 135 that 

controls the operations of the storage system cluster as if they were a single logical storage 

system. The operational domain of distributed storage system manager 135 may span storage 

systems installed in the same data center or across multiple data centers. For example, in one 

such embodiment, distributed storage system manager 135 may comprise storage system 

manager 131, which serves as a "master" manager when communicating with storage system 

manager 132, which serves as a "slave" manager, although it should be recognized that a variety 

of alternative methods to implement a distributed storage system manager may be implemented.  

DSUs represent physical storage units, e.g., disk or flash based storage units such as rotating 

disks or solid state disks. According to embodiments, the storage system cluster creates and 

exposes "virtual volumes" (vvols), as further detailed herein, to connected computer systems, 

such as computer systems 1001 and 1002. Applications (e.g., VMs accessing their virtual disks, 

etc.) running in computer systems 100 access the vvols on demand using standard protocols, 

such as SCSI in the embodiment of Figure 2A and NFS in the embodiment of Figure 2B, through 

logical endpoints for the SCSI or NFS protocol traffic, known as "protocol endpoints" (PEs), that 

are configured in storage systems 130. The communication path for application-related data 

operations from computer systems 100 to the storage systems 130 is referred to herein as an "in

band" path. Communication paths between host bus adapters (HBAs) of computer systems 100 

and PEs configured in storage systems 130 and between network interface cards (NICs) of 

computer systems 100 and PEs configured in storage systems 130 are examples of in-band paths.  

Communication paths from computer systems 100 to storage systems 130 that are not in-band, 

and that are typically used to carry out management operations, are referred to herein as an "out

of-band" path. Examples of out-of-band paths, such as an Ethernet network connection between 

computer systems 100 and storage systems 130, are illustrated in Figure 6 separately from the in

band paths. For simplicity, computer systems 100 are shown to be directly connected to storage
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systems 130. However, it should be understood that they may be connected to storage systems 

130 through multiple paths and one or more of switches.  

[0046] Distributed storage system manager 135 or a single storage system manager 131 or 132 

may create vvols (e.g., upon request of a computer system 100, etc.) from logical "storage 

containers," which represent a logical aggregation of physical DSUs. In general, a storage 

container may span more than one storage system and many storage containers may be created 

by a single storage system manager or a distributed storage system manager. Similarly, a single 

storage system may contain many storage containers. In Figures 2A and 2B, storage container 

142A created by distributed storage system manager 135 is shown as spanning storage system 

1301 and storage system 1302, whereas storage container 142B and storage container 142C are 

shown as being contained within a single storage system (i.e., storage system 1301 and storage 

system 1302, respectively). It should be recognized that, because a storage container can span 

more than one storage system, a storage system administrator can provision to its customers a 

storage capacity that exceeds the storage capacity of any one storage system. It should be further 

recognized that, because multiple storage containers can be created within a single storage 

system, the storage system administrator can provision storage to multiple customers using a 

single storage system.  

[0047] In the embodiment of Figure 2A, each vvol is provisioned from a block based storage 

system. In the embodiment of Figure 2B, a NAS based storage system implements a file system 

145 on top of DSUs 141 and each vvol is exposed to computer systems 100 as a file object 

within this file system. In addition, as will be described in further detail below, applications 

running on computer systems 100 access vvols for 10 through PEs. For example, as illustrated 

in dashed lines in Figures 2A and 2B, vvol 151 and vvol 152 are accessible via PE 161; vvol 153 

and vvol 155 are accessible via PE 162; vvol 154 is accessible via PE 163 and PE 164; and vvol 

156 is accessible via PE 165. It should be recognized that vvols from multiple storage 

containers, such as vvol 153 in storage container 142A and vvol 155 in storage container 142C, 

may be accessible via a single PE, such as PE 162, at any given time. It should further be 

recognized that PEs, such as PE 166, may exist in the absence of any vvols that are accessible 

via them.  

[0048] In the embodiment of Figure 2A, storage systems 130 implement PEs as a special type 

of LUN using known methods for setting up LUNs. As with LUNs, a storage system 130 

provides each PE a unique identifier known as a WWN (World Wide Name). In one 

embodiment, when creating the PEs, storage system 130 does not specify a size for the special 

LUN because the PEs described herein are not actual data containers. In one such embodiment,
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storage system 130 may assign a zero value or a very small value as the size of a PE-related 

LUN such that administrators can quickly identify PEs when requesting that a storage system 

provide a list of LUNs (e.g., traditional data LUNs and PE-related LUNs), as further discussed 

below. Similarly, storage system 130 may assign a LUN number greater than 255 as the 

identifying number for the LUN to the PEs to indicate, in a human-friendly way, that they are not 

data LUNs. As another way to distinguish between the PEs and LUNs, a PE bit may be added to 

the Extended Inquiry Data VPD page (page 86h). The PE bit is set to 1 when a LUN is a PE, 

and to 0 when it is a regular data LUN. Computer systems 100 may discover the PEs via the in

band path by issuing a SCSI command REPORT_ LUNS and determine whether they are PEs 

according to embodiments described herein or conventional data LUNs by examining the 

indicated PE bit. Computer systems 100 may optionally inspect the LUN size and LUN number 

properties to further confirm whether the LUN is a PE or a conventional LUN. It should be 

recognized that any one of the techniques described above may be used to distinguish a PE

related LUN from a regular data LUN. In one embodiment, the PE bit technique is the only 

technique that is used to distinguish a PE-related LUN from a regular data LUN.  

[0049] In the embodiment of Figure 2B, the PEs are created in storage systems 130 using 

known methods for setting up mount points to FS volumes. Each PE that is created in the 

embodiment of Figure 2B is identified uniquely by an IP address and file system path, also 

conventionally referred together as a "mount point." However, unlike conventional mount 

points, the PEs are not associated with FS volumes. In addition, unlike the PEs of Figure 2A, the 

PEs of Figure 2B are not discoverable by computer systems 100 via the in-band path unless 

virtual volumes are bound to a given PE. Therefore, the PEs of Figure 2B are reported by the 

storage system via the out-of-band path.  

[0050] Figure 3 is a block diagram of components of the storage system cluster of Figures 2A 

or 2B for managing virtual volumes according to an embodiment. The components include 

software modules of storage system managers 131 and 132 executing in storage systems 130 in 

one embodiment or software modules of distributed storage system manager 135 in another 

embodiment, namely an input/output (I/O) manager 304, a volume manager 306, a container 

manager 308, and a data access layer 310. In the descriptions of the embodiments herein, it 

should be understood that any actions taken by distributed storage system manager 135 may be 

taken by storage system manager 131 or storage system manager 132 depending on the 

embodiment.  

[0051] In the example of Figure 3, distributed storage system manager 135 has created three 

storage containers SC1, SC2, and SC3 from DSUs 141, each of which is shown to have spindle
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extents labeled P1 through Pn. In general, each storage container has a fixed physical size, and 

is associated with specific extents of DSUs. In the example shown in Figure 3, distributed 

storage system manager 135 has access to a container database 316 that stores for each storage 

container, its container ID, physical layout information and some metadata. Container database 

316 is managed and updated by a container manager 308, which in one embodiment is a 

component of distributed storage system manager 135. The container ID is a universally unique 

identifier that is given to the storage container when the storage container is created. Physical 

layout information consists of the spindle extents of DSUs 141 that are associated with the given 

storage container and stored as an ordered list of <system ID, DSU ID, extent number>. The 

metadata section may contain some common and some storage system vendor specific metadata.  

For example, the metadata section may contain the IDs of computer systems or applications or 

users that are permitted to access the storage container. As another example, the metadata 

section contains an allocation bitmap to denote which <system ID, DSU ID, extent number> 

extents of the storage container are already allocated to existing vvols and which ones are free.  

In one embodiment, a storage system administrator may create separate storage containers for 

different business units so that vvols of different business units are not provisioned from the 

same storage container. Other policies for segregating vvols may be applied. For example, a 

storage system administrator may adopt a policy that vvols of different customers of a cloud 

service are to be provisioned from different storage containers. Also, vvols may be grouped and 

provisioned from storage containers according to their required service levels. In addition, a 

storage system administrator may create, delete, and otherwise manage storage containers, such 

as defining the number of storage containers that can be created and setting the maximum 

physical size that can be set per storage container.  

[0052] Also, in the example of Figure 3, distributed storage system manager 135 has 

provisioned (on behalf of requesting computer systems 100) multiple vvols, each from a 

different storage container. In general, vvols may have a fixed physical size or may be thinly 

provisioned, and each vvol has a vvol ID, which is a universally unique identifier that is given to 

the vvol when the vvol is created. For each vvol, a vvol database 314 stores for each vvol, its 

vvol ID, the container ID of the storage container in which the vvol is created, and an ordered list 

of <offset, length> values within that storage container that comprise the address space of the 

vvol. Vvol database 314 is managed and updated by volume manager 306, which in one 

embodiment, is a component of distributed storage system manager 135. In one embodiment, 

vvol database 314 also stores a small amount of metadata about the vvol. This metadata is stored 

in vvol database 314 as a set of key-value pairs, and may be updated and queried by computer
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systems 100 via the out-of-band path at any time during the vvol's existence. Stored key-value 

pairs fall into three categories. The first category is: well-known keys-the definition of certain 

keys (and hence the interpretation of their values) are publicly available. One example is a key 

that corresponds to the virtual volume type (e.g., in virtual machine embodiments, whether the 

vvol contains a VM's metadata or a VM's data). Another example is the App ID, which is the 

ID of the application that stored data in the vvol. The second category is: computer system 

specific keys-the computer system or its management module stores certain keys and values as 

the virtual volume's metadata. The third category is: storage system vendor specific keys-these 

allow the storage system vendor to store certain keys associated with the virtual volume's 

metadata. One reason for a storage system vendor to use this key-value store for its metadata is 

that all of these keys are readily available to storage system vendor plug-ins and other extensions 

via the out-of-band channel for vvols. The store operations for key-value pairs are part of virtual 

volume creation and other processes, and thus the store operation should be reasonably fast.  

Storage systems are also configured to enable searches of virtual volumes based on exact 

matches to values provided on specific keys.  

[0053] 10 manager 304 is a software module (also, in certain embodiments, a component of 

distributed storage system manager 135) that maintains a connection database 312 that stores 

currently valid IO connection paths between PEs and vvols. In the example shown in Figure 3, 

seven currently valid 10 sessions are shown. Each valid session has an associated PE ID, 

secondary level identifier (SLLID), vvol ID, and reference count (RefCnt) indicating the number 

of different applications that are performing 10 through this IO session. The process of 

establishing a valid 10 session between a PE and a vvol by distributed storage system manager 

135 (e.g., on request by a computer system 100) is referred to herein as a "bind" process. For 

each bind, distributed storage system manager 135 (e.g., via IO manager 304) adds an entry to 

connection database 312. The process of subsequently tearing down the 10 session by 

distributed storage system manager 135 is referred to herein as an "unbind" process. For each 

unbind, distributed storage system manager 135 (e.g., via IO manager 304) decrements the 

reference count of the 10 session by one. When the reference count of an 10 session is at zero, 

distributed storage system manager 135 (e.g., via IO manager 304) may delete the entry for that 

10 connection path from connection database 312. As previously discussed, in one embodiment, 

computer systems 100 generate and transmit bind and unbind requests via the out-of-band path 

to distributed storage system manager 135. Alternatively, computer systems 100 may generate 

and transmit unbind requests via an in-band path by overloading existing error paths. In one 

embodiment, the generation number is changed to a monotonically increasing number or a
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randomly generated number, when the reference count changes from 0 to 1 or vice versa. In 

another embodiment, the generation number is a randomly generated number and the RefCnt 

column is eliminated from connection database 312, and for each bind, even when the bind 

request is to a vvol that is already bound, distributed storage system manager 135 (e.g., via IO 

manager 304) adds an entry to connection database 312.  

[0054] In the storage system cluster of Figure 2A, 10 manager 304 processes 10 requests (IOs) 

from computer systems 100 received through the PEs using connection database 312. When an 

10 is received at one of the PEs, 10 manager 304 parses the IO to identify the PE ID and the 

SLLID contained in the 10 in order to determine a vvol for which the 10 was intended. By 

accessing connection database 314, 10 manager 304 is then able to retrieve the vvol ID 

associated with the parsed PE ID and SLLID. In Figure 3 and subsequent figures, PE ID is 

shown as PEA, PEB, etc. for simplicity. In one embodiment, the actual PE IDs are the WWNs 

of the PEs. In addition, SLLID is shown as SOOO1, S0002, etc. The actual SLLIDs are generated 

by distributed storage system manager 135 as any unique number among SLLIDs associated 

with a given PE ID in connection database 312. The mapping between the logical address space 

of the virtual volume having the vvol ID and the physical locations of DSUs 141 is carried out 

by volume manager 306 using vvol database 314 and by container manager 308 using container 

database 316. Once the physical locations of DSUs 141 have been obtained, data access layer 

310 (in one embodiment, also a component of distributed storage system manager 135) performs 

10 on these physical locations.  

[0055] In the storage system cluster of Figure 2B, IOs are received through the PEs and each 

such 10 includes an NFS handle (or similar file system handle) to which the IO has been issued.  

In one embodiment, connection database 312 for such a system contains the IP address of the 

NFS interface of the storage system as the PE ID and the file system path as the SLLID. The 

SLLIDs are generated based on the location of the vvol in the file system 145. The mapping 

between the logical address space of the vvol and the physical locations of DSUs 141 is carried 

out by volume manager 306 using vvol database 314 and by container manager 308 using 

container database 316. Once the physical locations of DSUs 141 have been obtained, data 

access layer performs IO on these physical locations. It should be recognized that for a storage 

system of Figure 2B, container database 312 may contain an ordered list of file:<offset, length> 

entries in the Container Locations entry for a given vvol (i.e., a vvol can be comprised of 

multiple file segments that are stored in the file system 145).  

[0056] In one embodiment, connection database 312 is maintained in volatile memory while 

vvol database 314 and container database 316 are maintained in persistent storage, such as DSUs
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141. In other embodiments, all of the databases 312, 314, 316 may be maintained in persistent 

storage.  

[0057] Figure 4 is a flow diagram of method steps 410 for creating a storage container. In one 

embodiment, these steps are carried out by storage system manager 131, storage system manager 

132 or distributed storage system manager 135 under control of a storage administrator. As 

noted above, a storage container represents a logical aggregation of physical DSUs and may span 

physical DSUs from more than one storage system. At step 411, the storage administrator (via 

distributed storage system manager 135, etc.) sets a physical capacity of a storage container.  

Within a cloud or data center, this physical capacity may, for example, represent the amount of 

physical storage that is leased by a customer. The flexibility provided by storage containers 

disclosed herein is that storage containers of different customers can be provisioned by a storage 

administrator from the same storage system and a storage container for a single customer can be 

provisioned from multiple storage systems, e.g., in cases where the physical capacity of any one 

storage device is not sufficient to meet the size requested by the customer, or in cases such as 

replication where the physical storage footprint of a vvol will naturally span multiple storage 

systems. At step 412, the storage administrator sets permission levels for accessing the storage 

container. In a multi-tenant data center, for example, a customer may only access the storage 

container that has been leased to him or her. At step 413, distributed storage system manager 

135 generates a unique identifier for the storage container. Then, at step 414, distributed storage 

system manager 135 (e.g., via container manager 308 in one embodiment) allocates free spindle 

extents of DSUs 141 to the storage container in sufficient quantities to meet the physical capacity 

set at step 411. As noted above, in cases where the free space of any one storage system is not 

sufficient to meet the physical capacity, distributed storage system manager 135 may allocate 

spindle extents of DSUs 141 from multiple storage systems. After the partitions have been 

allocated, distributed storage system manager 135 (e.g., via container manager 308) updates 

container database 316 with the unique container ID, an ordered list of <system number, DSU 

ID, extent number>, and context IDs of computer systems that are permitted to access the storage 

container.  

[0058] According to embodiments described herein, storage capability profiles, e.g., SLAs or 

quality of service (QoS), may be configured by distributed storage system manager 135 (e.g., on 

behalf of requesting computer systems 100) on a per vvol basis. Therefore, it is possible for 

vvols with different storage capability profiles to be part of the same storage container. In one 

embodiment, a system administrator defines a default storage capability profile (or a number of 

possible storage capability profiles) for newly created vvols at the time of creation of the storage
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container and stored in the metadata section of container database 316. If a storage capability 

profile is not explicitly specified for a new vvol being created inside a storage container, the new 

vvol will inherit the default storage capability profile associated with the storage container.  

[0059] Figure 5A is a block diagram of an embodiment of a computer system configured to 

implement virtual volumes hosted on a storage system cluster of Figure 2A. Computer system 

101 may be constructed on a conventional, typically server-class, hardware platform 500 that 

includes one or more central processing units (CPU) 501, memory 502, one or more network 

interface cards (NIC) 503, and one or more host bus adapters (HBA) 504. HBA 504 enables 

computer system 101 to issue IOs to virtual volumes through PEs configured in storage devices 

130. As further shown in Figure 5A, operating system 508 is installed on top of hardware 

platform 500 and a number of applications 5121-512N are executed on top of operating system 

508. Examples of operating system 508 include any of the well-known commodity operating 

systems, such as Microsoft Windows, Linux, and the like.  

[0060] According to embodiments described herein, each application 512 has one or more 

vvols associated therewith and issues IOs to block device instances of the vvols created by 

operating system 508 pursuant to "CREATE DEVICE" calls by application 512 into operating 

system 508. The association between block device names and vvol IDs are maintained in block 

device database 533. IOs from applications 5122-512N are received by a file system driver 510, 

which converts them to block IOs, and provides the block IOs to a virtual volume device driver 

532. lOs from application 5121, on the other hand, are shown to bypass file system driver 510 

and provided directly to virtual volume device driver 532, signifying that application 5121 

accesses its block device directly as a raw storage device, e.g., as a database disk, a log disk, a 

backup archive, and a content repository, in the manner described in U.S. Patent 7,155,558 

entitled "Providing Access to a Raw Data Storage Unit in a Computer System," the entire 

contents of which are incorporated by reference herein. When virtual volume device driver 532 

receives a block IO, it accesses block device database 533 to reference a mapping between the 

block device name specified in the 10 and the PE ID (WWN of PE LUN) and SLLID that define 

the 10 connection path to the vvol associated with the block device name. In the example shown 

herein, the block device name, archive, corresponds to a block device instance of vvoll2 that 

was created for application 5121, and the block device names, foo, dbase, and log, correspond to 

block device instances of vvoll, vvoll6, and vvol17, respectively, that were created for one or 

more of applications 5122-512N. Other information that is stored in block device database 533 

includes an active bit value for each block device that indicates whether or not the block device 

is active, and a CIF (commands-in-flight) value. An active bit of "1" signifies that IOs can be
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issued to the block device. An active bit of "0" signifies that the block device is inactive and IOs 

cannot be issued to the block device. The CIF value provides an indication of how many IOs are 

in flight, i.e., issued but not completed. In the example shown herein, the block device, foo, is 

active, and has some commands-in-flight. The block device, archive, is inactive, and will not 

accept newer commands. However, it is waiting for 2 commands-in-flight to complete. The 

block device, dbase, is inactive with no outstanding commands. Finally, the block device, log, is 

active, but the application currently has no pending IOs to the device. Virtual volume device 

driver 532 may choose to remove such devices from its database 533 at any time.  

[0061] In addition to performing the mapping described above, virtual volume device driver 

532 issues raw block-level IOs to data access layer 540. Data access layer 540 includes device 

access layer 534, which applies command queuing and scheduling policies to the raw block-level 

IOs, and device driver 536 for HBA 504 which formats the raw block-level IOs in a protocol

compliant format and sends them to HBA 504 for forwarding to the PEs via an in-band path. In 

the embodiment where SCSI protocol is used, the vvol information is encoded in the SCSI LUN 

data field, which is an 8-byte structure, as specified in SAM-5 (SCSI Architecture Model - 5).  

The PE ID is encoded in the first 2 bytes, which is conventionally used for the LUN ID, and the 

vvol information, in particular the SLLID, is encoded in the SCSI second level LUN ID, utilizing 

(a portion of) the remaining 6 bytes.  

[0062] As further shown in Figure 5A, data access layer 540 also includes an error handling 

unit 542 for handling IO errors that are received through the in-band path from the storage 

system. In one embodiment, the IO errors received by error handling unit 542 are propagated 

through the PEs by I/O manager 304. Examples of 10 error classes include path errors between 

computer system 101 and the PEs, PE errors, and vvol errors. The error handling unit 542 

classifies all detected errors into aforementioned classes. When a path error to a PE is 

encountered and another path to the PE exists, data access layer 540 transmits the 10 along a 

different path to the PE. When the 10 error is a PE error, error handing unit 542 updates block 

device database 533 to indicate an error condition for each block device issuing IOs through the 

PE. When the 10 error is a vvol error, error handing unit 542 updates block device database 533 

to indicate an error condition for each block device associated with the vvol. Error handing unit 

542 may also issue an alarm or system event so that further IOs to block devices having the error 

condition will be rejected.  

[0063] Figure 5B is a block diagram of the computer system of Figure 5A that has been 

configured to interface with the storage system cluster of Figure 2B instead of the storage system 

cluster of Figure 2A. In this embodiment, data access layer 540 includes an NFS client 545 and
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a device driver 546 for NIC 503. NFS client 545 maps the block device name to a PE ID (IP 

address of NAS storage system) and a SLLID which is a NFS file handle corresponding to the 

block device. This mapping is stored in block device database 533 as shown in Figure 5B. It 

should be noted that the Active and CIF columns are still present but not illustrated in the block 

device database 533 shown in Figure 5B. As will be described below, an NFS file handle 

uniquely identifies a file object within the NAS storage system, and may be generated during the 

bind process. Alternatively, in response to a request to bind the vvol, the NAS storage system 

returns the PE ID and the SLLID, and an open of the vvol using regular in-band mechanisms 

(e.g., lookup or readdirplus) will give the NFS file handle. NFS client 545 also translates the raw 

block-level IOs received from virtual volume device driver 532 to NFS file-based IOs. Device 

driver 546 for NIC 503 then formats the NFS file-based IOs in a protocol-compliant format and 

sends them to NIC 503, along with the NFS handle, for forwarding to one of the PEs via an in

band path.  

[0064] Figure 5C is a block diagram of another embodiment of a computer system configured 

to implement virtual volumes. In this embodiment, computer system 102 is configured with 

virtualization software, shown herein as hypervisor 560. Hypervisor 560 is installed on top of 

hardware platform 550, which includes CPU 551, memory 552, NIC 553, and HBA 554, and 

supports a virtual machine execution space 570 within which multiple virtual machines (VMs) 

5711-571N may be concurrently instantiated and executed. In one or more embodiments, 

hypervisor 560 and virtual machines 571 are implemented using the VMware vSphere@ product 

distributed by VMware, Inc. of Palo Alto, California. Each virtual machine 571 implements a 

virtual hardware platform 573 that supports the installation of a guest operating system (OS) 572 

which is capable of executing applications 579. Examples of a guest OS 572 include any of the 

well-known commodity operating systems, such as Microsoft Windows, Linux, and the like. In 

each instance, guest OS 572 includes a native file system layer (not shown in Figure 5C), for 

example, either an NTFS or an ext3FS type file system layer. These file system layers interface 

with virtual hardware platforms 573 to access, from the perspective of guest OS 572, a data 

storage HBA, which in reality, is virtual HBA 574 implemented by virtual hardware platform 

573 that provides the appearance of disk storage support (in reality, virtual disks or virtual disks 

575A-575X) to enable execution of guest OS 572. In certain embodiments, virtual disks 575A

575X may appear to support, from the perspective of guest OS 572, the SCSI standard for 

connecting to the virtual machine or any other appropriate hardware connection interface 

standard known to those with ordinary skill in the art, including IDE, ATA, and ATAPI.  

Although, from the perspective of guest OS 572, file system calls initiated by such guest OS 572
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to implement file system-related data transfer and control operations appear to be routed to 

virtual disks 575A-575X for final execution, in reality, such calls are processed and passed 

through virtual HBA 574 to adjunct virtual machine monitors (VMM) 5611-56IN that 

implement the virtual system support needed to coordinate operation with hypervisor 560. In 

particular, HBA emulator 562 functionally enables the data transfer and control operations to be 

correctly handled by hypervisor 560 which ultimately passes such operations through its various 

layers to HBA 554 that connect to storage systems 130.  

[0065] According to embodiments described herein, each VM 571 has one or more vvols 

associated therewith and issues IOs to block device instances of the vvols created by hypervisor 

560 pursuant to "CREATE DEVICE" calls by VM 571 into hypervisor 560. The association 

between block device names and vvol IDs are maintained in block device database 580. IOs 

from VMs 5712-571N are received by a SCSI virtualization layer 563, which converts them into 

file IOs understood by a virtual machine file system (VMFS) driver 564. VMFS driver 564 then 

converts the file IOs to block IOs, and provides the block IOs to virtual volume device driver 

565. IOs from VM 5711, on the other hand, are shown to bypass VMFS driver 564 and provided 

directly to virtual volume device driver 565, signifying that VM 5711 accesses its block device 

directly as a raw storage device, e.g., as a database disk, a log disk, a backup archive, and a 

content repository, in the manner described in U.S. Patent 7,155,558.  

[0066] When virtual volume device driver 565 receives a block 10, it accesses block device 

database 580 to reference a mapping between the block device name specified in the 10 and the 

PE ID and SLLID that define the 10 session to the vvol associated with the block device name.  

In the example shown herein, the block device names, dbase and log, corresponds to block 

device instances of vvoll and vvol4, respectively, that were created for VM 5711, and the block 

device names, vmdk2, vmdkn, and snapn, correspond to block device instances of vvoll2, 

vvol16, and vvoll7, respectively, that were created for one or more of VMs 5712-571N. Other 

information that is stored in block device database 580 includes an active bit value for each 

block device that indicates whether or not the block device is active, and a CIF (commands-in

flight) value. An active bit of "1" signifies that IOs can be issued to the block device. An active 

bit of "0" signifies that the block device is inactive and IOs cannot be issued to the block device.  

The CIF value provides an indication of how many IOs are in flight, i.e., issued but not 

completed.  

[0067] In addition to performing the mapping described above, virtual volume device driver 

565 issues raw block-level IOs to data access layer 566. Data access layer 566 includes device 

access layer 567, which applies command queuing and scheduling policies to the raw block-level
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IOs, and device driver 568 for HBA 554 which formats the raw block-level IOs in a protocol

compliant format and sends them to HBA 554 for forwarding to the PEs via an in-band path. In 

the embodiment where SCSI protocol is used, the vvol information is encoded in the SCSI LUN 

data field, which is an 8-byte structure, as specified in SAM-5 (SCSI Architecture Model - 5).  

The PE ID is encoded in the first 2 bytes, which is conventionally used for the LUN ID, and the 

vvol information, in particular the SLLID, is encoded in the SCSI second level LUN ID, utilizing 

(a portion of) the remaining 6 bytes. As further shown in Figure 5C, data access layer 566 also 

includes an error handling unit 569, which functions in the same manner as error handling unit 

542.  

[0068] Figure 5D is a block diagram of the computer system of Figure 5C that has been 

configured to interface with the storage system cluster of Figure 2B instead of the storage system 

cluster of Figure 2A. In this embodiment, data access layer 566 includes an NFS client 585 and 

a device driver 586 for NIC 553. NFS client 585 maps the block device name to a PE ID (IP 

address) and SLLID (NFS file handle) corresponding to the block device. This mapping is 

stored in block device database 580 as shown in Figure 5D. It should be noted that the Active 

and CIF columns are still present but not illustrated in the block device database 580 shown in 

Figure 5D. As will be described below, an NFS file handle uniquely identifies a file object 

within the NFS, and is generated during the bind process in one embodiment. NFS client 585 

also translates the raw block-level IOs received from virtual volume device driver 565 to NFS 

file-based IOs. Device driver 586 for NIC 553 then formats the NFS file-based IOs in a 

protocol-compliant format and sends them to NIC 553, along with the NFS handle, for 

forwarding to one of the PEs via an in-band path.  

[0069] It should be recognized that the various terms, layers and categorizations used to 

describe the components in Figures 5A-5D may be referred to differently without departing from 

their functionality or the spirit or scope of the invention. For example, VMM 561 may be 

considered separate virtualization components between VM 571 and hypervisor 560 (which, in 

such a conception, may itself be considered a virtualization "kernel" component) since there 

exists a separate VMM for each instantiated VM. Alternatively, each VMM 561 may be 

considered to be a component of its corresponding virtual machine since such VMM includes the 

hardware emulation components for the virtual machine. In such an alternative conception, for 

example, the conceptual layer described as virtual hardware platform 573 may be merged with 

and into VMM 561 such that virtual host bus adapter 574 is removed from Figures 5C and 5D 

(i.e., since its functionality is effectuated by host bus adapter emulator 562).
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[0070] Figure 6 is a simplified block diagram of a computer environment that illustrates 

components and communication paths used to manage vvols according to an embodiment of the 

invention. As previously described, the communication path for 10 protocol traffic is referred to 

as the in-band path and is shown in Figure 6 as dashed line 601 that connects data access layer 

540 of the computer system (through an HBA or NIC provided in the computer system) with one 

or more PEs configured in storage systems 130. The communication paths used to manage vvols 

are out-of-band paths (as previously defined, paths that are not "in-band") and shown in Figure 6 

as solid lines 602. According to embodiments described herein, vvols can be managed through 

plug-in 612 provided in management server 610 and/or plug-in 622 provided in each of 

computer systems 103, only one of which is shown in Figure 6. On the storage device side, a 

management interface 625 is configured by storage system manager 131 and a management 

interface 626 is configured by storage system manager 132. In addition, a management interface 

624 is configured by distributed storage system manager 135. Each management interface 

communicates with plug-ins 612, 622. To facilitate issuing and handling of management 

commands, special application programming interfaces (APIs) have been developed. It should 

be recognized that, in one embodiment, both plug-ins 612, 622 are customized to communicate 

with storage hardware from a particular storage system vendor. Therefore, management server 

610 and computer systems 103 will employ different plug-ins when communicating with storage 

hardware for different storage system vendors. In another embodiment, there may be a single 

plug-in that interacts with any vendor's management interface. This would require the storage 

system manager to be programmed to a well-known interface (e.g., by virtue of being published 

by the computer system and/or the management server).  

[0071] Management server 610 is further configured with a system manager 611 for managing 

the computer systems. In one embodiment, the computer systems are executing virtual machines 

and system manager 611 manages the virtual machines running in the computer systems. One 

example of system manager 611 that manages virtual machines is the vSphere@ product 

distributed by VMware, Inc. As shown, system manager 611 communicates with a host daemon 

(hostd) 621 running in computer system 103 (through appropriate hardware interfaces at both 

management server 610 and computer system 103) to receive resource usage reports from 

computer system 103 and to initiate various management operations on applications running in 

computer system 103.  

[0072] Figure 7 is a flow diagram of method steps for authenticating a computer system to the 

storage system cluster of Figures 2A or 2B using an authentication related API. These method 

steps are initiated when a computer system requests authentication by transmitting its secure
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socket layer (SSL) certificate to the storage system. At step 710, the storage system issues a 

prompt for authentication credentials (e.g., username and password) to the computer system 

requesting authentication. Upon receipt of the authentication credentials at step 712, the storage 

system compares them against stored credentials at step 714. If the correct credentials are 

provided, the storage system stores the SSL certificate of the authenticated computer system in a 

key store (step 716). If incorrect credentials are provided, the storage system ignores the SSL 

certificate and returns an appropriate error message (step 718). Subsequent to being 

authenticated, the computer system may invoke the APIs to issue management commands to the 

storage system over SSL links, and unique context IDs included in the SSL certificates are used 

by the storage system to enforce certain policies such as defining which computer systems may 

access which storage containers. In some embodiments, context IDs of the computer systems 

may be used in managing permissions granted to them. For example, a host computer may be 

permitted to create a vvol, but may not be permitted to delete the vvol or snapshot the vvol, or a 

host computer may be permitted to create a snapshot of a vvol, but may not be permitted to clone 

the vvol. In addition, permissions may vary in accordance with user-level privileges of users 

who are logged into authenticated computer systems.  

[0073] Figure 8 is a flow diagram of method steps for creating a virtual volume using a create 

virtual volumes API command. In one embodiment, computer system 103 issues the create 

virtual volumes API command to the storage system via out-of-band path 602 when, at step 802, 

computer system 103 receives a request to create a vvol having certain size and storage 

capability profiles, such as minimum IOPS and average latency, from one of its applications. In 

response, computer system 103, at step 804, selects a storage container (among those that 

computer system 103 and the requesting application is permitted to access and have sufficient 

free capacity to accommodate the request) and issues the create virtual volumes API command 

via plug-in 622 to the storage system. The API command includes a storage container ID, vvol 

size, and storage capability profiles of the vvol. In another embodiment, the API command 

includes a set of key-value pairs that the application requires the storage system to store with the 

newly created vvol. In another embodiment, management server 610 issues the create virtual 

volumes API command (via plug-in 612) to the storage system via out-of-band path 602.  

[0074] At step 806, the storage system manager receives the request to generate the vvol via the 

management interface (e.g., management interface 624, 625, or 626) and accesses the selected 

storage container's metadata section in container database 316 to verify that the request context 

comprising the computer system 103 and application has sufficient permissions to create a vvol 

in the selected storage container. In one embodiment, an error message is returned to computer
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system 103 if the permission level is not sufficient. If the permission level is sufficient, a unique 

vvol ID is generated at step 810. Then at step 812, the storage system manager scans the 

allocation bitmap in the metadata section of container database 316 to determine free partitions 

of the selected storage container. The storage system manager allocates the free partitions of the 

selected storage container sufficient to accommodate the requested vvol size, and updates the 

allocation bitmap in the storage container's metadata section of container database 316. The 

storage system manager also updated vvol database 314 with a new vvol entry. The new vvol 

entry includes the vvol ID generated at step 810, ordered list of newly allocated storage container 

extents, and metadata of the new vvol expressed as key-value pairs. Then, at step 814, the 

storage system manager transmits the vvol ID to computer system 103. At step 816, computer 

system 103 associates the vvol ID with the application that requested creation of the vvol. In one 

embodiment, one or more vvol descriptor files are maintained for each application and the vvol 

ID is written into a vvol descriptor file maintained for the application that requested the creation 

of the vvol.  

[0075] As shown in Figures 2A and 2B, not all vvols are connected to PEs. A vvol that is not 

connected to a PE is not aware of IOs issued by a corresponding application because an 10 

session is not established to the vvol. Before IOs can be issued to a vvol, the vvol undergoes a 

bind process as a result of which the vvol will be bound to a particular PE. Once a vvol is bound 

to a PE, IOs can be issued to the vvol until the vvol is unbound from the PE.  

[0076] In one embodiment, the bind request is issued by computer system 103 via an out-of

band path 602 to the storage system using a bind virtual volume API. The bind request identifies 

the vvol to be bound (using the vvol ID) and in response the storage system binds the vvol to a 

PE to which computer system 103 is connected via an in-band path. Figure 9A is a flow diagram 

of method steps for the computer system to discover PEs to which it is connected via an in-band 

path. PEs configured in SCSI protocol-based storage devices are discovered via an in-band path 

using the standard SCSI command, REPORT_LUNS. PEs configured in NFS protocol-based 

storage devices are discovered via an out-of-band path using an API. The method steps of 

Figure 9A are carried out by the computer system for each connected storage system.  

[0077] At step 910, the computer system determines whether the connected storage system is 

SCSI protocol-based or NFS protocol-based. If the storage system is SCSI protocol-based, the 

SCSI command, REPORTLUNS, is issued by the computer system in-band to the storage 

system (step 912). Then, at step 913, the computer system examines the response from the 

storage system, in particular the PE bit associated with each of the PE IDs that are returned, to 

distinguish between the PE-related LUNs and the convention data LUNs. If the storage system
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is NFS protocol-based, an API call is issued by the computer system out-of-band from plug-in 

622 to the management interface (e.g., management interface 624, 625, or 626) to get IDs of 

available PEs (step 914). At step 916, which follows steps 913 and 914, the computer system 

stores the PE IDs of PE-related LUNs returned by the storage system or the PE IDs returned by 

the management interface, for use during a bind process. It should be recognized that the PE IDs 

returned by SCSI protocol-based storage devices each include a WWN, and the PE IDs returned 

by NFS protocol-based storage devices each include an IP address and mount point.  

[0078] Figure 9B is a flow diagram of method steps for the storage system manager 131 or 

storage system manager 132 or distributed storage system manager 135 (hereinafter referred to 

as "the storage system manager") to discover PEs to which a given computer system 103 is 

connected via an in-band path. The discovery of such PEs by a storage system manager enables 

the storage system to return to a requesting computer system, a valid PE ID, onto which the 

computer system can be actually connected, in response to a bind request from the computer 

system. At step 950, the storage system manager issues an out-of-band "Discover Topology" 

API call to the computer system 103 via the management interface and plug-in 622. Computer 

system 103 returns its system ID and a list of all PE IDs that it discovered via the flow diagram 

of Figure 9A. In one embodiment, the storage system manager executes step 950 by issuing a 

"DiscoverTopology" API call to management server 610 via the management interface and 

plug-in 612. In such an embodiment, the storage system will receive a response that contains 

multiple computer system IDs and associated PE IDs, one for each computer system 103 that 

management server 610 manages. Then, at step 952, the storage system manager processes the 

results from step 950. For example, the storage system manager clears the list of all PE IDs that 

are not under its current control. For example, certain PE IDs received by the storage system 

manager 135 when issuing a DiscoverTopology call may correspond to another storage system 

connected to the same computer system. Similarly, certain received PE IDs may correspond to 

older PEs that were since deleted by the storage system administrator, and so on. At step 954, 

the storage system manager caches the processed results for use during subsequent bind requests.  

In one embodiment, the storage system manager runs the steps of Figure 9B periodically to 

update its cached results with ongoing computer system and network topology changes. In 

another embodiment, the storage system manager runs the steps of Figure 9B every time it 

receives a new vvol creation request. In yet another embodiment, the storage system manager 

runs the steps of Figure 9B after running the authentication steps of Figure 7.  

[0079] Figure 10 is a flow diagram of method steps for issuing and executing a virtual volume 

bind request using a bind virtual volume API. In one embodiment, computer system 103 issues
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the bind request to the storage system via out-of-band path 602 when one of its applications 

requests 10 access to a block device associated with a vvol that has not yet been bound to a PE.  

In another embodiment, management server 610 issues the bind request in connection with 

certain VM management operations, including VM power on and vvol migration from one 

storage container to another.  

[0080] Continuing with the example described above where an application requests 10 access 

to a block device associated with vvol that has not yet been bound to a PE, computer system 103 

at step 1002 determines from the block device database 533 (or 580), the vvol ID of the vvol.  

Then, at step 1004, computer system 103 issues through the out-of-band path 602 a request to 

bind the vvol to the storage system.  

[0081] The storage system manager receives the request to bind the vvol via the management 

interface (e.g., management interface 624, 625, or 626) at step 1006, and then carries out step 

1008, which includes selecting a PE to which the vvol is to be bound, generating SLLID and 

generation number for the selected PE, and updating connection database 312 (e.g., via 10 

manager 304). The selection of the PE to which the vvol is to be bound is made according to 

connectivity, i.e., only the PEs that have an existing in-band connection to computer system 103 

are available for selection, and other factors, such as current IO traffic through the available PEs.  

In one embodiment, the storage system selects from the processed and cached list of PEs the 

computer system 103 sent to it according to the method of Figure 9B. SLLID generation differs 

between the embodiment employing the storage system cluster of Figure 2A and the embodiment 

employing the storage system cluster of Figure 2B. In the former case, an SLLID that is unique 

for the selected PE is generated. In the latter case, a file path to the file object corresponding to 

the vvol is generated as the SLLID. After the SLLID and the generation number have been 

generated for the selected PEs, connection database 312 is updated to include newly generated 

IO session to the vvol. Then, at step 1010, ID of the selected PE, the generated SLLID, and the 

generation number are returned to computer system 103. Optionally, in the embodiment 

employing the storage system cluster of Figure 2B, a unique NFS file handle may be generated 

for the file object corresponding to the vvol and returned to computer system 103 along with the 

ID of the selected PE, the generated SLLID, and the generation number. At step 1012, computer 

system 103 updates block device database 533 (or 580) to include the PE ID, the SLLID (and 

optionally, the NFS handle), and the generation number returned from the storage system. In 

particular, each set of PE ID, SLLID (and optionally, the NFS handle), and the generation 

number returned from storage system will be added as a new entry to block device database 533 

(or 580). It should be recognized that the generation number is used to guard against replay
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attacks. Therefore, in embodiments where replay attacks are not a concern, the generation 

number is not used.  

[0082] On subsequent bind requests to the same vvol initiated by a different application 

desiring to issue IOs to the same vvol, the storage system manager may bind the vvol to the same 

or different PE. If the vvol is bound to the same PE, the storage system manager returns the ID 

of the same PE and the SLLID previously generated, and increments the reference count of this 

10 connection path stored in connection database 312. On the other hand, if the vvol is bound to 

a different PE, the storage system manager generates a new SLLID and returns the ID of the 

different PE and the newly generated SLLID and adds this new 10 connection path to the vvol as 

a new entry to connection database 312.  

[0083] A virtual volume unbind request may be issued using an unbind virtual volume API.  

An unbind request includes the PE ID and SLLID of the 10 connection path by which a vvol has 

been previously bound. The processing of the unbind request is, however, advisory. The storage 

system manager is free to unbind the vvol from a PE immediately or after a delay. The unbind 

request is processed by updating connection database 312 to decrement the reference count of 

the entry containing the PE ID and SLLID. If the reference count is decremented to zero, the 

entry may be deleted. It should be noted, in this case, that the vvol continues to exist, but is not 

available for IO using the given PE ID and SLLID any more.  

[0084] In the case of a vvol that implements a virtual disk of a VM, the reference count for this 

vvol will be at least one. When the VM is powered-off and an unbind request is issued in 

connection therewith, the reference count will be decremented by one. If the reference count is 

zero, the vvol entry may be removed from connection database 312. In general, removing 

entries from connection database 312 is beneficial because I/O manager 304 manages less data 

and can also recycle SLLIDs. Such benefits become significant when the total number of vvols 

stored by the storage system is large (e.g., in the order of millions of vvols) but the total number 

of vvols being actively accessed by applications is small (e.g., tens of thousands of VMs).  

Additionally, when a vvol is not bound to any PEs, the storage system has greater flexibility in 

choosing where to store the vvol in DSUs 141. For example, the storage system can be 

implemented with asymmetrical, hierarchical DSUs 141, where some DSUs 141 provide faster 

data access and others provide slower data access (e.g., to save on storage costs). In one 

implementation, when a vvol is not bound to any PE (which can be determined by checking the 

reference count of entries of the vvol in connection database 312), the storage system can 

migrate the vvol to a slower and/or cheaper type of physical storage. Then, once the vvol is 

bound to a PE, the storage system can migrate the vvol to a faster type of physical storage. It
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should be recognized that such migrations can be accomplished by changing one or more 

elements of the ordered list of container locations that make up the given vvol in the vvol 

database 314, and updating the corresponding extent allocation bitmap in the metadata section of 

container database 316.  

[0085] Binding and unbinding vvols to PEs enables the storage system manager to determine 

vvol liveness. The storage system manager may take advantage of this information to perform 

storage system vendor-specific optimizations on non-IO-serving (passive) and 10-serving 

(active) vvols. For example, the storage system manager may be configured to relocate a vvol 

from a low-latency (high cost) SSD to a mid-latency (low cost) hard drive if it remains in a 

passive state beyond a particular threshold of time.  

[0086] Figures 11 A and 11 B are flow diagrams of method steps for issuing an 10 to a virtual 

volume, according to one embodiment. Figure l lA is a flow diagram of method steps 1100 for 

issuing an 10 from an application directly to a raw block device and Figure 11B is a flow 

diagram of method steps 1120 for issuing an IO from an application through a file system driver.  

[0087] Method 1100 begins at step 1102, where an application, such as application 512 shown 

in Figures 5A-5B or VM 571 shown in Figure 5C-5D, issues an 10 to a raw block device. At 

step 1104, virtual volume device driver 532 or 565 generates a raw block-level 10 from the 10 

issued by the application. At step 1106, the name of the raw block device is translated to a PE 

ID and SLLID by virtual volume device driver 532 or 565 (and also to an NFS handle by NFS 

client 545 or 585 in the embodiment employing the storage device of Figure 2B). At step 1108, 

the data access layer 540 or 566 carries out the encoding of the PE ID and SLLID (and also the 

NFS handle in the embodiment employing the storage device of Figure 2B) into the raw block

level 10. Then, at step 1110, the HBA/NIC issues the raw block-level 10.  

[0088] For non-VM applications, such as application 512 shown in Figures 5A-5B, method 

1120 begins at step 1121. At step 1121, the application issues an 10 to a file stored on a vvol

based block device. Then, at step 1122, the file system driver, e.g., file system driver 510, 

generates a block-level 10 from the file IO. After step 1122, steps 1126, 1128, and 1130, which 

are identical to steps 1106, 1108, and 1110, are carried out.  

[0089] For VM applications, such as VM 571 shown in Figure 5C-5D, method 1120 begins at 

step 1123. At step 1123, the VM issues an 10 to its virtual disk. Then, at step 1124, this 10 is 

translated to a file IO, e.g., by SCSI virtualization layer 563. The file system driver, e.g., VMFS 

driver 564, then generates a block-level 10 from the file IO at step 1125. After step 1125, steps 

1126, 1128, and 1130, which are identical to steps 1106, 1108, and 1110, are carried out.
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[0090] Figure 12 is a flow diagram of method steps for performing an 10 at a storage system, 

according to one embodiment. At step 1210, an 10 issued by a computer system is received 

through one of the PEs configured in the storage system. The 10 is parsed by 10 manager 304 at 

step 1212. After step 1212, step 1214a is carried out by 10 manager 304 if the storage system 

cluster is of the type shown in Figure 2A and step 1214b is carried out by 10 manager 304 if the 

storage system cluster is of the type shown in Figure 2B. At step 1214a, 10 manager 304 

extracts the SLLID from the parsed 10 and accesses connection database 312 to determine the 

vvol ID corresponding to the PE ID and the extracted SLLID. At step 1214b, IO manager 304 

extracts the NFS handle from the parsed IO and identifies the vvol using the PE ID and the NFS 

handle as the SLLID. Step 1216 is carried out after steps 1214a and 1214b. At step 1216, vvol 

database 314 and container database 316 are accessed by volume manager 306 and container 

manager 308, respectively, to obtain physical storage locations on which the IO is to be 

performed. Then, at step 1218, data access layer 310 performs the IO on the physical storage 

locations obtained at step 1216.  

[0091] In some situations, an application (application 512 or VM 571), management server 

610, and/or the storage system manager may determine that a binding of a vvol to a particular PE 

is experiencing issues, such as when the PE becomes overloaded with too many bindings. As a 

way to resolve such issues, a bound vvol may be rebound by the storage system manager to a 

different PE, even while IO commands are being directed to the vvol. Figure 13 is a flow 

diagram of method steps 1300 for issuing and executing a vvol rebind request, according to one 

embodiment, using a rebind API.  

[0092] As shown, method 1300 begins at step 1302, where the storage system manager 

determines that a vvol should be bound to a second PE that is different from a first PE to which 

the vvol is currently bound. At step 1304, the storage system manager issues via an out-of-band 

path a request to a computer system (e.g., computer system 103) running an application issuing 

10 to the vvol to rebind the vvol. At step 1306, computer system 103 receives from the storage 

system manager the rebind request and, in response, issues a request to bind the vvol to a new 

PE. At step 1308, the storage system manager receives the rebind request and, in response, binds 

the vvol to the new PE. At step 1310, the storage system manager transmits to the computer 

system an ID of the new PE to which the vvol is now also bound and an SLLID to access the 

vvol, as described above in conjunction with Figure 10.  

[0093] At step 1312, the computer system receives from the storage system manager the new 

PE ID and the SLLID. In block device database 533 or 580, the active bit of the new PE 

connection is set to 1 initially, meaning that a new 10 session for the vvol via the new PE has
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been established. The computer system also sets the active bit of the first PE connection to 0, 

signifying that no more IOs can be issued to the vvol through this PE connection. It should be 

recognized that this PE connection should not be unbound immediately upon deactivation 

because there may be IOs to the vvol through this PE connection that may be in-flight, i.e., 

issued but not completed. Therefore, at step 1314, the computer system accesses block device 

database 533 or 580 to see if all "commands in flight" (CIFs) issued to the vvol through the first 

PE connection have been completed, i.e., if CIF = 0. The computer system waits for the CIF to 

go to zero before executing step 1318. In the meantime, additional IOs to the vvol are issued 

through the new PE since the active bit of the new PE connection is already set to 1. When the 

CIF does reach zero, step 1318 is carried out where a request to unbind the first PE connection is 

issued to the storage system manager. Then, at step 1320, the storage system manager unbinds 

the vvol from the first PE. Also, the computer system issues all additional IOs to the vvol 

through the new PE at step 1324.  

[0094] Figure 14 is a conceptual diagram of a lifecycle of a virtual volume, according to one 

embodiment. All commands shown in Figure 14, namely, create, snapshot, clone, bind, unbind, 

extend, and delete form a vvol management command set, and are accessible through plug-ins 

612, 622 described above in conjunction with Figure 6. As shown, when a vvol is generated as a 

result of any of the following commands-create vvol, snapshot vvol, or clone vvol-the 

generated vvol remains in a "passive" state, where the vvol is not bound to a particular PE, and 

therefore cannot receive IOs. In addition, when any of the following commands-snapshot vvol, 

clone vvol, or extend vvol-is executed when the vvol is in a passive state, the original vvol and 

the newly created vvol (if any) remains in the passive state. As also shown, when a vvol in a 

passive state is bound to a PE, the vvol enters an "active" state. Conversely, when an active vvol 

is unbound from a PE, the vvol enters a passive state, assuming that the vvol is not bound to any 

additional PEs. When any of the following commands-snapshot vvol, clone vvol, extend vvol, 

or rebind vvol-is executed when the vvol is in an active state, the original vvol remains in the 

active state and the newly created vvol (if any) remains in the passive state.  

[0095] As described above, a VM may have multiple virtual disks and a separate vvol is 

created for each virtual disk. The VM also has metadata files that describe the configurations of 

the VM. The metadata files include VM configuration file, VM log files, disk descriptor files, 

one for each of the virtual disks for the VM, a VM swap file, etc. A disk descriptor file for a 

virtual disk contains information relating to the virtual disk such as its vvol ID, its size, whether 

the virtual disk is thinly provisioned, and identification of one or more snapshots created for the 

virtual disk, etc. The VM swap file provides a swap space of the VM on the storage system. In
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one embodiment, these VM configuration files are stored in a vvol, and this vvol is referred to 

herein as a metadata vvol.  

[0096] Figure 15 is a flow diagram of method steps for provisioning a VM, according to an 

embodiment. In this embodiment, management server 610, a computer system hosting the VM, 

e.g., computer system 102 shown in Figure 5C (hereinafter referred to as the "host computer"), 

and the storage system cluster of Figure 2A, in particular storage system manager 131, 132, or 

135, are used. As illustrated, the storage system manager receives the request to provision the 

VM at step 1502. This may be a request generated when a VM administrator using appropriate 

user interfaces to management server 610 issues a command to management server 610 to 

provision a VM having a certain size and storage capability profiles. In response thereto, at step 

1504, management server 610 initiates the method for creating a vvol to contain the VM's 

metadata (hereinafter referred to as "metadata vvol") in the manner described above in 

conjunction with Figure 8, pursuant to which the storage system manager at step 1508 creates the 

metadata vvol and returns the vvol ID of the metadata vvol to management server 610. At step 

1514, management server 610 registers the vvol ID of the metadata vvol back to a computer 

system hosting the VM. At step 1516, the host computer initiates the method for binding the 

metadata vvol to a PE in the manner described above in conjunction with Figure 10, pursuant to 

which the storage system manager at step 1518 binds the metadata vvol to a PE and returns the 

PE ID and a SLLID to the host computer.  

[0097] At step 1522, the host computer creates a block device instance of the metadata vvol 

using the "CREATE DEVICE" call into the host computer's operating system. Then, at step 

1524, the host computer creates a file system (e.g., VMFS) on the block device in response to 

which a file system ID (FSID) is returned. The host computer, at step 1526, mounts the file 

system having the returned FSID, and stores the metadata of the VM into the namespace 

associated with this file system. Examples of the metadata include VM log files, disk descriptor 

files, one for each of the virtual disks for the VM, and a VM swap file.  

[0098] At step 1528, the host computer initiates the method for creating a vvol for each of the 

virtual disks of the VM (each such vvol referred to herein as "data vvol") in the manner 

described above in conjunction with Figure 8, pursuant to which the storage system manager at 

step 1530 creates the data vvol and returns the vvol ID of the data vvol to the host computer. At 

step 1532, the host computer stores the ID of the data vvol in the disk descriptor file for the 

virtual disk. The method ends with the unbinding of the metadata vvol (not shown) after data 

vvols have been created for all of the virtual disks of the VM.
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[0099] Figure 16A is a flow diagram of method steps for powering ON a VM after the VM has 

been provisioned in the manner described in conjunction with Figure 15. Figure 16B is a flow 

diagram of method steps for powering OFF a VM after the VM has been powered ON. These 

two methods are carried out by a host computer for the VM.  

[00100] Upon receiving a VM power ON command at step 1608, the ID of the metadata vvol 

corresponding to the VM is retrieved at step 1610. Then, at step 1612 the metadata vvol 

undergoes a bind process as described above in conjunction with Figure 10. The file system is 

mounted on the metadata vvol at step 1614 so that the metadata files for the data vvols, in 

particular the disk descriptor files, can be read and data vvol IDs obtained at step 1616. The data 

vvols then undergo a bind process, one by one, as described above in conjunction with Figure 10 

at step 1618.  

[00101] Upon receiving a VM power OFF command at step 1620, the data vvols of the VM are 

marked as inactive in the block device database (e.g., block device database 580 of Figure 5C) 

and the host computer waits for the CIFs associated with each of the data vvols to reach zero 

(step 1622). As the CIF associated with each data vvol reaches zero, the host computer at step 

1624 requests the storage system to unbind that data vvol. After the CIFs associated with all 

data vvols reach zero, the metadata vvol is marked as inactive in the block device database at 

step 1626. Then, at step 1628, when the CIF associated with the metadata vvol reaches zero, the 

host computer at step 1630 requests the metadata vvol to be unbound.  

[00102] Figures 17 and 18 are flow diagrams of method steps for reprovisioning a VM. In the 

examples illustrated herein, Figure 17 is a flow diagram of method steps executed on the host 

computer, for extending the size of a vvol of a VM, in particular a data vvol for a virtual disk of 

the VM, and Figure 18 is a flow diagram of method steps executed in the storage system, for 

moving a vvol of VM between storage containers.  

[00103] The method for extending the size of a data vvol for a VM's virtual disk begins at step 

1708 where the host computer determines if the VM is powered ON. If the host computer 

determines at step 1708 that the VM is not powered ON, the host computer retrieves the ID of 

the metadata vvol corresponding to the VM at step 1710. Then, the bind process for the 

metadata vvol is initiated by the host computer at step 1712. After the bind, at step 1714, the 

host computer mounts a file system on the metadata vvol and retrieves the ID of the data vvol 

corresponding to the virtual disk from the disk descriptor file for the virtual disk, which is a file 

in the file system mounted on the metadata vvol. Then, at step 1716, the host computer sends an 

extend-vvol API call to the storage system at step 1716, where the extend-vvol API call includes 

the ID of the data vvol and the new size of the data vvol.
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[00104] If the VM is powered ON, the host computer retrieves the ID of the data vvol of VM's 

virtual disk to be extended at step 1715. It should be recognized from the method of Figure 16A 

that this ID can be obtained from the disk descriptor file associated with the VM's virtual disk.  

Then, at step 1716, the host computer sends an extend-vvol API call to the storage system at step 

1716, where the extend-vvol API call includes the ID of the data vvol and the new size of the 

data vvol.  

[00105] The extend-vvol API call results in the vvol database and the container database (e.g., 

vvol database 314 and container database 316 of Figure 3) being updated in the storage system to 

reflect the increased address space of the vvol. Upon receiving acknowledgement that the 

extend-vvol API call has completed, the host computer at step 1718 updates the disk descriptor 

file for the VM's virtual disk with the new size. Then, at step 1720, the host computer 

determines if the VM is powered ON. If it is not, the host computer at step 1722 unmounts the 

file system and sends a request to unbind the metadata vvol to the storage system. If, on the 

other hand, the VM is powered ON, the method terminates.  

[00106] The method for moving a vvol of a VM, currently bound to a PE, from a source storage 

container to a destination storage container, where both the source storage container and the 

destination storage container are within the scope of the same storage system manager, begins at 

step 1810 where the container IDs of the source and destination storage containers (SC1 and 

SC2, respectively) and the vvol ID of the vvol to be moved are received. Then, at step 1812, the 

vvol database (e.g., vvol database 314 of Figure 3) and the extent allocation bitmap of the 

container database (e.g., container database 316 of Figure 3) are updated as follows. First, the 

storage system manager removes the vvol extents in SCl from SCI's entry in the container 

database 316, and then assigns these extents to SC2 by modifying SC2's entry in the container 

database 316. In one embodiment, the storage system may compensate for the loss of storage 

capacity (due to removal of vvol storage extents) in SCl by assigning new spindle extents to 

SC 1, and make up for the increase in storage capacity (due to addition of vvol storage extents) in 

SC2 by removing some unused spindle extents from SC2. At step 1814, the storage system 

manager determines whether the currently bound PE is able to optimally service 10 to the vvol's 

new location. An example instance when the current PE is unable to service 10 to the vvol's 

new location is if the storage administrator has statically configured the storage system manager 

to assign different PEs to vvols from different customers and hence different storage containers.  

If the current PE is unable to service 10 to the vvol, the vvol, at step 1815, undergoes a rebind 

process (and associated changes to a connection database, e.g., the connection database 312 of 

Figure 3) which is described above in conjunction with Figure 13. After step 1815, step 1816 is
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carried out, where an acknowledgement of successful move completion is returned to the host 

computer. If, at step 1814, the storage system manager determines that the current PE is able to 

service IO to the new location of the vvol, step 1815 is bypassed and step 1816 is performed 

next.  

[00107] When a vvol is moved between incompatible storage containers, e.g., between storage 

containers created in storage devices of different manufacturers, data movement is executed 

between storage containers in addition to the changes to the container database 316, the vvol 

database 314, and the connection database 312. In one embodiment, data movement techniques 

described in U.S. Patent Application Serial No. 12/129,323, filed May 29, 2008 and entitled 

"Offloading Storage Operations to Storage Hardware," the entire contents of which are 

incorporated by reference herein, are employed.  

[00108] Figure 19 is a flow diagram of method steps executed in the host computer and the 

storage system for cloning a VM from a template VM. This method begins at step 1908 where 

the host computer sends a request to create a metadata vvol for the new VM to the storage 

system. At 1910, the storage system creates a metadata vvol for the new VM in accordance with 

the method described above in conjunction with Figure 8 and returns the new metadata vvol ID 

to the host computer. Then, at step 1914, a clone-vvol API call is issued from the host computer 

to the storage system via out-of-band path 601 for all data vvol IDs belonging to the template 

VM. At step 1918, the storage system manager checks to see whether or not the data vvols of 

the template VM and the new VM are compatible. It should be recognized that the data vvols 

may be not be compatible if cloning occurs between storage containers created in storage 

systems of different manufacturers. If there is compatibility, step 1919 is carried out. At step 

1919, the storage system manager creates new data vvols by generating new data vvol IDs, 

updating the allocation bitmap in container database 316, and adding new vvol entries to vvol 

database 314, and copies content stored in data vvols of the template VM to data vvols of the 

new VM. At step 1920, the storage system manager returns the new data vvol IDs to the host 

computer. The receipt of the new data vvol IDs provides confirmation to the host computer that 

the data vvol cloning completed without error. Then, at step 1925, the host computer issues an 

10 to the metadata vvol of the new VM to update the metadata files, in particular the disk 

descriptor files, with newly generated data vvol IDs. The 10 issued by the host computer to the 

storage system is executed by the storage system at step 1926, as a result of which the disk 

descriptor files of the new VM are updated with the newly generated data vvol IDs.  

[00109] If, at step 1918, the storage system manager determines that the data vvols of the 

template VM and the new VM are not compatible, an error message is returned to the host
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computer. Upon receipt of this error message, the host computer at step 1921 issues a create

vvol API call to the storage system to create new data vvols. At step 1922, the storage system 

manager creates new data vvols by generating new data vvol IDs, updating the allocation bitmap 

in container database 316, and adding new vvol entries to vvol database 314, and returns the new 

data vvol IDs to the host computer. At step 1923, the host computer executes data movement 

according to techniques described in U.S. Patent Application Serial No. 12/356,694, filed 

January 21, 2009 and entitled "Data Mover for Computer System," the entire contents of which 

are incorporated by reference herein (step 1923). After step 1923, steps 1925 and 1926 are 

carried out as described above.  

[00110] Figure 20 is a flow diagram of method steps for provisioning a VM, according to 

another embodiment. In this embodiment, management server 610, a computer system hosting 

the VM, e.g., computer system 102 shown in Figure 5D (hereinafter referred to as the "host 

computer"), and the storage system cluster of Figure 2B, in particular storage system manager 

131 or storage system manager 132 or storage system manager 135, are used. As illustrated, the 

request to provision the VM is received at step 2002. This may be a request generated when a 

VM administrator using appropriate user interfaces to management server 610 issues a command 

to management server 610 to provision a VM having a certain size and storage capability 

profiles. In response thereto, at step 2004, management server 610 initiates the method for 

creating a vvol to contain the VM's metadata, in particular a metadata vvol, in the manner 

described above in conjunction with Figure 8, pursuant to which the storage system manager at 

step 2008 creates the metadata vvol, which is a file in the NAS device, and returns the metadata 

vvol ID to management server 610. At step 2020, management server 610 registers the vvol ID 

of the metadata vvol back to the host computer. At step 2022, the host computer issues a bind 

request for the metadata vvol ID to the storage system, in response to which the storage system 

at step 2023 returns an IP address and directory path as PE ID and SLLID, respectively. At step 

2024, the host computer mounts the directory at the specified IP address and directory path, and 

stores metadata files in the mounted directory. In the embodiment using NFS, NFS client 545 or 

585 may resolve the given IP address and directory path into a NFS handle in order to issue NFS 

requests to such directory.  

[00111] At step 2026, the host computer initiates the method for creating a data vvol for each of 

the virtual disks of the VM in the manner described above in conjunction with Figure 8, pursuant 

to which the storage system manager at step 2030 creates the data vvol and returns the vvol ID of 

the data vvol to the host computer. At step 2032, the host computer stores the ID of the data 

vvol in the disk descriptor file for the virtual disk. The method ends with the unbinding of the
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metadata vvol (not shown) after data vvols have been created for all of the virtual disks of the 

VM.  

[00112] As described above in conjunction with Figure 8, when a new vvol is created from a 

storage container and a storage capability profile is not explicitly specified for the new vvol, the 

new vvol will inherit the storage capability profile associated with the storage container. The 

storage capability profile associated with the storage container may be selected from one of 

several different profiles. For example, as shown in Figure 21, the different profiles include a 

production (prod) profile 2101, a development (dev) profile 2102, and a test profile 2103 

(collectively referred to herein as "profiles 2100"). It should be recognized that many other 

profiles may be defined. As shown, each profile entry of a particular profile is of a fixed type or 

a variable type, and has a name and one or more values associated with it. A fixed type profile 

entry has a fixed number of selectable items. For example, the profile entry "Replication" may 

be set to be TRUE or FALSE. In contrast, a variable type profile entry does not have pre

defined selections. Instead, a default value and a range of values are set for a variable type 

profile entry, and the user may select any value that is within the range. If no value is specified, 

the default value is used. In the example profiles 2100 shown in Figure 21, variable type profile 

entries has three numbers separated by commas. The first number is the lower end of the 

specified range, and the second number is the higher end of the specified range. The third 

number is the default value. Thus, a vvol that inherits the storage capability profile defined in 

production profile 2101 will be replicated (Replication.Value = TRUE), and the recovery time 

objective (RTO) for the replication may be defined in the range of 0.1 to 24 hours, the default 

being 1 hour. In addition, snapshots are allowed for this vvol (Snapshot.Value = TRUE). The 

number of snapshots that are retained is in the range of 1 to 100, the default being 1, and the 

frequency of snapshots is in the range of once per hour to once per 24 hours, the default being 

once per hour. The SnapInherit column indicates whether the given profile attribute (and its 

values) should be propagated to a derivative vvol when a given vvol is snapshotted to create a 

new vvol that is a derivative vvol. In the example of production profile 2101, only the first two 

profile entries (Replication and RTO) may be propagated to a snapshot vvol of the given vvol 

with production profile 2101. The values of all other attributes of the snapshot vvol will be set to 

the default values specified in the profile. In other words, any customizations (for example, a 

non-default value of snapshot frequency) of these other attribute on the given vvol will not be 

propagated to the snapshot vvol due to their corresponding SnapInherit column being FALSE.  

The profile also contains other columns such as CloneInherit (not shown), and ReplicaInherit
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(not shown) that control which attribute values are propagated to clones and replicas, 

respectively, of a given vvol.  

[00113] When a storage container is created according to the method of Figure 4, types of 

storage capability profiles that can be defined for vvols created from the storage container may 

be set. The flow diagram in Figure 21 illustrates the method for creating a storage container 

shown in Figure 4 with step 2110 inserted between steps 412 and 413. At step 2110, the storage 

administrator selects one or more of profiles 2100 for the storage container being created. For 

example, a storage container created for one customer may be associated with production profile 

2101 and development profile 2102, such that a vvol that is of a production type will inherit the 

storage capability profile defined in production profile 2101 with default values or customer 

specified values, as the case may be, and a vvol that is of a development type will inherit the 

storage capability profile defined in development profile 2102 with default values or customer 

specified values, as the case may be.  

[00114] Figure 22 is a flow diagram that illustrates method steps executed by storage system 

manager 131, 132, or 135, for creating a vvol and defining a storage capability profile for the 

vvol. The method steps of Figure 22, in particular steps 2210, 2212, 2218, and 2220, correspond 

to steps 806, 810, 812, and 814 shown in Figure 8, respectively. In addition, the method steps of 

Figure 22 include steps 2214, 2215, and 2216, which define the storage capability profile for the 

vvol that is being created.  

[00115] At step 2214, the storage system manager determines whether values to be used in the 

storage capability profile have been specified in the request to create the vvol. If they are not, 

the storage system manager at step 2215 employs the storage capability profile associated with 

the vvol's storage container as the vvol's storage capability profile with default values. If the 

values to be used in the storage capability profile have been specified, the storage system 

manager at step 2216 employs the storage capability profile associated with the vvol's storage 

container as the vvol's storage capability profile with the specified values in lieu of the default 

values.  

[00116] In one embodiment, the storage capability profile of a vvol is stored in vvol database 

314 as key-value pairs. Once the storage capability profile of a vvol has been defined and stored 

in vvol database 314 as key-value pairs and as long as replication and snapshotting related 

attributes and values are part of this profile as shown in the example profiles of Figure 21, the 

storage system is able to perform replication and snapshotting for the vvol with no further 

instructions issued by the host computer.
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[00117] Figure 23 is a flow diagram that illustrates method steps executed by storage system 

manager 131, 132, or 135, for creating snapshots from a parent vvol. In one embodiment, a 

snapshot tracking data structure is employed to schedule snapshots according to snapshot 

definitions in storage capability profiles of a given vvol. Upon reaching a scheduled time for a 

snapshot, the storage system manager at step 2310 retrieves the vvol ID from the snapshot 

tracking data structure. Then, at step 2312, the storage system manager generates a unique vvol 

ID for the snapshot. The storage system manager at step 2315 employs the storage capability 

profile of the parent vvol (i.e., the vvol having the vvol ID retrieved from the snapshot tracking 

data structure) as the snapshot vvol's storage capability profile. It should be noted that since this 

is an automated profile driven snapshotting process driven by the storage system, the user does 

not get an opportunity to specify custom values to be used in the storage capability profile of the 

snapshot vvol. At step 2318, the storage system manager creates the snapshot vvol within the 

storage container of the parent vvol by updating the allocation bitmap in container database 316 

and adding a new vvol entry for the snapshot vvol to vvol database 314. Then, at step 2320, the 

storage system manager updates the snapshot tracking data structure by scheduling a time for 

generating the next snapshot for the parent vvol. It should be recognized that the storage system 

manager must concurrently maintain snapshot tracking data structures and execute the method 

steps of Figure 23 for all vvols whose storage capability profile mandates scheduled snapshots.  

[00118] After snapshots are created in the manner described above, key-value pairs stored in 

vvol database 314 are updated to indicate that the snapshot vvols are of type = snapshot. Also, in 

embodiments where a generation number is maintained for the snapshots, the generation number 

being incremented each time a snapshot is taken or set to be equal to date+time, the generation 

number is stored as a key-value pair. The parent vvol ID of a snapshot vvol is also stored as a 

key-value pair in snapshot vvol entries. As a result, a host computer may query vvol database 

314 for snapshots corresponding to a particular vvol ID. It is also possible for the host computer 

to issue a query to vvol database for snapshots corresponding to a particular vvol ID and a 

particular generation number.  

[00119] The various embodiments described herein may employ various computer-implemented 

operations involving data stored in computer systems. For example, these operations may 

require physical manipulation of physical quantities usually, though not necessarily, these 

quantities may take the form of electrical or magnetic signals where they, or representations of 

them, are capable of being stored, transferred, combined, compared, or otherwise manipulated.  

Further, such manipulations are often referred to in terms, such as producing, identifying, 

determining, or comparing. Any operations described herein that form part of one or more
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embodiments may be useful machine operations. In addition, one or more embodiments also 

relate to a device or an apparatus for performing these operations. The apparatus may be 

specially constructed for specific required purposes, or it may be a general purpose computer 

selectively activated or configured by a computer program stored in the computer. In particular, 

various general purpose machines may be used with computer programs written in accordance 

with the teachings herein, or it may be more convenient to construct a more specialized 

apparatus to perform the required operations.  

[00120] The various embodiments described herein may be practiced with other computer 

system configurations including hand-held devices, microprocessor systems, microprocessor

based or programmable consumer electronics, minicomputers, mainframe computers, and the 

like.  

[00121] One or more embodiments may be implemented as one or more computer programs or 

as one or more computer program modules embodied in one or more computer readable media.  

The term computer readable medium refers to any data storage device that can store data which 

can thereafter be input to a computer system computer readable media may be based on any 

existing or subsequently developed technology for embodying computer programs in a manner 

that enables them to be read by a computer. Examples of a computer readable medium include a 

hard drive, network attached storage (NAS), read-only memory, random-access memory (e.g., a 

flash memory device), a CD (Compact Discs), CD-ROM, a CD-R, or a CD-RW, a DVD (Digital 

Versatile Disc), a magnetic tape, and other optical and non-optical data storage devices. The 

computer readable medium can also be distributed over a network coupled computer system so 

that the computer readable code is stored and executed in a distributed fashion.  

[00122] Although one or more embodiments have been described in some detail for clarity of 

understanding, it will be apparent that certain changes and modifications may be made within the 

scope of the claims. For example, SCSI is employed as the protocol for SAN devices and NFS is 

used as the protocol for NAS devices. Any alternative to the SCSI protocol may be used, such as 

Fibre Channel, and any alternative to the NFS protocol may be used, such as CIFS (Common 

Internet File System) protocol. Accordingly, the described embodiments are to be considered as 

illustrative and not restrictive, and the scope of the claims is not to be limited to details given 

herein, but may be modified within the scope and equivalents of the claims. In the claims, 

elements and/or steps do not imply any particular order of operation, unless explicitly stated in 

the claims.  

[00123] In addition, while described virtualization methods have generally assumed that virtual 

machines present interfaces consistent with a particular hardware system, the methods described
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may be used in conjunction with virtualizations that do not correspond directly to any particular 

hardware system. Virtualization systems in accordance with the various embodiments, 

implemented as hosted embodiments, non-hosted embodiments, or as embodiments that tend to 

blur distinctions between the two, are all envisioned. Furthermore, various virtualization 

operations may be wholly or partially implemented in hardware. For example, a hardware 

implementation may employ a look-up table for modification of storage access requests to secure 

non-disk data.  

[00124] Many variations, modifications, additions, and improvements are possible, regardless 

the degree of virtualization. The virtualization software can therefore include components of a 

host, console, or guest operating system that performs virtualization functions. Plural instances 

may be provided for components, operations or structures described herein as a single instance.  

Finally, boundaries between various components, operations and data stores are somewhat 

arbitrary, and particular operations are illustrated in the context of specific illustrative 

configurations. Other allocations of functionality are envisioned and may fall within the scope 

of embodiments described herein. In general, structures and functionality presented as separate 

components in exemplary configurations may be implemented as a combined structure or 

component. Similarly, structures and functionality presented as a single component may be 

implemented as separate components. These and other variations, modifications, additions, and 

improvements may fall within the scope of the appended claims(s).
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CLAIMS: 

1. A computer system connected to a storage system via input-output command (10) paths 

and non-IO paths, the computer system comprising: 

a management interface in a non-IO path; and 

a storage interface in an JO path, 

wherein the management interface is configured to: (i) generate a request to create a 

logical storage volume in the storage system and to receive in response to the request a unique 

identifier for the logical storage volume, and (ii) generate a bind request to generate a valid 10 

session between the logical storage volume and a protocol endpoint configured in the storage 

system and to receive in response to the request first and second identifiers generated for the 

protocol endpoint, and 

wherein the storage interface encodes JO issued to the logical storage volume with the 

first and second identifiers.  

2. The computer system of claim 1, wherein the storage interface generates IOs in SCSI 

compliant format.  

3. The computer system of claim 1, wherein the storage interface generates IOs in NFS 

compliant format.  

4. The computer system of claim 1, wherein the management interface is configured to 

generate a request to rebind the logical storage volume and to receive in response to the request 

new first and second identifiers, the new first identifier identifying a new protocol endpoint to 

which the logical storage volume is bound and the new second identifier uniquely identifying the 

logical storage volume amongst all logical storage volumes bound to the new protocol endpoint.  

5. A method of operating a computer system connected to a storage system via input

output command (JO) paths and non-JO paths, wherein the computer system comprises a 

management interface in a non-IO path and a storage interface in an JO path, 

the method comprising the management interface performing steps of: 

(i) generating a request to create a logical storage volume in the storage system and to 

receive in response to the request a unique identifier for the logical storage volume, and



39 

(ii) generating a bind request to generate a valid 10 session between the logical storage 

volume and a protocol endpoint configured in the storage system and to receive in response to 

the request first and second identifiers generated for the protocol endpoint, and 

wherein the storage interface encodes IO issued to the logical storage volume with the 

first and second identifiers.  

6. A computer-readable storage medium having computer-executable instructions 

embodied thereon, wherein, when executed by at least one processor, the computer-executable 

instructions causing the at least one processor to execute the method of claim 5.
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