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ABSTRACT

The storage system exports logical storage volumes that are provisioned as storage
objects. These storage objects are accessed on demand by connected computer systems using
standard protocols, such as SCSI and NFS, through logical endpoints for the protocol traffic that
are configured in the storage system. To facilitate creation and management of logical storage
volumes, special application programming interfaces (APIs) have been developed. The special
APIs include commands to create a logical storage volume, bind, unbind, and rebind the logical
storage volume, extend the size of the logical storage volume, clone the logical storage volume,

and move the logical storage volume.
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'"Data storage system and data storage control method"
[0001] This application is a divisional application of Australian Patent Application No
2012300402, the contents of which are incorporated herein by reference.
Background
[0002] As computer systems scale to enterprise levels, particularly in the context of supporting
large-scale data centers, the underlying data storage systems frequently employ a storage area
network (SAN) or network attached storage (NAS). As is conventionally well appreciated, SAN
or NAS provides a number of technical capabilities and operational benefits, fundamentally
including virtualization of data storage devices, redundancy of physical devices with transparent
fault-tolerant fail-over and fail-safe controls, geographically distributed and replicated storage,
and centralized oversight and storage configuration management decoupled from client-centric
computer systems management.
[0003] Architecturally, the storage devices in a SAN storage system (e.g., disk arrays, etc.) are
typically connected to network switches (e.g., Fibre Channel switches, etc.) which are then
connected to servers or “hosts” that require access to the data in the storage devices. The
servers, switches and storage devices in a SAN typically communicate using the Small Computer
System Interface (SCSI) protocol which transfers data across the network at the level of disk data
blocks. In contrast, a NAS device is typically a device that internally contains one or more
storage drives and that is connected to the hosts (or intermediating switches) through a network
protocol such as Ethernet. In addition to containing storage devices, the NAS device has also
pre-formatted its storage devices in accordance with a network-based file system, such as
Network File System (NFS) or Common Internet File System (CIFS). As such, as opposed to a
SAN which exposes disks (referred to as LUNs and further detailed below) to the hosts, which
then need to be formatted and then mounted according to a file system utilized by the hosts, the
NAS device’s network-based file system (which needs to be supported by the operating system
of the hosts) causes the NAS device to appear as a file server to the operating systems of hosts,
which can then mount or map the NAS device, for example, as a network drive accessible by the
operating system. It should be recognized that with the continuing innovation and release of new
products by storage system vendors, clear distinctions between SAN and NAS storage systems
continue to fade, with actual storage system implementations often exhibiting characteristics of
both, offering both file-level protocols (NAS) and block-level protocols (SAN) in the same
system. For example, in an alternative NAS architecture, a NAS “head” or “gateway” device is
networked to the host rather than a traditional NAS device. Such a NAS gateway device does

not itself contain storage drives, but enables external storage devices to be connected to the NAS
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gateway device (e.g., via a Fibre Channel interface, etc.). Such a NAS gateway device, which is
perceived by the hosts in a similar fashion as a traditional NAS device, provides a capability to
significantly increase the capacity of a NAS based storage architecture (e.g., at storage capacity
levels more traditionally supported by SANs) while retaining the simplicity of file-level storage
access.

[0004] SCSI and other block protocol-based storage devices, such as a storage system 30
shown in Figure 1A, utilize a storage system manager 31, which represents one or more
programmed storage processors, to aggregate the storage units or drives in the storage device and
present them as one or more LUNSs (Logical Unit Numbers) 34 each with a uniquely identifiable
number. LUNs 34 are accessed by one or more computer systems 10 through a physical host bus
adapter (HBA) 11 over a network 20 (e.g., Fiber Channel, etc.). Within computer system 10 and
above HBA 11, storage access abstractions are characteristically implemented through a series of
software layers, beginning with a low-level device driver layer 12 and ending in an operating
system specific file system layers 15. Device driver layer 12, which enables basic access to
LUNs 34, is typically specific to the communication protocol used by the storage system (e.g.,
SCSI, etc.). A data access layer 13 may be implemented above device driver layer 12 to support
multipath consolidation of LUNs 34 visible through HBA 11 and other data access control and
management functions. A logical volume manager 14, typically implemented between data
access layer 13 and conventional operating system file system layers 15, supports volume-
oriented virtualization and management of LUNs 34 that are accessible through HBA 11.
Multiple LUNs 34 can be gathered and managed together as a volume under the control of
logical volume manager 14 for presentation to and use by file system layers 15 as a logical
device.

[0005] Storage system manager 31 implements a virtualization of physical, typically disk
drive-based storage units, referred to in Figure 1A as spindles 32, that reside in storage system
30. From a logical perspective, each of these spindles 32 can be thought of as a sequential array
of fixed sized extents 33. Storage system manager 31 abstracts away complexities of targeting
read and write operations to addresses of the actual spindles and extents of the disk drives by
exposing to connected computer systems, such as computer systems 10, a contiguous logical
storage space divided into a set of virtual SCSI devices, known as LUNs 34. Each LUN
represents some capacity that is assigned for use by computer system 10 by virtue of existence of
such LUN, and presentation of such LUN to computer systems 10. Storage system manager 31

maintains metadata that includes a mapping for each such LUN to an ordered list of extents,
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wherein each such extent can be identified as a spindle-extent pair <spindle #, extent #> and may
therefore be located in any of the various spindles 32.

[0006] Figure 1B is a block diagram of a conventional NAS or file-level based storage system
40 that is connected to one or more computer systems 10 via network interface cards (NIC) 11°
over a network 21 (e.g., Ethernet). Storage system 40 includes a storage system manager 41,
which represents one or more programmed storage processors. Storage system manager 41
implements a file system 45 on top of physical, typically disk drive-based storage units, referred
to in Figure 1B as spindles 42, that reside in storage system 40. From a logical perspective, each
of these spindles can be thought of as a sequential array of fixed sized extents 43. File system 45
abstracts away complexities of targeting read and write operations to addresses of the actual
spindles and extents of the disk drives by exposing to connected computer systems, such as
computer systems 10, a namespace comprising directories and files that may be organized into
file system level volumes 44 (hereinafter referred to as “FS volumes”) that are accessed through
their respective mount points.

[0007] Even with the advancements in storage systems described above, it has been widely
recognized that they are not sufficiently scalable to meet the particular needs of virtualized
computer systems. For example, a cluster of server machines may service as many as 10,000
virtual machines (VMs), each VM using a multiple number of “virtual disks” and a multiple
number of “snapshots,” each which may be stored, for example, as a file on a particular LUN or
FS volume. Even at a scaled down estimation of 2 virtual disks and 2 snapshots per VM, this
amounts to 60,000 distinct disks for the storage system to support if VMs were directly
connected to physical disks (i.e., 1 virtual disk or snapshot per physical disk). In addition,
storage device and topology management at this scale are known to be difficult. As a result, the
concept of datastores in which VMs are multiplexed onto a smaller set of physical storage
entities (e.g., LUN-based VMFS clustered file systems or FS volumes), such as described in U.S.
Patent 7,849,098, entitled “Providing Multiple Concurrent Access to a File System,”
incorporated by reference herein, was developed.

[0008] In conventional storage systems employing LUNs or FS volumes, workloads from
multiple VMs are typically serviced by a single LUN or a single FS volume. As a result,
resource demands from one VM workload will affect the service levels provided to another VM
workload on the same LUN or FS volume. Efficiency measures for storage such as latency and
input/output operations (IO) per second, or IOPS, thus vary depending on the number of
workloads in a given LUN or FS volume and cannot be guaranteed. Consequently, storage

policies for storage systems employing LUNs or FS volumes cannot be executed on a per-VM
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basis and service level agreement (SLA) guarantees cannot be given on a per-VM basis. In
addition, data services provided by storage system vendors, such as snapshot, replication,
encryption, and deduplication, are provided at a granularity of the LUNs or FS volumes, not at
the granularity of a VM’s virtual disk. As a result, snapshots can be created for the entire LUN
or the entire FS volume using the data services provided by storage system vendors, but a
snapshot for a single virtual disk of a VM cannot be created separately from the LUN or the file
system in which the virtual disk is stored.

[0008a] Any discussion of documents, acts, materials, devices, articles or the like which has
been included in the present specification is not to be taken as an admission that any or all of
these matters form part of the prior art base or were common general knowledge in the field
relevant to the present disclosure as it existed before the priority date of each claim of this
application.

[0008b] Throughout this specification the word "comprise", ‘or variations such as
"comprises" or "comprising", will be understood to imply the inclusion of a stated element,
integer or step, or group of elements, integers or steps, but not the exclusion of any other
element, integer or step, or group of elements, integers or steps.

Summary

[0009] One or more embodiments are directed to a storage system that is configured to isolate
workloads running therein so that SLA guarantees can be provided per workload, and data
services of the storage system can be provided per workload, without requiring a radical redesign
of the storage system. In a storage system that stores virtual disks for multiple virtual machines,
SLA guarantees can be provided on a per virtual disk basis and data services of the storage
system can be provided on a per virtual disk basis.

[0010] According to embodiments of the invention, the storage system exports logical storage
volumes, referred to herein as “virtual volumes,” that are provisioned as storage objects on a per-
workload basis, out of a logical storage capacity assignment, referred to herein as “storage
containers.” For a VM, a virtual volume may be created for each of the virtual disks and
snapshots of the VM. In one embodiment, the virtual volumes are accessed on demand by
connected computer systems using standard protocols, such as SCSI and NFS, through logical
endpoints for the protocol traffic, known as “protocol endpoints,” that are configured in the
storage system.

[0011] A method for provisioning a logical storage volume for an application running in a
computer system that is connected to a storage system via input-output command (IO) paths and

non-I0 paths, according to an embodiment of the present invention, includes the steps of
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selecting a logical storage container created in the storage system, issuing a request to the storage
system via a non-IO path to create the logical storage volume in the selected logical storage
container, and storing a unique identifier for the logical storage volume received from the storage
system in response to the request and associating the unique identifier with the application
running in the computer system.

[0012] A method for reprovisioning a logical storage volume for an application running ih a
computer system that is connected to a storage system via IO paths and non-IO paths, according
to an embodiment of the present invention, includes the steps of issuing a request to the storage
system via a non-IO path to increase a size of the logical storage volume provisioned in the
selected logical storage container, receiving acknowledgement of the increase in size from the
storage system, and updating a metadata file associated with the logical storage volume to
indicate the increased size.

[0013] In accordance with another embodiment of the invention, a computer system connected
to a storage system via 10 paths and non-IO paths, includes a management interface in a non-10
path, and a storage interface in an IO path. The management interface is configured to: (i)
generate a request to create a logical storage volume in the storage system and to receive in
response to the request a unique identifier for the logical storage volume, and (ii) generate a bind
request to generate a valid IO session between the logical storage volume to a protocol endpoint
configured in the storage system and to receive in response to the request first and second
identifiers generated for the protocol endpoint, and wherein the storage interface encodes 10
issued to the logical storage volume with the first and second identifiers.

[0013a] In accordance with a still further embodiment, a method is provided of operating a
computer system connected to a storage system via input-output command (IO) paths and non-
IO paths, wherein the computer system comprises a management interface in a non-IO path and
a storage interface in an 10 path, the method comprising the management interface performing
steps of: (i) generating a request to create a logical storage volume in the storage system and to
receive in response to the request a unique identifier for the logical storage volume, and (ii)
generating a bind request to generate a valid IO session between the logical storage volume and a
protocol endpoint configured in the storage system and to receive in response to the request first
and second identifiers generated for the protocol endpoint, and wherein the storage interface
encodes 10 issued to the logical storage volume with the first and second identifiers.

[0014] Embodiments of the present invention further include a non-transitory computer-
readable storage medium storing instructions that when executed by a computer system cause the

computer system to perform one of the methods set forth above.
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Brief Description of the Drawings

[0015] Figure 1A is a block diagram of a conventional block protocol-based storage device that
is connected to one or more computer systems over a network.

[0016] Figure 1B is a block diagram of a conventional NAS device that is connected to one or
more computer systems over a network.

[0017] Figure 2A is a block diagram of a block protocol-based storage system cluster that
implements virtual volumes according to an embodiment of the invention.

[0018] Figure 2B is a block diagram of a NAS based storage system cluster that implements
virtual volumes according to an embodiment of the invention.

[0019] Figure 3 is a block diagram of components of the storage system cluster of Figures 2A
or 2B for managing virtual volumes according to an embodiment of the invention.

[0020] Figure 4 is a flow diagram of method steps for creating a storage container.

[0021] Figure 5A is a block diagram of an embodiment of a computer system configured to
implement virtual volumes hosted on a SAN-based storage system.

[0022] Figure 5B is a block diagram of the computer system of Figure SA configured for
virtual volumes hosted on a NAS-based storage system.

[0023] Figure 5C is a block diagram of another embodiment of a computer system configured
to implement virtual volumes hosted on a SAN-based storage system.

[0024] Figure 5D is a block diagram of the computer system of Figure 5C configured for

virtual volumes hosted on a NAS-based storage system.
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[0025] Figure 6 is a simplified block diagram of a computer environment that illustrates
components and communication paths used to manage virtual volumes according to an
embodiment of the invention.

[0026] Figure 7 is a flow diagram of method steps for authenticating a computer system to the
storage system cluster of Figures 2A or 2B.

[0027] Figure 8 is a flow diagram of method steps for creating a virtual volume, according to
one embodiment.

[0028] Figure 9A is a flow diagram of method steps for discovering protocol endpoints that are
available to a computer system.

[0029] Figure 9B is a flow diagram of method steps for the storage system to discover protocol
endpoints to which a computer system is connected via an in-band path.

[0030] Figure 10 is a flow diagram of method steps for issuing and executing a virtual volume
bind request, according to one embodiment.

[0031] Figures 11A and 11B are flow diagrams of method steps for issuing an IO to a virtual
volume, according to one embodiment.

[0032] Figure 12 is a flow diagram of method steps for performing an IO at a storage system,
according to one embodiment.

[0033] Figure 13 is a flow diagram of method steps for issuing and executing a virtual volume
rebind request, according to one embodiment.

[0034] Figure 14 is a conceptual diagram of a lifecycle of a virtual volume.

[0035] Figure 15 is a flow diagram of method steps for provisioning a VM, according to an
embodiment using the storage system of Figure 2A.

[0036] Figure 16A is a flow diagram of method steps for powering ON a VM.

[0037] Figure 16B is a flow diagram of method steps for powering OFF a VM.

[0038] Figure 17 is a flow diagram of method steps for extending the size of a vvol of a VM.
[0039] Figure 18 is a flow diagram of method steps for moving a vvol of VM between storage
containers.

[0040] Figure 19 is a flow diagram of method steps for cloning a VM from a template VM.
[0041] Figure 20 is a flow diagram of method steps for provisioning a VM, according to
another embodiment.

[0042] Figure 21 illustrates sample storage capability profiles and a method for creating a
storage container that includes a profile selection step.

[0043] Figure 22 is a flow diagram that illustrates method steps for creating a vvol and defining

a storage capability profile for the vvol.
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[0044] Figure 23 is a flow diagram that illustrates method steps for creating snapshots.

Detailed Description

[0045] Figures 2A and 2B are block diagrams of a storage system cluster that implements
“virtual volumes” according to embodiments of the invention. The storage system cluster
includes one or more storage systems, e.g., storage systems 1301 and 1302, which may be disk
arrays, each having a plurality of data storage units (DSUs), one of which is labeled as 141 in the
figures, and storage system managers 131 and 132 that control various operations of storage
systems 130 to enable embodiments of the invention described herein. In one embodiment, two
or more storage systems 130 may implement a distributed storage system manager 135 that
controls the operations of the storage system cluster as if they were a single logical storage
system. The operational domain of distributed storage system manager 135 may span storage
systems installed in the same data center or across multiple data centers. For example, in one
such embodiment, distributed storage system manager 135 may comprise storage system
manager 131, which serves as a “master” manager when communicating with storage system
manager 132, which serves as a “slave” manager, although it should be recognized that a variety
of alternative methods to implement a distributed storage system manager may be implemented.
DSUs represent physical storage units, e.g., disk or flash based storage units such as rotating
disks or solid state disks. According to embodiments, the storage system cluster creates and
exposes “virtual volumes” (vvols), as further detailed herein, to connected computer systems,
such as computer systems 1001 and 1002. Applications (e.g., VMs accessing their virtual disks,
etc.) running in computer systems 100 access the vvols on demand using standard protocols,
such as SCSI in the embodiment of Figure 2A and NFS in the embodiment of Figure 2B, through
logical endpoints for the SCSI or NFS protocol traffic, known as “protocol endpoints” (PEs), that
are configured in storage systems 130. The communication path for application-related data
operations from computer systems 100 to the storage systems 130 is referred to herein as an “in-
band” path. Communication paths between host bus adapters (HBAs) of computer systems 100
and PEs configured in storage systems 130 and between network interface cards (NICs) of
computer systems 100 and PEs configured in storage systems 130 are examples of in-band paths.
Communication paths from computer systems 100 to storage systems 130 that are not in-band,
and that are typically used to carry out management operations, are referred to herein as an “out-
of-band” path. Examples of out-of-band paths, such as an Ethernet network connection between
computer systems 100 and storage systems 130, are illustrated in Figure 6 separately from the in-

band paths. For simplicity, computer systems 100 are shown to be directly connected to storage
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systems 130. However, it should be understood that they may be connected to storage systems
130 through multiple paths and one or more of switches.

[0046] Distributed storage system manager 135 or a single storage system manager 131 or 132
may create vvols (e.g., upon request of a computer system 100, etc.) from logical “storage

9

containers,” which represent a logical aggregation of physical DSUs. In general, a storage
container may span more than one storage system and many storage containers may be created
by a single storage system manager or a distributed storage system manager. Similarly, a single
storage system may contain many storage containers. In Figures 2A and 2B, storage container
142A created by distributed storage system manager 135 is shown as spanning storage system
1301 and storage system 1302, whereas storage container 142B and storage container 142C are
shown as being contained within a single storage system (i.e., storage system 1301 and storage
system 1302, respectively). It should be recognized that, because a storage container can span
more than one storage system, a storage system administrator can provision to its customers a
storage capacity that exceeds the storage capacity of any one storage system. It should be further
recognized that, because multiple storage containers can be created within a single storage
system, the storage system administrator can provision storage to multiple customers using a
single storage system.

[0047] In the embodiment of Figure 2A, each vvol is provisioned from a block based storage
system. In the embodiment of Figure 2B, a NAS based storage system implements a file system
145 on top of DSUs 141 and each vvol is exposed to computer systems 100 as a file object
within this file system. In addition, as will be described in further detail below, applications
running on computer systems 100 access vvols for IO through PEs. For example, as illustrated
in dashed lines in Figures 2A and 2B, vvol 151 and vvol 152 are accessible via PE 161; vvol 153
and vvol 155 are accessible via PE 162; vvol 154 is accessible via PE 163 and PE 164; and vvol
156 is accessible via PE 165. It should be recognized that vvols from multiple storage
containers, such as vvol 153 in storage container 142A and vvol 155 in storage container 142C,
may be accessible via a single PE, such as PE 162, at any given time. It should further be
recognized that PEs, such as PE 166, may exist in the absence of any vvols that are accessible
via them.

[0048] In the embodiment of Figure 2A, storage systems 130 implement PEs as a special type
of LUN using known methods for setting up LUNs. As with LUNSs, a storage system 130
provides each PE a unique identifier known as a WWN (World Wide Name). In one
embodiment, when creating the PEs, storage system 130 does not specify a size for the special

LUN because the PEs described herein are not actual data containers. In one such embodiment,



16 Oct 2015

2015243082

9

storage system 130 may assign a zero value or a very small value as the size of a PE-related
LUN such that administrators can quickly identify PEs when requesting that a storage system
provide a list of LUNs (e.g., traditional data LUNs and PE-related LUNS), as further discussed
below. Similarly, storage system 130 may assign a LUN number greater than 255 as the
identifying number for the LUN to the PEs to indicate, in a human-friendly way, that they are not
data LUNs. As another way to distinguish between the PEs and LUNs, a PE bit may be added to
the Extended Inquiry Data VPD page (page 86h). The PE bit is set to 1 when a LUN is a PE,
and to 0 when it is a regular data LUN. Computer systems 100 may discover the PEs via the in-
band path by issuing a SCSI command REPORT_LUNS and determine whether they are PEs
according to embodiments described herein or conventional data LUNs by examining the
indicated PE bit. Computer systems 100 may optionally inspect the LUN size and LUN number
properties to further confirm whether the LUN is a PE or a conventional LUN. It should be
recognized that any one of the techniques described above may be used to distinguish a PE-
related LUN from a regular data LUN. In one embodiment, the PE bit technique is the only
technique that is used to distinguish a PE-related LUN from a regular data LUN,

[0049] In the embodiment of Figure 2B, the PEs are created in storage systems 130 using
known methods for setting up mount points to FS volumes. Each PE that is created in the
embodiment of Figure 2B is identified uniquely by an IP address and file system path, also
conventionally referred together as a “mount point.” However, unlike conventional mount
points, the PEs are not associated with FS volumes. In addition, unlike the PEs of Figure 2A, the
PEs of Figure 2B are not discoverable by computer systems 100 via the in-band path unless
virtual volumes are bound to a given PE. Therefore, the PEs of Figure 2B are reported by the
storage system via the out-of-band path.

[0050] Figure 3 is a block diagram of components of the storage system cluster of Figures 2A
or 2B for managing virtual volumes according to an embodiment. The components include
software modules of storage system managers 131 and 132 executing in storage systems 130 in
one embodiment or software modules of distributed storage system manager 135 in another
embodiment, namely an input/output (I/O) manager 304, a volume manager 306, a container
manager 308, and a data access layer 310. In the descriptions of the embodiments herein, it
should be understood that any actions taken by distributed storage system manager 135 may be
taken by storage system manager 131 or storage system manager 132 depending on the
embodiment.

[0051] In the example of Figure 3, distributed storage system manager 135 has created three
storage containers SC1, SC2, and SC3 from DSUs 141, each of which is shown to have spindle
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extents labeled P1 through Pn. In general, each storage container has a fixed physical size, and
is associated with specific extents of DSUs. In the example shown in Figure 3, distributed
storage system manager 135 has access to a container database 316 that stores for each storage
container, its container ID, physical layout information and some metadata. Container database
316 is managed and updated by a container manager 308, which in one embodiment is a
component of distributed storage system manager 135. The container ID is a universally unique
identifier that is given to the storage container when the storage container is created. Physical
layout information consists of the spindle extents of DSUs 141 that are associated with the given
storage container and stored as an ordered list of <system ID, DSU ID, extent number>. The
metadata section may contain some common and some storage system vendor specific metadata.
For example, the metadata section may contain the IDs of computer systems or applications or
users that are permitted to access the storage container. As another example, the metadata
section contains an allocation bitmap to denote which <system ID, DSU ID, extent number>
extents of the storage container are already allocated to existing vvols and which ones are ftee.
In one embodiment, a storage system administrator may create separate storage containers for
different business units so that vvols of different business units are not provisioned from the
same storage container. Other policies for segregating vvols may be applied. For example, a
storage system administrator may adopt a policy that vvols of different customers of a cloud
service are to be provisioned from different storage containers. Also, vvols may be grouped and
provisioned from storage containers according to their required service levels. In addition, a
storage system administrator may create, delete, and otherwise manage storage containers, such
as defining the number of storage containers that can be created and setting the maximum
physical size that can be set per storage container.

[0052] Also, in the example of Figure 3, distributed storage system manager 135 has
provisioned (on behalf of requesting computer systems 100) multiple vvols, each from a
different storage container. In general, vvols may have a fixed physical size or may be thinly
provisioned, and each vvol has a vvol ID, which is a universally unique identifier that is given to
the vvol when the vvol is created. For each vvol, a vvol database 314 stores for each vvol, its
vvol ID, the container ID of the storage container in which the vvol is created, and an ordered list
of <offset, length> values within that storage container that comprise the address space of the
vvol.  Vvol database 314 is managed and updated by volume manager 306, which in one
embodiment, is a component of distributed storage system manager 135. In one embodiment,
vvol database 314 also stores a small amount of metadata about the vvol. This metadata is stored

in vvol database 314 as a set of key-value pairs, and may be updated and queried by computer
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systems 100 via the out-of-band path at any time during the vvol’s existence. Stored key-value
pairs fall into three categories. The first category is: well-known keys—the definition of certain
keys (and hence the interpretation of their values) are publicly available. One example is a key
that corresponds to the virtual volume type (e.g., in virtual machine embodiments, whether the
vvol contains a VM’s metadata or a VM’s data). Another example is the App ID, which is the
ID of the application that stored data in the vvol. The second category is: computer system
specific keys—the computer system or its management module stores certain keys and values as
the virtual volume’s metadata. The third category is: storage system vendor specific keys—these
allow the storage system vendor to store certain keys associated with the virtual volume’s
metadata. One reason for a storage system vendor to use this key-value store for its metadata is
that all of these keys are readily available to storage system vendor plug-ins and other extensions
via the out-of-band channel for vvols. The store operations for key-value pairs are part of virtual
volume creation and other processes, and thus the store operation should be reasonably fast.
Storage systems are also configured to enable searches of virtual volumes based on exact
matches to values provided on specific keys.

[0053] IO manager 304 is a software module (also, in certain embodiments, a component of
distributed storage system manager 135) that maintains a connection database 312 that stores
currently valid IO connection paths between PEs and vvols. In the example shown in Figure 3,
seven currently valid 1O sessions are shown. Each valid session has an associated PE ID,
secondary level identifier (SLLID), vvol ID, and reference count (RefCnt) indicating the number
of different applications that are performing IO through this IO session. The process of
establishing a valid IO session between a PE and a vvol by distributed storage system manager
135 (e.g., on request by a computer system 100) is referred to herein as a “bind” process. For
each bind, distributed storage system manager 135 (e.g., via IO manager 304) adds an entry to
connection database 312. The process of subsequently tearing down the IO session by
distributed storage system manager 135 is referred to herein as an “unbind” process. For each
unbind, distributed storage system manager 135 (e.g., via IO manager 304) decrements the
reference count of the IO session by one. When the reference count of an IO session is at zero,
distributed storage system manager 135 (e.g., via IO manager 304) may delete the entry for that
IO connection path from connection database 312. As previously discussed, in one embodiment,
computer systems 100 generate and transmit bind and unbind requests via the out-of-band path
to distributed storage system manager 135. Alternatively, computer systems 100 may generate
and transmit unbind requests via an in-band path by overloading existing error paths. In one

embodiment, the generation number is changed to a monotonically increasing number or a
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randomly generated number, when the reference count changes from 0 to 1 or vice versa. In
another embodiment, the generation number is a randomly generated number and the RefCnt
column is eliminated from connection database 312, and for each bind, even when the bind
request is to a vvol that is already bound, distributed storage system manager 135 (e.g., via I0
manager 304) adds an entry to connection database 312.

[0054] In the storage system cluster of Figure 2A, IO manager 304 processes IO requests (I0s)
from computer systems 100 received through the PEs using connection database 312. When an
IO is received at one of the PEs, IO manager 304 parses the IO to identify the PE ID and the
SLLID contained in the IO in order to determine a vvol for which the IO was intended. By
accessing connection database 314, IO manager 304 is then able to retrieve the vvol ID
associated with the parsed PE ID and SLLID. In Figure 3 and subsequent figures, PE ID is
shown as PE_A, PE_B, etc. for simplicity. In one embodiment, the actual PE IDs are the WWNs
of the PEs. In addition, SLLID is shown as S0001, S0002, etc. The actual SLLIDs are generated
by distributed storage system manager 135 as any unique number among SLLIDs associated
with a given PE ID in connection database 312. The mapping between the logical address space
of the virtual volume having the vvol ID and the physical locations of DSUs 141 is carried out
by volume manager 306 using vvol database 314 and by container manager 308 using container
database 316. Once the physical locations of DSUs 141 have been obtained, data access layer
310 (in one embodiment, also a component of distributed storage system manager 135) performs
IO on these physical locations.

[0055] In the storage system cluster of Figure 2B, 1Os are received through the PEs and each
such IO includes an NFS handle (or similar file system handle) to which the IO has been issued.
In one embodiment, connection database 312 for such a system contains the IP address of the
NFS interface of the storage system as the PE ID and the file system path as the SLLID. The
SLLIDs are generated based on the location of the vvol in the file system 145. The mapping
between the logical address space of the vvol and the physical locations of DSUs 141 is carried
out by volume manager 306 using vvol database 314 and by container manager 308 using
container database 316. Once the physical locations of DSUs 141 have been obtained, data
access layer performs IO on these physical locations. It should be recognized that for a storage
system of Figure 2B, container database 312 may contain an ordered list of file:<offset, length>
entries in the Container Locations entry for a given vvol (i.e., a vvol can be comprised of
multiple file segments that are stored in the file system 145).

[0056] In one embodiment, connection database 312 is maintained in volatile memory while

vvol database 314 and container database 316 are maintained in persistent storage, such as DSUs
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141. In other embodiments, all of the databases 312, 314, 316 may be maintained in persistent
storage.

[0057] Figure 4 is a flow diagram of method steps 410 for creating a storage container. In one
embodiment, these steps are carried out by storage system manager 131, storage system manager
132 or distributed storage system manager 135 under control of a storage administrator. As
noted above, a storage container represents a logical aggregation of physical DSUs and may span
physical DSUs from more than one storage system. At step 411, the storage administrator (via
distributed storage system manager 135, etc.) sets a physical capacity of a storage container.
Within a cloud or data center, this physical capacity may, for example, represent the amount of
physical storage that is leased by a customer. The flexibility provided by storage containers
disclosed herein is that storage containers of different customers can be provisioned by a storage
administrator from the same storage system and a storage container for a single customer can be
provisioned from multiple storage systems, e.g., in cases where the physical capacity of any one
storage device is not sufficient to meet the size requested by the customer, or in cases such as
replication where the physical storage footprint of a vvol will naturally span multiple storage
systems. At step 412, the storage administrator sets permission levels for accessing the storage
container. In a multi-tenant data center, for example, a customer may only access the storage
container that has been leased to him or her. At step 413, distributed storage system manager
135 generates a unique identifier for the storage container. Then, at step 414, distributed storage
system manager 135 (e.g., via container manager 308 in one embodiment) allocates free spindle
extents of DSUs 141 to the storage container in sufficient quantities to meet the physical capacity
set at step 411. As noted above, in cases where the free space of any one storage system is not
sufficient to meet the physical capacity, distributed storage system manager 135 may allocate
spindle extents of DSUs 141 from multiple storage systems. After the partitions have been
allocated, distributed storage system manager 135 (e.g., via container manager 308) updates
container database 316 with the unique container ID, an ordered list of <system number, DSU
ID, extent number>, and context IDs of computer systems that are permitted to access the storage
container.

[0058] According to embodiments described herein, storage capability profiles, e.g., SLAs or
quality of service (QoS), may be configured by distributed storage system manager 135 (e.g., on
behalf of requesting computer systems 100) on a per vvol basis. Therefore, it is possible for
vvols with different storage capability profiles to be part of the same storage container. In one
embodiment, a system administrator defines a default storage capability profile (or a number of

possible storage capability profiles) for newly created vvols at the time of creation of the storage
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container and stored in the metadata section of container database 316. If a storage capability
profile is not explicitly specified for a new vvol being created inside a storage container, the new
vvol will inherit the default storage capability profile associated with the storage container.
[0059] Figure 5A is a block diagram of an embodiment of a computer system configured to
implement virtual volumes hosted on a storage system cluster of Figure 2A. Computer system
101 may be constructed on a conventional, typically server-class, hardware platform 500 that
includes one or more central processing units (CPU) 501, memory 502, one or more network
interface cards (NIC) 503, and one or more host bus adapters (HBA) 504. HBA 504 enables
computer system 101 to issue IOs to virtual volumes through PEs configured in storage devices
130. As further shown in Figure SA, operating system 508 is installed on top of hardware
platform 500 and a number of applications 5121-512N are executed on top of operating system
508. Examples of operating system 508 include any of the well-known commodity operating
systems, such as Microsoft Windows, Linux, and the like.

[0060] According to embodiments described herein, each application 512 has one or more
vvols associated therewith and issues IOs to block device instances of the vvols created by
operating system 508 pursuant to “CREATE DEVICE” calls by application 512 into operating
system 508. The association between block device names and vvol IDs are maintained in block
device database 533. 1Os from applications 5122-512N are received by a file system driver 510,
which converts them to block 10s, and provides the block IOs to a virtual volume device driver
532. 10s from application 5121, on the other hand, are shown to bypass file system driver 510
and provided directly to virtual volume device driver 532, signifying that application 5121
accesses its block device directly as a raw storage device, e.g., as a database disk, a log disk, a
backup archive, and a content repository, in the manner described in U.S. Patent 7,155,558
entitled “Providing Access to a Raw Data Storage Unit in a Computer System,” the entire
contents of which are incorporated by reference herein. When virtual volume device driver 532
receives a block IO, it accesses block device database 533 to reference a mapping between the
block device name specified in the IO and the PE ID (WWN of PE LUN) and SLLID that define
the 10 connection path to the vvol associated with the block device name. In the example shown
herein, the block device name, archive, corresponds to a block device instance of vvoll2 that
was created for application 5121, and the block device names, foo, dbase, and log, correspond to
block device instances of vvoll, vvoll6, and vvoll7, respectively, that were created for one or
more of applications 5122-512N. Other information that is stored in block device database 533
includes an active bit value for each block device that indicates whether or not the block device

is active, and a CIF (commands-in-flight) value. An active bit of “1” signifies that IOs can be
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issued to the block device. An active bit of “0” signifies that the block device is inactive and [Os
cannot be issued to the block device. The CIF value provides an indication of how many IOs are
in flight, i.e., issued but not completed. In the example shown herein, the block device, foo, is
active, and has some commands-in-flight. The block device, archive, is inactive, and will not
accept newer commands. However, it is waiting for 2 commands-in-flight to complete. The
block device, dbase, is inactive with no outstanding commands. Finally, the block device, log, is
active, but the application currently has no pending IOs to the device. Virtual volume device
driver 532 may choose to remove such devices from its database 533 at any time.

[0061] In addition to performing the mapping described above, virtual volume device driver
532 issues raw block-level I0s to data access layer 540. Data access layer 540 includes device
access layer 534, which applies command queuing and scheduling policies to the raw block-level
IO0s, and device driver 536 for HBA 504 which formats the raw block-level 10s in a protocol-
compliant format and sends them to HBA 504 for forwarding to the PEs via an in-band path. In
the embodiment where SCSI protocol is used, the vvol information is encoded in the SCSI LUN
data field, which is an 8-byte structure, as specified in SAM-5 (SCSI Architecture Model - 5).
The PE ID is encoded in the first 2 bytes, which is conventionally used for the LUN ID, and the
vvol information, in particular the SLLID, is encoded in the SCSI second level LUN ID, utilizing
(a portion of) the remaining 6 bytes.

[0062] As further shown in Figure 5A, data access layer 540 also includes an error handling
unit 542 for handling IO errors that are received through the in-band path from the storage
system. In one embodiment, the IO errors received by error handling unit 542 are propagated
through the PEs by I/O manager 304. Examples of 10 error classes include path errors between
computer system 101 and the PEs, PE errors, and vvol errors. The error handling unit 542
classifies all detected errors into aforementioned classes. When a path error to a PE is
encountered and another path to the PE exists, data access layer 540 transmits the 10 along a
different path to the PE. When the IO error is a PE error, error handing unit 542 updates block
device database 533 to indicate an error condition for each block device issuing 10s through the
PE. When the IO error is a vvol error, error handing unit 542 updates block device database 533
to indicate an error condition for each block device associated with the vvol. Error handing unit
542 may also issue an alarm or system event so that further IOs to block devices having the error
condition will be rejected.

[0063] Figure 5B is a block diagram of the computer system of Figure SA that has been
configured to interface with the storage system cluster of Figure 2B instead of the storage system

cluster of Figure 2A. In this embodiment, data access layer 540 includes an NFS client 545 and
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a device driver 546 for NIC 503. NFS client 545 maps the block device name to a PE ID (IP
address of NAS storage system) and a SLLID which is a NFS file handle corresponding to the
block device. This mapping is stored in block device database 533 as shown in Figure 5B. It
should be noted that the Active and CIF columns are still present but not illustrated in the block
device database 533 shown in Figure 5B. As will be described below, an NFS file handle
uniquely identifies a file object within the NAS storage system, and may be generated during the
bind process. Alternatively, in response to a request to bind the vvol, the NAS storage system
returns the PE ID and the SLLID, and an open of the vvol using regular in-band mechanisms
(e.g., lookup or readdirplus) will give the NFS file handle. NFS client 545 also translates the raw
block-level IOs received from virtual volume device driver 532 to NFS file-based 10s. Device
driver 546 for NIC 503 then formats the NFS file-based IOs in a protocol-compliant format and
sends them to NIC 503, along with the NFS handle, for forwarding to one of the PEs via an in-
band path.

[0064] Figure 5C is a block diagram of another embodiment of a computer system configured
to implement virtual volumes. In this embodiment, computer system 102 is configured with
virtualization software, shown herein as hypervisor 560. Hypervisor 560 is installed on top of
hardware platform 550, which includes CPU 551, memory 552, NIC 553, and HBA 554, and
supports a virtual machine execution space 570 within which multiple virtual machines (VMs)
5711-57IN may be concurrently instantiated and executed. In one or more embodiments,
hypervisor 560 and virtual machines 571 are implemented using the VMware vSphere® product
distributed by VMware, Inc. of Palo Alto, California. Each virtual machine 571 implements a
virtual hardware platform 573 that supports the installation of a guest operating system (OS) 572
which is capable of executing applications 579. Examples of a guest OS 572 include any of the
well-known commodity operating systems, such as Microsoft Windows, Linux, and the like. In
each instance, guest OS 572 includes a native file system layer (not shown in Figure 5C), for
example, either an NTFS or an ext3FS type file system layer. These file system layers interface
with virtual hardware platforms 573 to access, from the perspective of guest OS 572, a data
storage HBA, which in reality, is virtual HBA 574 implemented by virtual hardware platform
573 that provides the appearance of disk storage support (in reality, virtual disks or virtual disks
575A-575X) to enable execution of guest OS 572. In certain embodiments, virtual disks 575A-
575X may appear to support, from the perspective of guest OS 572, the SCSI standard for
connecting to the virtual machine or any other appropriate hardware connection interface
standard known to those with ordinary skill in the art, including IDE, ATA, and ATAPIL
Although, from the perspective of guest OS 572, file system calls initiated by such guest OS 572
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to implement file system-related data transfer and control operations appear to be routed to
virtual disks 575A-575X for final execution, in reality, such calls are processed and passed
through virtual HBA 574 to adjunct virtual machine monitors (VMM) 5611-56IN that
implement the virtual system support needed to coordinate operation with hypervisor 560. In
particular, HBA emulator 562 functionally enables the data transfer and control operations to be
correctly handled by hypervisor 560 which ultimately passes such operations through its various
layers to HBA 554 that connect to storage systems 130.

[0065] According to embodiments described herein, each VM 571 has one or more vvols
associated therewith and issues IOs to block device instances of the vvols created by hypervisor
560 pursuant to “CREATE DEVICE” calls by VM 571 into hypervisor 560. The association
between block device names and vvol IDs are maintained in block device database 580. IOs
from VMs 5712-571N are received by a SCSI virtualization layer 563, which converts them into
file I0s understood by a virtual machine file system (VMFS) driver 564. VMFS driver 564 then
converts the file IOs to block IOs, and provides the block 10s to virtual volume device driver
565. 10s from VM 5711, on the other hand, are shown to bypass VMFS driver 564 and provided
directly to virtual volume device driver 565, signifying that VM 5711 accesses its block device
directly as a raw storage device, e.g., as a database disk, a log disk, a backup archive, and a
content repository, in the manner described in U.S. Patent 7,155,558.

[0066] When virtual volume device driver 565 receives a block 10, it accesses block device
database 580 to reference a mapping between the block device name specified in the 10 and the
PE ID and SLLID that define the IO session to the vvol associated with the block device name.
In the example shown herein, the block device names, dbase and log, corresponds to block
device instances of vvoll and vvol4, respectively, that were created for VM 5711, and the block
device names, vmdk2, vmdkn, and snapn, correspond to block device instances of vvoll2,
vvoll6, and vvoll7, respectively, that were created for one or more of VMs 5712-57IN. Other
information that is stored in block device database 580 includes an active bit value for each
block device that indicates whether or not the block device is active, and a CIF (commands-in-
flight) value. An active bit of “1” signifies that IOs can be issued to the block device. An active
bit of “0” signifies that the block device is inactive and IOs cannot be issued to the block device.
The CIF value provides an indication of how many IOs are in flight, i.e., issued but not
completed.

[0067] In addition to performing the mapping described above, virtual volume device driver
565 issues raw block-level IOs to data access layer 566. Data access layer 566 includes device

access layer 567, which applies command queuing and scheduling policies to the raw block-level
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I0s, and device driver 568 for HBA 554 which formats the raw block-level IOs in a protocol-
compliant format and sends them to HBA 554 for forwarding to the PEs via an in-band path. In
the embodiment where SCSI protocol is used, the vvol information is encoded in the SCSI LUN
data field, which is an 8-byte structure, as specified in SAM-5 (SCSI Architecture Model - 5).
The PE ID is encoded in the first 2 bytes, which is conventionally used for the LUN ID, and the
vvol information, in particular the SLLID, is encoded in the SCSI second level LUN ID, utilizing
(a portion of) the remaining 6 bytes. As further shown in Figure 5C, data access layer 566 also
includes an error handling unit 569, which functions in the same manner as error handling unit
542.

[0068] Figure 5D is a block diagram of the computer system of Figure 5C that has been
configured to interface with the storage system cluster of Figure 2B instead of the storage system
cluster of Figure 2A. In this embodiment, data access layer 566 includes an NFS client 585 and
a device driver 586 for NIC 553. NFS client 585 maps the block device name to a PE ID (IP
address) and SLLID (NFS file handle) corresponding to the block device. This mapping is
stored in block device database 580 as shown in Figure 5D. It should be noted that the Active
and CIF columns are still present but not illustrated in the block device database 580 shown in
Figure 5D. As will be described below, an NFS file handle uniquely identifies a file object
within the NFS, and is generated during the bind process in one embodiment. NFS client 585
also translates the raw block-level I0s received from virtual volume device driver 565 to NFS
file-based 10s. Device driver 586 for NIC 553 then formats the NFS file-based IOs in a
protocol-compliant format and sends them to NIC 553, along with the NFS handle, for
forwarding to one of the PEs via an in-band path.

[0069] It should be recognized that the various terms, layers and categorizations used to
describe the components in Figures 5A-5D may be referred to differently without departing from
their functionality or the spirit or scope of the invention. For example, VMM 561 may be
considered separate virtualization components between VM 571 and hypervisor 560 (which, in
such a conception, may itself be considered a virtualization “kernel” component) since there
exists a separate VMM for each instantiated VM. Alternatively, each VMM 561 may be
considered to be a component of its corresponding virtual machine since such VMM includes the
hardware emulation components for the virtual machine. In such an alternative conception, for
example, the conceptual layer described as virtual hardware platform 573 may be merged with
and into VMM 561 such that virtual host bus adapter 574 is removed from Figures 5C and 5D

(i.e., since its functionality is effectuated by host bus adapter emulator 562).
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[0070] Figure 6 is a simplified block diagram of a computer environment that illustrates
components and communication paths used to manage vvols according to an embodiment of the
invention. As previously described, the communication path for IO protocol traffic is referred to
as the in-band path and is shown in Figure 6 as dashed line 601 that connects data access layer
540 of the computer system (through an HBA or NIC provided in the computer system) with one
or more PEs configured in storage systems 130. The communication paths used to manage vvols
are out-of-band paths (as previously defined, paths that are not “in-band”) and shown in Figure 6
as solid lines 602. According to embodiments described herein, vvols can be managed through
plug-in 612 provided in management server 610 and/or plug-in 622 provided in each of
computer systems 103, only one of which is shown in Figure 6. On the storage device side, a
management interface 625 is configured by storage system manager 131 and a management
interface 626 is configured by storage system manager 132. In addition, a management interface
624 is configured by distributed storage system manager 135. Each management interface
communicates with plug-ins 612, 622, To facilitate issuing and handling of management
commands, special application programming interfaces (APIs) have been developed. It should
be recognized that, in one embodiment, both plug-ins 612, 622 are customized to communicate
with storage hardware from a particular storage system vendor. Therefore, management server
610 and computer systems 103 will employ different plug-ins when communicating with storage
hardware for different storage system vendors. In another embodiment, there may be a single
plug-in that interacts with any vendor’s management interface. This would require the storage
system manager to be programmed to a well-known interface (e.g., by virtue of being published
by the computer system and/or the management server).

[0071] Management server 610 is further configured with a system manager 611 for managing
the computer systems. In one embodiment, the computer systems are executing virtual machines
and system manager 611 manages the virtual machines running in the computer systems. One
example of system manager 611 that manages virtual machines is the vSphere® product
distributed by VMware, Inc. As shown, system manager 611 communicates with a host daecmon
(hostd) 621 running in computer system 103 (through appropriate hardware interfaces at both
management server 610 and computer system 103) to receive resource usage reports from
computer system 103 and to initiate various management operations on applications running in
computer system 103.

[0072] Figure 7 is a flow diagram of method steps for authenticating a computer system to the
storage system cluster of Figures 2A or 2B using an authentication related API. These method

steps are initiated when a computer system requests authentication by transmitting its secure
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socket layer (SSL) certificate to the storage system. At step 710, the storage system issues a
prompt for authentication credentials (e.g., username and password) to the computer system
requesting authentication. Upon receipt of the authentication credentials at step 712, the storage
system compares them against stored credentials at step 714. If the correct credentials are
provided, the storage system stores the SSL certificate of the authenticated computer system in a
key store (step 716). If incorrect credentials are provided, the storage system ignores the SSL
certificate and returns an appropriate error message (step 718). Subsequent to being
authenticated, the computer system may invoke the APIs to issue management commands to the
storage system over SSL links, and unique context IDs included in the SSL certificates are used
by the storage system to enforce certain policies such as defining which computer systems may
access which storage containers. In some embodiments, context IDs of the computer systems
may be used in managing permissions granted to them. For example, a host computer may be
permitted to create a vvol, but may not be permitted to delete the vvol or snapshot the vvol, or a
host computer may be permitted to create a snapshot of a vvol, but may not be permitted to clone
the vvol. In addition, permissions may vary in accordance with user-level privileges of users
who are logged into authenticated computer systems.

[0073] Figure 8 is a flow diagram of method steps for creating a virtual volume using a create
virtual volumes API command. In one embodiment, computer system 103 issues the create
virtual volumes API command to the storage system via out-of-band path 602 when, at step 802,
computer system 103 receives a request to create a vvol having certain size and storage
capability profiles, such as minimum IOPS and average latency, from one of its applications. In
response, computer system 103, at step 804, selects a storage container (among those that
computer system 103 and the requesting application is permitted to access and have sufficient
free capacity to accommodate the request) and issues the create virtual volumes API command
via plug-in 622 to the storage system. The API command includes a storage container ID, vvol
size, and storage capability profiles of the vvol. In another embodiment, the API command
includes a set of key-value pairs that the application requires the storage system to store with the
newly created vvol. In another embodiment, management server 610 issues the create virtual
volumes API command (via plug-in 612) to the storage system via out-of-band path 602.

[0074] At step 806, the storage system manager receives the request to generate the vvol via the
management interface (e.g., management interface 624, 625, or 626) and accesses the selected
storage container’s metadata section in container database 316 to verify that the request context
comprising the computer system 103 and application has sufficient permissions to create a vvol

in the selected storage container. In one embodiment, an error message is returned to computer
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system 103 if the permission level is not sufficient. If the permission level is sufficient, a unique
vvol ID is generated at step 810. Then at step 812, the storage system manager scans the
allocation bitmap in the metadata section of container database 316 to determine free partitions
of the selected storage container. The storage system manager allocates the free partitions of the
selected storage container sufficient to accommodate the requested vvol size, and updates the
allocation bitmap in the storage container’s metadata section of container database 316. The
storage system manager also updated vvol database 314 with a new vvol entry. The new vvol
entry includes the vvol ID generated at step 810, ordered list of newly allocated storage container
extents, and metadata of the new vvol expressed as key-value pairs. Then, at step 814, the
storage system manager transmits the vvol ID to computer system 103. At step 816, computer
system 103 associates the vvol ID with the application that requested creation of the vvol. In one
embodiment, one or more vvol descriptor files are maintained for each application and the vvol
ID is written into a vvol descriptor file maintained for the application that requested the creation
of the vvol.

[0075] As shown in Figures 2A and 2B, not all vvols are connected to PEs. A vvol that is not
connected to a PE is not aware of IOs issued by a corresponding application because an IO
session is not established to the vvol. Before IOs can be issued to a vvol, the vvol undergoes a
bind process as a result of which the vvol will be bound to a particular PE. Once a vvol is bound
to a PE, 10s can be issued to the vvol until the vvol is unbound from the PE.

[0076] In one embodiment, the bind request is issued by computer system 103 via an out-of-
band path 602 to the storage system using a bind virtual volume API. The bind request identifies
the vvol to be bound (using the vvol ID) and in response the storage system binds the vvol to a
PE to which computer system 103 is connected via an in-band path. Figure 9A is a flow diagram
of method steps for the computer system to discover PEs to which it is connected via an in-band
path. PEs configured in SCSI protocol-based storage devices are discovered via an in-band path
using the standard SCSI command, REPORT LUNS. PEs configured in NFS protocol-based
storage devices are discovered via an out-of-band path using an API. The method steps of
Figure 9A are carried out by the computer system for each connected storage system.

[0077] At step 910, the computer system determines whether the connected storage system is
SCSI protocol-based or NFS protocol-based. If the storage system is SCSI protocol-based, the
SCSI command, REPORT_LUNS, is issued by the computer system in-band to the storage
system (step 912). Then, at step 913, the computer system examines the response from the
storage system, in particular the PE bit associated with each of the PE IDs that are returned, to

distinguish between the PE-related LUNSs and the convention data LUNS. If the storage system
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is NFS protocol-based, an API call is issued by the computer system out-of-band from plug-in
622 to the management interface (e.g., management interface 624, 625, or 626) to get IDs of
available PEs (step 914). At step 916, which follows steps 913 and 914, the computer system
stores the PE IDs of PE-related LUNSs returned by the storage system or the PE IDs returned by
the management interface, for use during a bind process. It should be recognized that the PE IDs
returned by SCSI protocol-based storage devices each include a WWN, and the PE IDs returned
by NFS protocol-based storage devices each include an IP address and mount point.

[0078] Figure 9B is a flow diagram of method steps for the storage system manager 131 or
storage system manager 132 or distributed storage system manager 135 (hereinafter referred to
as “the storage system manager”) to discover PEs to which a given computer system 103 is
connected via an in-band path. The discovery of such PEs by a storage system manager enables
the storage system to return to a requesting computer system, a valid PE ID, onto which the
computer system can be actually connected, in response to a bind request from the computer
system. At step 950, the storage system manager issues an out-of-band “Discover Topology”
API call to the computer system 103 via the management interface and plug-in 622. Computer
systefn 103 returns its system ID and a list of all PE IDs that it discovered via the flow diagram
of Figure 9A. In one embodiment, the storage system manager executes step 950 by issuing a
“Discover_Topology” API call to management server 610 via the management interface and
plug-in 612. In such an embodiment, the storage system will receive a response that contains
multiple computer system IDs and associated PE IDs, one for each computer system 103 that
management server 610 manages. Then, at step 952, the storage system manager processes the
results from step 950. For example, the storage system manager clears the list of all PE IDs that
are not under its current control. For example, certain PE IDs received by the storage system
manager 135 when issuing a Discover Topology call may correspond to another storage system
connected to the same computer system. Similarly, certain received PE IDs may correspond to
older PEs that were since deleted by the storage system administrator, and so on. At step 954,
the storage system manager caches the processed results for use during subsequent bind requests.
In one embodiment, the storage system manager runs the steps of Figure 9B periodically to
update its cached results with ongoing computer system and network topology changes. In
another embodiment, the storage system manager runs the steps of Figure 9B every time it
receives a new vvol creation request. In yet another embodiment, the storage system manager
runs the steps of Figure 9B after running the authentication steps of Figure 7.

[0079] Figure 10 is a flow diagram of method steps for issuing and executing a virtual volume

bind request using a bind virtual volume API. In one embodiment, computer system 103 issues
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the bind request to the storage system via out-of-band path 602 when one of its applications
requests IO access to a block device associated with a vvol that has not yet been bound to a PE.
In another embodiment, management server 610 issues the bind request in connection with
certain VM management operations, including VM power on and vvol migration from one
storage container to another.

[0080] Continuing with the example described above where an application requests IO access
to a block device associated with vvol that has not yet been bound to a PE, computer system 103
at step 1002 determines from the block device database 533 (or 580), the vvol ID of the vvol.
Then, at step 1004, computer system 103 issues through the out-of-band path 602 a request to
bind the vvol to the storage system.

[0081] The storage system manager receives the request to bind the vvol via the management
interface (e.g., management interface 624, 625, or 626) at step 1006, and then carries out step
1008, which includes selecting a PE to which the vvol is to be bound, generating SLLID and
generation number for the selected PE, and updating connection database 312 (e.g., via IO.
manager 304). The selection of the PE to which the vvol is to be bound is made according to
connectivity, i.e., only the PEs that have an existing in-band connection to computer system 103
are available for selection, and other factors, such as current IO traffic through the available PEs.
In one embodiment, the storage system selects from the processed and cached list of PEs the
computer system 103 sent to it according to the method of Figure 9B. SLLID generation differs
between the embodiment employing the storage system cluster of Figure 2A and the embodiment
employing the storage system cluster of Figure 2B. In the former case, an SLLID that is unique
for the selected PE is generated. In the latter case, a file path to the file object corresponding to
the vvol is generated as the SLLID. After the SLLID and the generation number have been
generated for the selected PEs, connection database 312 is updated to include newly generated
IO session to the vvol. Then, at step 1010, ID of the selected PE, the generated SLLID, and the
generation number are returned to computer system 103. Optionally, in the embodiment
employing the storage system cluster of Figure 2B, a unique NFS file handle may be generated
for the file object corresponding to the vvol and returned to computer system 103 along with the
ID of the selected PE, the generated SLLID, and the generation number. At step 1012, computer
system 103 updates block device database 533 (or 580) to include the PE ID, the SLLID (and
optionally, the NFS handle), and the generation number returned from the storage system. In
particular, each set of PE ID, SLLID (and optionally, the NFS handle), and the generation
number returned from storage system will be added as a new entry to block device database 533

(or 580). It should be recognized that the generation number is used to guard against replay
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attacks. Therefore, in embodiments where replay attacks are not a concern, the generation
number is not used.

[0082] On subsequent bind requests to the same vvol initiated by a different application
desiring to issue IOs to the same vvol, the storage system manager may bind the vvol to the same
or different PE. If the vvol is bound to the same PE, the storage system manager returns the ID
of the same PE and the SLLID previously generated, and increments the reference count of this
IO connection path stored in connection database 312. On the other hand, if the vvol is bound to
a different PE, the storage system manager generates a new SLLID and returns the ID of the
different PE and the newly generated SLLID and adds this new IO connection path to the vvol as
a new entry to connection database 312.

[0083] A virtual volume unbind request may be issued using an unbind virtual volume API.
An unbind request includes the PE ID and SLLID of the IO connection path by which a vvol has
been previously bound. The processing of the unbind request is, however, advisory. The storage
system manager is free to unbind the vvol from a PE immediately or after a delay. The unbind
request is processed by updating connection database 312 to decrement the reference count of
the entry containing the PE ID and SLLID. If the reference count is decremented to zero, the
entry may be deleted. It should be noted, in this case, that the vvol continues to exist, but is not
available for 1O using the given PE ID and SLLID any more.

[0084] In the case of a vvol that implements a virtual disk of a VM, the reference count for this
vvol will be at least one. When the VM is powered-off and an unbind request is issued in
connection therewith, the reference count will be decremented by one. If the reference count is
zero, the vvol entry may be removed from connection database 312. In general, removing
entries from connection database 312 is beneficial because I/O manager 304 manages less data
and can also recycle SLLIDs. Such benefits become significant when the total number of vvols
stored by the storage system is large (e.g., in the order of millions of vvols) but the total number
of vvols being actively accessed by applications is small (e.g., tens of thousands of VMs).
Additionally, when a vvol is not bound to any PEs, the storage system has greater flexibility in
choosing where to store the vvol in DSUs 141. For example, the storage system can be
implemented with asymmetrical, hierarchical DSUs 141, where some DSUs 141 provide faster
data access and others provide slower data access (e.g., to save on storage costs). In one
implementation, when a vvol is not bound to any PE (which can be determined by checking the
reference count of entries of the vvol in connection database 312), the storage system can
migrate the vvol to a slower and/or cheaper type of physical storage. Then, once the vvol is

bound to a PE, the storage system can migrate the vvol to a faster type of physical storage. It
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should be recognized that such migrations can be accomplished by changing one or more
elements of the ordered list of container locations that make up the given vvol in the vvol
database 314, and updating the corresponding extent allocation bitmap in the metadata section of
container database 316.

[0085] Binding and unbinding vvols to PEs enables the storage system manager to determine
vvol liveness. The storage system manager may take advantage of this information to perform
storage system vendor-specific optimizations on non-IO-serving (passive) and I10-serving
(active) vvols. For example, the storage system manager may be configured to relocate a vvol
from a low-latency (high cost) SSD to a mid-latency (low cost) hard drive if it remains in a
passive state beyond a particular threshold of time.

[0086] Figures 11A and 11B are flow diagrams of method steps for issuing an IO to a virtual
volume, according to one embodiment. Figure 11A is a flow diagram of method steps 1100 for
issuing an IO from an application directly to a raw block device and Figure 11B is a flow
diagram of method steps 1120 for issuing an IO from an application through a file system driver.

[0087] Method 1100 begins at step 1102, where an application, such as application 512 shown
in Figures 5SA-5B or VM 571 shown in Figure 5C-5D, issues an IO to a raw block device. At
step 1104, virtual volume device driver 532 or 565 generates a raw block-level IO from the 10
issued by the application. At step 1106, the name of the raw block device is translated to a PE
ID and SLLID by virtual volume device driver 532 or 565 (and also to an NFS handle by NFS
client 545 or 585 in the embodiment employing the storage device of Figure 2B). At step 1108,
the data access layer 540 or 566 carries out the encoding of the PE ID and SLLID (and also the
NFS handle in the embodiment employing the storage device of Figure 2B) into the raw block-
level IO. Then, at step 1110, the HBA/NIC issues the raw block-level 10.

[0088] For non-VM applications, such as application 512 shown in Figures 5A-5B, method
1120 begins at step 1121. At step 1121, the application issues an IO to a file stored on a vvol-
based block device. Then, at step 1122, the file system driver, e.g., file system driver 510,
generates a block-level IO from the file IO. After step 1122, steps 1126, 1128, and 1130, which
are identical to steps 1106, 1108, and 1110, are carried out.

[0089] For VM applications, such as VM 571 shown in Figure 5C-5D, method 1120 begins at
step 1123. At step 1123, the VM issues an IO to its virtual disk. Then, at step 1124, this IO is
translated to a file IO, e.g., by SCSI virtualization layer 563. The file system driver, e.g., VMFS
driver 564, then generates a block-level IO from the file IO at step 1125, After step 1125, steps
1126, 1128, and 1130, which are identical to steps 1106, 1108, and 1110, are carried out.
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[0090] Figure 12 is a flow diagram of method steps for performing an IO at a storage system,
according to one embodiment. At step 1210, an IO issued by a computer system is received
through one of the PEs configured in the storage system. The IO is parsed by IO manager 304 at
step 1212, After step 1212, step 1214a is carried out by IO manager 304 if the storage system
cluster is of the type shown in Figure 2A and step 1214b is carried out by IO manager 304 if the
storage system cluster is of the type shown in Figure 2B. At step 1214a, IO manager 304
extracts the SLLID from the parsed IO and accesses connection database 312 to determine the
vvol ID corresponding to the PE ID and the extracted SLLID. At step 1214b, IO manager 304
extracts the NFS handle from the parsed IO and identifies the vvol using the PE ID and the NFS
handle as the SLLID. Step 1216 is carried out after steps 1214a and 1214b. At step 1216, vvol
database 314 and container database 316 are accessed by volume manager 306 and container
manager 308, respectively, to obtain physical storage locations on which the IO is to be
performed. Then, at step 1218, data access layer 310 performs the IO on the physical storage
locations obtained at step 1216.

[0091] In some situations, an application (application 512 or VM 571), management server
610, and/or the storage system manager may determine that a binding of a vvol to a particular PE
is experiencing issues, such as when the PE becomes overloaded with too many bindings. As a
way to resolve such issues, a bound vvol may be rebound by the storage system manager to a
different PE, even while IO commands are being directed to the vvol. Figure 13 is a flow
diagram of method steps 1300 for issuing and executing a vvol rebind request, according to one
embodiment, using a rebind API.

[0092] As shown, method 1300 begins at step 1302, where the storage system manager
determines that a vvol should be bound to a second PE that is different from a first PE to which
the vvol is currently bound. At step 1304, the storage system manager issues via an out-of-band
path a request to a computer system (e.g., computer system 103) running an application issuing
IO to the vvol to rebind the vvol. At step 1306, computer system 103 receives from the storage
system manager the rebind request and, in response, issues a request to bind the vvol to a new
PE. At step 1308, the storage system manager receives the rebind request and, in response, binds
the vvol to the new PE. At step 1310, the storage system manager transmits to the computer
system an ID of the new PE to which the vvol is now also bound and an SLLID to access the
vvol, as described above in conjunction with Figure 10.

[0093] At step 1312, the computer system receives from the storage system manager the new
PE ID and the SLLID. In block device database 533 or 580, the active bit of the new PE

connection is set to 1 initially, meaning that a new 10 session for the vvol via the new PE has
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been established. The computer system also sets the active bit of the first PE connection to 0,
signifying that no more IOs can be issued to the vvol through this PE connection. It should be
recognized that this PE connection should not be unbound immediately upon deactivation
because there may be IOs to the vvol through this PE connection that may be in-flight, i.e.,
issued but not completed. Therefore, at step 1314, the computer system accesses block device
database 533 or 580 to see if all “commands in flight” (CIFs) issued to the vvol through the first
PE connection have been completed, i.e., if CIF = 0. The computer system waits for the CIF to
go to zero before executing step 1318. In the meantime, additional IOs to the vvol are issued
through the new PE since the active bit of the new PE connection is already set to 1. When the
CIF does reach zero, step 1318 is carried out where a request to unbind the first PE connection is
issued to the storage system manager. Then, at step 1320, the storage system manager unbinds
the vvol from the first PE. Also, the computer system issues all additional IOs to the vvol
through the new PE at step 1324.

[0094] Figure 14 is a conceptual diagram of a lifecycle of a virtual volume, according to one
embodiment. All commands shown in Figure 14, namely, create, snapshot, clone, bind, unbind,
extend, and delete form a vvol management command set, and are accessible through plug-ins
612, 622 described above in conjunction with Figure 6. As shown, when a vvol is generated as a
result of any of the following commands—create vvol, snapshot vvol, or clone vvol—the
generated vvol remains in a “passive” state, where the vvol is not bound to a particular PE, and
therefore cannot receive I0s. In addition, when any of the following commands—snapshot vvol,
clone vvol, or extend vvol—is executed when the vvol is in a passive state, the original vvol and
the newly created vvol (if any) remains in the passive state. As also shown, when a vvol in a
passive state is bound to a PE, the vvol enters an “active” state. Conversely, when an active vvol
is unbound from a PE, the vvol enters a passive state, assuming that the vvol is not bound to any
additional PEs. When any of the following commands—snapshot vvol, clone vvol, extend vvol,
or rebind vvol—is executed when the vvol is in an active state, the original vvol remains in the
active state and the newly created vvol (if any) remains in the passive state.

[0095] As described above, a VM may have multiple virtual disks and a separate vvol is
created for each virtual disk. The VM also has metadata files that describe the configurations of
the VM. The metadata files include VM configuration file, VM log files, disk descriptor files,
one for each of the virtual disks for the VM, a VM swap file, etc. A disk descriptor file for a
virtual disk contains information relating to the virtual disk such as its vvol ID, its size, whether
the virtual disk is thinly provisioned, and identification of one or more snapshots created for the

virtual disk, etc. The VM swap file provides a swap space of the VM on the storage system. In
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one embodiment, these VM configuration files are stored in a vvol, and this vvol is referred to
herein as a metadata vvol.

[0096] Figure 15 is a flow diagram of method steps for pfovisioning a VM, according to an
embodiment. In this embodiment, management server 610, a computer system hosting the VM,
e.g., computer system 102 shown in Figure 5C (hereinafter referred to as the “host computer™),
and the storage system cluster of Figure 2A, in particular storage system manager 131, 132, or
135, are used. As illustrated, the storage system manager reéeives the request to provision the
VM at step 1502. This may be a request generated when a VM administrator using appropriate
user interfaces to management server 610 issues a command to management server 610 to
provision a VM having a certain size and storage capability profiles. In response thereto, at step
1504, management server 610 initiates the method for creating a vvol to contain the VM’s
metadata (hereinafter referred to as “metadata vvol”) in the manner described above in
conjunction with Figure 8, pursuant to which the storage system manager at step 1508 creates the
metadata vvol and returns the vvol ID of the metadata vvol to management server 610. At step
1514, management server 610 registers the vvol ID of the metadata vvol back to a computer
system hosting the VM. At step 1516, the host computer initiates the method for binding the
metadata vvol to a PE in the manner described above in conjunction with Figure 10, pursuant to
which the storage system manager at step 1518 binds the metadata vvol to a PE and returns the
PE ID and a SLLID to the host computer.

[0097] At step 1522, the host computer creates a block device instance of the metadata vvol
using the “CREATE DEVICE” call into the host computer’s operating system. Then, at step
1524, the host computer creates a file system (e.g., VMFS) on the block device in response to
which a file system ID (FSID) is returned. The host computer, at step 1526, mounts the file
system having the returned FSID, and stores the metadata of the VM into the namespace
associated with this file system. Examples of the metadata include VM log files, disk descriptor
files, one for each of the virtual disks for the VM, and a VM swap file.

[0098] At step 1528, the host computer initiates the method for creating a vvol for each of the
virtual disks of the VM (each such vvol referred to herein as “data vvol”) in the manner
described above in conjunction with Figure 8, pursuant to which the storage system manager at
step 1530 creates the data vvol and returns the vvol ID of the data vvol to the host computer. At
step 1532, the host computer stores the ID of the data vvol in the disk descriptor file for the
virtual disk. The method ends with the unbinding of the metadata vvol (not shown) after data

vvols have been created for all of the virtual disks of the VM.



16 Oct 2015

2015243082

29

[0099] Figure 16A is a flow diagram of method steps for powering ON a VM after the VM has
been provisioned in the manner described in conjunction with Figure 15. Figure 16B is a flow
diagram of method steps for powering OFF a VM after the VM has been powered ON. These
two methods are carried out by a host computer for the VM.

[00100] Upon receiving a VM power ON command at step 1608, the ID of the metadata vvol
corresponding to the VM is retrieved at step 1610. Then, at step 1612 the metadata vvol
undergoes a bind process as described above in conjunction with Figure 10. The file system is
mounted on the metadata vvol at step 1614 so that the metadata files for the data vvols, in
particular the disk descriptor files, can be read and data vvol IDs obtained at step 1616. The data
vvols then undergo a bind process, one by one, as described above in conjunction with Figure 10
at step 1618.

[00101] Upon receiving a VM power OFF command at step 1620, the data vvols of the VM are
marked as inactive in the block device database (e.g., block device database 580 of Figure 5C)
and the host computer waits for the CIFs associated with each of the data vvols to reach zero
(step 1622). As the CIF associated with each data vvol reaches zero, the host computer at step
1624 requests the storage system to unbind that data vvol. After the CIFs associated with all
data vvols reach zero, the metadata vvol is marked as inactive in the block device database at
step 1626. Then, at step 1628, when the CIF associated with the metadata vvol reaches zero, the
host computer at step 1630 requests the metadata vvol to be unbound.

[00102] Figures 17 and 18 are flow diagrams of method steps for reprovisioning a VM. In the
examples illustrated herein, Figure 17 is a flow diagram of method steps executed on the host
computer, for extending the size of a vvol of a VM, in particular a data vvol for a virtual disk of
the VM, and Figure 18 is a flow diagram of method steps executed in the storage system, for
moving a vvol of VM between storage containers.

[00103] The method for extending the size of a data vvol for a VM’s virtual disk begins at step
1708 where the host computer determines if the VM is powered ON. If the host computer
determines at step 1708 that the VM is not powered ON, the host computer retrieves the ID of
the metadata vvol corresponding to the VM at step 1710. Then, the bind process for the
metadata vvol is initiated by the host computer at step 1712. After the bind, at step 1714, the
host computer mounts a file system on the metadata vvol and retrieves the ID of the data vvol
corresponding to the virtual disk from the disk descriptor file for the virtual disk, which is a file
in the file system mounted on the metadata vvol. Then, at step 1716, the host computer sends an
extend-vvol API call to the storage system at step 1716, where the extend-vvol API call includes

the ID of the data vvol and the new size of the data vvol.
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[00104] If the VM is powered ON, the host computer retrieves the ID of the data vvol of VM’s
virtual disk to be extended at step 1715. It should be recognized from the method of Figure 16A
that this ID can be obtained from the disk descriptor file associated with the VM’s virtual disk.
Then, at step 1716, the host computer sends an extend-vvol API call to the storage system at step
1716, where the extend-vvol API call includes the ID of the data vvol and the new size of the
data vvol.

[00105] The extend-vvol API call results in the vvol database and the container database (e.g.,
vvol database 314 and container database 316 of Figure 3) being updated in the storage system to
reflect the increased address space of the vvol. Upon receiving acknowledgement that the
extend-vvol API call has completed, the host computer at step 1718 updates the disk descriptor
file for the VM’s virtual disk with the new size. Then, at step 1720, the host computer
determines if the VM is powered ON. If it is not, the host computer at step 1722 unmounts the
file system and sends a request to unbind the metadata vvol to the storage system. If, on the
other hand, the VM is powered ON, the method terminates.

[00106] The method for moving a vvol of a VM, currently bound to a PE, from a source storage
container to a destination storage container, where both the source storage container and the
destination storage container are within the scope of the same storage system manager, begins at
step 1810 where the container IDs of the source and destination storage containers (SC1 and
SC2, respectively) and the vvol ID of the vvol to be moved are received. Then, at step 1812, the
vvol database (e.g., vvol database 314 of Figure 3) and the extent allocation bitmap of the
container database (e.g., container database 316 of Figure 3) are updated as follows. First, the
storage system manager removes the vvol extents in SC1 from SC1’s entry in the container
database 316, and then assigns these extents to SC2 by modifying SC2’s entry in the container
database 316. In one embodiment, the storage system may compensate for the loss of storage
capacity (due to removal of vvol storage extents) in SC1 by assigning new spindle extents to
SC1, and make up for the increase in storage capacity (due to addition of vvol storage extents) in
SC2 by removing some unused spindle extents from SC2. At step 1814, the storage system
manager determines whether the currently bound PE is able to optimally service IO to the vvol’s
new location. An example instance when the current PE is unable to service IO to the vvol’s
new location is if the storage administrator has statically configured the storage system manager
to assign different PEs to vvols from different customers and hence different storage containers.
If the current PE is unable to service IO to the vvol, the vvol, at step 1815, undergoes a rebind
process (and associated changes to a connection database, e.g., the connection database 312 of

Figure 3) which is described above in conjunction with Figure 13. After step 1815, step 1816 is
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carried out, where an acknowledgement of successful move completion is returned to the host
computer. If, at step 1814, the storage system manager determines that the current PE is able to
service 10 to the new location of the vvol, step 1815 is bypassed and step 1816 is performed
next.

[00107] When a vvol is moved between incompatible storage containers, e.g., between storage
containers created in storage devices of different manufacturers, data movement is executed
between storage containers in addition to the changes to the container database 316, the vvol
database 314, and the connection database 312. In one embodiment, data movement techniques
described in U.S. Patent Application Serial No. 12/129,323, filed May 29, 2008 and entitled
“Offloading Storage Operations to Storage Hardware,” the entire contents of which are
incorporated by reference herein, are employed.

[00108] Figure 19 is a flow diagram of method steps executed in the host computer and the
storage system for cloning a VM from a template VM. This method beginé at step 1908 where
the host computer sends a request to create a metadata vvol for the new VM to the storage
system. At 1910, the storage system creates a metadata vvol for the new VM in accordance with
the method described above in conjunction with Figure 8 and returns the new metadata vvol ID
to the host computer. Then, at step 1914, a clone-vvol API call is issued from the host computer
to the storage system via out-of-band path 601 for all data vvol IDs belonging to the template
VM. At step 1918, the storage system manager checks to see whether or not the data vvols of
the template VM and the new VM are compatible. It should be recognized that the data vvols
may be not be compatible if cloning occurs between storage containers created in storage
systems of different manufacturers. If there is compatibility, step 1919 is carried out. At step
1919, the storage system manager creates new data vvols by generating new data vvol IDs,
updating the allocation bitmap in container database 316, and adding new vvol entries to vvol
database 314, and copies content stored in data vvols of the template VM to data vvols of the
new VM. At step 1920, the storage system manager returns the new data vvol IDs to the host
computer. The receipt of the new data vvol IDs provides confirmation to the host computer that
the data vvol cloning completed without error. Then, at step 1925, the host computer issues an
IO to the metadata vvol of the new VM to update the metadata files, in particular the disk
descriptor files, with newly generated data vvol IDs. The IO issued by the host computer to the
storage system is executed by the storage system at step 1926, as a result of which the disk
descriptor files of the new VM are updated with the newly generated data vvol IDs.

[00109] If, at step 1918, the storage system manager determines that the data vvols of the

template VM and the new VM are not compatible, an error message is returned to the host
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computer. Upon receipt of this error message, the host computer at step 1921 issues a create-
vvol API call to the storage system to create new data vvols. At step 1922, the storage system
manager creates new data vvols by generating new data vvol IDs, updating the allocation bitmap
in container database 316, and adding new vvol entries to vvol database 314, and returns the new
data vvol IDs to the host computer. At step 1923, the host computer executes data movement
according to techniques described in U.S. Patent Application Serial No. 12/356,694, filed
January 21, 2009 and entitled “Data Mover for Computer System,” the entire contents of which
are incorporated by reference herein (step 1923). After step 1923, steps 1925 and 1926 are
carried out as described above.

[00110] Figure 20 is a flow diagram of method steps for provisioning a VM, according to
another embodiment. In this embodiment, management server 610, a computer system hosting
the VM, e.g., computer system 102 shown in Figure 5D (hereinafter referred to as the “host
computer”), and the storage system cluster of Figure 2B, in particular storage system manager
131 or storage system manager 132 or storage system manager 135, are used. As illustrated, the
request to provision the VM is received at step 2002. This may be a request generated when a
VM administrator using appropriate user interfaces to management server 610 issues a command
to management server 610 to provision a VM having a certain size and storage capability
profiles. In response thereto, at step 2004, management server 610 initiates the method for
creating a vvol to contain the VM’s metadata, in particular a metadata vvol, in the manner
described above in conjunction with Figure 8, pursuant to which the storage system manager at
step 2008 creates the metadata vvol, which is a file in the NAS device, and returns the metadata
vvol ID to management server 610. At step 2020, management server 610 registers the vvol ID
of the metadata vvol back to the host computer. At step 2022, the host computer issues a bind
request for the metadata vvol ID to the storage system, in response to which the storage system
at step 2023 returns an IP address and directory path as PE ID and SLLID, respectively. At step
2024, the host computer mounts the directory at the specified IP address and directory path, and
stores metadata files in the mounted directory. In the embodiment using NFS, NFES client 545 or
585 may resolve the given IP address and directory path into a NFS handle in order to issue NFS
requests to such directory.

[00111] At step 2026, the host computer initiates the method for creating a data vvol for each of
the virtual disks of the VM in the manner described above in conjunction with Figure 8, pursuant
to which the storage system manager at step 2030 creates the data vvol and returns the vvol ID of
the data vvol to the host computer. At step 2032, the host computer stores the ID of the data
vvol in the disk descriptor file for the virtual disk. The method ends with the unbinding of the
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metadata vvol (not shown) after data vvols have been created for all of the virtual disks of the
VM.

[00112] As described above in conjunction with Figure 8, when a new vvol is created from a
storage container and a storage capability profile is not explicitly specified for the new vvol, the
new vvol will inherit the storage capability profile associated with the storage container. The
storage capability profile associated with the storage container may be selected from one of
several different profiles. For example, as shown in Figure 21, the different profiles include a
production (prod) profile 2101, a development (dev) profile 2102, and a test profile 2103
(collectively referred to herein as “profiles 2100”). It should be recognized that many other
profiles may be defined. As shown, each profile entry of a particular profile is of a fixed type or
a variable type, and has a name and one or more values associated with it. A fixed type profile
entry has a fixed number of selectable items. For example, the profile entry “Replication” may
be set to be TRUE or FALSE. In contrast, a variable type profile entry does not have pre-
defined selections. Instead, a default value and a range of values are set for a variable type
profile entry, and the user may select any value that is within the range. If no value is specified,
the default value is used. In the example profiles 2100 shown in Figure 21, variable type profile
entries has three numbers separated by commas. The first number is the lower end of the
specified range, and the second number is the higher end of the specified range. The third
number is. the default value. Thus, a vvol that inherits the storage capability profile defined in
production profile 2101 will be replicated (Replication.Value = TRUE), and the recovery time
objective (RTO) for the replication may be defined in the range of 0.1 to 24 hours, the default
being 1 hour. In addition, snapshots are allowed for this vvol (Snapshot.Value = TRUE). The
number of snapshots that are retained is in the range of 1 to 100, the default being 1, and the
frequency of snapshots is in the range of once per hour to once per 24 hours, the default being
once per hour. The Snaplnherit column indicates whether the given profile attribute (and its
values) should be propagated to a derivative vvol when a given vvol is snapshotted to create a
new vvol that is a derivative vvol. In the example of production profile 2101, only the first two
profile entries (Replication and RTO) may be propagated to a snapshot vvol of the given vvol
with production profile 2101. The values of all other attributes of the snapshot vvol will be set to
the default values specified in the profile. In other words, any customizations (for example, a
non-default value of snapshot frequency) of these other attribute on the given vvol will not be
propagated to the snapshot vvol due to their corresponding SnapInherit column being FALSE.

The profile also contains other columns such as Clonelnherit (not shown), and Replicalnherit
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(not shown) that control which attribute values are propagated to clones and replicas,
respectively, of a given vvol.

[00113] When a storage container is created according to the method of Figure 4, types of
storage capability profiles that can be defined for vvols created from the storage container may
be set. The flow diagram in Figure 21 illustrates the method for creating a storage container
shown in Figure 4 with step 2110 inserted between steps 412 and 413. At step 2110, the storage
administrator selects one or more of profiles 2100 for the storage container being created. For
example, a storage container created for one customer may be associated with production profile
2101 and development profile 2102, such that a vvol that is of a production type will inherit the
storage capability profile defined in production profile 2101 with default values or customer
specified values, as the case may be, and a vvol that is of a development type will inherit the
storage capability profile defined in development profile 2102 with default values or customer
specified values, as the case may be.

[00114] Figure 22 is a flow diagram that illustrates method steps executed by storage system
manager 131, 132, or 135, for creating a vvol and defining a storage capability profile for the
vvol. The method steps of Figure 22, in particular steps 2210, 2212, 2218, and 2220, correspond
to steps 806, 810, 812, and 814 shown in Figure 8, respectively. In addition, the method steps of
Figure 22 include steps 2214, 2215, and 2216, which define the storage capability profile for the
vvol that is being created.

[00115] At step 2214, the storage system manager determines whether values to be used in the
storage capability profile have been specified in the request to create the vvol. If they are not,
the storage system manager at step 2215 employs the storage capability profile associated with
the vvol’s storage container as the vvol’s storage capability profile with default values. If the
values to be used in the storage capability profile have been specified, the storage system
manager at step 2216 employs the storage capability profile associated with the vvol’s storage
container as the vvol’s storage capability profile with the specified values in lieu of the default
values.

[00116] In one embodiment, the storage capability profile of a vvol is stored in vvol database
314 as key-value pairs. Once the storage capability profile of a vvol has been defined and stored
in vvol database 314 as key-value pairs and as long as replication and snapshotting related
attributes and values are part of this profile as shown in the example profiles of Figure 21, the
storage systefn is able to perform replication and snapshotting for the vvol with no further

instructions issued by the host computer.
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[00117] Figure 23 is a flow diagram that illustrates method steps executed by storage system
manager 131, 132, or 135, for creating snapshots from a parent vvol. In one embodiment, a
snapshot tracking data structure is employed to schedule snapshots according to snapshot
definitions in storage capability profiles of a given vvol. Upon reaching a scheduled time for a
snapshot, the storage system manager at step 2310 retrieves the vvol ID from the snapshot
tracking data structure. Then, at step 2312, the storage system manager generates a unique vvol
ID for the snapshot. The storage system manager at step 2315 employs the storage capability
profile of the parent vvol (i.e., the vvol having the vvol ID retrieved from the snapshot tracking
data structure) as the snapshot vvol’s storage capability profile. It should be noted that since this
is an automated profile driven snapshotting process driven by the storage system, the user does
not get an opportunity to specify custom values to be used in the storage capability profile of the
snapshot vvol. At step 2318, the storage system manager creates the snapshot vvol within the
storage container of the parent vvol by updating the allocation bitmap in container database 316
and adding a new vvol entry for the snapshot vvol to vvol database 314. Then, at step 2320, the
storage system manager updates the snapshot tracking data structure by scheduling a time for
generating the next snapshot for the parent vvol. It should be recognized that the storage system
manager must concurrently maintain snapshot tracking data structures and execute the method
steps of Figure 23 for all vvols whose storage capability profile mandates scheduled snapshots.
[00118] After snapshots are created in the manner described above, key-value pairs stored in
vvol database 314 are updated to indicate that the snapshot vvols are of type = snapshot. Also, in
embodiments where a generation number is maintained for the snapshots, the generation number
being incremented each time a snapshot is taken or set to be equal to date+time, the generation
number is stored as a key-value pair. The parent vvol ID of a snapshot vvol is also stored as a
key-value pair in snapshot vvol entries. As a result, a host computer may query vvol database
314 for snapshots corresponding to a particular vvol ID. It is also possible for the host computer
to issue a query to vvol database for snapshots corresponding to a particular vvol ID and a
particular generation number. ‘

[00119] The various embodiments described herein may employ various computer-implemented
operations involving data stored in computer systems. For example, these operations may
require physical manipulation of physical quantities usually, though not necessarily, these
quantities may take the form of electrical or magnetic signals where they, or representations of
them, are capable of being stored, transferred, combined, compared, or otherwise manipulated.
Further, such manipulations are often referred to in terms, such as producing, identifying,

determining, or comparing. Any operations described herein that form part of one or more
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embodiments may be useful machine operations. In addition, one or more embodiments also
relate to a device or an apparatus for performing these operations. The apparatus may be
specially constructed for specific required purposes, or it may be a general purpose computer
selectively activated or configured by a computer program stored in the computer. In particular,
various general purpose machines may be used with computer programs written in accordance
with the teachings herein, or it may be more convenient to construct a more specialized
apparatus to perform the required operations.

[00120] The various embodiments described herein may be practiced with other computer
system configurations including hand-held devices, microprocessor systems, microprocessor-
based or programmable consumer electronics, minicomputers, mainframe computers, and the
like.

[00121] One or more embodiments may be implemented as one or more computer programs or
as one or more computer program modules embodied in one or more computer readable media.
The term computer readable medium refers to any data storage device that can store data which
can thereafter be input to a computer system computer readable media may be based on any
existing or subsequently developed technology for embodying computer programs in a manner
that enables them to be read by a computer. Examples of a computer readable medium include a
hard drive, network attached storage (NAS), read-only memory, random-access memory (e.g., a
flash memory device), a CD (Compact Discs), CD-ROM, a CD-R, or a CD-RW, a DVD (Digital
Versatile Disc), a magnetic tape, and other optical and non-optical data storage devices. The
computer readable medium can also be distributed over a network coupled computer system so
that the computer readable code is stored and executed in a distributed fashion.

[00122] Although one or more embodiments have been described in some detail for clarity of
understanding, it will be apparent that certain changes and modifications may be made within the
scope of the claims. For example, SCSI is employed as the protocol for SAN devices and NFS is
used as the protocol for NAS devices. Any alternative to the SCSI protocol may be used, such as
Fibre Channel, and any alternative to the NFS protocol may be used, such as CIFS (Common
Internet File System) protocol. Accordingly, the described embodiments are to be considered as
illustrative and not restrictive, and the scope of the claims is not to be limited to details given
herein, but may be modified within the scope and equivalents of the claims. In the claims,
elements and/or steps do not imply any particular order of operation, unless explicitly stated in
the claims.

[00123] In addition, while described virtualization methods have generally assumed that virtual

machines present interfaces consistent with a particular hardware system, the methods described
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may be used in conjunction with virtualizations that do not correspond directly to any particular
hardware system. Virtualization systems in accordance with the various embodiments,
implemented as hosted embodiments, non-hosted embodiments, or as embodiments that tend to
blur distinctions between the two, are all envisioned. Furthermore, various virtualization
operations may be wholly or partially implemented in hardware. For example, a hardware
implementation may employ a look-up table for modification of storage access requests to secure
non-disk data.

[00124] Many variations, modifications, additions, and improvements are possible, regardless
the degree of virtualization. The virtualization software can therefore include components of a
host, console, or guest operating system that performs virtualization functions. Plural instances
may be provided for components, operations or structures described herein as a single instance.
Finally, boundaries between various components, operations and data stores are somewhat
arbitrary, and particular operations are illustrated in the context of specific illustrative
configurations. Other allocations of functionality are envisioned and may fall within the scope
of embodiments described herein. In general, structures and functionality presented as separate
components in exemplary configurations may be implemented as a combined structure or
component. Similarly, structures and functionality presented as a single component may be
implemented as separate components. These and other variations, modifications, additions, and

improvements may fall within the scope of the appended claims(s).
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CLAIMS:

1. A computer system connected to a storage system via input-output command (10) paths
and non-I10 paths, the computer system comprising:

a management interface in a non-IO path; and

a storage interface in an 1O path,

wherein the management interface is configured to: (i) generate a request to create a
logical storage volume in the storage system and to receive in response to the request a unique
identifier for the logical storage volume, and (ii) generate a bind request to generate a valid 10
session between the logical storage volume and a protocol endpoint configured in the storage
system and to receive in response to the request first and second identifiers generated for the
protocol endpoint, and _

wherein the storage interface encodes 10O issued to the logical storage volume with the

first and second identifiers.

2. The computer system of claim 1, wherein the storage interface generates 10s in SCSI

compliant format.

3. The computer system of claim 1, wherein the storage interface generates IOs in NFS

compliant format.

4. The computer system of claim 1, wherein the management interface is configured to
generate a request to rebind the logical storage volume and to receive in response to the request
new first and second identifiers, the new first identifier identifying a new protocol endpoint to
which the logical storage volume is bound and the new second identifier uniquely identifying the

logical storage volume amongst all logical storage volumes bound to the new protocol endpoint.

5. A method of operating a computer system connected to a storage system via input-
output command (IO) paths and non-10 paths, wherein the computer system comprises a
management interface in a non-IO path and a storage interface in an IO path,

the method comprising the management interface performing steps of:

(i) generating a request to create a logical storage volume in the storage system and to

receive in response to the request a unique identifier for the logical storage volume, and
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(ii) generating a bind request to generate a valid IO session between the logical storage
volume and a protocol endpoint configured in the storage system and to receive in response to
the request first and second identifiers generated for the protocol endpoint, and

wherein the storage interface encodes IO issued to the logical storage volume with the

first and second identifiers.

6. A computer-readable storage medium having computer-executable instructions
embodied thereon, wherein, when executed by at least one processor, the computer-executable

instructions causing the at least one processor to execute the method of claim 5.
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