(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(10) International Publication Number

WO 2004/025655 A2

(43) International Publication Date

25 March 2004 (25.03.2004)

(51) International Patent Classification’: G11C (81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,

(21) International Application Number: CZ, DE, DK, DM, DZ, EC, EE, ES, F1, GB, GD, GE, GH,
PCT/US2003/028748 GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP,KR, KZ, LC,

LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE,
SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC,
VN, YU, ZA, ZM, ZW.

(22) International Filing Date:
11 September 2003 (11.09.2003)

(25) Filing Language: English . .
(84) Designated States (regional): ARIPO patent (GH, GM,
L. . KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
(26) Publication Language: English Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
EBuropean patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
(30) Priority Data: ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,
10/243,104 13 September 2002 (13.09.2002) US SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,

GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).
(71) Applicant: IGT [US/US]; A Nevada Corporation, 9295

Prototype Drive, Reno, NV 89511 (US). Published:
— without international search report and to be republished
(72) Inventor: NELSON, Dwayne, R.; 5488 Alemen Drive, upon receipt of that report

Las Vegas, NV 89113 (US).

For two-letter codes and other abbreviations, refer to the "Guid-
(74) Agent: BEYER WEAVER & THOMAS, LLP; 2030 Ad- ance Notes on Codes and Abbreviations" appearing at the begin-
dison Street, 7th Floor, Berkeley, CA 94704 (US). ning of each regular issue of the PCT Gazette.

(54) Title: DYNAMIC NV-RAM

(57) Abstract: A method and apparatus of dynamically storing critical data of a gaming machine by allocating and deallocating
memory space in a gaming machine is disclosed. One or more embodiments describe downloading or removing a new game to a
gaming machine such that all existing critical data in NV-RAM memory is left intact. In one embodiment, the invention discloses
a method and apparatus for dynamically allocating and deallocating memory space to accommodate either permanent or temporary
storage in an NV-RAM. A method and apparatus is provided to monitor available memory space and dynamically resize the memory
in NV-RAM. In one embodiment, a method is disclosed for performing an integrity check of the NV-RAM and determining whether
a critical data error has occurred. In one or more embodiments, methods of compacting and shifting contents of an NV-RAM are
described to consolidate available memory space or to prevent unauthorized access of NV-RAM memory.

04/025655 A2 I 0K .0 RO

WO 2004/025655 PCT/US2003/028748

DYNAMIC NV-RAM

FIELD OF THE INVENTION

[0001] The present invention relates to memory management and, in particular, a
method and apparatus for dynamically storing critical data by allocating and

deallocating memory space in a gaming machine.

BACKGROUND OF THE INVENTION

[0002] Advances in technology have led to gaming machines capable of providing a
number of different games to a player. As a convenience to the player and as a way to
extend his/her play time, multiple-game gaming machines can be a significant benefit to
a casino. From the casino’s perspective, a single gaming machine that is capable of
playing a number of different games may provide a significant reduction in cost to the
owner. It will also provide an enhanced experience to a player at reduced incremental
cost to the casino owner.

[0003] In order to change the games stored on a gaming machine, a new game must
be downloaded. This often requires that an existing game be removed from the gaming
machine. When this is performed, the contents of the non-\(olatile random access
memory (NV-RAM) must be modified. In systems of prior art, the modification requires
that the existing NV-RAM memory be cleared and replaced with a newly coﬁpiled
memory map reflecting the addition or removal of particular game(s).

[0004] The process of re-compiling or re-init-ialization of the contents of the NV-RAM
undesirably deletes all information related to the gaming machine’s critical data. Such
critical data may comprise game history information, accounting information, security
information, player tracking information, or any other type of historical state related
information.

[0005] The game history information may provide a record of outcomes for a number

of rounds of play for a game in a gaming machine. For example, the game history

WO 2004/025655 PCT/US2003/028748

information may be used to verify the payouts of a gaming machine so that a verification
of a winning jackpot may be performed before a payout is made if suspicious activity is
recognized. Game history may also be used, for example, to audit the types of jackpots
generated over a specified number of rounds of play or to provide evidence that a
gaming machine has been tampered with. Hence, this type of information is critical to
the casino or gaming machine owner.

[0006] Information that provides a running count or history of the credits that go
in and out of the gaming machine may provide valuable accounting information. For
example, a gaming machine’s cumulative number of credits may be based on the bills or
coins collected, the amount of credits generated from the insertion of a credit card, or
bonus credits created by inputting a PIN (personal identification number). This type of
data is extremely important to a casino owner because it provides the revenue a gaming
machine generates over a period of time.

[0007] Security information may provide information related to a tampering event on
the gaming machine. The details of this information may include time of day, type of
game, the amount wagered, the specific outcome, and any operational information, such
as diagnostics related to the condition of the gaming machine when tampering occurred.
[0008] Player tracking information is also vital to providing valuable feedback
regarding a player’s preferences. A casino may track player information to provide the
best and most desirable playing environment to the player. Whether it be type of game,
denomination of game, length of play, amount played, or the like, these factors provide
invaluable information to the casino owner on how he/she can better attract and
maintain play from a player.

[0009] Hence, it is important that the various critical data previously described be
securely maintained during the addition or removal of a game from a gaming machine
and at all other times. The deletion of critical data from NV-RAM results in numerous

drawbacks.

WO 2004/025655 PCT/US2003/028748

[0010] As touched on above, the prior art process for adding or removing a game from
a gaming machine requires a complete recompilation of the NV-RAM memory, creating
a new fixed map. This procedure is tedious because it may require the careful removal
and replacement of the existing NV-RAM from the gaming machine. It is contemplated
that the NV-RAM may be reprogrammed without removing it from the gaming machine;
however, the process may result in downtime and inconvenience to a customer, resulting
in loss of casino revenue. Additional time and labor is required to accomplish this task
for each gaming machine. As a result, the incremental cost per machine may be
substantial. ‘

[0011] Prior art systems utilize a fixed memory map approach that does not permit the
dynamic use of NV-RAM memory space. Hence, the fixed memory map reserves
memory that is often unused and un-needed for a game during the mapping process.
Were this memory space not reserved, it could be used to store critical data associated
with another game or created from the addition of new game software. This memory
allocation procedure results in a barrier to providing efficient and expedient game
changes on a gaming machine.

[0012] Thus, there is a need in the art for a method and apparatus for gaming machine

memory management that overcomes the drawbacks of the prior art.

SUMMARY. OF THE INVENTION

[0013] In one embodiment the invention comprises a method and apparatus for
downloading a game onto a gaming machine without altering or deleting critical data
unrelated to the added game. A method is described to dynamically verify and allocate
adequate memory space for downloading critical data information into the non-volatile
random access memory (NV-RAM). In one embodiment the NV-RAM’s contents are
verified after data is written into NV-RAM.

[0014] In one embodiment the invention comprises a method and apparatus for

WO 2004/025655 PCT/US2003/028748

removing a game from a gaming machine without altering or deleting critical data
unrelated to the removed game. After deleting the critical data related to the removed
game, the NV-RAM is dynamically resized to increase the available memory size. In
one embodiment the NV-RAM’s contents are verified after data is written into NV-
RAM.

[0015] In one embodiment a method and apparatus is provided for dynamically
allocating and deallocating memory space to accommodate storage of either temporary
or permanent data in an NV-RAM. The available memory is resized after an allocation
or deallocation is performed. Temporary memory space is used only for the duration of
the operational transaction required by the gaming machine, maximizing the use of
memory space provided by the NV-RAM. An embodiment is provided for monitoring
available memory size of an NV-RAM and dynamically resizing memory allocations to
suit the requirements of any critical game transaction for a gaming machine.

[0016] In one embodiment a method and apparatus is provided for identifying and
replacing erroneous data stored in NV-RAM with corrected data without altering or
deleting critical data unrelated to the erroneous data.

[0017] Further objects, features, and advantages of the present invention over the prior
art will become apparent from the detailed description of the drawings which follows,

when considered with the attached figures.

DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates a block diagram of an example embodiment of non-volatile
random access memory.

Figure 2A illustrates an operational flow diagram of an example method for
downloading a game into a gaming machine.

Figure 2B illustrates an operational flow diagram of an example method for

verifying contents of non-volatile random access memory after downloading a game into

WO 2004/025655 PCT/US2003/028748

a gaming machine.

Figure 3 illustrates an operational flow diagram of an example method memory
management during removal of a game from a gaming machine.

Figure 4A illustrates an operational flow diagram of an example method for
allocating and deallocating memory space during a critical game transaction.

Figure 4B illustrates an operational flow diagram of an example method for
monitoring and dynamically resizing available memory space within a non-volatile
random access memory.

Figure 5 illustrates an operational flow diagram of an example method for
performing an integrity check of data in non-volatile random access memory.

Figure 6A illustrates an operational flow diagram of an example method for

compaction or reorganizing memory space in non-volatile random access memory.

Figure 6B illustrates an operational flow diagram of an alternate example
method for compaction or reorganizing memory space in non-volatile random access
memory.

Figure 6C illustrates an operational flow diagram of an alternate example
method for compaction or reorganizing memory space in non-volatile random access
memory.

Figure 7 illustrates an operational flow diagram of an example method of data
re-ordering in memory.

Figure 8 is an operational flow diagram of an example method of encrypting data

prior to writing the data into memory.

DETAILED DESCRIPTION OF THE INVENTION

[0018] Disclosed herein is a method and apparatus for dynamically downloading or

removing a game(s) stored on a gaming machine without altering or deleting “critical

WO 2004/025655 PCT/US2003/028748

data” unrelated to the added or removed game(s). The term critical data may be defined
. as data that records the past and present states of a gaming machine. Examples of such
states include a game’s history, accounting, security information, or the like. This type
of critical data may be stored in a gaming machine’s non-volatile memory or in a non-
volatile storage device permanently or temporarily. In one embodiment when
downloading or removing a game(s) in a gaming machine occurs, critical data is added
or removed by allocating or deallocating memory space in a non-volatile random access
memory (NV-RAM) of a gaming machine.

[0019] One embodiment of the invention relates to a method of downloading a game
on a gaming machine without altering or deleting critical data unrelated to the added
game. A number of embodiments of the invention relate to methods to maximize the
use of free memory space in an NV-RAM during the course of the gaming machine’s
operation and maintenance. A number of embodiments of the invention relate to
methods to efficiently utilize the memory space in an NV-RAM when a game is
downloaded or removed from a gaming machine. One embodiment of the invention
relates to a method of dynamically sizing the NV-RAM memory space based on the
gaming machine’s operational requirements. One embodiment of the invention relates
to a method of identifying erroneous data within an NV-RAM, removing the erroneous
data, and restoring correct data into NV-RAM. A number of embodiments of the
invention relate to manipulation of the data over time so as to mitigate a willful
modification of critical data by an unauthorized user. In the following descriptions,
numerous specific details are set forth in order to provide a more thorough description
of the present invention. It will be apparent, however, to one skilled in the art, that the
present invention may be practiced without these specific details. In other instances,
well-known features have not been described in detail so as not to obscure the invention.
[0020] Figure 1 illustrates a block diagram of an example embodiment of non-volatile

random access memory. In one embodiment the NV-RAM 104 consists of a number of

WO 2004/025655 PCT/US2003/028748

memory elements arranged in rows and columns. For the purposes of discussion, a
rudimentary memory element is described as a heap block 108. As illustrated in Figure
1, the entire NV-RAM 104 comprises heap blocks 108 arranged in rows and columns. A
particular heap block 108 may be specified by giving its row and column numbers. For
the sake of simplicity, the example NV-RAM 104 is physically divided into 10 rows and
10 columns, providing a total of 100 heap blocks for the NV-RAM 104. For example,
the first heap block 112, located at the top of the memory stack, may be referenced by
its physical location in memory as the heap block located at (row 1, column 1), while
the last heap block 116 may be referenced by its location defined by (row 10, column
10).

[0021] NV-RAM 104 plays a significant role in the normal operation of a gaming
machine. The heap blocks 108 store data that may be classified as permanent or
temporary data. The permanent type of data is described in this document as critical
data. Critical data comprises data considered to be highly important. Critical data
stores information related to the current or previous state(s) of a gaming machine.
Examples of critical data include game history information, security information,
accounting information, player tracking information, wide area progressive information,
game state information, or any “critical” game related data. Critical data such as the
amount of funds credited to or paid out from a gaming machine may be stored
permanently in NV-RAM 104 as accounting information. This critical accounting
information would reflect its current and prior states over successive rounds of play. To
the casino owner, this information is important in determining the casino’s profitability.
[0022] In contrast, temporary space may be used to process important commands
related to the current state or operations of a gaming machine. After the commands are
processed, the temporary space may be allocated for other purposes, such as storing
critical data. For example, the operations that are necessary in transferring credits from

a debit card to the gaming machine may require the use of data that is stored temporarily

WO 2004/025655 PCT/US2003/028748

in the NV-RAM 104. This temporary, or non-critical, data may be used as part of a
series of transactions or instructions to be executed. When the operations are
completed, however, the contents of the memory may be purged, generating additional
memory space.

[0023] NV-RAM 104 may maintain the contents of its memory over time through the
use of a battery as a power source and is thus independent of externally supplied power.
As a result, NV-RAM can continue to store data such as critical data as long as power is
supplied. Typically, an NV-RAM contains its own internal battery source. |

[0024] Figure 2A illustrates an example method of downloading a new game to a
gaming machine without destroying or deleting existing critical data.. This is but one
possible method of operation, and the present embodiment should not be considered as
being limited to this example method of operation. In a step 204, a software client
requests new game code. In one embodiment the request is transmitted though use of a
device interface such as a key pad, touch pad, or card reader of a gaming machine. In
other instances, the new game code may be transmitted from a remote computing device
(i.e, workstation, server, or the like) or by a portable device (i.e., laptop, PDA,
handheld, or the like) that may communicate with the gaming machine. The
transmission may occur by either wireless or wireline communications. The software
client may comprise a communication manager, bank manager, virtual player tracking
manager, event distribution manager, event manager, or power hit detection manager. A
more complete discussion of the term software client is disclosed in parent Application
No. 09/690,931, entitled High Performance Battery Backed RAM Interface, which is
incorporated herein by reference.

[0025] At a step 208, the software client transfers critical data to or from an NV-RAM
manager. In one embodiment the NV-RAM manager comprises non-volatile memory or
non-volatile storage management software capable of effectively managing the non-

volatile memory or non-volatile storage device. Critical data may be stored and

WO 2004/025655 PCT/US2003/028748

accessed by a software controlled non-volatile memory or non-volatile storage file
system. The non-volatile memory or non-volatile storage file system facilitates the
viewing and modification of data residing in an NV-RAM. The non-volatile memory or
non-volatile storage file system may be thought of as a file allocation system found in
computer oﬁerating systems where files are organized by directories, subdirectories, and
files. The NV-RAM manager communicates function requests to the NV-RAM. The
function requests may include a request allocating or deallocating memory space,
opening or closing files or data, and reading, writing, resizing, and moving of heap
blocks within NV-RAM memory. As used herein, the term NV-RAM management
system comprises a combination of the NV-RAM manager, the non-volatile memory or
non-volatile storage file system, and NV-RAM, supported by processes executed by an
operating system residing on the gaming machine. The operating system may comprise
an operating system manufactured from companies such as a Microsoft, Apple, or
LINUX. The NV-RAM management system may use standard application tools, such as
a word processor program, to view the contents in NV-RAM. It is contemplated that
any word processor, in conjunction with the non-volatile memory or non-volatile storage
file system, may facilitate the display, addition, removal, and modification of critical
data associated with the addition or removal of a particular game(s) within NV-RAM.
An example word processor program includes Corel Word Perfect or Microsoft Word.
The NV-RAM management system leaves existing critical data resident in NV-RAM
intact during any addition or removal of critical data. |

[0026] At a step 212, the NV-RAM manager dynamically interacts with the NV-RAM
to perform function requests related to allocating or deallocating heap blocks that relate
to writing or deleting critical data. The function requests are performed in collaboration
with the software client and may comprise any one of the requests mentioned in the
preceding paragraph.

[0027] At a step 216, the NV-RAM manager allocates the amount of NV-RAM

WO 2004/025655 PCT/US2003/028748

required for the new game. It is contemplated that a program executed by the software
client or hardware device may determine the size of the game to be loaded into NV-
RAM. This information may be communicated to the manager in any manner.
Thereafter, the NV-RAM manager verifies that adequate memory space exists and issues
a request to allocate memory. The NV-RAM manager may perform an open function
request to access an existing NV-RAM memory node. A node represents a range of
related heap blocks in NV-RAM. A read function request on the NV-RAM provides a
handle (or address) for the NV-RAM node of interest associated with a range of heap
blocks. The heap blocks comprise used or unused blocks of memory associated with a
particular handle. In sum, the appropriate heap blocks are allocated by the NV-RAM
manager for a subsequent write function.

[0028] At a step 220, a decision is made regarding whether or not the memory size is
adequate. If the memory size is not adequate, the process proceeds to step 224, in which
a process called compaction, described below in more detail, is performed up to a set
number of times, in this embodiment N times, to reorganize (or defragment) the
memory. The process of compaction generates unused contiguous memory of a size
sufficient for the storage of new critical data. At a step 228, the operation determines
whether the number of compaction routines performed is less than or equal to N and
continues the operation until n = N. If the available memory size is still insufficient,
then the process terminates at a step 232, as indicated by Tilt Mode. A step 236
follows, indicating that the gaming machine now requires human intervention.

[0029] Alternatively, if at step 240 the adequate memory size is available, the
operation proceeds to a step 240, wherein the available heap blocks are identified and a
dynamic allocation of the heap blocks takes place. An appropriate number of heap
blocks are assigned to the node with a unique handle. At a step 244, the NV-RAM
manager performs a write function of the critical data associated with the new game

onto contiguous heap blocks in NV-RAM.

10

WO 2004/025655 PCT/US2003/028748

[0030] Figure 1 may aid in understanding the process described by steps 204-244 of
Figure 2A. As shown, a second game is added to an NV-RAM 104; the NV-RAM
previously contained critical data elements associated with an existing game #1. As
| shown, the critical data elements corresponding to the first game have been stored in the
first 8 heap blocks 108 of the NV-RAM 104 (i.e., row 1, columns 1-8). As part of the
above-described process, the NV-RAM manager determines that the critical data
requires 12 heap blocks. The NV-RAM manager facilitates the allocation of 12
contiguous heap blocks in NV-RAM. As illustrated in Figure 1, the next 12 sequential
heap blocks are allocated corresponding to the last two heap blocks in row 1 and all of
row 2.

[0031] Returning to the method described in conjunction with Figure 2, and in
reference to Figure 2A, the following discussion relates to verification of data integrity.
At a step 248, the NV-RAM manager retrieves a copy of the original critical game data
from the device interface and sends it to the software client, where it is stored in a first
location in a memory, such as SDRAM or any other memory device.

[0032] SDRAM is synchronous dynamic random access memory and may be used to
store data required for immediate processing performed by a processor in a gaming
machine. This type of random access memory provides faster read and write cycle times
.but is not feasible for use in long term stora'ge of critical data information in a gaming
machine. Thereafter, at a step 252, the software client stores a copy of the data retrieved
from NV-RAM in SDRAM.

[0035] Next, at a step 256, the software client compares the original critical game data
in SDRAM with critical game data stored in NV-RAM. It is contemplated that a CRC
may be performed on the original critical game data, as well as the data stored in NV-
RAM, to verify that the data has not been altered. Thereafter, a decision is made, at a

step 260, regarding whether or not the data stored in SDRAM matches the data stored in

11

WO 2004/025655 PCT/US2003/028748

NV-RAM. If the data matches, the operation proceeds to a step 264. Alternatively, if
the data does not match, the gaming machine enters a tilt mode as shown in step 268,
and a wait state is entered at a step 272. This process insures that the critical data
associated with new game software is written into NV-RAM without error before game
play may occur.

[0034] The aforementioned steps represent a method to dynamically allocate memory
space of an NV-RAM comprising the storage of critical game information related to the
addition of a new game. As an advantage to this method over the prior art, the addition
of the new game does not affect any critical data previously written into the NV-RAM,
such as data associated with another game. Hence, the method insures the preservation
of existing critical game information in NV-RAM without the need to re-initialize and
re-map the contents of the entire NV-RAM memory.

[0035] Figure 3 illustrates an operational flow diagram of an example method of
deallocating or deleting critical data associated with the removal of a game from a
multi-game gaming machine. When a game is removed, critical data associated with
that particular game may be removed from the gaming machine. As an advantage to this
method, a game may be removed from a gaming machine without disrupting the storage
of other data, such as critical data, in the gaming machine. As a result, games may be
rapidly and efficiently removed from a gaming machine. Moreover, these operations
may be undertaken by service technicians without need of software experts.

[0036] At astep 304, a software client receives a request to remove a game from a
gaming machine. Next, at a step 308, the software client invokes a function request to
the NV-RAM manager to identify the handle or node of the critical data associated with
the game to be removed. At a step 312, the heap blocks of memory corresponding to the
node are tagged for removal. In step 316, the NV-RAM manager removes the NV-RAM
heap blocks by deallocating the appropriate range of heap blocks. As part of this

process, the heap block may be opened and read.

12

WO 2004/025655 PCT/US2003/028748

[0037] After removal of the data contained in the range of heap blocks, as shown at a
step 320, the remaining available heap blocks in memory are resized to thereby provide
a potentially larger memory space for future critical data storage. At a step 324, the
NV-RAM manager or any other device, system, or software verifies the accuracy of the
critical data stored in NV-RAM.

[0038] Figure 4A illustrates an operational flow diagram of an example method of
dynamically resizing available memory space in a gaming machine. The advantages of
applying this method include the allocation and deallocation of memory space as
required. When memory is required to perform an operational transaction, memory
space is allocated only during that period of time when it is needed. When memory is
deallocated, the memory is resized, providing increased available memory space for
subsequent use. '

[0039] At a step 404, the operation initiates a critical game transaction. Examples of
critical game transactions include, but are not limited to, reading the credit information
from a debit card, adding an amount of credit to a gaming machine, and accepting
currency from a player. The critical game transaction may require the use of NV-RAM
either temporarily or more permanently. The NV-RAM may store values temporarily as
an intermediate step in the calculation of critical data. For example, when accepting
currency from a player, a bill validator may determine the value of the currency as an
integer number of dollars. This information may be stored into NV-RAM temporarily,
as an intermediate operational step, prior to determining the number of credits credited
in the gaming machine. If the game comprises a 25 cent game, the number of credits
calculated would correspond to forty credits if the player inserts a ten dollar bill. In this
example, the critical data stored permanently in NV-RAM may comprise the number of
credits (forty), although the number of dollars (ten) would comprise an intermediate
operational value in the calculation of the number of credits. As a consequence, the

intermediate value ten may comprise data that is stored temporarily in NV-RAM and is

13

WO 2004/025655 PCT/US2003/028748

deleted upon the calculation of the critical data value forty which may be stored
permanently in NV-RAM.

[0040] At a step 408, the NV-RAM manager allocates memory to facilitate a critical
game transaction. The NV-RAM manager may allocate memory in preparation for
storage of an example critical data associated with a game download, or it may
deallocate memory (as when deleting contents from temporary NV-RAM memory) if a
particular data is no longer required on the gaming machine. Typically, a critical game
transaction will cause the NV-RAM manager to allocate memory space either
temporarily or permanently, as shown at a step 412. The new data will reside in memory
over a period of time as dictated by its function. At a step 416, operational transaction
data is loaded, on a temporary basis, into NV-RAM space. As described earlier, this
data may be used in an intermediate step as part of the calculation of a critical data. -
Thereafter, at a step 420, the resulting critical data is stored permanently in NV-RAM
memory. At astep 424, data created, stored, or used for intermediate operational
transactions may be destroyed, and the NV-RAM memory space may be deallocated.
[0041] Continuing on to Figure 4B, the gaming machine may enter a game play mode
at a step 428. During the course of game play, the gaming machine may undergo a
number of different events, such as receiving currency, hopper tilt, reel tilt, protective
tilt, power loss, player’s card input, player’s card removal, personal identification input,
reel spin, multi-denomination change, jackpot tilt, and the like. During these
transactional events, the temporary or permanent non-volatile memory or non-volatile
storage requirements of the game or the gaming machine may change. Accordingly, at a
step 428, the memory space allocations are continuously monitored. A decision occurs
at a step 432 regarding the adequacy of memory at any point in time during gaming
machine operation.

[0042] If memory is adequate, the gaming machine resumes game play by returning to

step 424. Alternatively, if at step 532 the system determines that the memory space or

14

WO 2004/025655 PCT/US2003/028748

size allocations are not adequate, the operation then advances to a step 436. At step
436, the operation dynamically resizes memory to facilitate a game play or any other
operational transaction. The process may involve compaction, described below in more
detail, to provide contiguous memory large enough for a particular transaction to occur.
[0043] Referring back to Figure 1, a temporary NV-RAM memory space is illustrated
as the first four heap blocks in third row 120 of the NV-RAM 104. It is contemplated
that these blocks are used to store intermediate data required in the generation of critical
data. For example, the critical data associated with the second game, contained in heap
blocks located in row 2, columns 1-10, may have been generated through the use of data
stored in the temporary NV-RAM space. The contents in temporary NV-RAM space 120
may be deleted after use, and the associated heap blocks may be deallocated.

[0044] Figure 5 illustrates an operational flow diagram of an example method for
performing an integrity check of data in non-volatile random access memory. In one
embodiment this method is utilized to detect and fix changes to data that may have been
caused by an electrical problem, such as a static discharge or a high voltage surge. This
process may begin by powering up a gaming machine. This is shown at a step 504. The
gaming machine performs an initialization of an NV-RAM which may include integrity
testing of the memory.

[0045] In one embodiment the integrity testing comprises a CRC (cyclic redundancy
check) algorithm or another method, such as a checksum, to determine if a critical data
element stored in the NV-RAM contains an error. When the gaming machine is powered
up, the state of the machine prior to its power up will be captured in the NV-RAM
header. The state information may comprise a particular signature that may be
recognized during the integrity check. For example, a particular signature may indicate
that the gaming machine has a particular malfunction or that power was interrupted
during its previous operation. If the signatures generated for the NV-RAM header do

not correspond with the signatures stored in the NV-RAM header, an error in critical

15

WO 2004/025655 PCT/US2003/028748

data may have occurred, such as a tampering of the gaming machine or some other
hardware or software malfunction. A further check of the NV-RAM heap blocks may
indicate errors in the critical data. In the case where the signature indicates that a power
outage had occurred, the NV-RAM manager may be directed to further perform an
integrity check of memory contents within a heap block that contains the critical data
associated with the particular operation during the time the power outage occurred.
[0046] Thereafter, at a step 508, the NV-RAM manager performs an integrity check on
the NV-RAM and determines errors in a critical data element. At a step 512, the NV-
RAM manager identifies the handle of the erroneous critical data element and
determines the appropriate heap blocks that contain the erroneous critical data element.
In one embodiment this comprises the NV-RAM manager performing an open function
request to access memory containing the affected heap blocks. A read function request
may then generate the appropriate ranges of heap blocks that require removal.

[0047] At a step 516, the NV-RAM manager performs a delete function request,
allowing the NV-RAM to delete the heap blocks associated with the discovered error.
At a step 520, any heap blocks containing unrelated critical data elements are left intact
within the NV-RAM as the NV-RAM manager reloads the affected data into the
appropriate locations in NV-RAM to restore the integrity of the critical data. In one
embodiment, after the reload or rewrite occurs, the restored data may be re-tested. In
one embodiment, an alert may be generated upon defection of corrupt data.

[0048] As an advantage to this embodiment, the error removal process is such that a
minimal subset of all critical data elements are cleared from non-volatile memory or
non-volatile storage. As a result, the process described in Figure 5 typically removes
the erroneous critical data element while leaving intact all other critical data elements
that are unrelated to the erroneous critical data element.

[0049] In the prior art, an error in a data element required the re-initialization or

clearing of the entire NV-RAM, causing the loss of all data unrelated to the error. This

16

WO 2004/025655 PCT/US2003/028748

is undesirable because all of the critical data is lost or must be reloaded.

[0050] Figures 6A, 6B, and 6C illustrate example methods of NV-RAM compaction.
Compaction is a process of re-organizing used and free memory within an NV-RAM to
consolidate the free memory space into a larger size or into the largest contiguous
memory size possible. The process of compaction causes an NV-RAM manager to write
related critical data over a series of contiguous heap blocks. The process results in more
efficient write and read functions performed by the NV-RAM manager. Asa
consequence, performance is improved significantly when related data is stored
contiguously. Further, compaction achieves more efficient use of the memory by
allowing a block of data to be written contiguously.

[0051] Figure 6A illustrates an alternate embodiment of a method of compacting or
reorganizing memory in NV-RAM. This may be accomplished by segregating used heap
blocks from unused heap blocks. In a step 604, the NV-RAM manager sequentially
analyzes heap blocks in NV-RAM. It is contemplated that the NV-RAM manager starts
analyzing at the location of the first heap block (row 1, column 1) of the NV-RAM as
described in Figure 1, or at any location. In a step 608, a determination is made whether
the heap block is in use (contains data). If the heap block is in use, the heap block is
shifted or positioned to the top portion of the NV-RAM memory stack at a step 612.

The used heap blocks that are shifted to the top portion of NV-RAM may be sorted
based on the type of critical data stored within the heap block. The sorting criteria may
include the type of critical data (i.e., accounting vs. game history data), type of game, or -
any other factor.

[0052] At astep 616, the nodes are resized to reflect the number of heap blocks
associated with a particular node. A node is discussed in parent Application No.
09/690,931, High Performance Battery Backed RAM Interface. Thereafter, at a step
620, the next heap block is analyzed and the process repeats itself by returning to a step

604. The process may time out or stop after the entire NV-RAM memory is compacted.

17

WO 2004/025655 PCT/US2003/028748

[0053] At astep 608, if the heap block is unused, the process reverts back to step 604,
where the next heap block is analyzed. It is contemplated that the process of shifting
heap blocks can be controlled by the software client in conjunction with the NV-RAM
manager. It is contemplated that the process may commence and terminate based on
factors such as time of day, frequency of NV-RAM use, the rounds of play on the
gaming machine, or some other criteria.

[0054] Figure 6B illustrates an alternate embodiment of a method for compacting or
reorganizing memory in NV-RAM. This may be accomplished by shifting heap blocks
either to the top or to the bottom of the NV-RAM memory stack. At a step 624, the NV-
RAM manager sequentially analyzes the heap blocks in NV-RAM. As described in
Figure 6A, the NV-RAM manager may begin analysis starting at the first heap block
located at (row 1, columnl) of the NV-RAM or from any other location. At a step 628,
a decision is made concerning whether or not the heap block in use.

[0055] If the heap block is in use, the process advances to a step 632, where the heap
block is shifted to the top portion of NV-RAM. If the heap block is unused, the process
advances to a step 636, and the heap block is shifted to the bottom portion of the NV-
RAM memory stack. Thereafter, in either case, the associated nodes are resized to
reflect the new re-organization or new ranges of used or unused heap blocks. This is
illustrated at steps 640 and 644. At a step 648, the next heap block is analyzed and the
process repeats itself. Because shifting of heap blocks is performed on both in use and
unused heap blocks, it is contemplated that the system described in Figure 6B may
provide a faster method of compaction as compared to the system described in Figure
6A.

[0056] Figure 6C illustrates an alternate embodiment of a system of compacting or
reorganizing memory in NV-RAM. This may be accomplished by shifting heap blocks
to the top of the NV-RAM memory stack based on particular criteria. At a step 652, the
NV-RAM manager sequentially analyzes the heap blocks in NV-RAM. At a step 656, a

18

WO 2004/025655 PCT/US2003/028748

decision is made as to whether or not a heap block is in use. If the heap block contains
data, the process proceeds to a step 660. Next, a decision is made concerning block size
criteria. For example, the size criteria may be that the heap block size is less than or
equal to 200 kilobytes before heap block shifting occurs. This type of criteria may
facilitate the shifting of smaller blocks prior to the shifting of larger blocks, and the
criteria may be controlled, such as for example, by a casino employee. At a step 664, an
in use heap block meeting the desired criteria is shifted to the top portion of the memory
stack in NV-RAM. It is contemplated the heap block may be shifted to portions of
memory other than the top portion as described in this example embodiment. At a step
668, the range of available heap blocks is resized to reflect the additional available
memory space. Next, at a step 672, the process repeats itself as the NV-RAM manager
analyzes the next heap block.

[0057] It is contemplated that the shifting of heap blocks as described in Figures 6A,
6B, or 6C may be accomplished by shifting data to a distinct portion of memory
different from that of the top or bottom of an NV-RAM memory stack. The methods of
shifting to a specific location as described in these embodiments are examples and are
meant for discussion purposes. Furthermore, it is contemplated that compacting may
occur more readily when the availability of unused NV-RAM is low. In addition, it is
contemplated that compacting may occur periodically or on specific times in a day, or
specific days in a week. As part of inifializing the NV-RAM, it is contemplated the NV-
RAM is compacted when the NV-RAM manager is first started.

[0058] Figure 7 illustrates an example method of shifting the contents of heap blocks
to various locations within NV-RAM memory. This process may occur to provide
additional security by re-organizing data in memory to prevent unauthorized access of
data. By continually or periodically changing the location of data in memory, the ability
of an individual to access a particular type of data is reduced.

[0059] At a step 704, the NV-RAM manager randomly generates a node record. A

19

WO 2004/025655 PCT/US2003/028748

node record stores a handle for the NV-RAM which may be a unique handle. This
handle, used by the software client, may provide a pointer to the location in NV-RAM at '
where the node or file resides. Further, the node record may provide the file size, file
name, and information regarding the status of the file. It is contemplated the status may
be a flag that indicates and allows a possible resizing or removal of data in NV-RAM to
occur. At a step 708, an associated heap block or a random heap block corresponding to
the node record is selected. At a step 712, the heap blocks are placed at the bottom
portion of the memory stack in NV-RAM. It is contemplated that data may be shifted to
portions of the memory stack other than the bottom portion. Figure 1 illustrates the
physical location of the heap block as a result of shuffling the data to the bottom portion
of the memory stack (shown as the heap block in (row 10, column 10)).

[0060] Next, in step 716, a compaction routine, such as that described in Figures 6A,
B, or C, may be employed. The process hinders an unauthorized user’s ability to
identify the contents of a particular heap block because the contents of randomly,
selected heap blocks are continuously shifting to a new location within the NV-RAM.
[0061] Figure 8 illustrates an operational flow diagram of an alternate method of
operation of a system to prevent unauthorized access of data written into NV-RAM. At
a step 808, critical game data associated with game code is identified and stored in
SDRAM. At a step 812, the NV-RAM manager facilitates the processing of the critical
data by providing the critical data to the NV-RAM manager. At a step 816, the NV-
RAM manager identifies and allocates heap blocks to store the critical data. At a step
820, the NV-RAM facilitates the encrypﬁon and subsequent storage of critical data into
SDRAM. The encryption can be any simple type of encryption. In one embodiment, the
encryption comprises multiplying the critical data by a number that is unique to a
gaming machine. This creates a unique encryption key that would not be known by a
potential cheater. At a step 824, the encrypted critical data is written into NV-RAM.
[0062] It is contemplated that the above-described software may be embodied in

20

WO 2004/025655 PCT/US2003/028748

machine readable code, such as software code and computer programs, that are
processor executable.

[0063] It will be understood that the above described arrangements of apparatus and.
the method therefrom are merely illustrative of applications of the principles of this
invention and many other embodiments and modifications may be made without

departing from the spirit and scope of the invention as defined in the claims.

21

WO 2004/025655 ') ‘ PCT/US2003/028748

APPENDIX

U.S. Patent Application No.: 09/690,931
HIGH PERFORMANCE BATTERY BACKED RAM INTERFACE
Filed: October 17, 2000

WO 2004/025655 PCT/US2003/028748

HIGH PERFORMANCE BATTERY BACKED RAM INTERFACE

BACKGROUND OF THE INVENTION

5 This invention relates to non-volatile storage for gaming machines such as slot
machines and video poker machines. More particularly, the present invention relates
to hardware and methods for providing battery backed random access memory on

gaming machines.

As technology in the gaming industry progresses, the traditional mechanically

10 driven reel slot machines are being replaced with eléctronic counterparts having CRT,
LCD video displays or the like and gaming machines such as video slot machines and
video poker machines are becoming increasingly popular. Part of the reason for their
increased popularity is the nearly endless variety of games that can be implemented

on gaming machines utilizing advanced electronic technology. In some cases, newer

15 gaming machines are utilizing computing architectures developed for personal
computers. Thése video/electronic gaming advancements enable the operation of

more complex games, which would not otherwise be pé)ésible on mechanical-driven
gaming machines and allow the capabilitiés of the gaming machine to evolve with

advances in the personal computing industry.

20 Typically, utilizing a master gaming controller, the gaming machine controls
various combinations of devices that allow a player to play'a game on the gaming
machine and also encourage game play on the gaming machine. For example, a game
played on a gaming machine usually requires a player to input money ar indicia of
credit into the gaming machine, indicate a- wagér amount, and initiate a game play.

25 These steps require the gaming machine to control input devices, including bill
validators and coin aéceptors to accept monmey into the gaming machine and
recogmze user inputs from devices, mcludmg touch screens and button pads, to
determine the wager amount and initiate game play. After game play has been

initiated, the gaming machine determines a game outcome, presents the game

WO 2004/025655 PCT/US2003/028748

outcome to the player and may dispense an award of some type depending on the

outcome of the game,

To impiement the gaming features described above on a gaming machine

using a components utilized in the personal computer indusiry, a number of

5 requirements unique to the gaming 'industry must be considered. One such
requirement is the storage of critical game information. Traditionally, gaming
machines have been designed to store critical game information such as general
accounting informatic;n (e.g. credits input the gaming machine and credits dispensed

from the gaming machine) and 4 state of a game being played on the gaming machine

10 using a non-volatile memory storage device. For example, game state -information
stored in a non-volatile memory might include the state of game currently being
pla&ed on the gaming machine as well as game history information on a number of
previous games played on the gaming machine that may’ be recalled when a
malfunction such as a power failure has occurred or when a player has a dispute with

15 the outcome of a previous game played on the gaming machine. A battery backed
random access memory (RAM) is an e'xample of a non-volatile memory storage

device used previously on many types of gaming machines.

The non-volatile memory storage device may be designed to store crifical

game information for long periods of time. The length of period of time may be

20 dictated by the gaming jurisdiction where the gaming machine is operated. For
example, a battery backed RAM storage device may be designed to store data for a
minimum of five years and even as long as seven years without replacing or
maintaining the battery. Thus, to limit the battery size, cost and maintenance
requirements for long storage periods, electronic RAM memory hardware with a low

25 ~power consumption is required.

A typical modern video gaming machine contains several devices such as the
microprocessor, RAM memory, ROM memory, mass storage devices, video display
controller, sound generation hardware, etc. which share commonality with
commercially available devices designed for personal computers. The typical system

30 architecture of a modem personal computer control chipset precludes the connection
of memory devices to the system bus unless those devices adhere to the strict

specifications of the memory controller. All currently available control chipsets on

WO 2004/025655 PCT/US2003/028748

personal computers require the use of dynamic memory devices, such as traditional
Dynamic Random Access Memory (DRAM) or Synchronous DRAM. These devices
consume too much DC power to allow effective use of battery technology for dafa
backup for critical data storage requirements lasting multiple years. Thus, to utilize
5 hardware components designed in the personal computing industry in the gaming
machine, non-volatile memory storage devices compatible witﬁ personal computing

hardware are needed.

The preservation of critical game information also influences the design of
gaming software executed on the gaming machine. Gaming software executed on
10 gaming machines is designed sucﬁ that critical game information is not easily lost or
corrupted. Therefore, gaming software is designed to prevent critical data loss in the
event of soiﬁware bugs, hardware failures, powér failures, electrostatic discharges or -
tampering with the gaming machine. The implementation of the software design in
the gaming software to meet critical data storage requirements may be quite complex

15 and may require extensive of use the non-volatile memory hardwate.

Traditionally, in the gaming industry, game design and the game platform
design have been performed by single entities. Thus,‘ a single gaming machine
manufacturer will usually design a game and then design and manufacture a gaming
machine allowing play of the game. Further, for game design on a pre-existing

20 gaming machine, gamé d(_evelo;‘)ment is usually always performed by the manufacturer
of the gaming machine. The approach of the gaming industry may be contrasted with
the video game industry. In the video gamé industry, games for a particular video
game platform are- typically developed by many companies different from thé
company that manufactures the video game platform. One trend in the gaming

25 industry is a desire to create a game development environment similar to the video

gaming industry where outside vendors may provide games to a gaming machine.

Issues involving the security, the accessibility and the efficient use of the non-

volatile memory on gaming machines provide a few barriers to opening up game

" development to outside vendors as well as' to game development in general.

30 Traditionally, software designs for non-volatile memory utilization have used a fixed
memory map approach where all of the required non-volatile memory needed to store

critical data and perform critical operations are determined before the code is

WO 2004/025655 PCT/US2003/028748

initialized on the gaming machine and remain fixed once the game is launched. The
fixed memory approach may be inefficient because temporary non-volatile memory
space, which may be required by many gaming software units for the temporally

" storage of data, is not used for other purposes when it is not being used by a particular

5 gaming software unit. Typically, the amount non-volatile memory on a gaming
machine is limited by the hardware requirements such as the power consumption.
Thus, to ensure there is enough of the limited non-volatile memory available on the
gaming machine, a game designer must be aware of all of the non-volatile memory
requirements needed by the diff.erentﬂ elements of the gaming machine software and

10 ot just those utilized for the presentation of game. This requirement is a barrier to an

open game design environment and, in general, slows down the game development

process.

Another limitation of the fixed non-volatile memory approach is the difficulty
of modifying the fixed non-volatile memory map to install new software. When a

15 software installaﬁon requires a different amount of memory in different locations than
what is available with the current fixed map on the gaming machine, the non-volatile
memory is usually re-initialized to generate a new fixed map. The re-ﬁﬁtiﬂizaﬁon of
the non-volatile memory destroys all critical data stored in the non-volatile memory
and is also time consuming which is undesirable to the gaming machine 6perator.
20 Thus, a deployment of a new game on a gaming machine is usually an infrequent
occurrence. In contrast, in the video game industry, games ére frequently and easily

deployed on any given platform.

Another barrier to game development and an open game development
environment is the accessibility of the-non-volatile memory. Currently;- gaming

25 machine software development tools do not provide easy or standard methods,for
alldcating and determining the contents of the non-volatile memory. These
deficiencies make producing error free software involving the non-volatile memory

more difficult and may be deterrent to many game designers.

Finally, the fixed memory approach for non-volatile memory may be
30 infeasible for an open game development environment because of security issues. In
the fixed memory approach, it is undesirable to provide the locations in memory

where critical data is stored because it increases the potential for tampering with the

WO 2004/025655 PCT/US2003/028748

gaming machine. For instance, a person might alter a non-volatile memory location to
illegally obtain a jackpot. Thus, for security reasons, it would be undesirable to use a
fixed memory approach in an open game development environment because the

Jocations of critical data in the non-volatile memory would have to be openty shared.

5 In view of the above, to improve the game development process for gaming
machines, it would be desirable to provide a more accessible, less complicated, more
secure and more efficient methods and apparatus of providing non-volatile memory

hardware and software on a gaming machine.

10 SUMMARY OF THE INVENTION

This invention addresses the needs indicated above by providing a gaming
mgchine with a non-volatile memory storage device and gaming software that allows
the dynamic allocaﬁog and de-allocation of memory locations in a mon-volatile
memory. The non-volatile memory storage devices interface to an industry standard

15 peripheral component interface (PCI) bus commonly used in the computer industry
allowing communication between a master gaming controller and the non-volatile
memory.. The master gaming controller executes software for a non-volatile memory
allocation system that enables the dynamic allocation and de-allocation of non-
volatile memory locations. In addition, the non-volatile memory allocation system

20 enables a non-volatile memory file system. With the non-volatile memory file system,
critical data stored in the non-volatile memory may be accessed and modified using
operating system utilities such as text processors, graphic utilities and compression

utilities.

One aspect of the present invention provides a gaming machine with a non-

25 volatile storage device. The gaming machine may be generally characterized as
including a: 1) a master gaming controller controlling one or more games played on

the gaming machine where the game played on the gaming machine is selected from

the group consisting of video poker, video black jack, video i)achinko, \;ideo slots,
video pachinko and mechanical slots, 2) a PCI bus for communication between the

30 master gaming controller and one or more devices connected to the PCI bus, 3) a non-

volatile memory storage device that communicates with the master gaming controller

WO 2004/025655 PCT/US2003/028748

via the PCI bus and 4) a non-§01atile memory allocation system executed by the
master gaming controller wherein the non-volatile memory allocation system
dynarmcally allocates and de-allocates non-volatile memory locations in non-volatile
memory located in the non-volatile memory storage device. In specific embodirments,
5 the non-volatile memory is selected from the group consisting of battery-backed
SRAM and flash memory where the non-volatile memory stores between about 1
Megabytes and 32 Megabytes of data. The one or more devices connected to the PCI
bus may be selected from the group consisting of a gaming system extension, an

audio controller and a network controller.

10 In specific embodiments, the gaming. machine may include - a main,
communication interface allowing comnmunication with one or more devices located
outside of the gaming machine such that the one or more devices located outside the
gaming machine retrieve data stored in the non-volatﬂe memory locations. Using the
mam commumcatlon interface, the gaming machine may be connected to a casino

15 area network and a wide area progresswe network. The gaming machine rnay also
include a battery having sufficient energy to power the non-volatile storage device for
at least 4 years where the non-volatile merrlofy locations in the non-volatile storage
device store critical data. Thus, information stored in the non-volatile memory
locations such as critical data is preserved by the power from a battery when the

20 gaming machine Joses power. The critical data is selected from the group consisting
of game history information, security mformatlon accountmg information, player
tracking information, wide area progressive information, game state information or

any critical game related data.

In another embodiment, the gaming machine may include a non-volatile

25 memory file system where memory locations in the non-volatile memory correspond
to one or more files aﬁd one or more directories in the non-volatile memory file .

~ system. The one or more files may contain critical data. The contents of the one or
more files in the non-volatile memory file system may be accessed using a word
processor, graphics utility program or other applications that need access to data

30 contained in “files”. Further, a main display connected to the gaming machine may be

used to display the files and directories in the non-volatile memory file system.

WO 2004/025655 PCT/US2003/028748

Another aspect of the present invention provides a non-volatile memory
storage device for storing critical data in a non-volatile memory on a gaming machine
with a master gaming controller. The non-volatile memory storage device may Be
generally characterized as including: 1) an interface device that receives data signals

S from the master gaming controller in a first format and converts the data signals to
one or more second formats different from said first format where the interface device
may be a PCI interface device, 2) a NV-RAM controller that receives data signals in
said second format from the interface device and controls access to the non-volatile
memory, 3) one more non-volatile memory chips comprising the non-volatile

10 memory that receive data signals Eom the interface device in the second format and
store ‘the critical data contained in the data signals in one or more memory locations
on the non-volatile merﬁory clﬁps where the non-volatile memory chips may be
battery-backed RAM or flash memory and 4) a battery that provides power to the NV-
RAM controller where the battéry may bé a lithium battery. In specific embodiments,

15 the non-volatile memory may utilize between about 1 and 16 nou-volatile memory
chips where the non-volatile memory stores Between about 1 Megabytes and 32
Megabytes of critical data. Also, the master gaming controller ﬁay execute a non-
volatile memory allocation system on the non-volatile memory where the non-volatile
memory allocation system dynamically allocates and de-allocates memory locationé in .

20 the non-volatile memory.

~ In another embodiment, the NV-RAM controller may monitor a battery
voltage Jevel and a power supply voltage level. The NY-RAM controller may limit-
access to the non-volatile memory when the power sﬁpply voltage level drops bc'low a
power supply cut-off voltage level. The power cut-off voltage level may be between
25 about 4.25 Volts and 4.5 Volts. Further, the NV-RAM controller may select a power
supply source for the non-volatile memory according to the power supply vol;cage
‘ level. For instance, the NV-RAM controller may select a battery power supply source
for the non-volatile memory when the power supply voltage level drops below the
power supply cut-off voltage. The NV-RAM controller may also direct data contained

30 in the data signals to one of the memory chips.

Another aspect of the invention provides a method of accessing a non-volatile
memory on a gaming machine with a master gaming controller and a non-volatile

storage device where the non-volatile storage device includes an interface device, an

WO 2004/025655 PCT/US2003/028748

NV-RAM controller, a battery and a non-volatile memory. The method -may be
characterized as including: 1) receiving a data signal from the master gaming
controller in a first format at the interface device, 2) converting the data signal to'a
second format within the interface device, 3) sendiﬁg the data signal in the ‘second

5 format to the NV-RAM controller and the non-volatile memory, 4) monitoring the
power supply voltage level in the NV-RAM controller and 5) limiting access to the
non-volatile memory when the power supply voltage level monitored in the NV-RAM
controller drops below a power supply voltage cut-off level. In one embodiment, the
method may also include one or more of the following: i) storing critical data

10 contained in the data signal in.the non-volatile mémory, ii) retrieving critical data
stored in the non-volatile memory, iii) sending the critical data in data signals in the
second format to the in;:érface device, iv) converting the data signals in the second
format to data signals in the first format at the interface device, and v) sending the

data signals in the first format to the master gaming controller. In another

15 embodiment, the method may include a) monitoring a battery voltage level, b) when
the battery voltage level drops below a battery voltage cut-off level, sending a.
message to the master gaming controller contairﬁng a status of the battery, ¢) selecting

a power supply source for the non-volatile memory according to the power supply
voltage level, d) {yhen the power supply voltage level drops below a power supply

20 cut-off voltage, selecting the battery as the power supply source for the non-volatile
memory and €) decoding an address corresponding to a memofy location in the non-

volatile memory contained in the data signal in the first format in the interface device.”

Another aspect of the present invention provides a method of allocating non-

volatile memory locations on a - gaming machine containing a master gaming

25 controller executing gaming software comprising ope or more clients, a non-volatile
memory allocation system and a state-based transaction system. The method may be
characterized as including 1) receiving a request at the non-volatile memory system

from the client to allocate a'block of non-volatile memory locations~ in the non—A
volatile memory for critical data transactions in the state-based transaction system, 2)

30 assigning a node to the block of non-volatile memory, 3) creating an NV-RAM node
record, 4) assigning a pointer to a heap block and 5) sending a handle corresponding

to the block of non-volatile memory to the client where the handle allows the client to

subsequently access the non-volatile memory using the non-volatile memory access

WO 2004/025655 PCT/US2003/028748

system. The method may include one or of the following: a) adding the assigned node
to an NV-RAM node record list, b) updating a volatile memory look-up list, c)
determining an amount of memory available in the non-volatile memory, &y
comparing the amount of memory available in the non-volatile memory with an
5 amount of non-volatile memory in the requested block, €) when the amount of
requested non-volatile memory exceeds the available amount of non-volatile memory,
terminating the non-volatile memory request and f) sending critical data with the non-

volatile memory allocation request to the non-volatile memory allocation system.

In specific embodiments, the method may include generating a signature for

10 the NV-RAM node record where the sigtiature is generated using a method selected
from the group cénsisting of a CRC, (5hecksurri, a hash value or other signature
generating method. The NV-RAM record may include a handle, an owner handle, a
name, a size, a pointer to thé heap block, one or more status flags a:nd a signature. The

one or more status flags may be selected from the group consisting of a time stamp,

15 an access restriction and a resizing restriction.

Another aspect of the present invention provides a method of modifying
previously allocated non-volatile memory locations on a gaming machine confaining a
master gaming controller executing gaming software which may include one or more
clients and a non-volatile memory allocation system. The method may be
20 characterized as including: 1) receiving a function request at the non-volatile memory
system from the client wherein the function request includes a handle corresponding

to the allocated memory locations and a one or more function request modiﬁers; 2)-
locating the NV-RAM node record corresponding to the handle, 3) checking the status
flags contained in the NV-RAM node record and 4) when the status flags allow the
25 function request, executing the function request. The function request may be selected
from the group consisting of de-allocate, opeﬁ, close, read, read/directory, write,
" resize, move, get statistics, change statistics or other potential file related activities
and the function request modifier is selected from the group consisting of a requested
size, a name, a modification restriction, an access restriction, an owner and a time
30 stamp. In a specific embodiment, the method may include: a) when the function
request is a de-allocate function request, b) removing the NV-RAM node record, c)
updating an NV-RAM record list and d) updating a heap block and €) updating a

volatile memory look-up list.

WO 2004/025655 PCT/US2003/028748

Another aspect of the present invention ;;rovides a method of installing a new
client requiring non-volatile memory into the gaming software on a gaming machine
containing a master gaming controller executing gaming software comprised of one or
more clients and a non-volatile memory allocation system. The method may bé

5 . characterized as including: 1) determining an amount of non-volatile memory
required by the new client, 2) sending an allocation function request to the non-
volatile memory allocation system requesting the required amount of non-volatile
memory, 3) receiving a handle from the non-volatile memory allocation system
\'vherein the handle allows subsequent access to the requested non-volatile rﬁemory, 4)

10 executing the client and 5) seﬁding the handle to the new client. In addition, the
method may include: a) determining when the required.amount‘qf non-volatile is
available in théA non-volatile memory and b) when the required amount of memory is
not available, sending an error message. In a specific embodiment, the method may
include loading a software load manager that manages an installation of the new

15 client.

Another aspeét of the present invention provides a method of storing and

. accessing critical data using a non-volatile inemory file system on a’gaming machine
with a non-volatile memory storing critical data. The method may be generally
characterized as including: 1) organizing blocks of memoiy locations in the non-

20 volatile memory as files in the non-volatile memory file system, 2) storing the files
under one or more directories, 3) selecting a first file and 4) accessing critical data

' stored in the first file using an operating system utility program where the operating
system utility program is selected from the group consisting of a word processor and a
graphical utility program. The critical data may be selected from the group consisting

25 of game history information, security information, accounting information, player

tracking information, wide area progressive information and game state information.

In specific embodiments, the method may include: a) applying a non-volatile
memory file system command to the file and directories in the non-volatile memory
file system where the non-volatile file system commands include renaming, moving,

30 adding and deleting the ﬁle and directories in the non-volatile memory file system, b)
displé.ying the files and directories in the non-volatile memory file system and critical
data contained in the one or more files on a displéy connected to the gaming machine,

¢) modifying the critical data contained in the one or more files using a word

10

WO 2004/025655 PCT/US2003/028748

processor or other text/data editor, d) compressing the critical data contained in the
one or more files in the non-volatile memory file system using an operating system
compression utility and e) setting an access privilege to one or more files and

directories in the non-volatile memory file system.

5 Another aspect of the present invention provides a method of recovering a
state of the gaming machine after power is lost on a gaming machine containing a
master gaming controller executing gaming software comprising one or more clients
and a non-volatile memory allocation system. The method may be characterized as
including: 1) activating the non-volatile-memory allocation system, 2) comparing one

10 or more data signatures, 3) determining a status of an operation that was being
performed by the non-volatile memory when the power was lost and 4) when the
status indicates the operation is incomplete, completing the operation. In addition, the
method may include one or more of the following: a) generating one or more data
signatures, b) when the one or more data signatures do not compare, sending an error

15 message, c) building a node look-up list in volatile memory and undoing the operation

and retuminé the gaming machine to the state prior to the operation.

Another aspect of the present invention provides a éaming machine storing
critical data. The gaming machine may be characterized as including: 1) a master
gaming controller controlling one or more games played on the gaming machine, 2)a

20 - non-volatile memory storage device storing critical data from the one or more games
played on the gaming machine, 3) gaming software comprising one or more clients
executed by the méster gaming controller and 4) a non-volatile memory allocation
system allocating and modifying non-volatile memory locations in the non-volatile
memory storage device based upon function requests from the one or more clients

25 where the clients may be seiected from the group consisting of a bank manager, a
communication manager, a virtual player tracking unit, an event manager. In addition
the gaming machine may include a non-volatile memory file system where files in the
non-volatile memory file system may contain critical data stored in the non-volatile

memory locations.

"~ 30 These and other features of the present invention will be presented in more

detail in the following detailed description of the invention and the associated figures.

11

WO 2004/025655 PCT/US2003/028748

BRIEF DESCRIPTION OF THE DRAWINGS -

FIG. 1 is a perspective drawing of a gaming machine having a top box and

other devices.

5 FIG. 2 is a block diagram depicting gaming machine software elements

including a NV-memory manager for one embodiment of 2 gaming system software

architecture.

FIG. 3 is a block diagram of a main processor board of a gaming machine with

a non-volatile memory storage device in one émbodiment of the present invention.

10 . FIG. 4 is a block diagram of a gaming system extension 345 with a non-

volatile memory storage device 355 for one embodiment of the present invention.

FIG. 5 is a block diagram of a non-volatile memory storage device 355

connected to a PCI bus in one embodiment of the present invention.

IL“IG. 6 is a flow chart of a method of storing critical data to the non-volatile

15 memory for one embodiment of the present invention.

FIG. 7 is an interaction diagram between components on the main processor

board and the non-volatile memory storage device during a write to the non-volatile

memory storage device.

FIG. 8 is an interaction diagram between components on the main processor
20 board and the non-volatile memory storage device during a read from the non-volatile

memory storage device.

FIG. 9 is block diagram of a non-volatile memory allocation system
implemented in the gaming system software for one embodiment of the present

invention.

25 FIGs. 10A and 10B are flows charts of the non-volatile memory allocation and
de-allocation processes utilizing the non-volatile memory allocation system described

with reference to FIG. 9.

12

WO 2004/025655 PCT/US2003/028748

FIG. 11 is a flow chart of the software maintenance process involving the non-

volatile memory allocation system.

FIG. 12 is a block diagram of non-volatile memory file system based upon the

non-volatile memory allocation system implemented with the NV-RAM manager.

5 FIG. 13 is a flow chatt of the power-up process involving the non-volatile

memory in the gaming machine after a power failure.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Turning first to FIG 1, a video gaming machine 2 of the present invention is

10 shown. Machine 2 includes a main cabinet 4, which generally surrounds the machine
interior (not shown) and is viewable by users. The main cabinet includes a main door

8 on the front of the machine, which opens to provide access to the interior of the
machine. Attached to the main door are player—input switches or buttons 32, a coin
acceptor 28, and a bill validator 30, a com tray 38, and a belly glass 40. Viewable

15 through the main door is a video display monitor 34 and an information panel 36. The
display monitor 34 will typically be a cathode ray tubg, high resolution ﬂat-panel
LCD, or other conventional electronic;ally controlled video monitor. The information
pane;l 36 may be a back-lit, silk screened glass panel with Jettering to indicate general
game information including, for example, the number of coins I;Iayed. Many possible

20 games, including traditional slot games, video slot games, video poker, and keno, may

be provided with gaming machines of this invention.

The bill validator 30, coin acceptor 28, player-input switches 32, video display
monitor.34, and information panel are devices used to play a game on the game
machine 2. The devices are controlled by circuitry (See FIG. 3) housed inside the

25 main cabinet 4 of the machine 2. In the pp'eratio‘n of these devices, critical information
may be generated that is stored within a non-volatile memory storage de\fice 355 (See
FIG. 3) located within the gaming machine 2. For instance, when cash or credit of
indicia is deposited into the gaming machine using the bill validator 30 or the coin
acceptor 28, an amount of cash or credit deposited into the gaming machine 2 may be

30 stored within the non-volatile memory storage device 355. As another example, when

13

WO 2004/025655 PCT/US2003/028748

important game information, such as the final position of the slot reels in a video slot
game, is disblaycd on the video display monitor 34, game history information needed
to recreate the visual display of the slot reels may be stored in the non-volatile
memory storage device. The type of information stored in thé non-volatile memory
5 may be dictated by the requirements of opérators of the gaming machine and
regulations dictating operational requirements for gaming machines in different
gaming jurisdictions. In the description that follows, hardware and methods for
storing critical game information in a non-volatile storage device are described within

the context of the operational requirements of a gaming machine 2.

10 The gaming machine 2 includes a top box 6, which sits on top of the main
cabinet- 4. The top box 6 houses a numbér of devices, which may be used to add
features to a game being played on the gaming machine 2, including speakers 10, 12,
14, a ticket’printc;,r 18 which prints bar-coded tickets 20, a key pad 22 for entering
blay;:r tracking information, a florescent &isplay 16 for displaying player tracking

15 information and a card reader 24 for entering a magnetic striped card containing
player tracking information. Further, the top box 6 may house different or additional
devices than shown in the FIG. 1. For example, the toﬁ box may contain a bonus
wheel or a back-lit silk screened panel which may be used to add bonus fe;atures to the

" game being played on the gaming machine. During a ganie, these devices are

20 controlled and powered, in part, by the master gaming controller housed within the

main caﬁinet 4 of the machine 2.

Understand that gaming machine 2 is but one example from a wide range of
gaming machine designs.on which fhe present invention may be implemented. For
example, not all suitable gaming machines have top boxes or player tracking features.

25 Further, some gaming machines have two or more game displays — mechanical and/or
video. And, some gaming machines are designed for bar tables and have displays that
face upwards. Thoée of skill in the art will understand that the present invention, as
described below, can be deployed on most any gaming machine now available or

hereafter developed.

30 Returning to the example of Figure 1, when a user wishes to play the gaming
machine 2, he or she inserts cash through the coin acceptor 28 or bill validator 30.

Additionally, the bill validator may accept a printed ticket voucher which may be

14

WO 2004/025655 PCT/US2003/028748

accepted by the bill validator 30 as an indicia of credit. During the game, the player

typically views game information and game play using the video display 34.
L]

During the course of a game, a player may be required to make a number of

decisions, which affect the outcome of the game. For example, a player may vary his

5 or her wager on a particular game, select a prize for a particular game, or make game
decisions which affect the outcome of a particular game. The player may make these
choices using the player-input switches 32, the video display screen 34 or using-some

other device which -enables a player to input information into the gaming machine.
Certain player choices may be captured by player tracking software 224 (See FIG. 2)

10 loaded in a memory inside of the gaming machine. For example, the rate at which a
player plays a game or the amount a player bets on each game may be captured by the
player tracking software. Tﬁe player tracking software 224 may utilize the non-

volatile memory storage device 355 to store this information.

During certain game events, the gaming machine 2 may display visual and -
15 -+ auditory effects that can be perceived\by the player. These effects add to the
excitement of a game, which makes a player more likely to continue playing.

" Auditory effects include various sounds that are projected by the speakers 10, 12, 14.
Visual effécts include flashing lights, strobing lights or other patterns displayed from
lights on the gaming machine 2 or from lights behind the belly glass 40. After the

20 player has completed a game, the player may receive coins or game tokens from the
coin tray 38 or the ticket 20 from the printer 18, which may be used for furthér games
or to redeem a prize. Further, the player may receive a ticket 20 for food,

merchandise, or games from the printer 18.

Various hardware and software architectures may be uséd to implement this
25 invention. FIG. 2 is a block diagram depicting one suitable example of gaming
machine software elements in a gaming machine with a software architecture 201
employing a NV-RAM manager 229 to access a physical non-volatile memory storage
device 335 described with reference to FIGs. 3, 4 and 5. The NV-RAM manager 229
controls access to the non-volatile memory on the gaming machine. The NV-RAM
30 manager is a “process” executed by an operating system residing on the gaming ‘
‘machine. A “process” is a separate software execution unit that is protected by the

operating system executed by the microprocessor 300 (See FIG. 3). When a process,

15

WO 2004/025655 PCT/US2003/028748

including the NV-RAM manger 229, is protected, other software processes or
software units executed by the m,aster‘ gaming controller can not access the memory of
the protected process. The operating system may be one of a number of cofnmerciallj/
available operating systems, such as Windows NT by Microsoft Corporation of

5 Redmond, Washington. The operating system may include standard utilities for

accessing and manipulating files and directories accessible to the system.

The NV-RAM manager 229 is a protecfed process on the gaming machine to
maintain the integrity of the non-volatile memory space on the gaming machine. All
access to the non-volatile memory is through the NV-RAM manager 229. During

10 execution of the gaming machine software 201, the non-volatile manager 2'_29 may
~ receive access requests via the event manager 230 from other processes includingAa
virtual player tracking unit 224, a bank manager 222 and one or more device
interfaces 255 to store or retrieve data in the physicai non-volatile memory space.
Other sofiware units tﬁat request to read, write or query blocks of memory in the non-

15 volatile memory are referred to clients.

The NV-RAM manager 229 processes the access requests from the clients
including allocating and de-allocating memory in the NV-RAM and checking for
various errors. The space allocatéd by the NV-RAM manager 229 in the NV-RAM
may be temporary or permanent. Temporary space may be used to process important

20- commands regarding the “state” of the gaming machine. Aﬁer the commands are
processed, the temporary space may be allocated for other purposes. Permanent space
may be used to store important data on the gaming machine including accounting
information and a game history containing a record of previous game outcomes that
may be utilized for dispute resolution on thé gaming machine. Examples of client

25 access to the NV-RAM including the allocation and de-allocation of memory is
described in the following description with reference to FIG. 2. The layout of the
temporary space and the permanent space in the NV-RAM may be represented in the
software as a file system. Details of a non-volatile memory allocation system and non-

volatile memory file system are described with reference to FIG. 9-12.

30 The capability to allocate and de-allocate memory in the physical NV-RAM
differs from past implementations of non-voldtile storage on gaming machines. In the '

past, the NV-RAM was treated as large blocks of memory. The software structure of

16

WO 2004/025655 PCT/US2003/028748

the memory was determined during development as part of the compiling and linking
process providing a fixed map of the NV-RAM memory. The fixed memory approach
tends to lead to inefficient utilization of the NV-RAM because all of the NV-RAM '
requirements ére determined in advance. Determining the non-volatile memory
5 requirements in advance may be inefficient because exact requirements are usually

unknown. Thus, more memory may be allocated than is actually needed in most
situations. Efficient NV-RAM memory utilization is important because the size of the
NV-RAM is limited by power requirements. In addition, when software is added to
the gaming machine with different NV-RAM requirements (e.g. an upgrade), the NV-

10 RAM must be reinitialized to create a new memory map since the software structure
(imap) of the memory is ﬁxédA after compiling. Reinitializing the NV-RAM clears
away all of the information stored in NV-RAM which is usually undesirable in the
gaming industry. Further, the fixed map may create security issues bécause the
locﬁﬁon where critical data is stored in the gaming machine is fixed. Thus, to tamper

‘15 with the gaming machine, a person may illegally determine where the critical
. hlf(srmaﬁon is'stored such that these locations may be later altered in attempt't6

tamper with the gaming mabhine. Advantages of employing an NV-RAM manager
2?_9 that allows the dynamic allocation and de-allocétion of NV-RAM are 1) more
efficient use of the memory because memory requirements do not need to be known

20 prior to compiling of the software, 2) the ability to load software requiring NV-RAM
such as upgrades without reinitializing the NV-RAM and 3) increased security
because the storage locations in NV-RAM may be regularly changed.

For error checking, the NV-RAM manager, uses access protocols and a

distinct file system (described with reference to FIGs. 9, 10, 11 and 12) o check the

25 client’s NV-RAM access request to ensure the request does not cc;:rupt the data stored
" . in the non-volatile memory space or the request does not return corrupted data. For
. example, the NV—RAM manager 229 checks read and write requests to insure the

client does not read or write data beyond a requested block size. In the past, a

software errors from numerous software units may have resulted in the corruption of
30 - the non-volatile memory space because clients were able to directly access the NV-

RAM. When the non-volatile memory space is corrupted (e.g. critical data is

accidentally overwritten), often the entire physical NV-RAM memory is reinitialized

and all the critical stored on the gaming machine is lost. Using the NV-RAM manager

17

WO 2004/025655 PCT/US2003/028748

10

15

20

25

30

229 to check all accesses to the physical non-volatile memory, many of types of data

corruption scenarios may be avoided.

With the non—volaﬁie memory protected from invalid reads and writes by the
NV-RAM manager 229, a critical data layer can be built using the client access
protocols to the non-volatile memory storage device 355. Critical datais a specific
terr used in the gaming industry to describe information that is étored in the non-
volatile memory storage device 355 and is critical to the operation and record keeping
in the gaming machine. Critical data is stored in non-volatile memory using strict
error checking to catch errors due to software problems, hardware failures,
electréstatic discharge and tampering. An operational requirement for gaming
machines is that critical data is never left in an invalid state. Therefore, the gaming
software is designed to élways knowthe st:;te of the crifical data such that tﬁe critical
data is not left in an invalid state with an unknown status. For instance, when data
dachjng is used to store data to another location; the gaming machine soﬁware may
not be able to determine during certain periods whether the data remains in the cache
or whether it has been copied to another location. While the state of the data in cache . |
remains unknown, the data is in an invalid state. When critical data is stored, the A
requirement of avoiding invalid states includes the scenario where critical data is
being modified and the power to the gaming machine is Jost. To handie these
requirements, the NV-RAM manager 229 may be used with a state-based software

transaction system.

In one embodiment of a state-based software transaction system, the gaming
machine software 201 defines a state. A state is critical data that contains a state
value, critical data modifiers and substates. The state value is an integer value that has
meaning to the user of the state. The criti‘cal data modifiers are types of critical data
that store information about how to modify critical data. Substates are states 4

themselves, but are linked to the state;

The critical data modifiers may be stored and associated with the state using a
list. Typically, the critical data modifiers may be grouped to form a list of critical data
transactions. A critical data transaction is usually comprised of one or more critical
data modifiers. For instance, a critical data transaction to print an award ticket might

comprise the operations of 1) start using printer, .2) disable hopper and 3) decrement

18

WO 2004/025655 PCT/US2003/028748

10

15

20

25

30

the credits on the gaming machine by the amount printed to the award ticket where
each operation is comprised of one or more critical data modifiers. The list is
maintained as critical data to ensure that the items on the list are always valid i.. the
list may not be lost in the event of a power failure or some other gaming machine
malfunction. All the transactions in a list for a state are completed or all the

transactions are not completed which is a standard transaction technique.

The critical data transactions are a description of how to change critical data.
The transactions are executed by the NV-RAM manager 229 after requests by clients.
The list is built until the gaming machine software 201 executes the list by changing '
the state value which is the mechanista for initiating a transaction. 1f power is lost to
the gaming machine during a transaction, the transaction can be completed due to the
design of the state. On power recovery, the gaming machine can determine what sfate
it was in prior to the power failure and then execute the critical data transactions listed
in the state until the transactions are completed. For a gi'ven state, once the critical
data transactions listed in the state are complete, the information describing the
critical data &ansactions; cpmprising the state fnayiae diséarded from the non-volatile

memory and the gaming machine software may begin execution of the next staté.

One feature of the state based transaction system using the non-volatile

memory-is that the gaming system sofiware 215 may determine w};len arollback is

-required. Once a list of critical data transactions is built as part of state, the

transactions may be eiecuted or rolled back. A rollback occurs when the entire list of
critical aata transactions is discarded and operations specified in the transactions are
not éxecuted. The state-based transaction based system is designed such that it is not
possible for only a portion of the list of transactions in a state to be performed i.e. the
entire list of transactions in the state may either be rolled back or executed. This
feature of the state-based system tends to improve the software reliability aﬁd
capability because errors due to the partial execution of states do not have to be

considered in the software design. It also allows for faster software development.

Returning to FIG. 2, many game states involving critical data transactions
involving the NV-RAM manager 229 and the physical NV-RAM 355 are generated in
the context of the operation of the gaming machine software 201. Details of the

gaming machine software 201 and examples of critical data transactions are described

19

WO 2004/025655 PCT/US2003/028748

10

15

20

25

30

in the following paragraphs. The main parts of the gaming machine software 201 are
communication protocols 210, a gaming system 215, an event manager 230, device
interfaces 255, and device drivers 259. These software units comprising the gaming
machine software 201 are loaded into memory of the master gaming controller of the

gaming machine at the time of initialization of the gaming machine.

The device drivers 259 communicate directly with the physical devices
including a coin acceptor 293, a key pad 294, a bill validator 296, a card reader 298 or
any other physical devices that may be connected to the gaming machine. The device
drivers 259 utilize a communication protocol of some type that enables ,
communication with a particular physical device. The device driver abstracts the -
hardware implementation of a device. For example, é device drive may be written for
each type of card reader that may be potentially connected to the gaming machine.
Examples of communication protocols used to implement the device drivers 259
include Netplex 260, USB 265, Serial 270, Etheret 275, Firewire 285, I/0 debouncer
290, direct memory map, serial, PCI 280 or parallel. Netplex is a proprietary IGT
standard while the others are open standards. For example, USB ié a standard serial
communication methodology used in the personal computer in&usﬁy. USB-
Communication protocol sfandar'ds are maintained by the USB-IF, Portland, Oregon,
http://www.usb.org. .

The dévice drivers may vary depending on the manufacturer of a particular
physical device. For example, a card reader 298 from a first manufacturer may utilize
Netplex 260 as a device driver while a card reader 298 from.a second manufacturer
may utilize a serial protocol 270. Typically, only one physical device of a given type
is installed into the gaming machine at a particular time (e.g. one card reader).
However, device drivers for different card readers or other physical devices of the
same type, which vary from manufacturer to manufacturer, may be storgd in memory
on the gaming machine. When a physical device is replaced, an appropriaté device
driver for the device is loaded from a memory location on the gaming machine

allowing the gaming machine to communicate with the device uniformly.

The device interfaces 255, including a key pad 235, a bill validator 240, a card
reader 245, and a coin acceptor 250, are software units that provide an interface
between the device drivers and the gaming system 215. The device interfaces 255

20

WO 2004/025655 PCT/US2003/028748

10

15

20

25

30

may receive commands from the software player tracking unit 224 or software units
requesting an operation for one of thé physical devices. For example, the bank
manager 222 may send a command to the card rea&er 245 requesting a read of
information of a card inserted into the card reader 298. The dashed arrow from the
bank manager 222 to the device interfaces 255 indicates a comunand being sent from
the bank manager 222 to the device interfaces 255. The card reader device interface
245 may sends the message to the device driver for the card reader 298. The device '
driver for the physical card reader 298 communicates the command and message to
thé card reader 298 allowing the card reader 298 to read information from a magnetic

striped card or smart card inserted into the card reader.

The information read from the card inserted into to the card reader may be
posted to the event manager 230 via an appropriate device driver 259 and the card
reader device interface 245. The event manager 230 is typically a shared resource that
1s utilized by all of the software applicaitions in the gaming system 215 including the
virtual player tracking system 224 and the bank manager 222. The event manager 230 ‘
evaluates each game event to determine whether the event contains critical data or
modifications of critical data that are protected from power hits on the gaming

machine i.e. the game event is a “critical game event.”

As previously described in regards to the gaming machine’s transaction based
software system, critical data modifications defined in a critical game event may be
added to'a list of critical game transactions defining a state in the gaming machine by
the event manager 230 where the list of critical game transactions may be sent to the
NV-RAM via the NV-RAM manager 229. For example, the operations of reading the
information from a card inserted into the gaming ﬁachne and data read from a card
ﬁlay generate a number of critical data transactions. When the magnetic striped card
in the card reader 298 is a debit card and credits are being added to the gaming
machine via the card, a few of the critical transactions may include 1) querying the
non-volatile memory for the current credit available on the gaming machine, 2)
reading the credit information from the debit card, 3j adding an amount of credits to
the gaming machine, 4) writing td the debit card via the card reader 245 and the
device drivers 259 to deduct the amount added to gaming machine from the debit card

and 5) copying the new credit information to 'the non-volatile memory.

21

WO 2004/025655

10

15

20

25

30

PCT/US2003/028748

The operations, described above, that are performed in transferring cr.edits
from the debit card to the gaming machine may be stored temporarily in the physical

non-volatile memory storage device 355 as part of a list of critical data transactions '

“executed in one or more states. The critical data regarding the funds uanéférped to the

gaming machine may be stored permanently in the non-volatile memory space as
gaming machine accounting information. After the list of critical data transactions are
executed in a current state, the list is cleared from the temporary non-volatile memory
space allocated by the NV-RAM manager 229 and the non-volatile memory space
may be utilized for other purposes. ‘

In general, a game event may be received by the device interfaces 255 by

_polling or direct communication. The solid black arrows indicate event message paths

between the various software units. Using polling, the device interfaces 255 regularly
send messages to the physical devices 292 via the device drivers 259 requestfng
wheﬁer an event has occurred or not. Typically, the device drivers 259 do not -
perform any high level event handling. For example, using polling, the card reader
245 device interface may regularly send a message to the card reader physical device‘

- 298 aéking whether a card has been inserted into the card reader. Using direct

communication, an intefrupt or signal indicating a game éyent has occurred is sent to
the device interfaces 255 via the device drivers 259 wﬁen a game event has occurred.
For example, when a card is inserted into the card reader, the card reader 298 may
send a “card-in message” to the device interface for the card reader 245 indicatinga
card has been inserted which may be posted tc; the event manager 230. The card-in
message is a game event. Other exanipies of game events which may be received from
one of the physical devices 292 by a device interface,‘ include 1) Main door/ Drop -
door/ Cash door op'enings and closings, 2) Bill insert message with the denomination
of the bill, 3) Hoppér tilt, 4) Bill jam, 5) Reel tilt, 6) Coin in and Coin out tilts, 7)
Power loss, 8) Card insert, 9) Card removal, 10) Promotional card insert, 11)

Promotional card removal, 12) Jackpot and 13) Abandoned card.

Typically, the game event is an encapsulated information packet of some type
posted by the device interface. The game evént has a “source” and one or more
“destinations.” As an éxa.mple, the source of the card-in game event may be the card
reader 298. The destinations for the card-in game event may be the virtual player

tracking unit 224 and the communication manager 220. The communication manager

22

WO 2004/025655 PCT/US2003/028748

10

15

20

25

30 -

may communicate information on read ﬁom the card to one or more devices located
outside the gaming machine while the virtual player tracking unit 224 may prompt the
card reader 298 via the card reader device interface 255 to perform additional !
operations. Each game event contains a standard header with additional information
atta‘ched to the Vheader. The additional information is typically used in some manner at -

the destination for the event.

As described above, game events are created when an input is detected by one.
of the device interfaces 255. "fhe game events are distributed to theif one or more
destinations via a queued delivery sysfem using the event distribution software
process 225. However, since the gamg events may‘be‘ distributed to more than one
destinationé, the game events differ from a device command or a device éignal which
is typically a point to point communication such as a function call within a program or

interprocess communication between processes.

Since the source of the game "event, vyhich may be a device interface or a
server 6‘11tside of the gaming machine, is not usually directly connected to destination
of the game event, the event manager 230 acts as an interface between the source and
the one or more event destinations. After the source posts the event, the source returns '

back to performing its intended function. For example, the source may be a device

" interface polling a hardware device. The event manager 230 processes the game event

posted by the source and places the game event in one or more queues for delivery.
The event manager 230 may prioritize each event and place it in a different queue
depending on the priority assigned to the event. For example, critical game events
may be placed in a list with a number of critical game transactions stored in the NV-
RAM as part of a state in the state-based transactioﬂ system executed on the gaming

machine.

After a game event is received by the event manager 230, the game event is
sent to event distribution 225 in the gaming system 215. Event distribution 225
broadcasts the garﬁe event to the destination software units that may operate on the
game évent. The operations on the game events may trigger one or more access
requests to the NV-RAM via the NV-RAM manager 229. For instance, when a player
enters a bill into the gaming machine using the bill validator 296, this event may

arrive at the bank manager 222 after the event has passed through the device drivers

23

WO 2004/025655 PCT/US2003/028748

259, the bill validator device interface 245, the event manager 230, and the event
distribution 225 whe;‘e information regarding the game event such as the bill
denomination may be seﬂt to the NV-RAM manager 229 by the event manager 230. ‘
After receiving the game event, the bank manager 222 evaluates the game event and

5 determines whether a response is required to the game event. For example, the bank
manager 222 may decide to increment the amount of credits on the machine according
to the bill denomination entered into the bill validator 296. Thus, one function of the
bank manager software 222 and other software units is as a game eveit evaluator.
More generally, in response to the game event, the bank manager 222 may 1) generate

10 anew event and pbst it to the event manager 230, 2) send a command to the device

interfaces 255, 3) seﬁd a command or ipformation to the wide area progressjve
commulli(;ation protocol 205 or the playef tracking protocol 200 so ﬁat the
information may be sent outside of the gaming machine, 4) do nothing or 5) perform

combinations of 1), 2) and 3).

15 | Non-volatile memory may be accessed ﬁa the NV-RAM manager 229 via
commands sent to the gaming‘machine from deyices located outside of the ga@ng
machine. For instance, an accounting server or éwide area progressive server may

" poll the non-volatile memory to obtain information on the cash flow of a particular
gaming machine. The cash flow polling may be carried out via continual queries to

20 the non-volatile memory via game events sent to the event manager 230 and then to
the NV-RAM manager 229. The polling may require translation of messa;ges ‘from the
accounting server or.the wide area progressive server using communication protocol

translators 210 residing on the gaming machine.

The communication protocols typically translate information from one |
25 communication format to aﬁother communication format. For example, a gaming

machiqe may qﬁlize one communication format while a server providing accounting
services ina;y utilize a second communication format. The player fracking protocol
translates the information from one communication format to another allowing ‘
information to be sent and received from the server. Two examples of communication

- 30 protocols are wide area prog;essive 205 and player tracking protocol 200. The wide
are progressive protocol 205 may be used to send information over a wide area

' progressive network and the player tracking protocol 200 may-be used to send

information over a casino area network. The server may provide a number of gaming

24

WO 2004/025655 PCT/US2003/028748

services inicluding accounting and player tracking services that require access to the

non-volatile memory on the gaming machine.

The power hit detection software 228 monitors the gaming machine for power
. fluctuations. The power lit detection software 228 may be stored in a memory
5 different from the memory storing the rest of the software in the gaming system 215
or it may stored in the same memory. When the power hit detection software 228
detects that a power failure of some type may be eminent, an event may be sent to the
event manger 230 indicating a power failure has occurred. This event is posted to the
event distribution software 225 which broadcasts the message to all of the software
10 units and devices within the gaming machine that may be affected by a power failure.
As described_with,gcférence to FIGs. 5, 7 and 8 power hit detection is used by the
NV-RAM controller to determine wheﬁler data may be read or written from the NV-

RAM 525.

Device interfaces 255 are utilized in the gaming system soﬁwére 215 so that
15 changes in the device driver software do not affect the gaming system software 215 or
even the device interface software 255. For example, the player tracking events and
commands that each physical device 292 sends and receives may be standardized so
that all the physical devices 292 send and receive the same commands and the same
player tracking events. Thus, whena physical device is replaced 292, a new device
20 driver 259 may be required to communicate with the physicai device. However,
device interface$ 255 and gaming machine system software 215 remain unchanged.
‘When the new physical device requires a different amount of NV-RAM from the old
-physical device, an advantage of the NV-RAM manager‘ 229 is that the new space
may be easily allc;cated in the non-volatile memory without reinitializing the NV-
25 RAM. Thus, the physical devices 292 utilized for player tracking services may be

easily exchanged or upgfaded with minimal software modifications.

The advantage afforded by the NV-RAM manager 229 may be extendable to
software upgrades or software additions of any software units in the gaming machine
software 201 utilizing the physical non-volatile memory. For instance, new game

30 software may be loaded onto to the gaming machine such as exchanging video poker
game software for video slot game software. In many cases, the new game will have

different non-volatile memory requirements than the old game. Using the NV-RAM

25

WO 2004/025655

10

15

20

25

30

manager described above, the physical NV-RAM may be easily reconfigured to
accommodate the new game without reinitializing the physical NV-RAM which was
required in the past. An example of the software maintenance process on a gaming

machine including loading and unloading software is described with reference to FIG.
11.

The various software elements described herein (e.g., the device drivers,
device interfaces, communication protocols, etc.) may be implemented as software
objects or other executable blocks of code or script: In a-preferred embodiment, the
elements are mplemented as C+ objects. The event manager, event dlstnbutlon
software player tracking unit and other gaming systemn 215 software may also by
implemented as C++ objects. Bach are cornplled as individual processes and

communicate via events and/or interprocess communication (IPC).

FIG. 3 is a block diagram of the main processor board 301 of a gaming
machine with a non-volatile memory storage device in one embodiment of the present
invention. The main processor board 301 may be standar;i board in a modern personal
computler. The microprocessor 300 executes the logic provided by the gaming

software on the gaming machine. The microprocessor may be a Pentium series

_ processor available from Intel corporation, Santa Clatra, California or a K6 series

prbce;ssor available from AMD corporation, Sunnyvale, California.

To increase the performance of the‘microprocessor, data and instructions may
be stored in the L1 cache 305 on the micropfocessor 300 or the L2 cache 310 located
off of the microprocessor bus 315. For gaming machine applications with critical data
storagé requiremaents, the L1-cache and 1.2 cache are not usually ttilized for critical
data storage because data stored in the these locations may be lost in the event of a

power failure. Thus, a separate non-volatile memory storage device 355 is utilized.

The north bridge 320 converts sfgnals between the microprocessor bus signals,
Peripheral Corﬁponent Interface (PCI) bus signals, memory bus signals and advanced
graphic port (AGP) signals (i.e. micfoprocessor to PCI, microprocessor to AGP,
microprocessor to memory, PCI to microprocessor, PCI to AGP, AGP to PCI, ¢tc.)
The signals for the microprocessor bus, PCI bus, memdry bus and advanced graphic
port may differ according to the voltage level, clock rate and bit width. Also, the

26

PCT/US2003/028748

WO 2004/025655

10

15

20

25

30

PCT/US2003/028748

format of appropriate control signals on each type conduit such as read strobe, write
strobe, ready signal for timing, address signals and data signals may vary from
conduit to conduit. The north bridge enables communications between the different '
types of conduits. For instance, PCI is a well defined standard used in the personal
computer industry. PCI ié maintained by the Peripheral Component Interface Special
Interest Group (PCISIG), Portland, Oregon, http://www.pcisig.com). PCI version 2.1

* typically uses a 33MHZ clock rate, a 32 bit wide data signal at 5 V to send signals.

Versions of PCI using a 64 bit wide data signal are also available. In contrast, the
clock rate used to send data signals on the microprocessor bus 315 or to the video

controller 335 may be much higher.

The Synchronous Dynamic Random Access Mempry (SDRAM) may store the
gaming machine software 201 (see FIG. 2) executed by the fnicroprocessor 300. The
gammg machine software 201 allows a game to be played on the gammg machine.
The v1deo controller 335 may be used to send signals to one or more d13plays (see
FIG. 1) connected to the gaming machine via connection 390 such that a game
outcome presentation may be presented to a player playing a game on the gaming
machine. The video controller 335 may installed as part of a video card that includes
video memory and a separate video processor. Using the microprocessor 300 and the ‘
video controller 335, high-quality 3-D graphics and multimedia presentations may be
presented as part of a game oufcome presentation. To presérve a game histor}‘l on the
gaming machine, critical history information ﬁ:qm the game outcome presentation
including one or more frames from a sequence of frames used in the game outcome
presentation may be'stored in the Non-volatile memory 355. The frames may be
copied to the non-volatile memory 355 from frame buffers residing on the video

contro]ler or at another location in the gaming machine.

Keyboards, printers, audio components and network components are devices
that may typically communicate with the microprocessor 300 via the PCI bus 330. For
ins}tance, an audio controller 360, which may send signals to one or more sound
projection devices via a connection 375, is connected to the PCI bus. The network
controller, which may communicate with one or more networks including a casino
area network (local area network) or a wide area progressive network (wide area
network) via the connection 370, is connected to the PCI bus 330. The network

controller 365 may allow the gaming machine to communicate with devices that

- 27

WO 2004/025655 PCT/US2003/028748

provide gaming services such as an accounting server and a wide area progressive
server. The accounting server may poll the gaming machine for accounting
information stored in the non-volatile memory storage device 355. The wide area
progressive server may receive inf‘cmnation stored in the non-volatile memory storage
5 device 355 such as wagers made ‘on the gaming machine and may send information to
be stored in the non-volatile memory storage device such as the value of a progressive
jackpot. The communication with the non-volatile memory storage device 355 may be

.implemented via the software architecture described with reference to FIG. 2.

The south bridge 340, which is also connected to the PCI bus 330, may be

10 connected to one or more serial ports via connection 385. The serial ports may used to
‘communicate with various devices including a bill validator. For example, when a bill
or an award ticket is accepted by the bill validator, information regarding the
dex_lomination of the bill or the value of the a\yard ticket may be i:ra.nsferred serially
using an IGT Netplex interface to the south bridge 340 where the Netplex serial

15 signals are converted to PCI standard signals by the south bridge 340 using a Netplex
device driver 260. Netplex is an IGT proprietarj protocol JGT, Reno, Nevada). Other
non-proprietary methods of communication such as serial (e.g. RS-232) may also be
used. The information transferred from the bill validator may be treated as cri‘giqal
game information By the software architecture using non-volatile xﬁemory storage

20 ° (e.g-NV-RAM) as deséribed with reference to FIG. 2.

The non-volatile memory storage device 355 is connected to the PCI bus as
part of a gaming systém extension 345. The gaming system extension includes one or
more serial connectiéns 386 that allow communication with devices such as player
tracking units, wide are progressive systems and casino area networks. Tl;e garﬁing

.25 system extension 345 is described in detail with respect to FIG 4.

The non-volatile memory storage device 355 is connected to the PCI bus for a
number of reasons. First, the PCI bus allows for a relaﬁvély fast connection (e. g'. 33
MHz clock rate and-32 bit data width) between the microprocessor 300 and the non-
volatile memory storage device 355. The fast connection is important because in a
30 state based transaction system the software does not advance to the next state until the
current state is executed or rolled back. The execution of each state igvolvcs a number

of access requests to the non-volatile memory storage device 355. When the access

28

WO 2004/025655 PCT/US2003/028748

10

15

20

25

30

rate to the non-volatile memory contained within the non-volatile memory storage

device is slow, the performance of the entire gaming system may be degraded.

A second reason the PCI bus is utilized is because there is not any data
caching on the PCI bus. This property is important for preserving critical data in the
event of power failures and execution of states in the state-based transaction syster.
The PCI bus allows for non-cached transfers of data between the SDRAM 325 and
the non-volatile memory storage device 355. Once a transfer of critical data has been
initiated between these devices, the data transfer may be successfully completed or the
data transfer may not completed: (e.g. as a result of a power failure or some other
malfunction). Thus, the gaming sysfem software may always determine the status of
the data transfer. When caching is employed, the data may reside in an invalid state
where it is not possible to determine the status of the data transfer while it resides in

the cache waiting to be sent. While the critical data is in an invalid state, the gaming

. system software is unable to advance to the next state in a state-based transaction

system which may degrade the performance of the gaming system.

A third reason the PCI bus is employed is because battery backed RAM,
including SRAM, tends to have a much lower access speed-as compared to the '
SDRAM 325 or DRAM used on most personal computers. The low access speed of
the SRAM is.a result of the low power consumption characteristics of these devices.
However, the slow access speed of the SRAM may makes it incompaﬁBle with high
speed mémory controllers available on most personal computers which is designed to
communicate with DRAM or SDRAM memory chips which have a much higher
access speed than the SRAM. Although DRAM and SDRAM chips tend to have

" faster access times and cost less as compared to SRAM chips, their power

consumption is too great as to be compatible with the 5-7 year storage lifetime of

critical data designed into the non-volatile rﬁemory storage device 355.

The PCI bus is one example of a device interface bus that may be available on
a gaming machine. The advanced graphic bus and the ISA bus are other examples of
device interface busses that may be available. An embodiment of the invention
utilizing a PCI bus has been described for the purposes of clarity. However, the
invention described herein is not limited to a particular type of device interface bus

and may be adapted to different device interface busses as needed.

29

WO 2004/025655 PCT/US2003/028748

10

15

20

25

30

Advantages of allowing the non-volatile memory storage device to interface to
a PCI bus or a similar device interface are hardware upgrades, platform independence

and an open game development environment. As previously mentioned, a large non-

- volatile memory is a critical element on a gaming machine but is not usually a

standard component on the main processor board of a personal computer. By allowing
the non-volgtile' memory storage device to interface as a peripheral on a standard PC
main processor board, the non-volatile memory storage device is easily adaptable to
new processor boards as their capabilities evolve. In addition, the non-volatile
memory may be employed with a variety of processor boards employing the PCI bus
standard. Thus, the non-volatile memory storage device may be portable to a variety
of computing blatfonhs supporting the PCI bus standard. The portability of the non-
volatile memory storage device may allow game development on a variety of
computing platforms. For instance, with a portable non~volétile memory storage
device and the gaming éystem extegsion; game de'velopmeﬁt may be carried out a
pe_rsonaf computers or work stations that emulate the functions of the gafﬁning machine

' allowiﬁg more flexibility in the design of games for gaming machines. At the same

time, security of the gé.mjng machine hardware may be preserved because security

fea'gllres built into an actual gaming niaghine méy not be visible to a game designer

_employing a gaming machine emulator to design a game. A more complete discussion

of a gaming machine emulator is provided in commonly assigned, copending U.S.
Patent Application Serial No. __/__,_ (IGT Docket No.: P-293) entitled

~ “GAMING HARDWARE SIMULATOR” filed October 12, 2000, the entire

specification of which is incorporated herein by reference.

FIG.4isa blopk diagram of a gaming system extension 345 with a non-
volatile memory storage device 355 for one embodiment of the present invention. The
gaming system extension includes a PCI interface devicé 400 that converts betweén
PCI signals and the signals necessary to communicate with the devices connected to
the PCI interface device 400 including an EPROM 415, a4| channel interface device
(QUART IC) 410, a zero power SRAM 405 and battery backed NV-memory devices
440. An example of a PC interface device is the PLX 9050 provided by PLX

' Technology of Sunnyvale, California. The PLX 9050 provides a PCI to generic bus’

conversion and can be configured to support 8, 16 and 32 bit bus widths for up to 5

memory regions the device can decode. For the non-volatile memory storage device

30

WO 2004/025655 PCT/US2003/028748

10

15

20

25

30

355, the PCI interface device is used to convert PCI signals to the signals used by the
SRAM (static random access memory) chips. The SRAM is one of the battery backed
NV-memory devices 440 described in more detail with reference to FIG. 5. The
SRAM chips are designed for low power consumption and have electrical signaling
requirements that are typically incompatible with the voltage levels and signaling

requirements of the PCI standard bus.

To conserve resources and reduce component count, several memory and /O
subsystems unique to the gaming industry, including the EPROM 415, the QUART
410 and the zero power SRAM 405 were grouped behind the PCT interface device 400
and share its the capabilities with the non-volatile memory storage device 355. In
general, the EPROM 415, the QUART 410 and the zérb power SRAM 405.are not
needed to provided non-volatile memory capabilities. As described in FIG. 5 , the non-
volatile memory storage device may be designed without these devices. In the gaming
system extension embodiment 345 which includes the non-volatile memory storage
device 355, the 1 MB EPROM 415 is used to store secure IGT developed start code
and verification routines, along with critical operating routines, such as the random

number generator, which requires a high standard of validity.

The zero power SRAM 405 is SRAM that contains a built-in battery. The zero
power SRAM of this type is a requiren‘ient in some gaming jurisdictions. The SRAM

utilized in the battery backed non-volatile memory storage device 355 contains a

"battery separate from the SRAM. The zero power SRAM 405 may be used to extend

the memory space provided by the NVRAM management software.

The QUART'integrated circuit 410 provides serial connections to the main
processor board 301. For instance, the serial ports of the QUART 410 may be
connected to a configurable main communication board via a conneﬁtion 430 where
the main communication board uses plug-in cards to translate RS232 signals from the
serial ports on the QUART IC 410 to those needed for communication with devices
such as a player tracking unit, a wide area progressive system and a casino area
network. The RS232 buffer 420 translates serial interface signals prox./ided by the
QUART 410 to EIA RS232 levels. The QUART IC 410 signals are translated to
RS8232 for communication with the main communication board. As described above,

the player tracking unit, the wide area progressive system as well as other devices

31

WO 2004/025655 PCT/US2003/028748

10

15

20.

25

30

connected to the gaming machine via the casino area network may send access
requests to the gaming machine requesting information stored in the non-volatile

memory storage device 355.

_Using connection 450, the gaming I/O interface 445 may be used for
communication with the door security circuitry as well as the IGT proprietary SENET
serial /O interface. For instance, the SENET serial /O interface may be used to
obtdin information from a coin acceptor. The path of a coin through the coin acceptor
and optical detectioﬁ circuitfy may be reflected in input bits received via the SENET
interface. The gaming system software monitors the-path of the coin, ensuring that
certdin timing characteristics are met. Based on the timing characteristics, the gaming
machine Sofiware determines the coin has been dropped into the gaming machine and
a valid coin has entered the machine correctly (e.g. a string is not connected to the.
coin). When the gaming system sofiware detects the coin entered the machine
correctly, it registers a “coin in” game event using the software mcﬁtecMe, as
described with reference to FIG. 2, and the NV-RAM manager 229 mayreceive

access requests to update appropriate values critical data in the non-volatile memory

" storage device 355 such as the credits available on the gaining machine.

The battery backed NV-memory devices connected to the PCI interface device

'400 via the local bus 425 send data and receive data at a 12 MHz clock rate with a 32

bit data width. The clock rate is dictated by timing requirements of the other devices
in the gaming machine. In other embodiments of the non-volatile storage deﬁce 355,
these other devices may not be added to the PCI interface device 400 as part of the
gaming machine extension 345 and z;higher clock rate may b;a employed. Details of
the Battery back non-volatile memory storage devices 440 are described with

reference to FIG. 5.

“FIG. 5 is a block diagram of a non-volatile memory sforage device 355
connected to 2 PCI bus in one embodiment of the present invention. The memory
configuration may consist of 8 512 KB static RAM (SRAM) devices that store 4 MB
of data. Thus, the SRAM 515 and SRAM 520 may each comprise four non-volatile
memory chips. The non-volatile memory storage device 355 is not limited to this
memory configuration. For instance, the memory conﬁguxatidn in the device may use

more chips, less chips, chips confainin‘g more or less memory, different types of chips

32

WO 2004/025655 PCT/US2003/028748

10

15

20

25

30

such as flash memory or combinations of different types ofichips such as flash

memory and SRAM. For instance, in one embodiment, one chip containing 1

megabyte of data may be used.

The PCI interface device 400 receives addresses from the microprocessdr ﬁa
the PCi bus based upon a memory map, e.g. an abstraction of the physicdl memory of
the non-volatile memory constructed By the operating system. The addresses may be
memory locations for a read from non-volatile memory or a write to the non-volatile
memory including 515 and 520. The format conversion may involve changing a clock
rate, voltage level and data bit width associated with the data signal as well as control
signal formats such s read strobe and write strobe. The data bit width for may be-
between 8 aﬁd 64 bits.-After the receiving the addresses, the PCI interface device 400
decodes the addresses to a form readable by the physical hardware and converts the
signals to a format acceptable to the NV-RAM controller 545 and the SRAM chipé
including 515 and 520. The NV-RAM controller 545 monitors the pow)er level to the
gaming machine via connection 530 and the backup battery 505. In the event of a
significant power ﬂucﬁxations, a write of data to the non-volatile memory or read of

data from the non-volatile memory may be prevented.

Addresé signals from the PCl interface device may be received by the device
select logic 500 within the NV-RAM controller 525 and the SRAM chips including
515 and 520 via a connection 535 to the local generic bus 425. For instance, the most
significant bits of the address signal may be received by the device select logic 500
while the least significant bits of the address signal may be received by the SRAM
chips. The device select logic 500 further decodes the address signal;s to determine an
actual chip location for the data. For example, when the SRAM is composed of ‘8
memory chips, the device select logic may determine that the address contained in the

address signal is located on either chips 0-3 or chips 4-7.

After the chip selects are dctermin;ed by the device select logic corresponding
to the address received by the PCI interface device, the chip selects are passed to the
battery switching circuit 510 viéa the connections 545. The device select logic and the
battery switching circuit 510 may be connected by two connections 545 such that the
chip selects for chips 0-3 aré sent via one of the connections and the chip selects for

chips 4-7 are sent via another one of the connections. The battery switching circuit

33

WO 2004/025655 PCT/US2003/028748

10

15

20

25

30

510 contains a cut-off switch which may be activated by the fluctuations in a voltage
read by the circuit. The voltage may correspond to a system power supply voltage

provided by the gaming machine to the main processor board.

Under normal conditions (i.e. the cut-off switch remains inactive), the SRAM
réceives the chip select sighals and data may be sent by the SRAM’s (e.g. read) or
data may be received by the SRAM’s (e.g. write) via the connections 540 between the
SRAM chips and the local bus 425. For reads, the PCI interface device 400 converts
the data signals to voltage levels consistent with the PCI bus. Once the critical data
from the Non-volatile memory storage device 355 is on the PCI bus, the data may be
sent to the SDRAM, microprocessdr register or other memory locations on the main

processor board.

When the cut-off sw:tch is activated, chip select signals are prevented from
reaching the SRAM which prevents reads or writes to the chips. Tn one embodiment,
the SRAM cut-off occurs when the system 5-volt power supply voltage level falls
below about 4,37 V. However, the power supply cut-off voltage level may vary

_between about 4.25V and 4.5 V. A drop in the power supply voltage level may

indicate an mpendmg power falluxe within the gammg machine. Thus, a power
supply source for the non-volatile memory may be switched from the system power
supply to the battery 505 By the battery switching circuit 510. The battery switching
circuit 510 receives power from a back-up battery 505 so that fluctuations in the
system 5-volt power supply may not affect the functions of the battery switching

circuit 510.

" The battery switching circuit 510 also monitors the backup battery 505
voltage level to notify the gaming machine when the backup battery 505 may be near
failure. When the battery power fails data stored in the non-volatile memory including
SRAM chips 515 and 520 may be lost. In one embodiment, the backup battery is a
lithium battery cell. A lithium battery cell is employed because lithium batteries
usually have a relatively large energ}; density. A large energy density is important for
the 5 year storage requirement which the non-volatile memory storage device 355

may be designed to maintain.

34

WO 2004/025655 PCT/US2003/028748

10

15

20

25

30

In one embodiment, the battery switching circuit 5 10 may be 2 DS1321
Flexible Nonvolatile controller with Lithium Battery Monitor provided by Dallas
Semiconductor of Dallas, Texas. The invention is not limited to this device and the
functions afforded by the DS1321 may be provided by other integrated circuits
utilizing a different designs than the DS 1321, The controller monitors incoming
power for an out of tolerance condition. When an out of tolerance-conditions is
detected, the chip select outputs are inhibited to accomplish write protection and the
backup battery 505 is switched on to supply the SRAM”s including 515 and 520 with
uninterrupted power. The chip utilizes circuitry that affords precise voltage detection
at extreraely low battery consurription. One DS1321 can support as many as four

SRAM’s arranged in any of three memory configurations.

The DS1321 performs the function of monitoring the remaining capacity of
the lithium battery 505 and providing a warning before the battery reaches end-of-life.
Because the open-circuit voltage of a lithium backup battery 505 remains relatively
constant over the majority of its life, accurate battery monitoring requires loaded-
battery voltage measurement. The battery voltagé measurement function is performed
in the DS1321 by periodicaliy comparing the voltage of the battery as it supports an
intemal resistive load with a selected reference voltage. When the battery voltage falls
below the reference voltage, a battery warning pin is activated to signal the need for
battery replacement which may be sent io main procéssor board via the local bus 425

and the PCI interface device 400. -

FIG. 6 is a flow chart of a method of storing critical data to the non-volatile
mernory for one embodiment of the present invention. The flow chart describes some
of the operations performed by the gaming system software. In 600, critical data is
identified by a client and stored in SDRAM (e.g. the main memory located on the
processor board). As described above with reference to FIG. 2, the event manageris =
one example of a client that may identify critical data to be stored in the non-volatile
memory. In general, a client is any sofiware unit requesting accesé to the non-volatile
mermory. The critical data may be identiﬁcci according to predetermined criteria of the

gaming machine manufacturer, gaming machine operators and gaming regulators. The

~ predetermined criteria are stored as logic executed by the gaming machine. Critical

data may include gaming parameters (e.g. the value of bill accepted by the gaming
machine), instructions requesting the modification of data stored in the NV-RAM,

35

WO 2004/025655

10

15

20

25

30

PCT/US2003/028748

game history information and a list of operations executed as part of a state on the

gaming machine. —

In 605, the client sends the critical data idenﬁﬁcd in 600 with an access
request to the NV-RAM manager (see FIG. 2). The access request may include a
number of instructions and parameters as part of protocol recognized by the NV-
RAM manager. For instance, the protocol may include instructions and parameters
such as: 1) a requested memory size, 2) write data, 3) read data, 4) a data signature
and 5) a handle identifying particular memory locations. These protocols are part ofa
non—volatlle memory allocation system implemented with the NV-RAM manager.

- Details of the non-volatile memory allocation system are described with reference to

FIG. 9. In 610, based upon the instructions and parameters sent to the NV-RAM
manager and after error checking automatically performed by the NV-RAM manager,
the critical data is sent to the physical NV-RAM via the hardware described with
reference to FIGs. 3, 4 and 5. A consistency check betwecn the size of the data sent in
the access request and the requested memory size may be an example of error
checking implemented by the NV-RAM manager. Interaction diagrams describing the
hardware and data interactions involving a read and write to the NV-RAM are

described with reference to FIGs. 7 and 8.

In 615, the NV-RAM manager sends a memory location identifier to the
client. The memory location identifier ml’iy be a name or a number used by the client
to gain subsequent access to the data stored in NV-RAM. The memory location
identifier may also be referred to as a “handle” which is a common term in the art.
Details of the memory location identifier are described with reference to FIG. 9. In
some embodunents the consistency of the data stored in NV- RAM may be checked
by the client by copying back to the SDRAM the data sent to the NV-RAM and
comparing it with the original critical data identified in 600 and stored in the

SDRAM.

In 620, the client reqﬁests a copy of the critical data from the NV-RAM using
the memory location identifier assigned to the client in 615 by sending an access
request to the NV-RAM manager. In 625, the non-volatile memory retrieves a copy of
the requested critical data from the non-volatile memory. In 630, the NV-RAM

manager sends the requested critical data to the client. In 635, the client stores the

36

WO 2004/025655 PCT/US2003/028748

10

15

20

25

30

copy of the critical data to SDRAM. In 640, the client compares the original critical
data and the copy of the original critical data stored in SDRAM. The comparison may
be performed using a CRC, a checksum, a hash value or any other algorithm ngedeé
to check the validity of the original data and the copy of the original data from the

non-volatile memory.

In 645, the client determines whether the original critical data sufficiently
match. In 650, when the data matches, the QMHg system software may continue to
the next state, In 655, when the data does not match, the gaming machine enters tilt
mode. Critical data may not match. as a result of a malfunction in the physical NV-
RAM and associated hardware, tampering with the gaming machine and software
bugs. Thus, m 660, the tilt mode may be cleared by an attendant with a special key or
some other technician with special means of accessing the gaming machine. In some
cases, a tilt mode may result in the reinitialization of the NV-RAM or replacement of

the NV-RAM hardware,

FIG. 7 is an interaction diagram between components on the main processor
board and the non-volatile lﬁemory storage device during a write to the non-volatile
memory storage deﬁce for one embodiment of the present invention. The interaction
diagram may representAoperation 610 in FIG. 6 where the NV-RAM manager stores
critical data to the NV-RAM. The data transfer time between the microprocessor and
the SRAM is usually some number of nanoseconds. During a power fajlﬁre, the :mz;in
pfocessor board may operate for a few milliseconds before the power level drops to a
level where components on the main processor board may begin to malfunction.
Thus, once a fower failure is detected, storage operations such as a write to the non-
volatile memory may be completed before the components on the main processor
board begin to malfunction. However, the hardware cofnponents, including the
microprocessor 300, the North Bridge 320, the PCI interface device 400, the NV-
RAM controller 524 and the SRAM 515, are described with reference to FIGs. 3, 4

“and 5.

- In 710, the microprocessor 300 sends critical on the processor bus to the)
North Bridge 320. Critical data may include gaming parameters (e.g. the value of bill
accepted by the gaming machine), instructions requesting the modification of data

stored in the NV-RAM, game history information, a list of instructions executed as

37

WO 2004/025655 PCT/US2003/028748

10

15

20

- 25

30

part of a state on the gaming machine. The critical data may also include instructions
needed to execute the operations associate with the critical data such as a requested
memory size, addresses and other parameters. In 712, the North Bridge 320 converls !
the microprocessor signals to PCI bus standard signals. The conversion process may
invdlvefchanging the voltage level of the signals, the clock rate, the bit width of the

data and the format of control signals.

In 714, the critical data is sent on the PCI bus directly to the PCI interface
dévice 400 withoﬁt caching of any type. A typical data transfer time between the
North Bridge 320 and the PCI interface device 400 is a few nanoseconds. In 732, a
few nanoseconds after the Nortﬁ Bridge has sent the criticg.l data to the PCI interface

device 400, the North Bridge may send an acknowledgement to the microprocessor on

-the microprocessor bus inciicating the critical data has been transmitted. The length of

time between the transmittal 61" the critical data and the acknowledgement of the
transniittal is a function of the clock rate of the North Bridge 320 which may vary.

- In 716, the PCI interface device 400 converts the format of the data signals
from the PCI bus to a format that is compatible with the NV-RAM controller 525 and
the SRAM chips 515. In some embodimen_ts, since more than one device may be
connected to the PCI interface device 400, the data received from the PCI bus may
contain information that allows the PCI interféce d_evice 400 to determine a
destinétion device of tfze data. Tn 71 8, the PCI interface decodes the memory
addresses sent with the critical data to addresses corresponding to physical locations
in non-volatile memory. Typically, the garniﬁg system software stores a map of the ‘
non-volatile memory space in a format that is converteci to physical locations in the

non-volatile rhemoxy. For instance, as described with reference to FIG. 9, the non-

* volatile memory space may appear as 2 file system in one abstraction of non-volatile

" memory space used by the gaming system software. The decoding of the addresses

allows the storage of the critical data to specific memory locations on specific chips in
the SRAM 515. In 730, a few ‘nanoseconds after the PCI interface device 400 receives
that critical data on the PCI bus from the North Bridgé 320, the PCI interface device
400 sends an acknowledgement of the data transmittal to the North Bridge 730.

In 720, the PCI interface device 400 sends the non-volatile memory addresses
for the write to the NV-RAM controller 525 and the SRAM 515 via the local bus

" 38

WO 2004/025655 PCT/US2003/028748

between the PCI interface device. The c;lock rate for the data transfer may be as high
33 MHz using a 32 bit data width. In 722, the NV-RAM controller 525 further
decodes the addresses such that the actual chips where the data may i)e written in the
non-volatile memory are determined. In 724, the chip selects are received by a circuit

5 in the NV-Controller 525 which monitors the system voltage. In 726, when the system
voltage is within a prescribed range, the NV-controller passes the chip selects to the
non-volatile memory which is SRAM 515 in this embodiment. In 728, the chip selects
and the addresses passed to the SRAM in 722 allow critical data to be written from
the PCl interface 400 to the appropriate chip in the SRAM 515.

10 When the voltage is not within a prescribed range the chip selects are not
- passed in 726 and subsequenﬂy cntlcal data may not be wntten to the SRAM in 728:)
Also, the NV- controller switches the SRAM 515 to battery power. In 734, the NV~ '
controller also monitors the battery voitage. When the Battery vbitage drops below a
-prescribed level, a warning message may be sent to the microprocessor 300. However,

15 access requests to the non-volatile memory are unaffected by a low battery Voltage.

FIG. 8 is an interaction diagram between components on the main processor
board and the non-volatile memory storage device during a read from the non-volatile
memory storage device for one embodiment of the present invention. The interaction
diagram may describe some of the hardware operations used when the software NV-

20 RAM manager retrieves requested critical data from the non—volatlle memory as
described with reference to FIG. 6. In 810 critical data addresses correspondmg to
critical data stored i in the NV-RAM from a map of the non-volatile memory)
maintained by the gaming system software ma)‘r be sent by the microprocessor 300 to
the North Bridge 320. In 712 and 814, the North Bridge converts the signals from the

25 microprocessor to PCI compatible signals and sends them along the PCI bus to the
PCl interface 400 which converts the PCI standard signals to a local bus signal format
in 716. In 818, the PCI interface device decodes the addresses to a‘ format cbmpatible
with the NV-controller and the SRAM 515 and send the addresses to these devices in
820.

30 In 822, the NV-RAM controller 525 further decodes the addresses to
determine chip selects corresponding to the chips where the requested data is stored.

In 724, the NV-RAM controller 525 monitors the system voltage level and in 726

39

WO 2004/025655 PCT/US2003/028748

10

15

20

25

30

when the voltage is within a prescribed level passes the chip selects to the SRAM
515. Using the chip selects and the addresses passed in 820, the SRAM 515 or other
type of non-i'olat_ile memory sends the requested data to the PCI interface device 400’
via the local bus in 828. In 829, the PCI interface device 400 converts signals
containing the data from the non-volatile ﬁemory to the PCI Bus standard signal
format. In 830, an acknowledgement of the critical data transmittal and the requested
data are sent to the North Bridge 320 by the PCI interface device 400 using the PCI
bus. In 831, the North Bridge 320 converts the PCI signals to a format compatible
with the microprocessor bus. In 832, an acknowledgement of the critical data
transmission and the requested data may be sent to the microproceésor 300 as well as

the SDRAM for storage. -

FIG. 9 is block diagram of a non-volatile memory allocation system
implemented in the gaming system software for one embodiment of the present

invention. The non-volatile memory allocation system 990, which includes the NV-

RAM ﬁmnager, allows the non-volatile memory to be dynamically allocated and de-

allocated by the gaming system software which allows for more efficient use of the
non-volatile memory. The NV-RAM header 900 is stored at the beginning of non-
volatile merﬁory. The header contains a cold power up ﬂag 902. This flag 902 is set
to a known value when the machine is first powered on and the non-volatile memory
hasn’t been initialized. When this ﬂég 902 is set to the known value, the software
knows that the contents of the non-volatile memory are in order and not in an un-
initialized state. When the flag 902 is not set to the known value, the gaming
machine software performs an initialization of the non-volatile memory which
includes testing the integrity of the memory, clearing the memory, setting up internal
data structure to manage the memory and finally setting the cold power up flag to fhe

known value.

The NV-RAM header 900 contains information about the current state of the
NV-RAM memory manager (SEE FIG. 2). This information may include several
CRCs and current operation information 908 for operations that the NV-RAM
manager can perform on a node. The current operatién is an indication of a low level
action being performed. For instance, the-current 6peration information may include
1) anode record and 2) the operation to change a2 name of a node in the node record

from “A” to “B”. If the power goes out, the header may be inspected to determine

40

WO 2004/025655 PCT/US2003/028748

what operation was being performed when the power went out and how to complete
the operation. The power-up procedure is described in detail with reference to FIG.
13. The one or more CRCs and the details of the current operation information 908 '

are not shown in the diagram.

5 All information in the header 900 is only utilized when the CRCs, including
912, are correct. The CRC 912 is one or more signatures generated from data stored
within the NV-RAM header 900 using a CRC algorithm or some other methbd such
as a checksum or a hash value. An incorrect CRC may indicate data within the non-
volatile memory has been corrupted in some manner. For instance, the data may be

10 corrupted as the result of 2 hardware malfunction in the non-volatile-storage device or

as the result of tampering.

‘When the NV-RAM manager writes to the non-volatile memory the current .
operation information 908 may iﬁclﬁde the handle 938 being written to, the critical
data to be written and a CRC of the criti;:al data. A handle 938 is an identifier uséd by

15 the client and by the NV—R-AM manager to identify particular blocks of memory
_ locations in the non-volatile memory. These memory jocations may also be assigned
“nodes” in the described embodiment by the non-volatile memory allocation system.

The node designation allows the non-volatile memory allocation system to track

blocks of memory.

20 Function requests that may be initialized by the client and performed by the
NV-RAM mm:xager may be ﬁsted in the operation information $08. Examples of
function requests may include 1) create/allocate, 2) destroy/de-allocate, 3) open, 4)
close, 5) read, 6) read/directory, 7) write, 8) resize, 9) move 10) get statistics and 11)
chahge statistics. Only the primary function requests are listed. There are other

' 25 function requests the NV-RAM manager may perform, but they are not listed. A brief

description of the listed function fequests are described below.

The create/allocate node function request allocates 2 node in the non-volatile
memory. The NV-RAM manager returns a unique handle for the memory allocated.
The destroy/de-allocate function request instructs the NV-RAM manager to remove
30 the non-volatile memory node from non-volatile memory. The open function request

is used to access an existing non-volatile memory node. The NV-RAM manager

41

WO 2004/025655 PCT/US2003/028748

10

15

20

25

30

returns a unique handle for the memory requested. The close function request is sent
to the NV-RAM manager when a client is no longer using the handle for a non-
volatile memory node. The read function request requires the client to provide the

handle for the non-volatile memory node of interest and a range of information to read

* from the non-volatile memory node. The read directory function request requires the

client to specify which directory to read. The directory may be specified as a name or

as a non-volatile memory handle. The NV-RAM manager may return a list of
directories in response to the read directory function request. A non-volatile memory

file system employing files and directories is described with reference to FIG. 12.

The write function request requires the client to provide the handle for the

"non-volatile memory and a range to be read by the NV-RAM manager. The NV-

RAM manager returns the requested information to the client. The resize functfon
request requires the client to provide the handle for the non-volatile memory and the
new size of the non-volatile memory node. The move function request allows the
client to move the node to another location in the non-volatile memory. For security
pufposes, the non-volatile memory locations of the various nodes may be occasionally
shuffled. The get statistics function request is primarily a diagnostic function of the
NV-RAM manager. The client makes ti:is request to learn aboiit the available non-
volatile memory. The NV-RAM maﬁager‘ returns the information to the client. The .
change status function request is a utility function that allows the client to request that
a particular non-volatile memory node be modified. This operation does not modify
the contents of the non-volatile memory node, rather the permissions and other flags

that indicate the owner and time stamps.

As part of the execution of a state, the NV-RAM manager may execute one or
more of the function requests from one or more clients. The possible combinations of
function requests may be quite large. For example, in the execution of a state the NV-
RAM manager may 1) create/allocate nodes, 2) write to the created node, 3) write to a
node previously cfeated, 4) resize a previous node and 5) read from a previous riode.
In addition, each function request may include modifiers that further define the
function request. The function request modifiers further expand the combinations of
oi)erations that may be performed. For example, with the create/allocate node function
request, the client may specify that the node may not be resized. When the function
request is executed, the function request modifier may be stored by the NV-RAM

42

WO 2004/025655 PCT/US2003/028748

10

15

20

25

30

manager such that the node is not later resized. In a particular embodiment, the NV-

" RAM manager does not know about the state in general and the function of the NV-

'
RAM manager is only to execute the various function requests from the clients. The
Event Manager (see FIG. 2) determines the elements such as function requests

comprising the state and sends the function requests to the NV-RAM manager for

execution.

Returning to FIG. 9, the NV-RAM header 900 may contain a reference 910 to
the first NV-RAM record list 914 of one or more NV-RAM record lists including
914, 922 and 930. The reference 910 is referred to as a “list of block records” in the
NV-RAM header 900. The NV-RAM record lists, 914, 922 and 930 contain
information about each non-volatile memory node in non-volatile memory. For
example, NV-RAM record list 914 contains information about a number of non- .
\;olatilc memory nodes including 980, 981 and 982. The NV-RAM record lists are
allocated in fixed blocks for operation performance improvements although fixed
blocks are not necessary to the implementation. Each non-volatile memory node is
given an entry in a NV-RAM recbrd list. For example, a non-volatile memory node
980 corresponding to the NV-RAM node record 936 is in list 916. Typically, the non-
volatile memofy allocation system 990 will contain many non-volatile memory nodes,
ihcluding nodes 980, 981 and 982, contained in different NV-RAM record lists
including 916 and 930 each with a corresponding NV-RAM node record although
only one NV-RAM node record 936 corresponding to nodes 980 is shown in the

" diagram.

Once a particular NV-RAM recorci list becomes full, the NV-RAM memory
manage‘r creates another NV-RAM record list. The NV-RAM record lists, including
914, 922 and 930, are chained together such that each.NV—RAM record list points to
the next list until the final list which contains a value indicating that it is the last NV-
RAM record list. For instance, next record list 918 in NV-RAM record list 914 points
to NVRAM record list 922 and next record list 926 in NV-RAM record list 922
points to NV-RAM record list 930. Each NV-RAM record list is assigned a CRC (e.g.
920 and 928) for integrity checking.

There is one NV-RAM node record for each non-volatile memory node

allocated by the NV-RAM memory manager. For example, NV-RAM node record

43

WO 2004/025655 PCT/US2003/028748

10

15

20

25

30

936 corre.sponds to node 980. The purpose of the NV-RAM node record is the give
structure to the non-volatile memory. The memory can be viewed as a logical tree,
where each node has a single parent node arid possibly many child nodes. The logic

tree structure allows for a non-volatile memory file system comprised of directories

that may have associated sub—directofies and files where directories, sub-directories

and files are related to one another via the logic tree structure. The name 942 stored in
the NV-RAM node record 936 allows the data stored in the non-volatile to be treated
like a file in a computer file system. The non-volétile memory file system is described

with reference to FIG. 12.

. .. The NV-RAM node record also provides integrity information about each
node by supplying a size of the node 944 and some additional flags 948 aﬁout the
node. The status flags 948 indicate to the NV-RAM maﬁager the type of non-volatile
memory. These flags can include information such as whether the mémory canbe ’
resized, inbved, de-allocated, etc. Thus, the flags 948 may limit the function requests,
as described: above, that may applied to the node. Also, the ﬁags can represent
conditions that the client presented to the NV-RAM memory manager at the time of
the allocation of the node. For example, an owner and a time stamp for the node may
be inqluded with the status flags 948. In one scenario, a client may ask the NV-RAM
memory manager to allocate a node via a create/allocate function request and provide
a function request modifier indicating that the node can not be resized by any client in
the gaming system. By storing this information with the status flags 948, the NV-
RAM manager can hdno;' this request by the client. Thus, for instancc,.when a client
later sends a resize function request to’ the NV-RAM manager to resize a node that
can not be resized, as indicated by the status flag 948, the NV-RAM ;ﬁanager does

perform the resize on the node.

The NV-RAM node record 936 is assigned a unique handle 938. The unique
handle 938 is the value used to reference the node by the NV-RAM manager and
clients. Clients accessing the NV-RAM memory manager will use this handlé 938 to
refer to a given non-volatile memory node (e.g. 980, 981 and 982). For instance, the
handle 938 is used by the client when sending a read ﬁmc"cioﬁ request or a write -
function request to the NV-RAM manager. The NV-RAM node record 936 contains
an owner hanc}le 940 to its parent node. The owner handle is used to establish thg tree

logic of the file system. The only exception to this rule would be the root node which-

44

WO 2004/025655 PCT/US2003/028748

is the parent to all other nodes in memory and has no parent. This fact is known. to

the NV-RAM manager.

The NV-RAM node record contains a reference to a piece of non-volatile
memory 946 that is the data for the node. All the previously described structures
5 manage the structure and integrity the non-'volatile memory block data associated with
the node. The NVRAM node record 936 also contains a CRC 950 or other type of
signaturé whlch is used fo check the integrity of the NVRAM node record 936 durmg

critical data transactions involving the node.

The data structures described above including the NV—RAM header 900, the

10 NV- RAM.record lists 914, 922 and 930 and the NV-RAM node record 936 are all
stored in the non-volatlle memory. They are stored using a NV-RAM manager to
ensure the integrity of non-volatile memory and allow for recovery of information
after a power loss i.e. clienﬁ are not allowed to directly access the memory but must
go through the NV-RAM manager instead. For efficiency, a DRAM (or SDRAM)

15 look-up list 932 is implemented. The list does not reside in the physical non-volatile
memory. The DRAM look-up list 932 is constructed in volatile memory by the NV-
RAM manager from the information in non-volatile memory. The list 932 provides a
quick method for the NV-RAM manager to Jocate the non-volatile memory for a
given node from the handle. After a power loss, the look-up list may be reconstructed

20 bythe NV-RAM manager.

To allow for dynamic allocation and de-allocation of non-volatile memory a
non-volatile memory heap is implemented. The non-volatile memory heap manages
the non-volatile memory blbcks which are referred to as NV-RAM data 952 in the
diagram. The non-volatile memory heép allocates all of the data structures described

25 above in the physical non-volatile memory. The non-volatile memory heap does not
organize memory as a tree or file system as may done using the NV-RAM record list
914 and NV-RAM node record 936. It simply manages a list of data blocks and
knows which are occupied and which are free. It can allocate additional nodes and

de-allocate existing nodes.

30 The term heap is a standard in the computing community. Most modern

computer system use a heap for volatile memory management and most modern

45

WO 2004/025655 PCT/US2003/028748

10

15

20

25

30

' computer operating system support dynamic allocation and de-allocation from a

volatile memory heap. However, the implementation of a heap memory structure for
a state-based gaming software architecture may be quite complicated. The penalties tb
the gaming system performance associated with using a heap structure in copjunction
with a state-based transaction system were not justifiable when slower
microprocessors were employed in the gaming machine. Thus, in the past, a heap
memory structure has not been implemented for non-volatile rﬁemory applications in
gaming machines. Instead a fixed memory map structure which does not allow for
dynamic allocation and de-allocation of the memory has typically been employed.

Many methods may be used to implement a heap memory structure. FIG. 9 is
an example of one embodiment of a heap structure. The basic concept for all heap
implementations is to provide a list of all blocks in memory. To keep track of the -
blocks they are typically linked together such that they refer to other blocks in
memory. Thus, each block has a referencé to the next allocated block and next
available block. For instance, NV-RAM heap block 954 points to NVRAM heap

" block 968 as the next allocated block via a next allocated block reference 956 and

NVRAM heap block 968 points to NVRAM heap block 972 as the next allocated
block via a nexf allocated Block refer.ence'970. Also, NV-RAM heap block 954 points
to NVRAM heap block 962 as 2 next available block via a next available block
reference 958 and NVRAM heap block 962 points to NVRAM heap block 966 as a
next available block vid a next allocated block reference 964. NV-RAM data, such as
NV-RAM data 960, is associated with each block and is stored after the ziex"L allocated
block reference (e.g. 956) and the next available block reference (e.g. 958).

This particular method makes it simple to find an available node from any -
given node because the method also';cakes aﬁvantage of the relationship that each
block has the next allocated reference and the next available reference stored just
before the a(:,tual data in the block. Tn this embodiment, this structure simplifies and
speeds up operations on nodes since once the starting data address for the node is
known, the software can simply move its reference back in memory to the header.
The header contains the next available and riext free blocks. With this
implementatfon it is simple to go from the NV-RAM data block (e.g. 960) to the next
available block (e.g. 962).

46

WO 2004/025655 PCT/US2003/028748

One advantage of non-volatile memory allocation system over a fixed map
system may involve gaming machine security. With the non-volatile memory
allocation system, the memory locations of critical data may be constantly changing '
as memory locations are allocated and de-allocated in the non-volatile memory. In

5 addition, using the function requests utilized with the non-volatile memory allocation
system, the memory locations of critical data may be regularly shuffled. With a fixed
map non-volatile memory system, the memory locations always remain constant.
Thus, for a fixed map non-volatile memory system, one method for tampering with
the gaming machine may be altering critical data stored within the non-volatile

10 memory to produce a favorable result on the gaming machine. For example, the
mernory location where the amount of credits on the gamiﬁg machine is stored may be
ascertained in some manner and then artificially manipulated to add credits to the
gaming hacﬁne. With the non-volatile memory allocation system, this type of
scenario for gaming machine tampering is much harder to implement because it may
15 bevery difﬁcult to determine where a particular bit of critical data is stored in nop-

volatile memory.

FIGs. 10A and 10B are flows charts of the non-volatile memory allocation and
de-allocation processes utilizing the non-volatile memory allocation system described
with reference to FIG. 9. In 1000, the NV-RAM manager receives an allocation

20 function reques’é from a client requesting a block of non-volatile memory. The
allocation function request may contain a number of function request modifiers
including 1) é size, 2) a name, 3) modiﬁcation restrictions, 4) access restrictions, 5) an
owner and 6) time stamp. In 1005, when the requested block of memory is available,
the NV-RAM manager assigns a node to. the block of memory requested. The node is

25 usedto point to the NV-RAM record from the NV-RAM record list. This structure
allows for the non-volatile memory file system to be created which is described with
reference to Fig. 12. In 1010, a NV-RAM node record is created. As described with
reference to FIG. 9, the NV-RAM node record is assigned a unique handle that is used
to access the node. Information regarding an owner handle, .node name, size which

30 were included with allocation function request are stored in the NV-RAM node
record. In addition, status flags, obtained from function request modifiers éent with
the allocate function request, may be storéd in the record. For instance, a status flag

restricting access to the node to a particular group of clients may be stored in the NV-

47

WO 2004/025655 PCT/US2003/028748

10

15

20

25

30

RAM record (e.g. two or more ‘clients may share a node corresponding to a block of
memory). Finally, a CRC or some other signature may be generated and added to the
NV-RAM record. The CRC may be checked by the NV-RAM manager when the
NV-RAM record is subsequently accessed by the NV-RAM manager to ensure the
integrity of the record.)

In 1015, a pointer to the heap block is assigned to the NV-RAM node record.
The heap block organizes the blocks of data in the non-volatile memory. In 1020, the
node is added to @ NV-RAM record list. All of the nodes maintained by the NV-RAM
manager may be recorded in one of one or more NV-RAM record lists. In 1025, the
handle corresponding to the created NV-RAM record is added to a volatile memory
look-up list. The volatile merﬁory look-up contains a list of ali the handles to NV-

‘RAM node records maintained by the NV-RAM manager. In the event of power

failure, the volatile memory look-up list is lost but may be reconstructed by the NV-
RAM manager when power is restored to the gammg machine. In 1030 the handle
correspondmg to the new node is returned to the client. The handle may be used by

the client to access the x_lode, e.g. to write data to the node, during subsequent functlon

requests.

FIG. 10 B is flow chart of a non-volatile memory de-allocation process. In
1035, the NV-RAM manager receives a de-allocation function request from a client to
de-allocate a block of non-volatile memory. A de-allocation function request may be
initiated by the client when a block of non-volatile memory is needed tenipora.rily. For
instance, when a state is executed by the event manager, a list of operations
comprisiﬁg the state are stored in the non-volatile memory. After the execution of tae
state has been completed, the list of operations may no longer be needed and the non-

volatile associated with the list may be de-allocated.

In 1040, the NV-RAM manager locates the NV-RAM node record by the
handle included in the de-allocation functioﬁ request. In 1042, the NV-RAM manager
determines whether the remove is allowed based upon the status flags contained
within the NV—R.AM node record. For instance, a status flag may indicate that a node

may not be removed or a status flag may indicate that only particular clients have

- permission to remove the node. When de-allocation function request by the client is

invalid, the NV-RAM manager ends the de-allocation process.

48

WO 2004/025655 PCT/US2003/028748

In 1045, when the de-allocation function request is valid, the NV-RAM
manager may remove the node record. In 1050, the NV-RAM manager locates the
NV-RAM record list containing the node and updates the NV-RAM record list by
removing the node from the list. In 1055, the volatile memory look-up list containing

5 the handle comresponding to the node is updated b}; removing the ‘hanAdle from the
look-up list. In 1060, the heap block is update freeing up the non-volatile memory
associated with the node for subsequent utilization by the gaming machine operating

software.

FIG. 11 is a flow chart of a non-volatile memory software maintenance
10 process involving thé non-volatile memory allocation system. The non-volatile
memory software maintenance process may include installing or removing software
from the gaming system software and re-configuring the non-volatile memory. As the '
new software is installed, the new software or a separate process on the gaming
system software, such as a software load manager that is activated when néw software
15 isinstalled on the gaming machine, may request the NV-RAM manager to allocate the
non-volatile memory it needs to operate. The software load manager may also be
utilized when software utilizing ﬁon—izolétile memory is removed from the gaming
machine allowing the non-volatile memory utilized by the software to be made

available.

20 In 1100, the gaming system software receives a software maintenance request
for software that utilizes the non-volatile memory on the gaming machine. In one
embodiment, the software maintenance request may be initiated when a gaming
machine technician downloads new software into the gaming machine by inserting a
CD-ROM into the gaming machine containing the software. In another embodiment,

25 the software maintenance request may be initiated when a player selects 2 game for
game play from one or more games available on the gaming machine. In 1105, the
gaming machine executes a software load manager to handle the load process. The
software load manager is not necessarily required for the‘software maintenance
process. The functions of the sofiware load manager may also be incorporated into the

30 software that is being modified on the gaming machine. In 1110, the software load '
manager determines whether new software is being installed on the gaming machine

or being removed from the gaming machine.

49

WO 2004/025655 PCT/US2003/028748

10

15

20

25

30

When new software is being installed, in 1115, the software load manager
determines an amotnt of non-volatile menﬁo:y required by the software. In 1120, the
software load manager determines whether the required non-volatile memory is
available. The available memory may be determined by using the get statistics
function request described with reference to FIG. 9. In some embodiments, the non-
volatile memory may be sufficiently utilized by existing software on the géming

machine such that the amount of requested non-volatile memory is unavailable. When

" the required memory is unavailable, the software load manager may send an error

message in 1125 and then terminates the load process. In 1130, when the required
memory is available, the software load manager may send one or more allocation
function requests to the NV-RAM manager and the NV-RAM mauager may execute
the requests as described with reference to FIG. 10A. One bg more allocation requests
may be required because the software being installed may need more than one
separately addressable blocks of non-volatile memory and each of these blocks may

have different sizes and access privileges.

In 1135, the software load manz;lger may receives one or more handles
associated with the allocated memory from the NV-RAM manager. In 1 140, the
software load manager may execute the software client i.e. initialize the software on
the gamiﬁg machine and then, in 1145, send the handles corresponding to the

requested non-volatile memory to the software client.

In 1150, when software is being removed from the gaming machine, the

software load manager may obtain one or more handles from the software client for

non-volatile memory utilized by the client software. In 1155, the software load
manager may send one or more dé—allocation reﬁluests to the NV-RAM manager '
corresponding to the handles obtained from the software client. The software load
manager determine the status of each handle to determine whether the memory is
shared by other clients and thus only de-allocate memory that may no longer be used
by the gaming machine software. In another embodiment, using the non-volatile
memory file system, the non-volatile memory may be de-allocated by removing a
directory with files corresponding to the non-volatile memory used by the sofiware
that is being removed. For instance, when the software was installed, one or more
directory containing a number of non-volatile memory files used by the software may

have been created. Thus, when the one or more directories are removed from the non-

50

WO 2004/025655 PCT/US2003/028748

10

15

20

25

30

volatile memory file system, the non-volatile memory associated with each file is de-
allocated. In 1160, after de-allocating the memory, the software load manger may kill

the client software process and uninstall the software.

‘When the gaming machine is operating with an existing set of software, an
advantage of the non-volatile memory allocation system 990, described with reference
to FIG. 9, which allows non-volatile memory to be dynamically allocated and de-
allocated, may be simpler software upgrades and installations. The ability to
dynamically‘allocate and de-allocate memory in many cases allows new software to
be installed on the machine without disturbing existing software or non-volatile
memory of the existing software. Thus, tﬁe software maintenance process may enzible
real-time updates of gaming machine software. For iﬂétance, the software
maintenance process may beused to enable different games residing on a game server
located outside the gaming machine to be down-loaded and executed in real-time
without user intervention. In a gaming system using a fixed map of non-volatile
memory, sofiware upgrades involving software utilizing the non-volatile memory
often requires a re-initialization of the non-volatile memory before the new software
can be executed. The re-initialization process is typically time consuming and requires
intervention by a gaming machine technician which precludes real-time software

upgrades providing a game server.

FIG. 12 is a block diagram of non-volatile memory file system based upon the
non-volatile memory allocation system imi)lemented with the NV-RAM manager.
Using the non-volatile memory nodes and other data structures implemented in the
NV-RAM manager as part of the non-volatile memory allocation system as described
with reference to FIG 9, a non-volatile memory file system 1230 may be constructed.
The memory structure in the non-volatile memory file system 1230 may be organized
in a tree hierarchy in 2 manner essentially equivalent to a standard computer file
system. Typically, data organized on a hard drive, floppy drive ér CD-ROM drive
connected to the gaming machine appears as files and directories (or folders) to the
gaming machine operating system. In the same manner, critical data stored in the non-
volatile memory file system may appear as directories (or folders) and files to the

gaming machine operating system.

51

WO 2004/025655 PCT/US2003/028748

10

15

20

25

30

Data stored in non-volatile memory may be viewed by standard operating
system and application tools. Like files stored on a standard computer file system,
both the file structure of the non-volatile memory and the contents may be viewed.
For example, the file structure may be viewed with a an operating system browser of
some type and a block of critical data stored in a “file” may be viewed with a word
processor such as Microsoft Word (Microsoft, Redmond, ‘Washington). In general,
files may be viewed with text editors, binary editors or data editor of any type. Thus,
devélopers may modify and view the contents of non-volatile memory with standard
file editing software. In addition, the blocks of non-volatile memory appearing as files
in the non-volatile memory file system can be copied, removed, renamed or resized
just as any file on a hard drive. Further, files in the non—volatile memory file system
may be assigned operating system permissions, use operating system compression
utilities and utilize other operating file system features that work with file systems.
For instance, using non-volatile memory ﬁl-e system commands, files and folders may

be renamed, moved, added and deleted.

An example of the non-volatile memory file structure populated with various
folders and files that may be stored in the non-volatile memory nsing the non-volatile
memory allocation system and viewed by the gaming machine operating system is
described as follows. The top folder is the NV-RAM main directory 1200. A number
folders containing different categories of gaming information including accounting
1212, game history preservation 1204 and security 1206 are located under the main
directory 1200. Information on accounting, game history preservation and security are
typically stored in the non-volatile 'memo.ry. A meter information folder 1208 is
Jocated under the accounting folder 1202, Two data files, “c;redits in” 1220 and
“credits out” 1222 are located in the meter information folder. The “credits in” 1220

" file may contain information regarding credits deposited into the gaming machine.

During operation of the gaming machine when credits are deposited into the machine,
this'file might be regularly up.dated with credit information and polled by an
accountmg server as described with reference to FIG. 2. The “credits out” file 1222
may contain information regarding credits dispenséd from the ganiing machine. It
might also be regularly updated during operation of the gaming machine and polled

by the accounting server.

52

WO 2004/025655 PCT/US2003/028748

10

15

20

25

30

The game history database 1204 may be recalled from the non-volatile
memory files system during a game dispute. In one embodiment using the non-
volatile file system 1230, a game history database and its folders associated with
different previous games on the gaming might appear on the display screen of the
gaming machine. With the different games displayed, an attendant may select the
game in dispute and display game history data for that game. For instance, the
attendant may select game 2 and then view text data 1224 for the game 2 history using
a word processor on the gaming machine or the attendant may view the frame data
1226 for game 2, which contains a visual game history, using a graphics utility on the

gaming machine. .

The security folder 1206 may be viewed after the gaming machine has
récorded a security violation. For instance; the main door of the gaming may have
been illegally opened. When the security violation is investigated, the security folder
may be displayed on the main display of the gaming machine. Using a word
processor, a person investigating the security violation may view the contents of the
main door data file 1216 or the drop door data file 1218. For a main door security
violation, information relating to the violation may be contained in the main door data

file.

For modern gaming machines with complex games using more non-volatile
memory. functions and given trends in the gaming industry to expand the game
development community, the software development environment is an important
consideration. The capabilities of the non-volatile memory file system may simplify
and accelerate the gaming software development process. Compared to a non-volatile
memory-system that is strictly blocks of memory, using the non-volatile memory
system provided with the current invention, a developér may more easily experiment
with different memory configurations and qdckly simulate problems while

troubleshooting and designing game code.

FIG. 13 is a flow chart of the power-up process 1300 in the gaming machine
involving the non-volatile memory after a power failure. In 1305, power is restored to
the gaming machine and the gaming machine may institutes an initialization process
for a number of gaming systems including the NV-RAM manager. The power may

_have been lost from the gaming machine as a result of a power failure or maintenance

53

WO 2004/025655 PCT/US2003/028748

on the gaming machine. In 1310, from a configuration file, the gaming machine starts
running the NV-RAM manager. In 1315, the NV-RAM manager generates one of
more signatures for the NV-RAM hcéaer (described with reference to FIG. 9) a CRC,
Checksum, hash value or some other method. In 1320, when the one or more - '

5 signatures generated for the NV-RAM header do not compare with the signatures
stored in the NV-RAM header, a critical error may have occurred such as tampering
or 2 hardware malfunction and the gaming machine enters a tilt mode in 1325. In
1330, vx;hen the generated and stored signatures compare, the NV-RAM manager
builds internal data structures to manage the NV-RAM nodes. For instance, the NV-

10 RAM manager, as described with reference to FIG. 9, constructs a look-up list in the

non-volatile memory:.

In 1335, the NV-RAM manager checks the current operation information
stored in the NV-RAM heade;: to determine whether an operation was in progress
when the power was loét to the gaming machine. When an operation was not in

15 progress, for instance as a result of a planned shutdown of the gaming machine, the
NV-RAM manager may begin accepting requests for opqratipn (e.g. function '
requests) from clients. In 1340, when the NV—RAM header indicates that an operation
was in progress, the NV-RAM manager determines whether the operation may be
completed. When the operation may be completed, the NV-RAM manager completes

20 the operation in 1350. For instance, when the NV-RAM manager was in the process
of re-naming a file but the power was lost prior to completion of the operation, the
NV-RAM manager may rename the file to cqmplete the operation. In 1345, when the
operation may not be completed, the NV-RAM manager “rolls back” the operation
and returns the NV-RAM to a valid state prior to the execution of the operation stored

25 inthe NV-RAM header. In 1355, after the operations stored in the NV-RAM header
are either executed or “rolled back”, the NV-RAM manager may begin accepting

requests for operation from clients.

A “roll back” may scenario may be described as follows. The gaming software
decides to start a game. After an initial determination that a game can start, a list of
30 transactions may be built. The list of transactions may include: 1) record the game to
be played, 2) recording the new state of the game, 3) recording the amount of money
to be played, 4) recording the amount of money to be subtracted from the players
money and 5) notifying the event manager that a game has begun. Normally, these

54

WO 2004/025655 PCT/US2003/028748

10

15

20

operations would all be completed at once. However, due to the dynamic nature of the
system, it is possible that at the last moment, the game can not begin. For instance, an
eminent power interruption may prevent the game from beginning. In this example,
when the gaming software notifies the event manager that a game is about to be
initiated, it may receiving a reply from the operating system not to initiate the game
(e.g. power failure detected). In this example, the operations in the transaction list that:
have been recorded for execution were based upon the assumption that a game would
be initiated. If the operations are executed and a game is not initiated, the gaming

machine may be left in an incorrect state. For instance, subtracting the player money

without initiating a game would be unacceptable to the player or the operator of the

gaming machine. Thus, in response to the denial of game play, all the operations are
rolled backed. Thus, none of the operations are executed on the transaction list, a
game is not played, and the gaming machine is placed in a state before the transaction

list was constructed in anticipation of a game play.)

Although the foregoing invention has been described in some detail for
purposes of clarity of understanding, it will be apparent that certain changes and
modifications may be practiced within the scope of the appended claims. For instance,
while the gaming machines of this invention have been depicted as having top box
mounted on top of the main gaming machine cabinet, the use of gaming devices in
accordance with this invention is not so linited. For exampié, gaming machine may

be provided without a top box.

55

WO 2004/025655 PCT/US2003/028748

FIGURE 1

}O

1/13

PCT/US2003/028748

WO 2004/025655
FIGURE 2
TR e Y et e e e o o S S e it ra e S n e Rt Wit W S oot R W YA e W gmed S e Mmoo 1
GAMING MACHINE SOFTWARE
201

GAMING SYSTEM 215

COMMUNICATION

PROTOCOLS 210 COMMUNICATION

— MA‘;;?ER POWER HIT

PT
PROTOCOL.
200 -

EVENT
DISTRIBUTION
225

DETECTION
228

| EVENT

| MANAGER

NV-RAM
MANAGER

VALIDATOR
240

DEVICE

ACCEPTOR
‘250

INTERFACES 255

ETHERNET
275

o DEVICE
Sgg FIREBV?RE DEBOUNCER . DRIVERS
290 259
e e e ""~—~-~--.J — e — e e e
’/
f‘r’
COIN BILL
'ACCEPTOR KE;’SZAD VALIDATOR) {CARD READER

293 296

PHYSICAL DEVICES 292

2/13

WO 2004/025655 PCT/US2003/028748

FIGURE 3
U 301
315
MICRO-
PROCESSOR NORTH SDRAM
BRIDGE 325
L1 CACHE N v 320
305 | 300 . VIDEO o
AN EEu— CONTROLLER| 390
L2 CACHE 335
310
SOUTH |————385
. i 'BRIDGE
330— 340
GAMING SYSTEM
EXTENSION }|—— 380
NV-MEM -
355 | 345
AUDIO 375
CONTROLLER
360
NETWORK | 370
CONTROLLER
A4 365

3/13

WO 2004/025655

330
~

FIGURE 4

PCT/US2003/028748

Ppme— —— ——

425\\

PN

1MB
EPROM
415

RS 232

BUFFER

[PCl
INTERFACE

DEVICE
400

QUART
IC
410

420

ZERO

:
|
|
|

POWER
. SRAM
405

BACKED

NV-
MEMORY

DEVICES
440

[BATIERY |

va————

GAMING
110
INTERFACE

445

4/13

430

435

WO 2004/025655 PCT/US2003/028748

N FIGURE 5 I ics
535
DEVICE 525
SELECT
. SPLD
425 (2500
~ | 200 | 545
//
Y Y
BATTERY
530 : SWITCHING gﬁgéﬂf{
) CIRCUIT
510 | - © 505
PCI 530
INTERFACE A |
— DEVICE | v ¥ v ¥
) SRAM - SRAM
515] 520
A4 / 440

540

5/13

WO 2004/025655 PCT/US2003/028748

FIGURE 6
CRITICAL DATA IDENTIFIED BY CLIENT
AND STORED IN SDRAM 60D
Y ‘
CLIENT SENDS CRITICAL DATA TO NV-RAM MANAGER 605
Y
NV-RAM MANAGER STORES CRITICAL DATA IN NV-RAM 610
. Y
NV-RAM MANAGER SENDS MEMORY LOCATION IDENTIFIER TO
) : CLIENT " 615
Y .
CLIENT REQUESTS COPY OF CRITICAL DATA FROM NV-RAM
USING MEMORY LOCATION IDENTIFIER - . . g2g
‘j .
NV-RAM MANAGER RETRIEVES REQUESTED CRITICAL DATA
FROM NV-RAM | 625
NV-RAM MANAGER SENDS REQUESTED CRITICAL DATA TO
CLIENT 630
Y
CLIENT STORES COPY OF CRITICAL DATA TO SDRAM a5
Y
CLIENT COMPARES ORIGINAL CRITICAL DATA AND COPY OF .
CRITICAL DATA IN SDRAM 640

" GAMING MACHINE
DATA ENTERS TILT
MATCH? MODE
645 5%
Y : Y
CONTINUE TO WAIT FOR

NEXT STATE ATTENDANT

650 660

6/13

PCT/US2003/028748

WO 2004/025655

\mNN.

diHO

J1VIMdOHddY OL
) A\ U/VIVA TIYOILED 31EM 4 3¥NOH
5103738
< dIHO 88Vd
9z \.\ JOVLION F\/ :
WILSAS yelL TVLLINSNYYL V.va
HOLINON L TYOILINED 40
diHO LNINOATTMONMOY
AHOWANW 1oVvXd SN8 VYOOI NO aN3S
0Ol ss3xaav SSTHAAY WVE-AN ANV / w
< 300930 VLVQ TVOILINO ON3S 119
il / il \ -
ceL 02L 30VdS WYH-AN
NI ss3yaavy (|
200034 8. IVLLIASNYHL VIVE
— IVOILIYD 40 -
STIVYNDIS - ININOAITMONNOY
dYVAaNYLS an3s -
. SNg VD01 0L SNg 10d NO N ves
yel. V.1va L¥3IANOD x,ﬁv@ TYOLLIMO aNas
2OVLTOA > ST vl gvnols >
LV QYVANY.LS oLz sng
HOLINOW SNE 10d OL
ViVA LYIANOD ||, \ H0SS300ud NO
F 212 /T VIVO VOIS0 ONTS
st sz mqmmoimmpz_ 0z 008
. H0S$I00Hd
VNS HITIOHLNOI-AN 5d | 39a14g HLMON oo

. o

7/13

828

PCT/US2003/028748

8/13

vivaanas | V.1va any 8 JUNOIF
siogas T STYNOIS WLLNSNWLYLYG |
dIHD Savd QUVANVYLS TVOILIMO 40 €8
~7 e SNE 10d INIWOATIMONNOY |
g/ FOVLION __ VIVAI¥IANOO| | - ON3S N4
WALSAS Vel > p——
HOLINOW 628 q
= HVANYLS Sng
ALONIN HOSS3O0Nd OL ces
TVOISAHd sng o e O y
OL SSIHAQY OO NO SSaav LVQLEIANOD |, >
300930 . NYHAN ONSS \ ~ V1vaany
~ S { — o VLLINSNVHL V1Va
¢C8 028 3OVdS WYHAN TYOILIO 40
NI S834aqy INFWOTAITMONADY
3qooza | | 88 aNas
STYNDIS >
AXVANVLS
SNE Tvo01 0L SN 19d NO SS3Y¥AaY
veL - VAVO L43ANOD || ¥1vQ TYOLLIMD ONSS
> ‘ Ll ’ .v_\w\ Las
IOVLIOA STYNDIS
Ad3tive) QYVAONV.LS - 018 sSNg
HOLINOW sSN810d 0Ol . HOSS3I00NHd
V1Va LH3ANOD AL NO $s38aav
2.’ V1va TvOILIYO ONTS
G1g (144 dqamo,ﬁmm_.z_ 02E 00¢
HITIOHLNOO-AN 390148 HIHON ¥0SS3004d
e 10d 4 1 OMOIW

WO 2004/025655

v em

WO 2004/025655 PCT/US2003/028748

FIGURE 9

Node 980 =
NVRAM record list 914 Node 981
Listof record entries =~ 916 Node ;;;
Next record list 918 o
CRC 820
NVRAM Header 300 NVRAM record list 922
Cold power up flag 902 List of recard entries 924
Stale information 904 Next record list 926
Size of NVRAM 906 CRC 928
Current operation information 908 | One entry per handie~
Listof block records 918 NVRAM record list 930
CRC -812 ”
— List of record entries
Next record list
CRC

NVRAM node record 236

Unique handle 938

Ownerhandle ~ 940

! DRAM look-up list 9832 Name 942
One entry for each handle 834 Size ;4;

' JNVRAM block data 946

Status flags 948

CRC 950

NVRAMdata 952

NVRAM heap block 954.
Next alfocated block-. 956

Next avaliable block 958
/ NVRAM data . 960]

NVRAM heap block 962
Next allocated block NVRAM heap block 968
Nextavailabla block 964 Next aliocated block 970
NVRAM data (avallable) Next available block

NVRAM data

NVRAM heap block 972 |«
Next allocated block
Next available block
NVRAM data

NVRAM heap block 966
Next allocated block

Next availabie biock

NVRAM data (available)

9/13

WO 2004/025655 PCT/US2003/028748

FIGURE10 A
NV-RAM MANAGER RECIEVES A REQUEST TO ALLOCATEA '
BLOCK OF NON-VOLATILE MEMORY FROM CLIENT 4ppg
———]
Y
ASSIGN NODE 1005
T
CREATE NVRAM NODE RECORD 010)
Y
ASSIGN POINTER TO HEAP BLOCK 015
Y
ADD NODE TO NV-RAM RECORD LIST 4020/
: A
UPDATE VOLATILE MEMORY LOOK-UP LIST 1025
* .
SEND HANDLE TO CLIENT 030
END
FIGURE 10 B

NV-RAM MANAGER RECIEVES A REQUEST TO DE-ALLOCATE A
BLOCK OF NON-VOLATILE MEMORY FROM CLIENT 4p35

4
CHECK NV-RAM NODE RECORD 1040

REMOVE

ALLOWED?
1042

REMOVE NVRAM NODE RECORD 4045
¥
UPDATE NV-RAM RECORD LIST 1050
* . " |]
UPDATE VOLATILE MEMORY LOOK-UPLIST 4p55 1|
Y
UPDATE HEAP BLOCK 1060

END)

10/13

PCT/US2003/028748

WO 2004/025655
FIGURE 11
GAMING SYSTEM SOFTWARE RECEIVES SOFTWARE
MAINTENANCE REQUEST 1100
Y
LOAD SOFTWARE MANAGER 1105
INSTALL N
SOFTWARE?
1110
A , Y
DETERMINE REQUIRED MEMORY OBTAIN HANDLE FROM
SIZE 18 CLIENT. 1150
CEMORY N | SEND ERROR SEND DE-ALLOCATION REQUEST TO
MESSAGE |— NV-RAM MANAGER 1155
1125 | 5
KILL CLIENT

SOFTWARE PROCESS 1160

- SEND ALLOCATION REQUEST TO
NV-RAM MANAGER - 1130

——

]
RECEIVE HANDLE FROM NV-RAM
* MANAGER 1138
y
EXECUTE

SOFTWARE CLIENT 1140

¥
SEND HANDLE TO
SOFTWARE CLIENT 1145

—
133]

> END

11/13

PCT/US2003/028748

WO 2004/025655

9z21 T4 7221 0221
v.ivd viva V1Vd
NV 1XaL 1N0 LIa3uo NI LIOSNC |
] .
_ . | -
gich alLel yiclL A% 4" r[AYA%
v1va v.Lvad € ANVD Z INYD L IAVO 802k oan
¥00Qa doNa H0Od NIVIN NEREL
| | | |
_ . .
9021 Z4? 'Z0¢)
ALRMND3S asvaviva ONILNNODOY
, AHOLSIH INYD
0021
AHOLOTNMIa
oczr 7 N\ NIV NWE-AN ZL FdN9id

12/13

WO 2004/025655 PCT/US2003/028748

"FIGURE 13
MA300

MACHINE POWERS UP 1305| -

|

NON-VOLATILE MEMORY MANAGER
STARTS 1310

v

GENERATE SIGNATURES FOR CRITICAL
VALIDATION OF THE NV HEADER 1315 ERROR
1325

NV HEADER VALID?
1320

Y

h 4

BUILD INTERNAL DA;I'A STRUCTURE TO

MANAGE NVRAM NODES
, 1330

DOES NV HEADER
INDICATE AN OPERATION IS
IN PROGRESS?

1335

UNDO THE
OPERATION AND
N-—> RETURN NVRAM
TO AVALID STATE

1345

CAN THE OPERATION
BE COMPLETED?

1340

Y

Y

COMPLETE THE OPERATION 1EOJ

Yy

BEGIN ACCEPTING REQUESTS FOR
OPERATIONS FROM CLIENTS 4355

13/13

WO 2004/025655 PCT/US2003/028748

CLAIMS OF THE INVENTION

I Claim:

1. A non-volatile memory allocation system in a gaming machine comprising:

a non-volatile memory having memory space configured to store data;

a non-volatile memory manager configured to allocate and deallocate memory space
in the non-volatile memory for first data without altering or modifying existing second data
also stored in the non-volatile memory; and

a data file system for accessing and organizing the data stored in the non-volatile

memory.
2. The system of Claim 1, wherein the first data comprises critical data.
3. The system of Claim 1, wherein the non-volatile memory comprises memory

with a battery back-up.

4. The system of Claim 1, wherein the non-volatile memory manager comprises

machine readable code.

5. The system of Claim 1, wherein the data is identified by files using a file

system.

6. The system of Claim 5, further comprising an application tool for accessing

files in the file system.
7. A method of incorporating a new game into a gaming machine comprising:
receiving game code, the game code associated with a new wagering game to be

installed on the gaming machine;

22

WO 2004/025655 PCT/US2003/028748

generating first data associated with the new game code;

allocating memory space in non-volatile memory for the first data utilizing a non-
volatile memory allocation system;

writing the first data into the non-volatile memory, wherein the non-volatile memory
contains existing second data; and

wherein the existing second data remains intact after incorporating the new game.

8. The method of Claim 7, further comprising verifying the accuracy, after the

writing, of the first data that was written into the non-volatile memory.

9. The method of Claim 7, wherein the first data comprises critical data.

10. The method of Claim 7, wherein allocation further comprises verifying that

adequate memory space exists in the non-volatile memory.

11. The method of Claim 7, further comprising compacting the non-volatile

memory to generate additional memory space.

12. A method of removing a first game from a gaming machine having two or
more games stored thereon comprising:

identifying first critical data associated with the first game to be removed;

identifying a memory space of the first critical data in a non-volatile memory
through use of a non-volatile memory manager;

deleting the first critical data associated with the game, wherein deleting does not
interfere with use of second critical data also stored in the non-volatile memory; and

deallocating the memory space previously occupied by the first critical data.

23

WO 2004/025655 PCT/US2003/028748

13. Themethod of Claim 12, further comprising resizing remaining memory space

resulting from the deletion of the first data.

14. The method of Claim 12, further comprising verifying the accuracy of the

second critical data in non-volatile memory after removal of the first data.

15. The method of Claim 12, wherein the non-volatile memory manager

comprises machine readable code.

16. The method of Claim 12, wherein the deallocating is performed by the

memory manager.

17. A method of dynamically maximizing available memory space in a non-
volatile memory in a gaming machine comprising:

identifying a critical game transaction to be performed, the critical game transaction
generating a first type of data;

allocating memory space having a first size in a non-volatile memory for storing the
first type of data;

storing first type of data in the first amount of memory space;

monitoring memory allocations for during gaming machine operations; and

reallocating memory space having a second size for storing the first type of data.

18. The method of Claim 17, wherein the second size is less than the first size.
19. Themethod of Claim 17, wherein the second size is greater than the first size.
20. ’The method of Claim 17, wherein the first type of data comprises critical data.

24

WO 2004/025655 PCT/US2003/028748

21. The method of Claim 17, wherein allocating memory space is performed by

a memory manager.

22. A method of removing corrupt data stored in a non-volatile memory in a
gaming machine comprising:

testing data stored in a first memory space in non-volatile memory;

identifying corrupt data responsive to the testing; and

re-writing non-corrupt data into the first memory space;

wherein re-writing leaves intact other data elements stored in the non-volatile

memory.

23. The method of Claim 22, wherein the testing occurs periodically.

24. The method of Claim 22, further including re-testing the non-corrupt data

after the re-writing.

25. The method of Claim 22, wherein the testing comprises performing a cyclic

redundancy check algorithm.

26. The method of Claim 22, further comprising generating an alert regarding the

identification of corrupt data.

27. The method of Claim 22, wherein re-writing comprises deleting the corrupt

data.

28. A method of de-fragmenting to maximize the use of non-volatile memory in

a gaming machine comprising:

25

WO 2004/025655 PCT/US2003/028748

analyzing a first memory space of the non-volatile memory to determine if it is
occupied with data;

responsive to the analyzing, shifting the data in the first memory space to a second
memory space within the non-volatile memory; and

resizing a node to account for the shifting.

29. Themethod of Claim 28, further comprising assigning new handle to the data

after the shifting.

30. The method of Claim 28, wherein the analyzing occurs sequentially in the

non-volatile memory.

31. The method of Claim 28, wherein the shifting causes data to be compacted

into adjacent memory space.

32. The method of Claim 28, wherein the shifting does not require the re-writing

of other data in the non-volatile memory.

33. The method of Claim 28, wherein shifting comprises shifting to a top or to

a bottom portion of a memory stack in the non-volatile memory.

34. The method of Claim 28, further comprising analyzing the data prior to

shifting to determine if the data qualifies as movable data.

35. The method of Claim 28, wherein the analyzing analyzes heap block size.

36. The method of Claim 28, further comprising analyzing the amount of unused

26

WO 2004/025655 PCT/US2003/028748

space within the non-volatile memory, and if the amount of unused space within the non-
volatile memory is less than a predetermined amount, then executing the method of

analyzing the first memory space, shifting, and resizing.

37. The method of Claim 28, wherein the analyzing, shifting and resizing occurs

periodically.

38. The method of Claim 28, wherein the analyzing, shifting and resizing occurs

whenever memory manager operation is initiated.

39. A method to hindering access to data stored in a non-volatile memory
comprising;:

selecting a first memory element in the non-volatile memory;

reading the data in the memory element;

writing the data to a second memory element within the non-volatile memory; and

reassigning the data in the file manager.

40. Themethod of Claim 39, further comprising compacting the memory elements

sequentially to maximize memory utilization.

41. The method of Claim 39, wherein the selecting occurs randomly.

42. The method of Claim 39, wherein the memory elements comprise data.

43. The method of Claim 39, wherein the memory elements comprise a block of

data.

27

WO 2004/025655 PCT/US2003/028748

44. The method of Claim 39, further comprising encrypting the data prior to

writing into a non-volatile memory.

45. The method of Claim 44, wherein the encrypting comprises multiplying the

critical data with a unique value corresponding to a gaming machine.

28

WO 2004/025655

Col. 1
112

1st Heap Block

\d

Row 1

7
@)

Gan

ritical Data Elements Agsociated with

e #1

|

108/

%
_

N\

Heap Block i ! ’ i

g Temporary NV-RAM |
| Space : '
I :

......................

Row n

L~

/

104

116 ~
Last Heap Block

Shuffling of Data
Element

Fig. 1

WO 2004/025655
2/12

Software Client Requests New Game Code via
Transmission over Device Interface

!

Software Client Sends Critical Data to NV-RAM
Manager

b

NV-RAM Manager Dynamically Interacts with NV-
RAM

v

NV-RAM Manager Verifies Adequate Contiguous
Memory Size

Is Memory Size Adequate?

PCT/US2003/028748

Perform
Compaction
Routine N
Times

Identify and Allocate Heap Blocks via Handle

!

Write Critical Game Data into NV-RAM

|

Go To Figure 2B

Fig. 2A

no

yes

Tilt
Mode

'

Wait for
- Attendant

WO 2004/025655

3/12

From Figure 2A

;

PCT/US2003/028748

NV-RAM Manager Retrieves Copy of Critical 248
Game Data and Sends to Software Client =3
Software Client Stores Copy of Critical Data to 252
- SDRAM |5~
Software Client Compares Original Critical Game
Data to Copy of Critical Game Data Stored in 256
SDRAM s
260
Tilt Mode
268
26 el Proceed to Next State
Y

272

_5| Wait for Attendant

Fig. 2B

WO 2004/025655 PCT/US2003/028748
4/12 ' :

Software Client Receives Request to Remove
Game from Gaming Machine

l

Software Client Invokes Function Request to NV-
"RAM Manager to Identify Critical Data and
Associated Node / Handle

l

NV-RAM ldentifies Heap Blocks Associated with
Node / Handle

'

After Opening and Reading, NV-RAM Manager
Deallocates Associated Heap Blocks

l

NV-RAM Manager Resizes Available Memory

'

Fig. 3

WO 2004/025655 PCT/US2003/028748

5/12

Initiate Critical Game Transactions

l

NV-RAM Manager Allocates / Deallocates NV-
RAM Memory Based on Type of Transaction
Performed

'

Allocate Temporary or Permanent Non-Volatile
Memory or Both

Load Operational Transactions into Temporary
Non-Volatile Memory Space

'

Store Critical Data into Permanent Non-Volatile
Memory Space

:

Purge Temporary Non-Volatile Memory Space
After Operational Transactions Are Processed

l

Go To Figure 4B

Fig. 4A

WO 2004/025655 PCT/US2003/028748
. 6/12

From Figure 4A

l

— Continue Game Play

Monitor Memory Allocations

yes .
Adequate Memory?

Dynamically Resize Memory Allocations

Fig. 4B

WO 2004/025655 PCT/US2003/028748
7/12

'

Machine Power Up or Perform Intermittent Data
Integrity Check

l

NV-RAM Manager Performs Integrity Check of
NV-RAM and Determines that Critical Data Error
Has Occurred

l

NV-RAM Manager Identifies Handle and
Associated Heap Blocks that Contain Error(s)
NV-RAM Manager Deallocates / Destroys Heap

Blocks Associated with Erroneous Critical Data
Element(s)

l

NV-RAM Manager Updates Memory Map thereby
Leaving Unrelated Critical Data Elements
Unaffected

l

NV-RAM Manager Reloads into NV-RAM Only
Critical Data Elements Associated with Errors or
with Affected Game

Fig. 5

WO 2004/025655 PCT/US2003/028748

8/12

 EE—— Blocks

NV-RAM Manager Sequentially Analyzes Heap

Is Heap Block no

In Use?

Shift Heap Block to Top
Portion of Memory
Stack in NV-RAM

'

Resize Node
Associated with
Range of Heap

Blocks

l

Go to Next
Heap Block

Fig. 6A

WO 2004/025655 PCT/US2003/028748
9/12

NV-RAM Manager Sequentially Analyzes Heap
™ Blocks

‘ Is Heap Block
- InUse?

Shift Heap Block to Top Shift Heap Block to
Portion of Memory Bottom Portion of Memory
Stack in NV-RAM Stack in NV-RAM

Resize Node Resize Node
Associated with Associated with
Range of Heap Range of Heap

Blocks Blocks
Go to Next
> Heap Block —————

Fig. 6B

WO 2004/025655 PCT/US2003/028748
10/12

NV-RAM Manager Sequentially Analyzes Heap
I Blocks Daimm

Is Heap Block

in Use'? no

Does Block Meet
Size Criteria?

no

Shift Heap Block to
Top Portion of
Memory Stack in
NV-RAM

'

Resize Node
Associated with
Range of Heap

Blocks

!

Go to Next

Heap Block Flg - 6 C

WO 2004/025655 PCT/US2003/028748
11/12

NV-RAM Manager Randomly Generates Node
Record

\ J

Associated Heép Block(s) Are Selected from Node
Record

Y

Associated Heap Block(s) Are Placed at Bottom
Portion of Memory Stack in NV-RAM

Compaction Routine(s)

Fig. 7

WO 2004/025655 PCT/US2003/028748
12/12

Software Client Commands Input of New Game |
Code via Transmission over Device Interface

l

Critical Game Data Is Identified and Stored in
: SDRAM

l

Software Client Sends Critical Data to NV-RAM
Manager

i

Identify and Allocate Heap Blocks via Handle

l

Encrypt Critical Game Data Prior to Write

l

Write Critical Game Data into NV-RAM

Fig. 8

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

