PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 99/66738
H04Q 3/00, HO4M 3/42 Al .

(43) International Publication Date: 23 December 1999 (23.12.99)

(21) International Application Number: PCT/US99/13775 | (81) Designated States: AE, AL, AM, AT, AT (Utility model), AU,

(22) International Filing Date: 18 June 1999 (18.06.99)

(30) Priority Data:

09/100,567 us

19 June 1998 (19.06.98)

(63) Related by Continuation (CON) or Continuation-in-Part
(CIP) to Earlier Application
US
Filed on

09/100,567 (CON)
19 June 1998 (19.06.98)

(71) Applicant (for all designated States except US): MUREX
SECURITIES, LTD. [GB/GB]; 8 Myrtle Street, Douglas,
Isle of Man (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SHAFFER, James, D.
{US/US]; P.O. Box 9543, Rancho Santa Fe, CA 92067 (US).
MOORE, George, G. [US/US]; 9411 Cornwall Farms Road,
Great Falls, VA 22066-2701 (US).

(74) Agent: ALTMAN, Daniel, E.; Knobbe, Martens, Olson & Bear,
LLP, 16th floor, 620 Newport Center Drive, Newport Beach,
CA 92660 (US).

AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, CZ
(Utility model), DE, DE (Utility model), DK, DK (Utility
model), EE, EE (Utility model), ES, FI, FI (Utility model),
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ,1LC, LK, LR, LS, LT, LU, LV, MD, MG,
MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE,
SG, SI, SK, SK (Utility model), SL, TJ, TM, TR, TT, UA,
UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM,
KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM,
AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT,
BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,
MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: AUTOMATIC ROUTING AND INFORMATION SYSTEM FOR MOBILE TELEPHONIC SERVICES

(57) Abstract

A system and method for automatically and seamlessly routing
mobile telephone calls across a telephone network. The system includes a
telephone network interface box, a computer, and a client file. The client
file has a plurality of records having a spatial key and a client telephone
number. One embodiment (1500) of the system utilizes a spatial coordinate
(1502) of an instantaneous location of a caller’s mobile telephone as an input
to a real-time process (1510) which identifies one or more client service
locations (1460) from the client file corresponding to the location of the
caller’s telephone (110).

1510

109 109

il ot

BE FINE 35

- Y
e e || i |

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
Cu
CZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Céte d'Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Italy

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
TD
TG
T
™
TR
TT
UA
UG
uUs
Uz
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
1-

AUTOMATIC ROUTING AND INFORMATION
SYSTEM FOR MOBILE TELEPHONIC SERVICES

Field of the Invention

The present invention generally relates to telephonic services and routing technologies and, more specifically, to

a system for automatically routing telephone calls and optionally providing information about a client location.
Background of the Invention

in the increasingly competitive business world, there have been various attempts to automatically route
telephone calls made to an “1-800" number or equivalent for a local store, franchise, branch, dealer or service company
(henceforth, service location), whose service area encompasses the caller location for the product or service associated
with the "1-800" number. For example, a person would dial 1-800-Italian from any telephone in the United States, and the
phone would ring at the MyPizza (a fictitious business) service location that delivers pizza to the location of the calling
telephone.

There have been several previous simplistic attempts to automatically route calls to a service location that is
geographically proximate to the caller. These routing technologies are based on routing the incoming call to a location with
the same telephone area code and prefix as the originating call, to the same 5-digit zip code, to all zip codes that have the
same city name, or a combination of the above. There are many different terms used to describe the various components
of a 10-digit telephone number. In the telecommunications industry, it is called the NPA-NXX-XXXX, where the NPA is the
area code, the NXX is the prefix or exchange and the XXXX is the suffix or line number. For example, in the 10-digit
telephone number 619-942-9998, 619 is the NPA or area code; 942 is the NXX, prefix or exchange; and 9999 is the
XXXX, suffix or line number. Usually all telephone numbers with the same area code and prefix are serviced by the same
wire center. A wire center is the geographical area serviced by a single telephone company office. The wire center is
usually one switch, but can be multiple switches, and usually provides service to about ten exchanges. By definition of the
telephone companies, wire centers do not overlap.

A. Prior Routing System Structure

The earth is a sphere, and any point on its surface can be defined by a fatitude and longitude spherical coordinate
system developed several centuries ago. Using this coordinate system, spherical trigonometry, and a computer, it is
possible to calculate the distance between any two locations on the earth and determine if one location lies within a
specified radius of another or determine if a location is contained within an irregular service area defined as a spherical
polygon.

Several years ago, AT&T instituted the technology of passing the calling telephone number along the telephone
network, by use of Automatic Number Identification (ANI), to facilitate billing. The "Caller ID" feature, available on some
telephone networks, utilizes the ANI technology to identify the telephone number of the calling party. Since a modern
telephone switch is just a special purpose computer, it is a simple process for the switch handling the call to look up in a
record table (of over one hundred million records) the calling telephone number with an assigned service location telephone

number and route the call to the service telephone number.

10

15

20

25

30

WO 99/66738 PCT/US99/13775
.2

However, there were some fairly formidable problems that needed to be solved before this routing process could
be a commercially viable and practical service. The first problem was initially determining the latitude and longitude of
every telephone number in the United States and keeping them updated when twenty percent of the consumer population
moves every year and businesses are continually opening and closing locations. The second problem was performing the
multitude of spherical trigonometric calculations which is several orders of magnitude beyond today's most powerful
computers that are required to create the calling telephone number to the service location telephone number tables and to
keep them updated in a constantly changing environment.

Several key databases and technologies are necessary to solve these problems. The United States Census
Bureau, as part of the 1990 census, built a national latitude and longitude cartographic map of the United States called
TIGER (Topological Integrated Geographical Encoding and Referencing) that contains almost every street fink in the United
States. A street link is a street segment intersected by other streets at each end. The TIGER record for all street links
contains the latitude and longitude coordinates at each end of the street segment accurate to within pius or minus thirty
feet and, for most street segments, the starting and ending address ranges for each side of the street. Where the Census
Bureau did not complete the address ranges, private companies have filled in the gaps and are updating TIGER as new
streets are built.

In the past, the U.S. Postal Service (the “Post Office") divided the U.S. into postal delivery areas called zip (zone
improvement plan) codes to help automate the routing of mail. At the nine digit level (called "zip+4"), these zip codes
usually correspond to a single side of a street fink. In addition to geographically dividing the United States into small postal
delivery areas, the Post Office also set standards for the naming of places and streets. For direct mailers to get discounts,
they had to standardize their mailing addresses to match the Post Office's naming conventions and provide a zip +4 code.
To facilitate the process of postal address standardization and zip+4 coding, the Post Office provides a national Zip-+4
Address Coding Guide and has certified several commercially available software packages that correctly address
standardize and zip+4 code 99 percent plus of the address records on a Post Office test file.

Recently, the Post Office and some private companies have matched the Post Office's Zip+4 Address Coding
Guide with TIGER and have created files containing zip+4 codes with latitude and longitude centroids (a zip+4 centroid is
the approximate geographical mid-point of a zip+4 code). This type of file is referred to as a zip+4 latitude and longitude
centroid file 100 (Figure 1a). These centroids are accurate 95 percent of the time to within plus or minus 105 feet in
relation to a house or business receiving mail at a street address assigned to a given zip+4 code. Today, it is a very
reliable and economical process to address standardize and zip+4 code a list identifying physical locations, such as a
master list of phone numbers of the present invention.

Other changes and improvements in telecommunications technology were needed to make the automated
telephone call routing process a commercially viable and practical service. Improvements in the telecommunication
infrastructure in the U.S. have changed the telecommunication cost structure. Presently the cost of a telephone call from

Los Angeles to New York is about the same as for a call from Los Angeles to San Diego. Therefore, the physical location

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
.3

of central routing system hardware and facilities is no longer critical, or in other words, can be anywhere in the continental
us.

Another improvement of telecommunications technology is the advent of Geographic Information Systems,
commonly called GIS. These systems allow the aggregation and display of almost any data for any area, any size or
shape, anywhere in the United States by interactive maps. The popularity of these systems has lead to the development
of sophisticated techniques and algorithms to handle geographically based information. Of primary interest is the linking of
the geographic information to telephone numbers, especially at the 10-digit level.

The complex process of spherical trigonometric distance calculations on billions of possible permutations has
peen alleviated by making the process less computer intensive. Instead of performing complex trigonometric spherical
calculations, a technique that is less than one-thousandth as computer intensive is used. This technique is based on doing
a polyconic projection from each service location and performing simple two dimensional distance squared tests. There are
approximately 68.9404 miles per degree latitude. However, the miles per degree longitude varies with the latitude. Ata
given latitude, the miles per degree longitude is equal to the cosine of the latitude multiplied by 68.9404. By using the
service location as the latitude point and knowing the latitude and longitude of calling points, it is easy to obtain a delta
(atitude and longitude, transiate them into miles, and perform a simple distance calculation, i.e., "distance = SQRT(X**2
+ Y**2)". This polyconic projection technique results in a distance calculation error of approximately 12 feet for two
locations that are 100 miles apart at 40 degrees latitude. However, additional reduction of the computational effort is
necessary to have a practical, efficient, and commercially viable routing process for high call volume applications.

B. Prior Routing System Operation

Previous technologies for routing "1-800" telephone number calls to a service location have one or more of the
following three problems:

(1) Many such routing systems are very coarse in their level of precision and cannot handle small service areas
with specifically defined franchise territory boundaries like those for pizza delivery franchises. The franchise territory may
be, for example, an irregularly shaped poiygon. A much more precise system is desired that is accurate to within about
105 feet rather than previous systems having accuracies to within about 10 miles. Such a system would utilize very
precise measurement determinations made possible by knowing the physical location on the earth, most typically
expressed as a latitude and longitude, of nearly every non-mobile telephone in the United States. Other coordinate systems
could be used in other countries.

(2) Another problem in routing systems is that they divide the United States into many large arbitrarily defined
areas and there is no ability to route a call to the closest service location if the closest location is not located in the same
artificially created area as the caller. In many instances, a caller located near the border of an exchange area or 5-digit zip
code is much closer to a service location with a different zip code or telephone prefix than the one to which it is routed. A
seamless system is desired that does not use artificially created areas such as telephone wire centers, telephone prefixes,
or 5-digit zip codes where calls can only be routed within their area. A business may want an option of choosing to route a

call to the closest branch whose service area may be defined by either a predetermined radius, e.g., 5 miles, that

10

15

20

25

30

WO 99/66738 PCT/US99/13775
4.
encompasses the location of the caller or by a predetermined irregularly shaped polygon that encompasses the location of
the caller. Furthermore, a business may want an option of choosing to route a call to any branch whose service area may
be defined by either a predetermined radius that encompasses the location of the caller or by an irregularly shaped polygon
that encompasses the location of the caller, rather than the closest branch.

(3) Finally, known routing systems often rely on third party telephone directories that are always inaccurate due
to publishing, key entry, and optical character recognition (OCR) scanning time lags and which do not include unlisted
numbers. Over 30 percent of the U.S. telephone numbers are unlisted, which includes public pay phones and multiple lines
going into businesses and households where only one line is listed. The information in such directories becomes rapidly
outdated as the locations and related information of listed consumers and businesses change. Thus, a system is desired
that correctly routes a much higher percentage of calls than the previous systems. In the U.S., such a system would
require direct access t0 the AT&T universe of telephone numbers. Such a system would preferably utilize daily updated
and unlisted telephone numbers and involve passing information between regulated telephone databases maintained by the
telephone companies and client databases maintained by third parties.

The three deficiencies discussed above resultin lower customer service and satisfaction, higher costs because of
manual exception handiing for calls that cannot be routed due to a variety of reasons, costs of misrouting, and high on-
going maintenance costs. Manual exception handling generally requires operator intervention in the "1-800" call.

Other previous systems require the consumer to enter their zip code or telephone prefix on the Touch Tone
keypad in response to voice prompting from the system. Based on the caller-entered data on the keypad, the telephone call
is forwarded to a destination telephone. Other similar systems will simply inform the consumer, by a voice message, of
another telephone number for the local dealer, which must be manually dialed rather than forwarding the call
automatically. A system is desired that does not require any additional customer interaction or input. Such a system
would be totally automatic by utilizing, at a minimum, the 10-digit telephone numbers in the standard telephone packet
that can only be accessed and utilized by regulated telephone companies on a national basis. The telephone packet
includes the complete origin and destination telephone numbers.

The basis of an automatic telephone routing system must include a means to automatically identify the
telephone number of the calling party. Such a system is disclosed by Kaplan, U.S. Patent No. 5,163,087. This system
translates an Automatic Number identification (ANI) of the calling party into a customer database key previously defined
by the called party. The database key, e.g., customer account number, is then provided to the called party instead of the
ANl information such that a computer at the called business can process the key to look up and present customer
information to an agent of the business. This system assumes that the caller has called this business at a previous time to
provide information to the agent of the business to create a customer record or other similar information. The Kaplan
system delivers the database key to one business location rather than a plurality of service locations throughout the
country. The delivery of the database key to the business requires an Integrated Services Digital Network (ISDN) or similar

facility, which is an additional burden for the business.

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
.5

An automatic routing system should not need to deliver a database key or message to the final destination, but
would merely utilize the ANI information as an index to a table containing partitions of a country into small geographic
areas, such as postal service zip+4 codes. These partitions would be further utilized to access one of a plurality of service
jocations that may be anywhere within the country. A current system for telephone call routing is described in U.S. Patent
No. 4,757,267 to Riskin. Riskin employs automatic number identification (ANI) for routing calls from a caller to a dealer
located within the same area code and prefix (first six digits of a 10-digit telephone number, the "6-digit number") as the
caller. Because the area identified by the 6-digit number is fairly large and there may be several dealers within the area,
the dealer location is usually selected from a list of several locations based on random selection, or weighted percentage
assigned to each location. Alternatively, the caller is presented with a fist of possible dealer locations for the large
geographic area because the system does not know which service locations are closer than the others. Riskin uses the 6-
digit number to determine the location of both the caller and the service location. Riskin assumes the location of the caller
to be the location of the central office switch that services the caller's 6-digit exchange (which can be 0 to 5 miles from its
true location), and assumes the location of the dealer location to be the location of the central office switch that services
the dealer location's 6-digit exchange (which can be 0 to 5 miles from its true location) utilizing a coordinate system that is
accurate to plus or minus 2300 feet. What is desired is a system that uses all ten digits of the calling and service location
telephone numbers and the physical street address of the location of the numbers in connection with a GIS-type database
(utilizing a coordinate system and associated coordinate data that is accurate to within 30 feet) to provide geographic
precision to within 105 feet for the location of the calling and destination telephones.

Consequently there is a need for an automated telephone routing system that provides the ability to reduce costs
by routing a very high percentage of calls made to a single national telephone number without any human intervention; the
marketing advantage for a client of a single, easy to remember, toll free or nominal fee national telephone number;
geographically precise results; and the ability of businesses to define custom service areas around each servicing location
of any desired size and shape. Preferably, a client may define each location's service area as an area with a radius of any
size or a polygon of any size and shape. A client can intermix radius and polygon definitions as well as have service areas
be overlapping or non-overlapping.

Frequently, a caller may not need to have a telephone call actually completed to the service business location,
but rather, the caller needs information about the business. For example, the caller may want to determine the location of
the three closest service locations, or more specifically, the caller desires to know that the business is still open, or has
inventory of a desired item, and so forth.

C. Prior Voice Response Unit Utilization

Traditionally, businesses, non-profit organizations and government agencies with one to tens of thousands of
service locations provided customers multiple telephone number points of contact with usually at least one telephone
number for each service location, department and individual. This put a major burden on customers and prospective
customers to find, remember, dial and be connected to the correct intra-entity telephone number for the location or

services desired. In the new world of electronic commerce, these entities have started promoting vanity telephone

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
-6
numbers as their preferred single initial point of customer contact. These vanity numbers are easy to remember telephone

numbers, e.g., 1-800-FLORIST, that are selected by a business. The vanity telephone numbers typically have 800",

_ngg8" or "900" as area codes or local exchange prefixes "555" or "950".

Based on the large volume of calls going to these vanity numbers, customer demands for extended support hours
of seven days a week and 24 hours a day, and the goal of reduced telephone busy and on-hold times has resulted in many
vanity advertisers answering vanity number calls with Voice Response Units (VRU). The proliferation of vanity numbers
and the utilization of the VRU have created a need to automate, through what is now called intelligent call processing, a
higher percentage of calls being answered by the VRU.

In this context, automated intelligent call processing is defined as the capture of network-provided data, such as
ANI and dialed number identification service (DNIS), and caller-provided data, such as data entered by Dual Tone Multi-
Frequency (DTMF) through a Touch Tone telephone key pad or the caller speaking directly, at the VRU. The intelligent
VRU further can decipher, validate, process and fulfill the caller's request by playing pre-recorded messages, creating call
specific test messages and speaking them to the caller, andfor routing and connecting the caller to the servicing location.
In contrast, semi-automated call processing means that components of the customer request can be automated through
intelligent call processing but some portions of the request still require support during the call by a live operator.

A further category of automated intelligent call processing includes the situation where the client does not desire
to use the voice response capabilities but uses the automated routing features of the system. In such a situation, the VRU
may be replaced by a network terminating point interface (NTP1) box which does not have voice/speech features.

For the VRU or NTPI box to handle a higher percentage of caller requests, more information must be immediately
accessible to the VRU or NTPI box. This requires the real-time access to many different databases, stored on different
computer systems. Recent advances in computer networking technology, networking standards, increases in speed and
bandwidth, and reduction in costs for long distance data communications have made wide-area networking a common
practice. This is demonstrated in part by the variety of computer-interface applications supported by computer network
services, such as CompuServe®, America Online®, Microsoft Network™ and the internet.

In the nationa!l telecommunications network with its nearly 200 million access points, most with only basic
Touch Tone or old rotary telephane input and output capability, VRU or NTPI switch database access has been primarily
limited to client proprietary customer databases indexed by telephone number. This type of access works acceptably for
many applications with existing customer calls. However, for new customers, new businesses or new applications that
service different target markets, these internal databases are too sparse in coverage to make VRU database lookup
applications economical. On the other hand, there are national databases, such as the GDT Zip+4 Latitude and Longitude
files, that do not contain a telephone pumber. Accordingly, these databases, and derivatives of these databases that do
not contain a telephone number field, have not been utilized in VRU telephone call processing applications.

The missing link in making almost unfimited amounts of data immediately available to the VRU or NTPI box is
creating a standardized, precise and universal database linkage key that can be assigned to all telephone numbers in the

United States and U.S. territories. This key needs to act as a direct andjor translator linkage mechanism between the

10

15

20

25

30

WO 99/66738 PCT/US99/13775
.7
telephone number and spatial, geographic, and client service location databases, where the service area may be of any
defined size and shape. Since the common trait shared among the above-mentioned databases is their geographic/spatial
location, definition andfor relationship, what is needed is a robust solution of a universal hierarchical geographic/spatial
linkage key that is termed herein, the Spatial Key. Utilizing the Spatial Key, it becomes practical to automate many VRU
applications that provide the caller with information andjor connect the caller with a servicing location.

The option of choosing from amang several embodiments of the spatial linkage or spatial key linkage with a VRU
or NTP! box would be desirable. These include: (1) Use of a master table having caller-provided telephone numbers with an
associated spatial key and an automatically generated client table linking spatial keys to client service location
information. (2) Use of a single table linking telephone numbers to other telephone numbers when routing speed is very
important or where compatibility is necessary with the current telecommunications network. Telecommunications
networks generally require long fead times to incorporate new technology. Because such an embodiment uses a single
table, it would be the simplest embodiment to implement from the telecommunications network perspective. (3) Use of
real-time spatial processing to associate precise caller locations to precise servicing locations in situations when high call
volumes and transaction processing speed are not an issue and/or where computer storage is a limited resource and the
application does not require a Spatial Key linkage to other Spatial key indexed databases. Such a system would be the
simplest embodiment to update and the required files could be independently maintained.

Prior attempts at real-time call processing have lacked precision. Typical prior attempts use the area code and
exchange numbers (6 digits) rather than all ten digits of a U.S. telephone number. For example, the Riskin patent uses
Bellcore's V&H coordinate system to identify the caller location and the service location to a plus or minus five mile
precision. This prior system does not use a precise service area definition for the service location, but rather uses a client-
defined search radius around the caller jocation. However, the location of the caller is defined by the V&H coordinates of
the telephone switch to which the caller's telephone is physically connected, so the search radius is actually around each
telephone switch. The search radius is used to access a V&H coordinate interleaved index to a service location file to get a
list of potential service locations. Calculations are then made to determine the distance between the location of the
caller's switch and the location of the switch for each of the potential service locations. This information is used to
develop a final list of service locations.

What is desired is a system that can precisely determine the location of the caller or caller-provided telephone
number and of the service location. Also desired is the ability for the client to precisely define a service area around each
service location. Further desired is the capability to quickly route the telephone call, such that the caller is not aware that
it is happening. The imprecise distance calculation from the caller location to the service location used by prior systems
for determining servicing location(s) is no longer required for this purpose. The ability of the system disclosed herein to
precisely determine the distance between the above two mentioned points provides a valuable item of information for
further selecting between multiple caller servicing locations and providing information regarding the proximity of servicing

location to the caller.

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
.8-

Also desired is the ability to utilize an instantaneous location, defined by coordinates, of a mobile or portable
telephone to identify one or more caller servicing locations by use of a real-time process in the system. The real-time
process may calculate one or more service locations for the caller in real-time {on-the-fly). In one embodiment, the system
would obtain the coordinates, such as latitude and longitude, of the mobile telephone from the telephone network. Other
embodiments may use other coordinate types or processes other than a real-time process.

In all of the desired embodiments, it would be preferable to utilize a service area, associated with a client service
location, of any desired size and shape. Further, it would be desirable to optionally allow the client to provide service area
information to the caller. Such an option would preferably utilize an NTPI box having voice/speech features linked to a file
comprising client service information by a service location 1D or telephone number, for example. The optional client service
location information could include, for example, providing the caller with such things as the address(es) of the servicing
jocation(s) for mailing, picking up andjor dropping off something to the selected servicing location; providing the caller with
pre-stored micro-area directions to the service focation(s); or providing the caller with the location's open hours, drop-off
times or pick-up times.

Summary of the invention

The present invention includes a system and method for automatically processing telephone calls by either
connecting the caller to a servicing location andfor providing the caller information regarding the servicing jocation.

The present invention provides a method of routing all published and unpublished telephone numbers, including
unlisted numbers, secondary unpublished business fines, mobile phones, and public pay phones. The present invention also
provides a method for legally conforming to contracted franchise territory definitions executed between franchisers and
franchisees by routing customer's calls precisely to the correct legal franchisee area. Additionally, the present invention
provides a method for precisely routing telephone calls based on any geographic definition including postal geography,
census geography, telecommunications geography, special grid coordinate geography, and all custom geography.

The present invention provides a method for automatically routing and processing customer calls that do not
meet the pre-set client protocols. This "exceptions handling" process routes to a "live" operator who executes preset
exceptions handling protocols. The present invention also provides for a method of integrating unrelated geographic
information systems and database technology, telecommunications systems and database technology, postal systems and
database technology, and computer technology into a common applications driven architecture. Additionally, the present
invention provides a method for dynamically and instantaneously updating and integrating Client and Master Tables with
no time lags. Furthermore, the present invention provides a method for automating the processing of information that is
input by a customer using a customer interface that automatically routes telephone calls to customer requested
destinations.

The present invention provides a Two Table system to determine the precise location of a telephone associated
with a caller by utilizing the caller's telephone number, determining a spatial key for the location, and spatially associating
the key with servicing location(s) whose service areas can be defined as any size or shape. Alternatively, a caller-provided

telephone number may be substituted for the caller's telephone number, in which case the location is of a telephone

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
g

associated with the caller-provided telephone number. This process starts by retrieving a telecommunications network-
captured caller 10-digit telephone number with its associated spatial key from the first table. Next, record{s) with the
associated spatial key are retrieved from a second table created by an automated process that mathematically establishes
spatially overlapping relationships between spatial keys and service area(s) of any defined size and shape. Finally the
retrieved service location dependent data is passed back to the telecommunications network to connect the caller to a
selected service location or for further network processing.

Key components of the system include a caller location identifier to identify the precise spatial and geographic
location of the caller, or caller-provided telephone number, with a spatial key and a routing kernel. The routing kernel
utilizes a dialed number to efficiently determine which geographically defined client service areas encompass the location
of the caller-provided telephone number and determines a distance and direction from the caller's location to each of these
service locations.

The present invention provides the creation and maintenance advantages of an automated table build process
versus the manual process of building and maintaining a Caller Telephone Number to Service Location Telephone table used
in prior systems. Automatically created client tables are built by accessing a fist of service areas one area at a time to
determine which spatial keys, e.g., ZIP+4s, are within each service area, calculating the distance from each ZIP+4 to the
service location, writing a record for each contained ZIP+4 to a file, and sorting and indexing the file by reference to the
ZIP+4 and by ascending distance.

In one Real-Time Processing embodiment, the system determines a latitude and longitude of a caller and based
on this latitude and longitude, the system spatially determines a list of locations that potentially service the caller's
jocation. The system then performs a detailed spatial test on each potential location in the list to determine if the caller's
fatitude and longitude is inside the service location's service area. If it is inside, the distance from the caller to the service
location is determined and added to the list of servicing locations. After all potential locations have been processed, the
servicing list is sorted in ascending order based on distance and passed back to the application job stream for use by the
telephone network in routing the call.

To facilitate efficient real-time processing, a Service Area Windows file is utilized. Each record in this file
comprises a service location telephone number or ID and a latitude/longitude window determined from the latitude and
longitude extremes of the radially-defined service area or the polygon-defined service area, as applicable.

A further derivative of the Two Table system (Master and Client tables) is a Three Table system which
incorporates a Client Service Location table. Alternately, the Client Service Location table can be incorporated into either
the One Table system or the Real-Time Process system. Thus, the Client Service Location table is an enhancement to any
of these systems.

In the Two Table system, the Master Table and the Client Table are used to determine the spatial service
relationship of the caller provided telephone number and the servicing locations. However, in call processing where there
are multiple service locations that service a caller, there is other service location dependent data that does not have any

spatial attributes, e.g., hours open, days open, product inventories, that is required for selecting the best service location

10

15

20

25

30

WO 99/66738 PCT/US99/13775

10
for the caller. This data is most efficiently stored in a third table called the Client Service Location table. There is one
record per service location in this table, which is indexed by service location identification (ID) or by service location
telephone number. This table can also contain informational data, e.g., service location, name, address, general directions
to a service location, a termination telephone number, a fax number and so forth, that can be spoken to the caller by a
Voice Response Unit.

One aspect of the present invention includes a telephone network call processing system having a call decoding
module capable of receiving a dialed number and a caller spatial coordinate corresponding to an instantaneous location of a
caller telephone; a real-time processing module responsive to the dialed number and the caller spatial coordinate for
providing a client service location telephone number corresponding to a selected service location, wherein the service
location is provided if the caller spatial coordinate is included in a service area having a client defined geographic
configuration of substantially any desired shape and size; and an outhound calling module for transmitting the provided
client service location telephone number to the telephone network.

Another aspect of the present invention includes a real-time method of call processing for use in a telephone
network, the method comprising receiving a dialed telephone number and a caller spatial coordinate corresponding to an
instantaneous location of a caller telephone; providing a client service location telephone number corresponding to a
selected service location in response to the dialed telephone number and the caller spatial coordinate, wherein the service
location is selected if the caller spatial coordinate is included in a service area having a client-defined geographic
configuration of substantially any desired shape and size; and transmitting the provided client service location telephone
number to the telephone network.

Yet another aspect of the present invention includes an automated call processing system and method capable of
caller location based routing for use with mobile phones. One embodiment of the system includes a call decoding module
capable of receiving a caller spatial coordinate corresponding to an instantaneous location of a caller telephone; a central
switch process capable of retrieving caller spatial coordinate dependent data corresponding to a selected client service
{ocation, wherein the central switch process utilizes a client database and wherein the client database is created based on
a plurality of client service locations, each client service location having an associated client-defined service area of
substantially any desired shape and size; and an outbound calling module for transmitting the caller spatial coordinate
dependent data to the telephone network.

Yet another aspect of the present invention includes, in a telephone network, an automated call processing
system capable of caller location based routing for use with mobile phones, the system having an inbound receiving module
capable of receiving a caller spatial coordinate corresponding to an instantaneous location of a mohile telephone caller; a
call processing process responsive to the caller spatial coordinate for providing a client service location telephone number,
wherein a service location is provided if the caller spatial coordinate is included in a service area having a client defined
geographic configuration of substantially any desired shape and size; and an outbound calling module for transmitting the

provided client service location telephone number to the telephone network.

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
1

Brief Description of the Drawings

Figure 1a is a block diagram of the files utilized in the presently preferred Client table Build process of the
present invention;

Figure 1b is a block diagram of a portion of a dynamic central switch linking process of the present invention
that uses the result of the Table Build process of Figure 1a;

Figure 1c is a system level diagram of a presently preferred embodiment of the central switch linking process
interconnecting a calling telephone and a destination telephone of the present invention;

Figure 2 is a map diagram illustrating an example of a routing network for the system of Figure 1c;

Figure 3 is a top-level flow diagram of a process to build a Client table using radius defined service areas for the
system of Figure 1c;

Figure 4 is a map diagram illustrating an example area utilized in the description of the process shown in Figure

Figure 5 is a flow diagram of the zip window list function indicated at 182 in Figure 3;

Figure 6 is a flow diagram of the zip windows function indicated at 262 in Figure 5;

Figure 7 is a flow diagram of the initial zip list function indicated at 184 in Figure 3;

Figure 8 is a flow diagram of the remove duplicates from zip list function indicated at 322 in Figure 7;

Figure 9 is a flow diagram of the final zip fist function indicated at 186 in Figure 3;

Figure 10 is a flow diagram of the zip+4 site radius check function indicated at 188 in Figure 3;

Figure 11 is a flow diagram of the service location closest to the caller function indicated at 196 in Figure 3;

Figure 12a is a top-level flow diagram of a process to build a Client table using polygon defined service areas for
the system of Figure 1;

Figure 12b is a block diagram of the files utilized in the process of Figure 12a;

Figure 13 is a diagram illustrating an example area utilized in the description of the process shown in Figure 12a;

Figure 14 is a flow diagram of the zip window list function indicated at 612 in Figure 12a;

Figure 15 is a flow diagram of the zip windows function indicated at 680 in Figure 14;

Figure 16 is a flow diagram of the initial zip list function indicated at 614 in Figure 12a;

Figure 17 is a flow diagram of the remove duplicates from zip fist function indicated at 752 in Figure 16;

Figure 18 is a flow diagram of the final zip list function indicated at 616 in Figure 12a;

Figures 19a and 19b are a flow diagram of the line index file function indicated at 618 in Figure 12a;

Figure 20 is a flow diagram of the zip+4 site polygon check function indicated at 620 in Figure 12a;

Figure 21 is a flow diagram of the point in polygon test function indicated at 930 in Figure 20;

Figure 22 is a block diagram illustrating files and processes utilized in the Client Table Build process where the
Client table is a Telephone Number to Telephone Number table for a first embodiment of a One Table system;

Figure 23 is a block diagram illustrating files and processes utilized in a merge operation for a second

embodiment of the One Table system;

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
12-

Figure 24 is a flow diagram of the Match and Append function indicated at 1040 in Figure 23;

Figure 25 is a flow diagram of the build Master table list subroutine 1050 shown in Figure 24;

Figure 26 is a flow diagram of the build Client table list subroutine 1052 shown in Figure 24;

Figure 27 is a block diagram of the One Table system, including a network configuration utilized at a switch;

Figure 28 is a flow diagram of an embodiment of the call processing linking process for interconnecting a caller
at a calling telephone and a destination telephone using the tables of Figure 22 or Figure 23 and the network configuration
of Figure 27;

Figure 29 is a block diagram of the files and processes utilized in a Real-Time Process embodiment of the
system;

Figure 30 is a block diagram of the Real-Time Process system, including a network configuration utilized at a call
processing center;

Figure 31 is a flow diagram of the Service Area Windows File Build process indicated at 1212 in Figure 28;

Figure 32 s a flow diagram of the Radius Latitude/Longitude function indicated at 1250 in Figure 31;

Figure 33 is a flow diagram of the Polygon Latitude/Longitude function indicated at 1252 in Figure 31;

Figure 34 is a flow diagram of the Write Service Area Window Record function indicated at 1254 in Figure 31;

Figure 35 is a top-level flow diagram of the Real-Time process indicated at 1220 in Figure 29 to build a list of
service locations whose service areas contain the caller location;

Figure 36 is a flow diagram of the Initial Service Area List function indicated at 1346 in Figure 35;

Figure 37 is a flow diagram of the Caller Location Inside Service Area Extremes function indicated at 1348 in
Figure 35;

Figure 38 is a flow diagram of the Caller Inside Service Area Test function indicated at 1380 in Figure 37;

Figure 39 is a flow diagram of an embodiment of the call processing linking process for interconnecting a caller
at a calling telephone and a destination telephone using the tables of Figure 29 and the network configuration of Figure 30;
and

Figure 40 is a flow diagram of an embodiment of the call processing linking process for interconnecting a caller
at either a fixed location calling telephone or a mobile calling telephone to a destination telephone using the tables of Figure
29 and the network configuration of Figure 30.

Detailed Description of the Preferred Embodiments

The following detailed description of the preferred embodiments presents a description of certain specific
embodiments to assist in understanding the claims. However, the present invention can be embodied in a multitude of
different ways as defined and covered by the claims.

Reference is now made to the drawings wherein fike numerals refer to like parts throughout.

For convenience, the discussion of the preferred embodiments will be organized into the following sixteen
principal sections:

1 System Overview;

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
13-
. Routing Example;
ML, General Client Table Build Process;

Iv. Client Table Build Process for a Radius Defined Service Area;

V. Client Table Build Process for the Service Location Closest to the Caller;

VI Client Table Build Process for a Polygon Defined Service Area;

ViL. Overview of One Table System;

Vill. One Table System Table Build Processes;

1X. Computer-Telephone Integration Network Configuration for One Table System;

X. One Table System Example;

Xl Overview of Real-Time Process System;

Xil. Computer-Telephone Integration Network Configuration for Real-Time Process System;

XL Real-Time Process: Off-line Process to Build Service Area Windows File;

XIV. Real-Time Process: During Call Process to Build List of Servicing Locations whose Service Areas

Encompass the Location of Caller Provided Telephone Number;
XV. Real-Time Process System Example;
XVL. Real-Time Process with Mobile Telephones;
XVII. Other Mobile Telephone Embodiments; and
XVl Summary.

|. System Overview

The present invention includes an automated telephone routing system which receives input from a common
carrier, such as AT&T and AT&T American Transtech. This input includes an updated national list of telephone numbers,
telecommunication infrastructure, and exception handling support.

A system and method for automatically and seamlessly routing a telephone call from a calling telephone to a
destination telephone selected by a client will be described. Optional information about the client service location can be
provided to the caller if a particular client so desires. In addition, a method of creating the tables utilized by the routing
system, according to criteria established by the client, will also be described. The tables discussed below may also be
referred to as files or databases.

Referring to Figure 1a, the number of calculations to be performed and permutations that must be tested is
reduced in creating the calling telephone number-to-service location telephone number tables used in the "1-800" routing of
the present invention. Accordingly, a Zip Windows file 104 (Figure 1a) and a process 105 to spatially access and operate
on this file are a part of the present invention. It will be understood that the Zip Windows file 104 is just one embodiment
of a Spatial Windows file which could include different types of spatial keys. The Zip Windows file 104 contains a list of
all zip codes that potentially touch a tenth of a degree (0.1°) latitude and longitude spatial window. By utilizing a set of

latitude and longitude extremes (minimums and maximums) for a service area in process 105, a list of 5-digit zip codes that

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
14

could overlap with the service area is generated. It is then only necessary to perform an “inside service area” test for each
service location and a small subset of zip+4 codes contained within each service area's returned list of 5-digit zip codes.
File 104 and process 105 will be explained further and an example given hereinbelow.

Update problems and costs associated with continually updating and periodically rebuilding a hundred million plus
record, telephone number-to-telephone number table for each business or client using the automated telephone routing
system is solved, in one embodiment, by creating a dynamically linked, updatable system. Instead of creating a telephone
number-to-telephone number table for each client, two tables linked by zip+4 codes, as shown in Figure 1b, are created. A
telephone number with its corresponding physical street address is assigned to a zip+4 code, and a Master Telephone
Number to Zip+4 Table 107 (Figure 1b) (the "Master Table") is built using the Postal Service's Zip+4 Address Coding
Guide, and commercially available software, e.g., CODE-1® {for mainframes and large machines) or AccuMaif® (for
personal computers or small machines), both available from GROUP 1 Software, Inc. The preferred Master Table,
presently maintained by AT&T American Transtech, is indexed or keyed by telephone number, and is updated on a daily
basis. When phone numbers are added, changed or deleted, the table is updated. This table is also updated on a periodic
basis to handle the approximate one hundred 5-digit zip code changes per quarter year, e.g., when a new zip code is
created, telephone numbers in the new code area must be assigned a new zip+4 code. This represents a fairly small
amount of change in relation to the 43,000 zip codes (5-digit} in the United States. This table must also be periodically
updated to handle NPA-NXX splits. At routing time, the present system allows all clients to use the same Master
Telephone Number to Zip+4 Table 107.

Independently, and on an individual client basis, each of over 28 million zip+4 codes is assigned, based on their
latitude and longitude centroid coordinates, to one or more service locations using standard “inside service area”
determination processes.

Hence, the present invention builds a Client Zip+4 to Service Location Telephone Number Table 106 {the "Client
Table", Figures 1a and 1b). A different table is built for each client or for every "1-800" telephone number that a client
may have. The Client table build process processes one client focation record at a time. The routines reguired to process
each record are a function of the location's service area definition: radius or polygon. Once an intermediate Client file is
created, the disk storage requirements can be reduced by eliminating locations that are not the closest location to the
caller. The building of radius and polygon client table records as well as the post-build process of creating a "closest
location” Client file will be described hereinbelow.

The Client Table 106 is then preferably provided to AT&T American Transtech for centralized routing at a call
processing center. This table is indexed or keyed by zip+4 code and is updated for each client as they add and delete
locations, when they change telephone numbers, and on a periodic basis to handle Post Office zip code changes and
telephone network NPA-NXX splits.

Using the presently preferred system, both the Master Table 107 and the Client Tables 106 are independently
maintained by separate organizations. Using the zip+4 code as a spatial key linkage, a calling phone number in the Master

Table 107 is then dynamically linked, as shown in Figure 1b, to a service location phone number in the Client Table 106

10

15

20

25

30

WO 99/66738 PCT/US99/13775
.15

and the call is automatically routed. The spatial key is a single number that identifies a specific geographically defined

area, line, or point that is defined by a set of coordinates. For simple geographies like points and rectangles the spatial key

can be a coded version of the coordinate description of the geography.

The postal zip+4 code is the preferred spatial key used to link the master table to the client table, but there are
other small geographic areas capable of having unique spatial keys, such as zip+6 code areas, census blocks, or very small
latitude/longitude grids, tiles, windows, or quad-trees. This two-table indexing approach provides a much higher automated
routing rate and a higher percentage of correctly routed calls in an environment where consumers are continually moving
and businesses are opening, closing, andfor moving. In addition, the twa-table indexing approach also acts as a "fire wall”
or buffer between regulated telephone number information and client marketing information to satisfy government
regulations.

The system of the present invention directly routes the telephone call from the caller to the closest service
location in approximately 40 milliseconds using the AT&T telecommunications network. The system described by Riskin
intercepts the call with a private switch, answers the call with a client recorded message and asks the caller to wait,
while it takes approximately 15,000 milliseconds to find the closest service location and then call forwards the call to the
service lacation.

To route a call, the system of the present invention looks up the caller's 10-digit telephone phone number in its
100,000,000 pius record Master Table, retrieves the spatial key that identifies the location of the caller's phone, looks up
the spatial key in the 28,000,000 plus record Client Table, and retrieves the telephone number of the location that services
the caller's spatial key or location. The system described by Riskin looks up the caller's 6-digit exchange in its 64,000
record Exchange file having only 18,000 unique coordinates, retrieves the V-H (vertical-horizontal) coordinates of the
exchange, interleaves the V-H coordinates, and starts a binary-iterative, V-H key based, size search of the N record client
service location database. The Riskin system iterates through this process, adjusting the size of the geographic areas
searched, until it retrieves a number of service locations that fall within a predetermined range. Riskin then calculates the
distance to each service location. If more than one location fits the criteria to be considered the closest distance, one
location is randomly selected as the closest service location.

il. Routing Example

Prior to discussing the building of Client Tables in more detail, it will be helpful to first discuss use of this table
and the Master Table in a "1-800" routing example. Referring to a central switch process 108 shown in Figure 1c and a
routing network shown in Figure 2, an example of telephone call routing will now be given. In this example, a caller dials
1-800-Italian to order a "MyPizza" pizza fram his phone (619-755-5666) located at 498 Stevens Avenue in Solana Beach,
CA 92075-2064. Of course, the present invention is not limited to use of "800" telephone numbers as other numbers
may be used in other embodiments.

Figure 1c includes process states and also data at 114, 132, and 146, indicated by parallelogram blocks. Also,

the central switch process is handled inside a switch as will be described below.

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
-16-

The steps involved in having this call automatically routed to the caller's local MyPizza Restaurant are as
follows:

1. A caller at "Location A" 160 (Figure 2), dials 1-800-Italian at block 110 {Figure 1c) to order, for example, a
pizza.

2. Based on the 1-800 dialed and the caller's long distance carrier, the call is routed by various telephone
companies to an intelligent central switch in Jacksonville, Florida, indicated on Figure 2 by "Location B" 162. The process
associated with the switch is shown in Figure 1c as being below the dotted line just before state 112 and above the
dotted line just after state 148. The central switch 111 is preferably a "4 ESS™" digital switch available from AT&T.
The switch includes a general purpose computer (not shown) such as a network control point computer with a memory.

3. Once the Jacksonville switch has the call, it pulls the caller's telephone number from the calling information
packet 114, by call decoding hardware 112 which performs Automatic Number Identification (ANI). The preferred
information packet 114 corresponds to the operation parameter field of the SS7 TCAP message available at the switch
111. The hardware to perform ANI is described in U.S. Patent No. 5,163,087 to Kaplan, and is hereby incorporated by
reference. The number equivalent of 1-800-ltalian is 1-800-482-5426, and the information packet looks as follows:

Packet: 6197555666......18004825426.......
The "1-800" number is an IN-WATS (inbound wide area telephone service) number and must be translated by a wide area
carrier to a POTS (plain old telephone service) number to be routed to the switch 111. Upon receiving the POTS number,
the switch 111 translates the number back to the WATS format.

4. Then, at decision state 116, the process 108 determines whether the client has chosen to give the caller an
option to enter a telephone number on a Touch Tone telephone keypad or other means. In other embodiments, other
characters are entered, such as a credit card number, an account number, or product order information, to enable other
features of the system. In the presently preferred embodiment, the telephone number represents the location where the
caller desires, for example, a product to be delivered or a service to be performed. As an example, if a client had a
telephone number such as 800-FLORIST and desires the optional input feature, the caller could choose to have the flowers
delivered to the address corresponding to a caller entered telephone number. If the decision state 116 is determined to be
true, the process 108 moves to state 118 to capture the telephone number entered by the caller. This number is then used
in place of the calling number in the information packet for further handling. However, if the decision state 116 is
determined to be false, the original calling number is unchanged, and the process 108 moves to a decision state 120.

5. At decision state 120, the process 108 determines if the calling number in the information packet is that of a
mobile telephone. A file in the computer of the switch 111 listing mobile telephone numbers is presently maintained by
AT&T American Transtech and is updated on an as-needed basis. Mobile telephones are assigned a number from a set of
prefixes unique to each area code in the U.S. Therefore the Mobile Telephone Number file only needs to contain the area
code and prefix combination (6 digits) to identify that the calling number is that of a mobile telephone. Because the mobile
telephone user, as determined at decision state 120, is not associated with a fixed location, the process 108 moves to a

state 128 for handling non-routable exceptions. An operator will then request location information from the mobile

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
-17-

telephone caller. Additional information about state 128 will be provided below. If the caller is not using a mobile

telephone, the process 108 continues from state 120 to state 122.

6. At state 122, the process 108 performs a look-up function, i.e., looks up the caller's telephone number
preferably using the well-known Indexed Sequential Access Method (ISAM), in one embodiment, to index the Master
Telephone Number to Zip+4 Table 107 (Figure 1b). ISAM is a well known method of searching described in the book
Operating System Concepts by Peterson and Silberschatz. In other embodiments, a determiner function is used to
determine the appropriate spatial key. Other look-up or determining techniques may be used in other embodiments. The
Master Table 107 was described in the System Overview section. As an example, a segment of a Master Table 107 is
shown in Table 1. This table is indexed by phone number and also contains the zip+4 code 132 of the physical address
where the calling phone is physically located.

TABLE 1

Example: Master Telephone Number to Zip+4 Table segment

Phone # Zip+4

6197555664 920751111

6197555665 920141313
> 6197555666 920752064

6197555668 920071234

7. A test is performed at a decision state 126 to determine if the calling number is listed in the Master Table
107. If not, the process 108 moves to state 128 wherein operator assistance is provided to route the call. The non-
routable exception handling at state 128 is for situations wherein a Master Table 107 or Client Table (Figure 1a) entry is
missing, incorrect, or the caller is using a mobile telephone. In the presently preferred embodiment, operator assistance is
provided by AT&T American Transtech. In general, only a small percentage of the calling numbers are not listed in the
Master Table 107. If the calling number is listed in the Master Table 107, the process 108 advances to a decision state
130 to determine if there is a zip+4 code 132 corresponding to the calling number in the packet 114. If not, the process
108 moves to state 128 wherein operator assistance is provided to route the call as mentioned previously. If a zip+4
code 132 is located in the Master Table 107, the process 108 moves on to state 134.

8. Since the information packet 114 also contains the number dialed, at state 134 the process 108 opens the
Client Zip+4 to Service Location Table A 106a that is associated with the client having the telephone number 800-482-
5426. The Client Table 106 is selected from a plurality of Client Tables based on the telephone number dialed by the
caller. Client Table B 106b and additional tables, as necessary, are for other clients or other phone numbers, e.g., another

"800" number, of the same client. The Client Tabies are built by the assignee of the present invention, the client, or a third

10

15

20

25

30

WO 99/66738 PCT/US99/13775
.18-

party to the assignee's specifications. There are two types of Client Tables. If calls are to be routed to the closest
location or to a service location servicing a non-overlapping polygon trade area, the first type of Client Table contains only
a single entry per zip+4 code with its corresponding service phone number 146 and distance. In cases where the client
wants a random or weighted selection, frem multiple selections, whase service areas service the caller or provide the caller
a choice, the second type of Client Table can have multiple records per zip+4 code, with each record having a different
service telephone number and distance. The process 108 looks up the caller's zip+4 code in the MyPizza Client Table
1064a using the Indexed Sequential Access Method.

9. A test is performed at a decision state 140 to determine if the zip+4 code 132 is listed in the Client Table
106a. If not, the process 108 moves to state 128 wherein operator assistance is provided to route the call. If the zip+4
code is in the Client Table 106a, the process 108 proceeds to a decision state 142 to determine whether there is a client
telephone listing for the zip+4 code 132. If not, the process 108 moves to state 144 wherein operator assistance is
provided to route the call, provide information, or take other action as determined by the client. A negative test result
determined at state 142, may arise, for example, if there is no service location whose service area encompasses the
location of the calling party. The exception handiing at state 144 is for situations where the call is correctly routed, but
the calling party does not get what is expected, i.e., the call is not satisfactorily completed (as in states 142, 152, and
154). In these situations, the client may select from a set of alternatives that can be handled by an automated process.
An example exception handling message is as follows: "We are sorry, but there is currently no service location that
services your location. If you desire to talk to a representative, please press zero."

If there is a client telephone number associated with the zip+4 code 132, the process 108 advances to state
148. As an example, a segment of Client Table 106a is shown in Table 2.

TABLE 2
Example: 800-482-5426 Client Table segment

2IP+4 Phone # Distance in miles
920752060 6199423366 3.1456
920752062 6199423366 2.1682

> 920752064 6194817777 1.2864
920752065 6197691111 0.1234

10. After finding the caller's zip+4 code 132 and the corresponding service telephone number 146, the switch,
at state 148, sends the information packet over the telephone network to ring at the telephone associated with the
number 619-481-7777.

11. At block 150, the telephone at MyPizza located at 2688 Via De La Valle in Del Mar, CA 92014-1908,
"Location C" 164 {Figure 2), rings.

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
-19.

12. if the telephone at the client service location is "busy" 152 or there is "no answer" 154, the process 108
proceeds to the exception handiing state 144 as described previously. At the client's request, the exception handling at
state 144 may, for instance, route the call to the next closest service location. Otherwise, if the "busy” or "no answer"
conditions are false, the telephone call is answered and the caller may, for example, order a pizza.

lll. General Client Table Build Process

The process 105 (Figure 1a) of creating or building a Client Table 106 for each client or each "800", or similar
number, for the client will now be described. This process is preferably performed on a general purpose computer, such as
an AT&T 3600 UNIX box. As previously mentioned, the present invention includes two types of service area definitions:
radius and polygon. How these two definitions are incorporated into the client table build process will be discussed below.
in addition, the post-build process of eliminating more distant records from the client table to create a client table
containing only the closest service location to a caller will also be discussed. This is used to reduce disk storage in
applications where there is no means for providing the caller a choice and only one service location telephone number can
be passed to the telecommunications network. An example of the process steps will be given using a fictitious food
service business.

The process for each type of service area definition utilizes four input files as shown in Figure 1a. The Zip+4
Centroid file and Zip Windows file were briefly discussed in the System Overview section. Each input file is now further
described. The following discussion again refers to Figure 1a.

A. Client Service Locations File

The first file is a Client Service Locations file 109 containing a list of service locations provided by the client.
The service locations and their service areas are defined by either a latitude/longitude location and a radius or a
latitudeflongitude location and a latitude/longitude polygon. Further detail about file 109 is provided in conjunction with
state 174 of Figure 3 {radius) and state 604 of Figure 12a (polygon).

B.Zip+4 Lat_Lon Centroid File

The second file is the Zip+4 Latitude and Longitude Centroid file 100 or Zip+4_lat_lon Centroid file previously
described. This file is available from the U.S. Postal Service or from, for example, Geographic Data Technology, inc. (GDT).
C. Zip Array File

The third file is a Zip Array file 103 created from the Zip+4 Latitude and Longitude Centroid file 100 and
provides three benefits that improve processing efficiency.

The first benefit is building an array where the row number of the array is equal to a 5-digit zip code. This
provides a very efficient method of indexing to a 5-digit zip code where the 5-digit zip code number is the row number of
the array.

The second benefit is once the 5-digit zip code is accessed in the array, the exact byte offset of where the first
zip+4 code for this 5-digit zip code starts in the Zip+4 Latitude and Longitude Centroid file 100 is known. Using this
method, it is very efficient to advance to the location of the first zip+4 record and read all the zip+4 records for a 5-digit

Zip code in the over 28 million record Zip+4 Latitude and Longitude Centroid file 100.

10

15

20

25

30

WO 99/66738 PCT/US99/13775
.20
The third benefit of the Zip Array file 103 is that for each five digit zip code, the file contains the latitude and
longitude minimums and maximums for all the zip+4 codes in the 5-digit zip code. By checking to see if a radius or a

polygon service area set of extremes overlap with the 5-digit zip code extremes, testing each zip+4 in a 5-digit zip code is

eliminated, if it is determined beforehand that there is no spatial overlap between the zip+4 extremes in a b-digit zip code

and the radius or pelygon service area.

The Zip Array file 103 is created using the GDT or Post Office supplied Zip+4 Latitude and Longitude Centroid
file 100. Each record in the Centroid file 100 contains a zip+4 number, and the latitude and longitude defined centroid for
each zip+4. A four step, Zip Array File Build process 101, as follows, is used to create the Zip Array file 103:

1.) A 32-bit integer array of 99,999 rows and 6 columns is initialized to zere. Column one is initialized to the row
number which is then utilized as the 5-digit zip code.

2.} For a 5-digit zip code, every zip+4 record in the Zip+4 Latitude and Longitude Centroid file 100 is read in a
sequential manner. The byte offset for the first zip+4 within the 5-digit zip code is noted. Temporary variables are
initialized and then used to determine the fatitude and longitude minimums and maximums of the zip+4 centroids for the
current 5-digit zip code. The greatest and least of both the latitudes and longitudes among all zip+4 codes for the current
b-digit zip code are then passed on to the next step.

3.} With each change in 5-digit zip code, the byte offset for the first zip+4 within a 5-digit zip code and the
latitude and longitude minimums and maximums for all zip+4 codes within a five digit zip code are written to memory for
the previous 5-digit zip code to its location in the Zip Array file 103. The latitude and longitude minimum and maximum
values are then reinitialized, and the previous and current steps are repeated with the next 5-digit zip code until the end of
the Zip+4 Centroid file 100 is reached.

4.) Upon reaching the end of the Zip+4 Centroid file 100, the last 5-digit zip code record is written to memory,
and then the Zip Array file stored in memory is written to a mass storage device such as a magnetic disk.

The column definitions for each row of the Zip Array file 103 are as follows:

column(1) is the 5-digit zip code number;

column(2) is the byte_offset into the Zip+4_lat_lon Centroid file 100 of the location of the lowest numbered
zip+4 for the 5-digit zip code of that row;

column(3) is a minimum latitude for the zip code of that row (zip_lat_min) ;

column(4) is a maximum latitude (zip_lat_max);

column(b) is a minimum longitude (zip_lon_min); and

column(B) is a maximum longitude (zip_lon_max).

D. Zip Windows File

The fourth file is the Zip_windows file 104. The purpose of this file is to build a linkage between a latitude and

longitude defined area on the earth and the zip codes that could theoretically touch this area. This linkage provides benefit

by making spatial computer searches of postal geography much faster and much more efficient.

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
21

The Zip_windows file 104 is created from the GDT or Post Office Zip+4 Latitude and Longitude Centroid file
100 using latitude and longitude 5 digit zip code extremes created from the Zip +4 extremes within a 5 digit zip code. The
general concept is to divide the earth into one tenth of one degree (0.1°) latitude and longitude rectangles, which, for
example, are approximately 6.9 miles by 5.2 miles in dimension at 40° latitude, and then tabulate all zip codes that overlap
each rectangle.

The Zip_windows file 104 is created by a Zip Windows File Build process 102 that reads each record from the
over 28 million record Zip+4 Centroid file 100 and writes a corresponding record that contains a latitude and longitude
(lat/lon) window and a 5-digit zip code. The lat/lon window field is created by multiplying the latitude in degrees times 10,
taking the integer portion (INT) of the product, multiplying the integer portion by 10,000, and then adding the integer
portion of the product of the longitude in degrees times 10.

For example, if the input zip+4 record is 920141909, the latitude is 32.9862 North and the longitude is
117.2522 West, the output zip_window record would be 3291172 for the lat/lon window and a zip code of 92014. After
all records have been written to an initial or temporary Zip_windows file (not shown), the file is then sorted by the lat/lon
window value or key with the corresponding 5-digit zip code, and duplicate records are eliminated. The resultant final
Zip_windows file 104 is then written with each record composed of the iat/ion window key and the corresponding 5-digit
zip code. Four lat/lon windows 210, 212, 214, 216, corresponding respectively to zip window keys 3301172, 3301171,
3281172, 3291171, are illustrated in Figure 4.

Now that the input files utilized by the Client Table Build process have been described, each of the three
different service area definition build processes will be described.

{V. Client Table Build Process for a Radius Defined Service Area

Referring generally to Figures 3 and 4, a Client Table Process 170 for a radius defined service area will be

 described. Process 170 is a specific version of the client table build process 105 shown in Figure 1a.

The process 170 begins at a start state 172 and moves to state 174 wherein a client provides a Ciient Service
Locations file 109 (Figure 1a) of service locations in machine readable form with information and format as shown in Table
3. The file 109 can be created by, for example, a commonly available word processing program or a database program,
and submitted on a floppy disk or other suitable media. Table 3 includes example information for a service location 218
named MyPizza Ristorante. The map of Figure 4 iliustrates some of the same information including a circle 220 to show a

2.5 mile radius from the MyPizza Ristorante as the service area.

TABLE 3
Record layout in ASCH Characters
Name of Service Location (30) Bytes : MyPizza Ristorante
Address {36) Bytes : 2688 Via De La Valle
City (30) Bytes : Del Mar

State (2) Bytes :CA
Zip Code (9) Bytes : 92014

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
.22

Telephone # (10) Bytes 6194817777
Radius in tenths of miles (4) Bytes 125

" Of course, other forms, information, and formats may be substituted in other embodiments.

The process 170 moves to state 176 wherein the list of service locations in file 109 is address standardized,
zip+4 coded, and latitude and longitude geocoded using commercially available services through companies such as Group

| and Geographic Data Technology. Table 4 is an example of a standardized record with latitude and iongitude appended.

TABLE 4
Name of Service Location (30) Bytes : MYPIZZA RISTOGRANTE
Address (36) Bytes : 2688 VIA DE LA VALLE
City (30) Bytes : DEL MAR
State (2) Bytes :CA
Zip Code (9) Bytes : 920141909
Telephone # (10) Bytes 16194817777
Radius in tenths of miles (4) Bytes 125
Latitude in degrees (10) Bytes : 32.9862
Longitude in degrees (12) Bytes :-117.2522

Moving to state 178, the process 170 establishes the constant of 68.9404 miles per degree latitude and reads
the Zip Array file 103 (Figure 1a) into memory of the computer. At state 180, the process 170 reads a record from the file
of service location records and calculates the number of miles per degree longitude for the service location. The miles per
degree longitude = 68.9404 * COSINE(latitude). For the example given in Table 4, at 32.9862 degrees latitude, the result
is 57.8297 miles per degree longitude.

The process 170 proceeds to a function 182 which creates a list of zip windows that the service location
touches. Touching a zip window means that at least part of the service area is in or overlaps the zip window. The zip
windows 210, 212, 214, 216 for the example given in Table 4 are illustrated in Figure 4. The function 182 will be further
described in conjunction with Figure 5 hereinbelow.

Moving to a function 184, the process 170 generates a list of 5-digit zip codes that touch any of the zip
windows identified by function 182. This zip list is sorted in ascending order and duplicate zip codes are removed in the
function 184. The function 184 will be further described in conjunction with Figure 7 hereinbelow.

The process 170 proceeds to a function 186 wherein 5-digit zip codes that are not within the service location
site radius specified in state 174 are removed from the zip list generated by function 184, and a zip final list is created.
The function 186 will be further described in conjunction with Figure 9 hereinbelow.

Advancing to function 188, the process 170 retrieves all the zip+4 records corresponding to the zip codes in the

zip final list (generated by function 186), used in conjunction with a zip pointer list (also generated by function 186), and

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
.93

determines if the zip+4 is at or inside the service area radius. This determination also yields the distance from the service

location to the zip+4 centroid (recalling that the zip+4 centroids are stored in the Zip+4 Centroid file 100). If the zip+4

is determined to be at or inside the service area radius, a raw Client Table record is written that includes the zip+4 code,

‘the client telephone number for the instant service location, and the distance of the zip+4 centroid to the service location.

The function 188 will be further described in conjunction with Figure 10 hereinbelow.

The process 170 moves to a decision state 190 to determine if additional client service records are to be
processed. If so, the loop of states 180 to 188 is repeated for the next service location record. If all service location
records have been processed for the instant Client Table, the process 170 advances to state 192. At state 192, the
process 170 sorts the raw records, written by function 188, by ascending zip+4 code and then by descending distance if
the same zip+4 code is listed more than once. The same zip+4 code could be listed more than once if there are multiple
service locations whose service areas overlap the zip+4.

Moving to a decision state 194, a determination is made if the client has selected the post-build option of
generating the client table for the service locations closest to the caller. if not, the client table build process is complete
except for loading the file to the production system computer at state 198. However, if the client has selected the post-
build option of "closest service location”, as determined at decision state 194, the process 170 moves to a function 196
to finish the Client Table build process. The function 196 will be further described in cunjunctibn with Figure 11
hereinbelow.

If the client has not selected the "closest location" option at decision state 194, the process 170 moves to a
state 198 wherein the sorted Client Table from state 192 is loaded into the computer in the telephone network switch
111 (Figure 1c), and an index key on the zip+4 codes is built. Upon completion of either function 196 or state 198, the
Client Table build process ends at state 200.

Referring generally to Figure 5, the function 182 defined in Figure 3 will be described. Function 182 generates a
list of zip windows that the site touches by first calculating site latitude and longitude extremes. For this calculation, the
absolute value is used for both the latitude and longitude.

in another embodiment of the present invention, a prefix is assigned to the window key based on the sign of the
latitude or longitude. The United States is located in the Northwest quadrant, and the key for this quadrant is zero(0). A
leading zero has no impact on the value of the numeric key. The other quadrants are Northeast, east of the prime meridian
at Greenwich, England in the Northern hemisphere; Southwest, west of the prime meridian in the Southern hemisphere;
and Southeast, east of the prime meridian in the Southern hemisphere.

Since almost all countries of the world are only in one quadrant, using the absolute value of the latitude and
longitude works well. In the few countries that are exceptions (that are in two quadrants), a different coordinate system
may be used, e.g., the Ordinance Survey system used in the United Kingdom.

Beginning at a start state 252 shown in Figure 5, the process 170 moves to a state 254 to calculate latitude
extremes of the service area. Several abbreviations will be used hereinforward: "min" for minimum, "max" for maximum,

“lat" for latitude, "lon" for longitude and "site” for the site or location of the service location.

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
.24

Site_lat_min = site_lat - radius(miles)/miles per degree lat; Site_lat_max = site_lat + radius(miles)/miles per degree lat.

Computation for the example service location and radius given in Table 4 yields:
Site_lat_min = 32.9862 - 2.5/68.9404 = 32.9499;
Site_lat_max = 32.9862 + 2.5/68.9404 - 33.0228.

The process continues at state 256 wherein longitude extremes of the service area are calculated:
Site_lon_min = site_lon - radius(miles)/miles per degree lon;

Site_lon_max = site_lon + radius(miles)/miles per degree lon.

Computation for the example service location and radius given in Table 4 yields:
Site_lon_min = 117.2522 - 2.5/57.8297 = 117.2089;
Site_lon_max = 117.2522 + 2.5/57.8297 = 117.2954.

Moving to states 258 and 260, the process 170 builds values for zip window minimum and maximum based on
the site latitude and longitude, respectively. Computation using the above example and results yields:

Site_lat_window_min = Int(10*site_lat_min) = 329;

Site_lat_window_max = Int(10*site_lat_max) = 330;

Site_lon_window_min = Int(10*site_lon_min) = 1172;

Site_lon_window_min = Int(10*site_lon_max) = 1172.

Moving to a function 262, the process 170 generates zip windows based on latitude min and max values, and longitude
min and max values and stores them in a zip_windows_list, which is distinct from the Zip_windows file 104 (Figure 1a).
Function 262 will be further described below in conjunction with Figure 6. The function 182 returns at state 264 to Figure
3.

Referring to Figure 6, the function 262 defined in Figure 5 will be described. Function 262 builds the actual
zip_window_list for the service location. The function begins at a start state 270 and moves to state 272 wherein the
variable | is set to equal zero (0), and the variable J is set to equal the value for the site latitude window minimum. After
the initialization of state 272, the process 170 moves to state 274 wherein the variable K is set equal to the value for the
site longitude window minimum. Moving to state 276, the value of variable | is incremented by one.

At state 278, a value of the zip_window_list, identified or addressed by the value of variable |, is calculated as
the value of the variable J multiplied by 10000 and then adding the value of variable K. State 280 determines whether the
value of K has reached the maximum value, and if not, the value of K is incremented by one (1) at state 282, and a loop to
state 276 is performed. If K has reached the maximum site longitude value, the process 170 continues at state 284 to

determine whether the value of J has reached the maximum value, and if not, the value of J is incremented by one (1) at

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
.95.
state 286, and a loop to state 274 is performed. If J has reached the maximum site latitude value, the function 262
returns at state 288 to Figure 5.
Continuing the example given in conjunction with Figure 5, the result of function 262 is as follows:
Zip_window_list{1) = 3281172
Zip_window_list{2) = 3301172

Referring to Figure 7, the function 184 defined in Figure 3 will be described. Function 184 generates a list of 5-
digit zip codes touching the zip windows identified by function 182 {Figure 5). Beginning at a start state 300, the process
170 moves to a state 302 and retrieves the Zip windows file 104 (Figure 1a) previously described and the
zip_window_list from function 182. The Zip_windows file 104 is indexed by the zip_window key and contains a list of

all zip codes that touch the zip window. A sample of the Zip_windows file 104 is given in Table 5, which corresponds

with Figure 4.
TABLE 5
Window Zip_code
3291172 92014
3291172 92075
3291172 92130
3301172 82007
3301172 92014
3301172 92024
3301172 92029
3301172 92075

Continuing at state 304, the process 170 initializes the variable K to the value of zero (0) and the variable J to the value of
one (1). Then at state 306, the process 170 advances to the record in the Zip_windows file 104 having the key equivalent
to the value of the zip_window_list addressed by the variable J. At state 308, the record accessed at state 306 is read to
get the zip_window and the associated zip code. Moving to state 310, the variable K is incremented by one (1), followed
by state 312 wherein zip code read at state 308 is written to a zip_list addressed by the variable K. A check is then made
at a decision state 314 to determine if the value of the zip_window from state 308 is greater than the value of the
zip_window_list addressed by the variable J. If not, the next record in the Zip_windows file 104 is read by looping back
to state 308.

If the decision state 314 test is true, the process moves to a decision state 316 to determine if the value of J is

equivalent to the number of windows in the zip_window_list. If not, the value of J is incremented by one (1) and a loop

10

15

20

25

30

WO 99/66738 PCT/US99/13775
.26-

back to state 306 is performed to process the next window. If the decision state 316 is true, all windows in the
zip_window_list have been processed, and the function 184 continues at state 320 wherein the zip_list of 5-digit zip
codes is sorted in ascending order. For the continuing example, after state 320, the zip_list appears as follows:

92007

92014

92014

92024

92029

92075

92075

92130

Moving to a function 322, the process 170 removes duplicate entries in the zip_list to generate a deduped zip_list.
Function 322 will be further described in conjunction with Figure 8 below. The function 184 returns at state 324 to
Figure 3.

Referring to Figure 8, the function 322 defined in Figure 7 will be described. Function 322 removes duplicate 5-
digit zip codes from the zip_list as sorted in state 320 of Figure 7. Beginning at a start state 340, the process 170 moves
to a state 342, and the first entry of zip_list is defined to be the first entry of a deduped_zip_list. Proceeding to state
344, a variable L is assigned the value of one (1) and a variable J is assigned the value of twe (2). Then at a decision state
346, the process 170 determines whether the value of zip_list addressed by J is equivalent to the value of zip_list
addressed by "J minus one”. If not, variable L is incremented by one at state 348, and the next entry in deduped_zip_list
as addressed by L is written to be equivalent to the entry in the zip_list as addressed by J.

If the decision state 346 is false or at the completion of state 350, the process 170 moves to a decision state
352 to determine if the value of variable J is equal to the number of zip codes in the zip_list. If not, variable J is
incremented by one at state 354, and the process 170 loops back to state 346 to check the next entry in zip_list.
However, if all zip codes in zip_list are checked, as determined by state 352, the function 322 returns at state 356 to
Figure 7. For the continuing example, the deduped _zip_list at the completion of function 322 is as follows:

92007
92014
82024
92029
92075
92130

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
.27
Referring to Figure 9, the function 186 defined in Figure 3 will be described. Function 186 builds a zip_final list
and a zip_painter list by checking zip boundary extremes and getting an offset to the start of the Zip+4_lat_lon Centroid

file 100 (Figure 1a) from the Zip Array file 103. This procedure eliminates zip codes that do not touch the area covered by

‘the radius of the service area. Beginning at a start state 370, the process 170 moves to a state 372 and accesses the Zip

Array file 103 (Figure 1a). Function 186 utilizes all columns, as previously described, of the Zip Array file 103 (Figure 1a).
Moving to state 374, variable | is set to a value of zero, and variable J is set to a value of one. Proceeding to state 376,
variable M is set equivalent to the entry in deduped_zip_list, from function 184, addressed by J.

Using the site information calculated in Function 182 and the information from the zip array table, a series of
checks are performed by decision states 378 to 384. At decision state 378, the process 170 determines whether the
site_lat_max is less than the zip_lat_min for the Zip Array file entry addressed by the variable M. If so, the process 170
moves to a decision state 386. If not, the process continues at decision state 380. At decision state 380, the process
170 determines whether the site_lat_min is greater than the zip_tat_max for the Zip Array file entry addressed by the
variable M. If so, the process 170 moves to decision state 386. If not, the process continues at decision state 382.

At decision state 382, the process 170 determines whether the site_lon_max is less than the zip_lon_min for
the Zip Array file entry addressed by the variable M. If so, the process 170 moves to decision state 386. If not, the
process continues at decision state 384. At decision state 384, the process 170 determines whether the site_lon_min is
greater than the zip_lon_max for the Zip Array file entry addressed by the variable M. [f so, the process 170 moves to
decision state 386. If not, the process continues at state 392. To get to state 392, a determination has been made that
the zip code does touch the area covered by the radius of the site. At state 392, variable | is incremented by one, and at
state 394, the process 170 writes the value of M to the zip_final list entry addressed by I. Moving to state 396, the
process 170 writes the value of byte_offset from the Zip Array file entry addressed by the variable M to the zip_pointer
list entry addressed by |, and the process moves to state 386.

If any of the decision states 378 to 384 is true, the current zip code entry from deduped_zip_list is not further
used. At decision state 386, a determination is made whether all entries in the deduped_zip_list have been checked. If
not, J is incremented by one at state 388, and the process 170 loops back to state 376 to check the next entry. If all
entries have been checked as determined by state 386, the function 186 returns at state 398 to Figure 3. For the
continuing example, the zip_final list at the completion of function 186 is as follows:

92007
92014
92075
92130

Referring to Figure 10, the function 188 defined in Figure 3 will be described. Function 188 reads all zip+4
records as identified by the combination of the zip_final list and zip_pointer list, and determines if the zip+4 centroids are

inside the site radius. Beginning at a start state 420, the process 170 moves to a state 422 and gets the zip_final list,

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775

.28
the zip_pointer list, and the Zip+4 Centroid file 100. At state 424, variable J is set to a value of one. Moving to state
426, the process 170 advances in the Zip+4 Centroid file to the address contained in the zip_pointer list addressed by the

variable J. Then, at state 428, the zip+4 latitude/longitude record is read at the address from state 426. The Zip+4

“Centroid file 100 (Figure 1a) is sorted in ascending zip+4 order, and each record in this file contains three fields: zip+4

code, latitude in degrees, and longitude in degrees. Moving to state 430, the process 170 calculates the distance from the
service location to the zip+4 centroid. The site latitude and longitude are available from state 176 while the zip+4
latitude and longitude are available from state 428. Moving to state 432, the process 170 determines if the distance
squared from state 430 is greater than the radius squared (which is available from state 174). If not, the zip+4 code is
inside the site radius, and the process 170 moves to state 434 to write a raw client table zip+4 telephone number record.
This record centains the zip+4 code, the telephone number of the client service location, and the square root of the
distance squared.

If the distance squared is greater than the radius squared, the zip+4 code is outside the site radius, and the
process moves to a decision state 436. At state 436, the process 170 determines if the current zip+4 code is greater
than 10000 times the value of the zip_final list entry addressed by the variable J plus 9999. The current zip+4 is
compared to a value for the highest possible numbered zip+4 for the current zip code by appending 9999 to the 5-digit zip
code. For example, if the zip code is 92007, the highest possible number for a zip+4 for this zip code is 920079999.
While reading the zip+4 records for zip code 92007, if the zip+4 record read is greater than 920079999, then the end of
zip+4 records for the 92007 zip code is passed, and the process 170 moves to the next zip code in the zip_final list. If the
decision state 436 is false, the process 170 moves to state 438 and advances to the next zip+4 record for the same 5-
digit zip code in the Zip+4 Centroid file 100. The next record is read by looping back to state 428.

If decision state 436 is true, the process 170 moves to a decision state 440 to determine if all records in the
zip_final list have been read. If not, the variable J is incremented by one at state 442, and the process loops back to state
426 and repeats the procedure for the next 5-digit zip code in the zip_final list. If all 5-digit zip codes have been processed
as determined by state 440, the function 188 returns at state 444 to Figure 3. For the continuing example, a sample
record of the raw Client table at the completion of state 434 is as follows:

Sample record: 920752064 6194817777 1.2865.

V. Client Table Build Process for the Service Location Closest to the Caller

The "closest" process, function 196 (Figure 3), is a post-build process for building a Client Table 106 created
from radius defined service areas, polygon defined service areas or a mix of both types of service areas. The primary
functions of the "closest” process are to reduce disk storage and clean up polygon digitizing errors that create minor
overlaps in non-overlapping service areas. States 172 to 194 (Figure 3) in the radius process or states 602 to 624 (Figure
12a) in a polygon process must be completed to create an intermediate client table that can be reduced in size and or
cleaned up by the post-build process 196.

Referring to Figure 11, function 196 as defined in Figure 3 will be described. Function 196 removes multiple

assignments of a zip+4 code and keeps the one with the shortest distance. Beginning at a start state 500, function 196

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
.29

accesses the sorted intermediate Client Table (not shown) which is availabie at the completion of state 192. Moving to
state 504, a variable "last_zip+4" is set equal to the value of zero. Then, at state 506, beginning with the first record, a
record is read from the intermediate Client Table. Moving to a decision state 508, a determination is made whether the
zip+4 just read in the record from state 506 is equivalent to the value of last_zip+4. If not, the current record is written
to the Client Table 106 at state 510, followed by setting the variable last_zip+4 equivalent to the current zip+4 code at
state 512.

At the completion of state 512, a decision state 514 determines if the end of the sorted intermediate Client
Table has been reached. If not, the function 196 advances to the next zip+4 code in the intermediate Client Table and
loops back to state 506 to process the next record. If the end of the intermediate Client Table has been reached as
determined by state 514, the Client Table 106 is loaded in the computer of the telephone switch 111 and an index key on
the zip+4 code is built. Function 196 returns at state 520 to state 200 of Figure 3 to end the "closest" pracess.

V1. Client Table Build Process for a Polygon Defined Service Area

In general, there are two types of polygon defined service areas. The first type is an exclusive or non-overlapping
trade area, and the second type is a non-exclusive or overlapping trade area.

For a non-overiapping polygon defined service area, each franchisee has a defined trade area, such as the area in
which they deliver a product. The following situation is given to illustrate this concept. A customer could be located
closer to, say, Franchisee B than Franchisee A, but if the customer is in the polygon area for Franchisee A, only the
telephone number for Franchisee A will be in the Client Table 106 (Figure 1a) record corresponding to the location of the
customer. However, if the service areas for Franchisee A and Franchisee B are overlapping, the Client Table 106 would
have one record with the telephone number and distance for Franchisee A, and another record with the telephone number
and distance for Franchisee B. Therefore, the client table build process 105 accommodates both types of polygon defined
service areas.

Referring generally to Figures 12a, 12b, and 13, a Client Table process 600 for a polygon defined service area
will be described. Process 600 is another specific version of the general process 105 shown in Figure 1a. Many parts of
the polygon defined service area process 600 {also referred to as the polygon process) are identical with those of the
radius defined service area process 170. Some functions have minor changes. Other functions are totally different. For
functions that are almost identical only the differences will be identified and explained to aveid repetition. The new
functions will be described in some detail.

The process 600 begins at a start state 602 and moves to state 604 wherein a client provides a Client Service
Locations file 109 (Figure 1a) of service locations in machine readable form with information and format as previously
shown in Table 3. The client also provides a detailed street map with the polygon service area of the service location
drawn on the street map with the telephone number of the service location written inside the polygon service area. The
map of Figure 13 illustrates an example polygon service area 640.

The process 600 moves to state 606 wherein the list of service locations in file 109 is address standardized,

zip+4 coded, and latitude and longitude geocoded using commercially available services through companies such as Group

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
-30-

I and Geographic Data Technology. Table 4 is the example of a standardized record with latitude and longitude appended.

In addition, the latitude and longitude vertices for the polygon service area drawn on the street map are digitized using a

commercially available GIS system such as Infomark for Windows available from Equifax National Decision Systems. The

digitizing process of state 606 assigns latitude and longitude coordinates for the vertices of the polygon and creates a

Polygon file 607 as shown in Figure 12b. An example of the Polygon file 607 is shown in Table 6 with the following data

items:
TABLE 6
Geocode: 6194817777
Name: MyPizza Del Mar
Number of vertices: 5
Lat/Lon vertex pairs: 33.0170-117.2810

32.9503-117.2874
32:9623-117.2132
33.0187-117.2084
33.0170-117.2910

The last latitude/longitude vertex pair must equal the first pair to close the polygon. This example is for a very simple
polygon. Typical franchise polygons are very complex; the polygon may follow non-linear street boundaries and contain
hundreds of vertices. The geocode is the telephone number of the service location. The Polygon file data is appended to
the end of its corresponding record of the Client Service Locations file 109, creating a variable length record.

Moving to state 608, the process 600 establishes the constant of 68.9404 miles per degree latitude and reads
the Zip Array file 103 (Figure 1a) into memory of the computer. At state 610, the process 600 reads a record from the
Client Service Location file 109 and calculates the number of miles per degree longitude for the service location. The miles
per degree longitude = 68.9404 * COSINE(latitude). For the example given in Table 4, at 32.9862 degrees latitude the
result is 57.8297 miles per degree longitude.

The process 600 proceeds to a function 612 which generates a list of zip windows that the service location
touches. Touching a zip window means that at least part of the service area is in or overlaps the zip window. The zip
windows for the example given in Table 4 are illustrated in Figure 13. The function 612 will be further described in
conjunction with Figure 14 hereinbelow.

Moving to a function 614, the process 600 generates a list of 5-digit zip codes that touch any of the zip
windows identified by function 612. This zip list is sorted in ascending order and duplicate zip codes are removed in
function 614. The function 614 will be further described in conjunction with Figure 16 hereinbelow.

The process 600 proceeds to a function 616 wherein 5-digit zip codes that are not within the polygon service
area specified in state 604 are removed from the zip list generated by function 614, and a zip final list is created. The

function 616 will be further described in conjunction with Figure 18 hereinbelow.

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
IR

Advancing to function 618, the process 600 builds a Line Index file 619 shown in Figure 12b of discrete latitude
and longitude points that define the polygon. Function 618 will be further described in conjunction with Figure 19a and
19b hereinbelow.

Continuing to function 620, the process 600 retrieves all the zip+4 records corresponding to the zip codes in the
zip final list generated by function 616 and determines if the zip+4 code is at or inside the polygon service area. If so, a
record is written in a raw Client Table (not shown) that includes the zip+4 code, the client telephone number for the
instant service location, and the distance of the zip+4 centroid to the service location. The function 620 will be further
described in conjunction with Figure 20 hereinbelow.

The process 600 moves to a decision state 622 to determine if additional client service records are to be
processed. If so, the loop of states 610 to 620 is repeated for the next service location record. If all service location
records have been processed for the instant raw Client Table, the process 600 advances to state 624. At state 624, the
process 600 sorts the raw records, written by function 620, by ascending zip+4 code and then by descending distance, if
the same zip+4 code is listed more than once. The same zip+4 code could be listed more than once if there are multiple
overlapping polygon service locations, each with a different client telephone number.

The process 600 then moves to a state 626 wherein the sorted Client Table from state 624 is loaded onto the
computer of the telephone network switch 111, and an index key on the zip+4 codes is built. Upon completion of state
626, the Client Table build process 600 for a polygon defined service area ends at state 628.

Referring generally to Figure 14, the function 612 defined in Figure 12a will be described. Function 612
generates a list of zip windows that the site touches by first calculating site latitude and longitude extremes. For this
function, the absolute value is used for both the latitude and longitude.

Beginning at a start state 670, the process 600 moves to a state 672 to establish latitude extremes of the
service area. The Polygon file 607 is accessed to retrieve the polygon vertices latitude minimum and maximum values.

Site_lat_min = polygon_fat_min;

Site_lat_max = polygon_fat_max.

For the example service location and polygon given in Table 6, the results are as follows:
Site_lat_min = 32.9503;
Site_lat_max = 33.0187.

The process continues at state 674 wherein longitude extremes of the service area are established. The polygon vertices
longitude minimum and maximum values are retrieved from the Polygon file 607.
Site_lon_min = polygon_ion_min;

Site_lon_max = polygon_lon_max.

For the example service location and polygon given in Table 6, the results are as follows:

10

15

20

25

30

WO 99/66738 PCT/US99/13775
-32-
Site_fon_min = 117.2084;
Site_lon_max = 117.2910.

States 676 and 678 are identical to states 258 and 260 of function 182 (Figure 5). As defined in Figure 14,
function 680 (Figure 15) is identical to function 262 (Figure 6). Function 612 returns at state 682 to Figure 12a.

As defined in Figure 12a, function 614 (Figure 16) is identical to function 184 (Figure 7). As defined in Figure
16, function 752 (Figure 17) is identical to function 322 (Figure 8). As defined in Figure 12a, function 616 (Figure 18) is
identical to function 186 (Figure 9).

Referring to Figures 19a and 19b, the function 618 defined in Figure 12a will be described. Function 618 builds
the Line Index file 619 by rounding all modified polygon vertices latitudes and longitudes to an integer value, thereby
creating a record of every discrete point along the line generated by connecting adjacent vertices listed in the Polygon file
607. The modification performed to the polygon vertices is subtracting the site_lat_min or site_lon_min as will be seen
below.

Beginning at a start state 830, the process 600 moves to a state 832 and initializes a variabie J to equal the
value one. Moving to state 834, the process 600 initializes a tangent (denoted by “T" in Figure 19) array element
addressed by the variable J to equal the value zero. At state 836, a latitude array (denoted by "LAT" in Figure 19) element
addressed by J is written to the value calculated by: subtracting site_lat_min (available from function 612, Figure 14)
from the vertices latitude (lat_vertices) addressed by J in the Polygon file 607 (available from state 606), multiplying the
result by 10,000, and then taking the integer (INT) portion of the product. Advancing to state 838, a longitude array
{denoted by "LON" in Figure 19) element addressed by J is written to the value calculated by: subtracting site_lon_min
(available from function 612, Figure 14) from the vertices longitude (lon_vertices) addressed by J in the Polygon file 607
{available from state 606), multiplying the result by 10,000, and then taking the integer portion of the product.

At a decision state 840, the process 600 determines if all vertices in the Polygan file 607 have been processed.
The number of vertices is available from state 606 as shown in the example in Table 6. If not, variable J is incremented by
one at state 842, and the process 600 loops back te state 834 to process the next vertices. If all vertices have been
processed, variable J is set equal to the value two at state 844.

States 846 through 860 are used to find vertices that are tangent to a latitude line. States 846 through 854
form a loop to sequence through all elements of the LAT array to determine if either of the conditions of decision states
846 or 850 are met. If so, the element of the tangent array addressed by J is set equal to one. If not, the next element is
checked, by incrementing J at state 854 and looping back to state 846, until the end of the LAT array is reached, i.e., all
vertices are tested, and decision state 852 is true. Decision state 846 determines whether the values of the elements of
array LAT immediately before and immediately after the current element are greater than the value of the current element.

In other words, decision state 846 determines whether a latitude line is tangent to vertex(J). Decision state 850

determines whether the values of the elements of array LAT immediately before and immediately after the current element

10

15

20

25

30

WO 99/66738 PCT/US99/13775
-33-

are less than the value of the current element. In other words, decision state 850 determines whether a latitude line is
tangent to vertex(J).

When J equals the number of vertices minus one, the process 600 moves to states 856 through 860 to perform
the follow tests:
decision state 856: If LAT(1) > LAT(2) AND LAT(1) > LAT(number_vertices-1) then T{J) = 1;
decision state 860: If LAT(1) < LAT(2) AND LAT(1) < LAT(number_vertices-1) then T(J) = 1.

Number_vertices is used to represent the number of vertices as available from state 606. Decision states 856 through
860 test for a special case of previous states 846 through 854 to determine if vertex(1) is tangent to a latitude line. If so,
the element of the tangent array addressed by J is set equal to one.

At state 862, the process 600 sets variable J equal to one. Block 864 is an off page connector from Figure 19a
to Figure 19b. Continuing on from block 864 on Figure 19b, the process 600 generates a pseudo-line of discrete latitude
points connecting the polygon vertices. Each point that defines the line is described by an X,Y coordinate. Each Y
coordinate or {atitude point is one ten-thousandth of a degree latitude apart on the Y axis.

Decision state 866 checks for parallel latitude lines, and if true, the process 600 moves to decision state 886 to
determine if all vertices have been processed. If not, J is incremented by one at state 888, and the process loops back to
decision state 866 to check the next element of array LAT. If LAT(J) does not equal LAT(J+ 1) as determined by decision
state 866, the process 600 moves to state 868, sets a variable K to equal the value of LAT{J), and moves to state 870.

State 870 is used to leave out latitude tangent vertices points. State 870 determines if K is equivalent to
LAT(J) and T(J) equals one. If so, the process 600 moves to decision state 882 to determine if K should be incremented by
one at state 884, or if K has reached the value "LAT(J+1) - 1" and decision state 886 is to be performed. If K is
incremented at state 884, the process 600 loops back to decision state 870.

If decision state 870 is false, the process 600 moves to state 872 to calculate a variable "delta_lat" to be
"LATWJ) - LAT(J+1)". At state 874, a variable "delta_lon" is calculated as the difference between the value of the array
LON element addressed by J and the value of the array LON element addressed by J plus one. Moving to state 876, a
variable "lat_point" is set equivalent to the value of variable K. State 878 is used to calculate a longitude (variable
“lon_point") for latitude line point using the following equation:

lon_point = INT{K-LAT(J)/delta_lat) * delta_lon+LON{J)).
Moving to state 880, the process 600 writes the values of lat_point and lon_point to the Line Index file and then loops
back to decision state 882 to check on the value of K.

At decision state 886, if J equals the number of vertices minus one, all vertices have been processed, and the
process 600 moves to state 830. At state 890, the process 600 sorts the Line Index file by ascending latitude point, and
then by ascending longitude point within the latitude point. Moving to state 894, process 600 builds the Polygon Line
index file 619 using the latitude point as the indexing key. Function 618 returns at state 894 to Figure 12a.

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
.34
Referring to Figure 20, the function 620 defined in Figure 12a will be described. Function 620 reads all zip+4

records as identified by the combination of the zip_final list and zip_pointer list, and determines if the zip+4 centroids are

inside the polygon service area.

Beginning at a start state 910, the states 812 through 918 are identical to states 422 through 428 of function
188 (Figure 10). Then beginning at state 920 through state 926, the process 600 compares the latitude and longitude of
the zip+4 centroid to the minimums and maximums of the site latitude and longitude available from function 612
(Figure 14). in other words, the process 600 determines if the zip+4 centroid is inside the latitude and longitude extremes
of the polygon service area. If not, at state 928 the process 600 advances to point to the next zip+4 record and then
loops back to state 918 to read the zip+4 record.

However, if the zip+4 centroid is determined to be inside the latitude and longitude extremes of the polygon
service area by states 920 through 926, the process 600 moves a function 930. Function 930 is a final test to determine
if the zip+4 centroid is indeed inside the polygon. The point-in-polygon test of function 930 returns with either an “inside"
flag or "outside” flag. If the zip+4 centroid is not inside the polygon, the "outside" flag is set by function 830, and the
process 600 moves to state 928 to advance to the next zip+4 record. However, if the zip+4 centroid is inside the
polygon, the “inside” fiag is set by function 930, and the process 600 moves to state 932 to perform a distance
calculation. State 932 is identical to state 430 of function 188 (Figure 10). States 934 through 940 and 928 are
identical to states 434 through 442 of function 188. Function 620 returns at state 942 to Figure 12a.

Referring to Figure 21, the function 930 defined in Figure 20 will be described. Function 930 tests to determine
if the zip+4 centroid is inside the polygon. Function 930 conceptually draws a line from the zip+4 latitude in a negative
longitude direction and then counts the number of times the line crosses the polygon boundary. If the line crosses an odd
number of times, the zip+4 centroid is inside the polygon, but an even number of line crossings determines that the zip+4
centroid is outside the polygon.

Beginning at a start state 960, the process 600 moves to state 962 to calculate a value for a variable "lat" by:
subtracting site_lat_min (available from function 612, Figure 14) from zip+4_lat (available from the Zip+4 Centroid file
100), multiplying the result by 10,000, and then taking the integer (INT) portion of the product. Moving to state 964, the
process 600 calculates a value for a variable "lon" by: subtracting site_lon_min (available from function 612) from
zip+4_lon (available from the Zip+4 Centroid file 100), multiplying the result by 10,000, and then taking the integer
portion of the product.

Moving to state 966, the process 600 initializes the variable "count” to a value of zero and proceeds to state
968 to access the Line Index file 619. At state 970, the process 600 reads the Polygon Line Index file 619 (available
from function 618, Figure 19) to retrieve the values for the variables "lat_point" and “"lon_point". The process 600
advances in the Polygon Line Index file 619 to the first occurrence of "lat" in the file by use of the file ISAM index. Moving
to a decision state 972, the process 600 determines if "lat_point" is greater than "lat". If "lat_point” is greater than
"lat", then all records in the Polygon Line index file 619 have been read. If not, a test is performed at a decision state 974

to determine if "lon_point” is less than “lon". If “lon_point" is less than “lon", a line drawn from the zip+4 centroid

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
.35-

toward negative infinity is defined to cross a polygon line. At state 976, "count” is incremented by one to indicate the line

crossing exists, and the process 600 loops back to state 970. However, if decision state 974 is false, the process 600

loops back to state 970 to perform the next read of the Line Index file 619.

v If process 600 determines at decision state 972 that "lat_paint" is greater than “lat", process 600 moves to a

decision state 978 to check if "count MODULUS 2" is equal to zero. If so, an even number of line crossings exist, the

"outside" fiag is then set, and the function 930 returns at state 980 to Figure 20. If decision state 978 is false, i.e.,

“count MOBULUS 2" is not equal to zero, an odd number of line crossings exist which denotes that the zip+4 centroid is

inside the polygon. The process 600 sets the “inside” flag, and the function 930 returns at state 982 to Figure 20.

Vil. Overview of One Table System

A derivative of the Two Table system (Master and Client tables) shown in Figures 1b and 1c is a One Table
system 1000 (Figure 27). The One Table system provides the fastest way to route a telephone call. Because it is based
on a single table, it is the simplest to implement in a telecommunications network.

implementation of the One Table system is not trivial because of the magnitude of the off-line maintenance
required to synchronize telephone number changes, client service location changes and to maintain the spatial relationship
between the telephone number and each client's service locations. Since there is one table per client, each telephone
number change must be reassociated with each client's servicing locations. There are several million telephone number
changes nationwide per month. The resultant number of changes to the tables is the number of telephone number changes
times the number of tables. Each tabie also must be updated for the addition and deletion of service locations, as well as
changes in service location service area definitions or telephone numbers and these changes must be reassociated with the
list of potential caller telephone numbers. Further, the more clients that are supperted by the system, the more tables that
are required, which could result in massive storage requirements.

In the One Table system, there are two preferred ways of creating a Telephone Number to Service Location
Telephone Number or 1D table that is incorporated into the telecommunications network. Once the single table is created,
the One Table system only requires a single mass storage, e.g., disk, lookup operation to determine the telephone number
of the desired service location, and thus, provides the fastest call routing embodiment.

A first method of building the Caller Telephone Number to Dealer Telephone Number table in the One Table
system is an enhancement of the Client Table Build process previously described above. The files and processes utilized to
generate the table are further described in conjunction with Figure 22 hereinbelow.

A second method of building the Caller Telephone Number to Dealer Telephone Number table in the One Table
system merges records from the Master Table and Client Table of the Two Table system using an off-line process. This
process is described in general in conjunction with Figure 23 hereinbelow. A Build Master Table List function and a Build
Client Table List function are both described by reference to Figure 24 and generally referenced to at 1050 and 1052,
respectively, and are further discussed in conjunction with Figures 25 and 26, respectively.

The Caller Telephone Number to Dealer Telephone Number table that results from either of the two methods of

table building mentioned above is utilized in a telephone network for the One Table system. The One Table system and its

10

15

20

25

30

WO 99/66738 PCT/US99/13775
.36
network configuration is described by reference to Figure 27 and is generally referenced to at 1000. The hardware
compoenents, tables and files utilized by the One Table system are described in more detail in conjunction with Figure 27.
The operational flow of the One Table system is described by reference to Figure 28 and is generally referenced to at
1160.
VIl One Table System Table Build Processes

The following description explains two automated methods of creating and maintaining a Telephone Number to
Service Location Telephone Number or ID table that can be incorporated into a telecommunications network. These
methods for building a One Table system use techniques that are similar in some respects to those used in creating the
Two Table system.

Special case of Client Table Build

The first method to be described in building the Caller Telephone Number to Dealer Telephone Number table is a
special case of the Client Table Build processes described above in conjunction with the Two Table system. This new
process is described by reference to Figure 22, and is generally referred to at 1002. Process 1002 begins with a ZIP+4
Centroid file, as described above in conjunction with the Two Table system. The ZIP+4 is the preferred Spatial Key in the
United States. By substituting a 10-digit telephone number for the ZIP+4 as our Spatial key, a 10-digit Telephone Number
Latitude & Longitude Centroid file 1010 is created. Utilizing file 1010 as an input to a Client Table Build process 1020,
along with a Phone Array file 1016 and a Phone Windows file 1018, the end result is a Client Table that is a Caller
Telephone Number to Service Location Telephone Number table 1022. Client Table Build process 1020 is similar to Client
Table Build process 105 {Figure 1a, and further described in conjunction with Figures 3 and 12a), except for the different
file names and field names used as the inputs to the process 1020, as identified herein. File 1010 is also used by two
other File Build processes 1012 and 1014, described hereinbelow.

The starting Telephone Number Latitude and Longitude Centroid file 1010 is created from a master list of
telephone numbers with addresses, ZIP +4 address standardization and coding software, such as AccuMail® or CODE-1®,
available from Group 1 Software, and latitude and longitude coding software, such as MatchMaker/2000© available from
Geographic Data Technology, Inc. (GDT). The preferred process for creating the Telephone Number Latitude and Longitude
file is a two step process as described hereinbelow.

Starting with the Telephone Number Address file, step one processes the file with USPS address standardization
AccuMail or CODE-1 software from Group 1, standardizes the addresses, and assigns a ZIP+4 to each address in the file.
The AccuMail software is used if the file creation process is run on a personal computer or other small machine, or
alternatively, the CODE-1 software is used if the process is executed on a mainframe or other large machine. In step two,
the address standardized and ZIP +4 coded resultant file is processed with GDT's MatchMaker/2000 software. For each
record, the software first looks up the address in GDT's Dynamap/2000® street address database. |f it finds the current
record’s address, it assigns a street number latitude and longitude to the record. If it doesn't find the address, it assigns a

latitude and longitude from GDT's ZIP +4 Latitude and Longitude Centroid file 100 (Figure 1a) to the record.

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
.37

Phane Array File Build process 1012 is similar to the Zip Array File Build process 101 (Figure 1a), except that the
resultant Phone Array file 1016 has a six digit (NPANXX) telephone number field instead of a 5-digit zip code field as in the
Zip Array file 103. Thus, there are 999,999 possible entries in file 1016, but not all are used because not every numeric
combination of area codes is currently assigned. Furthermore, the latitude/longitude minimums and maximums are for an
area defined by the first six digits of the telephone number in file 1016 rather than for the 5 digit zip code area of file 103.

Phone Windows File Build process 1014 is similar to the Zip Windows File Build process 102 (Figure 1a), except
that the resultant Phone Windows file 1018 has a six digit (NPANXX) telephone number field instead of a 5-digit zip code
field as in the Zip Windows file 104.

Off-line Merge Process

Referring to Figure 23, a second method used in building the Caller Telephone Number to Dealer Telephone
Number table involves the off-line merging of ZIP+4 records from the Master Table 107 and Client Table 106. The
Master Table 107 and Client Table 106 are generated as previously described in conjunction with the Two Table system
above. As shown in Figure 23, Master Table 107 and Client Table 106 are independently sorted in ascending ZIP +4 order
by states 1030 and 1034 to create a sorted Master Table 1032 and a sorted Client Table 1036, respectively. These two
sorted tables 1032 and 1036 are merged by a Match process 1040 to create a Caller Telephone Number ta Service
Location Telephone Number table 1022". For each ZIP+4 record in the Master Table, the Match process 1040 preferably
looks for matching ZIP+4 records in the Client Table and generates records in the Telephone Number to Telephone Number
table 1022', as explained in the detailed description of process 1040 in conjunction with Figure 24 below. The Telephone
Number to Telephone Number table 1022' is again identical to the original Client Table 106 in structure, but with more
records and with telephone numbers substituted for ZIP +4s.

Referring now to Figure 24, the Match and Append (or Merge) process 1040, identified in Figure 23, will be
described. Process 1040 starts at state 1042 and proceeds to state 1044 that initializes the Master Table and Client
Table End of File variables MT_EOF and CT_EOF to zero. Process 1040 then proceeds to state 1046 where it reads the
first Master Table record containing a Master Table Telephone Number (MTPHONE) and a Master Table Spatial Key
(MTSK). Process 1040 then proceeds to state 1048 where it reads the first Client Table record containing a Client Table
Spatial Key (CTSK) and a Client Table Telephone Number (CTPHONE).

Process 1040 then calls function MTLIST_BUILD 1050 where it builds a memory resident list of all Master
Table records having the current Spatial Key. Function 1050 is described in more detail in conjunction with Figure 25
hereinbelow. Upon completion of function 1050, process 1040 calls function CTLIST_BUILD 1052 where it builds a
memory resident list of all Client Table records with the current Spatial Key. Function 1052 is described in more detail in
conjunction with Figure 26. At the completion of function 1052, process 1040 proceeds to a decision state 1054 and
compares the first Spatial Key (MTL_LIST(1)) in the Master Table list to the first Spatial Key (CTL_LIST(1)) in the Client
Table list. There are three possible resuits of this comparison:

(1) the Client Table Spatial Key is greater than the Master Table Spatial Key;

{2) The Master Table Spatial Key is greater than Client Table Spatial Key; or

10

15

20

25

30

WO 99/66738 PCT/US99/13775
.38-
(3) The Master Table Spatial Key and the Client Table Spatial Key are equal.
These three possible results are described as follows:

{1) When the Client Table Spatial Key is greater than the Master Table Spatial Key, as determined at decision
state 1054, process 1040 proceeds to a decision state 1056. If the Master Table End of File condition MT_EQF is equal
to one, i.e., the merging process has completed, the Merge process 1040 terminates at state 1060. If the Master Table
End of File condition MT_EOF is not equal to one, process 1040 calls function MTLIST_BUILD 1050 (described in more
detail in conjunction with Figure 25) which refreshes the Master Table List and then returns back to decision state 1054.

(2) When the Master Table Spatial Key is greater than the Client Table Spatial Key, as determined at decision
state 1054, process 1040 proceeds to a decision state 1062. If the Client Table End of File condition CT_EOF is equal to
one, i.e., the merging process has completed, the Merge process 1040 terminates at state 1066. if the Client Table End of
File condition CT_EOF is not equal to one, process 1040 calls function CTLIST BUILD 1052 (described in more detail in
conjunction with Figure 26) which refreshes the Client Table list and then returns back to decision state 1054,

(3) When the Master Table Spatial Key and the Client Table Spatial Key are equal, as determined at decision
state 1054, process 1040 proceeds to Write Phone Number to Phone Number Record function 1068. Function 1068
writes out J times K records to the Phone to Phone Table 1022', wherein the vaiue of J is obtained from function 1050
(Figure 25) and the value of K is obtained from function 1052 {Figure 26). Function 1068 performs this operation by
writing out each MTL_PHONE(]) and CTL_PHONE(L) record combination by nesting aL = 1 to K loop for the Client Table
List within an | = 1 to J loop for the Master Table List. At the completion of function 1068, process 1040 proceeds to
function 1050 which refreshes the Master Table List and was previously described. Process 1040 then proceeds to
function 1052 which refreshes the Client Table list and was also previously described. After refreshing both the Master
Table list and the Client Table list, process 1040 returns to decision state 1054 to continue the Merge process.

Referring now to Figure 25, the Master Table List Build function 1050, identified in Figure 24, will be described.
Function 1050 starts at state 1080 and proceeds to state 1082 where variable J is set to ene. Function 1050 then
proceeds to state 1084 where it moves the current Master Table record Spatial Key (MTSK) and Master Table Telephone
Number (MTPHONE) to their corresponding elements: MTL_SK{J) and MTL_PHONE(J) in the Jth row of the memory
resident Master Table list.

Function 1050 then proceeds to state 1086 where it reads the next Master Table record containing the Master
Table Telephone Number (MTPHONE) and the Master Table Spatial Key (MTSK). Function 1050 then proceeds to a
decision state 1088 where it determines if it has reached a Master Table End of File condition. If the End of File condition
has been reached, function 1050 sets the Master Table End of File variable MT_EQF to one at state 1090 and returns
control at state 1092 to process 1040 at function 1052 (Figure 24). If the End of File condition has not been reached, as
determined at decision state 1088, function 1050 proceeds to a decision state 1094. At decision state 1094, function
1050 compares the current Master Table Spatial Key value (MTSK) to the first Spatial Key in the Master Table List
(MTL_LIST(1)) to determine if the two Spatial Keys are equal. If they are not equal, function 1050 returns control at state

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
.39
1082 to process 1040 (Figure 24). If the two Spatial Keys are equal, function 1050 increments the value of J by one at
state 1096 and proceeds back to previously described state 1084.
Referring now to Figure 26, the Client Table List Build function 1052, identified in Figure 24, will be described.

Function CTLIST_BUILD 1052 performs the same process with the Client Table as Function 1050 (Figure 25) does with

the Master Table. Function 1052 starts at state 1102 and proceeds to state 1104 where the variable K is set to one.
Function 1052 then proceeds to state 1106 where it moves the current Client Table record’s Spatial Key (CTSK) and
Client Table Telephone Number (CTPHONE) to their corresponding elements: CTL_SK(K) and CTL_PHONE(K) in the Kth
row of the memory resident Client Table list. Function 1052 then proceeds to state 1108 where it reads the next Client
Table record containing the Client Table Telephone Number (CTPHONE) and the Client Table Spatial Key (CTSK).

Function 1052 then proceeds to a decision state 1110 where it determines if it has reached a Client Table End
of File condition. If the End of File condition has been reached, function 1052 sets the Client Table End of File variable
CT_EOF to one at state 1112 and returns control at state 1114 to process 1040 (Figure 24). If the End of File condition
has not been reached, as determined at decision state 1110, function 1052 proceeds to a decision state 1116. At
decision state 1116, function 1052 compares the current Client Table Spatial Key value (CTSK) to the first Spatial Key in
the Client Table List (CTL_LIST(1)) to determine if the two Spatial Keys are equal. If they are not equal, function 1052
returns control at state 1114 to process 1040 (Figure 24). If the two Spatial Keys are equal, as determined at decision
state 1116, function 1052 increments the value of K by one at state 1118 and proceeds to previously described state
1106.

IX. Computer-Telephone Integration (CTI) Network Configuration for One Table System

Referring to Figure 27, a preferred CTI network configuration for the One Table system 1000 will be described.
The network configuration utilizes the tables described in conjunction with Figures 22 or 23. A telephone call, placed from
a calling telephone 110, is first processed by a switch (not shown) at a Local Exchange Carrier (LEC), such as Pacific Bell
or Southwest Bell, near the caller. The switch at the LEC assigns an Automatic Number Identification (ANI) that is
independent of the type of telephone used. Caller ID technology provides an alternate way of getting the caller's number,
but the technelogy is presently state regulated as to availability, and the technology can be blocked under certain
circumstances. According to AT&T, over 98% of all switches currently assign and pass a 10-digit ANI. The call, the ANI
and Dialed Number Identification Service (DNIS) numbers are then passed through a national long-distance network carrier,
such as AT&T, MCI, or Sprint, to a long distance network (LDN) terminating switch 111. The LDN terminating switch
111 can be connected to another switch (not shown) at the LEC servicing the terminating location or it can be a switch,
such as an AT&T MEGACOM 800 switch or an AT&T MULTIQuest 900 switch connected directly to a call processing
center interface point 1130. The preferred implementation in this Computer Telephone Integration network is a direct
connect to the AT&T long distance network using the AT&T MEGACOM 800 service which employs an AT&T 4 ESS
digital switch 111,

The terminating switch 111 passes the call, the ANI and the DNIS to the interface box 1130 between the

network and the call center. The interface box 1130 is preferably a VRU or interactive voice response unit (IVRU), such as

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
-40-

an AT&T Conversant System, and is the hub in providing CTI. An alternative embodiment utilizes an interface box 1130
without veice/speech features. The interface box 1130 has the ability to control call processing by accepting the voice
signal, the ANI, and the DNIS from the telephone network switch 111, speaking recorded voice messages to the caller,
'accepting caller DTMF keypad input, translating caller voice input and commands, e.g., “17, “2", “3", “A", “B", “C", “Yes"
and “No”, to computer data codes, translating computer text into synthesized speech and speaking the synthesized speech
to the caller. The interface box 1130 also communicates with other telephone and computer network systems via
communications protocols, such as ISDN and TCP/IP, over a Local Area Network (LAN) 1132 to obtain additional
information required for processing the call. The interface box 1130 optionally connects the caller to a servicing location
telephone, e.g., at a service location 150a, or transfers the caller to the servicing location using an advanced network
feature, such as AT&T's Transfer Connect. The LAN 1132 is dual wired for redundancy.

The interface box 1130 first communicates with a Structured Query Language (SQL) database server 1134 to
update, validate and determine the type of the caller-provided telephone number. The type of telephone number refers to
whether it is a U.S. POTS telephone number or not, e.g., a non-POTS number may correspond to a pager, a cellular
telephone or a personal communications service (PCS) telephone, and a non-U.S. number may be a Canadian telephone
number. The caller-provided telephone number is either the result of a normal caller-initiated call (AN or caller ID), or the
result of state 118 (Figure 28) where the caller provides an alternate telephone number. The preferred SQL Server
software provider is Oracle Corporation. The preferred server is an AT&T 3600 UNIX box. Other servers or database
software types may be used in other embodiments.

The database server 1134 has two databases that provide the information to update, validate and classify the
telephone number. The first is a Bellcore NPANXX Split file 1136. The “NPANXX” represents the first six digits of the
ten digit telephone number, corresponding to an area code and a telephone exchange. This file 1136 provides a list of
NPANXXs that are in the process of being split into new area codes and exchanges. If the caller provided NPANXX is in
this list and the current date falls within a date range related to the split retrieved from the file, the caller-provided
telephone number is updated according to the data in the Split file 1136. Next, the caller's NPANXX is compared against
Bellcore’s V&H Coordinate file 1138 which lists all valid NPANXXs and the types of services supported by the NPANXX.
Both the NPANXX Split file 1136 and the V&H Coordinate file 1138 are extracts from Bellcore's Local Exchange Routing
Guide (LERG). The LERG is the master database used by all common carriers for routing call in the North American Dialing
Plan telecommunications network. If the caller provided NPANXX is fisted in the V&H file 1138 as a U.S. Plain Old
Telephone Service (POTS) number, the caller's time zone and daylight savings time indicator are returned. If on the other
hand, the caller's NPANXX is invalid, the interface box 1130 requests the caller to provide another telephone number. If
the NPANXX is valid, but a non-U.S. number, or a special purpose telephone number, such as “NPA_555", a prerecorded
message related to the caller’s telephone number type will be played for the caller, and the caller will be asked to enter
another telephone number or the calier will be connected to an exceptions call handling operator 1146.

If the caller's NPANXX is determined to be a valid U.S. POTS number, the interface box 1130 sends an inter-

process communication request containing the caller-provided telephone number and DNIS to a routing processor 1150

10

15

20

25

30

WO 99/66738 PCT/US99/13775

41-
{also referred to as a routing computer). In one embodiment, the routing processor 1150 is a UNIX-based computer, such
as an AT&T 3600, that has access to the Telephone Number to Telephone Number Table 1022 corresponding to the

DNIS. Other computers may be used in other embodiments. The routing processor 1150 processes the request by

| retrieving the caller provided telephone number dependent data from the Client Telephone Number to Telephone Number

Table and returns a status code, and if successful, a list of service location telephone numbers or IDs. If the return status
code is an unsuccessful type, the interface box 1130 either plays a prerecorded message for the caller or connects the
caller to the exceptions call operator 1146.

If the routing processor request is returned as successful, the interface box 1130 then makes inquiries to the
database server 1134 which performs a database access function on the Client Service Locations table 1140 associated
with the caller's DNIS and retrieves records associated with the service location 1Ds returned by the routing processor
1150. Table 1140 is an indexed and on-line version of Client Service Locations table 109 (Figure 22). These retrieved
records contain information such as the service location telephone number, days and hours of operation, name, address
and micro-area directions, time zone, daylight savings indicator and so forth. Next, the interface box 1130 determines
which servicing locations are open to handle the caller’s request. Depending upon the client application, the interface box
1130 provides the caller, via recorded voice or synthesized text to speech, service location information and/or connects the
caller directly with the closest or selected currently open servicing location.

If the call requires operator exception handling, the interface box 1130 connects the caller to the operator 1146,
using a video display, through a CTI public branch exchange (PBX)/automatic call distributor (ACD) 1142 and host system
1144. The PBX/ACD 1142, such as a System 75 available from AT&T, provides the caller's voice to the operator 1146.
The host system is preferably a 3090 mainframe computer, available from IBM. The host system 1144 provides database
data from the server 1134 on the operator's video display. The host system 1144 is supported by AT&T American
Transtech in Jacksonville, FL. The operator 1146 handles the request and passes the information required to connect the
caller to a servicing dealer or terminates the call with a pre-recorded message back at the interface box 1130.

There are two chaices in connecting the caller to the servicing dealer. The interface box 1130 can generate a
second call from the interface box 1130 to the servicing location, e.g., location 150a, and connect the caller to the
servicing location through the interface box 1130. Alternatively, the interface box 1130 can use an advanced network
feature "Transfer Connect” marketed by AT&T to transfer the call directly to the servicing dealer. The latter is the
preferred implementation because it reduces telecommunications cost and interface box port capacity requirements.

The Servicing location answers the call using a conventional telephone 150a or other telephone call receiving
mechanisms. The servicing location can then handie the caller’s request.

X. One Table System Example

Referring to Figure 28 (in combination with Figure 27), the Call Processing process 1160 will be described. The
One Table system 1000 executes the flow process shown by the flow diagram of Call Processing process 1160. The

process is used to route a caller's telephone call to a client's destination service location by use of a single routing table.

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
47

The process 1160 utilizes the network configuration for the One Table system 1000 described in conjunction with Figure

2]7.

Process 1160 starts with the caller dialing, for example, an “800" type telephone number using, for example, a
'conventional telephone 110. The call is preferably routed by the national telecommunications network to a network
interface box 1130 (Figure 27) at the call processing center where it is answered. A call decoding module or component
112 of the network interface box 1130 decodes a network information packet 114, which contains the telephone number
of the caller, provided by ANI, and the dialed number, i.e., the DNIS number.

Process 1160 then proceeds to a decision state 116 and determines if the call application provides for optional
caller input. If not, process 1160 proceeds to a decision state 1162. However, if the call application does provide for
optional caller input, as determined at decision state 118, process 1160 moves to state 118, wherein the caller provides a
telephone number of another person or business which is usually associated with a location different than the location
associated with the ANl. The telephone number could also be the caller's home telephone number if, for example, the
caller is making the telephone call at a location away from the home. The new telephone number can be entered by the
caller using a DTMF keypad, e.g., on a touch tone telephone, by a computer or other device that can produce touch tone
sounds, or by speaking the information to the interface box 1130 (Figure 27). State 118 also checks the caller provided
telephone number against the Belicore NPANXX Split file 1136 (Figure 27) and the Valid Telephone Number file 1138
(Figure 27) and prompts the caller for another telephone number if the caller provided number is invalid.

Once the input telephone number is determined to be valid, or if the number is still invalid after the caller has
made a client-specified number of attempts at providing a valid number, process 1160 proceeds to decision state 1162.
At decision state 1162, process 1160 determines if the caller's telephone number or caller provided telephone number is a
valid U.S. POTS number. If not, the process 1160 moves to state 128 for non-routable call exception handling, as
previously described at state 128 in conjunction with Figure 1c. If the caller provided telephone number is a valid U.S.
POTS number, as determined at decision state 1162, process 1160 moves to state 1164 wherein the caller provided
number is used as an index for the Telephone Number to Telephone Number Table 1022 associated with the caller’s DNIS.

Moving to a decision state 1166, process 1160 determines if the caller’s telephone number was found. If it was
not found, process 1160 proceeds to state 128 for non-routable call exception handfing, as described abeve. If the caller-
provided telephone number is found, the corresponding telephone number's record(s) is retrieved and process 1160
proceeds to a decision state 1168 to determine if the retrieved record(s) contains a servicing location telephone number. f
no servicing location telephone number is present, process 1160 proceeds to routed call exception handling state 144, as
previously described at state 144 in conjunction with Figure 1c.

If a servicing location telephone number is present, as determined at decision state 1168, process 1160 extracts
the telephone number of the client's focal service location at state 146 and moves to state 148 where it dials the retrieved
service location’s telephone number. The outbound calling module or hardware utilized at state 148 may be part of the
network terminating point interface box 1130 (Figure 27). If the dialed number is busy, as determined in decision state

152, or there is no answer, as determined in decision state 154, then the call is routed to routed exception call handling

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
43
144, as described above. If the call does not encounter a busy signal and there is an answer, the caller is connected to the
servicing location 150 and the servicing location handles the caller's request.

XI. Overview of Real-Time Process System

in applications, where high call volumes and transaction processing speed are not an issue, where there is no
requirement to link to other Spatial Key coded databases, and/or where disk storage is a limited resource, a client may
elect to perform the calculations required to associate precise locations corresponding to a caller-provided telephone
number to servicing locations of any defined size or shape during call processing. The general components and techniques
required to perform real-time caller-provided telephone number to servicing location association have been previously
described above in conjunction with the Two Table system. Modifying these techniques in a real-time processing
configuration provides further improvements in efficiency for the real-time association process. The following description
explains the real-time process which requires a Master 10-digit Telephone Number to Latitude and Longitude Centroid file
1010 (Figure 29) and a Client Service Location file 109. Client servicing location service areas, part of each record of file
109, are described as a precise latitude and longitude service location address with a radii-defined service area or as a
service area polygon defined by a set of fatitude and longitude vertices.

In the Two Table system Client Table Build processes for radii and polygon Client Tables, the system reads a list
of service areas one by one, determines which ZIP+4s are within each service area, calculates the distance from each
ZIP+4 to the service location, writes a record for each contained ZIP+4 to a file, and sorts and indexes the file by ZIP+4
and further, by ascending distance.

Referring to Figure 29, the files and processes required in the Real-Time Process system 1200 (Figure 30) will be
described. A Real-Time Processing module 1220 executes on one of a set of routing processors 1150 (Figure 30) of
system 1200 (Figure 30} to route a telephone call in real-time. In addition to the Master 10-digit Telephone Number to
Latitude and Longitude Centroid file 1010 and the Client Service Location file 109, Real-Time Processing module 1220
utilizes a Client Service Area Array file 1214, a Client Service Area Windows file 1216 and a caller or caller provided
telephone number with a DNIS 1218. The output of module 1220 is a sorted list 1222 of service location telephone
numbers or IDs. The module 1220 will be described in more detail in conjunction with Figure 35.

The Master 10-digit Telephone Number to Latitude and Longitude Centroid file 1010 and the Client Service
Location file 109 were previously described in conjunction with the One Table system above. The Client Service Area
Array file 1214 and the Client Service Area Windows file 1216 are built using the latitude/longitude extremes of both the
radii and polygon services areas in the Client Service Locations file 109 as explained below.

Specifically, the Client Service Area Windows file 1216 is generated by an off-line Service Area Windows File
Build process 1212, which utilizes the Client Service Locations file 109. Process 1212 will be described in more detail in
conjunction with Figure 31 hereinbelow.

The Client Service Area Array file 1214 is generated by an off-line Service Area File Build process 1210, which
utilizes the Client Service Locations file 109. The Service Area File Build process 1210 is similar to the Zip Array File Build

process 101 (Figure 1a) and the Phone Array File Build process 1012 (Figure 22), except that the resultant Client Service

10

15

20

25

30

WO 99/66738 PCT/US99/13775
44-

Area Array file 1214 has a client service location ID field instead of a 5-digit zip code field as in the Zip Array file 103 or
the six digit (NPANXX) telephone number field for the Phone Array file 1016. The byte offset field of file 1214 contains
an offset into an indexed version {table 1140, Figure 30) of Client Service Locations file 109 rather than an offset into the
Centroid file 100 (Figure 1a) or Centroid file 1010 (Figure 22). Furthermore, the latitudeflongitude minimums and
maximums are for a client service area rather than for the 5 digit zip code area of file 103 or the area defined by the first
six digits of the telephone number of file 1016. The Client Service Area Array file 1214 is used to eliminate service
locations whose latitude and longitude service area extremes do not encompass the latitude and longitude of the location
corresponding to the caller provided telephone number. Since file 1214 only contains a byte offset index and latitude and
longitude extremes, which are also created by process 1212 described hereinbelow, process 1210 is not described in
further detail.

In real-time processing, the system executes the Real-Time "during call process” module 1220 of building a list
of service locations with telephone numbers whose service areas encompass the location of a caller provided telephone
number. This Real-Time process 1220 is further described by reference to Figure 35 below. The Real-Time process 1220
determines the latitude/longitude of the location corresponding to the caller provided telephone number by retrieving the
caller provided telephone number’s record from the Master Telephone Number to Latitude and Longitude Table 1010.
Based on this latitude and longitude and the DNIS dependent Client Service Area Windows file 1216, the Real-Time
process 1220 spatially determines a list of client locations that potentially service the caller's location. This list
determination step is described by reference to Figure 35 and generally referenced to at 1344 and 1346, and is discussed
in more detail in conjunction with Figure 36 hereinbelow.

The Real-Time process 1220 then performs a detailed spatial test on each potential location in the list to
determine if the caller's latitude/longitude is inside the service location's service area. If it is inside, the system calculates
the distance from the caller to the service location and adds it to the list of servicing locations. The detailed spatial test
and distance steps are described by reference to Figure 35 and generally referenced to at 1348, and are further discussed
in conjunction with Figures 37 and 38 hereinbelow. After all potential locations have been processed, the servicing list is
sorted in ascending order based on distance and passed back to the call processing application job stream to be used in
routing the telephone call.

Like for the Two Table system, real-time processing supports both polygon and radius service areas as was
described in the Two Table system Client Table Build processes. For real-time processing, the Radii and Polygon "inside
service area” processes are part of the same call processing kernel system but each requires its own low level function (in
Figure 38) to determine if the caller's location is inside or outside a service location's radii or polygon defined service area.

Among the several embodiments, the Real-Time Process system is the simplest to update and requires the least
storage. The spatial relationship of the caller-provided telephone number to a client's servicing locations is determined at
the time of the call. The Master Table of telephone numbers with latitudes and longitudes and each client's Service

Location files can be maintained independently and can reside on different machines.

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
45.

XIl. Computer-Telephone Integration Network Configuration for Real-Time Process System

Referring to Figure 30, the real-time determination system network configuration will be described. This
network configuration and call processing logic are identical to that shown in Figure 27 for the One Table system, with the
exception of the processing logic and databases accessed by the routing processor 1150. To avoid redundancy, only these
differences will be discussed. In Figure 30, as in Figure 27, the routing processor 1150 accepts a caller provided
telephone number and DNIS as input from the interface box 1130 and returns a processing status code and, if successful,
a list of servicing locations associated with the DNIS whose service areas encompass the location of the caller provided
telephone number.

In performing this function, routing processor 1150 (Figure 30) first looks up the caller provided telephone
number in the Master Telephone Number to Latitude and Longitude Table 1010. If the telephone number is not found, the
status code is set to a value corresponding to “unsuccessful, telephone number not in Master table” and this information is
returned to the interface box 1130. On the other hand, if the telephone number is found, the latitude and longitude are
retrieved from table 1010.

Next, processor 1150 converts the retrieved latitude and longitude into a lat/lon (latitude and longitude) window
by the following equation: Lat/Lon Window = (integer of (caller location latitude multiplied by ten)) multiplied by 10,000
plus (integer of (caller location longitude multiplied by ten)). The processor 1150 then looks up the lat/lon window in the
Service Area Windows file 1216 associated with the calier's DNIS. If the lat/lon window is not found, the status code is
set to the value corresponding to “unsuccessful, no lat/lon window found” and this information is returned to the interface
box 1130. If the latflon window is found, a list of potential servicing location IDs or telephone numbers is returned.

For each service location ID or telephone number in the potential list, processor 1150 locks up the 1D in the
Service Area Array file 1214 associated with the caller's DNIS and retrieves the latitude and longitude extremes for the
service area and the byte offset which indicates the start of the service location record in the Service Locations table 109.
Next, processor 1150 determines if the latitude and longitude of the location corresponding to the caller provided
telephone number lies inside latitude and longitude extremes of the current service area being tested. If not, processor
1150 proceeds to the next location in the potential list. Otherwise, the caller provided telephone number's latitude and
longitude lies inside the currently tested service area’s extremes, and processor 1150 retrieves the detailed service area
definition from the Client Service Locations Table 1140 associated with the caller's DNIS. The appropriate Client Service
Locations Table 1140 associated with the DNIS dialed by the caller is selected from a plurality of Client Service Locations
Tables for multiple DNISes and/or clients by utilizing a software selector, such as a case statement or a look-up table, on
the processor 1150. Table 1140 is an indexed and on-line version of Client Service Locations Table 109. Based on the
type of service area associated with the retrieved detailed record, i.e., radius or polygon, processor 1150 performs the
appropriate low level function call to determine if the location of the caller provided telephone number is located within the
service area currently being evaluated. If not, processor 1150 proceeds to the next location in the potential fist. If the
location is inside, processor 1150 calculates the distance from the caller location to the service location, adds the record

to an "inside service area" list and proceeds to the next record on the potential list.

10

15

20

25

30

WO 99/66738 PCT/US99/13775
46-
After processing all records in the potential list, processor 1150 determines if the “inside service area” list is
null, i.e., contains no records. If the list is null, the status code value is set to correspond to the message, “unsuccessful,

no records in inside service area list” and this information is returned to interface box 1130. If the "inside service area"

list contains records, the list is sorted by ascending distance, the status flag value is set to correspond to “successful” and

this information is returned to interface box 1130 where it is handled in exactly the same manner as was described for the
One Table system in Figure 27.

XIIL. Real-Time Process: Off-line Client Service Area Windows File Build Process

Figures 31-34 describe process 1212 that builds the Client Service Area Windows file 1216. This file contains
an indexed latitude and longitude window list that includes a record for each latitude and longitude window and service
location combination wherein the location's service area potentially overlaps the latitude and longitude window. File 1216
is used to quickly determine a potential list of servicing locations that overlap the location of the caller provided telephone
number by looking up records with a latitude and longitude window equal to that of the caller provided telephone number.
The Client Service Area Array file 1214 is used to eliminate service locations whose latitude and longitude service area
extremes do not encompass the latitude and fongitude of the location corresponding to the caller provided telephone
number.

Figure 31 shows an overview of the Client Service Area Windows File Build process 1212. Process 1212 begins
at a start state 1240 and proceeds to state 1242 where it reads a record from the Client Service Locations file 109.
Moving to a decision state 1244, process 1212 checks for an End of File condition. 1f the End of File condition is “yes”,
i.e., all records in file 109 have been read, process 1212 proceeds to state 1258 to finish the process. If the End of File
condition is “no”, i.e., all records in file 109 have not been read and processed, process 1212 performs a test at decision
state 1246 to determine if the record just read from file 109 has a radius or polygon defined service area. File 109 has a
field that denotes the type of service area.

If decision state 1246 determines that the service area type is radius, process 1212 proceeds to state 1248
where it calculates the number of miles per degree longitude at the latitude of the current service location. There are
68.9404 miles per degree latitude. The number of miles per degree longitude is a function of the latitude and is determined
by the following function: Miles per degree longitude = 68.9404 * COSINE(Latitude). After performing this calculation,
process 1212 calls a function 1250 to determine the latitude and longitude minimums and maximums for the radius type
service area. Function 1250 is described in more detail in conjunction with Figure 32.

If decision state 1246 determines the service area type is polygonal, process 1212 proceeds to call a function
1252. Function 1252 determines the latitude and fongitude minimums and maximums for the polygonal type service area.
Function 1252 is described in more detail in conjunction with Figure 33.

At the completion of function 1250 for a radius service area or function 1252 for a polygonal service area,
process 1212 continues to a Write Service Area Window Record function 1254. The Write Service Area Window Record

function 1254 creates a record in a Raw Service Windows file 1256. Function 1254 will be described in more detail in

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
47-
conjunction with Figure 34. At the completion of function 1254, process 1212 loops back to state 1242 to read the next
record in the Client Service Locations file 109.

Returning to decision state 1244, after reaching the End of File condition, process 1212 proceeds to state 1258.
vAt state 1258, the Raw Service Windows file 1256 is sorted and indexed in ascending order by lat/lon (latitudeflongitude)
window and focation ID within lat/ion window. The sorted and indexed results are written to the Client Service Area
Windows file 1216 and the process 1212 completes.

Referring now to Figure 32, the Calculate Latitude and Longitude Minimums and Maximums function 1250 for a
radius type service area will be described. Function 1250 begins at a start state 1270 and proceeds to state 1272 where
it calculates the latitude minimum and maximum of the service area for the current location. The current service area’s
minimum latitude is equal to the current location’s latitude minus the service area radius in miles divided by miles per
degree latitude. The current service area’s maximum latitude is equal to the current location’s latitude pius the service
area radius in miles divided by miles per degree latitude. Function 1250 proceeds to state 1274 where it calculates the
longitude minimum and maximum of the service area for the current location. The current service area’s minimum
longitude is equal to the current location’s longitude minus the service area radius in miles divided by miles per degree
longitude. The service area’s maximum longitude is equal to the current location's longitude plus the service area radius in
miles divided by miles per degree longitude.

Next, function 1250 moves to state 1276 where it builds the minimum and maximum latitude components of the
latflon windows association with the service location and its service area. The minimum latitude window component is
equal to the integer of ten times the service area latitude minimum, where the latitude is expressed in degrees and decimal
parts of degrees. The maximum latitude window component is equal to the integer of ten times the service area latitude
maximum, where the latitude is expressed in degrees and decimal parts of degrees. Function 1250 continues to state
1278 where it builds the minimum and maximum longitude component of the latflon windows associated with the current
service location and its service area. The procedure for building the window longitude extremes is exactly the same as the
procedure for building the latitude extremes, except that the latitude values are replaced with longitude values. At the
completion of state 1278, function 1250 proceeds to return state 1280 and returns to process 1212 at function 1254
{Figure 31).

Referring now to Figure 33, the Calculate Latitude and Longitude Minimums and Maximums function 1252 for a
polygonal service area will be described. Function 1252 begins at a start state 1290 and proceeds to state 1292 to
determines the latitude minimum and maximum of the service area for the current location. The current service area’s
minimum and maximum latitude is equal to the service area’s minimum and maximum latitude for the current location as
read from a polygon header for the polygonal service area from the Service Locations file 109 (Figures 29, 31). Advancing
to state 1294, function 1252 determines the longitude minimum and maximum of the service area for the current location.

Again this information is obtained from the polygon header portion of the file 109.
Next, function 1252 proceeds to state 1296 to build the minimum and maximum latitude components of the

fat/lon windows association with the service location and its service area. The minimum latitude window component is

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
48

equal to the integer of ten times the service area latitude minimum, where the latitude is expressed in degrees and decimal
parts of degrees. The maximum {atitude window component is equal to the integer of ten times the service area latitude
maximum, where the latitude is expressed in degrees and decimal parts of degrees. Advancing to state 1298, function
1252 builds the minimum and maximum longitude components of the lat/lon windows associated with the current service
jocation and its service area. The procedure for building the window longitude extremes is exactly the same as the
procedure for building the latitude extremes, except that the latitude values are replaced with longitude values. At the
completion of state 1298, function 1252 proceeds to return state 1300 and returns to process 1212 at function 1254
{Figure 31).

Referring now to Figure 34, the Create Service Area File Records function 1254 will be described. Function
1254 uses the values determined in function 1250 (for a radius service area) or function 1252 (for a polygonal service
area) to create a set of service area window records and write them to the Raw Service Area Windows file 1256 (Figure
31). The function 1254 utilizes an inner loop that traverses from a service area’s minimum longitude window value to the
maximum fongitude window value nested within an outer foop that traverses from a service area’s minimum latitude
window value to the maximum latitude window value.

Function 1254 begins at a start state 1310 and proceeds to state 1312 wherein a variable J is set equal to the
current service area’s minimum latitude window value. Function 1254 proceeds to state 1314 wherein a variable K is set
equal to the current service area’s minimum longitude window value. Moving to state 1316, function 1254 creates a
window record by multiplying the value of J by 10,000 and then adding the value of K. Next, function 1254 proceeds to
state 1318 and writes out the window record to the Raw Service Area Windows file 1256 (Figure 31).

Function 1254 then proceeds to a decision state 1320 and tests to determine if the value of K is equal to the
maximum longitude window component value of the service area for the current location. If they are not equal, function
1254 increments the value of K by one at state 1322 and moves back to state 1316 to generate another record. If the
values are equal, as determined at decision state 1320, function 1254 continues at a decision state 1324. At decision
state 1324, function 1254 compares the value of J to the maximum latitude window component value of the service area
for the current location. If the values are not equal, the value of J is incremented by one at state 1326 and function 1254
moves back to state 1314 to start a new outer loop latitude value. If the values are equal, as determined at decision state
1324, function 1254 proceeds to return state 1328 and returns to process 1212 at state 1242 (Figure 31).

XIV. Real-Time Process: "During Call Process” to Build List of Servicing Locations whose Service Areas Encompass the

Location of Caller Provided Telephone Number
Figures 35-38 describe the "during call process” 1220 of building a list of service locations whose service areas
encompass the location of a caller provided telephone number. System 1200 (Figure 30) executes the flow process
ilustrated by the flow diagram of process 1220. Figure 35 provides an overview of the process 1220 previously
introduced in Figure 28.
Referring now to Figure 35, process 1220 begins at a start state 1340 and proceeds to state 1342 where it has

memory access to the caller provided telephone number, the DNIS and the latitude and longitude of the location of the

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
49

caller provided telephone number. The latitude and longitude are obtained by looking up the caller provided telephone

number in the Master Telephone Number to Latitude and Longitude table 1010 (Figure 28). Moving to state 1344, process

11220 utilizes the latitude and longitude from state 1342 and determines the lat/lon (latitude and longitude) window

containing the location of the caller provided telephone number. The window is determined by using the formula Lat/Lon
Window = 10,000 times the integer of the caller latitude multiplied by 10 plus the integer of the caller longitude multiplied
by 10. For example, at 40 degrees latitude, the fat/lon window is represented by an X, Y rectangle with dimensions of
approximately 5.3 miles by 6.9 miles. Next, process 1220 calls function 1346 to build an initial list of Potential service
jocations whose service areas potentially overlap the lat/lon window of the caller provided telephone number. Function
1346 is described in more detail in conjunction with Figure 36 hereinbelow.

After completing function 1348, process 1220 continues at a function 1348 to process all service location
records in the potential service location list and determine if the service area overlaps the focation of the caller provided
telephone number. Function 1348 is described in more detail in conjunction with Figure 37 below. Upon completion of
function 1348, process 1220 continues at state 1349 wherein it sorts the final list of servicing locations by descending
distance, if the value of K is two or greater. The value of K is determined in function 1348 (Figure 37) and represents the
final number of service locations in the final list whose service areas encompass the jocation of the caller provided
telephone number. If the value of K is zero, process 1220 generates a flag indicating that there are no locations whose
service areas encompass the location of the caller provided telephone number. Of course, if the value of K is one, no
sorting is necessary. Finally, the list building process 1220 ends at state 1350.

Referring now to Figure 36, the initial Service Area List function 1346 will be described. Function 1346 begins
at a start state 1351 and proceeds to state 1352 where it opens the Client Service Area (latflon) Windows file 1216
related to the caller's DNIS and has in memory the latflon window of the caller provided telephone number (from state
1344, Figure 35). Function 1346 then proceeds to state 1353 where it sets the value of K equal to zero. Moving to state
1354, function 1346 advances to the start of the first record in the open Client Service Area Windows file 1216 with a
{atflon window value equal to the lat/lon window value of the caller provided telephone number.

Continuing at state 1355, function 1346 reads a lat/lon window record from the Client Service Area (lat/lon)
Windows file 1216. Moving to a decision state 1356, function 1346 determines if the record that was read at state 1355
has a lat/lon window value equal to the caller provided telephone number fat/lon window value. If the two values are
equal, function 1346 proceeds to state 1358 where it increments the value of K by one. Function 1346 then proceeds to
state 1359 where it moves the service location ID of the current record read from the Client Service Area (lat/lon) Window
file 1216 into the Kth element in a "Potential service location list”. Function 1346 then proceeds back to state 1355 to
continue reading records from the Client Service Area Windows file 1216. Returning to decision state 1356, if the latitude
and longitude windows values from the Client Service Area Windows record and the caller provided telephone number are
not equal, function 1346 returns to process 1220 (Figure 35) at state 1357.

Referring now to Figure 37, the Caller Location Inside Service Area Extremes function 1348 will be described.

Function 1348 begins at a start state 1360 and proceeds to state 1362 where it opens the Client Service Area Array file

10

15

20

25

30

WO 99/66738 PCT/US99/13775
50-
1214 and the Client Service Locations file 109 associated with the caller DNIS. The Client Service Array file 1214 can be
considered a specialized index into the Client Locations file 109. The Potential service locations list created by function
1346 is available in memory for function 1348 at state 1362.

Function 1348 then advances to state 1364 where it sets the value of variable J equal to one and the value of K
equal to zero. Moving to state 1366, function 1348 reads the record from the Service Area Array file 1214 indexed by the
ID value in location(J) of the Potential service location list. Function 1348 gets the byte offset into the Client Service
Locations file 109 and the latitude and longitude extremes of the service location from the Service Area Array file 1214.
Function 1348 proceeds to a decision state 1368 and then to decision states 1370, 1372 and 1374 to determine if the
caller provided telephone number latitude or longitude is less than the service area minimum latitude or longitude for the
service location or greater than the service area maximum latitude o longitude for the service location. If the result of any
of these tests in states 1368, 1370, 1372 or 1374 is “yes”, the caller location is “outside” the current service location’s
service area and function 1348 proceeds to state 1388. At state 1388, function 1348 increments the value of J by one
and then proceeds back to state 1366 to advance to the next service location.

If on the other hand, the results of all tests in decisions states 1368, 1370, 1372 and 1374 are “ng”, then
function 1348 proceeds to state 1376 where it advances to the byte offset in the Service Locations file 109 and reads the
service location record containing the detailed definition of the service location’s service area. The byte offset used to
locate the proper record in the Service Locations file 109 was obtained from reading the Service Area Array file 1214 at
state 1366.

At the completion of state 1376, function 1348 calls function 1380 to perform a “caller inside service area
test”. Function 1380 is described in more detail in conjunction with Figure 38 hereinbelow. Upon completion of function
1380, a return flag indicating either minside” or "outside" is set. If the return flag value is outside, function 1348 proceeds
to state 1388 wherein the value of J is incremented by one, as previously described. If the return flag value is inside,
function 1348 proceeds to state 1382 wherein the value of K is incremented by one. Proceeding to state 1384, function
1348 moves the current service location 1D or telephone number (obtained from the Service Locations file 108) and the
calculated distance into the Kth position of the final list of servicing locations. Proceeding to a decision state 1386,
function 1348 tests to determine if all locations in the Potential fist have been evaluated. If not, function 1348 proceeds
to state 1388, increments the value of J by one and then proceeds to state 1366. If all locations in the Potential list have
been evaluated, as determined at decision state 1386, function 1348 has built a final list of all servicing locations whose
service area encompass the location of the caller provided telephone number. Function 1348 then proceeds to return state
1390 from where it returns to state 1349 in process 1220 (Figure 35).

Referring now to Figure 38, the Caller Inside Service Area Test function 1380 will be described. Function 1380
begins at a start state 1402 and proceeds to a decision state 1404 where it determines if the current service location has
a radius or polygon defined service area. This information was previously retrieved from the Client Service Locations file
108.

10

15

20

25

30

WO 99/66738 PCT/US99/13775
51-
If it is determined, at decision state 1404, that the service area is defined by a radius, function 1380 proceeds

to state 1426 where it calculates the square of the distance from the caller provided telephone number location to the

“service location. The distance squared is used instead of the distance because of machine time required to take the square

root of a number.

Next, the radius branch (as determined at state 1404) of function 1380 proceeds to a decision state 1428 to
determine if the current service area is radius defined. Since this is true for the radius branch, function 1380 proceeds to a
decision state 1430 and compares the distance squared calculated at state 1426 to the service area radius squared for
the service location. The service location's radius is obtained from the Service Location file 109. If the distance squared is
greater than the radius squared, as determined at decision state 1430, function 1380 sets the return flag value to
“sutside” at return state 1424, and returns to function 1348 (Figure 37). However, if the distance squared is not greater
than the radius squared, as determined at decision state 1430, function 1380 sets the return flag value to “inside” at
return state 1432 and returns t0 function 1348 (Figure 37).

Returning to decision state 1404 of Figure 38, if the service area is determined to be defined by a polygon,
function 1380 proceeds to state 1406. The polygon branch portion of function 1380 is essentially the same process as
function 930 (Figure 21) for the polygon portion of the Client Table Build process for the Two Table system. At state
1406, function 1380 calculates an integer relative value latitude for the location of the caller provided telephone number.
The caller provided telephone number's latitude is translated into this form so it can be compared to the transformed
service area latitudes in a Line Index file, which is described hereinbelow. Next, function 1380 proceeds to state 1408
where it performs the same transformation on the longitude for the location of the caller provided telephone number as it
did with latitude in state 1406. After performing the longitude translation in state 1408, function 1380 proceeds to state
1410 where it sets the value of a variable “count” equal to zero.

Proceeding to state 1412, function 1380 gets the Line Index file. The Line Index file is built by function 618
used in the Polygon Service Area Build process in the Two Table system. Function 618 is shown in detail in Figures 13a
and 19b. After creating the Line index file at state 1412 above, or reading a pre-built version of the Line Index file stored
in an enhanced version of the Client Locations file 109, such as Client Location file 1140 (shown in Figure 28), function
1380 moves to state 1414 and reads the first record from the Line Index file.

Proceeding to a decision state 1416, function 1380 tests if the transformed latitude point read from the Line
Index file is greater than the transformed latitude point for the location of the caller provided telephone number {from state
1406). |f the result from decision state 1416 is “no”, function 1380 proceeds to a decision state 1418 and tests t0
determine if the transformed longitude point read from the Line Index file is less than the transformed longitude point for
the location of the caller provided telephone number (from state 1408). If the result from decision state 1418 is “no”,
function 1380 moves back to state 1414 to read the next record from the Line Index file. If the result from decision state
1418 is “yes”, function 1380 proceeds to state 1420 and increments the value of variable “count” by one and then moves

back to state 1414.

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
52-

On the other hand, if the result of decision state 1416 is “yes”, function 1380 proceeds to a decision state 1422

and tests if the value of the variable “count” tabulated in state 1420 is even or odd. If the result is “even”, function 1380

sets the return flag value to “qutside” at return state 1424 and returns to state 1388 of function 1348 {Figure 37). if the

result of decision state 1422 in Figure 38 is “odd” (the caller provided telephone number's location is inside the current
service area), function 1380 proceeds to state 1426 and calculates the square of the distance between the location of the
caller provided telephone number and the current service location. Next, the polygon branch of function 1380 proceeds
through decision state 1428 and follows the “no” branch to return state 1432. At state 1432, function 1380 sets the
return flag value to “inside” and returns to state 1382 of function 1348 (Figure 37).

XV. Real-Time Process System Example

Referring to Figure 38 (in combination with Figure 30), a system level Real-Time Call Processing process 1450
will be described. The Real-Time Process system 1200 executes the flow process shown by the flow diagram of the Real-
Time Call Processing process 1450. The process is used to route a caller's telephone call to a client's destination service
jocation by use of a real-time determination. Process 1450 utilizes the network configuration for the Real-Time Process
system 1200 described in conjunction with Figure 30.

in Figure 39, the beginning states {110 to 118, 1451) of Real-Time process 1450 are identical to the initial
states (110 to 118, 1162) in the One Table system process 1160 (Figure 28). In addition, the final states (1464 to 150)
in the Real-Time Determination process 1450 are identical to the ending states (1 168 to 150) of the One Table system
process 1160. Since these identical states have already been described in the One Table system example, only states
1452 to 1462 will be described below.

At state 1452 in Figure 39, process 1450 looks up the latitude and fongitude for the location of the caller
provided telephone number in the Master Telephone Number to Latitude and Longitude Table 1010. Moving to decision
state 126, process 1450 determines if the lookup of the caller provided telephone number in the Master Table 1010 was
successful. If not, process 1450 proceeds to state 128 for non-routable call exception handling, as described above at
state 128 in conjunction with Figure 1c. If the caller provided number is in the Master Table 1010, as determined at
decision state 126, process 1450 proceeds to a decision state 1454 and determines if a latitude and longitude were
retrieved at state 1452. If no latitude and longitude were retrieved, process 1450 proceeds to state 128 for non-routable
call exception handling, as previously described. If a latitude and longitude were retrieved at state 1452, process 1450
makes them available to process module 1220 in information packet 1456.

Process module 1220, which may run on the routing processor 1150 (Figure 30), is conceptually described in
conjunction with Figure 29 and is described in detail in conjunction with Figures 35 to 38. In summary, process 1220
translates the retrieved latitude and longitude (from state 1452) associated with the location of the caller provided
telephone number into a lat/lon Window Key. It then uses this key to retrieve a list of potential service location telephone
numbers or 1Ds from a DNIS dependent Client Service Area Windows file 1216 (Figures 29 and 30, but not shown in Figure
39). Process 1220 uses these retrieved service location IDs to retrieve a byte offset and service area latitude and

longitude minimums and maximums from a DNIS dependent Client Service Area Array file 1214 (Figures 29 and 30, but

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
53
not shown in Figure 39). For each potential service location where the caller provided telephone number's latitude and

longitude are within the poundaries defined by a service {ocation’s minimum and maximum latitude and longitude

" rectangular boundary, process 1220 uses the byte offset to retrieve a detailed definition of the service area for the service

location from the DNIS dependent Service Locations file 109. Each file 109, after indexing, is shown as one of the
plurality of tables 1140 (Figure 30). A software selector selects one of a plurality of the Service Location Files 109 based
on the DNIS. Process 1220 then performs a precise nwithin service area" test and builds a final list (shown at state 1460)
of service location IDs or telephone numbers sorted by distance (from the location of the caller provided telephone number
to the service location). The final list is also shown as list 1222 of Figure 29.

Proceeding to state 1462, process 1450 determines if the list from state 1460 contains any records. If the list
is null, i.e., contains no records, then process 1450 proceeds to state 128 for non-routable call exception handling, or else,
if the list contains one or more records, process 1450 then proceeds to state 1464. Since states 1464 to 150 in Figure
39 are identical to states 1168 to 150 in Figure 28 which have already been described for process 1160, the description
of the remaining states at the end of process 1450 is not repeated.

XV1. Real-Time Process with Mobile Telephones

Referring to Figure 40 (in combination with Figure 30), a system level Real-Time Call Processing process 1500
that supports mobile telephones will be described. The Real-Time Process system 1200 executes the flow process shown
by the flow diagram of the Real-Time Call Processing process 1500. The process 1500 is used to route a caller's
telephone call, which may be from a mobile telephone, to a client's destination service location by use of a real-time
determination. As used herein, a mobile telephone indicates a telephone that does not have a fixed location over time. The
mobile telephone may be any of various types of telephone, including, but not fimited to, cellular telephones, personal
communications system (PCS) telephones, sateliite telephones, marine telephones and emulated portable telephones. A
computer, such as a personal digital assistant (PDA) or other portable computer, can be equipped with a microphone and
speakers, or a headset, along with telephone emulation software, such as Microsoft Phone, and be connected to a
telephone network via a wireless modem, for example. Process 1500 utilizes the network configuration for the Real-Time
Process system 1200 described in conjunction with Figure 30.

in one embodiment of the Real-Time Process system 1200, the telephone network provides a spatial coordinate
of a caller's telephone location at predetermined intervals of time. Thus, at any particular time interval, an instantaneous
jocation of the caller's telephone is obtained. Of course, since the caller may be traveling at a speed of 65 miles per hour,
for example, the caller's location may rapidly change, and thus, the instantaneous location may be considered to be a good
estimate of the location of the caller's telephone.

As previously mentioned above, the present invention provides a method for routing telephone calls based on any
geographic definition including postal geography, census geography, telecommunications geography, special grid coordinate
geography, and custom geography. Depending on the type of geography used by the system 1200, various coordinate
systems could be utilized. The caller spatial coordinate could be a single number such as the postal zip+4 code but there

are other small geographic areas capable of having a unique spatial coordinate, such as zip+6 code areas, census blocks,

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
.54-
or very small (atitude/longitude grids, tiles, windows, or quad-trees. Alternatively, the caller spatial coordinate could be a
number pair, such as latitude and longitude, or V & H, or polar angle and radius vector, or even another way of identifying
an instantaneous location of the caller. Other possible caller spatial coordinate systems include Ordnance coordinates and
state-plane coordinates.

When a mabile telephone spatial coordinate is obtained from the telephone network, process 1500 is simplified
in comparison to the process 1450 (Figure 39). Several steps (states 1451, 1452, 126, and 1454) do not need to be
performed and the Master table 1010 is not utilized in this situation.

in Figure 40, the states 110, 112, 1451, 1452, 126, 128, 1454, 1460-1464 and 144-154 of Real-Time process
1500 are identical to the corresponding states (110, 112, 1451, 1452, 126, 128, 1454, 1460-1464 and 144-154) in the
Real-Time Process 1450 (Figure 39). Since these identical states have already been described in the prior Real-Time
process 1450 example, only states 1502 to 1510 will be described below.

At state 1502 in Figure 40, process 1500 obtains an information packet from the call decoding hardware
module 112. In one embodiment of the invention, the information packet contains a calling telephone number and a dialed
telephone number, while in another embodiment, the information packet contains the dialed telephone number and an
instantaneous spatial coordinate of the caller's telephone. In yet another embodiment, the information packet may contain
all three data items. Moving to decision state 116, process 1500 determines if the call application requires optional caller
input. If not, process 1500 proceeds to a decision state 1504. However, if the call application does require optional caller
input, as determined at decision state 116, process 1500 moves to state 118, wherein the caller provides a telephone
number of another person or business which is usually associated with a location different than the location associated
with the caller. The new telephone number can be entered by the caller using a DTMF keypad, e.g., on @ touch tone
telephone, by a computer or other device that can produce touch tone sounds, or by speaking the information to the
interface box 1130 (Figure 30). State 118 also checks the caller provided telephone number against the Belicore NPANXX
Split file 1136 (Figure 30) and the Valid and Mobile Telephone Number file 1138 (Figure 30) and prompts the caller for
another telephone number if the caller provided number is invalid.

Once the input telephone number is determined to be valid, or if the number is still invalid after the caller has
made a client-specified number of attempts at providing a valid number, process 1500 proceeds to a decision state 1504
and determines if a caller spatial coordinate was obtained from the telephone network and no optional caller input was
provided at state 118. If so, process 1500 continues at Real-Time Processing module 1510 wherein the caller spatial
coordinate is made available in information packet 1506. In one embodiment of the system 1200, the caller spatial
coordinate is a latitude and longitude pair.

In one embodiment, module 1510 is essentially similar to module 1220 which is conceptually described in
conjunction with Figure 29 and is described in detail in conjunction with Figures 35 to 38. In summary, module 1220
translates the caller spatial coordinate, e.g., jatitude and longitude, (from information packet 1502) associated with the
location of the caller telephone into a lat/lon Window Key. It then uses this key to retrieve a list of one or more potential

service location telephone numbers or IDs from a DNIS dependent Client Service Area Windows file 1216 (Figures 29 and

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
55

30, but not shown in Figure 40). Module 1220 uses these retrieved service location 1Ds to retrieve a byte offset and

service area latitude and longitude minimums and maximums from a DNIS dependent Client Service Area Array file 1214

{Figures 29 and 30, but not shown in Figure 40). For each potential service location where the latitude and longitude of

the caller's telephone are within the boundaries defined by a service jocation’s minimum and maximum latitude and
fongitude rectangular boundary, module 1220 uses the byte offset to retrieve a detailed definition of the service area for
the service location from the DNIS dependent Service Locations file 109. Module 1220 then performs a precise “within
service area” test and builds a final list (shown at state 1460) of service location IDs or telephone numbers sorted by
distance (from the location of the caller provided telephone number to the service location). The final list is also shown as
fist 1222 of Figure 29.

In another embodiment of the Real-Time Processing module 1510, a caller spatial coordinate other than latitude
and longitude is utilized. The module 1510 and the files shown on Figure 29 are modified for the utilized coordinate
system.

Returning to state 1504 of Figure 40, if a caller spatial coordinate is not obtained from the telephone network,
or if optional caller input is received at state 118, process 1500 advances to decision state 1451 as previously described
above. Process 1500 would advance to state 1451, for example, if a caller makes a telephone call from a cellular
telephone from a vehicle and enters a home telephone number to have a pizza delivered to the caller's home. In an
alternative example, if the caller used a mobile telephone to place an order with a pizza location closest to the current
position of the vehicle for dining at the pizza restaurant or for pick-up, process 1500 would proceed from decision state
1504 directly to module 1510 with the coordinate information of packet 1506.

In another embodiment of process 1500, instead of connecting the caller to the service location, information
about the service location could be provided to the caller as described in conjunction with Figures 27 and 30 above. This
information may include such items as the service location telephone number, days and hours of operation, name, address
and micro-area directions, time zone, daylight savings indicator and so forth.

XVII. Other Mobile Telephone Embodiments

Mobile telephones may be used with other embodiments of the automated call processing system. These
embodiments may include use of mobile telephones in a two table system having an alternative master table and use in a
one table system having an alternative client table.

In a two table system, a determiner function or a coordinate to spatial key module receives spatial coordinates
corresponding to the instantaneous location of the caller and determines a corresponding spatial key. As previously
described, the spatial key can be of various types, such as a zip+4 code. The determined spatial key can then be used to
access one of a plurality of client tables, which is selected based on the dialed telephone number, as previously discussed
above.

The coordinate to spatial key module may include, in one embodiment, a caller spatial coordinate to window code
function. The window code is then used to access an alternative master table wherein a record includes the window code

and a corresponding spatial key. The caller spatial coordinate may be a latitude and longitude provided by the telephone

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
56-
network, for example. f the caller spatial coordinate is the {atitude and longitude, the caller spatial coordinate to window

code function multiplies the latitude in degrees times one hundred, takes the integer portion (INT) of the product and

‘multiplies the integer portion by 100,000, and then adds the integer portion of the product of the longitude in degrees

times one hundred. In one embodiment, the result is a nine digit window code. If other caller spatial coordinates are
provided in other embodiments of the system, the caller spatial coordinate to window code function is modified for the
coordinate type.

in one embodiment, the alternative master table is generated using the GDT or Post Office Zip+4 Latitude and
Longitude Centroid file 100 using digitized zip code poundaries. The general concept is to divide the earth into one
hundredth of one degree (0.01°) latitude and longitude rectangles, which, for example, are approximately 0.7 miles by 0.5
miles in dimension at 40° latitude, and then tabulate all zip+4 codes that overlap each rectangle. A rectangle of this size
may, for example, contain one zip+4 code in rural areas, twenty zip+4 codes in a medium-density residential city
neighborhood and two hundred zip+4 codes in a dense downtown area of a hig city.

The alternative master table is generated by a process that reads each record from the over 28 million record
Zip+4 Centroid file 100 and writes a corresponding record that contains a fatitude and longitude (lat/lon) window code and
azip+4 code. The lat/lon window code field is created by multiplying the |atitude in degrees (from the Zip+4 Centroid file
100) times one hundred, taking the integer portion (INT) of the product, multiplying the integer portion by 100,000, and
then adding the integer portion of the product of the longitude in degrees times one hundred.

For example, if the input zip+4 record is 920141909, the latitude is 32.9862 North and the longitude is
117.2522 West, the output alternative master table record would be 329811725 as the lat/lon window code and the zip
code of 920141909, After all records have been written to an initial or temporary file (not shown), the file is then sorted
by the lat/lon window code value or key with the corresponding zip+4 code, and duplicate records are eliminated. The
resultant final alternative master table is then written with each record composed of the fat/lon window key and the
corresponding zip +4 code.

The alternative master table may have multiple 7ip+4 codes associated with a particular lat/lon window, which
leads to multiple records in the alternative master table having the same lat/lon window (but different zip+4 codes). This
state of the alternative master table allows the client flexibility in routing a telephone call. A lat/lon window as described
above may include portions of more than one service area (each having its own service location and associated telephone
number), especially if overlapping service areas are used by a particular client. In one embodiment of the system, if more
than one service area is associated with a fat/lon window, the system software selects a service area and its associated
telephone number for the service location by one of several possible schemes. For example, one scheme may assign
telephone calls on a rotating basis, such as the least recently called service location of the locations servicing a particular
lat/lon window. Another scheme may utilize knowledge of call volumes to equalize the call volume among the service
locations servicing a particular lat/lon window. Another scheme first determines which of multiple service locations is
open for business at the time of the call and then allocates the call using one of the previous schemes or yet another

similar scheme.

10

19

20

25

30

35

WO 99/66738 PCT/US99/13775
57

In another embodiment of the system, each lat/lon window in the alternative master table is further processed by
selecting one of the zip+4 codes to represent the lat/lon window. This further processing provides for efficiency, faster
call routing, and reduced storage requirements for the alternative master table. Several steps are involved to further
process the table for each lat/lon window. First, the center of the lat/lon window is calculated, such as, for example, by
determining the intersection of the two diagonal lines connecting the opposite corners of the window. Next, using the
centroid for each of the zip+4 codes (available from the Zip+4 Centroid file 100) for a particular latflon window, the
distance from the center of the lat/lon window to each of the centroids is calculated. This type of distance calculation is
described above in conjunction with Figure 10, state 430. The zip+4 code associated with the shortest distance is then
selected to be retained in the alternative master table, and the other records for the other zip+4 codes for the same
window are deleted. These steps are then repeated for each lat/lon window in the alternative master table. When these
steps are completed, the further processed alternative master table has only one record for each latflon window, where the
record includes the most central zip +4 code in the window.

In operation, the two table system with mobile telephone capability receives the caller spatial coordinates, e.g.,
latitude and longitude, from the telephone network. The coordinates are converted to a window code as described above.
The window code is used to access the alternative master table to obtain a spatial key, €.g., zip+4 code, from the table.
The spatial key is then used to access one of the client tables 106 (Figure 1), based on the dialed telephone number, so as
to obtain a client service location telephone number or client service location ID.

In a one table system, the alternative master table described above is merged with a client table 106 (Figure 1)
using a process similar to that shown and described in conjunction with Figure 23. The master table and sorted master
table use a window code field in place of the telephone number field so as to create window code to client telephone
number table. In operation, the one table system with mobile telephone capability receives the caller spatial coordinates,
e.g., latitude and longitude, from the telephone network. The coordinates are converted to a window code as described
above. The window code is used to access a window code to client telephone number table so as to obtain a client service
focation telephone number or client service location ID. One of a plurality of window code to client telephone number
tables is selected by the system based on the dialed telephone number.

in a three table system, or for use with a supplemental table in a one table system, a retrieved client service
location ID is used to index the third table or the supplemental table to provide client service location information, such as
previously described above. The caller may be provided with the option of listening to the provided client service location
information or to have the called routed to the client service location.

XVill. Summary

The present invention utilizes telephone numbers as an index to a table containing partitions of a country into
small geographic areas or points, such as postal service zip+4 codes, |atitudes and longitudes, and so forth. These
partitions are further utilized to access one of a plurality of service locations that may be anywhere within the country.

The automated telephone routing system of the present invention provides the ability to reduce costs by routing

a very high percentage of calls made to a single national telephone number without any human intervention and the

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
.58-

marketing advantage for a client of a single, easy to remember, toll free or nominal fee national telephone number. The
system also provides geographically precise results due to the use of all ten digits of the calling and called telephone
numbers which correspond with the zip+4 codes or latitudes and longitudes for the locations of these numbers. The
automated routing system provides the ability for a business to choose among different types of service location service
area definitions. Preferably, a client may define each location's service area as an area with a radius of any size or a
polygon of any size and shape. A client can intermix radius and polygon definitions as well as have overlapping or non-
overlapping service areas.

Flexibility is provided in defining how a particular client location is selected to terminate a call. A client is able to
specify that a caller within a preselected radius of any distance (to a tenth of a mile} about a particular location is to be
connected; or that the closest servicing client location to the caller is to be connected; or that a caller within a preselected
polygon about a particular client location is to be connected, wherein the polygon edges can be any length. The polygon
area can represent either an exclusive territory, or can overlap with other polygons or radii of other client locations if the
territory is non-exclusive. Additionally, each client location can have a different area type, with different radii or
dimensions, if required. Added flexibility is provided in the non-exclusive polygon type or radius type areas, wherein a
random or weighted selection from multiple locations within the area is possible.

The present invention provides a method of routing calls originating from all published and unpublished telephone
numbers, including unlisted numbers, secondary unpublished business lines, mobile phones, and public pay phones. The
present invention also provides a method for legally conforming to contracted franchise territory definitions executed
between franchisers and franchisees by routing customer's calls precisely to the correct specific franchisee area.
Additionally, the present invention provides a method for precisely routing telephone calls based on any geographic
definition including postal geography, census geography, telecommunications geography, special grid coordinate
geography, and all custom geography.

The present invention provides a method for automatically routing and processing customer calls that do not
meet the pre-set client protocols. This "exceptions handling” process routes the call to a "live” operator who executes
preset exceptions handling protocols. The present invention also provides for a method of integrating unrelated geographic
information systems and database technology, telecommunications systems and database technology, postal systems and
database technology, and computer technology into a common applications driven architecture. Additionally, the present
invention provides methods for automatically and independently updating both the Client and Master Tables, and instantly
and dynamically linking these two tables during call processing. Furthermore, the present invention provides a method for
automating the processing of information that is input by a customer using a customer interface that automatically routes
telephone calls to customer requested destinations.

The Two Table system provides a single updatable Master Table (telephone number to Spatial Key) to support
multiple clients, where each Client Table is updated independently from other Client Tables and from the Master Table.
This design maximizes transaction processing capacity in terms of calls per second that can be connected to a servicing

location when the Client Table contains the service {ocation telephone number as the service location iD.

10

15

20

25

WO 99/66738 PCT/US99/13775
.58
The Two Table system is one embodiment of the routing kernel that, based on a dialed number, efficiently

determines which geographically defined client service areas of substantially any size or shape encompass the location of

‘the caller or caller-provided telephone number and determines the distance and direction from the caller's location to each

of the servicing locations.

Another embodiment of the routing kernel, the One Table system, provides many of the same benefits as the
Two Table system plus it routes a call faster. Since it only requires a single disk lookup to determine the telephone number
of the servicing location, the One Table system is the fastest during the call routing process. From a network perspective,
because of its simplicity of a being only a single table, it is the simplest to implement in a telecommunications network.

Yet another embodiment of the routing kernel, the Real-Time Processing system, is the simplest embodiment to
update and requires the least amount of storage. The spatial relationship of the caller or caller-provided telephone number
to a client's servicing locations is determined at the time of the call. The Master Table of telephone numbers with
latitudes and longitudes, and each client's Service Location files can be maintained independently and can reside on
different machines. The system is streamlined and a Master Table look-up is not performed if the caller spatial coordinate
is received in a information packet at the terminating switch. This situation accurs if the caller is calling from a mobile
telephone.

As an enhancement to the One Table system, the Two Table system and the Real-Time Processing system, an
indexed Client Service Location table can be added to provide access to more information about the servicing location. Itis
relatively straightforward to implement for the Real-Time system because the Client Service Location table is already
utilized during call processing and can be readily further used to provide the additional information to the user. For the One
Table system and the Two Table system, essentially the same Client Table Building processes as originally used for both
the One Table system and the Two Table system are utilized to incorporate the indexed Client Service Location table,
except that the ID of the client location is substituted for the telephone number of the client location.

While the above detailed description has shown, described, and pointed out the fundamental novel features of
the invention as applied to various embodiments, it will be understood that various omissions and substitutions and
changes in the form and details of the system illustrated may be made by those skilled in the art, without departing from

the spirit of the invention.

10

15

20

25

30

35

WO 99/66738 PCT/US99/13775
-60-

WHAT IS CLAIMED IS:

1. A real-time method of identifying client service areas spatially containing an instantaneous location of
a caller telephone for use in a telephone network call processing system, the method comprising:
providing a file of client service areas of substantially any desired shape and size, wherein each service
area is geographically indexed by spatial coordinate windows, and wherein each service area is associated with
a service location;
obtaining a caller spatial coordinate corresponding to an instantaneous location of a caller telephone;
indexing the caller spatial coordinate in a spatial coordinate window index of the client service areas
file to generate a potential fist of at least one service location whose service area potentially contains the
location corresponding to the caller spatial coordinate;
determining which service areas include the location corresponding to the caller spatial coordinate; and
generating a list of service locations whose service areas contain the location corresponding to the
caller spatial coordinate.
2. The method defined in Claim 1, wherein the determining step utilizes the spatial coordinate of the
instantaneous location of the caller telephone and the spatial definition of the client service areas in the potentiai list.
3. The method defined in Claim 1, additionally comprising determining a distance from the instantaneous
location of the caller telephone to the service location.
4, The method defined in Claim 3, additionally comprising sorting the list of service locations whose
service areas contain the instantaneous location of the caller telephone by ascending distance.
5. A telephone network call processing system for real-time determination of client service areas that
spatially contain an instantaneous location of a mobile caller telephone, the system comprising:
a file of client service areas of substantially any desired shape and size, wherein each service area is
geographically indexed by spatial coordinate windows, and wherein each service area is associated with a
service location;
call decoding hardware capable of obtaining a caller spatial coordinate corresponding to an
instantaneous location of a mobile caller tefephone;
an initial service area list function capable of indexing the caller spatial coordinate in a spatial
coordinate window index of the client service areas file to generate a potential list of at least one service
location whose service area potentially contains the location corresponding to the caller spatial coordinate; and
a caller location inside service area extremes function capable of determining which client service
areas include the location corresponding to the caller spatial coordinate and generating a list of service locations
whose service areas contain the location corresponding to the caller spatial coordinate.
6. The system defined in Claim 5, wherein the caller location inside service area extremes function
utilizes the spatial coordinate of the instantaneous location of the caller telephone and the spatial definition of the client

service areas in the potential list.

10

15

20

25

30

WO 99/66738 PCT/US99/13775
61-
7. The system defined in Claim 5, additionally comprising a process for determining a distance from the
instantaneous location of the caller telephone to the service location.
8. The system defined in Claim 7, additionally comprising a process for sorting the list of service
locations whose service areas contain the instantaneous location of the caller telephone by ascending distance.
9. A telephone network call processing system comprising:

a call decoding module capable of receiving a dialed number and a caller spatial coordinate
corresponding to an instantaneous location of a mobile caller telephone;

a real-time processing module responsive to the dialed number and the calier spatial coordinate for
providing client service information corresponding to a selected service location, wherein the service location is
provided if the caller spatial coordinate is included in a service area having a client defined geographic
configuration of substantially any desired shape and size; and

an outbound calling module for transmitting the provided client service information to the telephone

network.
10. The system defined in Claim 9, additionally comprising a plurality of client service location files.
1. The system defined in Claim 10, wherein the real-time processing module utilizes the dialed number to

select one of the client service location files corresponding to a client identified by the dialed number.

12. The system defined in Claim 10, wherein one of the client service location files comprises a plurality of
records, each record having a client service location identification (ID), a telephone number, and a boundary description of
the service area for the service location.

13. The system defined in Claim 12, wherein the boundary description of a polygonal service area
comprises each vertex of a polygon.

14. The system defined in Claim 12, wherein the boundary description of a radius-defined service area
comprises a center point and a radius.

15. The system defined in Claim 9, wherein the caller telephone comprises a mobile cellular telephone.

16. The system defined in Claim 8, wherein the caller telephone comprises a mobile personal
communications system telephone.

17. The system defined in Claim 9, wherein the client service information comprises routing information so
as to allow the call to be routed to the selected client service location.

18. The system defined in Claim 9, additionally comprising a voice response unit, wherein the voice
response unit facilitates providing the client service information corresponding to the selected client service location to the
telephone network.

19. The system defined in Claim 9, wherein the client service information comprises an identification (1)
corresponding to the selected client service location.

20. A real-time method of call processing for use in a mobile telephone network, the method comprising:

10

15

20

25

WO 99/66738 PCT/US99/13775
-62-

receiving a dialed telephone number and a caller spatial coordinate corresponding to an instantaneous
location of a mobile caller telephone;

providing client service information corresponding to a selected service location in response to the
dialed telephone number and the caller spatial coordinate, wherein the service location is selected if the caller
spatial coordinate is included in a service area having a client-defined geographic configuration of substantially
any desired shape and size; and

transmitting the provided client service information to the telephone network.

21. The method defined in Claim 20, additionally comprising supplying a plurality of client service location
files.

22. The method defined in Claim 21, wherein providing the client service information utilizes the dialed
telephone number to select one of the client service location files corresponding to a client identified by the dialed
telephone number.

23. The method defined in Claim 21, wherein one of the client service location files comprises a plurality of
records, each record having a client service location identification (ID), a telephone number, and a boundary description of
the service area for the service location.

24. The method defined in Claim 23, wherein the boundary description of a polygonal service area
comprises each vertex of a poiygon.

25. The method defined in Claim 23, wherein the boundary description of a radius-defined service area

comprises a center point and a radius.

26. The method defined in Claim 20, wherein the caller telephone comprises a cellular telephone.

27. The method defined in Claim 20, wherein the caller telephone comprises a personal communications
system telephone.

28. The method defined in Claim 20, wherein the client service information comprises routing information

so as to allow the calf to be routed to the selected client service location.

29. The method defined in Claim 20, wherein the client service information corresponding to the selected
client service location is transmitted to the telephone network by a voice response unit.

30. The method defined in Claim 20, wherein the client service information comprises an identification (ID)

corresponding to the selected client service location.

PCT/US99/13775

WO 99/66738

1/44

T\\ T — | T
- ¥9025.026 | 999555619 Q\ .,%.\l\
— — —_— [4
V982l |LLLL18V619| ¥907GL026 - — —
suoyds|aj 49||0) jo J8||py jo
\S\mo\m_\@ juai v+diz y+diz |saquny auoydajay
J
378vL IN3ND 378V1L YILSVA
g0/ 20/
[4
o/ Ol
MOPUIM
diz #61a-S {-uoi/j07
oliy smopum diz i
ro/ ssadoug
pung o)1y
SMOPUIM
diz
plojjua) | Jequnp DaJy pauy pauy
y+diZ o} |auoydaje) epoy | apoy | epo) o4
uoyDo07 | uoybo0oy | padiaag diz diz diz [p1oajus) nﬂ_ﬂﬂooh_n_m
a0lA19S jo| oaolAs8g soaly 104 104 104 oju} >o.t< amN
souoysiq | jual) y+diz I XON un | 1es10 ’
318VL IN3ND epnyibuoy |apnjibucy | spnpjo | epniol | 9ikg g 10/
904 $$3004d a|i{ Apuauy di
auna /_.”_ v iN\\A\\
3avl
P BELEIY £/
so/ - apnyibuol| 8pnyio7

plojua) | plosjuia) | y+diz

oll4 ployjue) ¥ + diz

3|ty suolpoo)
301135 jual|)

VQ\ ago/

WO 99/66738

2/44

O O
A W
108

SWITCH

112
CALL DECODING
-/

HARDWARE

INFORMATION
PACKET: 774
CALLING PHONE
NUMBER &
DIALED NUMBER

778
Ve

CALLER ENTERS
TELEPHONE
NUMBER OF OTHER
LOCATION ON
PHONE KEYPAD

L

CALLING
NUMBER OF
MOBILE PHONE

LOOK UP ZIP+4
FOR CALLING
PHONE NUMBER

CALLING
NUMBER IN
MASTER

PCT/US99/13775

Fg. Id

fg. /e

Flg. /¢

WO 99/66738

TABLE Afe---> IN CLIENT

4825426)

3/44

132

ZIP+4

//'.54

LOOK uP
ZIP+4

TABLE

PCT/US99/13775

//25

IP+4 IN
CLIENT
TABLE?

NON-ROUTABLE
CALL
EXCEPTION
HANDLING

DOES ZIP+4
HAVE ASSOCIATED
CLIENT TELEPHONE
LISTING?

TELEPHONE
NUMBER 0OF
CLIENT'S LOCAL
SERVICE
LOCATION

//45

OUTBOUND
CALLING
HARDWARE

/‘/45

//44

ROUTED CALL
EXCEPTION
HANDLING

752

PCT/US99/13775

WO 99/66738

4/44

Ha1omjaN bBuinoy

g uo}ipo07
c9/

Z b1/

D uolpoo

) »9/
o9/

WO 99/66738

172
‘ START s

74
/
CLIENT

PROVIDES LIST
OF SERVICE
LOCATIONS

176
/

LIST IS
ADDRESS
STANDARDIZED,
Z1P+4 CODED,
AND GEOCODED

//78
ESTABLISH
CONSTANTS AND
READ ZIP
ARRAY FILE
INTO MEMORY

5/44

/86
s

ELIMINATE ZIPS
THAT DO NOT
TOUCH AREA

COVERED BY SITE

RADIUS TO BUILD

ZIP_FINAL LIST

READ ALL ZIP+4
RECORDS IN
ZIP_FINAL AND
DETERMINE IF
THEY ARE INSIDE
SITE RADIUS

760
/

READ FILE OF
SERVICE LOCATIDON

RECORDS AND
CALCULATE MILES PER
DEGREE LONGITUDE
FOR SERVICE AREA

SORT RAW CLIENT
TABLE BY ASCENDING
ZIP+4 AND THEN BY
DESCENDING DISTANCE

WITHIN ZIP+4

I 182

CREATE LIST OF
ZIP WINDOWS
THAT THE
SERVICE AREA
TOUCHES

\L 154

FIND LIST OF
ZIP CODES

TOUCHING ZIP
WINDOWS

fig. 5

794

CLOSEST

SERVICE
LOCATION
OPTION

YES

NO //93

PCT/US99/13775

170

S~

‘L //35

796
/

CLIENT TABLE
PROCESS FOR
SERVICE
LOCATIDN
CLOSEST TO
CALLER WITHIN
RADIUS DISTANCE
LIMIT

LOAD SORTED CLIENT
FILE ON TELEPHONE
SWITCH COMPUTER AND
BUILD INDEX KEY ON
ZIP+4

200

END

WO 99/66738 PCT/US99/13775

6/44

210~
- - o N N
B n
: |
92024 3301172
: _ “EN,C_’N_};TiS BLVD l/
! /
\ \

! \
' |

|
: {
! \\‘\‘

/ __\
'_. -7 - Byl N
92075 92014\
|
Ristorante
'\ 275
.\.
! BN
1 / ‘\'
220 ~

|

MAJOR HIGHWAYS ‘
————— MAJOR ROADS

| Scale in Miles — --—Zip Window File !
——— : : : !
l_ T L.l v N |- Radial Defined Service Area
. - -]
4 d
276

WO 99/66738 PCT/US99/13775

7/44

782

Vs 252 /\/

START

Ve 254

CALCULATE LATITUDE
EXTREMES OF SERVICE
AREA
SITE_LAT_MIN = SITE
LAT - RADIUSCMILES) /
MILES PER DEGREE LAT
SITE_LAT_MAX = SITE
LAT + RADIUSIMILES) 7/
MILES PER DEGREE LAT

s 256

CALCULATE LONGITUDE
EXTREMES OF SERVICE
AREA
SITE_LON_MIN = SITE
LON - RADIUSCMILES) /
MILES PER DEGREE LON
SITE_LON_MAX = SITE
LON + RADIUSCMILES) /

MILES PER DEGREE LON / 260
BUILD LONGITUDE FOR
/253 ZIP WINDOW MIN AND
MAX
BUILD LATITUDE FOR SITE_LON_WINDOW_MIN =
ZIP WINDOW MIN AND INTQ0=SITE _LON_MIND

MAX

SITE_LON_WINDOW_MAX

SITE_LAT_WINDOW_MIN INTC10%SITE_LON_MAX)

INTQO=SITE_LAT_MIN)

SITE_LAT_WINDOW_MAX = 262
INTCIOXSITE_LAT_MAX)
CREATE ZIP

WINDOW VALUES

BASED ON LAT

MIN AND MAX &

LON MIN AND MAX

64
2

7.5

RETURN

WO 99/66738

262

Fig.6

PCT/US99/13775

8/44
270
START
284
272 SITE_LAT_ YES
WINDOW_MAX ~)——

?

I =0)

J =
SITE_LAT_WINDOW _MIN

/274

SITE_LON_WINDOW_MIN J=Jd+1

/275

S~ 268

RETURN

i 278

ZIP_WINDOW_LISTC(D
= J = 10000 + K

280

K =

SITE_LON_ YES

WINDOW_MAX
?

WO 99/66738

START

/J 74

GET
ZIP_WINDOW_LIST
AND
ZIP_WINDOW FILE

/.504

VN
W
—-o0

9/44

Joo

J = NUMBER
OF WINDOWS IN
ZIP_WINDOW_LIST?

PCT/US99/13775

YES
—

7184

/320

SORT ZIP_LIST
IN ASCENDING
ORDER

/JZZ

/306' ,

ADVANCE TO RECORD

IN ZIP_WINDOW FILE
WITH KEY =
ZIP_WINDOW_LISTCJ)

/308

READ
ZIP_WINDOW

FILE RECORD:
ZIP_WINDOW,
ZIP_CODE

/310

K=K+1

/.5 72

ZIP_LIST(KK) =
Z1P_CODE

ZIP_WINDOW >
ZIP_WINDOW_
LISTC(D

YES

REMOVE DUPLICATES
FROM ZIP_LIST TO
CREATE
DEDUPED_ZIP_LIST

Fig.7

/JZ 4

RETURN

WO 99/66738 PCT/US99/13775

10/44

/.fa/ﬂ

4
START [

/.5’42

DEDUPED_ZIP_LISTCD
= ZIP_LISTCD

/.544

[
inn
ny -

/.)’55
IS YES
ZIP_LISTC(Y IS J = NUMBER YES
ZIP_LISTC(I-D —> OF ZIP COBES IN RETURN

ZIP_LIST 2

L=L+1 J=J+1

/.550

DEDUPED_ZIP_LISTC(L)
= ZIP_LISTC(D

L |

Fig.8

WO 99/66738 PCT/US99/13775

11/44
370
786
START)’
SEE
fj.%’
372 J = NUMBER
OF ZIP_CODES IN _YES
GET ZIP ARRAY DEDUPED_ZIP_LIST? RETURN
FILE
~374
£ IE8
I =0
J=1 J=J+1
376
M =
DEDUPED_ZIP_LIST¢()
/‘..7.92
378 [=1 et
< YES
E_LAT_MAX <
ZIP_ARRAY(M, —> \], 594
ZIP_LAT_MIN)?
ZIP_FINALCD
=M

~I96

YES
SITE_LAT_MIN >
ZIP_ARRAY(M,

ZIP_LAT_MAX)>?

ZIP_POINTERC)
—> = ZIP_ARRAY
(MBYTE_OFFSET)

382

YES
SITE_LON_MAX <
ZIP_ARRAY(M,

ZIP_LON_MIN)?

SITE_LON_MIN >
ZIP_ARRAY(M,
ZIP_LON_MAX)?

.9

WO 99/66738 PCT/US99/13775

12/44
420
188
START ‘(S’
432
£2. IS
2 DISTANCE
SQUARED > YES

GET ZIP_FINAL LIST, RADIUS SQUARED?

ZIP_POINTER LIST,
AND
ZIP+4 CENTROID FILE

Ve 434

~ L24

WRITE CLIENT ZIP+4
TELEPHONE NUMBER
RECORD: ZIP+4,
J=1 TELEPHONE NUMBER OF
CLIENT SERVICE
LOCATION, DISTANCE

Vil 436
ADVANCE TO IS ZIP+4
ZIP_POINTERCJ) > 10000 = YES
IN ZIP+4 ZIP_FINALCY) + -

CENTROID FILE 9999 ?

NO
i 48
READ ZIP+4 ADVANCE TO
LATITUDE /LONGITUDE NEXT ZIP+4
RECORD FROM ZIP+4 ol — LATITUDE/
CENTROID FILE LONGITUDE
RECORD

~ 430

DISTANCE SQUARED =
689404 =x (SITE_LAT
~- LAT_ZIP+4)xx2
+

s 444

IS J = NUMBER YES
OF RECORDS IN
ZIP_FINAL?

(68.9404 x
COSCSITE_LAT) =
(SITE_LON -
LON_ZIP+4)xx2

L

RETURN

Fg. 70

WO 99/66738

96
[N

13/44

500

START

~ 502

ACCESS SORTED

CLIENT zIP+4 TO

SERVICE LOCATION

TELEPHONE NUMBER
FILE

/.504

LAST_ZIP+4 = 0

/505

READ RECORD FROM
SORTED CLIENT INPUT
FILE:

ZIP+4, TELEPHONE

NUMBER, DISTANCE

PCT/US99/13775

Fig. 77

570

IS ZIP+4 =
LAST_ZIP+4 ?

NO

WRITE RECORD TO
OUTPUT FILE:
ZIP+4, TELEPHONE
NUMBER, DBISTANCE

YES

/5/'2 A

LAST_ZIP+4 = ZIP+4

/.5/6'

ADVANCE TO
NEXT ZIP+4 IN
INPUT FILE

/5/5’

574

NO END OF

INPUT FILE
?

YES

LOAD OUTPUT FILE ON
TELEPHONE SWITCH
COMPUTER AND BUILD
INDEX KEY ON ZIP+4

520

WO 99/66738

602

START

604

CLIENT PROVIDES
POLYGON TRADE AREA
DRAWN ON MAP AND
LIST OF SERVICE
LOCATIONS

606

LIST IS ADDRESS
STANDARDIZED, ZIP+4
CODED, GEOCODED
AND
POLYGON TRADE AREA
IS DIGITIZED BY
LATITUDE AND
LONGITUDE

s 608

ESTABLISH CONSTANTS
AND READ ZIP ARRAY
FILE INTO MEMORY

/5/0

READ FILE OF
SERVICE LOCATION
RECORDS AND

14/44

PCT/US99/13775

; 600

/5/5

ELIMINATE ZIPS
THAT DO NOT
TOUCH AREA
COVERED BY

POLYGON SERVICE

AREA TO BUILD

ZIP_FINAL LIST

/5/’5

BUILD LINE
INDEX FILE OF
DISCRETE
LATITUDE/
LONGITUBE
POINTS THAT
DEFINE THE
POLYGON

620

READ ALL ZIP+4
RECORDS IN
ZIP_FINAL AND
DETERMINE IF
THEY ARE INSIDE
POLYGON SERVICE
AREA

622

ANY
MORE
SERVICE

YES

CALCULATE MILES PER
DEGREE LONGITUDE
FOR SERVICE AREA

N /6'/2

CREATE LIST OF

ZIP WINDOWS
THAT THE

SERVICE AREA
TOUCHES

/5'/4

FIND LIST OF
ZIP CODES

TOUCHING ZIP
WINDOWS

Flg. 72a

LOCATION
RECORDS?

/524

SORT RAW CLIENT
TABLE BY ASCENDING
ZIP+4 . AND THEN BY
DESCENDING DISTANCE

WITHIN ZIP+4

626

LOAD SORTED CLIENT
FILE ON TELEPHONE
SWITCH COMPUTER AND
BUILD INDEX KEY ON
ZIP+4

628

END

PCT/US99/13775

WO 99/66738

15/44

gz/ ‘o1

3|4 xspu 9|14 suolpoo
aul7 uobAjogd a|14 uobAjog ww_utmm ._.ﬁo__o._
/
19— 209~ ; 601
uojjouny
ping [~
xapu| au] SS920.44
uobA|oy Buiziyibig
%\%\ //%%%

SS3004d a1iNg 3718v1e LIN3ITD

//h.%\

WO 99/66738

16/44

My Pizzo

Ristorante P

PCT/US99/13775

MAJOR HIGHWAYS '
————— MAJOR ROADS
— --—Zip Window File '
——————— Polygon Service Area |

Fg. 13

WO 99/66738

Fig. 14

17/44

670
{ START)

PCT/US99/13775

[5/2

672

CALCULATE LATITUDE
EXTREMES OF SERVICE

AREA
SITE_LAT_MIN =

POLYGON_LAT_MIN

SITE_LAT_MAX =

POLYGON_LAT _MAX

/674

CALCULATE LONGITUDE
EXTREMES OF SERVICE

AREA

SITE_LON_MIN =
POLYGON_LON_MIN

SITE_LON_MAX =

POLYGON_LON_MAX

676

BUILD LATITUDE FOR
ZIP WINDOW MIN AND

MAX
SITE_LAT_WINDOW _MI

INT(10=SITE _LAT_MIN)

SITE_LAT_WINDOW_MAX
INTC10%SITE_LAT_MAX)>

N

Vs 678

BUILD LONGITUDE FOR
ZIP WINDOW MIN AND

MAX

SITE_LON_WINDOW_MIN

INTC10=SITE _LON_MIN)

SITE_LON_WINDOW_MAX
INTC10=SITE_LON_MAX)

1]

]

/550

CREATE ZIP
WINDOW VALUES
BASED ON LAT
MIN AND MAX &

LON MIN AND MAX

6852
(RETURN)

WO 99/66738

680 2*

PCT/US99/13775

18/44
//"00
START l
J74
Jd =
) 702 SITE_LAT_ YES
WINDOW_MAX
2
I =0)

J =
SITE_LAT_WINDOW_

MIN

704

776

K =
SITE_LON_WINDOW_MIN

J=J+1

706

Yl

RETURN

708

ZIP_WINDOW_LISTCI)
= J = 10000 + K

K =

SITE_LON_

WINDOW_MAX
?

770

YES

Fig. 15

WO 99/66738

730

START

L~ 732

GET
ZIP_WINDOW_LIST
AND

ZIP_WINDOW FILE

/7.3'4

i
-0

19/44

J = NUMBER
OF WINDOWS IN
ZIP_WINDOW_LIST?

756

ADVANCE TO RECORD
IN ZIP_WINDOW FILE
WITH KEY =
ZIP_WINDOW_LIST(J)

738

READ
ZIP_WINDOW
FILE RECORD:
Z1P_WINDOW,
ZIP_CODE

742

ZIP_LISTCKKY =
ZIP_CDDE

ZIP_WINDOW >

ZIP_WINDOW_

LISTCD) YES

746

YES

—>

PCT/US99/13775

674

S

750

SORT ZIP_LIST
IN ASCENDING
ORDER

REMOVE DUPLICATES
FROM ZIP_LIST 71O
CREATE
DEDUPED_ZIP_LIST

754

RETURN

Fig. 16

s 752

WO 99/66738

PCT/US99/13775

20/44

START

/772

DEDUPED_ZIP_LISTC(D
= ZIP_LIST(D

/‘7/"4

n -

IS
ZIP_LIST(WD
ZIP_LIST(U-D

/‘750

DEDUPED_ZIP_LISTCL)
= ZIP_LIST(WD)

770

)j 752

782

/86

RETURN

IS J = NUMBER
OF ZIP CODES IN
ZIP_LIST ?

J=J+1

Fg. 17

WO 99/66738

5/52\

21/44

790
START 506
J = NUMBER
OF ZIP_CODES IN YES
792 DEDUPED_ZIP_LIST?
z V-
GET ZIP_ARRAY
FILE
794
1 =0 _
3= J=J+1
796
\ /5/2
M =
DEDUPED_ZIP_LIST(D
I =1 +1
814

SITE_LAT_MAX <
ZIP_ARRAY(M,
ZIP_LAT_MIN>?

SITE_LAT_MIN >
ZIP_ARRAY(M,
ZIP_LAT_MAX)?

SITE_LON_MAX <
ZIP_ARRAY(M,
ZIP_LON_MIN)?

SITE_LON_MIN >
ZIP_ARRAY(M,
ZIP_LON_MAX)?

YES

ZIP_FINALCD
=M

/3/5

ZIP_POINTERCD
= ZIP_ARRAY
(MBYTE_OFFSED

PCT/US99/13775

&7

RETURN

WO 99/66738

5/5?\

22/44
830

START

42

WH =0

| 836

LATCJ) = INT(10000x
C(LAT_VERTICECD) -
SITE_LAT_MIN»

838

LONCYY = INTC10000x

(LON_VERTICECDH -~
SITE_LON_MIN»

J=Jd+1

IS J =
NUMBER OF
VERTICES?

Yzl

PCT/US99/13775

IS
LAT(J-D
> LAT(WD

AND
LAT(I+D
LAT(D

IS

LAT(J-D

< LAT(D
AND

LATC(J+1)

LAT(D
2

46
YES

>

<

IS J

> LAT(®
AND LATCD

IS
/" LATCD
< LAT@
AND LATCD

NO

= NUMBER
OF VERTICES

LAT(NUMBER OF
VERTICES - D

LAT(NUMBER 0OF
VERTICES - D
?

852 854

) YES

858

<

862

564

WO 99/66738

S64

23/44

PCT/US99/13775

s66

IS LAT(D

YES

= LAT(J+D
?

NO
868

K = LAT(D

DELTA_LAT =
LATCD -
LATC(+D

/374

DELTA_LDN =
LONCDY -
LONCJI+D

876

LAT_POINT = K

s 578

LON_POINT =
INTAK-LATCS /7
DELTA_LAT) =
DELTA_LON + LONCJY

850

WRITE TO LINE
FILE:
LAT_POINT,
LON_POINT

562

5E6

S J-=

YES NUMBER OF
VERTICES-1 ?
YES
0 /6’6’4 0 /5’5&’
K=K +1 Jd=Jd+1

I

E90

SORT LINE FILE WITH
KEY = ASCENDING
LAT_POINT,
ASCENDING LON_POINT

ys 592

BUILD POLYGON
LINE INDEX

FILE WITH KEY
= LAT_POINT

94

RETURN

Fig. 196

WO 99/66738

870

START

972

GET ZIP_FINAL LIST,
ZIP_POINTER LIST,
AND
ZIP+4 CENTROID FILE

974

976

ADVANCE TO
ZIP_POINTERCD)
IN ZIP+4
CENTROID FILE

24/4

4

; 620

PCT/US99/13775

920

IS ZIP+4_LAT
> SITE_LAT_MAX
?

922

IS ZIP+4_LAT
< SITE_LAT_MIN
?

924

IS ZIP+4_LON
> SITE_LON_MAX
?

9

DISTANCE SQUARED =
68.9404 = (SITE_LAT
= LAT_ZIP+4)xx2
+
(68.9404 =
COSCSITE_LATY x
(SITE_LON -
LON_ZIP+4)xx2

934

WRITE CLIENT ZIP+4
TELEPHONE NUMBER
RECORD: ZIP+4,
TELEPHONE NUMBER OF
CLIENT SERVICE
LOCATION, DISTANCE

9. 20

928 926 935
ADVANCE TO YES
NEXT ZIP+4 IS ZIP+4_LON S J = NUMBER\ YES
LATITUDE/ < SITE_LON_MIN OF RECORDS IN)—
LONGITUDE ? ZIP_FINAL?
RECORD
NO
/.9/5
930 940
READ ZIP+4
LATITUDE/ILONGITUDE POINT IN
RECORD FROM ZIP+4 POLYGON | — J=J+1
CENTROID FILE OUTSIDE TEST INSIDE
942
RETURN

WO 99/66738

/950

START

Vs 962

'

LAT = INT(10000
= (ZIP+4_LAT -
SITE_LAT_MIN»

/954

LON = INTC10000
x (ZIP+4_LON -
SITE_LON_MIN»

25/44

PCT/US99/13775

))/ 930

f.970

READ
LAT_POINT AND
LON_POINT
FROM LINE
INDEX FILE

IS
LAT ?

LAT_POINT >

978

IS
(COUNT MOD o
0?

/ 952

RETURN
(INSIDE POLYGON

Ve 980

i 976

/955
IS
COUNT = 0 LON_POINT <
LON ?
YES
r%’é’
GET LINE COUNT =
INDEX FILE
COUNT+1

RETURN
(OUTSIDE POLYGOND

Fig. 2/

PCT/US99/13775

26/44

WO 99/66738

(444

H19v.L ANOHd OL INOHd
HIdV.L LNAITO

2001

ANOHd

uoia o]

omg\

¢¢ 9

$§3900dd
aTngd
JTgvL
INAI'TO

ANOHd
1101a 9

vaav
HANOHd

JOod XVIN
HANLIONOT

-

AT SMOANIM
(XXN VdN) ENOHd

MOANIM

8101
—
qud
VgV Vv VALY | QOYINED
INOHd dNOHd ANOHJ ol ¥
YOI 'NIN | 4Od XV YO ‘NN 19s440 INOHd
JANLIONOT | dANLUILVT] JANLLLVT dLAd 1I01a 9

N

AT AV (XXN VdN) ENOHd
/ 9101

601

3T SNOILVOOT
HOIAYAS INAI'TO

viot

\

$§400Ud
annd 914
SMOdNIM
dINOHd

z1o1

\

$S400Ud
atng 9d
AVEdY INOHd

e

d4ANLIONOT |HANLLLV] #
QIOYINTD |AIOYINID {INOHd

ANOHd 1I91d 01

PCT/US99/13775

27/44

WO 99/66738

9€01

yeol I.K

901

¢d 94

HONVISIQ LNAITO | #+dIJ

4TdvL
INHI'TO Qa1i0S

p+dlZ
Ad 1¥0Ss

A

dNOHJ
HJONVISIQ INIITO

dTdVL INAITO

p+dl

dNOHd
2201

CRELAR
ANOHJ Ol ANOHd
F1aVL INAI'TO

(¥Z D14 995)
HNOHd 1W Ol INOHd 1O
AaNdddVv ANV HOLVI v+d1Z

_/

0y01

Te0l

0£0l

L0l

YALSVA d9LY0S

p+dIZ

u\ Ad 140S

ANOHd

AT9VL JALSVIN

WO 99/66738 PCT/US99/13775

28/44

1042
1% START

MT_EOF =0 1044
CT_EOF =0

L]

READ MT 1046
MTPHONE,
MTSK

READ CT 1048
ctsk,
CTPHONE

MTLIST

BUILD
(SEE FIG. 25)

. 1050

CTLIST |~ 1052

BUILD
(SEE FIG. 26)
? JIOSO 1056 054 062 T J1052
MTLIST NO <MIL MI1> NO CTLIST
BUILD BUILD
(SEE FIG. 25) (SEE FIG. 26)
1060 YES _ YES
PHONE TO
PHONE RECORD
} N oss
MTLIST
BUILD 1050

(SEE FIG. 25) —

CTLIST

BUILD 1052
(SEEFIG.26) |

FIG. 24

WO 99/66738 29/44 PCT/US99/13775

U G

1082

MTL_SK(@J) = MTSK 1084

MTL_PHONE()) =
MTPHONE |/

READ MT 1086

MTPHONE, -/

MTSK

1088 Jlo9o
YES
MT_EOF = 1
1092

= Fia. 25

WO 99/66738

IK

30/44

(START

PCT/US99/13775

1102

1104

.

CTL_SK(K) = CTSK
CTL_PHONE(K) =
CTPHONE

JIOG

'

READ CT
CTPHONE,
CTSK

1108
|/

1110

1112
J

- CT_EOF =1

1116

1114

oY

K=K+l

1118

Fla. 20

PCT/US99/13775

31/44

WO 99/66738

L 94

T _ 2051
qos1 Ti UonEdO]
O WD ESJISEN
\ € WD
V WO $I0SSI00IJ
7201 Sunnoy
21qey, # suoyq
0ST1 /
pajqeug
Lo M xog
2 3Ige, Wt Py
1qe, 20T WD o o g s
d IqeL 207 WD ‘pp11 m w:z“.osﬁusvm FomaN
\ szojiadQ \
OFI1 |V 91qel 00 W)
\ i
O vl Kemaeo 11O O€ETl
aovrxdd
——— “Trll
aseguie(Suoyd
(| menw oasg
118
wrr | PR / R L weu ~
O 108 oll
\l“l’j
PELT \
o wids
\ XXN-VIN
9€11

WO 99/66738 PCT/US99/13775

32/44
110
1160
-\
............. o 10224 p22b
ey
SHITCH l
|)2 —~] caLL oeconing 16-DI61T
HARDNARE TELEPHONE CLIENT
NUMBER IN TABLE B
CLIENT TABLE

INFORMATION
PACKET:
CALLING PHONE
NUMBER &
DIALED NUMBER

HY

10-DIGIT
TELEPHONE
NUMBER IN
CLIENT

TABLE?

18 128

~ b -~

DOES
CALLER ENTERS NON-EDUTABLE 10-DIGIT

TELEPHONE OPTIONAL ALL TEL NUMBER HAVE ROUTED CALL
NUMBER OF OTHER CLIENT EXCEPTION ASSOCIATED CLIENT EXCEPTION €
LOCATION ON INPUT? HANDLING TELEPHONE HANDL ING

PHONE KEYPAD LISTING?

YES |48
LA

QUTBOUND
CALLING
HARDKARE

Fi6. 28

PCT/US99/13775

WO 99/66738

33/44

(S) # ANOHd
NOLLVDO1
ADIAYAS

(444!

ONS\

(s€ "DI4 99S)

4INAON
ONISSTO0Ud
dNWILL

TvVad

- VAV 9DIA¥AS
INATTD
9ITI
\\\\\ T
a1d
VIIv Vv vaIv VAdv | NOLLVDO1 ai
AOIAYES dOIAYES dDIAYES ADIAYAS OINI NOLLVOO1
PO XV YO 'NIN | d40d 'XVIN AOd '"NIN 1dSJ40 dOIAYLS
- AANLIONOT | dANIIONOT | dANLILVI{ dJdNLILV1 dLAd INTIID
\ TTd AVIV VAV GOIAYES
INATTO \k
-
A AANLIONOT| dANLILVT

81Z1

be 9\

al

NOILLVDOOT
dOIAYAIS

LINAI'TO

MOONIM

HTId SMOAONIM

AIOYWINTD | IOYLNID

HNOHd LIDIA 01 —

YALSVIN

o101

[4¢4!

\

(1€ '014 999)
SSHO0Ud
atng 97
SMOONIM
VAIV JA0IAYAS
ANIT-440

(1] ¢4]

$SI00Ud
angd 31d
VAV JOIAYES
ANITA10

Al

VIAV d0IA9dS
NOVIV1

47114 SNOILVOO'1
HOIAYAS LNAITO

PCT/US99/13775

WO 99/66738

34/44

pRIqeuy
11D WM
\\ e ™~ ol
— B
O 9qe], 20T RO a PRIl
€ QL 50T WAD
V IqeL 207 WRID oFll Kemap0 11D
aov/xdd
g3, uora0] —
[A401
MRS
ssegwRQ Juolyq asvgeeq
\. SlIqoON ¥ 108
PisA L
\\‘l}
apd wids

_\ XXN-VIN
9€1

T

O WD

g 1D

V WO

Jqu], PSTN
wnv]
0

0¢ 94

SIOSSRO0L]
3unnoy

osti

qo0¢1

2051

T uonedo] 1# uoned0]
ESITSETY DURS

xog
Sowpau] wiod Youms
Juywurua), FomPN
SHoMPN

(418

o€l

ut’

WO 99/66738 PCT/US99/13775
35/44
121 ?\
1240
START
_~—1242 | CLIENT SERVICE
CATIONS
READ CLIENT .- Lo NSFILE
SERVICE -
LOCATIONS FILE
1244
ES
1246
RADIUS POLYGON
1248\ POLYGON? l
1252
[CALCULATE e
CALCULATE
MILES PER
LAT/LON
e
AND
1250 MAXIMUMS
CALCULATE (SEE FIG. 33)
LAT/LON
MINIMUMS
AND
MAXIMUMS
(SEE FIG. 32)
v 1256
1254
CREATE SERVICE
AREA FILE s
RECORDS: >
LAT/LON WINDOW . mvigiiwcs v /
AND SERVICE WINDOWS FILE SORT AND INDEX BY
LOCATION ID LAT/LON WINDOW
(SEE FIG. 34)

F-IG 3] 1216

ANDBYID

SERVICE AREA
WINDOW FILE

WO 99/66738

\270

36

START

A

PCT/US99/13775

/44

CALCULATE LATITUDE
EXTREMES OF SERVICE
AREA
SA_LAT_MIN = LOCATION
LAT - RADIUS (MILES) /
MILES PER DEGREE LAT
SA_LAT_MAX = LOCATION
LAT + RADIUS (MILES) /
MILES PER DEGREE LAT

\

CALCULATE LONGITUDE
EXTREMES OF SERVICE
AREA
SA_LON_MIN = LOCATION
LON - RADIUS (MILES) /
MILES PER DEGREE LON
SA_LON_MAX = LOCATION
LON + RADIUS (MILES) /
MILES PER DEGREE LON

N

BUILD LATITUDE FOR
SERVICE AREA WINDOW
MIN AND MAX

SA_LAT_WINDOW_MIN =
INT (10%SA_LAT_MIN)

SA_LAT_WINDOW_MAX =
INT (10%SA_JL AT_MAX)

\

BUILD LONGITUDE FOR
SERVICE AREA WINDOW
MIN AND MAX

SA_| ON_WINDOW_MIN =
INT (10%SA_LON_MIN)

SA_| ON_WINDOW_MAX =
INT (10%SA_J.ON_MAX)

RETURN

| 250
%
~ 272
274
1276
1278
Fia 372
(280

WO 99/66738

1290

37/44

START

Y

PCT/US99/13775

1252

CALCULATE LATITUDE
EXTREMES OF SERVICE
AREA

SA_LAT _MIN =
POLYGON_LAT_MIN

SA_LAT_MAX =
POLYGON_L.AT_MAX

— 292

4

CALCULATE LONGITUDE
EXTREMES OF SERVICE
AREA

SA_LON_MIN =
POLYGON_L.ON_MIN

SA_LON_MAX =
POLYGON_J.ON_MAX

—129Y

/

BUILO LATITUDE FOR
SERVICE AREA WINDOW
MIN AND MAX

SA_LAT_WINDOW_MIN =
INT (10XSA_LAT_MIN)

SA_LAT_WINDOW_MAX =
INT (10%SA_LAT_MAX)

—129(

A

BUILD LONGITUDE FOR
SERVICE AREA WINDOW
MIN AND MAX

SA_| ON_WINOOH_MIN =
INT (10%SA_LON_MIN)

SA_LON_WINDOW_MAX =
INT (10%SA_LON_MAX)

1295
Fle. 33

RETURN

300

WO 99/66738

START

38/44

1310

1312 ~—

J =
SA_LAT_WINOOW_MIN

1314 ~

K =
SA_| ON_WINOOW_MIN

J =
SA_LAT_
HINDO?_HAX

J=dJt 1

1328

SERVICE AREA
WINOOW RECORD
=J X éOOOO +

— 1316

N

WRITE RECORD
T0 FILE

— 1318

K =
SA_{ ON

1320

YES

RETURN

ulNuog_MZX

1322

K=K+ 1

PCT/US99/13775

|25

Fl6. 34

WO 99/66738

39/44

START

1340

DNIS, CALLER
TELEPHONE

PCT/US99/13775

1220
/

NUMBER WITH
LATITUDE AND
LONGITUDE

L 3y2

DETERMINE CALLER
LAT LON WINDOW

10000
INT ({OXCALLER_LAT)
+

INT (10%CALLER_LON)

DETERMINE
INITIAL LIST OF
SERVICE AREAS
TOUCHING CALLER
LAT/LON WINDOW

(SEE FIG. 36)

13%/

Fla 35

PROCESS ALL
SERVICE LOCATION
RECORDS IN
SERVICE_LOCATION_
LIST & DETEAMINE
IF SERVICE AREA
OVERLAPS CALLER'S
LOCATION

(SEE FIG. 37)

SORT FINAL SERVICE
LOCATION LIST BY
DESCENDING DISTANCE

END

1348
\

\ 1309

1350

WO 99/66738 PCT/US99/13775
40/44

135 START
| 344

GET CALLER LAT/LON
WINDOW AND
1352 —1 SERVICEE?EEA_HINDOH

353 ~

|

ADVANCEITO RECORD
N

| 3S Y ——| SERVICE_AREA_WINDON
FILE WITH KEY =
CALLER LAT/LON
WINDOW

35T

READ
SERVICE_AREA_WINDOW
FILE RECORD:
SERVICE_AREA_WINDOW,
SERVICE_J OCATION_ID

Fi6 b

l /-/135?

SERX%CE_LOCATION
K
SERVICE_| OCATION_ID

]

WO 99/66738

START

1360

\3@2\

41/44

GET
SERVICETLOCATION_
LIST;

SERVICE LOCATIONS
FILE WITH LAT/LON
SERVICE AREA
DEFINITION

| 364
\

J=1
K=0

/1366

READ ID RECORD FOR
LOCATION {J) IN
SERVICE AREA ARRAY
FILE

F16. 37

IS CALLER_LAT
> SA_LAT_MAX ?

IS CALLER_LAT

{370

YES

PCT/US99/13775

1348

Y

< SA_LAT_MIN ?

IS CALLER_LON
> SA_L ON_MAX ?

IS CALLER_LON
< SA_LON_MIN ?

READ SERVICE
LOCATION
LATITUDE/LONGITUDE
RECORD FROM SERVICE
LOCATIONS FILE

|

380

CALLER INSIDE
SERVICE AREA
TEST

(SEE FIG. 38)

OUTSIDE

K=K+t

1382

Y

WRITE T0
FINAL_LIST (K)

SERVICE LOCATION

TELEPHONE NUMBER

AND DISTANCE FROM
CALLER LOCATION TO
SERVICE LOCATION

INSIDE

Liasy

1386

ISJ =
NUMBER OF
RECORDS IN
SERVICE_{ OCATION_
LIST?

YES

J=dJ+d

§390

RETURN

PCT/US99/13775

WO 99/66738
42/44
1380
GTART }L_'L O’Z ~
|4l
SERVICE
AREA RADIUS
POLYGON OR
RADIUS ?
MO(’Y
//—-IL+1L%
LAT = INT (10000
{CALLER_LAT - LAT_POINT AND
SERVICE AREA_ LGN_POINT
LAT_NIN)) FRON LINE
INDEX FILE
1408~ l 1426
DISTANCE SGUARED =
£8.9404 x (CALLER_LAT
LON = INT {10000 = SERVICE_LOCATION.
{CALLER_LON - I NO, LAT)&N2 +
SERVICE AREA_ LAT_POINT > > £8.9404 x
LON_NIN)) [AT 2 COS (CALLER_LAT)
{CALLER_LON -
SERVICE L OCATION_
LOR) xx2
YES
0
1Y) N
IS RADIUS
COUNT = 0 LON_POINT < SERVICE
LON ? AREA ?
YES
1412
0 430
1| 142 3
Is
DISTANCE
GET LINE L COUNT = RETURN SQUARED >
INDEX FILE > (UTSIOE) SEAVICE RADIUS
COUNT+1 SQUARED ?

Fle 38

(INSIDE)

WO 99/66738 PCT/US99/13775
43/44

110

LATITUDE AND
LONGITUDE

H--
1

--------------- REAL-TIME
PROCESSING KODULE

LOOK UP SERVICE
LOCATION PHONE
NUMBER OR 10 IN
CALL DECODING SERVICE LOC TABLE
\ IZ 1 HARDWARE

(SEE FIGURE 35)

SWITCH

LIST OF

SERVICE
LOCATION (S) } L}é 0
THAT SERVICE
THE CALLER
HL} INFORMATION
PACKET:
CALLING PHONE
NUMBER §

DIALED NUMBER

18 06

CALLER ENTERS

TELEPHONE OPTIONAL / }Lo“%
NUMBER OF OTHER CLIENT
LOCATION ON INPUT?

PHONE KEYPAD DOES RECORD
HAVE ASSOCIATED \NO ROUTED CALL
CLIENT TELEPHONE EXCEPTION N
LISTING? HANDLING

TELEPHONE
NUMBER OF

CLIENT'S LOCAL
SERVICE

LOCATION

123?

NON-ROUTABLE
CALL

EXCEPTION

HANDLING

NO ANSHER?

AN

WO 99/66738 PCT/US99/13775
44/44

LATITUDE AND
LONGITUDE OR

. \ : OTHER
COORDINATES
REAL-TIME
PROCESSING MODULE SERVICE SERVICE
SWITCH LOCATIONS { | LOCATIONS
LOOK UP SERVICE WITH NITH
LOCATION PHONE LAT/LON LAT/LON
l ,2 CALL NUMBER DR ID IN TABLE A TABLE 8
~— DECOOING SERVICE LOC TABLE
HARONARE
(SEE FIGURE 35)

1502

INFORMATION LIST OF

PACKET: CALLING SERVICE
PHONE NUMBER & LOCATION (5) l’-l éo
DIALED NUMBER § THAT SERVICE

COORDINATE THE CALLER

INFORMATION

”8\ 1162
CALLER ENTERS
TELEPHONE
NUMBER OF OTHER
LOCATION ON
PHONE KEYPAD

I

116

OPTIONAL
INPUT?

ey 1M

ROUTED CALL
EXCEPTION [€)
HANDLING

DOES RECORD
HAVE ASSOCIATED
CLIENT TELEPHONE
LISTING?

ISoY

COORDINATES

PASSED AND NO

OPTIONAL CALLER
INUT?

TELEPHONE
NUMBER OF
CLIENT'S LOCAL
SERVICE
LOCATION

LOOK LP
LATITUDE AND
LONGITUDE FOR
CALLING PHONE

NUMBER

)281

NON-ROUTABLE
CALL

EXCEPTION

HANOLING

INTERNATIONAL SEARCH REPORT

Inte " ational Application No

Po./US 99/13775

A. CLASSIFICATION UBJECT MATTER

OF S
IPC 6 H04Q3/00 H04M3/42

According to Interational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by ciassification symbois)

IPC 6 HO4Q HO4M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical. search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Categoty > | Citation of document, with indication. where appropriate, of the relevant passages Relevant to claim No.

X US 5 588 048 A (NEVILLE) 1,5,9,20
24 December 1996 (1996-12-24)
abstract; figures 1-7

column 6, line 55 -column 7, line 17
column 9, line 58 -column 10, Tine 14

Y * [dem* 2-4,6-8,
15,16,
26,27

Y WO 94 27398 A (DENNISON) 2-4,6-8,
24 November 1994 (1994-11-24) 15,16,
26,27

abstract; figures 7-9
page 10, line 29 -page 11, line 10

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents : .) . -

“T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international "X* document of particular relevance; the claimed invention

filing date _ cannot be considered novel or cannot be considered to

"L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone
W,;"f.h s c'tetﬂ to estaplllsh tge r""“'b's’cat'ggiﬁ:é? of another "Y* document of particular relevance; the claimed invention
citation or other special reason (as sp cannot be considered to involve an inventive step when the

"Q" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious to a person skilled
“P* document published prior to the intemational filing date but in the art.
later than the priority date claimed "&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the internationat search report
19 October 1999 27/10/1999
Name and mailing address of the I1SA Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, . e g
Fax: (+31-70) 340-3016 Danielidis, S

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Intr ~ational Application No

Poi/US 99/13775

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication.where appropriate. of the relevant passages

Relevant to claim No.

X US 5 506 897 A (MOORE ET AL.)

9 April 1996 (1996-04-09)

abstract: claim 1; figures 1A,1B
column 8, Tine 48 -column 9, 1ine 58

A WO 94 29995 A (MOTOROLA INC.)
22 December 1994 (1994-12-22)
abstract; figure 4

X UsS 5 533 107 A (IRWIN ET AL.)

2 July 1996 (1996-07-02)

abstract: claim 1; figures 1,2,4,12
A US 4 797 818 A (COTTER)

10 January 1989 (1989-01-10)
figures 1,2,4,6,7

column 2, line 20 - line 54

A EP 0 498 594 A (AT&T)
12 August 1992 (1992-08-12)
claims 1,3,20

A WO 97 50002 A (MOTOROLA INC.)
31 December 1997 (1997-12-31)
figure 1

page 8, line 4 - line 23

A US 4 757 267 A (RISKIN)
12 July 1988 (1988-07-12)
cited in the application
abstract

A US 5 095 505 A (FINUCANE ET AL.)
10 March 1992 (1992-03-10)
abstract; figures 1,6

1,5,9,20

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

.nformation on patent family members

l Inte -1tionai Application No

1 PLL/US 99/13775

(7 Patent document Publication Patent family Publication

cited in search report date member(s) date

Us 5588048 24-12-1996 us 5805689 A 08-09-1998
us RE36111 E 23-02-1999

WO 9427398 24-11-1994 AU 6772994 A 12-12-1994
us 5546445 A 13-08-1996
N 5815814 A 29-09-1998
us 5946611 A 31-08-1999

US 5506897 09-04-1996 us 5907608 A 25-05-1999
us 5910982 A 08-06-1999
us 5848131 A 08-12-1998

WO 9429995 22-12-1994 AU 666279 B 01-02-1996
AU 7095594 A 03-01-1995
CA 2139514 A 22-12-1994
MX 9404431 A 31-01-1995

US 5533107 02-07-1996 NONE

Us 4797818 10-01-1989 NONE

EP 498594 12-08-1992 us 5136636 A 04-08-1992
CA 2054505 A,C 08-08-1992
DE 69229069 D 10-06-1999
ES 2133302 T 16-09-1999
JP 2705864 B 28-01-1998
JP 4360448 A 14-12-1792

WO 9750002 31-12-1997 CA 2259165 A 31-12-1997
EP 0907895 A 14-04-1999

UsS 4757267 12-07-1988 CA 1294346 A 14-01-1992

US 5095505 10-03-1992 AU 634264 B 18-02-1993
AU 6013690 A 29-08-1991
JpP 4217151 A 07-08-1992

Form PCT/ISA/210 (patent family annex) {July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

