wo 2015/026554 A1 I} I A1 00O 00

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2015/026554 A1l

26 February 2015 (26.02.2015) WIPOIPCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 9/45 (2006.01) kind of national protection available). AE, AG, AL, AM,
. L AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
PCT/US2014/050576 DO, DZ. EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
11 August 2014 (11.08.2014) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
. MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
(25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
(26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
(30) Priority Data: ZW.
13/969,735 19 August 2013 (19.08.2013) us
(84) Designated States (uniess otherwise indicated, for every
(71) Applicant: QUALCOMM INCORPORATED [US/US]; kind of regional protection available). ARIPO (BW, GH,
Attn: International IP Administration, 5775 Morehouse GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
Drive, San Diego, California 92121-1714 (US). UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
(72) Inventors: DHURJATI, Dinakar; 5775 Morehouse TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
Drive, San Diego, California 92121-1714 (US). KIM EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
Minjz;ng' 5775 M,orehouse Drive, San Diego Californie: MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
92121-17,14 (US). VICK, Christ(; her; 5775 ’M hy TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
: (Us). VISR, pher; orehouse KM, ML, MR, NE, SN, TD, TG).
Drive, San Diego, California 92121-1714 (US). i i T T T
(74) Agents: HANSEN, Robert ct al; The Marbury Law Dcciarations under Rule 4.17:

Group, PLLC, 11800 Sunrise Valley Drive, 15th Floor,
Reston, Virginia 20191 (US).

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

[Continued on next page]

(54) Title: EFFICIENT DIRECTED ACYCLIC GRAPH PATTERN MATCHING TO ENABLE CODE PARTITIONING AND
EXECUTION ON HETEROGENEOUS PROCESSOR CORES

100 ,

102 —

Generate a directed acyclic
graph (DAG) intermediate
representation of an input code
(e.g., an app, a method, etc.)

104 — ¢

Compare each node or
combination of nodes of the
generated DAG to one or more
predefined DAG patterns in a
grammar, each pattern
associated with a cost metric

106 —

Identify a set of grammar
patterns that partially cover the
generated DAG based on the
comparison

108 — ¢

Offload segments of the input
code associated with a
combination of grammar
patterns of the identified set
having the best cumulative effect

FIG. 1

(57) Abstract: Methods, devices, and systems for automatically determining
how an application program may be partitioned and otfloaded for execution
by a general purpose applications processor and an auxiliary processor (e.g., a
DSP, GPU, etc.) within a mobile device. The mobile device may determine
the portions of the application code that are best suited for execution on the
auxiliary processor based on pattern-matching of directed acyclic graphs
(DAGS). In particular, the mobile device may identify one or more patterns in
the code, particularly in a data flow graph of the code, comparing each identi -
fied code pattern to predefined graph patterns known to have a certain benetit
when executed on the auxiliary processor (e.g., a DSP). The mobile device
may determine the costs and/or benefits of executing the potions of code on
the auxiliary processor, and may offload portions that have low costs and/or
high benefits related to the auxiliary processor.

WO 2015/026554 A1 AT 00T VAT 0O 0O A At

— as to the applicant's entitlement to claim the priority of Published:
the earlier application (Rule 4.17(iii)) — with international search report (Art. 21(3))

WO 2015/026554 PCT/US2014/050576

TITLE
Efficient Directed Acyclic Graph Pattern Matching To Enable Code Partitioning

and Execution On Heterogeneous Processor Cores
BACKGROUND

[0001] Mobile electronic devices (e.g., cellular phones, watches, headphones,
remote controls, etc.) have become more complex than ever, and now commonly
include multiple processors, system-on-chips (SoCs), and other resources that
allow mobile device users to execute complex and power-intensive software
applications (e.g., video streaming, video processing, etc.) on their mobile devices.
With this rise in complexity and power consumption, new and improved
processing technologies that better utilize the mobile device’s resources and

capabilities are beginning to emerge.

[0002] These emerging technologies include systems capable of compiling code
that is designed for execution on a general purpose applications processor so that
the code is suitable for execution on an auxiliary processor, such as a digital signal
processor (or DSP). In particular, an application program may be partitioned into
units or chunks, and the units/chunks may be distributed to different processing
components based on the identitied efficiencies/capabilities of the processing
components (e.g., a DSP, graphics processing unit or GPU, etc.). This allows the
main or central processing unit (CPU) or applications processor to offload some of
its operations to an auxiliary processor to conserve power and/or improve

performance.

[0003] However, determining how the application program is to be partitioned, and
which partitions are best suited for execution on an auxiliary processor is often a
difficult design task. That is, offloading operations to an auxiliary processor may
improve the performance and power consumption characteristic of the mobile

device so long as there is an efficient way to recognize and partition a given code

WO 2015/026554 PCT/US2014/050576

segment into components that are well suited for execution in different types of

cores or processing units.

[0004] Existing technologies may utilize different techniques for identifying and/or
processing code. Some techniques may utilize automatic code partitioning and
may represent application code by program dependence graphs for partitioning the
code using inherent parallelism and known communication costs. These
techniques do not utilize predefined patterns that may be known to benefit
particular processing units, such as a digital signal processor (DSP). Other
techniques may detect idioms (or known/predefined sets of instructions) within
code (or binaries) and replace the idioms with hardware-assist instruction (i.e.,
complex instruction set computing or “CISC” instructions). These techniques
typically may only handle a limited granularity (mostly a straight line of
instruction) and a simple pattern, such as either exact patterns or a limited degree-
of-freedom. Additionally, certain techniques exist for finding duplicate code and
detecting clones using high-level source code. Further, graph pattern matching has

been used in database systems.

[0005] Other techniques exist that employ instruction selection algorithms that
utilize tree pattern matching to adjust code to include low-cost instructions. In
particular, bottom-up rewrite systems (or BURS) algorithms may be used to
determine best instruction sets for input codes (e.g., applications, routines, etc.) by
iteratively matching various subtrees within input trees related to the input codes in
order to find best cost sets of instructions (i.e., combination of instructions that
cover the entire trees and yet provide the lowest costs/highest benefits). Based on
the pattern matching, new, improved instruction sets may be generated for

execution on computing devices.

[0006] However, the known techniques may not be suitable when offloading
portions of complex code using graph-based representations. In other words,

existing technologies may not use compiler back-end solutions that match directed

WO 2015/026554 PCT/US2014/050576

acyclic representations of code to identify best offloading for heterogeneous

multicore or distributed systems.
SUMMARY

[0007] In various aspects, a computing device may perform a method for
offloading portions of an input code from a CPU or applications processor (a “first
processor”) to an auxiliary processor when the portions may be automatically
determined to be well-suited for the auxiliary processor. An aspect method may
include generating a graph-based intermediate representation of the input code in
which the graph-based intermediate representation of the input code may be a
directed acyclic graph (DAG), comparing each node or combination of nodes to
one or more patterns in a predefined grammar in which each pattern may be a
DAG pattern and may be associated with a cost metric, identifying a set of patterns
that partially cover the graph-based intermediate representation of the input code
based on the comparisons, and offloading from the first processor to the auxiliary
processor segments of the input code associated with a combination of grammar
patterns of the identified set of patterns having a best cumulative eftect. In an
aspect, comparing each node or combination of nodes to one or more patterns in a
predefined grammar may include comparing the each node or the combination of
nodes to pattern information stored in a heuristic table. In an aspect, the
computing device may include a system-on-chip. In an aspect, the auxiliary
processor may be one of a digital signal processor (DSP) and a graphics processing
unit (GPU). In an aspect, the patterns in the predefined grammar may be known to
be well suited for the auxiliary processor. In an aspect, the best cumulative effect
may be one of a lowest cumulative cost and a highest cumulative benefit. In an
aspect, the method may further include generating information for presentation to a
developer that indicates segments of the input code that can be configured for the
auxiliary processor based on the comparisons of the each node or the combination

of nodes to the one or more patterns in the predefined grammar.

WO 2015/026554 PCT/US2014/050576

[0008] In another aspect, a computing device configured to offload portions of an
input code when the portions may be automatically determined to be well-suited
for an auxiliary processor may include means for performing the functions of the

aspect methods described above.

[0009] In another aspect, a computing device configured to offload portions of an
input code when the portions may be automatically determined to be well-suited
for an auxiliary processor may include a memory, an auxiliary processor, and a
processor coupled to the memory and the auxiliary processor, in which the
processor may be configured with processor-executable instructions to perform

operations of the aspect methods described above.

[0010] In another aspect, a non-transitory processor-readable storage medium
having stored thereon processor-executable software instructions configured to
cause a processor to perform operations for a computing device to offload portions
of an input code when the portions may be automatically determined to be well-
suited for an auxiliary processor, in which the stored operations include the

operations of the aspect methods described above.
BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The accompanying drawings, which are incorporated herein and constitute
part of this specification, illustrate exemplary aspects of the invention, and
together with the general description given above and the detailed description

given below, serve to explain the features of the invention.

[0012] FIG. 1 is a process flow diagram illustrating an aspect method for
offloading code for execution from a CPU or applications processor to an auxiliary

processor based on directed acyclic graph (DAG) pattern matching.

[0013] FIG. 2 is a process flow diagram illustrating another aspect method for
offloading code for execution from a CPU or applications processor to an auxiliary

processor based on directed acyclic graph (DAG) pattern matching.

4

WO 2015/026554 PCT/US2014/050576

[0014] FIG. 3 is a diagram illustrating an example grammar and code input DAG

suitable for use with various aspects.

[0015] FIG. 4 is a process flow diagram illustrating an aspect method for
offloading code portions for execution from a CPU or applications processor to an

auxiliary processor based on DAG pattern matching.

[0016] FIG. S is a diagram illustrating an example grammar and a code input

DAG suitable for use with various aspects.

[0017] FIG. 6 is a component block diagram of a smartphone-style mobile

computing device suitable for use with various aspects.
DETAILED DESCRIPTION

[0018] The various aspects will be described in detail with reference to the
accompanying drawings. Wherever possible, the same reference numbers will be
used throughout the drawings to refer to the same or like parts. References made
to particular examples and implementations are for illustrative purposes, and are

not intended to limit the scope of the invention or the claims.

[0019] The word “exemplary” is used herein to mean “serving as an example,
instance, or illustration.” Any implementation described herein as “exemplary” is
not necessarily to be construed as preferred or advantageous over other

implementations.

[0020] The terms “mobile computing device” or “computing device” are used
herein to refer to any one or all of cellular telephones, smart-phones (e.g.,
iPhone®), web-pads, tablet computers, Internet enabled cellular telephones, WiFi
enabled electronic devices, personal data assistants (PDA’s), laptop computers,
personal computers, and similar electronic devices equipped with at least an

application processor (or general processor) and an auxiliary processor (e.g., a

WO 2015/026554 PCT/US2014/050576

digital signal processor, a coprocessor, another processor on a system-on-chip,

etc.).

[0021] The various aspects provide methods for offloading portions of an input
code for execution from a CPU or applications processor (referred to generally
herein as a “first processor’) to an auxiliary processor within a computing device
based on pattern matching directed acyclic graphs (DAGs) representing the code.
The computing device may perform the aspect methods to automatically and
efficiently detect patterns of interest in the code that are known to be good for
processing with a particular type of core (e.g., a DSP, GPU, etc.). The computing
device may automatically recognize a set of DAG patterns that partially cover an
input data flow graph of the input code, and may offload portions of the code
associated with the least cost when performed on the auxiliary processor or
otherwise provide the highest benefit from oftloading. The aspect methods may be
implemented in computing devices that work with typical input code (e.g., typical
Java language source code), and thus may not require any special pre-processing
or formatting by code developers (e.g., manually added indicators, API calls,
predefined code formatting, etc.). Computing devices implementing the various
aspects may automatically identify portions of code that are be well-suited for
offloading to an auxiliary processor, and use conventional mechanisms for
transmitting, transferring, or otherwise enacting offloading of such identitied well-

suited code.

[0022] The various aspects methods utilize pattern matching algorithms that
compare the nodes of the DAGs to predefined grammar patterns that also include
DAGs. The various aspect methods may be performed by a computing device to
determine intermediate representations (IR) of code and generate DAG
representations that can be processed through a pattern matching algorithm. Such
algorithms may attempt to match patterns in the DAG representation of the code to
DAG patterns stored in memory (referred to as a “grammar”) that are known to be

well-suited for executing on the auxiliary processor. DAG representations may be

6

WO 2015/026554 PCT/US2014/050576

trimmed so that there are no cycles. For example, DAG patterns in the grammar
may correspond to certain simple functions that efficiently execute on a digital
signal processor (DSP). The computing device may identify grammar patterns that
cover an entire DAG, such as the DAG representing a code loop or method in the
input code, and may identify the best matching patterns based on costs (or
benefits) associated with the grammar patterns. For example, a particular DAG of
the input code may be matched to several patterns within the grammar; however,
one of the matching patterns may have a relatively low cost to perform the
associated code on the auxiliary processor. The computing device may perform
pattern-matching such that the plurality of known DAG patterns in the predefined
grammar are detected within the input IR code at once. In various aspects, the
operations of the computing device may be performed at runtime, for example in
combination with a just-in-time (JIT) compiler. In other words, with a graph of
nodes and edges associated with an input code (i.e., a DAG where edge direction
and node type that cannot be separated), the computing device may perform
pattern-matching operations to find an exact match of nodes/edges in the graph to
a pattern within a grammar. The matching pattern itself may be flexible in the
sense of either node type (e.g., type A or type B at a location in the pattern). The
exact match is for a complete pattern over a subgraph of the input code. So, the
computing device may find patterns from the grammar that each partially cover the

input, but that completely cover a subgraph of the input.

[0023] In an aspect, for each node in a DAG of the input code, the computing
device may compute a table of all possible “types” that match the node (as may be
similarly done in BURS solutions) along with the matching rule/pattern of the
predefined grammar. The computing device may also automatically identify
and/or store the cumulative cost for the pattern rooted at each node (as may be
similarly done in BURS solutions). The computing device may also perform a
bottom-up pass from the rooted DAG (as may be similarly done in BURS
solutions). However, when the computing device matches a node to a known

pattern within the predefined grammar, the computing device may use the
7

WO 2015/026554 PCT/US2014/050576

previously computed result for that pattern without re-computing the table.
Additionally, whenever a node is matched with a particular pattern in the grammar,
the computing device may confirm whether connections between nodes in the
DAGs (or sharing via directed edges) are similarly represented in the matching
rules or patterns. For example, when a node corresponding to a function (e.g., a
‘store’ function) matches a grammar pattern or rule, the computing device may
check for sharing (or connections between other nodes) to determine whether the
matching grammar pattern indicates similar relationships between the pattern
nodes (e.g., whether “load” and “store” operations are both reading and writing to
the same array data structure respectively, etc.). The aspect methods may be
performed by the computing device to match DAG patterns in intermediate
representations of input code and predefined grammars with the same time

complexity as performing regular tree pattern-matching.

[0024] In an aspect, a computing device may utilize pattern specification
language (PSL) or PSL techniques suitable for expressing patterns. For example,
the computing device may use PSL to define patterns within a grammar that may
be compared to code representations. Further, the computing device may
automatically generate code using PSL based on the data flow graph of input code.
By using PSL, the computing device may be enabled to express both exact patterns
and ‘relaxed’ patterns in input code. For example, a relaxed pattern may be a
pattern that includes some generic arithmetic computation without actually
specitfying what that arithmetic computation should be. In other words, using PSL
may enable associative or commutative pattern-matching by the computing device.
In an aspect, PSL may be used to also express “a loop that contains aftined array

accesses” with a relaxed pattern.

[0025] Currently, many software developers may not have an understanding of
the capabilities of different processing units or cores within a computing device
that executes their applications, and thus may not know whether portions of their

applications may be targeted or otherwise designed to effectively use these

8

WO 2015/026554 PCT/US2014/050576

different cores. In an aspect, a computing device may be configured to enable a
developer toolkit that assists such software developers in identifying portions (or
segments) of code in their applications (or source code) that may be optimized or
configured for particular auxiliary processors or cores, such as a DSP or GPU.
Using operations similar to those described below for identifying code portions to
be automatically offloaded, the computing device may be configured to process
and evaluate code to identify portions of the code that correspond to predefined
DAG patterns within grammars, and generate helpful information or hints that
indicate for which cores certain portions of the evaluated code may be well-suited.
The computing device may also be configured to present the generated helpful
information (e.g., render a presentation of helpful information to a software
developer). Such helpful information may include suggestions that indicate the
portions of code developers may target for use with a compiler and/or hand
configuration operations to increase overall code efficiency when executed on the
computing device. Thus, with this technology, software developers may not need
to understand particular processor details, but instead may simply write code in
their favorite high level language, and the computing device may identify and
present information indicating the right processor for use with various portions of

that code.

[0026] In the following figures and descriptions related to FIGS. 3 and 5,
example grammars (with rules and costs) and input structures (e.g., input DAGs)
are depicted and described to illustrate various aspect methods and
implementations. Such examples, as well as any particular values, operations,
functions, or structures included within, are merely for demonstrative purposes and
are not intended to limit the scope of the novel aspect methods and devices recited
in the claims. In particular, specific example values indicated in such illustrations,
such as numeric “costs” associated with particular functions, rules, or structures,
may be arbitrary and provided merely for illustration purposes, and may not have

any relation to actual costs or benetits of actual functions or structures.

WO 2015/026554 PCT/US2014/050576

[0027] FIG. 1 illustrates an aspect method 100 for a computing device to select
code for offloading from a CPU or applications processor to an auxiliary processor
(e.g., a DSP, GPU, etc.) based on DAG pattern matching. The aspect method 100
may be performed by a computing device (e.g., a laptop, smartphone, etc.) to
perform pattern matching against a known grammar that includes DAG patterns

(i.e., a library of known DAG patterns and associated costs and/or benefits).

[0028] Various BURS algorithms may find best sets of instructions for
accomplishing the functionality of code segments by combining instructions and
comparing cost models associated with each instruction/node with the cost of each
possible combination of instructions. As such, BURS instruction selection
methods, when applied to DAGs, would require exploring the possibility of
creating copies of original input code to find best sets of instructions to accomplish
the objectives of the original input code, and thus are solving an “np-complete”
problem. The method 100 and other aspect methods described below do not
generate new instructions (or alternate instructions) for an input code, but instead
automatically identify multiple patterns for each node or combination of nodes in a
DAG that are well-suited for offloading a CPU or applications processor to an
auxiliary processor, such as a DSP. In other words, the aspect methods may be
performed by a computing device as a non-exponential algorithm to identify a
plurality of patterns and select the most cost effective code for offloading, thus

solving a much simpler problem than BURS algorithms.

[0029] In block 102, the computing device may generate a directed acyclic graph
(DAGQG) intermediate representation of an input code. For example, a DAG may be
generated based on source code of a method, a set of methods, or an entire
application. Such graph-based intermediate representations may be known as a
data flow graphs. In general, intermediate representations of code may be
generated by parsing the input code (e.g., a software application program or
portions of a software program) and determining a graphical or symbolic mapping

of the structure of the code. For example, intermediate representations, such as

10

WO 2015/026554 PCT/US2014/050576

DAGs of an input code for a certain method, may indicate the syntax and other
functional or operational elements within the code. Intermediate representations
may include extra information, such as annotations, which may be used by a

dynamic or just-in-time (JIT) compiler to analyze and configure the program.

[0030] The DAG intermediate representation may include nodes (sometimes
referred to as vertices) with unidirectional connections, which may be referred to
as edges. Such connections between DAG nodes may represent logical
relationships between the nodes. For example, a connection between a leaf node
and a root note may indicate the leatf node is an operand of a function. Further,
DAGs may not include cycles, such as representations of code loops. In particular,
the generated DAG may be trimmed or adjusted so that no cycles exist in the
intermediate representation, regardless of any loops or cycles inherent within the
input code. In various aspects, a compiler routine, module, instructions, or other
component may be utilized by the computing device to convert the input code
(e.g., source code, binary code, etc.) of an application into a DAG structure of

connected leaves and/or nodes.

[0031] It should be noted that DAGs are not the same as input trees (or syntax
input trees), as may be used in BURS algorithms. For example, in various BURS
implementations, an input code may be converted to an expression input tree that
includes various leaf nodes and subtrees and that may be traversed from any leaf
node to a root node in a single direction. The aspect methods may generate DAGs
that include more information regarding the connections between nodes than trees.
DAG nodes may be connected in various directions and/or with multiple
connections, thus requiring additional operations for evaluating nodes and pattern

matching, as described below.

[0032] In block 104, the computing device may compare each node or
combination of nodes of the generated DAG to one or more predefined DAG

patterns in a grammar, each pattern associated with a cost metric. In other words,

11

WO 2015/026554 PCT/US2014/050576

the computing device may traverse the nodes of the generated DAG to detect
matches with the grammar patterns. The computing device may visit each node of
the generated DAG in a bottoms-up fashion, essentially visiting the children (or
leaf nodes) of a node before visiting the node itself. When the computing device
visits a node, it may search for all the DAG patterns (or sub patterns) matching that
node, and update a table of all possible types (e.g., “non-terminals” in the
grammar) to which the node can be matched with their enabling pattern rule
identifier and associated cost (e.g., the cost of the DAG pattern rooted at that
node). At the root of the generated DAG, the computing device may find a low
cost way of covering each node (or combination of nodes) of the generated DAG

with pattern rules from the grammar.

[0033] In various aspects, the grammar may simply be a data structure that stores
the predefined DAG patterns along with related information. For example, the
grammar may be a listing of DAG patterns (or structures) associated with
instructions known to perform in certain ways, efficiencies, or costs on particular
architectures, devices, operating systems, etc. Unlike other techniques, the aspect
methods may store within the grammar a plurality of predefined DAG patterns, not
trees. For example, the stored predefined patterns may be expressed as a set of
rooted DAGs, each of which may include a cost and/or benetit metric for the
associated pattern. In various aspects, the grammar may include DAG patterns
that are known to be well-suited for a particular core, such as a DSP or a GPU
within the mobile device. Non-limiting illustrations of such aspect grammars are

described below.

[0034] The operations in block 104 may automatically determine well-suited
code for offloading without requiring any developer to manually indicate such
well-suited code. In various aspects, the comparisons of the operations in block
104 may include determining whether grammar patterns match the DAG nodes
based on node characteristics or type (e.g., leaf, corresponds to a particular

operations, etc.) and node configurations, connections, or arrangements (e.g., a

12

WO 2015/026554 PCT/US2014/050576

directed connection between particular nodes). When making the comparisons, the
computing device may determine orientations, connections, and dependencies of
the nodes within the DAG. For example, the computing device may determine
that a subgroup of nodes within the generated DAG includes two register leaves
(e.g., integer values stored within registers) and a root node that corresponds to a
certain mathematical operation (e.g., add, multiply, etc.). In an aspect, the
comparison of the nodes to the grammar may include comparing each node or
combination of nodes of the generated DAG to pattern information stored in a

heuristic table.

[0035] In block 106, the computing device may identify a set of grammar
patterns that partially cover the generated DAG based on the comparisons. In
other words, based on the comparisons in the operations in block 104, the
computing device may recognize various DAG patterns defined in the grammar as
related or linked to all nodes of the DAG (and thus all elements of the input code).
For example, the set of identified grammar patterns may include a grammar pattern
that is associated with each variable and function represented in the generated
DAG. In various aspects, the identified set may include more than one grammar
pattern for particular elements of the generated DAG (e.g., a plurality of stored
patterns with associated costs/benefits may match a particular node or combination

of nodes of the generated DAG).

[0036] In block 108, the computing device may offload segments of the input
code associated with a combination of grammar patterns of the identified set of
patterns having the best identified cumulative effect. This may be accomplished
by determining the costs and benefits of the identified set of grammar patterns and
offloading a segment of code associated with an identified combination of patterns
having the lowest cost from a CPU or applications processor to an auxiliary
processor (e.g., a DSP, GPU, etc.). In various aspects, the segments may be
offloaded when the lowest cumulative cost (or highest/greatest cumulative benefit)

exceeds a predefined threshold value. For example, the input code (or a segment

13

WO 2015/026554 PCT/US2014/050576

of the input code) may be offloaded to a DSP when the identified set of grammar
patterns is associated with combined costs that do not exceed a maximum cost
threshold value for beneficial oftfloading from a CPU or applications processor to

the DSP.

[0037] FIG. 2 illustrates an aspect method 250 for a computing device to select
code for offloading to an auxiliary processor (e.g., a DSP, GPU, etc.) based on
DAG pattern matching. The method 250 is similar to the method 100 described
above, except that the method 250 includes explicit operations for re-evaluating
patterns in order to confirm matching patterns include the same connections
between nodes as defined within the DAG. In block 102, the computing device
may generate a directed acyclic graph (DAG) intermediate representation of an
input code as described above. In block 104, the computing device may compare
each node or combination of nodes of the generated DAG to one or more
predefined DAG patterns in a grammar, each pattern associated with a cost metric.
In block 252, the computing device may re-evaluate the DAG to identity
additional patterns and cumulative costs when the nodes or combination of nodes
matches patterns in the grammar. In other words, as the DAG includes directed
edges or connections between nodes, the computing device may be configured to
perform a confirmation evaluation pass (e.g., re-traverse the DAG) in order to
ensure any matched patterns of the grammar match both the configuration of nodes
within the generated DAG and any direction of edges associated with the nodes.
In block 106, the computing device may identify a set of grammar patterns that
partially cover the generated DAG based on the comparison. For example, based
on the traversal and re-traversal of the DAG, the computing device may identity a
set of grammar patterns that is confirmed to match the configuration, node type,
and edges of the DAG. In block 108, the computing device may offload segments
of the input code associated with a combination of grammar patterns of the

identified set of patterns having the best cumulative effect.

14

WO 2015/026554 PCT/US2014/050576

[0038] FIG. 3 illustrates an exemplary grammar 300 and an input DAG 320
related to an input code suitable for use with various aspects. The grammar 300
may include rules 304-306 that each include a rule identifier (e.g., “[r]”, “[r’]”,
etc.), a non-terminal symbol, a cost (or cost metric) associated with the rule, and a
DAG pattern associated with the rule (e.g., a set of nodes forming a DAG pattern
or a terminal node, such as an integer). Costs and/or benefits indicated by rules
may be general representations of the expense, toll, time, or value to the computing
device and/or the auxiliary processor related to executing operations associated
with DAG patterns of the grammar, and may be an approximation of processing
cycles, resources utilized, or other metrics for quantifying its execution. For
example, the costs of the rules may represent a number of processor cycles, time,
battery life, or other resources required to perform the instructions associated with
the individual rules. The template item 302 may show the structure of rules within
the grammar 300. In various aspects, a non-terminal symbol may include a term,
symbol, or other information that may be associated with a structure or terminal

value, such as a register or the name of function or expression.

[0039] In general, devices may not be required to expend any resources in order
to access or process a value already stored in a register. Accordingly, various
aspect grammars may include rules that reference registers and that may or may
not be associated with a zero (0) cost (i.e., such grammar rules may have no cost).
In various aspects, DAG leaf nodes may typically be terminals (e.g., integers) or

non-terminals.

[0040] Each of the rules 304-306 may be associated with methods or other
operations that may be well-suited for performing on an auxiliary processor, such
as a DSP. For example, a first rule 304 (i.e., “[r]” rule) may be associated with an
“array copy” operation that has a certain cost when executed on a DSP. Such an
operation may be a function or routine for copying a value, such as an integer,
stored at a particular index within an array data structure into another index of that

array data structure. A second rule 306 (i.e., “[r’]” rule) may be associated with an

15

WO 2015/026554 PCT/US2014/050576

index expression, such as an integer index value used in combination with an array

data structure, and may have another associated cost.

[0041] As described above, input code may be software instructions, such as
source code or binary code, that includes various functionalities. For example,
input code may include mathematical operations, such as an operation to add two
values stored in registers for storage in another register. Regarding FIG. 3, an
exemplary input code for use with the grammar 300 may be code that functions to
copy an element of an array from one index to another (i.e., an array copy
function). For example, the input code may be an operation represented by “A[6]
= A[5],” where ‘A’ may be an array variable name. The pattern for recognizing
this array assignment function may not be expressed as a simple tree, as particular
elements of the input code may be connected to more than one other node (e.g., a
shared node). Thus, the input code may be represented by an input DAG. In an
aspect, a parser function may convert the “A[6] = A[5]” operation into the
following set of operations: array copy = store(array base, index expr,

load(array base, index expr)), where ‘array copy’ is a known function, ‘store’ is a
known function that stores or saves a value in a particular location (e.g., a memory
location associated with a certain array index), ‘array_base’ represents a memory
location related to an array data structure, ‘index _expr’ is an indication that an
array index is addressed, and ‘load’ is a known function that may make a stored
value accessible, such as by placing a stored value in a register. A computing

device may convert such an exemplary input code into the input DAG 320.

[0042] The input DAG 320 may include nodes 322-330 that represent the set of
operations and elements recognized by a parser as needed to complete the input
code. In particular, the input DAG 320 may include a first node 324 representing a
first ‘index_expr’ element (e.g., the array index ‘5’), a second node 326
representing a second ‘index_expr’ element (e.g., the array index ‘6’), a third node
322 representing an ‘array base’ element (e.g., the location of the ‘A’ array in the

computing device memory), a fourth node 328 representing the ‘load’ function,

16

WO 2015/026554 PCT/US2014/050576

and a fifth node 330 representing the ‘store’ function. The third node 322 may be
a shared node, as it has connections (or edges) to both the fourth node 328 and the
fifth node 330. In other words, for the exemplary input code of “A[6] = A[5],” the
individual ‘load’ and ‘store’ functions may both be required to access the array ‘A’

tor loading and storing values, respectively.

[0043] The input DAG 320 may be compared to the grammar 300, as described
above. In particular, the computing device may identify that the first node 324
matches the second rule 306 (i.e., “[r’]”), the second node 326 also matches the
second rule 306 (i.e., “[r’]”), and the entire pattern of the input DAG (i.e., all the
nodes 322-330) matches the first rule 304 (i.e., “[r]”). In various aspects, the
matching of the input DAG 320 elements to the grammar 300 may include
matching node types and also connections between nodes (i.e., confirm correct
sharing between elements). Based on these matches, the computing device may
determine the cumulative effect of the elements of the input DAG 320 and
therefore the cost or benefit of the input code executing on the auxiliary processor.
For non-limiting illustration purposes based on the arbitrary cost values of FIG. 3:
the computing device may determine that the two nodes that match the second rule
306 each correspond to a cost of one (1), and the match of the entire input DAG

320 corresponds to a cost of ten (10), for a total cost of twelve (12).

[0044] FIG. 4 illustrates an aspect method 400 for a computing device to select
code for offloading from a CPU or applications processor to an auxiliary processor
based on DAG pattern matching. The method 400 may be considered a detailed
implementation of the aspect methods described above with reference to FIGS. 1-

2.

[0045] In block 402, the computing device may define a grammar related to
functions known to be well-suited for an auxiliary processer (e.g., a DSP, GPU,
etc.). The grammar may include a stored set, table, or database of rules that

correspond to non-terminals, operands and/or DAG patterns with associated cost

17

WO 2015/026554 PCT/US2014/050576

metrics. For example, the grammar may include a rule that includes a cost or
benefit metric and associated DAG pattern related to a Fast Fourier Transform
(FFT) function that is known to be well-suited for a DSP. Such a grammar may be

predetermined and loaded or otherwise stored on the computing device.

[0046] In block 404, the computing device may generate a DAG intermediate
representation of a next portion of an input code. For example, the computing
device may generate a DAG for a method within an application. When the method
400 1s executed for the first time (i.e., the first iteration), the next portion may be
the first portion of code within the input code. In an aspect, the computing device
may utilize a module, routine, software, or other instructions to partition the input
code into methods or other blocks of operational code. Further, the computing
device may perform operations to remove cycles from the generated DAG, for
example, when the input code is a loop. In various aspects, the computing device
may partition the input code so that the DAG represents the code of an operational
loop (e.g., a ‘for’ loop, etc.). For example, the computing device may only
perform the method 400 to determine whether loops in methods of the input code

are well-suited for execution on the auxiliary processor.

[0047] In block 406, the computing device may compare nodes of the generated
DAG to the defined grammar patterns to identify matches. For example, the
computing device may compare input values of the generated DAG (e.g., integers,
tloat values, etc.) that are stored in registers of the computing device to structures
defined in rules of the grammar. The compared nodes may be a combination of
the leaf nodes, root node, and other nodes within the generated DAG. In various
aspects, the compared nodes for each loop of the method 400 may be a subset of
the generated DAG, a predetermined number of nodes of the generated DAG, or a
combination of nodes that are connected via edges (e.g., nodes related to a
subroutine or subfunction represented within the generated DAG). For example,
the nodes compared with the operations in block 406 may be a set of nodes of the

generated DAG that correspond to a ‘load’ function or a ‘store’ function (e.g., a

18

WO 2015/026554 PCT/US2014/050576

node representing an array, a node representing an index expression, and a ‘load’
function node.). Alternatively, the comparison may be done on a node-by-node

basis (e.g., compare a leaf node to individual node patterns in the grammar, etc.).

[0048] Further, because DAGs utilize directed connections between nodes (e.g.,
directed edges between nodes), identifying matching patterns may only occur
when the nodes of the generated DAG match patterns of the grammar that have
both the same configuration of nodes (e.g., two leaf nodes of a certain type
connected to another node of another type) and the same direction of edges
between nodes. In other words, pattern matching may occur when both the node
types and the connections of the generated DAG and grammar are the same.
Accordingly, the computing device may also compare edge directions when a node
in the generated DAG is shared (i.e., the node is an input to more than one node) to
confirm any matching grammar pattern includes the same edge directions for
corresponding nodes. For example, the computing device may determine whether
a combination of nodes from the generated DAG and a matching pattern within the
grammar share the same edge directions between the matching nodes. This may

be considered re-traversing the generated DAG in relation to the compared nodes.

[0049] The operations in block 406 may be similar to the operations in blocks
104 and 252 described above with reference to FIGS. 1-2. For example, the
computing device may identify whether any matches exist between the patterns of
the defined grammar and the leaf nodes within the generated DAG (e.g., integer
nodes, register nodes, etc.). Further, the operations in block 406 may not require
any manual indications provided by code developers (i.e., the comparisons may be

automatic).

[0050] In determination block 412, the computing device may determine whether
there are any matches between the nodes of the generated DAG and the defined
grammar patterns based on the comparisons. For example, the computing device

may determine whether the leaf nodes of the generated DAG match any

19

WO 2015/026554 PCT/US2014/050576

patterns/node types within rules of the grammar. As described above, the grammar
may include a plurality of patterns (e.g., leaves and root nodes) that represent
different configurations but that may still match a certain operation and/or various
operations (e.g., shifts, loads, etc.) in the DAG. For example, the computing
device may compare a DAG (or subset of a DAG) to the grammar and identify

several DAG patterns within the grammar that match.

[0051] If there are no matches based on the comparisons (i.e., determination
block 412 =“No”), the computing device may continue with the operations in

determination block 416.

[0052] In an optional aspect, if there are no matches based on the comparisons
(i.e., determination block 412 = “No”), the computing device may continue with
the operations in determination block 426. In other words, when any node or
combination of nodes cannot be matched to the patterns within the defined
grammar, the computing device may determine the current portion of the input
code may not be offloaded to the auxiliary processor and may continue with the

next portion, if any.

[0053] However, if there is at least one match based on the comparisons (i.e.,
determination block 412 = “Yes”), in block 414 the computing device may select
the matching pattern with the best benefit or cost. In other words, when the
current node or subset of nodes of the generated DAG matches multiple DAG
patterns within the grammar, the computing device may pick the matching
grammar pattern with the lowest cost or highest benefit. For example, the
computing device may compare the costs associated with the pattern matches and
defined within the grammar, and may select the pattern with the lowest cost.
Alternatively, based on the information within the defined grammar, the
computing device may evaluate any benefits associated with the matching patterns
and may select a pattern that has a benefit that outweighs the costs of any of the

other matching patterns. For example, the computing device may select a

20

WO 2015/026554 PCT/US2014/050576

matching pattern that is known to be particularly well-suited for the auxiliary
processor, such as the pattern has a very low cost or some added benefit due to the
configuration of the nodes of the DAG. As described above, the cost or benefit for
a pattern (or rule) within the grammar may be stored in relation to each pattern,
such as within a relational database or other data structure. In an aspect, the
computing device may store information indicating the selected matching pattern
with the best effect, such as by storing in a data structure the identification of the
matching pattern, the cost of the instruction, or other identitfying information that

may be accessed and used in the operations in block 418.

[0054] In determination block 416, the computing device may determine whether
the entire generated DAG has been evaluated. For example, when only a subset of
the nodes of the generated DAG have been compared to the grammar with the
operations in block 406, the computing device may continue to traverse the
generated DAG until the entire portion of code has been evaluated. In various
aspects, the root node of the generated DAG may represent the final or terminal
operation, step, instruction, or connector within the input code used to generate the

DAG.

[0055] If the entire generated DAG has not been evaluated (i.e., determination
block 416 =“No”), the computing device may continue evaluating the rest of the
portion of code by my comparing more nodes of the generated DAG to the
grammar patterns in block 406. In this way, the computing device may iteratively

evaluate all of the nodes of the generated DAG for the portion of the input code.

[0056] When the entire generated DAG has been evaluated (i.e., determination
block 416 =“Yes”), in block 418 the computing device may identify a cumulative
effect (e.g., benefit or cost) of the input code portion for the auxiliary processor.
For example, the computing device may determine a combined cost based on the
cost metrics of the individual patterns of the grammar matched to the DAG. The

computing device may identify the cumulative effect by adding the costs and/or

21

WO 2015/026554 PCT/US2014/050576

benefits identified for each individual portion within the generated DAG and the
operations in block 418 may include accessing and combining data stored during
the operations of block 414. In determination block 420, the computing device
may determine whether the cumulative effect is good for the auxiliary processor
(e.g., a DSP, GPU, etc.). In an aspect, the computing device may compare the
cumulative benefit or cost as identified in block 418 to a predefined threshold
value stored in the computing device. In another aspect, the computing device
may determine that the portion of the input code 1s good for the auxiliary processor
when the generated DAG is fully covered. In other words, the computing device
may determine that the related code portion is suitable for oftfloading when all
nodes or combinations of nodes within the current DAG are matched to patterns
within the defined grammar. If the cumulative effect is good for the auxiliary
processor (1.e., determination block 420 = “Yes”), in block 424 the computing
device may offload the portion of the input code from a CPU or applications

processor to the auxiliary processor.

[0057] Ifthe computing device determines that the cumulative effect is not good
for the auxiliary processor (i.e., determination block 420 = “No”), or if the portion
is offloaded, the computing device may determine whether there are more code
portions to evaluate in determination block 426. For example, when the
computing device is configured to parse the input code on a method-by-method
basis, the computing device may iteratively perform the operations in blocks 404-
424 until the entirety of the input code has been evaluated. If there are more
portions of the input code (i.e., determination block 426 = *“Yes”), the computing
device may continue with the operations in block 404. When there are no more
portions of the input code (i.e., determination block 426 = “No”), the method 400

may end.

[0058] FIG. S illustrates an exemplary grammar 500 and input DAG 550 related
to an input code suitable for use with various aspects. The example grammar 500

of FIG. 5 includes numerous rules 504-514 which may be matched to the various

22

WO 2015/026554 PCT/US2014/050576

patterns and nodes of the input DAG 550. The template item 502 may show the
structure of rules within the grammar 500. The first rule 504 (i.e., “[t0]” rule) may
be associated with a node or combination of nodes that is represented by the DAG
pattern “S,” the second rule 506 (i.e., “[r1]” rule) may be associated with a node or
combination of nodes that is represented by the DAG pattern “A,” the third rule
508 (i.e., “[r2]” rule) may be associated with a node or combination of nodes that
is represented by the DAG pattern “B,” the fourth rule 510 (i.e., “[r3]” rule) may
be associated with a node or combination of nodes that is represented by the DAG
pattern “C,” and the fifth rule 512 (i.e., “[r4]” rule) may be associated with a node
or combination of nodes that is represented by the DAG pattern “D.” The DAG
patterns associated with the rules 504-512 may represent various node types and/or
operations (e.g., integer, register, ‘load’, ‘store’, ‘add’, etc.). Additionally, the

rules 506-512 may each have a first cost, and the rule 504 may have a second cost.

[0059] However, the sixth rule 514 (i.e., “[r’]” rule) may be associated with a
DAG pattern that is a combination of the DAG patterns for the rules 506-512 (e.g.,
a combination of the DAG patterns “A,” “B,” “C,” and “D”). For example, the
sixth rule 514 may correspond to a particular code loop (e.g., ‘loop a’). Although
the sixth rule 514 includes all of these DAG patterns, the cost for the sixth rule 514
may be very low (i.e., lower than the combination of the costs associated with the
individual rules for “A,” “B,” “C,” and “D”). This may be the case when an
auxiliary processor performs a certain combination of operations particularly well

and thus a great benefit is received when input code includes the combination.

[0060] The input DAG 550 shows annotations that indicate the best rules
matched to the DAG elements. In particular, when a computing device executes
an aspect method as described above with reference to FIGS. 1, 2, or 4, nodes 552,
562, and 564 may each be matched to the first rule 504 (i.e., “[r0]”). However, the
nodes 554, 556, 558, and 560 may collectively be matched to sixth rule 514 (i.e.,
“[r’]”). In other words, although individually the nodes 554-560 may be matched

to the rules 506-512 for a certain cumulative cost, the computing device may

23

WO 2015/026554 PCT/US2014/050576

identify that the nodes 554-560 may be combined to match the pattern of the sixth
rule 514 for a lower cost (or higher benefit). For non-limiting illustration purposes
based on the arbitrary cost values of FIG. 5, the costs for the first rule 504
associated with the nodes 552, 562, and 564 may be combined with the cost for the
sixth rule 514 to find a total cost of ten (10) for the input DAG 550.

[0061] FIG. 6 is a system block diagram of a smartphone-type mobile computing
device 600 suitable for use with various aspects. The smartphone mobile
computing device 600 may include a processor 601 coupled to internal memory
602, a display 603, and to a speaker 654. The smartphone mobile computing
device 600 may further include an auxiliary processor, such as a digital signal
processor or DSP 606. In various aspects, the DSP 606 and the processor 601 may
be connected, such as via an internal bus or as part of a system-on-chip design.
Additionally, the smartphone mobile computing device 600 may include an
antenna 604 for sending and receiving electromagnetic radiation that may be
connected to a wireless data link and/or long-range wireless signal transceiver 605,
such as a cellular network or WiFi radio, coupled to the processor 601 and capable
of communicating over a wide area wireless communication network. In an
aspect, the antenna 604 may also be coupled to the DSP 606. Smartphone mobile
computing devices 600 may include a separate short-range radio transceiver 624
capable of communicating or pairing with other mobile computing devices.
Smartphone mobile computing devices 600 typically may also include menu
selection buttons or rocker switches 608 for receiving user inputs. Additionally,
the smartphone mobile computing device 600 may include an accelerometer 610, a
gyroscope 611, and a GPS receiver chip 614 coupled to the processor 601 and/or
the DSP 606. In an aspect, the smartphone mobile computing device 600 may also
include a microphone 612 and a camera 613 coupled to the processor 601 and/or
the DSP 606. In another aspect, the smartphone mobile computing device 600
may also include other auxiliary processors, such as a graphics processing unit (not

shown).

24

WO 2015/026554 PCT/US2014/050576

[0062] The processors 601 and 606 may be any programmable microprocessor,
microcomputer or multiple processor chip or chips that can be configured by
software instructions (applications) to perform a variety of functions, including the
functions of the various aspects described above. In the various devices, the
processors 601 and 606 may be dedicated to particular instructions, software,
commands, or other uses. For example, one processor may be dedicated to
wireless communication functions and one processor may be dedicated to running
other applications. Typically, software applications may be stored in the internal
memory 602 before they are accessed and loaded into the processors 601 and 606.
The processors 601 and 606 may include internal memory sufficient to store the
application software instructions. In many devices the internal memory may be a
volatile or nonvolatile memory, such as flash memory, or a mixture of both. For
the purposes of this description, a general reference to memory refers to memory
accessible by the processors 601 and 606 including internal memory or removable
memory plugged into the various devices and memory within the processors 601

and 600.

[0063] The foregoing method descriptions and the process flow diagrams are
provided merely as illustrative examples and are not intended to require or imply
that the steps of the various aspects must be performed in the order presented. As
will be appreciated by one of skill in the art the order of steps in the foregoing
aspects may be performed in any order. Words such as “thereafter,” “then,”
“next,” etc. are not intended to limit the order of the steps; these words are simply
used to guide the reader through the description of the methods. Further, any
reference to claim elements in the singular, for example, using the articles “a,”

“an” or “the” 1s not to be construed as limiting the element to the singular.

[0064] The various illustrative logical blocks, modules, circuits, and algorithm
steps described in connection with the aspects disclosed herein may be
implemented as electronic hardware, computer software, or combinations of both.

To clearly illustrate this interchangeability of hardware and software, various

25

WO 2015/026554 PCT/US2014/050576

illustrative components, blocks, modules, circuits, and steps have been described
above generally in terms of their functionality. Whether such functionality is
implemented as hardware or software depends upon the particular application and
design constraints imposed on the overall system. Skilled artisans may implement
the described functionality in varying ways for each particular application, but
such implementation decisions should not be interpreted as causing a departure

from the scope of the present invention.

[0065] The hardware used to implement the various illustrative logics, logical
blocks, modules, and circuits described in connection with the aspects disclosed
herein may be implemented or performed with a general purpose processor, a
digital signal processor (DSP), an application specific integrated circuit (ASIC), a
tield programmable gate array (FPGA) or other programmable logic device,
discrete gate or transistor logic, discrete hardware components, or any combination
thereof designed to perform the functions described herein. A general-purpose
processor may be a microprocessor, but, in the alternative, the processor may be
any conventional processor, controller, microcontroller, or state machine. A
processor may also be implemented as a combination of computing devices, e.g., a
combination of a DSP and a microprocessor, a plurality of microprocessors, one or
more microprocessors in conjunction with a DSP core, or any other such
configuration. Alternatively, some steps or methods may be performed by

circuitry that is specific to a given function.

[0066] In one or more exemplary aspects, the functions described may be
implemented in hardware, software, firmware, or any combination thereof. If
implemented in software, the functions may be stored on or transmitted over as
one or more instructions or code on a computer-readable medium. The operations
of a method or algorithm disclosed herein may be embodied in a processor-
executable software module (or processor-executable instructions or processor-
executable software instructions) that may be stored on a non-transitory processor-

readable or computer-readable storage medium. Non-transitory processor-readable

26

WO 2015/026554 PCT/US2014/050576

storage media may be any available media that may be accessed by a computer or
processor. By way of example, and not limitation, non-transitory computer-
readable and processor-readable media may comprise RAM, ROM, EEPROM,
CD-ROM or other optical disk storage, magnetic disk storage or other magnetic
storage devices, or any other medium that may be used to store desired program
code in the form of instructions or data structures and that may be accessed by a
computer. Disk and disc, as used herein, includes compact disc (CD), laser disc,
optical disc, digital versatile disc (DVD), floppy disk, and blu-ray disc where disks
usually reproduce data magnetically, while discs reproduce data optically with
lasers. Combinations of the above should also be included within the scope of non-
transitory computer-readable and processor-readable media. Additionally, the
operations of a method or algorithm may reside as one or any combination or set
of codes and/or instructions on a tangible, non-transitory machine readable
medium and/or computer-readable medium that may be incorporated into a

computer program product.

[0067] The preceding description of the disclosed aspects is provided to enable
any person skilled in the art to make or use the present invention. Various
modifications to these aspects will be readily apparent to those skilled in the art,
and the generic principles defined herein may be applied to other aspects without
departing from the spirit or scope of the invention. Thus, the present invention is
not intended to be limited to the aspects shown herein but is to be accorded the
widest scope consistent with the following claims and the principles and novel

features disclosed herein.

27

WO 2015/026554 PCT/US2014/050576

CLAIMS

What is claimed is:

1. A method for a computing device to offload portions of an input code from a
first processor for execution on an auxiliary processor when the portions are
automatically determined to be well-suited for the auxiliary processor, comprising:

generating a graph-based intermediate representation of the input code,
wherein the graph-based intermediate representation of the input code contains
directed acyclic graphs (DAGs);

comparing each node or combination of nodes to one or more patterns in a
predefined grammar, wherein each pattern is a DAG pattern and is associated with
a cost metric;

identifying a set of patterns that partially cover the graph-based
intermediate representation of the input code based on the comparisons of the each
node or the combination of nodes to the one or more patterns in the predefined
grammar; and

offloading from the first processor to the auxiliary processor segments of
the input code associated with a combination of grammar patterns of the identified

set of patterns having a best cumulative eftect.
2. The method of claim 1, wherein comparing each node or combination of nodes
to one or more patterns in a predefined grammar comprises comparing the each

node or the combination of nodes to pattern information stored in a heuristic table.

3. The method of claim 1, wherein the computing device is a device that includes

a system-on-chip.

4. The method of claim 1, wherein the auxiliary processor is one of a digital signal

processor (DSP) and a graphics processing unit (GPU).

28

WO 2015/026554 PCT/US2014/050576

5. The method of claim 1, wherein the one or more patterns in the predefined

grammar are known to be well suited for the auxiliary processor.

6. The method of claim 1, wherein the best cumulative effect is one of a lowest

cumulative cost and a highest cumulative benefit.

7. The method of claim 1, further comprising generating information for
presentation to a developer that indicates segments of the input code that can be
configured for the auxiliary processor based on the comparisons of the each node
or the combination of nodes to the one or more patterns in the predefined

grammar.

8. A computing device, comprising:

means for generating a graph-based intermediate representation of an input
code, wherein the graph-based intermediate representation of the input code is a
directed acyclic graph (DAG);

means for comparing each node or combination of nodes to one or more
patterns in a predefined grammar, wherein each pattern is a DAG pattern and is
associated with a cost metric;

means for identifying a set of patterns that completely cover the graph-
based intermediate representation of the input code based on the comparisons of
the each node or the combination of nodes to the one or more patterns in the
predefined grammar; and

means for oftfloading from a first processor to an auxiliary processor
segments of the input code associated with a combination of grammar patterns of

the identified set of patterns having a best cumulative effect.

9. The computing device of claim 8, wherein means for comparing each node or

combination of nodes to one or more patterns in a predefined grammar comprises

29

WO 2015/026554 PCT/US2014/050576

means for comparing the each node or the combination of nodes to pattern

information stored in a heuristic table.

10. The computing device of claim 8§, wherein the computing device comprises a

system-on-chip.

11. The computing device of claim 8, wherein the auxiliary processor is one of a

digital signal processor (DSP) and a graphics processing unit (GPU).

12. The computing device of claim 8, wherein the one or more patterns in the

predefined grammar are known to be well suited for the auxiliary processor.

13. The computing device of claim &, wherein the best cumulative effect is one of

a lowest cumulative cost and a highest cumulative benefit.

14. The computing device of claim 8, further comprising means for generating
information for presentation to a developer that indicates segments of the input
code that can be configured for the auxiliary processor based on the comparisons
of the each node or the combination of nodes to the one or more patterns in the

predefined grammar.

15. A computing device, comprising:

a memory;

a first processor; and

an auxiliary processor,

wherein the first processor is coupled to the memory and the auxiliary
processor and configured with processor-executable instructions to perform

operations comprising:

30

WO 2015/026554 PCT/US2014/050576

generating a graph-based intermediate representation of an input
code, wherein the graph-based intermediate representation of the input code
1s a directed acyclic graph (DAG);

comparing each node or combination of nodes to one or more
patterns in a predefined grammar, wherein each pattern is a DAG pattern
and 1s associated with a cost metric;

identifying a set of patterns that completely cover the graph-based
intermediate representation of the input code based on the comparisons of
the each node or the combination of nodes to the one or more patterns in the
predefined grammar; and

offloading from the first processor to the auxiliary processor
segments of the input code associated with a combination of grammar

patterns of the identified set of patterns having a best cumulative effect.

16. The computing device of claim 15, wherein the first processor is configured
with processor-executable instructions to perform operations such that comparing
each node or combination of nodes to one or more patterns in a predefined
grammar comprises comparing the each node or the combination of nodes to

pattern information stored in a heuristic table.

17. The computing device of claim 15, wherein the computing device comprises a

system-on-chip.

18. The computing device of claim 15, wherein the auxiliary processor is one of a

digital signal processor (DSP) and a graphics processing unit (GPU).

19. The computing device of claim 15, wherein the one or more patterns in the

predefined grammar are known to be well suited for the auxiliary processor.

31

WO 2015/026554 PCT/US2014/050576

20. The computing device of claim 15, wherein the best cumulative effect is one

of a lowest cumulative cost and a highest cumulative benefit.

21. The computing device of claim 15, wherein the first processor is configured
with processor-executable instructions to perform operations further comprising
generating information for presentation to a developer that indicates segments of
the input code that can be configured for the auxiliary processor based on the
comparisons of the each node or the combination of nodes to the one or more

patterns in the predefined grammar.

22. A non-transitory processor-readable storage medium having stored thereon
processor-executable software instructions configured to cause a processor to
perform operations for offloading portions of an input code from a first processor
to an auxiliary processor comprising:

generating a graph-based intermediate representation of the input code,
wherein the graph-based intermediate representation of the input code is a directed
acyclic graph (DAG);

comparing each node or combination of nodes to one or more patterns in a
predefined grammar, wherein each pattern is a DAG pattern and is associated with
a cost metric;

identifying a set of patterns that completely cover the graph-based
intermediate representation of the input code based on the comparisons of the each
node or the combination of nodes to the one or more patterns in the predefined
grammar; and

offloading from the first processor to the auxiliary processor segments of
the input code associated with a combination of grammar patterns of the identified

set of patterns having a best cumulative eftect.

23. The non-transitory processor-readable storage medium of claim 22, wherein

the stored processor-executable software instructions are configured to cause the

32

WO 2015/026554 PCT/US2014/050576

processor to perform operations such that comparing each node or combination of
nodes to one or more patterns in a predefined grammar comprises comparing the
each node or the combination of nodes to pattern information stored in a heuristic

table.

24. The non-transitory processor-readable storage medium of claim 22, wherein
the stored processor-executable software instructions are configured to be executed

on a computing device that comprises a system-on-chip.

25. The non-transitory processor-readable storage medium of claim 22, wherein
the auxiliary processor is one of a digital signal processor (DSP) and a graphics

processing unit (GPU).

26. The non-transitory processor-readable storage medium of claim 22, wherein
the one or more patterns in the predefined grammar are known to be well suited for

the auxiliary processor.

27. The non-transitory processor-readable storage medium of claim 22, wherein
the best cumulative effect is one of a lowest cumulative cost and a highest

cumulative benefit.

28. The non-transitory processor-readable storage medium of claim 22, wherein
the stored processor-executable software instructions are configured to cause the
processor to perform operations further comprising generating information for
presentation to a developer that indicates segments of the input code that can be
configured for the auxiliary processor based on the comparisons of the each node
or the combination of nodes to the one or more patterns in the predefined

grammar.

33

WO 2015/026554 PCT/US2014/050576
1/6

100

102

Generate a directed acyclic
graph (DAG) intermediate
representation of an input code
(e.g., an app, a method, etc.)

104 *

Compare each node or
combination of nodes of the
generated DAG to one or more
predefined DAG patterns in a
grammar, each pattern
associated with a cost metric

106 Y

Identify a set of grammar
patterns that partially cover the
generated DAG based on the
comparison

108 ¢

Offload segments of the input
code associated with a
combination of grammar
patterns of the identified set
having the best cumulative effect

FIG. 1

WO 2015/026554

250

2/6

102

Generate a directed acyclic
graph (DAG) intermediate
representation of an input code
(e.g., an app, a method, etc.)

104 *

Compare each node or
combination of nodes of the
generated DAG to one or more
predefined DAG patterns in a
grammar, each pattern
associated with a cost metric

252 v

Re-evaluate the DAG to identify
additional patterns and
cumulative costs when the
nodes or combination of nodes
matches patterns in the
grammar

106 ¢

Identify a set of grammar
patterns that partially cover the
generated DAG based on the
comparison

108 ¢

Offload segments of the input
code associated with a
combination of grammar
patterns of the identified set
having the best cumulative effect

FIG. 2

PCT/US2014/050576

WO 2015/026554 PCT/US2014/050576

3/6

300 320
a a

Grammar with DAG Input DAG
Patterns (for A[6] = A[5];)
cost DAG
[ruleid] tel;lrﬁ?r;aI:> pattern 322
302 Array_base
326
10
Array_
[r] copy ﬁ e

\ Total cost =[] + [F'] + [r] =
306 1 +1+10=12

FIG. 3

WO 2015/026554

4/6

402

Define grammar related to functions known
to be well-suited for auxiliary processor

PCT/US2014/050576

404 Y

Generate a directed acyclic graph (DAG)
intermediate representation of next portion
of an input code

No

406 ‘i

Compare nodes of generated DAG to
defined grammar patterns to identify
matches

412

Any
matches based on
comparisons?

414

Select the matching pattern with the best
benefit or cost

416
Evaluated entire DAG?

418 Yes

ldentify cumulative effect (e.g., benefit or
cost) of input code portion for the auxiliary
processor

Cumulative

426

ore code
portions?

No

No y

effect is good for auxiliary
processor?

424 Yes
Offload portion of input code to auxiliary
processor
(

FIG. 4

[400

WO 2015/026554
5/6

500
?A

Grammar with DAG
patterns
cost

Non- :>
terminal

502

Non- :>
[r0] terminal @

504

2
Non- :>
[r1] terminal @
\ 506

Non- :>
[r2] terminal G

DAG

[ruleid] pattern

-

Non- :>
[r3] terminal @

Non- :>
[r4] terminal @

512

-

1
[F] loop_a :>
\514

PCT/US2014/050576

564

Total cost = [r'] + [rO] + [rO] + [rO] =
1+3+3+3=10

FIG. 5

WO 2015/026554 PCT/US2014/050576

6/6

FIG. 6

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/050576

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/45
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

DAGs",

LANGUAGES , POPL '99,

242-249, XP055150255,

New York, New York, USA
DOI: 10.1145/292540.292562
ISBN: 978-1-58-113095-9
pages 3-4

PROCEEDINGS OF THE 26TH ACM SIGPLAN-SIGACT
SYMPOSIUM ON PRINCIPLES OF PROGRAMMING

1 January 1999 (1999-01-01), pages

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2007,/174828 Al (O'BRIEN JOHN KEVIN P 1-28

[US] ET AL) 26 July 2007 (2007-07-26)

paragraph [0030]

paragraphs [0038] - [0040]
Y M. ANTON ERTL: "Optimal code selection in 1-28

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

4 November 2014

Date of mailing of the international search report

12/11/2014

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Kamps, Stefan

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/050576

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y

DAVID RYAN KOES ET AL: "Near-optimal
instruction selection on dags",
PROCEEDINGS OF THE SIXTH ANNUAL IEEE/ACM
INTERNATIONAL SYMPOSIUM ON CODE GENERATION
AND OPTIMIZATION , CGO '08,

1 January 2008 (2008-01-01), page 45,
XP055150182,

New York, New York, USA

DOI: 10.1145/1356058.1356065

ISBN: 978-1-59-593978-4

pages 4,5

US 6 292 938 B1 (SARKAR VIVEK [US] ET AL)
18 September 2001 (2001-09-18)

column 2, lines 53-63

column 3, lines 14-29

DIETMAR EBNER ET AL: "Generalized
instruction selection using SSA -graphs",
PROCEEDINGS OF THE 2008 ACM SIGPLAN-SIGBED
CONFERENCE ON LANGUAGES, COMPILERS, AND
TOOLS FOR EMBEDDED SYSTEMS, LCTES '08,

1 January 2008 (2008-01-01), page 31,
XP055150350,

New York, New York, USA

DOI: 10.1145/1375657.1375663

I1SBN: 978-1-60-558104-0

* page 35, section 5.1 *

1-28

1-28

1-28

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2014/050576
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2007174828 Al 26-07-2007 US 2007174828 Al 26-07-2007
US 2008256521 Al 16-10-2008
US 6292938 Bl 18-09-2001 KR 20000052396 A 25-08-2000
us 6292938 Bl 18-09-2001

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - wo-search-report
	Page 43 - wo-search-report
	Page 44 - wo-search-report

