European Patent Specification

An Ink Supply System for Printers
Tintenzufuhrsystem für Drucker
Système d’alimentation d’encre pour imprimantes

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

Priority: 19.02.2008 IT RE20080022

Date of publication and mention of the grant of the patent:
22.09.2010 Bulletin 2010/38

Application number: 09152388.6

Date of filing: 09.02.2009

Proprietor: Palumbo, Vincenzo
42014 Castellarano (RE) (IT)

Inventor: Palumbo, Vincenzo
42014 Castellarano (RE) (IT)

Representative: Corradini, Corrado et al
Ing. C. Corradini & C. S.r.l.
Via Dante Alighieri 4
42100 Reggio Emilia (IT)

References cited:
US-A- 3 930 258

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The invention relates an ink supply system for
inkjet or glaze printers destined for decorating ceramic
tiles.

[0002] In the following reference with be made to ink,
though the term should be taken to refer also to ceramic
glazes.

[0003] As is known, an inkjet printer exhibits a supply
system of the ink which comprises at least a printing
head, which is connected to a relative tank of ink, and is
provided with a plurality of very small dispensing nozzles
through which the ink is made to exit in a controlled way,
in order to be applied on the surface to be printed on.

[0004] In traditional inkjet printers, the printing head is
the terminal of a simple supply conduit, in which the ink
runs in a single direction from the tank towards the dis-

censing nozzles.

[0005] The most up-to-date printing heads are inserted
in a closed circuit in which, when the printing operations
are stopped, the ink is made to circulate continually, such
as to create a constant flow passing through the printing
head without exiting from the dispensing nozzles. During
this circulation, the ink is generally filtered each time be-
fore crossing the printing head, such as to eliminate the
dirt and/or air bubbles which might be present in it.

[0006] In order to realise this system, printing heads
comprise, apart from the above-mentioned dispensing
nozzles, also an inlet conduit and an outlet conduit for
the ink. The inlet conduit is connected to an upper storage
reservoir, while the outlet conduit is connected to a lower
storage reservoir, which is at a lower level than the first.
Both tanks are kept at atmospheric pressure. The lower
reservoir is in communication with the ink tank, and is
connected to the upper reservoir through a recycling
pump.

[0007] In this way, the height difference between the
two tanks enables the ink to run from the upper reservoir
to the lower reservoir, crossing the printing head, while
the recycling pump pushes the ink which has accumu-
lated into the lower reservoir, newly towards the upper
reservoir.

[0008] Though being rather efficient, this ink supply
system has exhibited some drawbacks relating to cali-

bration and installation.

[0009] In particular, in order to overcome the circuit
impedance and to guarantee a constant flow passing through
the printing head, it is necessary for the upper and lower
reservoirs to be separated by a considerable difference
in level, which leads to a significant increase in the size
of the system.

[0010] The level difference must also be accurately

calibrated such as to create a constant slight depression
at the printing nozzles of the printing head, so that the
ink cannot accidentally exit due to the vibrations or to
small impacts, thus introducing a series of not-irrelevant
constructional difficulties.

[0011] With the aim of eliminating these drawbacks,
closed-circuit ink supply systems have been developed,
in which the circulation is not due to a height difference
between the two tanks, but is obtained with two pressure
control devices, which are associated to both the tanks,
such as to impose a predetermined difference between
them.

[0012] This solution enables the above-mentioned cal-
ibration and installation problems to be obviated, but
however presents a considerable plant complication and
thus a considerable hike in production costs.

[0013] EP 1 886 815 shows an ink supply system for
printers that has two tanks connected by a delivery line
in which a print head is inserted, said print head being
provided with ink nozzles. The tanks are also mutually
connected by a return line in which a recycling pump is
inserted. A first tank is open to the atmosphere and a
second tank is connected to means for pressure control,
which are comprised of a compression spring that pushes
on two walls of the first tank in order to maintain in it a
pressure value inferior to the atmospheric pressure.

[0014] US 3 930 258 shows an ink supply system for
printers having a return tank and a delivery tank connect-
ed by a delivery line in which an ink head is inserted and
a return line. Both tanks are substantially at the same
height, however the difference of pressure needed to
have the ink pass form one tank to the other may be
obtained by a valve means and a pump.

[0015] In US 2007/279461 two tanks at different
heights are described and a pump makes the ink flow
from a main tank (at a lower height) to the ink head. The
ink flows in the return line to a second tank open to at-
mospheric pressure.

[0016] The aim of the present invention is to resolve
the drawbacks of supply systems based on a level dif-
ference, with a more rational, simple and relatively inex-
pensive solution with respect to those at present availa-
ble. The aim is attained by the characteristics of the in-
vention as reported in the independent claims. The de-
pendent claims delineate preferred and/or particularly
advantageous aspects of the invention.

[0017] In particular, an ink supply system is provided
comprising two storage reservoirs which are reciprocally
connected in a closed circuit by a delivery line, in which
a printing head is inserted, which printing head is provid-
ed with at least an ink dispensing nozzle, and by a return
line, in which a recycling pump is inserted.

[0018] According to the invention, a first reservoir is
open to the atmosphere through a breather mouth, while
the second reservoir is associated to pressure control
means, which internally maintain a pressure level that is
lower than atmospheric pressure.

[0019] Thanks to this solution, during pauses in print-
ing, the recycling of the ink is created by the pressure
difference between the tanks, caused by the depression
imposed in the second tank.

[0020] The tanks can thus both be located at the same
height, obviating the drawbacks in non-level systems,
while the plant layout is much simpler and more econom-
Further, the pressure control means enable a precise calibration of the pressure difference between the two tanks, effectively preventing undesired ink leaks from the system during recycling.

Further characteristics and advantages of the invention will better emerge from a reading of the following description provided by way of non-limiting example, with the aid of the figures illustrated in the accompanying tables of drawings.

Figure 1 is a plant layout of the ink supply system of the invention, which is destined for an inkjet printer of a professional type.

Figure 2 is a schematic view in perspective elevation of a preferred embodiment of some components of the system of figure 1.

The ink supply system, denoted in its entirety by 1, comprises two storage reservoirs, respectively 2 and 3, which are positioned at a same height, and are reciprocally connected in a closed circuit by a delivery line 4 and a return line 5.

The reservoir 2 comprises a breather mouth 20 opening directly into the atmosphere, which is checked by a closing solenoid 21, and an inlet conduit 22, through which the ink contained in a tank (not illustrated) is supplied internally of the reservoir 2.

The reservoir 2 further comprises a level sensor 23, which detects the height of the level L2 of ink internally of the reservoir 2, and a heater 24, which regulates the temperature of the ink.

Similarly, the reservoir 3 comprises a breather mouth 30 which opens directly into the atmosphere, and which is checked by a closing solenoid 31, a level sensor 33 for detecting the height of the level L3 of the ink internally of the reservoir 3, and a heater 34, for regulating the temperature of the ink.

The level sensors 23 and 33 are not further described as they are of known type.

The heaters 24 and 34 are preferably realised in a single component, as illustrated in the constructional example of figure 2.

In particular, the reservoirs 2 and 3 are mounted side-by-side on a single support base 10, which exhibits a raised longitudinal wall 11 which is interposed contactingly between the reservoirs 2 and 3 and keeps them separate.

The support base 10 is realised in a material having a high heat conductivity, and is crossed by a longitudinally-developing electrical resistance 12, which is housed internally of the raised wall 11 and is connected to an electrical supply circuit (not illustrated).

In this way, the electrical resistance 12 is able to heat both the ink contained in the reservoir 2 and the ink contained in the reservoir 3, performing the function of both heaters 24 and 34 illustrated in figure 1.

The reservoir 3 further comprises pressure control and regulation means, denoted in their entirety by 6, which set internally thereof a predetermined pressure value, lower than atmospheric pressure.

In the illustrated example, the control means 6 comprise a venturi tube 60, which is connected with the reservoir 3 via a conduit 61 which opens at the narrow section of the venturi tube 60. The venturi tube 60 is crossed by a continuous air flow, such as to obtain a pressure drop in the narrowed section, and thus to create a depression in the reservoir 3.

A known-type printing head 7 is inserted in the delivery line 4, which printing head 7 is positioned at a lower height than the reservoirs 2 and 3.

The printing head 7 schematically comprises an inlet 70, an outlet 71 and a plurality of small ink-dispensing nozzles 72, open to the atmosphere.

The inlet 70 is connected to the reservoir 2 via a first conduit 40, along which an ink filter 41 is inserted, while the outlet 71 is connected to the reservoir 3 via a second conduit 42 of the delivery line 4.

The return line 5 comprises a single conduit 50 which a recycling pump 52 is inserted, which collects ink from an outlet mouth 35 of the reservoir 3 in order to push it towards an inlet mouth 25 of the reservoir 2. The inlet mouth 25 is located higher than the outlet mouth 35, such as to prevent backflow of the ink.

An ink filter 5 is also inserted in the line, which is interposed between the recycling pump 52 and the reservoir 2.

When the supply system 1 is active, the heaters 24 and 34 regulate the temperature of the ink contained in the respective reservoirs 2 and 3, such that the dynamic viscosity of the ink is preferably comprised between 12 and 60 centipoise (cP).

The breather mouth 20 of the reservoir 2 is open, such that the pressure internally of the reservoir 2 is always atmospheric, while the breather mouth 30 of the reservoir 3 is kept closed by the solenoid 31.

At the same time a continuous air flow is made to cross the venturi tube 60, such as to place the reservoir 3 in depression and thus consequently impose a predetermined pressure difference between the reservoir 3 and the reservoir 2.

When the printer is not required for printing, the pressure in the reservoir 3 is regulated to a minimum level, i.e. high depression, such that the pressure difference between the reservoirs 2 and 3 reaches a maximum value, able to overcome the overall impedance of the delivery line 4.

In this way, a continuous ink flow is set up in the delivery line 4, which ink flow, leaving the reservoir 2, first crosses the filter 41, then the printing head 7 without exiting the dispensing nozzles 72, and finally rises and returns internally of the reservoir 3.

On crossing the filter 41, the ink is rid of any particles of dirt and/or air bubbles which might have
formed in the reservoir 2.

[0045] When the sensor 33 detects that the level L3 of the ink in the reservoir 3 has exceeded a predetermined threshold value, the recycling pump 52 enters into operation, such as to source ink from the reservoir 3, pass it through the filter 51 and newly pour it internally of the reservoir 2, completing the cycle.

[0046] On crossing the filter 51 the ink is purified of any particles of dirt and/or air bubbles which might have formed in the reservoir 3, or on passing through the recycling pump 52.

[0047] During the printing operations, the pressure in the reservoir 3 is increased, i.e. the depression is reduced, such that the pressure difference between the reservoirs 2 and 3 is brought to a minimum level, not sufficient to overcome the impedance of the delivery line 4.

[0048] In this way, the ink runs only along the first tract 40 of the delivery line 4, flowing from the reservoir 2 towards the printing head 7.

[0049] The ink passes through the filter 41, in which it is purified, and when it reaches the printing head 7 it exits through the dispensing nozzles 72 which are at atmospheric pressure and is deposited on the surface to be printed.

[0050] When the sensor 23 detects that the level L2 of the ink in the reservoir 2 has fallen below a predetermined threshold level, the system supplies fresh ink from the tank to the reservoir 2, through the inlet conduit 22.

[0051] Finally, when the supply system 1 is deactivated, the solenoid 21 closes the breather mouth 20 of the reservoir 2, such that the ink remains confined inside the closed circuit and cannot exit the dispensing nozzles 72 of the printing head 7.

[0052] Obviously a technical expert in the sector might make numerous modifications of a technical-applicational nature to the above-described supply system within the scope of the invention as claimed.

Claims

1. An ink supply system for inkjet printers, comprising two storage reservoirs (2, 3) which are reciprocally connected by a delivery line (4), in which a printing head (7) provided with at least a dispensing nozzle (72) of the ink is inserted, and by a return line (5), in which a recycling pump (52) is inserted, characterised in that a first storage reservoir (2) is open to the atmosphere through a breather mouth (20) and a second reservoir (3) is associated to pressure control means (6) which comprise a venturi tube (60) which is in communication with the second reservoir (3) via a conduit (61) which opens at a narrowed section of the venturi tube (60), said pressure control means internally maintain a pressure level which is lower than an atmospheric pressure.

2. The system of claim 1, characterised in that the first reservoir (2) and the second reservoir (3) are mounted side-by-side on a single support base 10.

3. The system of claim 1, characterised in that it comprises heating means (24, 34) for regulating the temperature of the ink in the first reservoir (2) and the second reservoir (3).

4. The system of claim 3, characterised in that the heating means (24, 34) comprises a single body (10) of a heat-conducting material, which single body (10) is located in contact with both reservoirs (2, 3) and which is crossed by at least an electrical resistance (12).

5. The system of claim 1, characterised in that it comprises a first filter (41) of the ink, which first filter (41) is inserted along the delivery line (4) between the first reservoir (2) and the printing head (7).

6. The system of claim 1, characterised in that it comprises a second filter (51) of the ink, which second filter (51) is inserted along the return line (5), between the recycling pump (52) and the first reservoir (2).

7. The system of claim 1, characterised in that the first reservoir (2) comprises an inlet conduit (22), via which the first reservoir (2) is connected to a tank of the ink.

8. The system of claim 1, characterised in that the first reservoir (2) and the second reservoir (3) are each provided with a level sensor (23, 33).

Patentansprüche

1. Ein Tintenzufuhrsystem für Tintenstrahldrucker, einschließlich zweier Vorratsbehälter (2, 3), die miteinander über eine Austragsleitung (4), in die ein Druckkopf (7) mit wenigstens einer Spenderdüse (72) für Tinte eingesetzt ist, und über eine Rückleitung (5) verbunden sind, in die eine Umwälzpumpe (52) eingesetzt ist, dadurch gekennzeichnet, dass ein erster Vorratsbehälter (2) über eine Belüftungsoffnung (20) mit der Umgebungsluft in Verbindung steht und ein zweiter Vorratsbehälter (3) Druckkontrollmittel (6) zugeordnet ist, die ein Venturirohr (60) beinhalten, das mit dem zweiten Vorratsbehälter (3) über eine Leitung (61) in Verbindung steht, welche in einen verengten Abschnitt des Venturirohres (60) mündet, wobei die Druckkontrollmittel im Inneren ein Druckniveau halten, das unterhalb des Umgebungsdruckes liegt.

2. Das System nach Patentanspruch 1, dadurch gekennzeichnet, dass der erste Behälter (2) und der
zweite Behälter (3) nebeneinander auf einer Einzelträgerbasis 10 aufgebaut sind.

3. Das System nach Patentanspruch 1, dadurch gekennzeichnet, dass Heizmittel (24, 34) zum Regulieren der Temperatur der Tinte im ersten Behälter (2) und im zweiten Behälter (3) enthalten sind.

4. Das System nach Patentanspruch 3, dadurch gekennzeichnet, dass die Heizmittel (24, 34) einen Einzelkörper (10) aus einem wärmeleitfähigen Material beinhalten und der Einzelkörper (10) in Berührung mit beiden Behältern (2, 3) steht und von wenigstens einem elektrischen Widerstand (12) gekreuzt wird.

5. Das System nach Patentanspruch 1, dadurch gekennzeichnet, dass es einen ersten Tintenfilter (41) beinhaltet, welcher entlang der Austragsleitung (4) zwischen dem ersten Behälter (2) und dem Druckkopf (7) eingesetzt ist.

6. Das System nach Patentanspruch 1, dadurch gekennzeichnet, dass es einen zweiten Tintenfilter (51) beinhaltet, welcher entlang der Rückleitung (5) zwischen der Umwälzpumpe (52) und dem ersten Behälter (2) eingesetzt ist.

7. Das System nach Patentanspruch 1, dadurch gekennzeichnet, dass der erste Behälter (2) eine Einlassleitung (22) beinhaltet, über die der erste Behälter (2) mit einem Tintentank verbunden ist.

8. Das System nach Patentanspruch 1, dadurch gekennzeichnet, dass der zweite Behälter (3) jeweils mit einem Pegelfühler (23, 33) ausgestattet sind.

Revendications

1. Un système d’alimentation d’encre pour imprimantes à jet d’encre, comprenant deux réservoirs de stockage (2, 3) qui sont réciproquement connectés par une ligne de distribution (4), dans laquelle est introduite une tête d’impression (7) dotée d’au moins une buse de distribution (72) de l’encre, et par une ligne de retour (5), dans laquelle est introduite une pompe de recyclage (52), caractérisé par le fait qu’un premier réservoir de stockage (2) est ouvert vers l’atmosphère grâce à un orifice d’aération (20) et un deuxième réservoir (3) est associé à un dispositif de contrôle de pression (6) qui comprend un tube venturi (60) en communication avec le deuxième réservoir (3) via un conduit (61) débouchant sur une section rétrécie du tube venturi (60) qui maintient à l’interne un niveau de pression inférieur à la pression atmosphérique.

2. Le système selon la revendication 1, caractérisé par le fait que le premier réservoir (2) et le deuxième réservoir (3) sont montés côte à côte sur une base de support unique (10).

3. Le système selon la revendication 1, caractérisé par le fait qu’il comprend un dispositif de chauffage (24, 34) pour réguler la température de l’encre dans le premier réservoir (2) et le deuxième réservoir (3).

4. Le système selon la revendication 3, caractérisé par le fait que le dispositif de chauffage (24, 34) comprend un corps unique (10) en matériau conduisant la chaleur, ledit corps unique (10) étant placé en contact avec les deux réservoirs (2, 3) et étant traversé par au moins une résistance électrique (12).

5. Le système selon la revendication 1, caractérisé par le fait qu’il comprend un premier filtre (41) de l’encre, ledit premier filtre (41) étant introduit sur la ligne de distribution (4) entre le premier réservoir (2) et la tête d’impression (7).

6. Le système selon la revendication 1, caractérisé par le fait qu’il comprend un deuxième filtre (51) de l’encre, ledit deuxième filtre (51) étant introduit sur la ligne de retour (5), entre la pompe de recyclage (52) et le premier réservoir (2).

7. Le système selon la revendication 1, caractérisé par le fait que le premier réservoir (2) comprend un conduit d’entrée (22), à l’aide duquel le premier réservoir (2) est connecté à un réservoir d’encre.

8. Le système selon la revendication 1, caractérisé par le fait que le premier réservoir (2) et le deuxième réservoir (3) sont dotés individuellement d’un capteur de niveau (23, 33).
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- EP 1886815 A [0013]
- US 2007279461 A [0015]