WO 2006/052946 A2 || 000 00 0 000 O A A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

. . Lo TN
(19) World Intellectual Property Organization S ‘1”1‘

) |0 00 0O

International Bureau

(43) International Publication Date
18 May 2006 (18.05.2006)

(10) International Publication Number

WO 2006/052946 A2

(51) International Patent Classification:
GOGF 7/00 (2006.01)

(21) International Application Number:
PCT/US2005/040388

(22) International Filing Date:
8 November 2005 (08.11.2005)

English
English

(25) Filing Language:

(26) Publication Language:

(30) Priority Data:
60/626,252

60/626,292
60/626,293

UsS
UsS
Us

Us):
400

8 November 2004 (08.11.2004)
8 November 2004 (08.11.2004)
8 November 2004 (08.11.2004)

(71) Applicant (for all designated States except
INNOPATH SOFTWARE, INC. [US/US];
Caribbean Drive, Sunnyvale, California 94089 (US).

(72) Inventors; and
(75) Inventors/Applicants (for US only): GU, Jinsheng
[CN/US]; 400 Caribbean Drive, Sunnyvale, California

(74)

(81)

(84)

94089 (US). MANAPETTY, Premjith [IN/US]; 400
Caribbean Drive, Sunnyvale, California 94089 (US).

Agents: COURTNEY, Barbara et al.; Courtney Staniford
& Gregory LLP, P.o. Box 9686, San Jose, California 95157
Us).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ,VC, VN, YU, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
7ZW), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

[Continued on next page]

(54) Title: STATIC FILE SYSTEM DIFFERENCING AND UPDATING

Original SFS Image
112

New SFS Image
114

Image processing 102

module —

Dependency generation (4

module =

Difference engine 106

A,

Packaging engine 108
100

Delta package 122

(57) Abstract: Systems and methods are provided
for static file system (SFS) differencing and updating.
The differencing and updating includes portion-level
differencing and block-level updating of units of an
original image (referred to as blocks). The differencing
and updating splits SFS images into portions based on
block information and the image structure. A delta file is
generated for each portion (portion-level differencing) of
the new SFS image; the delta file includes information of
differences between the portion of the new SFS image and
the portion of the original SFS image to which the new SFS
image portion corresponds. The delta files are transferred
to a device where the target SFS image of the device is
updated block-by-block using information of the delta files.
The block-by-block update reconstructs all portions of the
new SFS image in a device block in host device RAM and
writes the reconstructed block into host device ROM.

WO 2006/052946 A2 I} NN Y IN0VYH0 AT VKO 00 Y AR

FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, For two-letter codes and other abbreviations, refer to the "Guid-
RO, SE, S, SK, TR), OAPI (BF, BJ, CE, CG, CI, CM, GA, ance Notes on Codes and Abbreviations" appearing at the begin-
GN, GQ, GW, ML, MR, NE, SN, TD, TG). ning of each regular issue of the PCT Gazette.

Published:
— without international search report and to be republished
upon receipt of that report

WO 2006/052946 PCT/US2005/040388

10

15

20

25

30

Static File System Differencing and Updating

Inventors:

Jinsheng Gu
Premjith Manapetty

Related Application

This application claims the benefit of United States Patent Application
Numbers 60/626,252, 60/626,292, and 60/626,293, all filed November 8, 2004.
This application is related to United States Patent Application Numbers (number not
yet assigned; attorney docket number DOGO.P020; entitled “Updating Compressed
Read-Only Memory File System (CRAMFS) Images™) and (number not yet
assigned; attorney docket number DOGO.P021; entitled “Reorganizing Images in
Static File System Differencing and Updating”), both filed November 8, 2005.

Technical Field
The disclosed embodiments relate to updating static file system images using

difference files.

Background

Software running on a processor, microprocessor, and/or processing unit to
provide certain functionality often changes over time and also increases in
complexity. The changes can result from the need to correct bugs, or errors, in the
software files, adapt to evolving technologies, or add new features, to name a few.
In particular, software hosted on mobile processing devices, for example mobile
wireless devices, often includes numerous software bugs that require correction.
Software includes one or more computer programs, algorithms, files, and/or code
pertaining to operation of the host device. Software can be divided into smaller
units that are referred to as modules or components.

Portable processor-based devices like mobile processing devices typically
include a real-time operating system (RTOS) in which all software components of
the device are linked as a single large executable image. Further, file system support
has become common recently due to the availability of compact storage and more

demanding functionalities in these mobile wireless devices. In addition, the single

WO 2006/052946 PCT/US2005/040388

10

15

20

25

30

large image needs to be preloaded, or embedded, into the device using a slow
communication link like a radio, infrared, or serial link.

Obstacles to updating the software of mobile processing devices include the
time, bandwidth, and cost associated with delivering the updated file to the device,
as well as limited resources of the device available for use in updating new files
once received. As one example, static file system images are required to be updated
in-place (e.g., in read-only memory (ROM)) because of resource limitations (e.g.,
limitations relating to RAM, ROM, time for downloading the image, power
consumption, etc) of the host device. Consequently, there is a need for generating
difference files that are sized appropriately for efficient transfer to host devices and

for use in updating software of resource-limited devices.

Incorporation By Reference

Each publication, patent, and/or patent application mentioned in this
specification is herein incorporated by reference in its entirety to the same extent as
if each individual publication and/or patent application was specifically and

individually indicated to be incorporated by reference.

Brief Description of the Figures

Figure 1 is a block diagram of a static file system (SFS) differencing system,
under an embodiment.

Figure 2 is a flow diagram for SFS differencing, under an embodiment.

Figure 3 is a flow diagram for SFS differencing, under another embodiment.

Figure 4 is an example SFS image following splitting of the image blocks
into portions, under an embodiment.

Figure 5 is a block diagram of an SFS differencing and updating system,
under an embodiment.

Figure 6 is a flow diagram for SFS updating, under an embodiment.

Figure 7 is a flow diagram for in-place updating of SFS images in devices,
under an embodiment.

In the drawings, the same reference numbers identify identical or
substantially similar elements or acts. To easily identify the discussion of any

particular element or act, the most significant digit or digits in a reference number

WO 2006/052946 PCT/US2005/040388

10

15

20

25

30

refer to the Figure number in which that element is first introduced (e.g., element

100 is first introduced and discussed with respect to Figure 1).

Detailed Description

Systems and methods are provided for static file system (SFS) differencing
and updating. The systems and methods for SFS differencing and updating include
portion-level differencing and block-level updating of update units of an original
image (referred to as device blocks or blocks) as described below. The differencing
and updating of an embodiment splits SFS images into a series of portions based on
block information and the SFS image structure. A delta file is generated for each
portion (portion-level differencing) of the new SFS image, and the delta file includes
information of differences between the portion of the new SFS image and the
portion(s) of the original SFS image to which the new SFS image portion
corresponds (a new portion can depend on more than one original portion, and in
addition, the original portion(s) might not be in the same location as the new
portion). The delta files are transferred to a device for use in updating images of the
device to the new SFS image. The target SFS image of the device is updated block-
by-block using information of the delta files. The block-by-block update of an
embodiment reconstructs all portions of the new SFS image in a device block in
random access memory (RAM) of the host device and then writes the reconstructed
block into ROM of the host device.

A SFS, also referred to as a read-only file system, is a file system that can
not be modified during run time. Examples of SFSs include but are not limited to
the Symbian Z drive (also referred to as the “ROM drive™), the Linux compressed
ROM file system (CRAMFS), the encrypted file systems, and file systems that
might store operating system executables, built-in applications, essential multimedia
information, and default language files, to name a few.

The SFS differencing and updating of embodiments described below
receives images of a static file system. The images, which include an original image
and a new image, each include a number of blocks, for example super blocks, data
blocks, etc. The SFS differencing splits the images by using information of the
blocks to split the images into multiple portions. Differences are determined
between content of the images by determining differences between the portions of

the original image and the new image, where the differences are generated for each

3

10

15

20

25

30

WO 2006/052946 PCT/US2005/040388

portion of the new image. The differences include byte-level differences between
the portions, but are not so limited. A delta file is generated that includes the
differences for each portion of the new image.

The SFS differencing and updating of embodiments includes updating by
which the SFS of an image hosted on a portable device is updated in-place on the
portable device. The updating receives the delta file at a portable device via at least
one coupling. Dependent ones of the original portions hosted on the portable device
are assembled, and at least one of the is identified that corresponds to the delta file
received, where the new portion location in ROM is encoded in the SFS delta
package associated with its corresponding delta file in an embodiment. The
updating reconstructs at least one new portion on the portable device that
corresponds to the delta file identified. The reconstructed new portions of the new
image are written to the read-only memory (ROM) of the portable device.

In the following description, numerous specific details are introduced to
provide a thorough understanding of, and enabling description for, embodiments of
the SFS differencing and updating. One skilled in the relevant art, however, will
recognize that the SFS differencing and updating can be practiced without one or
more of the specific details, or with other components, systems, etc. In other
instances, well-known structures or operations are not shown, or are not described in
detail, to avoid obscuring aspects of the SFS differeﬁcing and updating.

Figure 1 is a block diagram of a SFS differencing system 100, under an
embodiment. The SFS differencing system includes an image processing module
102, a dependency generation module 104, a difference engine or module 106, and a
packaging engine or module 108, but is not so limited. The dependency generation
module 104 of an embodiment is coupled to the image processing module 102. The
difference engine 106 of an embodiment is coupled to the dependency generation
module 104. The packaging engine 108 of an embodiment is coupled to the
difference engine 106.

The SFS differencing system 100 of an embodiment couples among
components of a host computer system (not shown), where the components can
include at least one of a processor, a controller, a memory device, and/or a bus, but
are not so limited. One or more of the components or modules 102-108 of the SFS
differencing system 100 run under control of at least one algorithm, program, or

routine. A host computer system processor couples among the components of the
4

WO 2006/052946 PCT/US2005/040388

10

15

20

25

30

host computer system and the components 102-108 of the SFS differencing system
100 under program control. While the image processing module 102, dependency
generation module 104, difference engine 106, and packaging engine 108 are shown
as separate blocks, some or all of these blocks 102-108 can be monolithically
integrated onto a single chip, distributed among a number of chips or components of
a host system, and/or provided by one or some combination of programs or
algorithms. The programs or algorithms when present can be implemented in
software algorithm(s), firmware, hardware, and any combination of software,
firmware, and hardware.

The term “module” as generally used herein refers to a logically separable
part of a program, and is interchangeable with one or more terms including software,
algorithm, program, component, and unit. The term “component” as generally used
herein refers to one or more of the parts that make up a system; a component may be
software and/or hardware and may be subdivided into other components. The terms
“module”, “component”, and “unit” may be used interchangeably or defined to be
subelements of one another in different ways depending on the context. The term
“processor” as generally used herein refers to any logic processing unit, such as one
or more central processing units (CPUs), digital signal processors (DSPs),
application-specific integrated circuits (ASIC), etc.

In operation the SFS differencing system 100 receives at least one original
SFS image 112 and at least one new SFS image 114 and performs portion-level
differencing to generate one or more delta files as described below. The delta files
are assembled into a delta package 122 for transfer to a portable or mobile device,
also referred to as a client device. These differences include byte-level differences
between one or more portions of blocks of the compared images, but are not so
limited. The SFS differencing system 100 generates the delta file in a processor-
based or computer system or running under a processor-based or computer system.
The computer system on which or under which the SFS differencing system runs
includes any collection of computing components and devices operating together, as
is known in the art. The computer system can also be a component or subsystem
within a larger computer system or network.

Contents of the delta file provide an efficient representation of the
differences between the original image 112 and the new image 114. The delta file
can include meta-data along with actual data of replacement and/or insertion

5

WO 2006/052946 PCT/US2005/040388

10

15

20

25

30

operations that represent the differences between the new or current version of the
associated file and previous versions of the file, as described in the United States
Patent Number 6,925,467 issued to InnoPath Software, Inc. of Sunnyvale, California
on August 2, 2005. The SFS differencing system 100 provides any differences
between the original image 112 and the new image 114 in delta files of the delta
package 122 using a minimum number of bytes and a pre-defined format or
protocol, thereby providing a delta file optimized in space.

The SFS differencing system 100 performs portion-level differencing, and
Figure 2 is a flow diagram for SFS differencing 200, under an embodiment. The
SFS differencing is performed, for example, using the SFS differencing system 100
described above and elsewhere herein. The SFS differencing 200 receives 202
images of a static file system. The images include an original image and a new
image, but are not so limited. Each image also includes a number of blocks, for
example super blocks, data blocks, etc. The blocks are of a pre-specified size (e.g.,
64 KB, 128 KB, etc.) but are not so limited. The blocks of the received images are
split 204 into a number of portions using information of the blocks for example.

The SFS differencing 200 determines 206 differences between content of the images
by determining differences between the portions of each of the original image and
the new image. A delta file is generated 208 that includes information of the
differences in content or data between each portion of the new image and one or
more aligned portions of the original image.

As another example, Figure 3 is a flow diagram for SFS differencing 300,
under an embodiment. The SFS differencing 300 receives 302 images of a static file
system, as described above with reference to Figure 2. The received original image
is divided 304 into one or more original sections or portions, and the received new
image is divided 304 into one or more new sections or portions. The SFS
differencing identifies 306 dependency alignments between the original sections and
the new sections. A delta file is generated 308 for at least one of the new sections.
The delta file includes but is not limited to differences between a new section and
one or more original section(s), where the new section depends on the original
section(s). The delta files of alternative embodiments may include differences
between at least one new section and at least one original section on which the new

sections depend.

WO 2006/052946 PCT/US2005/040388

10

15

20

25

30

The image processing module 102, as described above with reference to
Figure 1, receives each of an original SFS image 112 and a new SFS image 114.
The image processing module 102 of an embodiment operates to begin the portion-
level differencing of the received images by parsing the specific image area and
extracting information of the images. The information extracted about the images is
used in differencing and updating operations. This parsing includes decoding the
information of the static file system structure and internal format to get related
information for use in performing SFS image differencing and updating. The
information resulting from the parsing includes, but is not limited to, the locations
and sizes of blocks of the image (e.g., super blocks, data blocks, etc.), the
compression library used (if compressed), the type of encryption used to encrypt the
image (e.g., encryption algorithm, encryption key, etc.) (if encrypted), to name a few.

Based on the target device block information, the image processing module
102 divides or splits the SFS image into a number or series of portions. Figure 4 is
an example SFS image 400 following splitting into portions 402 by the image
processing module 102, under an embodiment. The portions 402 include portions or
parts of a block (e.g., “Block 4”) of the image but are not so limited. For example,
following splitting of an embodiment Block 2 includes portions 402-2a, 402-2b, and
402-2c, and Block 4 includes portions 402-4a and 402-4b. Following the splitting
operation a block may contain any number of portions as appropriate to the data
content of the block and/or the specific structure of the SFS image. The portions
include for example a super block/header portion, a control meta-data portion, a file
portion, etc. The SFS image processing module 102 may perform decompression
(when the image is compressed), decryption (when the image is encrypted) and/or
any other processing needed in order for the image processing module 102 to extract
data from the received image.

The image processing module 102 of an embodiment also outputs a file
which includes mapping information like the SFS image/file name and one or more
locations of the SFS image/file name, for example. This file is referred to herein as
a hint file but is not so limited.

The dependency generation module 104, also referred to herein as a
dependency analysis module or dependency generator, determines or generates a
mapping or alignment between the original images and the new images. The

alignment includes information as to portions of the new image that depend on

7

WO 2006/052946 PCT/US2005/040388

10

15

20

25

30

portions of the original image. The alignment of an embodiment also can include
information as to the sequence by which the portions of the new image are to be
updated during the in-place update of the original image hosted in the processor-
based portable device. The dependency generation module 104 uses information of
the specific structure of the SFS as domain knowledge (e.g., information from the
hint file) in performing the alignment, and the alignment is determined relative to
the block boundaries of the images, but is not so limited.

The difference engine 106 generally determines or computes the portion-
level differences between data of each new portion of the new image and data of the
original portion of the original image. More specifically, the difference engine 106
uses information from the dependency generation module 104 to read or gather one
or more portions of the old image on which each portion of the new image depends.
The difference engine 106 of an embodiment computes the differences between
content of the new portion and content of the original portion upon which the new
portion depends. The identified differences in data between the original and new
portions are encoded into a file that is referred to herein as a delta file. In addition to
the encoded differences in data between original and new portions, the delta file can
include control information like dependency information of dependencies between
new portions and original portions. Furthermore, the delta file can include
verification information (e.g., checksum values, cyclic redundancy codes (CRCs),
etc.) of the delta body, the original portion of an image to be updated, and the
corresponding dependency information

While the difference engine 106 described above determines differences
between original and new images at the portion-level, the difference engine of
alternative embodiments may determine differences using a different granularity
(e.g., multiple portions, etc.). Furthermore, while the difference engine 106
described above generates a delta file for each portion of a new image that is
different from the portion of the original image on which it depends, alternative
embodiments may generate more than one delta file for each portion or may include
difference information of multiple portions in one delta file.

The packaging engine 108 receives the delta files generated by the difference
engine 106 and assembles the delta files into a delta package or difference package.
The packaging engine 108 of an embodiment assembles the delta files into the delta
package according to an update order or sequence, but is not so limited. The

8

WO 2006/052946 PCT/US2005/040388

10

15

20

25

30

packaging engine 108 can also perform additional operations on the delta file and/or
delta package, for example encrypting the delta package.

While the SFS differencing system 100 described above is described as
including the image processing module 102, dependency generation module 104,
difference engine 106, and packaging engine 108 as separate modules or
components, the embodiment is not so limited. Alternative embodiments for
example can include functionality of the modules 102-108 in one or more modules
and/or distribute the functionality of modules 102-108 among any number of
modules or system components.

The SFS differencing and updating of embodiments include updating by
which SFS images hosted on a device like a portable electronic device are updated
in-place on the device, as described above. The updating receives the delta file at a
portable device via at least one coupling. Dependent ones of the original portions
hosted on the portable device are assembled, and at least one of the dependent
original sections is identified that corresponds to the delta file received. The
updating reconstructs at least one new portion on the portable device that
corresponds to the delta file identified. The reconstructed new portions of the new
image are written to the ROM of the portable device.

Figure 5 is a block diagram of an SFS differencing and updating system 500,
under an embodiment. The system 500 includes an SFS differencing system 100
and an SFS updating system 550. The SFS differencing system 100 includes an
image processing module 102, a dependency generation module 104, a difference
engine 106, and a packaging engine 108, as described above with reference to Figure
1, but is not so limited. In operation the SFS differencing system 100 receives at
least one original SFS image 112 and at least one new SFS image 114 and performs
portion-level differencing to generate a delta package 122 that includes one or more
delta files as described herein.

The SFS differencing system 100 generates the delta file in a processor-
based or computer system or running under a processor-based or computer system.
The computer system on which or under which the SFS differencing system 100
runs includes any collection of computing components and devices operating
together, as is known in the art. The computer system can also be a component or

subsystem within a larger computer system or network.

WO 2006/052946 PCT/US2005/040388

10

15

20

25

30

The SFS updating system 550 is hosted on a processor-based device, and
receives the delta file and performs updates to original images hosed on the portable
device. The processor-based device or system on which or under which the SFS
updating system 550 runs includes any collection of computing components and
devices operating together, as is known in the art. The computer system can also be
a component or subsystem within a larger computer system or network. The
processor-based device or system can include mobile devices, for example, cellular
telephones, personal computers, portable computing devices, portable telephones,
portable communication devices, subscriber devices or units, and personal digital
assistants (PDAs). The mobile devices, also referred to as “mobile communication
devices,” “portable communication devices” and “communication devices,” can
include all such devices and equivalents, and are not limited to communication
devices that are wireless.

The SFS differencing system 100 and SFS updating system 550
communicate via a communication path 506. The communication path 506 includes
any medium by which files are communicated or transferred between processor-
based devices or systems. Therefore, the communication path 506 includes wireless
couplings or connections, wired couplings or connections, and hybrid wireless/wired
couplings or connections. The communication path 506 also includes couplings or
connections to and/or through networks or network components including local area
networks (LANS), metropolitan area networks (MANSs), wide area networks
(WANSs), proprietary networks, interoffice or backend networks, and the Internet.
The communication path 506 can include various network components (not shown)
of a communication service provider or carrier, but is not so limited. Furthermore,
the communication path 506 includes removable fixed mediums like floppy disks,
hard disk drives, and CD-ROM disks, as well as telephone lines, buses, and
electronic mail messages.

The delta package 122 is transferred or transmitted to the SFS updating
system 550 via the communication path 506. The SFS updating system 550 includes
an update module 552 that uses information of the delta package 122 to perform an
in-place update 554 of the SFS image 112P hosted on the portable device. The
update module 552 generally reconstructs the new image 114P at the portable device
by applying contents of the delta package 122 to portions of the original SFS image

112P hosted on the portable device. The reconstructed portions of the new image
10

10

15

20

25

30

WO 2006/052946 PCT/US2005/040388

114P are written to the ROM of the portable device, for example, by writing the new
image 114P over the hosted original image 112P. Upon completion of this SFS
update process, the SFS image now hosted on the portable device is substantially
identical to the new SFS image 114 received in the first SFS differencing system
100.

Figure 6 is a flow diagram for SFS updatin g 600, under an embodiment.
The SFS updating 600 of an embodiment is used irx resource-limited computing
devices for example. The SFS updating receives 602 the delta file at a portable
device via at least one coupling. Dependent original portions of the SFS image
hosted on the portable device are assembled 604. The updating 600 identifies 606 at
least one of the dependent original sections that correspond to the received delta file.
The updating 600 reconstructs 608 at least one new” portion on the portable device
that corresponds to the delta file identified. The reconstructed new portions of the
new image are subsequently written to the memory (e.g., ROM) of the portable
device, for example, simultaneous with or subsequent to processing of all delta files
received in a delta package.

Figure 7 is a flow diagram for in-place upd ating 700 of SFS images in
devices, under an embodiment. The updating 700 can be performed for example by
an update module 552 as described above with reference to Figure 5. The updating
700 uses the control information encoded in the received delta package to determine
702 that data of the delta package is not corrupt, thereby verifying the integrity of
the delta package contents. The integrity of each SFS image portion to be updated
can also be verified. If any data of the delta package is corrupt, the error is reported
704.

When it is determined 702 that the data of the delta package is not corrupt,
the updating 700 sets 706 a pointer to the start of the delta package in order to begin
the update. The portion update order and device block update order is implicitly
encoded in the delta package of an embodiment. It is determined 708 that a delta
file is present at the start of the update and the update proceeds. The delta file could
be encrypted for security purposes and, in that case, the delta file is decrypted (using
appropriate keys) before or simultaneous with the start of the update process. The

updating 700 uses information of the delta file contents (e.g., control information) to

decode 712 dependency formation information, reaad 712 related portions of the

original image (if necessary), unzip and/or decrypt 712 dependent portions of the
11

10

15

20

25

30

WO 2006/052946 PCT/US2005/040388

original image (if necessary), and assemble 712 dependent content of original
portions of the original image hosted on the portable device.

The updating 700 generates or reconstructs the new portion of the image
being updated by applying 714 the contents of the delta file to the dependent content
of the original portion of the original image. The new porti on once reconstructed is
written to an area of RAM in the host device, and is zipped and/or encrypted 714 as
appropriate to the SFS image. The new portion is placed 714 into a specific location
in the block of the original image so as to replace the original portion to which it
corresponds. After each block of the new image is created or reconstructed, that
particular block is written to the ROM; alternative embodimnents may write the
reconstructed blocks to the ROM at other points in the update process. The update
process then proceeds with processing the delta file for the mext block.

The updating 712 and 714 described above continues until the end of the
delta package is reached and all delta files of the delta pack-age have been processed.
In so doing, a determination 716 is made as to whether the delta package includes
further delta files for use in updating additional portions of the original image.
When the delta package includes unprocessed delta files corresponding to additional
portions of the original image to be updated, operation retuxns to read and apply
these unprocessed delta files. When it is determined 716 thiat all delta files of the
delta package have been processed and applied to the original image, the updating
700 writes 718 the new SFS image to the ROM of the portable device. The updating
of an embodiment overwrites the original SFS image with the new SFS image, but
alternative embodiments can write the new SFS image to ome or more other areas of
ROM or other device memory areas.

Referring to Figures 1,2, 3, 5, 6, and 7, the operations of the processes are
under control of at least one processor, but are not so limited. Those skilled in the
relevant art can create source code, microcode, program logic arrays or otherwise
implement the SFS differencing and/or SFS updating of an embodiment based on
these flow diagrams and the detailed description provided herein. The algorithm or
routine operating according to these flow diagrams is stored as program code in
machine-readable or computer-readable memory areas or devices of a computer
system (e.g., non-volatile memory) that forms part of the associated processors, in
the associated memory areas, in removable media, such as disks, or hardwired or

preprogrammed in chips, such as electronically erasable programmable ROM
12

10

15

20

25

30

WO 2006/052946 PCT/US2005/040388

(“EEPROM”) semiconductor chips, or in any combination of these components, but
is not so limited.

The SES differencing and updating of an embodiment includes a device for
differencing static file system images. The device of an embodiment comprises a
receiver that receives images of a static file system, the images including an original
image and a new image. The device of an embodiment also comprises a pre-
processor that divides the original image into numerous original sections and divides
the new image into numerous new sections. The device of an embodiment
comprises a dependency generator that identifies dependency alignments between
the plurality of original sections and the plurality of new sections. The device of an
embodiment comprises a difference engine that generates a delta file for at least one
of the new sections, wherein the delta file includes differences between the at least
one new sections and at least one of the original sections on which the at least one
new sections depends.

The device of an embodiment further comprises a packaging engine that
assembles the delta file for the at least one of the new sections according to an
update sequence.

The SFS differencing and updating of an embodiment includes a method
comprising splitting blocks of SFS images into portions based on block information
and image structure information, wherein the SFS images include original images
and new images. The method of an embodiment comprises performing portion-level
differencing by generating a delta file for a new portion of the new image, wherein
the delta file includes information of differences between the new portion and one of
more corresponding original portions of the original image. The method of an
embodiment comprises transferring the delta file to a client device. The method of
an embodiment comprises updating a target SFS image of the client device using
information of the delta file by reconstructing all portions of the new image in a
device block in random access memory of the host device and writing the device
block into read-only memory of the host device.

The SFS differencing and updating of an embodiment includes a method
comprising receiving images of a static file system, the images including an original
image and a new image. The method of an embodiment comprises dividing the
original image into a plurality of original sections and divides the new image into a

plurality of new sections. The method of an embodiment comprises identifying
13

10

15

20

25

30

WO 2006/052946 PCT/US2005/040388

dependency alignments between the plurality of original sections and the plurality of
new sections. The method of an embodiment comprises generating a delta file for at
least one of the new sections, wherein the delta file includes differences between the
at least one new sections and at least one of the original sections on which the at
least one new sections depends.

The SFS differencing and updating of an embodiment includes a system
comprising a receiver that receives images of a static file system, the images
including an original image and a new image. The system of an embodiment
comprises a pre-processor coupled to the receiver that divides the original image
into a plurality of original sections and divides the new image into a plurality of new
sections. The system of an embodiment comprises a dependency generator coupled
to the pre-processor that identifies dependency alignments between the plurality of
original sections and the plurality of new sections. The system of an embodiment
comprises a difference engine coupled to the dependency generator that generates a
delta file for at least one of the plurality of new sections that is different from at least
one of the plurality of original sections on which the at least one new section
depends, the delta file including coded differences between a new section and one or
more original sections. The system of an embodiment comprises a packaging engine
coupled to the difference engine that assembles the delta files into a delta package.

The system of an embodiment comprises an update engine in a portable
device, wherein the portable device receives the delta package via at least one
coupling, wherein the update engine assembles dependent original sections of the
plurality of original sections hosted on the portable device, identifies at least one
delta file of the delta package that corresponds to at least one of the dependent
original sections, and
reconstructs at least one new section that corresponds to the at least one delta file
identified.

The update engine of an-embodiment receives the delta package and verifies
integrity of contents of at least one delta file of the delta package.

The update engine of an embodiment reconstructs the at least one new
section in a first memory area of the portable device.

The first memory area of an embodiment is in random access memory

(RAM).

14

10

15

20

25

30

WO 2006/052946 PCT/US2005/040388

The update engine of an embodiment continues identifying delta files of the
delta package that correspond to at least one of the dependent original sections and
reconstructing new sections that correspond to the delta files identified.

The update engine of an embodiment determines that all delta files of the
delta package have been applied to the original sections hosted on the portable
device and in response to the determination writes the reconstructed new sections to
a second memory area of the portable device.

The update engine of an embodiment writes each block of the reconstructed
new sections to a second memory area.

The second memory area of an embodiment is in read-only memory (ROM).

The SFS differencing and updating of an embodiment includes a method
comprising receiving images of a static file system, the images including an original
image and a new image, wherein the images include a plurality of blocks. The
method of an embodiment comprises splitting the images by using information of
the plurality of blocks to split the images into a plurality of portions. The method of
an embodiment comprises deternﬁining differences between content of the images by
determining differences between the plurality of portions of the original image and
the new image. The method of an embodiment comprises generating a delta file that
includes the differences for at least one portion.

The method of an embodiment comprises transferring the delta file to a
portable wireless device that hosts the original image.

The method of an embodiment comprises receiving the delta file at a
portable device via at least one coupling. The method of an embodiment comprises
assembling dependent original portions of the plurality of original portions hosted
on the portable device. The method of an embodiment comprises identifying at least
one of the dependent original portions that corresponds to the delta file received.
The method of an embodiment comprises reconstructing at least one new portion
that corresponds to the at least one delta file identified.

The method of an embodiment comprises assembling a plurality of the delta
files into a delta package.

The method of an embodiment comprises transferring the delta package to a
portable wireless device that hosts the original image.

The method of an embodiment comprises receiving the delta package at the

portable device via at least one coupling. The method of an embodiment comprises
15

10

15

20

25

30

WO 2006/052946 PCT/US2005/040388

assembling dependent original portions of the plurality of original portions hosted
on the portable device. The method of an embodiment comprises identifying at least
one delta file of the delta package that corresponds to at least one of the dependent
original portions. The method of an embodiment comprises reconstructing at least
one new portion that corresponds to the at least one delta file identified.

The SFS differencing and updating of an embodiment includes computer
readable media including executable instructions which, when executed in a
processing system, determine differences between images by receiving images of a
static file system, the images including an original image and a new image, wherein
the images include a plurality of blocks. The media further determines differences
between images by splitting the images by using information of the plurality of
blocks to split the images into a plurality of portions. The media further determines
differences between images by determining differences between content of the
images by determining differences between the plurality of portions of the original
image and the new image. The media further determines differences between
images by generating a delta file that includes the differences for at least one
portion.

The media further determines differences between images by transferring the
delta file to a portable wireless device that hosts the original image.

The media further determines differences between images by receiving the
delta file at a portable device via at least one coupling. The media further
determines differences between images by assembling dependent original portions
of the plurality of original portions hosted on the portable device. The media further
determines differences between images by identifying at least one of the dependent
original portions that corresponds to the delta file received. The media further
determines differences between images by reconstructing at least one new portion
that corresponds to the at least one delta file identified.

The media further determines differences between images by assembling a
plurality of the delta files into a delta package.

The media of an embodiment may transfer the delta package to a portable
wireless device that hosts the original image.

The media of an embodiment receives the delta package at the portable
device via at least one coupling. The media of an embodiment assembles dependent

original portions of the plurality of original portions hosted on the portable device.
16

WO 2006/052946 PCT/US2005/040388

10

15

20

25

30

The media of an embodiment identifies at least one delta file of the delta package
that corresponds to at least one of the dependent original portions. The media of an
embodiment reconstructs at least one new portion that corresponds to the at least one
delta file identified.

Aspects of the SFS differencing and updating described above may be
implemented as functionality programmed into any of a variety of circuitry,
including programmable logic devices (PLDs), such as field programmable gate
arrays (FPGAs), programmable array logic (PAL) devices, electrically
programmable logic and memory devices and standard cell-based devices, as well as
application specific integrated circuits (ASICs). Some other possibilities for
implementing aspects of the SFS differencing and updating include:
microcontrollers with memory (such as electronically erasable programmable read
only memory (EEPROM)), embedded microprocessors, firmware, software, etc.
Furthermore, aspects of the SFS differencing and updating may be embodied in
microprocessors having software-based circuit emulation, discrete logic (sequential
and combinatorial), custom devices, fuzzy (neural) logic, quantum devices, and
hybrids of any of the above device types. Of course the underlying device
technologies may be provided in a variety of component types, e.g., metal-oxide
semiconductor field-effect transistor (MOSFET) technologies like complementary
metal-oxide semiconductor (CMOS), bipolar technologies like emitter-coupled logic
(ECL), polymer technologies (e.g., silicon-conjugated polymer and metal-
conjugated polymer-metal structures), mixed analog and digital, etc.

Unless the context clearly requires otherwise, throughout the description and

19

the claims, the words “comprise,” “comprising,” and the like are to be construed in
an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, ina
sense of “including, but not limited to.” Words using the singular or plural number
also include the plural or singular number respectively. Additionally, the words
“herein,” “hereunder,” “above,” “below,” and words of similar import, when used in
this application, refer to this application as a whole and not to any particular portions
of this application. When the word “or” is used in reference to a list of two or more
items, that word covers all of the following interpretations of the word: any of the
items in the list, all of the items in the list and any combination of the items in the

list.

17

WO 2006/052946 PCT/US2005/040388

10

15

20

25

30

The above description of illustrated embodiments of the SFS differencing
and updating is not intended to be exhaustive or to limit the invention to the precise
form disclosed. While specific embodiments of, and examples for, the SFS
differencing and updating are described herein for illustrative purposes, various
equivalent modifications are possible within the scope of the SFS differencing and
updating, as those skilled in the relevant art will recognize. The teachings of the
SFS differencing and updating provided herein can be applied to other processing
systems and communication systems, not only for the SFS differencing and updating
systems described above.

The elements and acts of the various embodiments described above can be
combined to provide further embodiments. These and other changes can be made to
the SFS differencing and updating in light of the above detailed description.
Furthermore, aspects of the SFS differencing and updating can be modified, if
necessary, to employ the systems, functions and concepts of the various patents and
applications described above to provide yet further embodiments of the SFS
differencing and updating.

In general, in the following claims, the terms used should not be construed to
limit the SFS differencing and updating to the specific embodiments disclosed in the
specification and the claims, but should be construed to include all processing
systems that operate under the claims to provide file differencing and updating.
Accordingly, the SFS differencing and updating is not limited by the disclosure, but
instead the scope of the SFS differencing and updating is to be determined entirely
by the claims.

While certain aspects of the SFS differencing and updating are presented
below in certain claim forms, the inventors contemplate the various aspects of the
SFS differencing and updating in any number of claim forms. For example, while
only one aspect of the SFS differencing and updating is recited as embodied in
computer-readable medium, other aspects may likewise be embodied in computer-
readable medium. Accordingly, the inventors reserve the right to add additional
claims after filing the application to pursue such additional claim forms for other

aspects of the SFS differencing and updating.

18

WO 2006/052946 PCT/US2005/040388

O &0 9 O it bW

—_—
_ O

o

O 0 NN N D B W

10

12
13

Claims

What is claimed is:

1. A device for differencing static file system images, comprising:

areceiver that receives images of a static file system, the images including
an original image and a new image;

a pre-processor that divides the original image into a plurality of original
sections and divides the new image into a plurality of new sections;

a dependency generator that identifies dependency alignments between the
plurality of original sections and the plurality of new sections; and

a difference engine that generates a delta file for at least one of the new
sections, wherein the delta file includes differences between the at least one new
sections and at least one of the original sections on which the at least one new

sections depends.

2. The device of claim 1, further comprising a packaging engine that assembles
the delta file for the at least one of the new sections according to an update

sequence.

3. A method comprising:

splitting blocks of SFS images into portions based on block information and
image structure information, wherein the SFS images include original images and
new images;

performing portion-level differencing by generating a delta file for a new
portion of the new image, wherein the delta file includes information of differences
between the new portion and one of more corresponding original portions of the
original image;

transferring the delta file to a client device; and

updating a target SFS image of the client device using information of the
delta file by reconstructing all portions of the new image in a device block in
random access memory of the host device and writing the device block into read-

only memory of the host device.

4. A method comprising:
19

WO 2006/052946 PCT/US2005/040388

O 0 I O v B W

—_
O &0 3 O L1 b W N = (]

e S e S S S S S S
AN N B W N = O

AN W BN e

receiving images of a static file system, the images including an original
image and a new image;

dividing the original image into a plurality of original sections and divides
the new image into a plurality of new sections;

identifying dependency alignments between the plurality of original sections
and the plurality of new sections; and

generating a delta file for at least one of the new sections, wherein the delta
file includes differences between the at least one new sections and at least one of the

original sections on which the at least one new sections depends.

5. A system comprising:

a receiver that receives images of a static file system, the images including
an original image and a new image;

a pre-processor coupled to the receiver that divides the original image into a
plurality of original sections and divides the new image into a plurality of new
sections;

a dependency generator coupled to the pre-processor that identifies
dependency alignments between the plurality of original sections and the plurality of
new sections;

a difference engine coupled to the dependency generator that generates a
delta file for at least one of the plurality of new sections that is different from at least
one of the plurality of original sections on which the at least one new section
depends, the delta file including coded differences between a new section and one or
more original sections; and

a packaging engine coupled to the difference engine that assembles the delta

files into a delta package.

6. The system of claim 5, further comprising an update engine in a portable
device, wherein the portable device receives the delta package via at least one
coupling, wherein the update engine assembles dependent original sections of the
plurality of original sections hosted on the portable device, identifies at least one
delta file of the delta package that corresponds to at least one of the dependent

original sections, and

20

WO 2006/052946 PCT/US2005/040388

SHOWON =

—

TN U VORI C SN

reconstructs at least one new section that corresponds to the at least one delta file

identified.

7. The system of claim 6, wherein the update engine receives the delta package

and verifies integrity of contents of at least one delta file of the delta package.

8. The system of claim 6, wherein the update engine reconstructs the at least

one new section in a first memory area of the portable device.

9. The system of claim 8, wherein the first memory area is in random access

memory (RAM).

10. The system of claim 8, wherein the update engine continues identifying delta
files of the delta package that correspond to at least one of the dependent original

sections and reconstructing new sections that correspond to the delta files identified.

11. The system of claim 10, wherein the update engine determines that all delta
files of the delta package have been applied to the original sections hosted on the
portable device and in response to the determination writes the reconstructed new

sections to a second memory area of the portable device.

12. The system of claim 11, wherein the update engine writes each block of the

reconstructed new sections to a second memory area.

13. The system of claim 11, wherein the second memory area is in read-only
memory (ROM).

14. A method comprising:
receiving images of a static file system, the images including an original
image and a new image, wherein the images include a plurality of blocks;
splitting the images by using information of the plurality of blocks to split

the images into a plurality of portions;

21

WO 2006/052946 PCT/US2005/040388

OO0 3 Y

—

0 N W R W RN e

(== e Y I S

determining differences between content of the images by determining
differences between the plurality of portions of the original image and the new
image;

generating a delta file that includes the differences for at least one portion.

15. The method of claim 14, further comprising transferring the delta file to a

portable wireless device that hosts the original image.

16. The method of claim 14, further comprising:

receiving the delta file at a portable device via at least one coupling;

assembling dependent original portions of the plurality of original portions
hosted on the portable device;

identifying at least one of the dependent original portions that corresponds to
the delta file received; and

reconstructing at least one new portion that corresponds to the at least one
delta file identified.

17. The method of claim 14, further comprising assembling a plurality of the
delta files into a delta package.

18. The method of claim 17, further comprising transferring the delta package to

a portable wireless device that hosts the original image.

19. The method of claim 18, further comprising:
receiving the delta package at the portable device via at least one coupling;
» assembling dependent original portions of the plurality of original portions
hosted on the portable device;
identifying at least one delta file of the delta package that corresponds to at
least one of the dependent original portions; and
reconstructing at least one new portion that corresponds to the at least one

delta file identified.

20. Computer readable media including executable instructions which, when

executed in a processing system, determine differences between images by:
22

WO 2006/052946 PCT/US2005/040388

O 0 NN Y AW

10

O 0 N O . b W N =

[a—y

N O N

receiving images of a static file system, the images including an original
image and a new image, wherein the images include a plurality of blocks;

splitting the images by using information of the plurality of blocks to split
the images into a plurality of portions;

determining differences between content of the images by determining
differences between the plurality of portions of the original image and the new
image;

generating a delta file that includes the differences for at least one portion.

21. The media of claim 20, wherein the media further determines differences
between images by transferring the delta file to a portable wireless device that hosts

the original image.

22, The media of claim 20, wherein the media further determines differences
between images by:

receiving the delta file at a portable device via at least one coupling;

assembling dependent original portions of the plurality of original portions
hosted on the portable device;

identifying at least one of the dependent original portions that corresponds to
the delta file received; and

reconstructing at least one new portion that corresponds to the at least one

delta file identified.

23. The media of claim 20, wherein the media further determines differences

between images by assembling a plurality of the delta files into a delta package.

24. The media of claim 23, further comprising transferring the delta package to a

portable wireless device that hosts the original image.

25. The media of claim 24, further comprising:
receiving the delta package at the portable device via at least one coupling;
assembling dependent original portions of the plurality of original portions

hosted on the portable device;

23

[>= BN B N

WO 2006/052946 PCT/US2005/040388

identifying at least one delta file of the delta package th at corresponds to at
least one of the dependent original portions; and

reconstructing at least one new portion that corresponds to the at least one
delta file identified.

24

WO 2006/052946 PCT/US2005/040388

1/6

Original SFS Image New SFS Image
112 114

Y /

Image processing 102
module —

Y
Dependency generation 14

module

Y

Difference engine 106

\

Packaging engine 108

Y

Delta package 122

FIG.1

SUBSTITUTE SHEET (RULE 26)

WO 2006/052946 PCT/US2005/040388

2/6

_—200

Receive images of static file system, the images | 599
including an original image and a new image.

\

Split received images using information of
. . : . . ——204
image blocks to split the images into portions.

Y

Determine differences between content of images | 5
using differences between the portions of the images.

A

Generate delta file that includes the 208
differences for at least one portion.

FIG.2

SUBSTITUTE SHEET (RULE 26)

WO 2006/052946 PCT/US2005/040388

3/6

_—300

Receive images of static file system, the images | 302
including an original image and a new image.

A

Divide original image into original sections; 304
divide new image into new sections.

A

Identify dependency alignments between 306
original sections and new sections.

\

Generate a delta file for at least one new section. }——-308

FIG.3

402{25‘ 402g-2c 402§-4a 402-4b
- S S
image

Block 1 Block 2 Block 3 Block 4

FIG.4

SUBSTITUTE SHEET (RULE 26)

WO 2006/052946 PCT/US2005/040388

4/6

Original SFS Image New SFS Image

112 \ f 114

Image preprocessing module 102

y
Dependency generation module 104

Y
Difference engine 106

\

Packaging engine 108

Y

Delta package 122

Hosted Original
SFS Image Delta Package

p || | - |
| ROM j] RAM |
______ — . RAM

Update Module 352
(. |

"~ New SFS Image 114P

FIG § 500

SUBSTITUTE SHEET (RULE 26)

WO 2006/052946 PCT/US2005/040388

5/6

Receive the delta file at a portable device. ——602

Y

Assemble dependent original portions of the plurality | 604
of original portions hosted on the portable device.

Y

Identify dependent original section that 606
corresponds to the delta file received.

Y

Reconstruct at least one new portion that 608
corresponds to the at least one delta file identified.

F1G.6

SUBSTITUTE SHEET (RULE 26)

WO 2006/052946

PCT/US2005/040388

6/6
100~ 702 04
< Data corrupted? >¥L> Report error
No
706 —— Set pointer to start of delta package
| . /710
>< Delta files? >—0—+ Return
708 / Yes
(
(1) Decode dependency formation,
(2) Read related portions if necessary. 712
(3) Unzip/decrypt dependent portions if necessary. [—
(4) Assembly dependent content,
714

\

| \

(1) Apply delta file contents to dependent content to compute new portion,
(2) Ziplencrypt new portion if necessary.
(3) Put new portion into specific location in the block as directed.

) AN

Y 716
No / Next delta file for another block, 5

or no more deltas remain?

\

/

Yes

A

Write new content of this block into ROM f~—718

FIG7

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

