PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :
GO6F 9/44 Al

(11) International Publication Number:

(43) International Publication Date:

WO 95/04966

16 February 1995 (16.02.95)

(21) International Application Number: PCT/US94/00138

(22) International Filing Date: 6 January 1994 (06.01.94)

(30) Priority Data:

08/102,078 4 August 1993 (04.08.93) Us

(71) Applicant: TALIGENT, INC. [US/US]; 10201 N. de Anza
Boulevard, Cupertino, CA 95014 (US).

(72) Inventor: NGUYEN, Frank, T.; 415 Kenneth Street, Campbell,
CA 95008 (US).

(74) Agent: STEPHENS, Keith; Taligent, Inc., 10201 N. de Anza
Boulevard, Cupertino, CA 95014 (US).

(81) Designated States: AT, AU, BB, BG, BR, BY, C
DE, DK, ES, FI, GB, HU, JP, KP, KR, KZ, LK, LU, LV,
MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU
SK, UA, UZ, VN, European patent (AT, BE, CH, DE, DK,
ES, FR, GB, GR, [, IT, LU, MC, NL, PT, SE), OAPI
patent (BF, BJ, CF, CG, CL, CM, GA, GN, ML, MR, NE,
SN, TD, TG).

Published

With international search report.

(54) Title: OBJECT-ORIENTED LOCATOR SYSTEM

(57) Abstract

A method and system for adding components (documents, tools, fonts, libraries, etc.) to a
computer system without running an installation program. A location framework is employed to
locate components whose properties match those specified in a search criteria. The framework receives
notification from the system when components whose properties match the search criteria are added

to or removed from the system.

== -

INPUT THE SEARCH
CRITERIA TO THE 610
LOCATOR CLASS OBJECT]

!

INPUT THE SCOPE OF
THE SEARCH 620

1

USE SCOPE TO
DETERMINE A SET OF
SYSTEM ENTITIES THAT! 630
HAVE THE SPECIFIED
SEARCH CRITERA.

1

ITERATE THROUGH
THE SCOPE OF THE
SEARCH AND
ELIMINATE SYSTEM 640
ENTITIES THAT DO
NOT HAVE THE
SEARCH CRITERIA

Y

RETURN LOCATED
SYSTEM ENTITIES TO 650
THE INITIATING CLASS

Y

STOP 660

applications under the PCT.

AT
AU
BB
BE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada
Central African Republic
Congo
Switzerland
Cote d'Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Spain

Finland

France

Gabon

QQaaQ
nZE®=

SEES5<ERERE REANTEE

United Kingdom
Georgia

Guinca

Greece

Hungary

Ireland

Inaly

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

FEEEE

Mauritania
Malawi

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slovenia

Slovakia

Sencgal

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

United States of America
Uzbekistan

Viet Nam

5

10

15

20

25

30

35

WO 95/04966 PCT/US94/00138
-1-

OBJECT-ORIENTED LOCATOR SYSTEM
CROSS-REFERENCE TO RELATED PATENT APPLICATIONS

This patent application is related to the patent application entitled Object-
Oriented System Locator System, by Frank Nguyen, filed August 4, 1993, and

~ assigned to Taligent, the disclosure of which is hereby incorporated by reference.

This patent application is related to the patent application entitled Container
Object System, by Frank Nguyen, filed June 3, 1993, and assigned to Taligent, the
disclosure of which is hereby incorporated by reference.

COPYRIGHT NOTIFICATION
Portions of this patent application contain materials that are subject to
copyright protection. The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent disclosure, as it
appears in the Patent and Trademark Office patent file or records, but otherwise
reserves all copyright rights whatsoever.

Field of the Invention
This invention generally relates to improvements in computer systems and
more particularly to a system and method for automatically managing components
in an object-oriented system.

Background of the Invention

Increasingly, system developers are required to make systems and
applications easier to use and more intuitive. Many advances have recently
occurred in ergonomics, but none have addressed the issue of managing and
updating components employed by an application or system program on the fly. A
component refers to a document, font, tool, shared library, or other system resource.
An example of analogous art is the IBM PS/2 computer. Certain cards that are
properly designed to comply with the MicroChannel architecture can be plugged in
to a PS/2 system and used without reconfiguring the system. However, the card
may still require configuration and any application program requiring resources

“present on the card must be properly designed, coded, compiled, link-edited and

debugged before making use of the resources.

Ideally, system programs and applications should be able to identify
components dynamically. The system should also be able to inform any system

10

15

20

25

30

35

WO 95/04966 PCT/US94/00138
92-

programs or applications of resource updates as changes in a system occur. No
approach to addressing these problems has, to date, been proposed.

Summary of the Invention
Accordingly, it is a primary objective of the present invention to add
components (documents, tools, fonts, libraries, etc.) to a computer system without
running an installation program. A location framework is employed to locate
components whose properties match those specified in a search criteria. The
framework also receives notification from the system when components whose
properties match the search criteria are added to or removed from the system.

The method and system include capability for interactively determining the
type of locator request, obtaining a search criteria and scope of search, querying the
system to identify resources that match the specified search criteria. The matches
are returned to the initiating requester to enable access to the component.

Brief Description of the Drawings

Figure 1 is a block diagram of a personal computer system in accordance with
a preferred embodiment;

Figure 2 is a flowchart of the logic associated with checking types of locator
requests in accordance with a preferred embodiment;

Figure 3 is a flowchart of the logic associated with determining a specific type
of system locator request in accordance with a preferred embodiment;

Figure 4 is a flowchart of the logic associated with determining a specific type
of network locator request in accordance with a preferred embodiment;

Figure 5 is a flowchart of the logic associated with determining a specific type
of application locator request in accordance with a preferred embodiment;

Figure 6 is a flowchart of the logic associated with processing a system locator
request in accordance with a preferred embodiment;

Figure 7 is a flowchart of the logic associated with processing a network
locator request in accordance with a preferred embodiment;

10

15

20

25

30

35

WO 95/04966 PCT/US94/00138
3-

Figure 8 is a flowchart of the logic associated with processing an application
locator request in accordance with a preferred embodiment;

Figure 9 is an illustration of a smart folder in accordance with a preferred
embodiment;

Figure 10 is a simulation of a display of a place in accordance with a preferred
embodiment; and

Figure 11 is a simulation of a Parts Bin display in accordance with a preferred
embodiment.

Detailed Description Of The Invention

The invention is preferably practiced in the context of an operating system
resident on a personal computer such as the IBM ® PS/2 ® or Apple ® Macintosh ®
computer. A representative hardware environment is depicted in Figure 1, which
illustrates a typical hardware configuration of a computer in accordance with the
subject invention having a central processing unit 10, such as a conventional
microprocessor, with a built in non-volatile storage 11, and a number of other units
interconnected via a system bus 12. The workstation shown in Figure 1 includes a
Random Access Memory (RAM) 14, Read Only Memory (ROM) 16, an I/O adapter
18 for connecting peripheral devices such as a disk unit 20, and a diskette unit 21 to
the bus, a user interface adapter 22 for connecting a keyboard 24, a mouse 26, a
speaker 28, a microphone 32, and/or other user interface devices such as a touch
screen device (not shown) to the bus, a communication adapter 34 for connecting
the workstation to a data processing network 23 and a display adapter 36 for
connecting the bus to a display device 38. The computer has resident thereon an
operating system such as the Apple System/7 ® operating system.

In a preferred embodiment, the invention is implemented in the C++
programming language using object oriented programming techniques. As will be
understood by those skilled in the art, Object-Oriented Programming (OOP) objects
are software entities comprising data structures and operations on the data.
Together, these elements enable objects to model virtually any real-world entity in
terms of its characteristics, represented by its data elements, and its behavior,
represented by its data manipulation functions. In this way, objects can model
concrete things like people and computers, and they can model abstract concepts
like numbers or geometrical concepts. The benefits of object technology arise out of
three basic principles: encapsulation, polymorphism and inheritance.

10

15

20

25

30

35

WO 95/04966 PCT/US94/00138
4

Objects hide, or encapsulate, the internal structure of their data and the
algorithms by which their functions work. Instead of exposing these
implementation details, objects present interfaces that represent their abstractions
cleanly with no extraneous information. Polymorphism takes encapsulation a step
further. The idea is many shapes, one interface. A software component can make a
request of another component without knowing exactly what that component is.
The component that receives the request interprets it and figures out according to
its variables and data, how to execute the request. The third principle is inheritance,
which allows developers to reuse pre-existing design and code. This capability
allows developers to avoid creating software from scratch. Rather, through
inheritance, developers derive subclasses that inherit behaviors, which the
developer then customizes to meet their particular needs.

A prior art approach is to layer objects and class libraries in a procedural
environment. Many application frameworks on the market take this design
approach. In this design, there are one or more object layers on top of a monolithic
operating system. While this approach utilizes all the principles of encapsulation,
polymorphism, and inheritance in the object layer, and is a substantial
improvement over procedural programming techniques, there are limitations to
this approach. These difficulties arise from the fact that while it is easy for a
developer to reuse their own objects, it is difficult to use objects from other systems
and the developer still needs to reach into the lower non-object layers with
procedural Operating System (OS) calls.

Another aspect of object oriented programming is a framework approach to
application development. One of the most rational definitions of frameworks come
from Ralph E. Johnson of the University of Illinois and Vincent F. Russo of Purdue.
In their 1991 paper, Reusing Object-Oriented Designs, University of Illinois tech
report UITUCDCS91-1696 they offer the following definition: “An abstract class is a
design of a set of objects that collaborate to carry out a set of responsibilities. Thus, a
framework is a set of object classes that collaborate to execute defined sets of
computing responsibilities.” From a programming standpoint, frameworks are
essentially groups of interconnected object classes that provide a pre-fabricated
structure of a working application. For example, a user interface framework might
provide the support and “default” behavior of drawing windows, scrollbars, menus,
etc. Since frameworks are based on object technology, this behavior can be inherited
and overridden to allow developers to extend the framework and create customized
solutions in a particular area of expertise. This is a major advantage over |
traditional programming since the programmer is not changing the original code,

10

15

20

25

30

35

WO 95/04966 PCT/US94/00138
-5-

but rather extending the software. In addition, developers are not blindly working
through layers of code because the framework provides architectural guidance and
modeling but at the same time frees them to then'supply the specific actions unique
to the problem domain.

From a business perspective, frameworks can be viewed as a way to
encapsulate or embody expertise in a particular knowledge area. Corporate
development organizations, Independent Software Vendors (ISV)s and systems
integrators have acquired expertise in particular areas, such as manufacturing,
accounting, or currency transactions as in our example earlier. This expertise is
embodied in their code. Frameworks allow organizations to capture and package the
common characteristics of that expertise by embodying it in the organization’s code.
First, this allows developers to create or extend an application that utilizes the
expertise, thus the problem gets solved once and the business rules and design are
enforced and used consistently. Also, frameworks and the embodied expertise
behind the frameworks have a strategic asset implication for those organizations
who have acquired expertiée in vertical markets such as manufacturing, accounting,
or bio-technology would have a distribution mechanism for packaging, reselling,
and deploying their expertise, and furthering the progress and dissemination of
technology. |

Historically, frameworks have only recently emerged as a mainstream
concept on personal computing platforms. This migration has been assisted by the
availability of object-oriented languages, such as C++. Traditionally, C++ was
found mostly on UNIX systems and researcher’s workstations, rather than on
Personal Computers in commercial settings. It is languages such as C++ and other
object-oriented languages, such as Smalltalk and others, that enabled a number of
university and research projects to produce the precursors to today’s commercial
frameworks and class libraries. Some examples of these are InterViews from
Stanford University, the Andrew toolkit from Carnegie-Mellon University and
University of Zurich’s ET++ framework.

There are many kinds of frameworks depending on the level of the system
and the nature of the problem. The types of frameworks range from application
frameworks that assist in developing the user interface, to lower level frameworks
that provide basic system software services such as communications, printing, file
systems support, graphics, etc. Commercial examples of application frameworks are

. MacApp (Apple), Bedrock (Symantec), OWL (Borland), NeXTStep App Kit (NeXT),

and Smalltalk-80 MVC (ParcPlace) to name a few.

10

15

20

25

30

35

WO 95/04966 PCT/US94/00138
6

Programming with frameworks requires a new way of thinking for
developers accustomed to other kinds of systems. In fact, it is not like
“programming” at all in the traditional sense. In old-style operating systems such
as DOS or UNIX, the developer’s own program provides all of the structure. The
operating system provides services through system calls—the developer’s program
makes the calls when it needs the service and control returns when the service has
been provided. The program structure is based on the flow-of-control, which is
embodied in the code the developer writes.

When frameworks are used, this is reversed. The developer is no longer
responsible for the flow-of-control. The developer must forego the tendency to
understand programming tasks in term of flow of execution. Rather, the thinking
must be in terms of the responsibilities of the objects, which must rely on the
framework to determine when the tasks should execute. Routines written by the
developer are activated by code the developer did not write and that the developer
never even sees. This flip-flop in control flow can be a significant psychological
barrier for developers experienced only in procedural programming. Once this is
understood, however, framework programming requires much less work than
other types of programming.

In the same way that an application framework provides the developer with
prefab functionality, system frameworks, such as those included in a preferred
embodiment, leverage the same concept by providing system level services, which
developers, such as system programmers, use to subclass/override to create
customized solutions. For example, consider a multi-media framework which
could provide the foundation for supporting new and diverse devices such as
audio, video, MIDI, animation, etc. The developer that needed to support a new
kind of device would have to write a device driver. To do this with a framework,
the developer only needs to supply the characteristics and behavior that is specific to
that new device.

The developer in this case supplies an implementation for certain member
functions that will be called by the multi-media framework. An immediate benefit
to the developer is that the generic code needed for each category of device is already
provided by the multi-media framework. This means less code for the device
driver developer to write, test, and debug. Another example of using system
framework would be to have separate I/O frameworks for SCSI devices, NuBus
cards, and graphics devices. Because there is inherited functionality, each
framework provides support for common functionality found in its device category.

10

15

20

25

30

35

WO 95/04966 PCT/US94/00138
7-

Other developers could then depend on these consistent interfaces to all kinds of
devices.

A preferred embodiment takes the concept of frameworks and applies it
throughout the entire system. For the commercial or corporate developer, system
integrator, or OEM, this means all the advantages that have been illustrated for a
framework such as MacApp can be leveraged not only at the application level for
such things as text and user interfaces, but also at the system level, for services such
as graphics, multi-media, file systems, I/O, testing, etc.

Application creation in the architecture of a preferred embodiment is
essentially be like writing domain-specific puzzle pieces that adhere to the
framework protocol. In this manner, the whole concept of programming changes.
Instead of writing line after line of code that calls multiple API hierarchies, software
will be developed by deriving classes from the preexisting frameworks within this
environment, and then adding new behavior and/or overriding inherited behavior
as desired.

Thus, the developer’s application becomes the collection of code that is
written and shared with all the other framework applications. This is a powerful
concept because developers will be able to build on each other’s work. This also
provides the developer the flexibility to customize as much or as little as needed.
Some frameworks will be used just as they are. In some cases, the amount of
customization will be minimal, so the puzzle piece the developer plugs in will be
small. In other cases, the developer may make véry extensive modifications and
create something completely new. In a preferred embodiment, as shown in Figure
1, a program resident in the RAM 14, and under the control of the CPU 10, is
responsible for managing various tasks using an object oriented framework. In the
framework, an item to be added/removed from a system is called a component. A
component can be a document, a font, a tool, a shared library, etc.

A component can have properties associated with it. Every component has
some set of properties which identify it. A component may have dependencies.
The set of dependencies may vary from system to system for the same component.
Determining and resolving these dependencies involves second-guessing a user's
intention and a target system's configuration. For example, the system would have
to determine which system a user will install this component in and what existing
components the system has. The system is designed to enable a user to add
components without running an installation program. To support this goal, an

10

15

20

25

30

35

WO 95/04966 PCT/US94/00138
-8-

installation program is replaced with a location framework that provides the
following capabilities:

. System software can locate components whose properties match those
specified to the location framework (e.g., all components of type tool).

. System software can register interest in and receive notification on the
addition/removal of components whose properties match those specified
to the location framework.

The location framework has no user interface. Clients of the location framework,

e.g., the place framework will provide a user interface to take advantage of the

location framework capabilities.

Architecture

The location framework is designed to be extensible. It contains logic for
locating components in a system, and determining how to notify a system when a
component is added or removed. A key abstraction in the location framework is
the locator class. Its semantics are defined by the abstract base class
TComponentLocator. Concrete subclasses may use different searching mechanisms
(the how of the location framework - file system properties, hardware capabilities,
etc.) and may return different collections of objects (the what of the location
framework - file system entities, hardware objects, etc.). A concrete subclass using
TPropertyQuery and returning a collection of TFSEntity objects is TFileLocator.
Clients of the location framework can register interest in and receive notification on
the addition/removal of components whose properties match those specified to a
locator . Clients can use the following abstractions from the notification
framework: TNotifierConnection, TInterest, and TNotification.
TNotifierConnection provides the connection between a client and a locator. The
interest is specified in a subclass of TInterest. The notification is received in a
subclass of TNotification. Every component has some set of properties which
identify it. System software may attach properties to components to group specific
components into specific folders. By matching the properties of a component with
those of a folder, system software can determine where to put components. In a
future release, users may also attach user-defined properties to components.

FlowCharts In Accordance With a Preferred Embodiment
Figure 2 is a flowchart of the logic associated with checking types of locator
requests in accordance with a preferred embodiment. Processing commences at
terminal 200 which immediately passes control to decision block 210 to determine if
an invalid type has been encountered. If so, then an appropriate error message is
presented and processing is terminated at terminal 250. If not, then at decision

10

15

20

25

30

35

WO 95/04966 PCT/US94/00138
9-

block 220, a test is performed to determine if the locator request is for a system
entity. If so, then control is passed via terminal 222 to Figure 3 to determine the
specific system entity involved. If not, then another test is performed at decision
block 230 to determine if the locator request is for a network ehtity. If so, then
control is passed via terminal 232 to Figure 4 to determine the specific network
entity involved. If not, then another test is performed at decision block 240 to
determine if the locator request is for an application entity. If so, then control is
passed via terminal 232 to Figure 5 to determine the specific application entity
involved. If not, then an error condition is noted and control is returned via
terminal 250.

Figure 3 is a flowchart of the logic associated with determining the specific
system entity that the locator request is associated with. Processing commences at
terminal 300 and immediately passes to decision block 310 to determine if an
invalid type has been specified. If so, then an appropriate error message is presented
and control returned via terminal 350. If not, then a test is performed at decision
block 320 to determine if a device driver locator is the specific system locator
involved. If so, then control passes via terminal 322 to Figure 6 to process the
device driver locator. If not, then a test is performed at decision block 330 to
determine if a shared library locator is the specific system locator involved. If so,
then control passes via terminal 322 to Figure 6 to process the shared library locator.
If not, then a test is performed at decision block 340 to determine if a file locator is
the specific system locator involved. If so, then control passes via terminal 342 to
Figure 6 to process the file locator. If not, then an appropriate error message is
presented and control returned via terminal 350.

Figure 4 is a flowchart of the logic associated with determining a specific type
of network locator request in accordance with a preferred embodiment. Processing
commences at terminal 400 and immediately passes to decision block 410 to
determine if an invalid type has been specified. If so, then an appropriate error
message is presented and control returned via terminal 450. If not, then a test is
performed at decision block 420 to determine if a machine locator is the specific
network locator involved. If so, then control passes via terminal 422 to Figure 7 to
process the machine locator. If not, then a test is performed at decision block 430 to
determine if a printer locator is the specific network locator involved. If so, then
control passes via terminal 422 to Figure 7 to process the printer locator. If not, then
a test is performed at decision block 430 to determine if a people/place locator is the
specific network locator involved. If so, then control passes via terminal 432 to

10

15

20

25

30

35

WO 95/04966 PCT/US94/00138
-10-

Figure 7 to process the people/place locator. If not, then an appropriate error
message is presented and control returned via terminal 450.

Figure 5 is a flowchart of the logic associated with determining a specific type
of application locator request in accordance with a preferred embodiment.
Processing commences at terminal 500 and immediately passes to decision block 510
to determine if an invalid type has been specified. If so, then an appropriate error
message is presented and control returned via terminal 550. If not, then a test is
performed at decision block 520 to determine if a tool locator is the specific
application locator involved. If so, then control passes via terminal 522 to Figure 8
to process the tool locator. If not, then a test is performed at decision block 530 to
determine if a stationary locator is the specific application locator involved. If so,
then control passes via terminal 522 to Figure 8 to process the stationary locator. If
not, then a test is performed at decision block 530 to determine if a preferences
locator is the specific application locator involved. If so, then control passes via
terminal 532 to Figure 8 to process the preferences locator. If not, then an
appropriate error message is presented and control returned via terminal 550.

Figure 6 is a flowchart of the logic associated with processing a system locator
request in accordance with a preferred embodiment. Processing commences at
terminal 600 and immediately passes to function block 610 to obtain the search
criteria for the locator class object. Then, at function block 620, the scope of the
search is input, and at function block 630 the scope is used to determine a set of
system entities meeting the indicated search criteria. Next, at function block 640, the
search is performed to locate appropriate system entities, which are returned via

function block 650 to the initiating class, and processing is terminated at terminal
660.

Figure 7 is a flowchart of the logic associated with processing a network
locator request in accordance with a preferred embodiment. Processing commences
at terminal 700 and immediately passes to function block 710 to obtain the search
criteria for the locator class object. Then, at function block 720, the scope of the
search is input, and at function block 730 the scope is used to determine a set of
network entities meeting the indicated search criteria. Next, at function block 640,
the search is performed to locate appropriate network entities, which are returned
._Via function block 650 to the initiating class, and processing is terminated at
terminal 660.

10

15

20

25

30

WO 95/04966 PCT/US94/00138
-11-

Figure 8 is a flowchart of the logic associated with processing an application
locator request in accordance with a preferred embodiment. Processing commences
at terminal 800 and immediately passes to function block 810 to obtain the search
criteria for the locator class object. Then, at function block 820, the scope of the
search is input, and at function block 830 the scope is used to determine a set of
application entities meeting the indicated search criteria. Next, at function block
840, the search is performed to locate appropriate application entities, which are
returned via function block 850 to the initiating class, and processing is terminated
at terminal 860. ‘

Mechanisms

Different concrete subclasses of TComponentLocator may use different
mechanisms for searching. The mechanism used by TFileLocator is
TPropertyQuery. Other mechanisms could be used by the location framework. For
example, if THardwareCapability is available as a mechanism, a new subclass could
be developed: THardwareCapabilityLocator.

CLASS DESCRIPTIONS
TComponentLocator

Purpose:

TComponentLocator is a templatized pure abstract base class that defines the
protocol for locating components in a system. TComponentLocator subclasses must
implement the protocol defined by TComponentLocator.

Instantiation:
TComponentLocator is a pure abstract base class.

Deriving classes:

Classes which require locating a specified item within a specified scope may derive
from TComponentLocator. Each subclass can use a different searching mechanism.

Concurrency:

TComponentLocator is a pure abstract base class. Subclasses are not required to be
multi-thread safe since locators are not normally shared.

10

15

20

25

WO 95/04966 PCT/US94/00138
-12-

Resource use:

TComponentLocator is a pure abstract base class. TComponentLocator subclasses
must manage any resources used by their implementation.

Class interface:
template <class AResult>
class TComponentLocator {
public:
virtual Boolean Find All(TCollection<AResult>& theResult) = 0;
virtual AResult FindOne(const TText& theName) = 0;
virtual TInterest* CreateAddedInterest() = 0;
virtual TInterest* CreateRemovedInterest() = 0;

)

Method descriptions:

virtual Boolean Find All(TCollection<AResult>& theResult) = 0;

This method is a pure virtual function to be used polymorphically. Its purpose is to
find all the components within a scope and whose properties match those specified
to the locator. The search scope can be a volume, a machine, or anything supported
by a subclass. The search condition can be a property query, a hardware capability, or
anything depending on the implementation provided by a subclass. The search
result can be any kind of collection specified by a subclass. The search returns true if
it finds some components.

virtual AResult FindOne(const TText& theName) = 0;

This method is a pure virtual function to be used polymorphically. Its purpose is to
find the named component whose properties match those specified to the locator.

virtual TInterest* CreateAddedInterest() = 0;

This method is a pure virtual function to be used polymorphically. Its purpose is to
create an interest a client can use to register with a locator for notification on the
addition of components whose property values match that specified to the locator.

virtual TInterest* CreateRemovedInterest() = 0;

10

15

20

25

WO 95/04966 PCT/US94/00138
13-

This method is a pure virtual function to be used polymorphically. Its purpose is to
create an interest a client can use to register with a locator for notification on the
removal of components whose properties match those specified to the locator.

TFileLocator

Purpose:

TFileLocator is a concrete subclass of TComponentLocator which implements the
protocol defined by TComponentLocator.

The search scope of TFileLocator is a file system entity, TFSEntity. The search
condition is a property query, TPropertyQuery. The search result is a collection of
file system entities or a single file system entity.

TFileLocator depends on the file system implementation of properties.
Instantiation:

TFileLocator may be instantiated directly to provide a full implementation of the
protocol defined by TComponentLocator.

Deriving classes:

TFileLocator should be subclassed if a different implementation of properties is
used.

Concurrency:

Instances of TFileLocator should not be shared and are not required to be multi-
thread safe.

Resource use:
TFileLocator manages storage for all objects it creates.

Class interface:

class TFileLocator: public MCollectible, public TComponentLocator<TFSEntity> {
public:

/ / locator type

static const TToken& kKind;

// Change notifications.

5

10

15

20

25

30

WO 95/04966 PCT/US94/00138
-14-

static const TToken& kAddedFile;

static const TToken& kRemovedFile;

// constructors and destructors.

TFileLocator(const TFSEntity& theScope, const TPropertyQuery&
theCondition);

virtual~TFileLocator();

// TComponentLocator methods.

virtual Boolean Find All(TCollection<TFSEntity>& theResult);

virtual TFSEntity FindOne(const TTexté& theName);

virtual TInterest* CreateAddedInterest();

virtual TInterest* CreateRemovedInterest();

// new methods.

TFSEntity GetScope() const;

TPropertyQuery GetCondition() const;

)
Method descriptions:
virtual Boolean Find All(TCollection<TFSEntity>& theResult);

This method is overridden to locate file system entities within volumes or
directories. The search returns true if it finds a collection of one or more file system
entities whose properties match the specified property query.

virtual TFSEntityFindOne(const TText& theName);

This method is overridden to locate the named file system entity whose properties
match the specified property query..

virtual TInterest* CreateAddedInterest();

This method is overridden to create an interest a client can use to register with a file
locator for notification on the addition of file system entities whose properties
match the specified property query.

virtual TInterest* CreateRemovedInterest();

" This method is overridden to create an interest a client can use to register with a file

locator for notification on the removal of file system entities whose properties
match the specified property query.

10

15

20

25

30

35

WO 95/04966 PCT/US94/00138
-15-

Example
The following example illustrates how a developer could use the location
framework. The example shows TFontFileLocator containing a TFileLocator. An
alternative is to inherit TFontFileLocator from TFileLocator. The declaration of the
class TFontFileLocator is shown below. TFontFileLocator wants to locate files
containing fonts.

class TFontFileLocator : public TComponentLocator<TFSEntity> {
public:
'/ / constructors and destructors.
TFontFileLocator(const TVolume& aScope);
~TFontFileLocator();
// TComponentLocator methods.
virtual Boolean Find All(TCollection<TFSEntity>& theResult);
virtual TFSEntity FindOne(const TText& theName); ‘
virtual TInterest* CreateAddedInterest();
virtual TInterest* CreateRemovedInterest();
private:
TFileLocator fLocatorService;

J

TFontFileLocator constructor constructs a locator service with the specified scope.
TFontFileLocator:: TFontFileLocator(const TVolumeé& aScope)

: fLocatorService(TFileLocator(aScope, (TFont::kFontID).Exists()))
{

))

TFontFileLocator destructor does not need to do anything.
TFontFileLocator::~TFontFileLocator()

{

)

TFontFileLocator::FindAll uses the locator service to perform the search.
Boolean

TFontFileLocator::Find All(TCollection<TFSEntity>& theResult)

{
return (fLocatorService.FindAll(theResult));

}

TFontFileLocator::FindOne uses the loéator service to find the named font file.

10

15

20

25

30

WO 95/04966 PCT/US94/00138
-16-

TFSEntity
TFontFileLocator::FindOne(const TText& theName)
{

return (fLocatorService.FindOne(theName));

)

TFontFileLocator::CreateAddedInterest creates an interest a client can use to register
with the locator service for notification on the addition of font files.

TInterest*

TFontFileLocator::CreateAddedInterest()

{

return (fLocatorService.CreateAddedInterest());

J

TFontFileLocator::CreateRemovedInterest creates an interest a client can use to
register with the locator service for notification on the removal of font files.
TInterest*

TFontFileLocator::CreateRemovedInterest()

{

return (fLocatorService.CreateRemovedInterest());

Figufe 9 is an illustration of a smart folder 900, which uses a locator to
organize documents 910, graphic objects 920, folders 930, etc., which a user is
interested in collecting together. The smart folder then invokes the locator and
requests particular documents containing the desired attributes to be collected in the
folder. Additionally, the smart folder can instruct the locator to notify it when new
documents containing the desired attributes are added to or removed from the
system.

Figure 10 is a simulation of a display of a place in accordance with a preferred
embodiment. A place 1000 uses a locator to find and display the associated trash can
1010 for use in the place. This is accomplished by the system attaching system-
defined attributes to the trash. The place then invokes the locator and requests the
particular trash containing the desired attributes to be used in the place. The locator
returns the appropriate trash can which is displayed.

10

WO 95/04966 PCT/US94/00138
-17-

Figure 11 is a simulation of a Parts Bin display in accordance with a preferred
embodiment. The parts bin 1100 uses locators to find all of the "potentially"
connectable devices. This is accomplished by the system attaching system-defined
attributes to these devices. The parts bin then invokes the locators and requests the
particular devices containing the desired attributes to be catalogued in the parts bin.
The parts bin presentation consists of a window 1100 which has a tab for each device
type. For example, tabs will be provided for printers 1110 and modems 1120. A user
can select a printer tab to see all the printers (found by a printer-device locator).

While the invention has been described in terms of a preferred embodiment
in a specific system environment, those skilled in the art will recognize that the
invention can be practiced, with modification, in other and different hardware and
software environments within the spirit and scope of the appended claims.

N 0N D R W N -

WO 95/04966 PCT/US94/00138

-18-

CLAIMS

Having thus described our invention, what we claim as new, and desire to

secure by Letters Patent is:

(a)
(b)

(c)

A method for processing components on a computer with a memory and an
operating system resident in the memory, comprising the steps of:
determining a target component;

querying the operating system to identify one or more components that
match the target; and

returning matched components via the locator request to enable access to the
one or more components.

A method as recited in claim 1, including the step of determining a scope of
search.

A method as recited in claim 1, wherein the components include system
components.

A method as recited in claim 1, wherein the components include network
components.

A method as recited in claim 1, wherein the components include application
components.

A method as recited in claim 1, including the step of utilizing the
components returned by the locator, and making the components available
for general system usage.

A method as recited in claim 1, including the step of dynamically removing
the components without re-booting the operating system.

A method as recited in claim 1, including the step of dynamically adding the
components without re-booting the operating system.

A method as recited in claim 1, including the step of dynamically updating an
application based on updates to a system identified to a locator.

WO 95/04966 PCT/US94/00138

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

-19-

A method as recited in claim 1, including the step of organizing information
according to a user preference.

A method as recited in claim 1, including the step of creating a folder with
default information identified to a locator.

A method as recited in claim 1, wherein the components include a specific
trash can associated with a place.

A method as recited in claim 1, including the step of utilizing a menu bar for
selecting a locator entity.

A method as recited in claim 1, including the step of utilizing at least one pop
up menu to identify the target component to the locator.

A method as recited in claim 1, including the step of creating a list of
component pointers which provide direct access to the components.

A method as recited in claim 1, including the step of utilizing at least one
pull down menu.

A method as recited in claim 16, including the step of utilizing the at least
one pull down menu to display a plurality of tools compatible with a
particular data type.

A method as recited in claim 16, including the step of utilizing the at least
one pull down menu to display a plurality of views available for a particular
data type.

A method as recited in claim 16, including the step of utilizing the at least
one pull down menu to display a plurality of fonts available for a particular
data type.

A method as recited in claim 16, including the step of utilizing the at least
one pull down menu to display a plurality of preferences compatible with a
particular tool.

A method for processing components on a computer with a memory and an
operating system resident in the memory, comprising the steps of:

~N N W

Nl N R W N -

fa—

WO 95/04966 PCT/US94/00138

(a)
(b)

()

22,

()

(©)

23.

24.

25.

26.

27.

28.

29.

30.

determining a search criteria;

querying the operating system to identify one or more components that
match the search criteria; and

returning matched components via the locator request to enable access to the
one or more components.

An apparatus for processing components on a computer with a memory and
an operating system resident in the memory, comprising:

means for determining a target component;

means for querying the operating system to identify one or more components
that match the target; and

means for returning matched components via the locator request to enable
access to the one or more components.

An apparatus as recited in claim 22, including means for determining a scope
of search.

An apparatus as recited in claim 22, wherein the components include system
components.

An apparatus as recited in claim 22, wherein the components include
network components.

An apparatus as recited in claim 22, wherein the components include
application components. |

An apparatus as recited in claim 22, including means for utilizing the
components returned by the locator, and making the components available
for general system usage.

An apparatus as recited in claim 22, including means for dynamically adding
the components without re-booting the operating system.

An apparatus as recited in claim 22, including means for dynamically
removing the components without re-booting the operating system.

An apparatus as recited in claim 22, including means for dynamically
updating an application based on updates to a system identified to a locator.

WO 95/04966 PCT/US94/00138

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

21-

An apparatus as recited in claim 22, including means for organizing
information according to a user preference.

An apparatus as recited in claim 22, including means for creating a folder
with default information identified to a locator.

An apparatus as recited in claim 22, wherein the components include a
specific trash can linked to a place.

An apparatus as recited in claim 22, including means for utilizing a menu bar
for selecting a locator entity. '

An apparatus as recited in claim 22, including means for creating a list of
component pointers which provide direct access to the components.

An apparatus as recited in claim 22, including means for creating a folder
with default information identified to a locator.

An apparatus as recited in claim 22, including means for utilizing at least one
pull down menu.

An apparatus as recited in claim 37, including means for utilizing the at least
one pull down menu to display a plurality of tools compatible with a
particular data type.

An apparatus as recited in claim 37, including means for utilizing the at least
one pull down menu to display a plurality of views available for a particular
data type.

An apparatus as recited in claim 37, including means for utilizing the at least
one pull down menu to display a plurality of fonts available for a particular

data type.

An apparatus as recited in claim 37, including means for utilizing the at least
one pull down menu to display a plurality of preferences compatible with a
particular tool.

PCT/US94/00138

WO 95/04966

1/11

8z 9z
= IARIE ¢t
o 9g
¥3Ldvav ¥31dvav
AVIdSIa IOVIILNI
2z
e | wwoo 51
/
81
€z
o/l WY WO¥Y NdD
—
/ / bl 91 oL /
Ll
12
0z

144

WO 95/04966 PCT/US94/00138

2/11

C__ START D 200

FIGURE 2

APPLICATION TYPE?

250

SUBSTITUTE SHEET (RULE 26)

WO 95/04966 PCT/US94/00138

3/11

C_ START D 300

FIGURE 3

DEVICE DRIVER?

SHARED LIBRARY?

350

SUBSTITUTE SHEET (RULE 26)

WO 95/04966 PCT/US94/00138

4/11

C_ START D 400

FIGURE 4

PEOPLE/
PLACE?

450

SUBSTITUTE SHEET (RULE 26)

WO 95/04966 PCT/US94/00138

5/11

C__ START D 500

FIGURE 5

PREFERENCES?

SUBSTITUTE SHEET (RULE 26)

WO 95/04966

FIGURE 6

'INPUT THE SEARCH

CRITERIA TO THE
LOCATOR CLASS OBJECT]

Y

INPUT THE SCOPE OF
THE SEARCH

Y

USE SCOPE TO
DETERMINE A SET OF
SYSTEM ENTITIES THAT
HAVE THE SPECIFIED
SEARCH CRITERA.

Y

ITERATE THROUGH
THE SCOPE OF THE
SEARCH AND
ELIMINATE SYSTEM
ENTITIES THAT DO
NOT HAVE THE
SEARCH CRITERIA

&

610

620

630

640

RETURN LOCATED
SYSTEM ENTITIES TO
THE INITIATING CLASS

650

PCT/US94/00138

WO 95/04966

FIGURE 7

7/1

C staRTr D

'

INPUT THE SEARCH
CRITERIA TO THE

LOCATOR CLASS OBJECT]

Y

INPUT THE SCOPE OF
THE SEARCH

Y

USE SCOPE TO
DETERMINE A SET OF
NETWORK ENTITIES
THAT HAVE THE
SPECIFIED SEARCH

CRITERA.
Y

ITERATE THROUGH
THE SCOPE OF THE
SEARCH AND
ELIMINATE NETWORK
ENTITIES. THAT DO
NOT HAVE THE
SEARCH CRITERIA

¢

700

710

720

730

740

RETURN LOCATED
NETWORK ENTITIES TO
THE INITIATING CLASS

750

PCT/US94/00138

WO 95/04966

FIGURE 8

8/11

_ sr:m)

INPUT THE SEARCH
CRITERIA TO THE
LOCATOR CLASS OBJECT

Y

INPUT THE SCOPE OF
THE SEARCH

Y

USE SCOPE TO
DETERMINE A SET OF
APPL ENTITIES THAT
HAVE THE SPECIFIED
SEARCH CRITERA.

Y

ITERATE THROUGH
THE SCOPE OF THE
SEARCH AND
ELIMINATE APPL
ENTITIES THAT DO
NOT HAVE THE
SEARCH CRITERIA

¢

PCT/US94/00138

800

810

820

830

840

RETURN LOCATED APPL.
ENTITIES TO THE
INITIATING CLASS

850

WO 95/04966 PCT/US94/00138
9/11

900

FIGURE 9

WO 95/04966 PCT/US94/00138
10/11

FIGURE 10

1010

1000
\

| Document Fram\ Edit

WO 95/04966 PCT/US94/00138
1/11

1120

FIGURE 11

INTERNATIONAL SEARCH REPORT

Inter. onal Application No

PCT/US 94/00138

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 GO6F9/44

According to Internationat Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 6 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documnentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * | Citation of document, with indication, where appropriate, of the relevant passages

1992 , VAN NOSTRAND REINHOLD , NY, USA
see page 54, line 14 - page 55, line 13

see page 4, line 33 - line 41

X S. LEVINSON & ELI E. HERTZ: 'Now that I 1-6,11,
have 0S/2 2.0 on my computer - what do I 21-27,
do next?' 32,36

X see page 84, paragraph 3 - page 86, 8,28
paragraph 1
X see page 62, line 1 - page 65, last 10,18,
paragraph 31,39
see page 74, line 28 - page 76, line 30
X EP,A,0 520 922 (IBM) 30 December 1992 1,6,21,
22,27

/-

m Further documents are listed in the continuation of box C.

m Patent family members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

°E’ carlier document but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or
other means

“P" document published prior to the international filing date but
later than the priority date claimed

“T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
mc‘r}llts, such combination being obvious to a person skilled
in the art,

"&" document member of the same patent family

Date of the actual completion of the international search

11 May 1994

Date of mailing of the international search report

0 3. 06. 84

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+ 31-70) 340-3016

Authorized officer

Fonderson, A

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

Relevant to claim No.

INTERNATIONAL SEARCH REPORT

Inter. .onal Application No

PCT/US 94/00138

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

IBM TECHNICAL DISCLOSURE BULLETIN

vol. 34, no. 11 , April 1992 , NEW YORK,
us

page 36

'0S/2 Presentation manager: API for
Setting System Value Change Notifications'
see the whole document

9,30

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inten...onal Application No

PCT/US 94/00138

Patent document Publication Patent family Publication
cited in search report date member(s) date
EP-A-0520922 30-12-92 JP-A- 5189218 30-07-93

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

