
(12) STANDARD PATENT APPLICATION
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2013228045A1

(54) Title
Method, apparatus and system for encoding and decoding video data

(51) International Patent Classification(s)
H04N 19/00 (2014.01)

(21) Application No: 2013228045 (22) Date of Filing: 2013.09.13

(43)
(43)

Publication Date: 2015.04.02
Publication Journal Date: 2015.04.02

(71) Applicant(s)
Canon Kabushiki Kaisha

(72) Inventor(s)
Rosewarne, Christopher James

(74) Agent / Attorney
Spruson & Ferguson, L 35 St Martins Tower 31 Market St, Sydney, NSW, 2000

-71 -
20

13
22

80
45

13

 Se
p 2

01
3 Abstract

METHOD, APPARATUS AND SYSTEM FOR ENCODING AND

5 DECODING VIDEO DATA

A method of decoding a block from a video bitstream is disclosed. The block

references previously decoded samples. A prediction mode is determined from the video

bitstream. An intra block copy flag is decoded from the video bitstream if the determined

10 prediction mode is intra-prediction, the intra block copy flag indicating that current

samples are based on previously decoded samples of a current frame. The block is

decoded from the video bitstream, based on the decoded intra block copy flag, by

determining sample values for the block from the previously decoded samples.

15

(P086335_Speci_As Filed)7836315v1

(7836315_1):SXY

20
13

22
80

45

13
 Se

p 2
01

3 4/21
^1-

7839590v1 P086335_Drawings_As Filed

20
13

22
80

45

13
 Se

p 2
01

3
- 1 -

METHOD, APPARATUS AND SYSTEM FOR ENCODING AND DECODING

VIDEO DATA
TECHNICAL FIELD

The present invention relates generally to digital video signal processing and, in

particular, to a method, apparatus and system for encoding and decoding video data. The

present invention also relates to a computer program product including a computer

5 readable medium having recorded thereon a computer program for encoding and decoding

video data.

BACKGROUND

Many applications for video coding currently exist, including applications for

transmission and storage of video data. Many video coding standards have also been

10 developed and others are currently in development. Recent developments in video coding

standardisation have led to the formation of a group called the “Joint Collaborative Team

on Video Coding” (JCT-VC). The Joint Collaborative Team on Video Coding (JCT-VC)

includes members of Study Group 16, Question 6 (SG16/Q6) of the Telecommunication

Standardisation Sector (ITU-T) of the International Telecommunication Union (ITU),

15 known as the Video Coding Experts Group (VCEG), and members of the International

Organisations for Standardisation / International Electrotechnical Commission Joint

Technical Committee 1 / Subcommittee 29 / Working Group 11 (ISO/IEC

JTC1/SC29/WG11), also known as the Moving Picture Experts Group (MPEG).

The Joint Collaborative Team on Video Coding (JCT-VC) has produced a new

20 video coding standard that significantly outperforms the "H.264/MPEG-4 AVC” video

coding standard. The new video coding standard has been named “high efficiency video

coding (HEVC)”. Further development of high efficiency video coding (HEVC) is

directed towards introducing support of different representations of chroma information

present in video data, known as ‘chroma formats’, and support of higher bit-depths. The

25 high efficiency video coding (HEVC) standard defines two profiles, known as ‘Main’ and

‘MainlO’, which support a bit-depth of eight (8) bits and ten (10) bits respectively. Further

development to increase the bit-depths supported by the high efficiency video coding

(HEVC) standard are underway as part of ‘Range extensions’ activity. Support for bit-

depths as high as sixteen (16) bits is under study in the Joint Collaborative Team on Video

30 Coding (JCT-VC).

(P086335_Speci_As Filed)7836315v1

(7836315_1):SXY

-2-
20

13
22

80
45

13

 Se
p 2

01
3 Video data includes one or more colour channels. Typically three colour channels

are supported and colour information is represented using a ‘colour space’. One example

colour space is known as ‘YCbCr’, although other colour spaces are also possible. The

‘YCbCr’ colour space enables fixed-precision representation of colour information and

5 thus is well suited to digital implementations. The ‘YCbCr’ colour space includes a ‘luma’

channel (Y) and two ‘chroma’ channels (Cb and Cr). Each colour channel has a particular

bit-depth. The bit-depth defines the width of samples in the respective colour channel in

bits. Generally, all colour channels have the same bit-depth, although the colour channels

may also have different bit-depths.

10 One aspect of the coding efficiency achievable with a particular video coding

standard is the characteristics of available prediction methods. For video coding standards

intended for compression sequences of two-dimensional video frames, there are three types

of prediction: intra-prediction, inter-prediction and intra block copy mode. Frames are

divided into one or more blocks, and each block is predicted using one of the types of

15 prediction. Intra-prediction methods allow content of one part of a video frame to be

predicted from other parts of the same video frame. Intra-prediction methods typically

produce a block having a directional texture, with an intra-prediction mode specifying the

direction of the texture and neighbouring samples within a frame used as a basis to produce

the texture. Inter-prediction methods allow the content of a block within a video frame to

20 be predicted from blocks in previous video frames. The previous video frames (i.e. in

‘decoding order’ as opposed to ‘display order’ which may be different) may be referred to

as ‘reference frames’. Intra block copy mode creates a reference block from another block

located within the current frame. The first video frame within a sequence of video frames

typically uses intra-prediction for all blocks within the frame, as no prior frame is available

25 for reference. Subsequent video frames may use one or more previous video frames from

which to predict blocks.

To achieve the highest coding efficiency, the prediction method that produces a

predicted block that is closest to captured frame data is typically used. The remaining

difference between the predicted block and the captured frame data is known as the

30 ‘residual’. This spatial domain representation of the difference is generally transformed

into a frequency domain representation. Generally, the frequency domain representation

compactly stores the information present in the spatial domain representation. The

frequency domain representation includes a block of ‘residual coefficients’ that results

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

-3-
20

13
22

80
45

13

 Se
p 2

01
3 from applying a transform, such as an integer discrete cosine transform (DCT). Moreover,

the residual coefficients (or ‘scaled transform coefficients’) are quantised, which

introduces loss but also further reduces the amount of information required to be encoded

in a bitstream. The lossy frequency domain representation of the residual, also known as

5 ‘transform coefficients’, may be stored in the bitstream. The amount of lossiness in the

residual recovered in a decoder affects the distortion of video data decoded from the

bitstream compared to the captured frame data and the size of the bitstream.

A video bitstream includes a sequence of encoded syntax elements. The syntax

elements are ordered according to a hierarchy of ‘syntax structures’. A syntax structure

10 describes a set of syntax elements and the conditions under which each syntax element is

coded. A syntax structure may invoke other syntax structures, enabling hierarchy

arrangements of syntax elements. A syntax structure may also invoke another instance of

the same syntax structure, enabling recursive arrangements of syntax elements. Each

syntax element is composed of one or more ‘bins’, which are encoded using a ‘context

15 adaptive binary arithmetic coding’ algorithm. A given bin may be ‘bypass’ coded, in

which case there is no ‘context’ associated with the bin. Alternatively, a bin may be

‘context’ coded, in which case there is context associated with the bin. Each context coded

bin has one context associated with the bin. The context is selected from one or more

possible contexts. The context is retrieved from a memory and each time the context is

20 used, the context is also updated and stored back in the memory. When two or more

contexts may be used for a given bin, a rule to determine which context to use is applied at

the video encoder and the video decoder. When encoding or decoding the bin, prior

information in the bitstream is used to select which context to use. Context information in

the decoder necessarily tracks context information in the encoder (otherwise the decoder

25 could not parse a bitstream produced by an encoder). The context includes two

parameters: a likely bin value (or ‘valMPS’) and a probability level.

Syntax elements with two distinct values may also be referred to as ‘flags’ and are

generally encoded using one context coded bin. A given syntax structure defines the

possible syntax elements that can be included in the video bitstream and the circumstances

30 in which each syntax element is included in the video bitstream. Each instance of a syntax

element contributes to the size of the video bitstream. An objective of video compression

is to enable representation of a given sequence using a video bitstream and having minimal

size (e.g. in bytes) for a given quality level (including both lossy and lossless cases). At

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

-4-
20

13
22

80
45

13

 Se
p 2

01
3 the same time, video decoders are invariably required to decode video bitstreams in real

time, placing limits on the complexity of the algorithms that can be used. As such, a trade­

off between algorithmic complexity and compression performance is made. In particular,

modifications that can improve or maintain compression performance while reducing

5 algorithmic complexity are desirable.

SUMMARY

It is an object of the present invention to substantially overcome, or at least

ameliorate, one or more disadvantages of existing arrangements.

According to one aspect of the present disclosure there is provided a method of

10 decoding a block from a video bitstream, the block referencing previously decoded

samples, the method comprising:

determining a prediction mode from the video bitstream;

decoding an intra block copy flag from the video bitstream if the determined

prediction mode is intra-prediction, the intra block copy flag indicating that current

15 samples are based on previously decoded samples of a current frame; and

decoding the block from the video bitstream, based on the decoded intra block copy

flag, by determining sample values for the block from the previously decoded samples.

According to another aspect of the present disclosure there is provided a system for

decoding a block from a video bitstream, the block referencing previously decoded

20 samples, the system comprising:

a memory for storing data and a computer program;

a processor coupled to the memory, the computer program comprising instructions

for:

determining a prediction mode from the video bitstream; decoding an intra

25 block copy flag from the video bitstream if the determined prediction mode is intra­

prediction, the intra block copy flag indicating that current samples are based on

previously decoded samples of a current frame; and

decoding the block from the video bitstream, based on the decoded intra

block copy flag, by determining sample values for the block from the previously

30 decoded samples.

According to still another aspect of the present disclosure there is provided an

apparatus for decoding a block from a video bitstream, the block referencing previously

decoded samples, the apparatus comprising:

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

-5-
20

13
22

80
45

13

 Se
p 2

01
3 means for determining a prediction mode from the video bitstream;

means for decoding an intra block copy flag from the video bitstream if the

determined prediction mode is intra-prediction, the intra block copy flag indicating that

current samples are based on previously decoded samples of a current frame; and

5 means for decoding the block from the video bitstream, based on the decoded intra

block copy flag, by determining sample values for the block from the previously decoded

samples.

According to still another aspect of the present disclosure there is provided a non­

transitory computer readable medium having a computer program stored thereon for

10 method of decoding a block from a video bitstream, the block referencing previously

decoded samples, the program comprising:

code for determining a prediction mode from the video bitstream;

code for decoding an intra block copy flag from the video bitstream if the

determined prediction mode is intra-prediction, the intra block copy flag indicating that

15 current samples are based on previously decoded samples of a current frame; and

code for decoding the block from the video bitstream, based on the decoded intra

block copy flag, by determining sample values for the block from the previously decoded

samples.

Other aspects are also disclosed.

20 BRIEF DESCRIPTION OF THE DRAWINGS

25

At least one embodiment of the present invention will now be described with

reference to the following drawings and and appendices, in which:

Fig. 1 is a schematic block diagram showing a video encoding and decoding

system;

Figs. 2A and 2B form a schematic block diagram of a general purpose computer

system upon which one or both of the video encoding and decoding system of Fig. 1 may

be practiced;

Fig. 3 is a schematic block diagram showing functional modules of a video

encoder;

Fig. 4 is a schematic block diagram showing functional modules of a video

decoder;

Fig. 5 is a schematic block diagram showing a frame that is divided into two tiles

and three slice segments;

(P086335_Speci_As Filed)

30

7836315v1

(7836315_1):SXY

-6-
20

13
22

80
45

13

 Se
p 2

01
3 Fig. 6A is a schematic block diagram showing an example ‘Z-scan’ order of

scanning coding units (CUs) within a coding tree block (CTB);

Fig. 6B is a schematic block diagram showing an example block vector referencing

a block of samples in a neighbouring coding tree block (CTB) relative to a coding unit

5 (CU) within a current coding tree block (CTB);

Fig. 7A is a schematic block diagram showing an example block vector referencing

a block of samples in a neighbouring coding tree block (CTB) relative to a coding unit

(CU) within a current coding tree block (CTB);

Fig. 7B is a schematic block diagram showing an example block vector referencing

10 a block of samples spanning both a current coding tree block (CTB) and a neighbouring

coding tree block (CTB);

Fig. 8A is a schematic block diagram showing an example block vector referencing

a block of samples spanning both a current coding tree block (CTB) and a neighbouring

coding tree block (CTB) that is marked as being unavailable;

15 Fig. 8B is a schematic block diagram showing an example adjusted block vector

referencing a block of samples within a current coding tree block (CTB);

Fig. 8C is a schematic block diagram showing an example block vector referencing

a block of samples where some of the referenced samples were decoded using inter­

prediction;

20 Fig. 8D is a schematic block diagram showing an example block vector referencing

a block of samples where a reference block includes samples within a current coding unit

(CU);

Fig. 9 is a schematic block diagram showing a coding unit (CU) syntax structure;

Fig. 10 is a schematic flow diagram showing a method of encoding a coding unit

25 (CU) syntax structure into an encoded bitstream;

Fig. 11 is a schematic flow diagram showing a method of decoding a coding unit

(CU) syntax structure from an encoded bitstream;

Fig. 12A is a schematic block diagram showing context selection for an intra block

copy flag for a coding unit (CU);

30 Fig. 12B is a schematic block diagram showing context selection for an intra block

copy flag for a coding unit (CU) aligned to the top of a coding tree block (CTB);

Fig. 13 is a schematic block diagram showing functional modules of the entropy

decoder of Fig. 4;

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

20
13

22
80

45

13
 Se

p 2
01

3
-7-

Fig. 14 is a schematic flow diagram showing a method of decoding an intra block

copy flag for a coding unit (CU);

Fig. 15A is a schematic flow diagram showing a method of determining a

prediction mode for a coding unit (CU);

5 Fig. 15B is a schematic flow diagram showing a method of determining a

prediction mode for a coding unit (CU);

Fig. 16 is a schematic block diagram showing a residual quad-tree (RQT) in a

coding unit (CU) within a coding tree block (CTB);

Fig. 17A is a schematic flow diagram showing a method of generating a reference

10 sample block for a coding unit (CU) configured to use the intra block copy mode;

Fig. 17B is a schematic flow diagram showing a method of generating a reference

sample block for a coding unit (CU) configured to use an intra block copy mode;

Fig. 17C is a schematic flow diagram showing a method of generating a reference

sample block for a coding unit (CU) configured to use an intra block copy mode;

15 Fig. 17D is a schematic flow diagram showing a method of generating a reference

sample block for a coding unit (CU) configured to use an intra block copy mode;

Fig. 18A is a schematic block diagram showing an example block vector

referencing a block of samples where the origin of the block vector is relative to a point

other than the current coding unit (CU) location; and

20 Fig. 18B is a schematic block diagram showing an example block vector

representation between successive coding units (CUs) configured to use an intra block

copy mode;

Appendix A shows an coding unit (CU) syntax structure according to the method of

Fig. 11;

25 Appendix B shows a block vector conformance restriction according to Fig. 8C;

Appendix C shows an intra block copy method according to Fig. 8C;

Appendix D shows a context selection for intra_bc_flag according to an

arrangement of the method of Fig. 14 with steps 1402-1408 omitted.

DETAILED DESCRIPTION INCLUDING BEST MODE

30 Where reference is made in any one or more of the accompanying drawings to steps

and/or features, which have the same reference numerals, those steps and/or features have

for the purposes of this description the same function(s) or operation(s), unless the contrary

intention appears.

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

20
13

22
80

45

13
 Se

p 2
01

3
-8-

Fig. 1 is a schematic block diagram showing function modules of a video encoding

and decoding system 100. The system 100 may utilise intra block copy techniques to

reduce complexity, improve coding efficiency and improve error resilience. Complexity

may be reduced by reducing the number of contexts present in the system 100 or by

5 simplifying or removing rules used to select which context to use for a given context coded

bin. The system 100 includes a source device 110 and a destination device 130. A

communication channel 120 is used to communicate encoded video information from the

source device 110 to the destination device 130. In some arrangements, the source device

110 and destination device 130 may comprise respective mobile telephone hand-sets, in

10 which case the communication channel 120 is a wireless channel. In other arrangements,

the source device 110 and destination device 130 may comprise video conferencing

equipment, in which case the communication channel 120 is typically a wired channel,

such as an internet connection. Moreover, the source device 110 and the destination device

130 may comprise any of a wide range of devices, including devices supporting over the

15 air television broadcasts, cable television applications, internet video applications and

applications where encoded video data is captured on some storage medium or a file

server.

As shown in Fig. 1, the source device 110 includes a video source 112, a video

encoder 114 and a transmitter 116. The video source 112 typically comprises a source of

20 captured video frame data, such as an imaging sensor, a previously captured video

sequence stored on a non-transitory recording medium, or a video feed from a remote

imaging sensor. Examples of source devices 110 that may include an imaging sensor as

the video source 112 include smart-phones, video camcorders and network video cameras.

The video encoder 114 converts the captured frame data from the video source 112 into

25 encoded video data and will be described further with reference to Fig. 3. The encoded

video data is typically transmitted by the transmitter 116 over the communication channel

120 as encoded video data (or “encoded video information”). It is also possible for the

encoded video data to be stored in some storage device, such as a “Flash” memory or a

hard disk drive, until later being transmitted over the communication channel 120.

30 The destination device 130 includes a receiver 132, a video decoder 134 and a

display device 136. The receiver 132 receives encoded video data from the

communication channel 120 and passes received video data to the video decoder 134. The

video decoder 134 then outputs decoded frame data to the display device 136. Examples

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

-9-
20

13
22

80
45

13

 Se
p 2

01
3 of the display device 136 include a cathode ray tube, a liquid crystal display, such as in

smart-phones, tablet computers, computer monitors or in stand-alone television sets. It is

also possible for the functionality of each of the source device 110 and the destination

device 130 to be embodied in a single device.

5 Notwithstanding the example devices mentioned above, each of the source device

110 and destination device 130 may be configured within a general purpose computing

system, typically through a combination of hardware and software components. Fig. 2A

illustrates such a computer system 200, which includes: a computer module 201; input

devices such as a keyboard 202, a mouse pointer device 203, a scanner 226, a camera 227,

10 which may be configured as the video source 112, and a microphone 280; and output

devices including a printer 215, a display device 214, which may be configured as the

display device 136, and loudspeakers 217. An external Modulator-Demodulator (Modem)

transceiver device 216 may be used by the computer module 201 for communicating to and

from a communications network 220 via a connection 221. The communications network

15 220, which may represent the communication channel 120, may be a wide-area network

(WAN), such as the Internet, a cellular telecommunications network, or a private WAN.

Where the connection 221 is a telephone line, the modem 216 may be a traditional “dial­

up” modem. Alternatively, where the connection 221 is a high capacity (e.g., cable)

connection, the modem 216 may be a broadband modem. A wireless modem may also be

20 used for wireless connection to the communications network 220. The transceiver device

216 may provide the functionality of the transmitter 116 and the receiver 132 and the

communication channel 120 may be embodied in the connection 221.

The computer module 201 typically includes at least one processor unit 205, and a

memory unit 206. For example, the memory unit 206 may have semiconductor random

25 access memory (RAM) and semiconductor read only memory (ROM). The computer

module 201 also includes an number of input/output (FO) interfaces including: an audio­

video interface 207 that couples to the video display 214, loudspeakers 217 and

microphone 280; an FO interface 213 that couples to the keyboard 202, mouse 203,

scanner 226, camera 227 and optionally a joystick or other human interface device (not

30 illustrated); and an interface 208 for the external modem 216 and printer 215. In some

implementations, the modem 216 may be incorporated within the computer module 201,

for example within the interface 208. The computer module 201 also has a local network

interface 211, which permits coupling of the computer system 200 via a connection 223 to

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

- 10-
20

13
22

80
45

13

 Se
p 2

01
3 a local-area communications network 222, known as a Local Area Network (LAN). As

illustrated in Fig. 2A, the local communications network 222 may also couple to the wide

network 220 via a connection 224, which would typically include a so-called “firewall”

device or device of similar functionality. The local network interface 211 may comprise an

5 Ethernet™ circuit card, a Bluetooth™ wireless arrangement or an IEEE 802.11 wireless

arrangement. However, numerous other types of interfaces may be practiced for the

interface 211. The local network interface 211 may also provide the functionality of the

transmitter 116 and the receiver 132 and communication channel 120 may also be

embodied in the local communications network 222.

10 The EO interfaces 208 and 213 may afford either or both of serial and parallel

connectivity, the former typically being implemented according to the Universal Serial Bus

(USB) standards and having corresponding USB connectors (not illustrated). Storage

devices 209 are provided and typically include a hard disk drive (HDD) 210. Other storage

devices such as a floppy disk drive and a magnetic tape drive (not illustrated) may also be

15 used. An optical disk drive 212 is typically provided to act as a non-volatile source of

data. Portable memory devices, such optical disks (e.g. CD-ROM, DVD, Blu-ray Disc™),

USB-RAM, portable, external hard drives, and floppy disks, for example, may be used as

appropriate sources of data to the computer system 200. Typically, any of the HDD 210,

optical drive 212, networks 220 and 222 may also be configured to operate as the video

20 source 112, or as a destination for decoded video data to be stored for reproduction via the

display 214.

The components 205 to 213 of the computer module 201 typically communicate via

an interconnected bus 204 and in a manner that results in a conventional mode of operation

of the computer system 200 known to those in the relevant art. For example, the

25 processor 205 is coupled to the system bus 204 using a connection 218. Likewise, the

memory 206 and optical disk drive 212 are coupled to the system bus 204 by connections

219. Examples of computers on which the described arrangements can be practised

include IBM-PC’s and compatibles, Sun SPARCstations, Apple Mac™ or alike computer

systems.

30 Where appropriate or desired, the video encoder 114 and the video decoder 134, as

well as methods described below, may be implemented using the computer system 200. In

particular, the video encoder 114, the video decoder 134 and the methods of Figs. 10, 11,

14, 15A, 15B, 17A and 17B to be described, may be implemented as one or more software

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

- 11 -
20

13
22

80
45

13

 Se
p 2

01
3 application programs 233 executable within the computer system 200. The video encoder

114, the video decoder 134 and the steps of the described methods may be effected by

instructions 231 (see Fig. 2B) in the software 233 that are carried out within the computer

system 200. The software instructions 231 may be formed as one or more code modules,

5 each for performing one or more particular tasks. The software may also be divided into

two separate parts, in which a first part and the corresponding code modules performs the

described methods and a second part and the corresponding code modules manage a user

interface between the first part and the user.

The software may be stored in a computer readable medium, including the storage

10 devices described below, for example. The software is loaded into the computer system

200 from the computer readable medium, and then executed by the computer system 200.

A computer readable medium having such software or computer program recorded on the

computer readable medium is a computer program product. The use of the computer

program product in the computer system 200 preferably effects an advantageous apparatus

15 for implementing the video encoder 114, the video decoder 134 and the described methods.

The software 233 is typically stored in the HDD 210 or the memory 206. The

software is loaded into the computer system 200 from a computer readable medium, and

executed by the computer system 200. Thus, for example, the software 233 may be stored

on an optically readable disk storage medium (e.g., CD-ROM) 225 that is read by the

20 optical disk drive 212.

In some instances, the application programs 233 may be supplied to the user

encoded on one or more CD-ROMs 225 and read via the corresponding drive 212, or

alternatively may be read by the user from the networks 220 or 222. Still further, the

software can also be loaded into the computer system 200 from other computer readable

25 media. Computer readable storage media refers to any non-transitory tangible storage

medium that provides recorded instructions and/or data to the computer system 200 for

execution and/or processing. Examples of such storage media include floppy disks,

magnetic tape, CD-ROM, DVD, Blu-ray Disc, a hard disk drive, a ROM or integrated

circuit, USB memory, a magneto-optical disk, or a computer readable card such as a

30 PCMCIA card and the like, whether or not such devices are internal or external of the

computer module 201. Examples of transitory or non-tangible computer readable

transmission media that may also participate in the provision of the software, application

programs, instructions and/or video data or encoded video data to the computer

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

- 12-
20

13
22

80
45

13

 Se
p 2

01
3 module 401 include radio or infra-red transmission channels as well as a network

connection to another computer or networked device, and the Internet or Intranets

including e-mail transmissions and information recorded on Websites and the like.

The second part of the application programs 233 and the corresponding code

5 modules mentioned above may be executed to implement one or more graphical user

interfaces (GUIs) to be rendered or otherwise represented upon the display 214. Through

manipulation of typically the keyboard 202 and the mouse 203, a user of the computer

system 200 and the application may manipulate the interface in a functionally adaptable

manner to provide controlling commands and/or input to the applications associated with

10 the GUI(s). Other forms of functionally adaptable user interfaces may also be

implemented, such as an audio interface utilizing speech prompts output via the

loudspeakers 217 and user voice commands input via the microphone 280.

Fig. 2B is a detailed schematic block diagram of the processor 205 and a

“memory” 234. The memory 234 represents a logical aggregation of all the memory

15 modules (including the HDD 209 and semiconductor memory 206) that can be accessed by

the computer module 201 in Fig. 2A.

When the computer module 201 is initially powered up, a power-on self-test

(POST) program 250 executes. The POST program 250 is typically stored in a ROM 249

of the semiconductor memory 206 of Fig. 2A. A hardware device such as the ROM 249

20 storing software is sometimes referred to as firmware. The POST program 250 examines

hardware within the computer module 201 to ensure proper functioning and typically

checks the processor 205, the memory 234 (209, 206), and a basic input-output systems

software (BIOS) module 251, also typically stored in the ROM 249, for correct operation.

Once the POST program 250 has run successfully, the BIOS 251 activates the hard disk

25 drive 210 of Fig. 2A. Activation of the hard disk drive 210 causes a bootstrap loader

program 252 that is resident on the hard disk drive 210 to execute via the processor 205.

This loads an operating system 253 into the RAM memory 206, upon which the operating

system 253 commences operation. The operating system 253 is a system level application,

executable by the processor 205, to fulfil various high level functions, including processor

30 management, memory management, device management, storage management, software

application interface, and generic user interface.

The operating system 253 manages the memory 234 (209, 206) to ensure that each

process or application running on the computer module 201 has sufficient memory in

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

- 13 -
20

13
22

80
45

13

 Se
p 2

01
3 which to execute without colliding with memory allocated to another process.

Furthermore, the different types of memory available in the computer system 200 of Fig.

2A must be used properly so that each process can run effectively. Accordingly, the

aggregated memory 234 is not intended to illustrate how particular segments of memory

5 are allocated (unless otherwise stated), but rather to provide a general view of the memory

accessible by the computer system 200 and how such is used.

As shown in Fig. 2B, the processor 205 includes a number of functional modules

including a control unit 239, an arithmetic logic unit (ALU) 240, and a local or internal

memory 248, sometimes called a cache memory. The cache memory 248 typically

10 includes a number of storage registers 244-246 in a register section. One or more internal

busses 241 functionally interconnect these functional modules. The processor 205

typically also has one or more interfaces 242 for communicating with external devices via

the system bus 204, using a connection 218. The memory 234 is coupled to the bus 204

using a connection 219.

15 The application program 233 includes a sequence of instructions 231 that may

include conditional branch and loop instructions. The program 233 may also include

data 232 which is used in execution of the program 233. The instructions 231 and the

data 232 are stored in memory locations 228, 229, 230 and 235, 236, 237, respectively.

Depending upon the relative size of the instructions 231 and the memory locations 228­

20 230, a particular instruction may be stored in a single memory location as depicted by the

instruction shown in the memory location 230. Alternately, an instruction may be

segmented into a number of parts each of which is stored in a separate memory location, as

depicted by the instruction segments shown in the memory locations 228 and 229.

In general, the processor 205 is given a set of instructions which are executed

25 therein. The processor 205 waits for a subsequent input, to which the processor 205 reacts

to by executing another set of instructions. Each input may be provided from one or more

of a number of sources, including data generated by one or more of the input devices

+ 202, 203, data received from an external source across one of the networks 220, 202,

data retrieved from one of the storage devices 206, 209 or data retrieved from a storage

30 medium 225 inserted into the corresponding reader 212, all depicted in Fig. 2A. The

execution of a set of the instructions may in some cases result in output of data. Execution

may also involve storing data or variables to the memory 234.

(P086335_Speci_As Filed)7836315v1

(7836315_1):SXY

- 14-
20

13
22

80
45

13

 Se
p 2

01
3 The video encoder 114, the video decoder 134 and the described methods may use

input variables 254, which are stored in the memory 234 in corresponding memory

locations 255, 256, 257. The video encoder 114, the video decoder 134 and the described

methods produce output variables 261, which are stored in the memory 234 in

5 corresponding memory locations 262, 263, 264. Intermediate variables 258 may be stored

in memory locations 259, 260, 266 and 267.

Referring to the processor 205 of Fig. 2B, the registers 244, 245, 246, the

arithmetic logic unit (ALU) 240, and the control unit 239 work together to perform

sequences of micro-operations needed to perform “fetch, decode, and execute” cycles for

10 every instruction in the instruction set making up the program 233. Each fetch, decode,

and execute cycle comprises:

(a) a fetch operation, which fetches or reads an instruction 231 from a memory

location 228, 229, 230;

(b) a decode operation in which the control unit 239 determines which instruction

15 has been fetched; and

(c) an execute operation in which the control unit 239 and/or the ALU 240 execute

the instruction.

Thereafter, a further fetch, decode, and execute cycle for the next instruction may

be executed. Similarly, a store cycle may be performed by which the control unit 239

20 stores or writes a value to a memory location 232.

Each step or sub-process in the methods Figs. 9 and 10 to be described is associated

with one or more segments of the program 233 and is typically performed by the register

section 244, 245, 247, the ALU 240, and the control unit 239 in the processor 205 working

together to perform the fetch, decode, and execute cycles for every instruction in the

25 instruction set for the noted segments of the program 233.

Fig. 3 is a schematic block diagram showing functional modules of the video

encoder 114. Fig. 4 is a schematic block diagram showing functional modules of the video

decoder 134. Generally, data is passed between functional modules of the video encoder

114 and the video decoder 134 in blocks or arrays such as, for example, blocks of samples

30 or blocks of transform coefficients. Where a functional module is described with reference

to the behaviour of individual array elements (e.g., samples or transform coefficients), the

behaviour shall be understood to be applied to all array elements.

(P086335_Speci_As Filed)7836315v1

(7836315_1):SXY

- 15 -
20

13
22

80
45

13

 Se
p 2

01
3 The video encoder 114 and video decoder 134 may be implemented using a

general-purpose computer system 200, as shown in Figs. 2A and 2B, where the various

functional modules may be implemented by dedicated hardware within the computer

system 200. Alternatively, the various functional modules of the video encoder 114 and

5 video decoder 134 may be implemented by software executable within the computer

system 200, such as one or more software code modules of the software application

program 233 resident on the hard disk drive 205 and being controlled in its execution by

the processor 205. In another alternative, the various functional modules of the video

encoder 114 and video decoder 134 may be implemented by a combination of dedicated

10 hardware and software executable within the computer system 200. The video encoder

114, the video decoder 134 and the described methods may alternatively be implemented

in dedicated hardware, such as one or more integrated circuits performing the functions or

sub functions of the described methods. Such dedicated hardware may include graphic

processors, digital signal processors, application specific integrated circuits (ASICs), field

15 programmable gate arrays (FPGAs) or one or more microprocessors and associated

memories. In particular, the video encoder 114 comprises modules 320-350 and the video

decoder 134 comprises modules 420-436 which may each be implemented as one or more

software code modules of the software application program 233.

Although the video encoder 114 of Fig. 3 is an example of a high efficiency video

20 coding (HEVC) video encoding pipeline, other video codecs may also be used to perform

the processing stages described herein. The video encoder 114 receives captured frame

data, such as a series of frames, each frame including one or more colour channels.

The video encoder 114 divides each frame of the captured frame data, such as

frame data 310, into regions generally referred to as ‘coding tree blocks’ (CTBs). The

25 frame data 310 includes one or more colour planes. Each colour plane includes samples.

Each sample occupies a binary word sized according to a bit-depth 390. Thus, the range of

possible sample values is defined by the bit-depth 390. For example, if the bit-depth 390 is

set to eight (8) bits, sample values may be from zero (0) to two hundred and fifty five

(255). Each coding tree block (CTB) includes a hierarchical quad-tree subdivision of a

30 portion of the frame into a collection of ‘coding units’ (CUs). A coding tree block (CTB)

generally occupies an area of 64x64 luma samples, although other sizes are possible, such

as 16x16 or 32x32. In some cases even larger sizes for the coding tree block (CTB), such

as 128x128 luma samples, may be used. The coding tree block (CTB) may be sub-divided

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

- 16 -
20

13
22

80
45

13

 Se
p 2

01
3 via a split into four equal sized regions to create a new hierarchy level. Splitting may be

applied recursively, resulting in a quad-tree hierarchy (or “coding tree”). As the coding

tree block (CTB) side dimensions are powers of two and the quad-tree splitting results in a

halving of the width and height, the region side dimensions are also powers of two. When

5 no further split of a region is performed, a ‘coding unit’ (CU) is said to exist within the

region. When no split is performed at the top level (or typically the “highest level”) of the

coding tree block, the region occupying the entire coding tree block contains one coding

unit (CU). In such cases, the coding unit (CU) is generally referred to as a ‘largest coding

unit’ (LCU). A minimum size also exists for each coding unit (CU), such as the area

10 occupied by 8x8 luma samples, although other minimum sizes are also possible (e.g. 16x16

luma samples or 32x32 luma samples). Coding units of the minimum size are generally

referred to as ‘smallest coding units’ (SCUs). As a result of the quad-tree hierarchy, the

entirety of the coding tree block (CTB) is occupied by one or more coding units (CUs).

Each coding unit (CU) is associated with one or more arrays of data samples, generally

15 referred to as ‘prediction units’ (PUs). Various arrangements of prediction units (PUs) in

each coding unit (CU) are possible, with a requirement that the prediction units (PUs) do

not overlap and that the entirety of the coding unit (CU) is occupied by the one or more

prediction units (PUs). Such a requirement ensures that the prediction units (PUs) cover

the entire frame area. The arrangement of the one or more prediction units (PUs) associated

20 with a coding unit (CU) is referred to as a ‘partition mode’.

The video encoder 114 operates by outputting, from a multiplexer module 340, a

prediction unit (PU) 382 in accordance with the partition mode of a coding unit (CU). A

difference module 344 produces a ‘residual sample array’ 360. The residual sample array

360 is the difference between the prediction unit (PU) 382 and a corresponding 2D array of

25 data samples from a coding unit (CU) of the coding tree block (CTB) of the frame data

310. The difference is calculated for corresponding samples at each location in the arrays.

As differences may be positive or negative, the dynamic range of one difference sample is

the bit-depth plus one bit.

The residual sample array 360 may be transformed into the frequency domain in a

30 transform module 320. The residual sample array 360 from the difference module 344 is

received by the transform module 320, which converts the residual sample array 360 from

a spatial representation to a frequency domain representation by applying a ‘forward

transform’. The transform module 320 creates transform coefficients, according to a

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

- 17 -
20

13
22

80
45

13

 Se
p 2

01
3 transform having a specific precision. The coding unit (CU) is sub-divided into one or

more transform units (TUs). The sub-dividion of the coding unit (CU) into one or more

transform units (TUs) may be referred to as a ‘residual quad-tree’ or a ‘residual quad-tree

(RQT)’ or a ‘transform tree’.

5 The quantiser control module 346 may test the bit-rate required in encoded

bitstream 312 for various possible quantisation parameter values according to a ‘rate-

distortion criterion’. The rate-distortion criterion is a measure of the acceptable trade-off

between the bit-rate of the encoded bitstream 312, or a local region thereof, and distortion.

Distortion is a measure of the difference between frames present in the frame buffer 332

10 and the captured frame data 310. Methods of measuring distortion include using a peak

signal to noise ratio (PSNR) or sum of absolute differences (SAD) metric. In some

arrangements of the video encoder 114, the rate-distortion criterion considers only the rate

and distortion for the luma colour channel and thus the encoding decision is made based on

characteristics of the luma channel. Generally, the residual quad-tree (RQT) is shared

15 between the luma and chroma colour channels, and the amount of chroma information is

relatively small compared to luma, so considering luma only in the rate-distortion criterion

may be appropriate.

A quantisation parameter 384 is output from the quantiser control module 346. The

quantisation parameter may be fixed for a frame of video data, or may vary on a block by

20 block basis as the frame is being encoded. Other methods for controlling the quantisation

parameter 384 are also possible. The set of possible transform units (TUs) for a residual

quad-tree is dependent on the available transform sizes and coding unit (CU) size. In one

arrangement, the residual quad-tree results in a lower bit-rate in the encoded bitstream 312,

thus achieving higher coding efficiency. A larger sized transform unit (TU) results in use

25 of larger transforms for both the luma and chroma colour channels. Generally, larger

transforms provide a more compact representation of a residual sample array with sample

data (or ‘residual energy’) spread across the residual sample array. Smaller transforms

generally provide a more compact representation of a residual sample array with residual

energy localised to specific regions of the residual sample array compared to larger

30 transforms. Thus, the many possible configurations of a residual quad-tree (RQT) provide

a useful means for achieving high coding efficiency of the residual sample array 360 in the

high efficiency video coding (HEVC) standard.

(P086335_Speci_As Filed)7836315v1

(7836315_1):SXY

- 18 -
20

13
22

80
45

13

 Se
p 2

01
3 A transform control module 348 selects a transform size for use in encoding each

leaf node of the residual quad-tree (RQT). For example, a variety of transform sizes (and

hence residual quad-tree configurations or transform trees) may be tested and the transform

tree resulting in the best trade-off from a rate-distortion criteria may be selected. A

5 transform size 386 represents a size of a selected transform. The transform size 386 is

encoded in the encoded bitstream 312 and provided to the transform module 320, the

quantiser module 322, the dequantiser module 326 and the inverse transform module 328.

The transform size 386 may be represented by the transform dimensions (e.g. 4x4, 8x8,

16x16 or 32x32), the transform size (e.g. 4, 8, 16 or 32), or the log2 of the transform size

10 (e.g. 2, 3, 4 or 5) interchangeably. In circumstances where the numeric value of a

particular representation of a transform size is used (e.g. in an equation) conversion from

any other representation of the transform size deemed necessary, shall be considered to

implicitly occur in the following description.

The video encoder 114 may be configured to perform in a ‘transform quantisation

15 bypass’ mode, where the transform module 320 and the quantisation module 322 are

bypassed. In the transform quantisation bypass mode, the video encoder 114 provides a

means to losslessly encode the frame data 310 in the encoded bitstream 312. Use of the

transform quantisation bypass mode is controlled at the coding unit (CU) level, allowing

portions of the frame data 310 to be losslessly encoded by the video encoder 114. The

20 availability of the transform quantisation bypass mode is controlled via ‘high level syntax’,

enabling signalling overhead of controlling transform quantisation bypass mode to be

removed in cases where lossless encoding is not required in any portion of the frame data

310. High level syntax refers to syntax structures present in the encoded bitstream 312 that

are generally encoded infrequently and are used to describe properties of the bitstream 312.

25 For example, the high level syntax structures of the encoded bitstream 312 may be used to

restrict or otherwise configure particular coding tools used in the video encoder 114 and

the video decoder 134. Examples of high level syntax structures include ‘sequence

parameter sets’, ‘picture parameter sets’ and ‘slice headers’.

For the high efficiency video coding (HEVC) standard, conversion of the residual

30 sample array 360 to the frequency domain representation is implemented using a

transform, such as a modified discrete cosine transform (DCT). In such transforms, the

modification permits implementation using shifts and additions instead of multiplications.

Such modifications enable reduced implementation complexity compared to a discrete

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

- 19 -
20

13
22

80
45

13

 Se
p 2

01
3 cosine transform (DCT). In addition to the modified discrete cosine transform (DCT), a

modified discrete sine transform (DST) may also be used in specific circumstances.

Various sizes of the residual sample array 360 and the scaled transform coefficients 362

are possible, in accordance with supported transform sizes. In the high efficiency video

5 coding (HEVC) standard, transforms are performed on 2D arrays of data samples having

sizes, such as 32x32, 16x16, 8x8 and 4x4. Thus, a predetermined set of transform sizes are

available to the video encoder 114. Moreover, the set of transform sizes may differ

between the luma channel and the chroma channels.

Two-dimensional transforms are generally configured to be ‘separable’, enabling

10 implementation as a first set of ID transforms operating on the 2D array of data samples in

one direction (e.g. on rows). The first set of ID transforms is followed by a second set of

ID transform operating on the 2D array of data samples output from the first set of ID

transforms in the other direction (e.g. on columns). Transforms having the same width and

height are generally referred to as ‘square transforms’. Additional transforms, having

15 differing widths and heights may also be used and are generally referred to as ‘non-square

transforms’. The row and column one-dimensional transforms may be combined into

specific hardware or software modules, such as a 4x4 transform module or an 8x8

transform module.

Transforms having larger dimensions require larger amounts of circuitry to

20 implement, even though such larger dimensioned transforms may be infrequently used.

Accordingly, the high efficiency video coding (HEVC) standard defines a maximum

transform size of 32x32 luma samples. Transforms may be applied to both the luma and

chroma channels. Differences between the handling of luma and chroma channels with

regard to transform units (TUs) exist. Each residual quad-tree occupies one coding unit

25 (CU) and is defined as a quad-tree decomposition of the coding unit (CU) into a hierarchy

including one transform unit (TU) at each leaf node of the residual quad-tree hierarchy.

Each transform unit (TU) has dimensions corresponding to one of the supported transform

sizes. Similarly to the coding tree block (CTB), it is necessary for the entirety of the

coding unit (CU) to be occupied by one or more transform units (TUs). At each level of

30 the residual quad-tree hierarchy a ‘coded block flag value’ signals possible presence of a

transform in each colour channel. The signalling may indicate presence of a transform at

the current hierarchy level (when no further splits are present), or that lower hierarchy

levels may contain at least one transform among the resulting transform units (TUs).

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

-20-
20

13
22

80
45

13

 Se
p 2

01
3 When the coded block flag value is zero, all residual coefficients at the present or lower

hierarchy levels are known to be zero. In such a case, no transform is required to be

performed for the corresponding colour channel of any transform units (TU) at the present

hierarchical level or at lower hierarchical levels. When the coded block flag value is one,

5 if the present region is not further sub-divided then the region contains a transform which

requires at least one non-zero residual coefficient. If the present region is further sub­

divided, a coded block flag value of one indicates that each resulting sub-divided region

may include non-zero residual coefficients. In this manner, for each colour channel, zero

or more transforms may cover a portion of the area of the coding unit (CU) varying from

10 none up to the entirety of the coding unit (CU). Separate coded block flag values exist for

each colour channel. Each coded block flag value is not required to be encoded, as cases

exist where there is only one possible coded block flag value.

The scaled transform coefficients 362 are input to the quantiser module 322 where

data sample values thereof are scaled and quantised, according to a determined

15 quantisation parameter 384, to produce transform coefficients 364. The transform

coefficients 364 are an array of values having the same dimensions as the residual sample

array 360. The transform coefficients 364 provide a frequency domain representation of

the residual sample array 360 when a transform is applied. When the transform is skipped,

the transform coefficients 364 provide a spatial domain representation of the residual

20 sample array 360 (i.e. quantised by the quantiser module 322 but not transformed by the

transform module 320). For the discrete cosine transform (DCT), the upper-left value of

the transform coefficients 364 specifies a ‘DC’ value for the residual sample array 360 and

is known as a ‘DC coefficient’. The DC coefficient is representative of the ‘average’ of the

values of the residual sample array 360. Other values in the transform coefficients 364

25 specify ‘AC coefficients’ for the residual sample array 360. The scale and quantisation

results in a loss of precision, dependent on the value of the determined quantisation

parameter 384. A higher value of the determined quantisation parameter 384 results in

coarser quantisation and hence greater information being lost from the scaled transform

coefficients 362. The loss of information increases the compression achieved by the video

30 encoder 114, as there is less information to encode. The increase in compression

efficiency occurs at the expense of reducing the visual quality of output from the video

decoder 134. For example, a reduction in the peak signal to noise ratio (PSNR) of the

decoded frames 412 compared to the frame data 310. The determined quantisation

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

-21 -
20

13
22

80
45

13

 Se
p 2

01
3 parameter 384 may be adapted during encoding of each frame of the frame data 310.

Alternatively, the determined quantisation parameter 384 may be fixed for a portion of the

frame data 310. In one arrangement, the determined quantisation parameter 384 may be

fixed for an entire frame of frame data 310. Other adaptations of the determined

5 quantisation parameter 384 are also possible, such as quantising each of the scaled

transform coefficients 362 with separate values.

The transform coefficients 364 and determined quantisation parameter 384 are

taken as input to the dequantiser module 326. The dequantiser module 326 reverses the

scaling performed by the quantiser module 322 to produce rescaled transform coefficients

10 366. The rescaled transform coefficients are rescaled versions of the transform coefficients

364. The transform coefficients 364, the determined quantisation parameter 384, the

transform size 386 and the bit-depth 390 are also taken as input to an entropy encoder

module 324. The entropy encoder module 324 encodes the values of the transform

coefficients 364 in an encoded bitstream 312. The encoded bitstream 312 may also be

15 referred to as a ‘video bitstream’. Due to a loss of precision (e.g. resulting from the

operation of the quantiser module 322), the rescaled transform coefficients 366 are not

identical to the original values in the scaled transform coefficients 362. The rescaled

transform coefficients 366 from the dequantiser module 326 are then output to an inverse

transform module 328.

20 The inverse transform module 328 performs an inverse transform from the

frequency domain to the spatial domain to produce a spatial-domain representation 368 of

the rescaled transform coefficients 366. The spatial-domain representation 368 is

substantially identical to a spatial domain representation that is produced at the video

decoder 134. The spatial-domain representation 368 is then input to a summation module

25 342.

A motion estimation module 338 produces motion vectors 374 by comparing the

frame data 310 with previous frame data from one or more sets of frames stored in a frame

buffer module 332, generally configured within the memory 206. The sets of frames are

known as ‘reference pictures’ and are enumerated in ‘reference picture lists’. The motion

30 vectors 374 are then input to a motion compensation module 334 which produces an inter­

predicted prediction unit (PU) 376 by filtering data samples stored in the frame buffer

module 332, taking into account a spatial offset derived from the motion vectors 374. Not

illustrated in Fig. 3, the motion vectors 374 are also passed to the entropy encoder module

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

-22-
20

13
22

80
45

13

 Se
p 2

01
3 324 for encoding in the encoded bitstream 312. The motion vectors may be encoded as

‘motion vector differences’ (or ‘motion vector deltas’) representing differences between

the motion vector for a current block and a predicted motion vector. The predicted motion

vector may be determined from one or more spatially or temporally neighbouring blocks.

5 The predicted motion vector may be used for a current block without encoding a motion

vector difference. A coding unit (CU) having no motion vector difference or residual

coefficients in the encoded bitstream 312 is referred to as a ‘skipped’ block.

The intra-frame prediction module 336 produces an intra-predicted prediction unit

(PU) 378 using samples 370 obtained from the summation module 342. In particular, the

10 intra-frame prediction module 336 uses samples from neighbouring blocks that have

already been decoded to produce intra-predicted samples for the current prediction unit

(PU). When a neighbouring block is not available (e.g. at a frame boundary) the

neighbouring samples are considered as ‘not available’ for reference. In such cases, a

default value may be used instead of the neighbouring sample values. Typically, the

15 default value (or ‘half-tone’) is equal to half of the range implied by the bit-depth. For

example, when the video encoder 114 is configured for a bit-depth of eight (8), the default

value is 128. The summation module 342 sums the prediction unit (PU) 382 from the

multiplexer module 340 and the spatial domain output of the multiplexer 382. The intra­

frame prediction module 336 also produces an intra-prediction mode 380 which is sent to

20 the entropy encoder 324 for encoding into the encoded bitstream 312.

An intra block copy module 350 tests various block vectors to produce a reference

block for the prediction unit (PU) 382. The reference block includes a block of samples

370 obtained from the current coding tree block (CTB) and/or the previous coding tree

block (CTB). The reference block does not include samples from any coding units (CUs)

25 in the current coding tree block (CTB) that have not yet been decoded and hence are not

available in the samples 370.

A block vector is a two-dimensional vector referencing a block within the pair of

coding tree blocks (CTBs). The intra block copy module 350 may test every valid block

vector by conducting a search using a nested loop. However, faster searching methods

30 may be used by the intra block copy module 350 in producing the reference block. For

example, the intra block copy module 350 may reduce the search complexity by searching

for block vectors aligned horizontally or vertically to the current coding unit (CU). In

another example, near-horizontal and near-vertical block vectors may also be searched by

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

-23 -
20

13
22

80
45

13

 Se
p 2

01
3 the intra block copy module 350 to produce a reference block. In another example, the

intra block copy module 350 may test a spatially sparse set of block vectors and then

perform a refined search in the neighbourhood of a selected one of the sparse block vectors

to produce a final block vector.

5 Entropy coding a block vector has an associated cost, or rate. One method of

entropy coding a block vector is to reuse the motion vector difference (i.e. ‘mvdcoding’)

syntax structure. The motion vector difference syntax structure permits encoding of a two­

dimensional signed vector and is thus suitable for a block vector. The motion vector

difference syntax structure encodes smaller magnitude vectors more compactly than larger

10 magnitude vectors. Consequently, in the rate measurement, a bias towards selecting

nearby reference blocks may be introduced.

A given block vector results in a particular reference block having a particular

distortion. Of the block vectors that are tested by the video encoder 114, the rate-distortion

trade-off is applied to determine which block vector to apply for the intra block copy

15 mode. An overall rate distortion trade-off may compare the result for the intra block copy

mode with the result for other prediction methods, such as inter-prediction and intra­

prediction.

Prediction units (PUs) may be generated using either an intra-prediction, an inter­

prediction or an intra block copy method. Intra-prediction methods make use of data

20 samples adjacent to the prediction unit (PU) that have previously been decoded (i.e.,

typically above and to the left of the prediction unit) in order to generate reference data

samples within the prediction unit (PU). Various directions of intra-prediction are

possible. In one arrangement, thirty three (33) directions of intra-prediction are possible.

A ‘DC mode’ and a ‘planar mode’ may be supported, for a total of thirty five (35) possible

25 intra-prediction modes.

Inter-prediction methods make use of a motion vector to refer to a block from a

selected reference frame. With reference to Fig. 3, the motion estimation module 338 and

motion compensation module 334 operate on motion vectors 374, having a precision of

one eighth (1/8) of a luma sample, enabling precise modelling of motion between frames in

30 the frame data 310. The decision on which of the intra-prediction, the inter-prediction or

the intra block copy method to use may be made according to a rate-distortion trade-off.

The rate-distortion trade-off is made between the desired bit-rate of the resulting encoded

bitstream 312 and the amount of image quality distortion introduced by either the intra-

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

-24-
20

13
22

80
45

13

 Se
p 2

01
3 prediction, inter-prediction or the intra block copy method. If intra-prediction is used, one

intra-prediction mode is selected from the set of possible intra-prediction modes, also

according to a rate-distortion trade-off. The multiplexer module 340 may select the intra­

predicted reference samples 378 from the intra-frame prediction module 336, or the inter-

5 predicted prediction unit (PU) 376 from the motion compensation block 334, or the

reference block from the intra block copy module 350.

The summation module 342 produces a sum 370 that is input to a de-blocking filter

module 330. The de-blocking filter module 330 performs filtering along block boundaries,

producing de-blocked samples 372 that are written to the frame buffer module 332

10 configured within the memory 206. The frame buffer module 332 is a buffer with

sufficient capacity to hold data from one or more past frames for future reference for inter­

predicted prediction units (PUs).

For the high efficiency video coding (HEVC) standard, the encoded bitstream 312

produced by the entropy encoder 324 is delineated into network abstraction layer (NAL)

15 units. Frames are encoded using one or more ‘slices’, with each slice including one or

more coding tree blocks (CTBs). Two types of slice are defined, ‘independent slice

segments’ and ‘dependent slice segments’. Generally, each slice of a frame is contained in

one NAL unit. The entropy encoder 324 encodes the transform coefficients 364, the intra­

prediction mode 380, the motion vectors (or motion vector differences) and other

20 parameters, collectively referred to as ‘syntax elements’, into the encoded bitstream 312 by

performing a context adaptive binary arithmetic coding (CABAC) algorithm. Syntax

elements are grouped together into ‘syntax structures’. The groupings may contain

recursion to describe hierarchical structures. In addition to ordinal values, such as an intra­

prediction mode or integer values, such as a motion vector, syntax elements also include

25 flags, such as to indicate a quad-tree split.

The video encoder 114 also divides a frame into one or more ‘tiles’. Each tile is a

rectangular set of coding tree blocks (CTBs) that may be encoded and decoded

independently, facilitating parallel implementations of the video encoder 114 and the video

decoder 134. Within each tile, coding tree blocks (CTBs) are scanned in a raster order and

30 a single core (or thread) implementation of the video encoder 114 or the video decoder 134

scans the tiles in raster scan order. To enable a parallel implementation of the video

encoder 114 and the video decoder 134, intra-prediction of blocks along a tile boundary

may not use samples from blocks in a neighbouring tile. As such, the neighbouring

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

-25 -
20

13
22

80
45

13

 Se
p 2

01
3 samples may be marked as not available for intra-prediction even though the sample values

do exist.

Although the video decoder 134 of Fig. 4 is described with reference to a high

efficiency video coding (HEVC) video decoding pipeline, other video codecs may also

5 employ the processing stages of modules 420-436. The encoded video information may

also be read from memory 206, the hard disk drive 210, a CD-ROM, a Blu-ray™ disk or

other computer readable storage medium. Alternatively the encoded video information

may be received from an external source, such as a server connected to the

communications network 220 or a radio-frequency receiver.

10 As seen in Fig. 4, received video data, such as the encoded bitstream 312, is input

to the video decoder 134. The encoded bitstream 312 may be read from memory 206, the

hard disk drive 210, a CD-ROM, a Blu-ray™ disk or other computer readable storage

medium. Alternatively the encoded bitstream 312 may be received from an external source

such as a server connected to the communications network 220 or a radio-frequency

15 receiver. The encoded bitstream 312 contains encoded syntax elements representing the

captured frame data to be decoded.

The encoded bitstream 312 is input to an entropy decoder module 420 which

extracts the syntax elements from the encoded bitstream 312 and passes the values of the

syntax elements to other blocks in the video decoder 134. The entropy decoder module

20 420 applies the context adaptive binary arithmetic coding (CABAC) algorithm to decode

syntax elements from the encoded bitstream 312. The decoded syntax elements are used to

reconstruct parameters within the video decoder 134. Parameters include zero or more

residual data array 450 and motion vectors 452. Motion vector differences are decoded

from the encoded bitstream 312 and the motion vectors 452 are derived from the decoded

25 motion vector differences.

The parameters reconstructed within the video decoder 134 also include a

prediction mode 454, a quantisation parameter 468, a transform size 470 and a bit-depth

472. The transform size 470 was encoded in the encoded bitstream 312 by the video

encoder 114 according to the transform size 386. The bit-depth 472 was encoded in the

30 encoded bitstream 312 by the video encoder 114 according to the bit-depth 390. The

quantisation parameter 468 was encoded in the encoded bitstream 312 by the video

encoder 114 according to the quantisation parameter 384. Thus, the transform size 470 is

(P086335_Speci_As Filed)7836315v1

(7836315_1):SXY

-26 -
20

13
22

80
45

13

 Se
p 2

01
3 equal to the transform size 386, the bit-depth 472 is equal to the bit-depth 390 and the

quantisation parameter 468 is equal to the quantisation parameter 384.

The residual data array 450 is passed to a dequantiser module 421, the motion

vectors 452 are passed to a motion compensation module 434, and the prediction mode 454

5 is passed to an intra-frame prediction module 426 and to a multiplexer 428.

With reference to Fig. 4, the dequantiser module 421 performs inverse scaling on

the residual data of the residual data array 450 to create reconstructed data 455 in the form

of transform coefficients. The dequantiser module 421 outputs the reconstructed data 455

to an inverse transform module 422. The inverse transform module 422 applies an ‘inverse

10 transform’ to convert the reconstructed data 455 (i.e., the transform coefficients) from a

frequency domain representation to a spatial domain representation, outputting a residual

sample array 456 via a multiplexer module 423. The inverse transform module 422

performs the same operation as the inverse transform module 328. The inverse transform

module 422 is configured to perform inverse transforms sized in accordance with the

15 transform size 470 having a bit-depth according to the bit-depth 472. The transforms

performed by the inverse transform module 422 are selected from a predetermined set of

transform sizes required to decode an encoded bitstream 312 that is compliant with the

high efficiency video coding (HEVC) standard.

The motion compensation module 434 uses the motion vectors 452 from the

20 entropy decoder module 420, combined with reference frame data 460 from a frame buffer

block 432, configured within the memory 206, to produce an inter-predicted prediction unit

(PU) 462 for a prediction unit (PU). The inter-predicted prediction unit (PU) 462 is a

prediction of output decoded frame data based upon previously decoded frame data. When

the prediction mode 454 indicates that the current prediction unit (PU) was coded using

25 intra-prediction, the intra-frame prediction module 426 produces an intra-predicted

prediction unit (PU) 464 for the prediction unit (PU). The intra-predicted prediction unit

(PU) 464 is produced using data samples spatially neighbouring the prediction unit (PU)

and a prediction direction also supplied by the prediction mode 454. The spatially

neighbouring data samples are obtained from a sum 458, output from a summation module

30 424.

As seen in Fig. 4, an intra block copy module 436 of the video decoder 134

produces a block of reference samples, by copying an array of samples from the current

and/or the previous coding tree blocks (CTBs). The offset of the reference samples is

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

-27 -
20

13
22

80
45

13

 Se
p 2

01
3 calculated by adding a block vector, decoded by the entropy decoder 420, to the location of

the current coding unit (CU). The multiplexer module 428 selects the intra-predicted

prediction unit (PU) 464 or the inter-predicted prediction unit (PU) 462 for a prediction

unit (PU) 466 or a reference block from the intra block copy module 436, depending on the

5 current prediction mode 454. The prediction unit (PU) 466, which is output from the

multiplexer module 428, is added to the residual sample array 456 from the inverse scale

and transform module 422 by the summation module 424 to produce sum 458. The sum

458 is then input to each of a de-blocking filter module 430, the intra-frame prediction

module 426 and the intra block copy module 436. The de-blocking filter module 430

10 performs filtering along data block boundaries, such as transform unit (TU) boundaries, to

smooth visible artefacts. The output of the de-blocking filter module 430 is written to the

frame buffer module 432 configured within the memory 206. The frame buffer module

432 provides sufficient storage to hold one or more decoded frames for future reference.

Decoded frames 412 are also output from the frame buffer module 432 to a display device,

15 such as the display device 136 which may be in the form of the display device 214.

Fig. 5 is a schematic block diagram showing a frame 500 that is divided into two

tiles and three slice segments as described below.

The frame 500 includes an array of coding tree blocks (CTBs), which are

represented as grid cells in Fig. 5. The frame 500 is divided into two tiles which are

20 separated by a dashed line 516 in Fig. 5. The three slices of the frame 500 include

independent slice segments 502, 506 and 512 and dependent slice segments 504, 508, 510

and 514. Dependent slice segment 504 is dependent on independent slice segment 502.

Dependent slice segments 508 and 510 are dependent on independent slice segment 506.

Dependent slice segment 514 is dependent on independent slice segment 512.

25 The division of the frame 500 into slices is represented in Fig. 5 using thick lines,

such as line 520. Each slice is divided into an independent slice segment and zero or more

dependent slice segments as shown by dashed lines in Fig. 5, such as line 518.

Accordingly, in the example of Fig. 5, one slice includes slice segments 502 and 504, one

slice includes slice segments 506, 508 and 510 and one slice includes slice segments 512

30 and 514.

Scanning of coding tree blocks (CTBs) in the frame 500 is ordered such that the

first tile is scanned in raster order followed by scanning the second tile in raster order.

Intra-predicted prediction units (PUs) may be aligned to either or both of the top edge or

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

-28 -
20

13
22

80
45

13

 Se
p 2

01
3 the left edge of a coding tree block (CTB). In such cases the neighbouring samples

required for intra-prediction may be located in an adjacent coding tree block (CTB). The

adjacent coding tree block (CTB) may belong to a different tile or a different slice. In such

cases, the neighbouring samples are not accessed. Instead, a default value is used. The

5 default value may be derived from other neighbouring samples that are available.

Generally, for each unavailable neighbouring sample, the nearest available neighbouring

sample value is used. Alternatively, the default value may be set equal to the half-tone

value implied by the bit-depth, i.e. two to the power of the result of subtracting one from

the bit depth.

10 The arrangement of tiles in the frame 500 as shown in Fig. 5 is beneficial for

parallel processing. For example, the video encoder 114 may include multiple instances of

the entropy encoder 324 and the video decoder 134 may include multiple instances of the

entropy decoder 420. Each tile may be concurrently processed by a separate instance of

the entropy encoder 324 and the entropy decoder 420.

15 Fig. 6A is a schematic block diagram showing an example ‘Z-scan’ order of

scanning regions within a coding tree block (CTB) 600. At each level of the hierarchical

decomposition of the coding tree block (CTB) 600, a scan resembling a ‘Z’ is performed,

i.e. scanning the upper two regions from left to right, and then scanning the lower two

regions from left to right. The scan is applied recursively in a depth-first manner. For

20 example, if a region at a current hierarchy level is sub-divided into further regions at a

lower hierarchy level, a Z-scan is applied within the lower hierarchy level prior to

proceeding to the next region at the current hierarchy level. Regions of a coding tree block

(CTB) that are not further sub-divided contain a coding unit (CU). In the example of Fig.

6A, the four coding units (CUs) in the top-left of the coding tree block (CTB) 600 are

25 scanned as in a Z-scan order 622, reaching a coding unit (CU) 626 that is currently being

processed in the example of Fig. 6A. The remainder of the coding tree block (CTB) 600

will be scanned according to Z-scan order 624. Samples from previously decoded coding

units (CUs) in the coding tree block (CTB) 600 are available for intra-prediction. The

samples from the coding units (CUs) that have not yet been decoded by the video decoder

30 134, as represented by diagonal hatching in Fig. 6A, are not available for intra-prediction.

As such, the video encoder 114 also treats the samples that have not yet been decoded as

not being available for intra-prediction.

(P086335_Speci_As Filed)7836315v1

(7836315_1):SXY

-29 -
20

13
22

80
45

13

 Se
p 2

01
3 Fig. 6B is a schematic block diagram showing an example block vector 624

referencing a block of samples in a neighbouring coding tree block (CTB) relative to a

coding unit (CU) within a current coding tree block (CTB). Referencing within the

neighbouring coding tree block (CTB) is restricted by the vertical position of the coding

5 unit (CU) in the current coding tree block (CTB). In the example of Fig. 6B, a frame

portion 620 includes two coding tree blocks (CTBs) belonging to the same tile and the

same slice. The two coding tree blocks (CTBs) are a current coding tree block (CTB) (i.e.,

right half of the frame portion 620) and a previous coding tree block (CTB) (i.e., left half

of the frame portion 620). Intra block copy prediction is applied to coding unit (CU) 622

10 in the example of Fig. 6B. Block vector 624 specifies the location of a reference block 626

relative to the location of the coding unit (CU) 622. The reference block 626 is obtained

from samples prior to in-loop filtering (e.g. deblocking) being performed on the samples.

Therefore, buffering of samples of the current coding tree block (CTB) and the previous

coding tree block (CTB) prior to deblocking is required, in order to provide samples at all

15 possible locations of a reference block.

The use of reference samples prior to in-loop filtering being performed on the

reference samples is consistent with the intra-prediction process. In the intra-prediction

process neighbouring samples are necessarily used prior to deblocking, as the deblocking

process introduces a dependency on samples within the current coding unit (CU), that are

20 not yet available. The block vector 624 includes two positive integer values (x,y) that

specify the location of the reference block 626 as a leftward (horizontal) displacement and

an upward (vertical) displacement, relative to the location of the coding unit (CU) 622. As

such, it is not possible to specify a block vector that would result in a dependency on the

portion of the current coding tree block (CTB) that is yet to be decoded by the video

25 decoder 134 (e.g. 630). For example, given the position of the coding unit (CU) 622 in the

upper-left quadrant of the current coding tree block (CTB), the described co-ordinate

scheme prevents use of the lower half (e.g. 630) of the current coding tree block (CTB) for

the reference block. Preventing use of the lower half (e.g. 630) of the current coding tree

block (CTB) also prevents use of the lower half (e.g. 628) of the previous coding tree block

30 (CTB).

The block vector 624 specifies the top-left sample location of the reference block

626 relative to the top-left sample location of the coding unit (CU) 622. As such, block

vectors that would result in overlap of a reference block and the current coding unit (CU)

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

-30-
20

13
22

80
45

13

 Se
p 2

01
3 are prohibited. For example, with a coding unit (CU) size of 16x16, block vectors such as

(-16, 0), (0, -16), (-17, -18) are permitted whereas block vectors such as (0,0), (-15, -15), (­

8, 0) are prohibited. In general, block vectors where both the horizontal and vertical

displacements are less than the width and height of the coding unit (CU) are prohibited.

5 Additionally, restrictions on the reference block location in the previous coding tree block

(CTB) result in a reduction in the available coding efficiency improvement provided by the

intra block copy module 350. As the entirety of the previous coding tree block (CTB) is

available, relaxing the restriction to enable reference block locations anywhere on the

previous coding tree block (CTB) improves coding efficiency.

10 Fig. 7A is a schematic block diagram showing an example block vector 704

referencing a block of samples in a neighbouring coding tree block (CTB) relative to a

coding unit (CU) within a current coding tree block (CTB). Referencing within the

neighbouring coding tree block (CTB) is unrestricted by the vertical position of the coding

unit (CU) in the current coding tree block (CTB). As with Fig. 6B, example frame portion

15 700 shown in Fig. 7A includes a current coding tree block (CTB) and a previous coding

tree block (CTB). Intra block copy prediction is applied to a coding unit (CU) 702. Block

vector 704 specifies the location of a reference block 706, within the frame portion 700.

As with Fig. 6B, the block vector 706 is prohibited from locating the reference block if the

reference block would overlap any portion of the current coding tree block (CTB) that has

20 not yet been decoded (e.g. 708). The block vector 706 is also prohibited from locating the

reference block if the reference block would overlap the current coding unit (CU) 702. In

contrast to Fig. 6B, the block vector 704 may specify a positive and a negative

displacement in both the x and y axes.

Fig. 7B is a schematic block diagram showing an example block vector 724

25 referencing a block of samples spanning both a current coding tree block (CTB) and a

neighbouring coding tree block (CTB). The block vector referencing in the example of

Fig. 7B is relative to the top-right corner of the block of reference samples. As with Fig.

7A, frame portion 720 includes two coding tree blocks (CTBs). Block vector 724 specifies

the location of a reference block 726 relative to the coding unit (CU) 722 that is currently

30 being processed in the example of Fig. 7B. As with Fig. 7A, the reference block 726 may

not overlap the coding unit (CU) 722 or the portion of the current coding tree block (CTB)

that is yet to be decoded (e.g. 728). In contrast to Fig. 7A, the block vector 724 specifies

the location of the top-right of the reference block 726. For example, a block vector of (0,

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

-31 -
20

13
22

80
45

13

 Se
p 2

01
3 0) results in a reference block adjacent to the coding unit (CU). A variable ‘cu_size’ may

be defined, representing the width or height of the coding unit (CU) 722. In such

arrangements, the location of the reference block 726 may be specified by the vector

addition of the location of the coding unit (CU) 722, the block vector 724 and an offset

5 vector, defined as (-cu_size, 0). Other offset vectors are also possible, e.g. (0, -cu_size) or

(-cu_size, -cu_size).

Fig. 8A is a schematic block diagram showing an example block vector 804

referencing a block of samples spanning both a current coding tree block (CTB) and a

neighbouring coding tree block (CTB) 810 within a frame portion 800. The coding tree

10 block (CTB) 810 is marked as being unavailable (e.g. due to belonging to a different tile to

the current coding tree block (CTB)). As such, reference block 806 is restricted to only use

samples within the current coding tree block (CTB). Block vector 804 specifies the

location of the reference block 806 relative to the location of coding unit (CU) 802. Block

vector 804 specifies a reference block that overlaps with the coding tree block (CTB) 810.

15 As the samples from the coding tree block (CTB) 810 are marked as not available,

alternative values are used to populate the coding tree block (CTB) 810 portion of the

reference block 806. In one arrangement, a default value, such as the default value that is

used when neighbouring samples are not available for intra-prediction, may be used to

populate the overlapping portion of the reference block 806. For example, when the video

20 encoder 114 is configured for a bit-depth of eight (8), the default value used is one hundred

and twenty eight (128) and when configured for a bit-depth of ten (10), the default value

used is five hundred and twelve (512). Other methods of populating the overlapping

portion of the reference block 806 are also possible. For example, in one arrangement of

the video encoder 114, the sample values at the edge of the non-overlapping portion (i.e.

25 within the current coding tree block (CTB)) may be used to populate the overlapping

portion of the reference block 806. The sample values at the edge of the non-overlapping

portion may be used by clipping the co-ordinates of samples within the reference block 806

according to the current coding tree block (CTB), thus prohibiting access to the coding tree

block (CTB) 810.

30 Fig. 8B is a schematic block diagram showing an example adjusted block vector

824 referencing a block of samples within a current coding tree block (CTB). In the

example of Fig. 8B, the adjusted block vector 824 is not referencing any samples from a

neighbouring coding tree block (CTB) 830 that is marked as being unavailable. Frame

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

-32-
20

13
22

80
45

13

 Se
p 2

01
3 portion 820 includes two coding tree blocks (CTBs) from which a reference block 826 is

obtained. The reference block 826 may not use samples from the coding tree block (CTB)

830 for reference, as the coding tree block (CTB) 830 is marked as not available for

reference (e.g. due to belong to a different tile). In the example of Fig. 8B, a clipped block

5 vector 824 specifies the location of the reference block 826 relative to coding unit (CU)

822. In one arrangement of the video encoder 114 and the video decoder 134, the clipped

block vector 824 may be derived from a block vector present in the encoded bitstream 312,

e.g. equal to the block vector 804 of Fig. 8A. In an arrangement which derives the clipped

block vector 824 from a block vector present in the encoded bitstream 312, a clipping

10 operation may be used to prevent the reference block 826 from overlapping the coding tree

block (CTB) 830 that is not available.

Fig. 8C is a schematic block diagram showing an example block vector 844

referencing a block 846 of samples, where some of the referenced samples were decoded

using inter-prediction. Frame portion 840 includes two coding tree blocks (CTBs) from

15 which the reference block 846 is obtained. In the example of Fig. 8C, the video encoder

114 and the video decoder 134 are configured to use ‘constrained intra-prediction’.

Constrained intra-prediction is a mode whereby the neighbouring samples for the intra­

prediction process may only be obtained from other intra-predicted (or intra block copied)

coding units (CUs). As such, coding units (CUs) that were predicted using inter-prediction

20 may not be used to provide neighbouring samples for intra-prediction when constrained

intra-prediction mode is enabled. Inter-predicted coding units (CUs) depend on previous

frames for reference. In some cases a previous frame may not be available at the video

decoder 134 (e.g. due to a transmission error in the communications channel 120). In

cases where a previous frame is available at the video decoder 134, some other information

25 is populated into the inter-predicted coding unit (CU), as the intended reference block is

not available. Constrained intra-prediction improves error resilience by preventing such

erroneous data resulting from missing frames from propagating into intra-predicted coding

units (CUs). Inter-predicted coding units (CUs) are thus considered not available for

reference by intra-predicted coding units (CUs) when constrained intra-prediction is

30 enabled. The intra block copy mode has a similar constraint by considering inter-predicted

coding units (CUs) as not available for reference. A method 1700 of generating a

reference sample block for a coding unit (CU) will be described below with reference to

Fig. 17A.

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

-33 -
20

13
22

80
45

13

 Se
p 2

01
3 A method 1000 of encoding a coding unit (CU) syntax structure (e.g. 902, see Fig.

9) for a coding unit (CU) using the intra block copy mode, is described below with

reference to Fig. 10. Arrangements of the video encoder 114 using the method 1000 may

prohibit block vectors that result in accessing any samples from inter-predicted coding

5 units (CUs) for the intra block copy mode. In an arrangement using the method 1000, a

normative restriction may be used, where the normative restriction states that no intra

block vector may be present in the encoded bitstream 312 that would result in a reference

block that requires samples from an inter-predicted block. In the arrangement using the

method 1000, block search step 1002 does not perform searching of such block vectors that

10 would result in an non-conforming bitstream. The video decoder 134 may behave in an

undefined manner if this situation were to occur, because a bitstream that would result in a

reference block that requires samples from an inter-predicted block would be a ‘non­

conforming’ bitstream and decoders are not required to decode such bitstreams. Block

vector 846 of Fig. 8C is an example of a block vector that would result in a non-

15 conforming bitstream.

The video encoder 114 is configured so as not to produce a non-conforming

bitstream. As such, arrangements of the video encoder 114 may include logic in the intra

block copy module 350 to prevent searching such non-conforming block vectors. In one

arrangement of the video encoder 114, the intra block copy module 350 produces many

20 different block vectors to test (in a rate-distortion sense). Testing of any block vector that

would result in a non-conforming bitstream is aborted.

Alternatively, in one arrangement of the video encoder 114, the default sample

value may be used to provide sample values for any portion of a reference block that

overlaps with inter-predicted coding units (CUs). In the example of Fig. 8C, coding unit

25 (CU) 848 is an inter-predicted coding unit (CU) and constrained intra-prediction is used by

the video encoder 114 to process the coding unit (CU) 848. Thus, the portion of the

reference block 846 that overlaps with the coding unit (CU) 848 uses default sample

values, instead of using sample values obtained from the coding unit (CU) 848. With a

smallest coding unit (SCU) size of 8x8, the prediction mode of the coding tree block

30 (CTB) requires an 8x8 array of flags to indicate which coding units (CUs) were inter­

predicted. In such an arrangement, intra block copy step 1018 and intra block copy step

1140 is modified to populate the overlapping portion (i.e. overlapping with an inter­

predicted coding unit (CU)) with default sample values.

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

-34-
20

13
22

80
45

13

 Se
p 2

01
3 Fig. 8D is a schematic block diagram showing an example block vector 864

referencing a block of samples where reference block 866 includes samples within the

current coding unit (CU) 862. A frame portion 860 includes two coding tree blocks

(CTBs) from which the reference block 866 is obtained. As the samples within the current

5 coding unit (CU) have not yet been determined, the samples within the current coding unit

(CU) cannot be used as part of the reference block 866.

In one arrangement a default sample value may be provided in place of an

unavailable sample value. The default sample value may be derived in a similar manner to

the default sample value for intra-prediction when neighbouring samples are marked as not

10 available for reference. In such an arrangement, the intra block copy step 1018 and the

intra block copy step 1140 is modified to populate the overlapping portion (i.e. overlapping

with the current coding unit (CU)) with default sample values. Fig. 9 is a schematic block

diagram showing a coding unit (CU) syntax structure 902 within a portion 900 of the

bitstream 312. The encoded bitstream 312 includes sequences of syntax elements, divided

15 for example into slices, frames, dependent slice segments, independent slice segments or

tiles. Syntax elements are organised into hierarchical ‘syntax structures’. One such syntax

structure is the coding unit (CU) syntax structure 902. An instance of a coding unit (CU)

syntax structure exists for each coding unit (CU) in a slice, tile or frame. The context of an

instance of a coding unit (CU) syntax structure may prevent particular syntax elements

20 from being present. For example, syntax elements relating to inter-prediction are not

present in a coding unit (CU) syntax structure within a slice that is indicated to only use

intra-prediction. The coding unit (CU) syntax structure 902 may be used in cases where

the intra block copy function is available and in use.

As shown in Fig. 9, the coding unit (CU) syntax structure 902 includes other syntax

25 elements and syntax structures (e.g. 904 to 918). A transquant bypass flag 904

(‘cutransquantbypassflag’) signals the use of ‘transform quantisation bypass’ mode for

the coding unit (CU). The transquant bypass flag 904 is present if a

‘transquantbypassenabledflag’, present in the high level syntax was true. The

transquant bypass flag 904 is signalled independently of whether intra block copy is

30 enabled, thus intra block copy may be applied to both lossless and lossy coding cases.

A skip flag 906 (‘cu skip flag’) is present in the encoded bitstream 312 for coding

units (CUs) in slices that may be inter-prediction. The skip flag 906 signals that the coding

unit (CU) includes an inter-predicted prediction units (PUs) and that no residual or motion

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

-35 -
20

13
22

80
45

13

 Se
p 2

01
3 vector difference is present in the encoded bitstream 312 for the prediction unit (PU)

associated with this coding unit (CU). In this case, a prediction unit (PU) syntax structure

is included and may result in one syntax element being included, to specify a neighbouring

prediction unit (PU) from which the motion vector for the coding unit (CU) will be

5 derived. When the skip flag 906 indicates the use of skipping the coding unit (CU), no

further syntax elements are included by the coding unit (CU) syntax structure. As such,

the skip flag 906 provides an efficient means to represent coding units (CUs) in the

encoded bitstream 312. The skip flag 906 is usable in cases where no residual is required

(i.e. where the inter-predicted reference block is very close or identical to the

10 corresponding portion of the frame data 310). When the coding unit (CU) is not skipped,

additional syntax elements are introduced by the coding unit (CU) syntax structure 902 to

further specify the configuration of the coding unit (CU).

A prediction mode flag 908 (‘PMF’ in Fig. 9, or ‘predmodeflag’) is used to

signal the use of either intra-prediction or inter-prediction for the coding unit (CU). For

15 coding units (CUs) in slices where inter-prediction is not available, the prediction mode

flag 908 is not signalled. If the prediction mode flag 908 indicates that the coding unit

(CU) is configured to use intra-prediction and an intra block copy enabled flag is true, an

intra block copy flag 910 (or ‘intrabcflag’) is present in the encoded bitstream 312.

The intra block copy flag 910 signals the use of the intra block copy mode for the

20 coding unit (CU). The intra block copy flag 910 is used for indicating that current samples

are based on previously decoded samples of a current frame.

The intra block copy enabled flag is encoded as high level syntax. A partition

mode 912 syntax element is present in the encoded bitstream 312 if the coding unit (CU) is

not using the intra block copy mode and either (or both) the prediction mode flag indicates

25 the use of inter-prediction for the coding unit (CU) or the coding unit (CU) size is equal to

the smallest coding unit (SCU). The partition mode 912 indicates a division of the coding

unit (CU) into one or more prediction units (PUs). Where multiple prediction units (PUs)

are contained in the coding unit (CU) the partition mode 912 also indicates the geometric

arrangement of the prediction units (PUs) within the coding unit (CU). For example, a

30 coding unit (CU) may contain two rectangular prediction units (PUs), by a horizontal

division (e.g. ‘PART_2NxN’) or a vertical division (e.g. ‘PART_Nx2N’) of the coding unit

(CU), which is specified by the partition mode 912. If a single prediction unit (PU)

occupies the entire coding unit (CU) the partition mode is ‘PART_2Nx2N’. The intra

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

-36-
20

13
22

80
45

13

 Se
p 2

01
3 block copy mode is applied to the entire coding unit (CU) and thus the partition mode is

not signalled and is implied to be ‘PART_2Nx2N’. If the intra block copy mode is in use,

a block vector is present in the encoded bitstream 312, encoded as a block vector 914.

The block vector 914 specifies the location of a reference block relative to the

5 coding unit (CU). Alternatively, the block vector 914 may specify the location of the

reference block relative to some other entity, such as the coding tree block (CTB) in which

the coding unit (CU) is contained. The block vector 914 includes a horizontal and a

vertical offset and may reuse a pre-existing syntax structure. For example, a ‘motion

vector difference’ syntax structure may be used to encode the horizontal and vertical

10 offsets of the block vector in the encoded bitstream 312.

A root coded block flag 916 (or ‘rqtrootcbf) signals the presence of residual data

within the coding unit (CU). If the flag 916 has a value of zero, no residual data is present

in the coding unit (CU). If the flag 916 has a value of one, there is at least one significant

residual coefficient in the coding unit (CU) and hence a residual quad-tree (RQT) exists in

15 the coding unit (CU). In such cases, a transform tree 918 syntax structure encodes the

uppermost hierarchical level of the residual quad-tree (RQT) in the encoded bitstream 312.

Additional instances of transform tree syntax structures and transform unit syntax

structures are present in the transform tree 918 syntax structure, in accordance with the

residual quad-tree hierarchy of the coding unit (CU).

20 The method 1000 of encoding a coding unit (CU) syntax structure (e.g. 902) for a

coding unit (CU) using the intra block copy mode, will now be described. The method

1000 may be implemented as one or more of the software code modules implementing the

video encoder 114, which are resident in the hard disk drive 210 and are controlled in their

execution by the processor 205. The method 1000 may be used by the video encoder 114

25 to encode the coding unit (CU) syntax structure 900 of Fig. 9 into the encoded bitstream

312.

The method 1000 begins at a block search step 1002, where the processor 205 is

used for searching for a reference block within the current and/or previous coding tree

block (CTB). One or more block vectors are tested at step 1002 and a match between the

30 coding tree block (CTB) and the reconstructed sample data is measured by measuring

distortion. Also at step 1002, the cost of coding the block vector in the encoded bitstream

312 is measured based on the bit-rate of the encoded bitstream 312. Of the block vectors

tested, a block vector by the video encoder 114 is selected for use by the video encoder 114

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

-37-
20

13
22

80
45

13

 Se
p 2

01
3 based on the determined bit-rate and distortion. The selected block vector may be stored in

the memory 206. As described above, any suitable search algorithm may be used for

selecting the block vector at step 1002. A full search of every possible block vector may

be performed. However, the complexity of performing a full search is generally

5 unacceptable, for example, for real-time implementations of the video encoder 114. Other

search methods may be used, such as searching for reference blocks which are horizontal

or vertical (or near-horizontal and near-vertical) to the current coding unit (CU).

At an encode coding unit transquant bypass flag step 1004, the entropy encoder

320, under execution of the processor 205, encodes a coding unit transquant bypass flag

10 (e.g. 904) into the encoded bitstream 312 which may be stored in the memory 206. The

transquant bypass flag has a value of one when lossless coding of the coding unit (CU) is

being performed and a value of zero when lossy coding of the coding unit (CU) is being

performed.

Then at an encode coding unit skip flag step 1006, the entropy encoder 320, under

15 execution of the processor 205, encodes a skip flag (e.g. 906) into the encoded bitstream

312. The skip flag signals if coding of the motion vector difference and residual for the

coding unit (CU) will be skipped. If coding of the motion vector difference and residual

for the coding unit (CU) is skipped, a motion vector for the coding unit (CU) is derived

from previous motion vectors (e.g. from blocks adjacent to the current coding unit (CU)).

20 Also, no residual is present in the encoded bitstream for skipped coding units (CUs).

At an encode pred_mode_flag step 1008, the entropy encoder 320, under execution

of the processor 205, encodes a prediction mode (e.g. 908) into a prediction mode flag (i.e.,

pred_mode_flag) for the coding unit (CU) and stores the prediction mode flag in the

memory 206. Generally, the pred_mode_flag indicates one of intra-prediction mode (i.e.,

25 ‘MODEINTRA’) and inter-prediction mode (i.e., ‘MODEINTER’) for the coding unit

(CU). When the intra block copy mode is in use, the pred_mode_flag may be set to

‘MODE INTRA’, although the prediction mode of the coding unit (CU) may be

‘MODEINTRABC’. Then at a test prediction mode step 1009, the processor 205 tests the

prediction mode for the coding unit (CU). If the prediction mode is inter-prediction,

30 control passes to an encode mvd_coding step 1012. In this case, the intra_bc_flag is not

encoded in the encoded bitstream 312, resulting in improved coding efficiency. Otherwise,

control passes to an encode intra_bc_flag step 1010. At the encode intra_bc_flag step

(P086335_Speci_As Filed)7836315v1

(7836315_1):SXY

-38 -
20

13
22

80
45

13

 Se
p 2

01
3 1010, the entropy encoder 320, under execution of the processor 205, encodes an intra

block copy flag (i.e., intra_bc_flag) (e.g. 910) into the encoded bitstream 312.

At the encode mvd_coding step 1012, the entropy encoder 320, under execution of

the processor 205, encodes a block vector into the encoded bitstream 312 using the motion

5 vector difference (i.e., ‘mvd coding’) syntax structure which is also used for coding

motion vector differences. Then at an encode root cbf step 1014, the entropy encoder 320,

under execution of the processor 205, encodes a root coded block flag (i.e., root_cbf flag)

into the encoded bitstream 312. The root_cbf flag signals the presence of at least one

transform (i.e. having at least one significant residual coefficient) in the residual quad-tree

10 (RQT) of the coding unit (CU).

Then at an encode transform tree step 1016, the entropy encoder 320 under

execution of the processor 205 encodes the transform tree (i.e., the residual quad-tree

(RQT)) for the coding unit (CU) depending on the root coded block flag. Step 1016 is

performed if the root coded block flag (i.e., root_cbf flag) indicated the presence of at least

15 one transform in the residual quad-tree (RQT).

At an intra block copy step 1018, the reference block is produced using the block

vector selected at step 1002. The reference block is produced by copying an array of

samples. The array of samples is of equal size to the coding unit (CU) size. The location

of the reference sample array is relative to the current coding unit (CU), offset according to

20 the block vector. The reference samples are obtained prior to in-loop filtering, and hence

are obtained from the samples 370. The reference block produced at step 1018 may be

stored in the memory 206 by the processor 205.

The method 1000 concludes at a reconstruction step 1020, where the summation

module 342 adds the reference block produced at step 1018 to the residual to determine a

25 reconstructed block (i.e., as part of the samples 370). The reference block is selected by

the multiplexor module 340, under execution of the processor 205, as the intra block copy

mode in use for the current coding unit (CU).

Fig. 11 is a schematic flow diagram showing a method 1100 of decoding the coding

unit (CU) syntax structure 902 of Fig. 9 from the encoded bitstream 312. The method

30 1000 may be implemented as one or more of the software code modules implementing the

video decoder 134, which are resident in the hard disk drive 210 and are controlled in their

execution by the processor 205. The method 1100 may be performed by the video

(P086335_Speci_As Filed)7836315v1

(7836315_1):SXY

-39-
20

13
22

80
45

13

 Se
p 2

01
3 decoder 134, for example, when the video decoder 134 is parsing the syntax elements

associated with a coding unit (CU).

The method 1100 tests variables having values that may have previously been

derived from decoding a syntax element. In cases where no syntax element was decoded,

5 one of the variables generally has a default value indicating a ‘disabled’ state. The method

1100 begins at a transquant bypass enabled test step 1102, where the processor 205 is used

to test whether the transquant bypass mode is available to the coding unit (CU), by

checking a previously decoded flag value (e.g. ‘transquantbypassenabledflag’). If

transquant bypass mode is available, control passes to a decode transquant_bypass_flag

10 (e.g. ‘cutransquantbypassflag’) step 1104. Otherwise, control passes to a slice type

test step 1106 and transquant bypass mode is implied to not be used.

At the decode transquant_bypass_flag step 1104, the entropy decoder module 420,

under execution of the processor 205, decodes a flag (i.e., ‘cu transquant bypass flag’)

from the encoded bitstream 312. The cu_transquant_bypass_ flag indicates if the coding

15 unit (CU) uses the transquant bypass mode. As such, the cu_transquant_bypass_ flag

enables the portion of the frame data 310 collocated with the coding unit (CU) to be

losslessly represented.

At the slice type test step 1106, the processor 205 is used to determine if the slice

within which the coding unit (CU) resides supports intra-prediction only (i.e. ‘slice type

20 == Γ) or supports both intra-prediction and inter-prediction (i.e. ‘slice type != Γ). If intra­

prediction is the only available prediction mechanism, control passes to a cu_skip_flag test

step 1110. Otherwise, control passes to a decode cu_skip_flag step 1108.

At the decode cu_skip_flag step 1108, the entropy decoder module 420, under

execution of the processor 205, decodes a skip flag (‘cu skip flag’) from the encoded

25 bitstream 312. The skip flag indicates if the coding unit (CU) is coded using a ‘skip

mode’. In the ‘skip mode’, no motion vector difference or residual information is present

in the encoded bitstream 312.

Then at the cu_skip_flag test step 1110, the processor 205 is used to test the value

of the skip flag, cu_skip_flag. If the skip flag is true, control passes to a prediction unit

30 step 1112. Otherwise control passes to a slice type test 1114.

At a prediction unit step 1112, the coding unit (CU) is configured by the processor

205 to use a ‘skip mode’. In the skip mode, motion vector difference and residual

information is not decoded from the encoded bitstream 312. A motion vector is derived

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

-40-
20

13
22

80
45

13

 Se
p 2

01
3 from the motion vectors of one or more neighbouring blocks. From the motion vector, a

block of reference samples is produced by the motion compensation module 434. As there

is no residual information for this coding unit (CU), the dequantiser module 421 and the

inverse transform module 422 are inactive. The reference samples are deblocked by the

5 deblocker module 430 and the resulting samples are stored in the frame buffer module

432.At the slice type test step 1114, the processor 205 is used to determine if the slice

within which the coding unit (CU) resides supports intra-prediction only (i.e. ‘slice type

== I’) or supports both intra-prediction and inter-prediction (i.e. ‘slice type != I’). If intra­

prediction is the only available prediction mechanism, control passes to a prediction mode

10 test step 1117. Otherwise, control passes to a decode prediction mode flag step 1116.

At the prediction mode flag step 1116, the entropy decoder 420, under execution of

the processor 205, decodes a prediction mode flag from the encoded bitstream 312 for use

in determining a prediction mode for the coding unit (CU). The prediction mode flag

indicates if the coding unit (CU) uses intra-prediction (i.e. ‘MODEINTRA’) or inter-

15 prediction (i.e. ‘MODEINTER’). At the prediction mode test step 1117, the processor

205 is used to determine if the prediction mode of the coding unit (CU) is intra-prediction

(i.e. ‘MODE INTRA’). If the prediction mode of the coding unit (CU) is intra-prediction

(i.e. ‘MODE INTRA’), control passes to an intra_bc_enabled_flag test step 1118.

Otherwise, control passes to an intra_bc_flag test step 1122.

20 At the intra_bc_enabled_flag test step 1118, the processor 205 is used to determine

if the intra block copy mode is available for use in the coding unit (CU) by checking a

flag value (e.g. ‘intra_block_copy_enabled_flag’ from a sequence parameter set). The flag

value checked at step 1118 was previously decoded from the encoded bitstream 312 by the

entropy decoder module 420 as part of the ‘high level syntax’. If the intra block copy

25 mode is available, control passes to a decode intra_bc_flag step 1120. Otherwise control

passes to the intra_bc_flag test step 1122.

Then at the decode intra_bc_flag step 1120, the entropy decoder 420, under

execution of the processor 205, is used for decoding a flag (e.g. ‘intrabcflag’) from the

encoded bitstream 312 that signals the use of the intra block copy mode for the coding unit

30 (CU). The intra block copy flag (i.e., ‘intra bc flag’) is decoded from the encoded

bitstream 312 if the determined prediction mode is intra-prediction. The operation of the

entropy decoder 420 when performing the decode intra_bc_flag step 1120 will be

described further below with reference to Figs. 12 and 13.

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

-41 -
20

13
22

80
45

13

 Se
p 2

01
3 At the intra_bc_flag test step 1122, the processor 205 is used to test the value of the

intra_bc_flag. If the intra_bc_flag is set to true, control passes to a partition mode coded

test step 1124. Otherwise, control passes to a cu_type test step 1128.

Then at the partition mode coded test step 1124, conditions under which the

5 ‘part mode’ syntax element is present in the encoded bitstream 312 are tested under

execution of the processor 205. If the coding unit (CU) prediction mode is not intra­

prediction (i.e. not MODE_INTRA) or the coding unit (CU) size is equal to the smallest

coding unit (SCU) size, then control passes to a part_mode step 1126. Otherwise control

passes to the cu_type test step 1128.

10 If step 1126 is skipped, then ‘part mode’ is always coded for coding units (CUs)

using inter-prediction. For coding units (CUs) using intra-prediction, if the coding unit

(CU) size is larger than the smallest coding unit (SCU) size, then the partition mode is

inferred to be ‘PART_2Nx2N’ (i.e. one prediction unit (PU) occupies the entire coding

unit (CU)). If the coding unit (CU) size is equal to the smallest coding unit (SCU) size,

15 then the partition mode is decoded from the encoded bitstream 312 and selects between

either ‘PART_2Nx2N’ or ‘PART_NxN’. The ‘PART_NxN’ mode divides the coding unit

(CU) into four square non-overlapping prediction units (PUs).

At the decode partition mode step 1126, the entropy decoder 420, under execution

of the processor 205, decodes a part_mode syntax element from the encoded bitstream 312.

20 Note that due to the step 1122, part_mode is not decoded from the encoded bitstream 312

when the intra block copy mode is in use. In such cases, the partition mode of the coding

unit (CU) may be inferred to be ‘PART_2Nx2N’.

Then at the cu_type test step 1128, the prediction mode of the coding unit (CU) is

tested under execution of the processor 205 by testing the coding unit type flag, cu_type.

25 If the coding unit type flag, cu_type, indicates that the prediction mode is intra-prediction

(i.e. ‘CuPredMode == MODEINTRA’) control passes to an intrabcflagtest step 1030.

Otherwise, control passes to an intra_pred mode step 1034.

At the intra_bc_flag test step 1130, the processor 205 is used to test if the intra

block copy feature is used by the coding unit (CU). If the intra block copy feature is used

30 by the coding unit (CU), control passes to a decode block vector step 1132. Otherwise

control passes to the intra_pred mode step 1134.

Then at the decode block vector step 1132, the entropy decoder 420, under

execution of the processor 205, is used for decoding a block vector for the intra copy mode

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

-42-
20

13
22

80
45

13

 Se
p 2

01
3 from the encoded bitstream 312. The block vector is generally encoded in the encoded

bitstream 312 using an existing syntax structure, such as the ‘mvdcoding’ syntax structure

that is otherwise used for motion vector differences. After the step 1132, control passes to

a decode root coded block flag step 1036.

5 At the intra_pred mode step 1134, the entropy decoder 420, under execution of the

processor 205, decodes an intra-prediction mode for each prediction unit (PU) in the

coding unit (CU) from the encoded bitstream 312. The intra-prediction mode specifies

which one of thirty-five possible modes is used for performing intra-prediction in each

prediction unit (PU) of the coding unit (CU).

10 Then at the decode root coded block flag step 1136, the entropy decoder 420, under

execution of the processor 205, decodes a root coded block flag, rqt_root_cbf, from the

encoded bitstream 312. The root coded block flag, rqt_root_cbf, specifies if there is any

residual information for the coding unit (CU) (i.e. at least one significant coefficient is in

any of the transform units (TUs) within the coding unit (CU)). If there is residual

15 information associated with the coding unit (CU), then in a decode transform tree step

1138, the entropy decoder 420, under execution of the processor 205, decodes a transform

tree (or ‘residual quad-tree’) from the encoded bitstream 312. The transform tree includes

signalling to indicate the hierarchical structure of the residual quad-tree and residual

coefficients for each transform unit (TU).

20 At an intra block copy step 1140, the intra block copy module 436, under execution

of the processor 205, produces a reference block by copying a block (or an array) of

sample values (or samples) located within the current and/or previous coding tree block

(CTB). Accordingly, the sample values are determined for the reference block from the

previously decoded samples. The location of the reference block is determined by adding

25 the block vector to the co-ordinate of the current coding unit (CU). The intra block copy

module 436 is thus used for decoding the sample values for the reference block from the

encoded bitstream 312 based on the intra block copy flag decoded at step 1116. the

copying of the block of sample values at step 1140 may be referred to as the intra block

copy.

30 Then at a reconstruction step 1142, the prediction unit (PU) 466 (i.e. the reference

block), is added to the residual sample array 456 in the summation module 424 to produce

the sum 458 (i.e. the reconstructed samples). The method 1100 then terminates following

step 1142.

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

-43 -
20

13
22

80
45

13

 Se
p 2

01
3 In one arrangement of the method 1100 that accords with Fig. 8A, the intra block

copy step 1140 is modified such that the ‘default value’ is used for reference samples

overlapping for the unavailable neighbouring coding tree block (CTB). This arrangement

is described in more detail below with reference to Figs. 17C and 17D.

5 In one arrangement of the method 1100 that accords with Fig. 8B, the method 1100

is modified (e.g. in the decode block vector step 1132) such the decoded block vector (e.g.

824) is clipped to prevent any unavailable samples (e.g. 830) from being included in the

reference sample block (e.g. 826).

Context selection for an intra block copy flag (e.g. 910) for a coding unit (CU), will

10 now be described with reference to Fig. 12. As described below, the video decoder 114

may be configured for selecting a context for the intra block copy flag independently of the

values of the intra block copy flag for neighbouring blocks. In the example of Fig. 12, a

frame portion 1200 includes coding tree blocks (CTBs), such as coding tree block (CTB)

1202 and 1204. Coding tree blocks (CTBs) in the frame portion 1200 are scanned in raster

15 order. Coding units (CUs) within each coding tree block (CTB) 1202 and 1204 are

scanned in Z-order, as shown in Fig. 6A. A coding unit (CU) 1210 uses the intra block

copy mode when signalled by an intra_bc_flag in the encoded bitstream 312.

The intra_bc_flag is coded using context adaptive binary arithmetic coding, with a

context selected from one of three possible contexts. The intra_bc_flag values of

20 neighbouring blocks are used to determine which context to use. Blocks adjacent and

above (e.g. 1212), and to the left (e.g. 1214) of a current block are used, as these blocks

have been decoded previously and thus the intra_bc_flag values are available to the video

decoder 134. If a neighbour block is not available (e.g. the neighbour block is in a

different slice or tile, or the current block is at the edge of a frame) then the neighbour

25 block intra_bc_flag value, for the purpose of context selection, is set to be zero. A context

index has a value from zero to two and is determined by adding the left intra_bc_flag value

to the right intra_bc_flag value. For the purpose of the addition, intra_bc_flag values such

as ‘enabled’, ‘true’ or ‘set’ are treated as a one and intrabcflag values such as ‘disabled’,

‘false’ or ‘clear’ are treated as a zero. When the coding tree block (CTB) has a size of

30 64x64 and the smallest coding unit (SCU) size is 8x8, an 8x8 array of intra_bc_flags exists

within a coding tree block (CTB). Storage of the 8x8 array of intra_bc_flags is necessary

in order to meet the dependencies of the intra_bc_flag context selection. Along the left

edge of a coding tree block (CTB), the eight intra_bc_flags along the right edge of the

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

-44-
20

13
22

80
45

13

 Se
p 2

01
3 previous coding tree block (CTB) may be required. Additionally, as scanning of coding

tree blocks (CTBs) occurs in a raster-scan manner, an array of intra_bc_flags sufficient for

coding units (CUs) sized 8x8 along a row the width of an entire frame is necessary to meet

the dependency on the ‘above’ intrabcflag. For example, the block 1212 is located in

5 the previous row of coding tree blocks (CTBs) and thus storage is required for the

intra_bc_flag corresponding to the block 1212. The storage is provisioned for all possible

block locations along the row of coding tree blocks (CTBs). In contrast, a block 1220 is

not located along the top of the a coding tree block (CTB) and hence the intra_bc_flag

values of neighbouring blocks (i.e., 1222 and 1224).

10 For an HD image (i.e., 1920x1080 resolution) the required buffer size for storing

the intra_bc_flags is two-hundred and forty (240) flags. For image resolutions beyond HD,

several variants exist, generally referred to as “4K2K”. One variant is “Ultra HD” with a

resolution of 3840x2160. Another variant is “Digital Cinema”, with a resolution of

4096x2160. The required buffer size for storing the intra_bc_flags for 4K2K resolutions is

15 up to five hundred and twelve (512) flags. The intra_bc_flags buffer is accessed generally

once per coding unit (CU), resulting in relatively high memory bandwidth for determining

the context index of a single flag. For hardware implementations of the video encoder 114

and video decoder 134, on-chip static RAM may be used for buffering the for storing the

intra_bc_flags. For software implementations of the video encoder 114 and video decoder

20 134, the intra_bc_flags buffer may reside in LI cache, consuming valuable cache lines.

In one arrangement, the context selection of the intra_bc_flag may be simplified by

using a single context for the intra_bc_flag. Such arrangements have lower complexity

due to the removal of buffers to hold previously decoded intra_bc_flag values. An

additional advantage of using a single context for the intra_bc_flag is obtained through

25 reduced memory access and the avoidance of calculations to determine the context index.

Generally, reducing the number of contexts available for coding a syntax element, such as

the intra_bc_flag, reduces coding efficiency.

The encoded bitstream 312, produced by the method 1000 and decodable by the

method 1100, only includes an intra_bc_flag for coding units (CUs) indicated to use intra-

30 prediction (i.e. pred_mode indicates MODE_INTRA). As such, for inter-predicted coding

units (CUs), the intra_bc_flag is not present in the encoded bitstream 312. An

improvement in coding efficiency for inter-predicted coding units (CUs) is thus achieved,

(P086335_Speci_As Filed)7836315v1

(7836315_1):SXY

-45 -
20

13
22

80
45

13

 Se
p 2

01
3 at the expense of making the intra block copy mode only available when a pred_mode

syntax element indicates that use of intra-prediction for the coding unit (CU).

Generally intra-prediction produces a prediction with higher distortion than the

prediction produced by inter-prediction. The higher amount of distortion in the output

5 intra-prediction results in an increase in the amount of residual information required to

further correct the distortion to an acceptable level (i.e. as derived from the quantisation

parameter). The larger amount of residual information typically results in an intra­

predicted frame consuming a much larger portion of the encoded bitstream 312 than an

inter-predicted frame. For applications highly sensitive to coding efficiency, inter-

10 prediction is thus used as much as possible. As such, removing the signalling of the

intra_bc_flag for inter-predicted coding units (CUs) is beneficial.

Fig. 13 is a schematic block diagram showing functional modules 1302, 1304,

1306, and 1308 of the entropy decoder module 420 of Fig. 4. The modules 1302, 1304,

1306, and 1308 of the entropy decoder module 420 may be implemented as one or more

15 software code modules of the software application program 233 implementing the video

decoder module 134. The entropy decoder module 420 uses context adaptive binary

arithmetic coding. The encoded bitstream 312 is provided to a binary arithmetic decoder

module 1302. The binary arithmetic decoder module 1302 is provided with a context from

a context memory 1304. The context indicates a likely value of the flag (or ‘symbol’)

20 being decoded and a probability level for the flag. The context is selected according to a

context index, provided by a context index determiner 1306. The context index determiner

1306 determines the context index for the intra_bc_flag by using the values of

intra_bc_flag from neighbouring coding units (CUs).

Fig. 14 is a schematic flow diagram showing a method 1400 of decoding an intra

25 block copy flag for a coding unit (CU). The method 1400 is generally performed by the

entropy decoder module 420 or the entropy encoder module 324. The method 1400 may

be implemented as one or more of the software code modules implementing the video

decoder 134 or the video encoder 114, which are resident in the hard disk drive 210 and are

controlled in their execution by the processor 205. The method 1400 is described below by

30 way of example where the method 1400 is executed by the video decoder 134.

The method 1400 begins at an above flag available test step 1402, where the

processor 205 is used to test if the intra_bc_flag in the above block (i.e., the block adjacent

and above a current block) is available (e.g. derives an ‘availableA’ variable). The

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

-46 -
20

13
22

80
45

13

 Se
p 2

01
3 intra_bc_flag in the above block may be referred to as the ‘above flag’. If the current

block is at the top of a frame, then the above intra_bc_flag cannot be available. If the

above block is in a different slice segment to the current block then the above intra_bc_flag

is not available. If the above block is in a different tile to the current block then the above

5 intra_bc_flag is not available. If none of the above conditions are met, the above block is

available (i.e. ‘availableA’ is true).

If the above intra_bc_flag is not available (i.e. ‘availableA’ is false) at step 1402,

control passes to a left flag available test step 1406. Otherwise, control passes to a read

above intra_bc_flag step 1404.

10 At the read above intra_bc_flag step 1404, an intra_bc_flag value (i.e. ‘condA’) for

the coding unit (CU) above the current coding unit (CU) is read from the flag cache

module 1308 configured within the memory 206 under execution of the processor 205.

When the current coding unit (CU) is aligned along the top of the current coding tree block

(CTB), the intra_bc_flag being read is from a coding unit (CU) belonging to the row of

15 coding tree blocks (CTBs) above the current coding tree block (CTB). As the coding tree

blocks (CTBs) are processed in raster order (within one tile) and the smallest coding unit

(SCU) size is generally 8x8, one intra_bc_flag is stored in the flag cache module 1308 for

every eight (8) samples of frame width. For “4K2K” frames, up to five hundred and

twelve (512) intra_bc_flags are buffered (e.g., within the memory 206) in order to meet the

20 dependency on the above intra_bc_flag. The intra_bc_flags buffer may be referred to as a

‘line buffer’ because the intra_bc_flags buffer holds information pertaining to an entire line

of the frame (e.g. a line of smallest coding units (SCUs) or a line of samples).

As the intra block copy flags are accessed frequently (i.e. once per coding unit

(CU)), the intra block copy flags may be stored in on-chip static RAM or in cache memory

25 of the memory 206. Such memory in the flag cache module 1308 is costly (e.g. in terms of

silicon area or in terms of memory bandwidth). When the current coding unit (CU) is not

aligned along the top of the current coding tree block (CTB), the intra_bc_flag being read

is from a coding unit (CU) belonging to the current coding tree block (CTB). The coding

units (CUs) are scanned in a Z-scan order, according to the coding tree hierarchy of the

30 coding tree block (CTB).

For a coding tree block (CTB) comprised entirely of coding units (CUs) of the

smallest coding unit (SCU) size, an array of 8x7 (i.e. 56) intra_bc_flags is required in the

flag cache module 1308 to meet the dependency on the above intra_bc_flag. The width of

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

-47 -
20

13
22

80
45

13

 Se
p 2

01
3 eight is due to the division of the coding tree block (CTB) width of sixty-four (64) samples

into eight smallest coding units (SCUs). The height of seven is due to the division of the

coding tree block (CTB) height of sixty-four (64) samples into eight rows of smallest

coding tree units (SCUs). Seven of the eight rows are located in the current coding tree

5 block (CTB) and one row is located in the above coding tree block (CTB) (i.e., separately

buffered, as described above).

Then at a left flag available test step 1406, the processor 205 is used to determine if

the intra_bc_flag for the coding unit (CU) adjacent and to the left of the current coding unit

(CU) is available. The intra_bc_flag for the coding unit (CU) adjacent and to the left of the

10 current coding unit (CU) may be referred to as the ‘left flag’. If the current coding unit

(CU) is aligned to the left of the frame, the left intra_bc_flag is considered unavailable. If

the left coding unit (CU) belongs to a different slice than the current coding unit (CU), the

left intra_bc_flag is considered unavailable. If the left coding unit (CU) belongs to a

different tile than the current coding unit (CU), the left intra_bc_flag is considered

15 unavailable. If none of these conditions are met, the left intra_bc_flag is considered

available (i.e. ‘availableL’ is false). If the left intra_bc_flag is unavailable, control passes

to a determine context index step 1410. Otherwise (i.e. ‘availableL’ is true), control passes

to a read left flag step 1408.

At the read left flag step 1408, the intra_bc_flag value (i.e. ‘condL’) for the coding

20 unit (CU) adjacent and to the left of the current coding unit (CU) is read under execution of

the processor 205 (i.e., read left flag). If the current coding unit (CU) is aligned along the

left edge of the current coding tree block (CTB), the intra_bc_flag is read from a buffer of

eight intra_bc_flags that hold the intra_bc_flag values for (up to) eight smallest coding

units (SCUs) along the right edge of the previous coding tree block (CTB). If the current

25 coding unit (CU) is not aligned along the left edge of the current coding tree block (CTB),

the flag is read from a 7x8 buffer of intra_bc_flags for neighbouring coding units (CUs) of

the smallest coding unit (SCU) size within the current coding tree block (CTB). The buffer

size of 7x8 results from the division of the 64x64 coding tree block (CTB) into 64 (i.e. 8x8

grid) of 8x8 coding units (CUs) in the ‘worst case’, with seven columns of intra_bc_flags

30 referenced from within the current coding tree block (CTB) and one column of

intra_bc_flags reference from the previous (left) coding tree block (CTB). The 8x7

intra_bc_flag buffer for the above intra_bc_flags and the 8x7 buffer for the left

intra_bc_flags mostly overlap. Due to the overlap, a single sixty-three (63) or sixty-four

(P086335_Speci_As Filed)7836315v1

(7836315_1):SXY

-48 -
20

13
22

80
45

13

 Se
p 2

01
3 (64) flag buffer (i.e. an 8x8 flag buffer and the lower-right flag is not accessed and

therefore may be omitted) is required in the flag cache module 1308 to provide both the

above intra_bc_flags and the left intra_bc_flags within the current coding tree block

(CTB).

5 Then at the determine context index step 1410, the context index for the

intra_bc_flag for the current coding tree block (CTB) is determined under execution of the

processor 205. The context index is one of zero (0), one (1) or two (2). Where the context

memory 1304 is a contiguous memory holding contexts for a variety of syntax elements,

an offset (not further discussed here) is implicit in the context index to point to the storage

10 of contexts for the intra_bc_flag within the context memory 1304 configured within

memory 206. The context index is the sum of the left intra_bc_flag value and the above

intra_bc_flag value (Boolean values are interpreted as ‘0’ for false and ‘1’ for true). If the

left intra_bc_flag is not available, the left intra_bc_flag is considered to be zero for the sum

calculation. If the above intra_bc_flag is not available, the above intra_bc_flag is

15 considered to be zero for the sum calculation. The context index may thus be represented

by the formula (condL && availableL) + (condA && availableA).

At the read context step 1412, a context is read from the context memory module

1304, under execution of the processor 205, the context being selected by the context index

from the determine context index step 1410.

20 Then at the decode bin step 1414, the context is used to decode one flag (or ‘bin’)

from the encoded bitstream 312. The decoded flag corresponds to an intra_bc_flag for the

current coding unit (CU).

At a store in flag cache step 1416, the decoded flag is stored in the flag cache

module 1308, configured within memory 206, for future reference when decoding

25 subsequent intra_bc_flags from the encoded bitstream 312. Also, in an update context step

1418, the context is updated, under execution of the processor 205, according to the

decoded flag value. A probability and a likely bin value (i.e. ‘valMPS’) associated with

the context is updated.

Then at a write context step 1420, the updated context is written back to the context

30 memory module 1304, using the same context index as in step 1412. Following step 1420,

the method 1400 concludes.

(P086335_Speci_As Filed)7836315v1

(7836315_1):SXY

-49 -
20

13
22

80
45

13

 Se
p 2

01
3 As described above, the method 1400 may also be executed by the video encoder

114, where step 1414 is modified to encode a bin (i.e. intra_bc_flag value for the current

coding unit (CU)) in the encoded bitstream 312.

In one alternative arrangement of the method 1400, the above intra_bc_flag

5 available test step 1402 is modified such that when the current coding unit (CU) is aligned

to the top of the current coding tree block (CTB), the above intra_bc_flag is considered to

be unavailable, even if the adjacent coding unit (CU) in the above coding tree block (CTB)

is available. That is, ‘availableA’ = false when the coding unit (CU) Y-co-ordinate (i.e.,

yCb) specifying the top-left sample of the current luma coding block relative to the top-left

10 luma sample of the current coding tree block (CTB), is zero. In an arrangement where step

1402 is modified in such a manner, the removal of the dependency across coding tree

blocks (CTBs) results in the flag cache module 1308 not needing to include buffering for

the up to (512) intra_bc_flags. In an arrangement where step 1402 is modified in such a

manner, the coding unit (CU) 1210 depends on the intra_bc_flag value of the block 1214

15 for the determine context index step 1410, whereas the coding unit (CU) 1220 depends on

the intra_bc_flag values of the blocks 1222 and 1224 for the determine context index step

1410.

In another alternative arrangement of the method 1400, the above intra_bc_flag

available test step 1402 and the read above intra_bc_flag step 1404 are omitted (i.e.

20 available A is always false). In an arrangement where step 1402 and 1404 are omitted, the

determine context index step 1410 is trivial because the context index is set according to

only the left intra_bc_flag value resulting from the read left flag step 1408 (or zero if the

left flag is not available). An arrangement where steps 1402 and 1404 are omitted,

requires only two contexts in the context memory module 1304 for intra_bc_flag.

25 Moreover, an arrangement of the method 1400 where steps 1402 and 1404 are omitted do

not require memory in the flag cache module 1308 to buffer the up to 512 intra_bc_flags or

the fifty six (56) intra_bc_flags for the above neighbours.

In still another alternative arrangement of the method 1400, steps 1402-1408 are

omitted. In arrangements where steps 1402-1408 are omitted (i.e. availableA and

30 availableL are always false), the determine context index step 1410 is trivial because only a

single context is used for the intra_bc_flag. The context memory module 1304 thus

includes only one context for the syntax element corresponding to the single context. In

arrangements where steps 1402-1408 are omitted, The flag cache module 1308 may be

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

-50-
20

13
22

80
45

13

 Se
p 2

01
3 omitted because there is no need to reference the intra_bc_flag values from neighbouring

coding units (CUs) to determine the context index of the intra_bc_flag for the current

coding unit (CU).

Fig. 15A is a schematic flow diagram showing a method 1500 of determining a

5 prediction mode for a coding unit (CU), in accordance with one arrangement. The method

1500 is performed by the video decoder 134 as part of parsing a coding unit (CU) syntax

structure. The method 1500 may be implemented as one or more of the software code

modules implementing the video decoder 134, which are resident in the hard disk drive

210 and are controlled in their execution by the processor 205.

10 The method 1500 begins at a decode intra_bc_flag step 1502, where an intra block

copy flag is decoded from the encoded bitstream 312 in accordance with the method 1400.

The intra block copy flag is decoded from the encoded bitstream 312 for use in

determining a prediction mode for the coding unit (CU)

Then at an intra_bc_flag test step 1504, if the intra block copy flag has a value of

15 one, the prediction mode of the coding unit (CU) is known to be ‘MODEINTRABC’ (i.e.,

the prediction mode for the coding unit (CU) is intra block copy mode) and control passes

to a determine sample values step 1510. At the determine sample values step 1510, a block

of reference sample values (or samples) is determined for the coding unit (CU), under

execution of the processor 205, by performing the intra block copy step 1140 of Fig. 11 in

20 the intra block copy module 436.

If the intra block copy flag has a value of zero, control passes to a decode

pred_mode_flag step 1506. The decode pred_mode_flag step 1506 decodes a prediction

mode syntax element from the encoded bitstream 312 by performing step 1116 of Fig. 11.

Then at a pred_mode_flag test step 1508, the prediction mode for the coding unit

25 (CU) is determined according to the decoded prediction mode syntax element. A

predmodeflag value of zero (‘0’) indicates ‘MODEINTER’ (i.e., the prediction mode

for the coding unit (CU) is inter-prediction mode) and a pred mode flag value of one (‘1’)

indicates ‘MODEINTRA’ (i.e., the prediction mode for the coding unit (CU) is intra­

prediction mode).

30 Fig. 15B is a schematic flow diagram showing a method 1520 of determining a

prediction mode for a coding unit (CU), in accordance with one arrangement. The method

1500 is performed by the video decoder 134 as part of parsing a coding unit (CU) syntax

structure. The method 1500 may be implemented as one or more of the software code

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

-51 -
20

13
22

80
45

13

 Se
p 2

01
3 modules implementing the video decoder 134, which are resident in the hard disk drive

210 and are controlled in their execution by the processor 205.

The method 1520 comprises a subset of the steps of the method 1100 for deriving

the prediction mode of the coding unit (CU).

5 The method 1520 begins at a decode pred_mode_flag step 1522. At the decode

pred_mode_flag step 1522, a prediction mode syntax element is decoded from the encoded

bitstream 312 by performing step 1116 of the method 1100 under execution of the

processor 205. As described above, at step 1116, the entropy decoder 420 is used for

decoding the prediction mode flag from the encoded bitstream 312 for use in determining a

10 prediction mode for the coding unit (CU).

Then at a pred_mode_flag test step 1524, the prediction mode for the coding unit

(CU) is determined according to the decoded prediction mode syntax element. A

predmodeflag value of zero (‘0’) indicates ‘MODEINTER’ (i.e., the prediction mode

for the coding unit (CU) is inter-prediction mode), where an intra_bc_flag is not present in

15 the encoded bitstream 312 and thus is not decoded by the method 1520. If the

pred mode flag value is one (‘1’) control passes to a decode intrabcflag step 1526.

At the decode intra_bc_flag step 1526, the processor 205 is used for decoding an

intra block copy flag from the encoded bitstream 312 in accordance with the method 1400.

As described above, the intra block copy flag is used for indicating that current samples are

20 based on previously decoded samples of a current frame. As such, the intra_bc_flag is

decoded if and only if the pred_mode_flag has a value of one (1). If the intra block copy

flag has a value of one, the prediction mode of the coding unit (CU) is assigned

‘MODEINTRABC’ (i.e., the prediction mode for the coding unit (CU) is intra block copy

mode). Otherwise, the prediction mode of the coding unit (CU) is assigned

25 ‘MODEINTRA’ (i.e., the prediction mode for the coding unit (CU) is intra-prediction

mode).

Then at an intra_bc_flag test step 1528, if the intra block copy flag has a value of

one, the prediction mode of the coding unit (CU) is known to be ‘MODE INTRABC’ and

control passes to a determine sample values step 1530. Otherwise, the prediction mode of

30 the coding unit (CU) is known to be ‘MODE INTRA’.

At the determine sample values step 1530, a block of reference sample values (or

samples) is determined for the coding unit (CU), under execution of the processor 205, by

performing the intra block copy step 1140 of Fig. 11 in the intra block copy module 436.

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

-52-
20

13
22

80
45

13

 Se
p 2

01
3 As described above, the block of reference samples is decoded from the encoded bitstream

312 based on the decoded intra block copy flag, by determining the sample values form the

reference block from the previously decoded samples.

Inter-prediction is signalled with ‘MODEINTER’ and intra-prediction is signalled

5 with ‘MODEINTRA’. Intra block copy mode is signalled with ‘MODEINTRABC’.

This does not imply that intra block copy mode should have semantics similar to intra­

prediction. The intra block copy mode could also be labelled with ‘MODEINTERBC’.

The semantics of the intra block copy mode share similarities with each of inter-prediction

and intra-prediction and are summarised here:

10 A ‘block vector’ is similar to a motion vector in that a spatial offset is applied

relative to the current block to select a reference block.

A ‘block vector’ is different to a motion vector in that no temporal offset exists

(due to referencing the current frame) and hence the vector should not be interpreted as

referencing part of the same ‘object’ that has moved since some previous frame (motion

15 vectors are generally interpreted this way).

The reference samples for an intra-block copied coding unit are obtained from the

current frame (i.e. intra-frame prediction), similar to the neighbouring samples of the intra­

prediction method.

An intra block copied block should reference inter-predicted samples when

20 constrained intra-prediction is enabled, as such a reference reduces the error resilience

feature provided by constrained intra-prediction.

The residual information for an intra-block copied block is more similar to that of a

motion-compensated (inter-predicted) block and hence discrete cosine transforms (DCTs)

are generally preferable for use, whereas for intra-prediction, a discrete sine transform

25 (DCT) is used for 4x4 transform blocks.

From the above described semantics it can be seen that label ‘MODE INTRABC’

is somewhat arbitrary and should not be interpreted to imply that the semantics of intra­

prediction apply uniformly to the intra block copy mode.

The methods 1500 and 1520 differ in the arrangement of syntax elements to specify

30 the prediction mode for the intra-prediction case and the inter-prediction case. Frames

using intra-prediction generally have a large amount of residual information present in the

encoded bitstream 312. Consequently, the overhead of signalling the prediction mode is

minor compared to the overhead of the residual information. In contrast, frames using

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

-53 -
20

13
22

80
45

13

 Se
p 2

01
3 inter-prediction generally have a small amount of residual information present in the

encoded bitstream 312. The small amount of residual information present in the encoded

bitstream 312 is due to the ability of the motion estimation module 338 to select a

reference block from one or more reference frames, with a spatial offset, that may very

5 closely match the frame data 310. As such, very high compression efficiency can be

achieved for inter-predicted frames or coding units (CUs). In such cases, the overhead of

signalling the prediction mode for the coding unit (CU) becomes a more significant portion

of the data for a coding unit (CU) in the encoded bitstream 312. The method 1520 requires

a single syntax element (i.e. ‘predmodeflag’) to signal the ‘MODEINTER’ case. In

10 contrast, the method 1500 requires two syntax elements (i.e. ‘intrabcflag’ followed by

‘pred mode flag’) to signal the ‘MODE INTER’ case.

The alternative arrangements of the method 1400 described above where step 1402

is modified, where steps 1402 and 1404 are omitted or where steps 1402-1408 are omitted,

may be applied at step 1502 of the method 1500 or step 1526 of the method 1520. In

15 arrangements where the alternative arrangements of the method 1400 are applied at step

1502 or at step 1526, a reduction in the memory capacity of the context memory module

1304 is achieved.

For the arrangements of the method 1400 where step 1402 is modified or where

steps 1402 and 1404 are omitted, a reduction in the memory capacity of the flag cache

20 module 1308 is achieved. For the arrangement of the method 1400 where steps 1402-1408

are omitted, the flag cache module 1308 is absent from the entropy decoder 420 in the

video decoder 134 and the entropy encoder 324 in the video encoder 114.

Fig. 16 is a schematic block diagram showing a residual quad-tree (RQT) 1600 in a

coding unit (CU) within a coding tree block (CTB). In the example of Fig. 16, a 32x32

25 coding unit (CU) contains the residual quad-tree (RQT) 1600. The residual quad-tree

(RQT) 1600 is sub-divided into four regions. Lower left region includes a 16x16

transform 1602. Lower right region is separately sub-divided into four more regions, of

which the upper right region includes an 8x8 transform 1604. A transform may be present

at any ‘leaf node’ of the residual quad-tree (RQT) (i.e. any region that is not further sub-

30 divided). The presence of a transform at a point like a leaf node of the residual quad-tree

(RQT) is signalled using ‘coded block flags’.

The video encoder 114 and the video decoder 134 support two types of transforms,

the discrete sine transform (DST) and the discrete cosine transform (DCT). Only one size

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

-54-
20

13
22

80
45

13

 Se
p 2

01
3 of discrete sine transform (DST) (i.e., a 4x4 discrete sine transform (DST)) is generally

supported by the video encoder 114 and the video decoder 134. Multiple sizes of discrete

cosine transform (DCT) are generally supported by the video encoder 114 and the video

decoder 134, such as 4x4, 8x8, 16x16 and 32x32 discrete cosine transforms (DCT). For

5 transform units (TUs) in the residual quad-tree (RQT) of a coding unit (CU) that includes

inter-predicted prediction units (PUs), discrete cosine transforms (DCTs) are used for all

transforms. For 4x4 transform units (TUs) in the residual quad-tree (RQT) of a coding unit

(CU) that includes intra-predicted prediction units (PUs), 4x4 transforms are used in the

luma and chroma channels. For 8x8 transform units (TUs) in the residual quad-tree (RQT)

10 of a coding unit (CU) that includes intra-predicted prediction units (PUs), 4x4 transforms

may be used in the chroma channels. In such cases, the 4x4 transform is a discrete sine

transform (DST). For all other block sizes, and for transform units (TUs) in coding units

that includes inter-predicted prediction units (PUs), discrete cosine transforms (DCT) are

used.

15 The discrete sine transform (DST) performs well (i.e. provides a compact

frequency domain representation) in situations with a large amount of residual information

(i.e. spatial domain representation), particularly with discontinuous edges at boundaries

(e.g. the transform unit (TU) boundary and the prediction unit (PU) boundary). Situations

with a large amount of residual information are typical for intra-predicted prediction units

20 (PUs).

The discrete cosine transform (DCT) performs better with ‘smoother’ spatial

residual data (i.e. residual data with less discontinuous steps in magnitude in the spatial

domain) results in a more compact frequency domain representation. Such smoother

spatial residual data is typical of inter-predicted prediction units (PUs).

25 A residual quad-tree has a maximum ‘depth’. The maximum depth specifies the

maximum number of quad-tree sub-divisions that are possible within the coding unit (CU).

Generally, the maximum number of sub-divisions is limited to three (‘3’) hierarchy levels,

although other maximum numbers of sub-divisions are also possible. Limitations on the

minimum transform size may prevent the number of hierarchy levels of sub-divisions of

30 the residual quad-tree from reaching the maximum number. For example, a 16x16 coding

unit (CU) with a minimum transform size of 4x4 may only be sub-divided two times (i.e.

two hierarchical levels), whereas a maximum of three was specified (e.g in high level

syntax). The maximum depth is specified separately for residual quad-trees within inter-

(P086335_Speci_As Filed)783631 5v1

(7836315_1):SXY

-55 -
20

13
22

80
45

13

 Se
p 2

01
3 predicted coding units (CUs) and within intra-predicted coding units (CUs). For inter­

predicted coding units (CUs), a ‘max_transform_hierarchy_depth_inter’ syntax element is

present in high level syntax (e.g. in the sequence parameter set) to define the maximum

depth.

5 For intra-predicted coding units (CUs), a ‘maxtransformhierarchydepthintra’

syntax element is present in high level syntax (e.g. in the sequence parameter set) to define

the maximum depth. The maximum depth of intra-predicted coding units (CUs) may be

increased by one when a ‘PARTNxN’ partition mode is used. For coding units (CUs)

using the intra block copy mode, the partition mode is considered to be ‘PART_2Nx2N’

10 (i.e. one prediction unit (PU) occupies the entire coding unit (CU)).

The method 1520 may be configured to treat the partition mode as

‘MODEINTER’ for the purposes of transform selection when the intrabcflag test step

1528 indicates the use of intra block copy (i.e. ‘MODEINTRABC’). In arrangements of

the method 1520 which treat the partition mode as ‘MODEINTER’, the maximum depth

15 of the residual quad-tree (RQT) for the coding unit (CU) is specified by

max_transform_hierarchy_depth_inter. Moreover, in arrangements of the method 1520

which treat the partition mode as ‘MODEINTER’, a discrete cosine transform (DCT) is

used for all transform sizes in the residual quad-tree (RQT) of a coding unit (CU)

configured for the intra-block copy mode.

20 Fig. 17A is a schematic flow diagram showing a method 1700 of generating a

reference sample block for a coding unit (CU) configured to use the intra block copy mode.

In accordance with the method 1700, the samples within the reference block are produced

in conjunction with the ‘constrained intra-prediction’ feature of high efficiency video

coding (HEVC). The method 1700 is performed by the video encoder 114 and the video

25 decoder 134 when generating a reference block of a coding unit (CU) configured to use the

intra block copy mode. The method 1700 may be implemented as one or more of the

software code modules implementing the video encoder 114 and the video decoder 134,

which are resident in the hard disk drive 210 and are controlled in their execution by the

processor 205.

30 Inputs to the method 1700 include a block vector and samples of the current and

previous coding tree blocks (CTBs) prior to in-loop filtering. The method 1700 begins at a

constrained intra-prediction test step 1702, where the processor 205 is used to test if the

constrained intra-prediction mode is enabled (e.g. by testing the value of a

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

-56 -
20

13
22

80
45

13

 Se
p 2

01
3 ‘constrained_intra_pred_flag’ syntax element in high level syntax, such as a ‘picture

parameter set’). If the constrained intra-prediction mode is enabled, control passes to a

sample prediction mode test step 1704. Otherwise, the constrained intra-predicton mode is

disabled and control passes to a reference sample copy step 1708.

5 Then at a sample prediction mode test step 1704, the processor 205 is used to test

the prediction mode of a sample within the current or previous coding tree block (CTB)

referenced by the block vector relative to the sample position within the current coding unit

(CU). The sample location is obtained by vector adding a block vector to the position of

the corresponding sample within the coding unit (CU). If the prediction mode is

10 ‘MODEINTRA’ or ‘MODEINTRABC’, control passes to the reference sample copy

step 1708. Otherwise, (i.e., the prediction mode is ‘MODEINTER’), control passes to an

assign default value step 1706.

At the assign default value step 1706, a default value is assigned to the sample

within the reference block, under execution of the processor 205. For example, the default

15 value used for intra-prediction when a neighbouring sample is marked as not available for

reference, may be used to assign a default value to the sample within the reference block.

At the reference sample copy step 1708, a sample from the current frame is copied

to the reference block (i.e., a reference sample copy is performed), under execution of the

processor 205. For example, a sample located within the current or previous coding tree

20 block (CTB) may be copied to the reference block. The location of the sample to be

copied is determined by the vector addition of the sample location within the current

coding unit (CU) and the provided block vector.

All steps of the method 1700 may be performed for all samples of the reference

block (i.e. iterating over a two-dimensional array of reference samples). Also, step 1702

25 may be performed once for a reference block and steps 1704-1708 may be performed for

all samples of the reference block, with the step 1704 or 1708 invoked for each sample in

accordance with the result of the result of the step 1702.

Fig. 17B is a schematic flow diagram showing a method 1720 of generating a

reference sample block for a coding unit (CU) configured to use the intra block copy mode.

30 In accordance with the method 1720, the samples within the reference block are produced

in conjunction with the ‘constrained intra-prediction’ feature of high efficiency video

coding (HEVC).

(P086335_Speci_As Filed)7836315v1

(7836315_1):SXY

-57 -
20

13
22

80
45

13

 Se
p 2

01
3 The method 1700 is performed by the video encoder 114 and the video decoder 134

when generating a reference block of a coding unit (CU) configured to use the intra block

copy mode. Again, the method 1700 may be implemented as one or more of the software

code modules implementing the video encoder 114 and the video decoder 134, which are

5 resident in the hard disk drive 210 and are controlled in their execution by the processor

205.

Inputs to the method 1700 include a block vector and samples of the current and

previous coding tree blocks (CTBs) prior to in-loop filtering. The method 1720 is

functionally equivalent to the method 1700 of Fig. 17A. The difference is that the method

10 1720 may access samples from an inter-predicted coding unit (CU) even when constrained

intra-prediction is enabled.

The method 1720 commences with a reference sample block copy step 1722. At

the reference sample block copy step 1722, the entire coding unit (CU) (e.g. 842) is

populated with reference samples (e.g. 846) (i.e., a reference sample block copy is

15 performed) under execution of the processor 205. The reference samples (e.g. 846) may

include samples both from intra-predicted coding units (CUs) and inter-predicted coding

units (CUs) (e.g. 848).

Then at a constrained intra-prediction test step 1724, the processor 205 is used to

test if constrained intra-prediction is enabled, in accordance with step 1702 of Fig. 17A. If

20 constrained intra-prediction is disabled, the method 1720 terminates. Otherwise, control

passes to a constrained overlap test step 1726.

At a constrained overlap test step 1726, if any sample of the reference block

overlaps with an inter-predicted coding unit (CU), then the method 1720 terminates.

Otherwise, the method 1720 proceeds to overwrite portion step 1728, where the copied

25 samples are replaced with a default value, such as the default value used for intra­

prediction reference samples when the reference samples are marked as not available for

intra-prediction. The steps 1726 and 1728 may be implemented by iterating over each

sample in the coding unit and testing each sample individually.

Fig. 17C is a schematic flow diagram showing a method 1740 of generating a

30 reference sample block for a coding unit (CU) configured to use an intra block copy mode.

The method 1740 may be implemented as one or more of the software code modules

implementing the video encoder 114 and the video decoder 134, which are resident in the

hard disk drive 210 and are controlled in their execution by the processor 205. The method

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

-58 -
20

13
22

80
45

13

 Se
p 2

01
3 1740 is performed when generating a reference block of a coding unit (CU) configured to

use the intra block copy mode. Arrangements of the video encoder 114 and the video

decoder 134 may apply the method 1740 when processing a frame portion containing

coding tree blocks (CTBs) from different slices or tiles, such as shown in Fig. 8A. The

5 method 1740 is applied to each location in the coding unit (CU) (e.g. by iterating over all

locations using a nested loop).

The method 1740 will be described by way of example with reference to the video

encoder 114.

The method 1740 begins with a same slice and tile test step 1742.

10 At the same slice and tile step 1742, the processor 205 is used to test the slice of the

current coding tree block (CTB) and the previous coding tree block (CTB) and the tile of

the current coding tree block (CTB) and the previous coding tree block (CTB). If the two

coding tree blocks (CTBs) belong to the same slice and the same tile, control passes to a

reference sample copy step 1746. Otherwise, control passes to an assign default sample

15 value step 1744.

At the assign default sample value step 1744, the intra block copy module 350 in

the video encoder 114 assigns a default sample value to a sample value in the reference

sample block. Alternatively, where the method 1740 is being performed by the video

decoder 134, the intra block copy module 436 in the video decoder 134 performs step

20 1744.

At the reference sample copy step 1746, the intra block copy module 350 in the

video encoder 114 copies a reference sample from a frame portion, such as the frame

portion 800, to the reference sample block. Alternatively, where the method 1740 is being

performed by the video decoder 134, the intra block copy module 436 in the video decoder

25 134 performs step 1746.

The method 1740 then terminates.

Fig. 17D is a schematic flow diagram showing a method 1760 of generating a

reference sample block for a coding unit (CU) configured to use an intra block copy mode.

The method 1760 may be implemented as one or more of the software code modules

30 implementing the video encoder 114 and the video decoder 134, which are resident in the

hard disk drive 210 and are controlled in their execution by the processor 205. The method

1760 is performed when generating a reference block of a coding unit (CU) configured to

use the intra block copy mode. The video encoder 114 and the video decoder 134 may

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

-59 -
20

13
22

80
45

13

 Se
p 2

01
3 apply the method 1760 when processing a frame portion containing coding tree blocks

(CTBs) from different slices or tiles, such as shown in Fig. 8A. The method 1760 will be

described by way of example with reference to the video encoder 114. The method 1760

begins with a reference sample block copy step 1762.

5 At the reference sample block copy step 1762, the intra block copy module 350 in

the video encoder 114 copy a block of reference samples from a frame portion, such as the

frame portion 800, to the reference sample block. The block of copied reference samples

may include reference samples from coding tree blocks (CTBs) belonging to different

slices or tiles. Alternatively, where the method 1760 is being performed by the video

10 decoder 134, the intra block copy module 436 in the video decoder 134 performs step

1762.

At the same slice and tile step 1764, the processor 205 tests the slice of the current

coding tree block (CTB) and the previous coding tree block (CTB) and the tile of the

current coding tree block (CTB) and the previous coding tree block (CTB). If the two

15 coding tree blocks (CTBs) belong to the same slice and the same tile, the method 1760

terminates. Otherwise, control passes to a replace copied samples with default sample

value 1766.

At the replace copied samples with default sample value 1766, the intra block copy

module 350 in the video encoder 114 assign a default sample value to locations in the

20 reference sample block corresponding to the previous coding tree block (CTB) (i.e. 810 in

Fig. 8A). Alternatively, where the method 1760 is being performed by the video decoder

134, the intra block copy module 436 in the video decoder 134 performs step 1766.

The method 1760 then terminates.

Fig. 18A is a schematic block diagram showing an example block vector 1804

25 referencing a reference block 1806 where the origin of the block vector 1804 is relative to

a point other than the current coding unit 1802 (CU) location. As shown in Fig. 18A, the

location of a reference block 1806 may be determined by vector addition of the block

vector to location of an upper left comer of the current coding tree block (CTB). In

arrangements where a frame portion 1800 (i.e. the current and previous coding tree blocks

30 (CTBs) prior to in-loop filtering) are held in local storage (e.g., within the memory 206),

the vector addition is not required and the block vector 1804 directly specifies the location

of the reference block 1806 in the local storage. The example of Fig. 18A is in contrast to

Figs. 8A-8C where the block vector is relative to the current coding unit (CU) location.

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

-60-
20

13
22

80
45

13

 Se
p 2

01
3 For block vectors originating from the upper left comer of the current coding unit,

the vertical displacement of a block vector is restricted to [0..56]. The maximum value of

fifty-six (56) is derived by subtracting the height of the smallest coding unit (SCU) (i.e.

eight (8)), from the height of a coding tree block (CTB) (i.e. sixty-four (64)). As such,

5 there is no need to code a ‘sign’ bit for the vertical displacement in the mvdcoding syntax

structure.

The horizontal displacement of a block vector is restricted to [-64..56]. For the

horizontal displacement, a more even distribution of positive and negative values is

expected than for block vectors relative to the current coding unit (CU) location. As such,

10 greater coding efficiency can be expected from the use of a bypass-coded bin for the ‘sign’

bit for the horizontal displacement in the mvd_coding syntax structure.

Fig. 18B is a schematic block diagram showing an example block vector

representation between successive coding units (CUs) configured to use intra block copy

mode. In the example of Fig. 18B, a frame portion 1820 includes two coding tree blocks

15 (CTBs). As seen in Fig. 18B, previous coding unit (CU) 1822 is configured to use the intra

block copy mode, with a block vector 1834 configured to select reference block 1836.

Current coding unit (CU) 1822 is also configured to use the intra block copy mode, with a

block vector 1830 to select reference block 1832. The ordering of coding units (CUs)

accords with the ‘Z-scan’ order as described with reference to Fig. 6A. In the example of

20 Fig. 18B, a block vector difference 1838 indicates the difference between the block vector

1836 and the block vector 1832, taking into account the difference in the position of the

coding unit (CU) 1822 and the coding unit (CU) 1828. The coding unit (CU) syntax

structure for the coding unit (CU) 1828 encodes the block vector difference 1838 in the

encoded bitstream 312, instead of the block vector 1830, using the ‘mvd coding’ syntax

25 structure.

In one arrangement, the video encoder 114 may calculate the block vector

difference 1838 as described above and encode the calculated block vector difference 1838

into the encoded bitstream 114. In one arrangement, the video decoder 134 may decode

the block vector difference 1838 from the encoded bitstream 312 and add the block vector

30 difference 1838 to the block vector 1834 to determine the block vector 1830. Such

arrangements of the video encoder 114 and the video decoder 134 achieve higher coding

efficiency, as correlation between block vectors of spatially nearby intra block copied

coding units (CUs) is exploited to increase the efficiency of coding the block vectors in the

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

-61 -
20

13
22

80
45

13

 Se
p 2

01
3 encoded bitstream 312. Such arrangements also require storage of one previous block

vector (e.g. 1834) for computation of the current block vector (e.g. 1830). The previous

block vector may be considered a ‘predictor’ (i.e. an initial value) for the current block

vector. In cases where the previous coding unit (CU) was not configured to use the intra

5 block copy mode, arrangements may reset the stored block vector to (zero, zero).

Arrangements where the video encoder encodes the calculated block vector difference

1838 into the encoded bitstream 114 and where the video decoder 134 adds the block

vector difference 1838 to the block vector 1834, prevent a block vector from an earlier

coding unit (CU), which is unlikely to have any correlation to the block vector of the

10 current coding unit (CU), from influencing the calculation of the block vector for the

current coding unit (CU).

In one arrangement, the block vector of coding units (CUs) adjacent to the left

and/or adjacent to the above of the current coding unit (CU) may also be used. In such an

arrangement, additional storage for block vectors is required, including a ‘line buffer’ for

15 ‘above’ block vectors for coding units (CUs) along the top of the coding tree block (CTB),

holding block vectors from the previous row of coding tree blocks (CTBs). Further, either

of the available block vectors may be used to provide a predictor for the block vector of the

current coding unit (CU). Neighbouring coding units (CUs) configured to use intra block

copy mode are considered ‘available’ for block vector prediction. Neighbouring coding

20 units (CUs) not configured to use intra block copy mode are considered as ‘not available’

for block vector prediction. In cases where both the ‘left’ and ‘above’ block vectors are

available, the average of the two block vectors may be used as a predictor. Alternatively, a

flag may be encoded in the encoded bitstream 312 to specify which of the block vectors to

use. For example, if the flag is zero the left block vector may be used as the predictor and

25 if the flag is one the above block vector may be used as the predictor.

The arrangements described herein show methods which reduce complexity, for

example, by reducing the number of contexts required to code syntax elements. The

described arrangements improve coding efficiency, for example, by ordering syntax

elements such that prediction mode or coding unit (CU) modes are specified in the encoded

30 bitstream 312 in a manner optimised towards the overall frame type (e.g. inter-predicted vs

intra-predicted) and by block vector coding methods. Moreover, arrangements described

herein provide for error resilience by specifying intra block copy mode behaviour in

situations including slice boundaries, tile boundaries, constrained intra-prediction.

7836315v1 (P086335_Speci_As Filed)

(7836315_1):SXY

-62-
20

13
22

80
45

13

 Se
p 2

01
3 INDUSTRIAL APPLICABILITY

The arrangements described are applicable to the computer and data processing

industries and particularly for the digital signal processing for the encoding a decoding of

signals such as video signals.

5 The foregoing describes only some embodiments of the present invention, and

modifications and/or changes can be made thereto without departing from the scope and

spirit of the invention, the embodiments being illustrative and not restrictive.

In the context of this specification, the word “comprising” means “including

principally but not necessarily solely” or “having” or “including”, and not “consisting only

10 of’. Variations of the word "comprising", such as “comprise” and “comprises” have

correspondingly varied meanings.

(P086335_Speci_As Filed)7836315v1

(7836315_1):SXY

-63 -
20

13
22

80
45

13

 Se
p 2

01
3 APPENDIX A

The following text a coding unit (CU) syntax structure.

7.3.8.5 Coding unit syntax
coding_unit(xO, yO, log2CbSize) { Descriptor

if(transquant_bypass_enabled_flag)
cu_transquant_bypass_flag ae(v)

if(slice_type != I)
cu_skip_flag[xO][yO] ae(v)

nCbS = (1 « log2CbSize)
if(cu_skip_flag[xO][yO])

prediction_unit(xO, yO, nCbS, nCbS)
else {

if(slice_type != I)
pred_mode_flag ae(v)

if(intra_block_copy_enabled_flag && pred_mode_flag == 1)
intra_bc_flag[xO][yO] ae(v)

if(!intra_bc_flag[xO][yO]) {

if(CuPredMode[xO][yO] != MODE_INTRA 11
log2CbSize = = MinCbLog2SizeY)
part_mode ae(v)

}
if(CuPredMode[xO][yO] == MODE_INTRA) {

if(PartMode = = PART_2Nx2N && pcm_enabled_flag && !intra_bc_flag
log2CbSize >= Log2MinIpcmCbSizeY &&
log2CbSize <= Log2MaxIpcmCbSizeY)
pcm_flag[xO][yO] ae(v)

if(pcm_flag[xO][yO]) {
while(!byte_aligned())

pcm_alignment_zero_bit f(l)
pcm_sample(xO, yO, log2CbSize)

} else if(intra_bc_flag[xO][yO]) {
mvd_coding(xO, yO, 2)

} else {
pbOffset = (PartMode = = PART_NxN) ? (nCbS / 2): nCbS
for(j = 0; j < nCbS; j = j + pbOffset)

for(i = 0; i < nCbS; i = i + pbOffset)
prev_intra_luma_pred_flag[xO + i][yO + j] ae(v)

for(j = 0; j < nCbS; j = j + pbOffset)
for(i = 0; i < nCbS; i = i + pbOffset)

if(prev_intra_luma_pred_flag[xO + i][yO + j])
mpm_idx[xO + i] [yO + j] ae(v)

Else
rem_intra_luma_pred_mode[xO + i][yO + j] ae(v)

(P086335_Speci_As Filed)7836315v1

(7836315_1):SXY

-64-
20

13
22

80
45

13

 Se
p 2

01
3 if(ChromaArrayType ==3)

for(j = 0; j < nCbS; j = j + pbOffset)
for(i = 0; i < nCbS; i = i + pbOffset)

intra_chroma_pred_mode[xO + i][yO + j] ae(v)
else if(Chroma ArrayType != 0)

intra_chroma_pred_mode[xO][yO] ae(v)
}

} else {
if(PartMode == PART_2Nx2N)

prediction_unit(xO, yO, nCbS, nCbS)
else if(PartMode = = PART_2NxN) {

prediction unit(xO, yO, nCbS, nCbS / 2)
prediction unit(xO, yO + (nCbS / 2), nCbS, nCbS / 2)

} else if(PartMode = = PART Nx2N) {
prediction unit(xO, yO, nCbS / 2, nCbS)
prediction unit(xO + (nCbS / 2), yO, nCbS / 2, nCbS)

} else if(PartMode = = PART 2NxnU) {
prediction unit(xO, yO, nCbS, nCbS / 4)
prediction unit(xO, yO + (nCbS / 4), nCbS, nCbS * 3 / 4)

} else if(PartMode = = PART 2NxnD) {
prediction unit(xO, yO, nCbS, nCbS * 3 / 4)
prediction unit(xO, yO + (nCbS * 3 / 4), nCbS, nCbS / 4)

} else if(PartMode = = PART nLx2N) {
prediction unit(xO, yO, nCbS / 4, nCbS)
prediction unit(xO + (nCbS / 4), yO, nCbS * 3 / 4, nCbS)

} else if(PartMode = = PART nRx2N) {
prediction unit(xO, yO, nCbS * 3 / 4, nCbS)
prediction unit(xO + (nCbS * 3 / 4), yO, nCbS / 4, nCbS)

} else { /* PART NxN */
prediction unit(xO, yO, nCbS / 2, nCbS / 2)
prediction unit(xO + (nCbS / 2), yO, nCbS / 2, nCbS / 2)
prediction unit(xO, yO + (nCbS / 2), nCbS / 2, nCbS / 2)
prediction unit(xO + (nCbS / 2), yO + (nCbS / 2), nCbS / 2, nCbS / 2)

}
}
if(!pcm flag[xO][yO]) {

if(CuPredMode[xO][yO] != MODE_INTRA &&
!(PartMode == PART_2Nx2N && merge_flag[xO][yO]) II
CuPredMode[xO][yO] == MODE INTRA && intra bc flag[xO][yO])
rqt root cbf ae(v)

if(rqt root cbf) {
MaxTrafoDepth = (CuPredMode[xO][yO] == MODE_INTRA ?

(max_transform_hierarchy_depth_intra + IntraSplitFlag):
max transform hierarchy depth inter)

transform tree(xO, yO, xO, yO, log2CbSize, 0, 0)
}

}
}

}

7.4.9.5 Coding unit semantics

(P086335_Speci_As Filed)7836315v1

(7836315_1):SXY

-65 -
20

13
22

80
45

13

 Se
p 2

01
3 pred_mode_flag equal to 0 specifies that the current coding unit is coded in inter

prediction mode. pred_mode_flag equal to 1 specifies that the current coding unit is coded

in intra prediction mode. The variable CuPredMode[x][y] is derived as follows for

x = xO..xO + nCbS - 1 and y = yO..yO + nCbS - 1:

5 - If pred_mode_flag is equal to 0, CuPredMode[x][y] is set equal to MODE_INTER.

- Otherwise (pred_mode_flag is equal to 1), if intra_bc_flag is equal to 0,
CuPredMode[x][y] is set equal to MODE_INTRA.

- Otherwise (pred_mode_flag is equal to 1 and intra_bc_flag is equal to 1), CuPredMode[
x][y] is set equal to MODE_INTRABC.

10 When pred_mode_flag is not present, the variable CuPredMode[x][y] is derived as

follows for x = xO..xO + nCbS - 1 and y = y0..y0 + nCbS - 1:

- If slice_type is equal to I, CuPredMode[x][y] is inferred to be equal to
MODEINTRA.

- Otherwise (slice_type is equal to P or B), when cu_skip_flag[xO][yO] is equal to 1,
15 CuPredMode[x][y] is inferred to be equal to MODE_SKIP.

7.4.9.9 Motion vector difference semantics
20 The variable Bvlntra[xO][yO][compldx] specifies the vector used for the intra block

copying prediction mode. The value of Bvlntra[xO][yO] shall be in the range of -128 to

128, inclusive. The array indices xO, yO specify the location (xO, yO) of the top-left luma

sample of the considered prediction block relative to the top-left luma sample of the

picture. The horizontal block vector component is assigned compldx = 0 and the vertical

25 block vector component is assigned compldx = 1.

End Appendix A.

30

(P086335_Speci_As Filed)7836315v1

(7836315_1):SXY

-66 -
20

13
22

80
45

13

 Se
p 2

01
3 APPENDIX B

Appendix B shows a conformance constraint for video encoders 114 and video decoders

134 for arrangements according with Fig. 8C.

5 It is a requirement of bitstream conformance that when constrained_intra_pred_flag is

equal to 1 the value of Bvlntra[xO][yO] shall be constrained such that each sample at the

reference sample locations (xRefCmp, yRefCmp) is marked as "available for intra

prediction”.

10 End Appendix B.

(P086335_Speci_As Filed)7836315v1

(7836315_1):SXY

-67 -
20

13
22

80
45

13

 Se
p 2

01
3 APPENDIX C

Appendix B shows a conformance constraint for video encoders 114 and video decoders

134 for arrangements according with Fig. 8C.

5 8.4.4.2.7 Specification of intra block copying prediction mode

The variable bitDepth is derived as follows:

- If cldx is equal to 0, bitDepth is set equal to BitDepthy.

- Otherwise, bitDepth is set equal to BitDepthc.

10

The (nTbS)x(nTbS) array of predicted samples samples, with x, y = 0..nTbS - 1, are

derived as follows:

- The reference sample location (xRefCmp, yRefCmp) is specified by:
(xRefCmp, yRefCmp) = (xTbCmp + x + bv[0], yTbCmp + y + bv[1]) (8-65)

15 - Each sample at the location (xRefCmp, yRefCmp) marked as “available for intra
prediction” is assigned to predSamples[x][y].

- At each sample at the location (xRefCmp, yRefCmp) marked as “not available for intra
prediction” the value 1 « (bitDepth - 1) is assigned to predSamples[x][y]

20

End Appendix C.

(P086335_Speci_As Filed)7836315v1

(7836315_1):SXY

-68 -
20

13
22

80
45

13

 Se
p 2

01
3 APPENDIX D

9.3.2.2 Initialization process for context variables

5 Table 9-4 - Association of ctxldx and syntax elements for each initializationType in the initialization
process

Syntax structure Syntax element ctxTable
initType

0 1 2

coding unit))

cu_transquant_bypass_flag Table 9-8 0 1 2

cu_skip_flag Table 9-9 0..2 3..5

intra_bc_flag[][] Table 9-33 0 1 2

pred_mode_flag Table 9-10 0 1

part_mode Table 9-11 0 1..4 5..8

prev_intra_luma_pred_flag[][] Table 9-12 0 1 2

intra_chroma_pred_mode[][] Table 9-13 0 1 2

rqt_root_cbf Table 9-14 0 1

Table 9-33 - Values of initValue for ctxldx of intra_bc_flag

Initialization
variable

ctxldx of intra be flag

0 1 2

initValue 185 197 197

10 9.3.4.2.2 Derivation process of ctxlnc using left and above syntax elements

Table 9-40 - Specification of ctxlnc using left and above syntax elements

Syntax element condL condA ctxlnc

split_cu_flag[xO][yO] CtDepthf xNbL] [yNbL] > cqtDepth CtDepthf xNbA][yNbA] > cqtDepth (condL && availableL) +

(condA && availableA)

cu_skip_flag[xO][yO] cu_skip_flag[xNbL][yNbL] cu_skip_flag[xNbA] [yNbA] (condL && availableL) +

(condA && availableA)

End Appendix D.

(P086335_Speci_As Filed)7836315v1

(7836315_1):SXY

-69 -
20

13
22

80
45

13

 Se
p 2

01
3 CLAIMS:

1. A method of decoding a block from a video bitstream, the block referencing

previously decoded samples, the method comprising:

5 determining a prediction mode from the video bitstream; decoding an intra block

copy flag from the video bitstream if the determined prediction mode is intra-prediction,

the intra block copy flag indicating that current samples are based on previously decoded

samples of a current frame; and

decoding the block from the video bitstream, based on the decoded intra block copy

10 flag, by determining sample values for the block from the previously decoded samples.

2. A method according to claim 1, further comprising selecting a context for the intra

block copy flag independently of the values of the intra block copy flag for neighbouring

blocks.

15

3. A method according to claim 1, further comprising decoding a block vector from

the video bitstream.

4. A method according to claim 1, further comprising determining a default sample

20 value if the previously decoded samples are referenced from a different tile to a current

tile.

5. A method according to claim 1, further comprising determining a default sample

value if the previously decoded samples are referenced from a different slice to the a

25 current slice.

6. A system for decoding a block from a video bitstream, the block referencing

previously decoded samples, the system comprising:

a memory for storing data and a computer program;

30 a processor coupled to the memory, the computer program comprising instructions

for:

determining a prediction mode from the video bitstream; decoding an intra

block copy flag from the video bitstream if the determined prediction mode is intra-

(P086335_Speci_As Filed)7836315v1

(7836315_1):SXY

-70-
20

13
22

80
45

13

 Se
p 2

01
3 prediction, the intra block copy flag indicating that current samples are based on

previously decoded samples of a current frame; and

decoding the block from the video bitstream, based on the decoded intra

block copy flag, by determining sample values for the block from the previously

5 decoded samples.

7. An apparatus for decoding a block from a video bitstream, the block referencing

previously decoded samples, the apparatus comprising:

means for determining a prediction mode from the video bitstream;

10 means for decoding an intra block copy flag from the video bitstream if the

determined prediction mode is intra-prediction, the intra block copy flag indicating that

current samples are based on previously decoded samples of a current frame; and

means for decoding the block from the video bitstream, based on the decoded intra

block copy flag, by determining sample values for the block from the previously decoded

15 samples.

8. A non-transitory computer readable medium having a computer program stored

thereon for method of decoding a block from a video bitstream, the block referencing

previously decoded samples, the program comprising:

20 code for determining a prediction mode from the video bitstream;

code for decoding an intra block copy flag from the video bitstream if the

determined prediction mode is intra-prediction, the intra block copy flag indicating that

current samples are based on previously decoded samples of a current frame; and

code for decoding the block from the video bitstream, based on the decoded intra block

25 copy flag, by determining sample values for the block from the previously decoded

samples.

CANON KABUSHIKI KAISHA
Patent Attorneys for the Applicant

30 Spruson & Ferguson

(P086335_Speci_As Filed)7836315v1

(7836315_1):SXY

20
13

22
80

45

13
 Se

p 2
01

3

Source device
110

Video source
112

I
Video encoder

114

ί
Transmitter

116

i___________________

1/21

100

I___________________

Fig. 1

7839590v1 P086335_Drawings_As Filed

2/21

20
13

22
80

45

13
 Se

p 2
01

3

Ζ
-Ζ

Fig. 2Α

7839590ν1 P086335_Drawings_As Filed

20
13

22
80

45

13
 Se

p 2
01

3 3/21

231 <

234
r

233

Instruction (Part 1) 228 — Data 235

Instruction (Part 2) 229 Data 236 <232

Instruction 230 Data 237

ROM 249

POST
250

BIOS
251

Bootstrap
Loader 252

Operating
System 253

Input Variables 254 Output Variables 261

255 262

256 263

257 264

Intermediate Variables 258
259 266
260 267

219 ΞΤ
205 i

204

218

Interface 242

241*/" 248

Control Unit 239
Reg. 244 (Instruction)

Reg. 245

I
ALU 240 Reg. 246 (Data)

Fig. 2B

7839590V1 P086335_Drawings_As Filed

^1-

20
13

22
80

45

13
 Se

p 2
01

3 4/21

7839590v1 P086335_Drawings_As Filed

5/21

20
13

22
80

45

13
 Se

p 2
01

3

^1-CO

£=
LU

7839590v1 P086335_Drawings_As Filed

6/21

20
13

22
80

45

13
 Se

p 2
01

3

500

518

520

Fig. 5

7839590v1 P086335_Drawings_As Filed

7/21

20
13

22
80

45

13
 Se

p 2
01

3

622

Fig. 6A

624
620

Fig. 6B

7839590v1 P086335_Drawings_As Filed

8/21

20
13

22
80

45

13
 Se

p 2
01

3

704
700

Fig. 7A

Fig. 7B

7839590v1 P086335_Drawings_As Filed

9/21

20
13

22
80

45

13
 Se

p 2
01

3

828 824 820

826 822

Fig. 8B

7839590v1 P086335_Drawings_As Filed

10/21

20
13

22
80

45

13
 Se

p 2
01

3

Fig. 8C

864 J 860

lllllilll
862 |||ji

7r
866

Fig. 8D

7839590v1 P086335_Drawings_As Filed

11/21

20
13

22
80

45

13
 Se

p 2
01

3

Fig. 9

7839590v1 P086335_Drawings_As Filed

12/21

20
13

22
80

45

13
 Se

p 2
01

3

7839590v1 P086335_Drawings_As Filed

13/21

20
13

22
80

45

13
 Se

p 2
01

3

Q Start

z\y 1102

1100

—(TQB_enabled_flag test —(Cu_type test }

Decode
cu transquant bypass flag

___________ _________
—lntra_bc_flag test

_________________ 1106
—(Slice_type test \

Decode Cu_skip_flag

—Cu_skipjlag test

Prediction unit

Decode block vector

1128

1130

1132

z\y 1108

1110

1112I_ r\y 1114
—(Slice_type test \

τ
Decode

Pred_mode_flag
—4 "

1116

----------- -------------------1117
—(Prediction mode test >

1118
/lntra_block_copy_enabled_flag\

test

I 1120
Decode lntra_bc_flag

-------------------------------- 1122
—(lntra_bc_flag test)

__________________1124
—(Part_mode coded test)

z\y 1126
Decode Part mode

Decode Intra
mode

pred

Decode rqt_root_cbf

Decode transform tree

Produce reference
block (i.e.,Intra block

copy)

Produce reconstructed
samples

I
End

34

1136

1138

1140

1142

Fig. 11

7839590v1 P086335_Drawings_As Filed

14/21

20
13

22
80

45

13
 Se

p 2
01

3

1200

Fig. 12

7839590v1 P086335_Drawings_As Filed

15/21

20
13

22
80

45

13
 Se

p 2
01

3

Encoded 1302

Fig. 13

7839590v1 P086335_Drawings_As Filed

16/21

20
13

22
80

45

13
 Se

p 2
01

3

Fig. 14

7839590v1 P086335_Drawings_As Filed

17/21

20
13

22
80

45

13
 Se

p 2
01

3

MODEJNTRA MODEJNTER

Fig. 15A

MODEJNTRA MODEJNTER

Fig. 15B

7839590v1 P086335_Drawings_As Filed

18/21

20
13

22
80

45

13
 Se

p 2
01

3

1600

Fig. 16

7839590v1 P086335_Drawings_As Filed

20
13

22
80

45

13
 Se

p 2
01

3 19/21
(St^rt ? 1700

________I 1702
/ Constrained intra- _________________
____predicfion test___ / DISABLED

ENABLED_ I 1704
/Sample prediction mode_______
ξ_______ test________ j

1 , ^ 1706 , r
Assign default value Reference sample

copy

1 r▼

C End)
Fig. 17A

Start

1722 1720
Reference sample

block copy

1724
Constrained intra­

prediction test

ENABLED
DISABLED

1726
Constrained overlap test

O7 1728

Replace copied samples
with default value

End

Fig. 17B

7839590v1 P086335_Drawings_As Filed

20/21

20
13

22
80

45

13
 Se

p 2
01

3

C Start) 1740

Same slice and tile test)--------------
------------- ----------------! TRUE
FALSE

1 r 1744 1 r
Assign default sample

value
Reference sample

copy
1

1 r▼

C End)
Fig. 17C

Q Start

(—7 1762 1760
Reference sample

block copy

z\y 1764
Same slice and tile test

FALSE
TRUE

1766

Replace copied samples
with default sample value

End

Fig. 17D

7839590v1 P086335_Drawings_As Filed

21/21

20
13

22
80

45

13
 Se

p 2
01

3

Fig. 18A

1820

1836 1838

1830J.
1822 i 1828

Fig. 18B

7839590v1 P086335_Drawings_As Filed

