

SCHWEIZERISCHE EIDGENOSSENSCHAFT

BUNDESAMT FÜR GEISTIGES EIGENTUM

(51) Int. Cl.³:

G 04 G G 09 G 9/06 3/16

Patentgesuch für die Schweiz und Liechtenstein

Schweizerisch-liechtensteinischer Patentschutzvertrag vom 22. Dezember 1978

② AUSLEGESCHRIFT A3

(11)

638 655 G

② Gesuchsnummer:	2800/80	71) Patentbewerber: Hitachi, Ltd., Chiyoda-ku/Tokyo (JP)
② Anmeldungsdatum:	11.04.1980	(72) Erfinder: Yoshimichi Shibuya, Mobara-shi (JP)
30) Priorität(en):	13.04.1979 JP 54-44153	Masami Takahashi, Mobara-shi (JP) Tadashi Ishibashi, Mobara-shi (JP)
42) Gesuch bekanntgemacht:	14.10.1983	Vertreter: Ammann Patentanwälte AG Bern, Bern
44 Auslegeschrift veröffentlicht:	14.10.1983	(56) Recherchenbericht siehe Rückseite

(54) Verfahren zum Steuern eines Analog-Flüssigkristall-Anzeigeelementes.

Beim Verfahren zum Steuern eines Flüssigkristall-Anzeigeelementes, das ein Substratpaar und darauf angeordnete Elektroden aufweist und die Elektroden in eine Vielzahl von Abschnitten unterteilt sind, um eine analoge Anzeige mit mindestens drei Arten von Informationen zu geben, wird der Flüssigkristall in einem 1/3-Arbeitsperiodenmodus angesteuert. Dabei werden Impulse mit vier Arten von Spannungsverläufen an die Elektrodenmuster eines Substrates und mit mindestens fünf Arten Spannungsverläufe an die Elektrodenmuster des anderen Substrates angelegt.

Bei diesem Verfahren wird nur noch ein einziges LSI Steuerplättchen benötigt.

Bundesamt für geistiges Eigentum Office fédéral de la propriété intellectuelle Ufficio federale della proprietà intellettuale

RAPPORT DE RECHERCHE RECHERCHENBERICHT

Demande de brevet No.: Patentgesuch Nr.:

CH 2800/80

I.I.B. Nr.: HO

14 095

	Documents considérés comme pertinents Einschlägige Dokumente		
Catégorie Kategorie	Citation du document avec indication, en cas de besoin, des parties pertinentes. Kennzeichnung des Dokuments, mit Angabe, soweit erforderlich, der massgeblichen Teile	Revendications con- cernées Betrifft Anspruch Nr.	
А	CONFERENCE RECORD OF 1978 BIENNIAL DISPLAY RESEARCH CONFERENCE, 24. bis 26. Oktober 1978, R.L. GRUEBEL et al.: "A radial format LCD/ semiconductor system for analog watch applications", Seiten 59-61.	1, 4	
A	BROWN BOVERI REVIEW, Band 66, Nr. 1, Februar 1979 - BADEN (CH) - P.J. WILD et al.: "Alphanumeric and quasianalog liquid crystal displays and their application", Seiten 48-53. *Figur 6*	1	Domaines techniques recherchés Recherchierte Sachgebiete (INT. CL.2)
A	DE - A - 1 937 868 (THE UNITED STATES TIME CORP) *Figuren*	1, 2, 5	G 04 G G 09 G G 01 R
A	DE - A - 2 403 172 (K.K. SUNCRUX RESEARCH OFFICE) *Figuren*	2, 4, 5	
P	FR - A - 2 419 538 (K.K. SUWA SEIKOSHA) *Seite 8, Zeile 16 - Seite 11, Zeile 14; Figuren* & DE - A - 2 908 764	1,5	Catégorie des documents cités
P	FR - A - 2 425 100 (TEXAS INSTRUMENTS INCORPORATED) *Seite 29, Tabelle; Figuren 10-13* & DE - A - 2 904 946	1, 2, 4	Kategorie der genannten Dokumente: X: particulièrement pertinent von besonderer Bedeutung A: arrière-plan technologique technologischer Hintergrund O: divulgation non-écrite nichtschriftliche Offenbarung P: document intercalaire Zwischenliteratur T: théorie ou principe à la base de l'invention der Erfindung zugrunde liegende Theorien oder Grundsätze E: demande faisant interférence kollidierende Anmeldung L: document cité pour d'autres raisons aus andern Gründen angeführtes Dokument &: membre de la même famille, document correspondant Mitglied der gleichen Patentfamilie; übereinstimmendes Dokument

Etendue de la recherche/Umfang der Recherche

Revendications ayant fait l'objet de recherches Recherchierte Patentansprüche:

alle

Revendications n'ayant pas fait l'objet de recherches Nicht recherchierte Patentansprüche: Raison: Grund:

Date d'achèvement de la recherche/Abschlussdatum der Recherche	Examinateur I.I.B./I.I.B Prüfer
14. September 1982	

PATENTANSPRÜCHE

- 1. Verfahren zum Steuern eines Flüssigkristall-Anzeigeelements, mit einem Substratpaar und darauf angeordneten Elektroden, wobei die Elektroden in eine Vielzahl von Abschnitten unterteilt sind, um eine analoge Anzeige mit mindestens 3 Arten von Informationen zu geben, dadurch gekennzeichnet, dass der Flüssigkristall während ¹/₃-Arbeitsperioden angesteuert wird, indem Impulse mit vier Arten von Spannungsverläufen an die Elektroden eines Substrates an die Elektroden des anderen Substrates angelegt werden, wodurch gleichzeitig willkürlich drei Informationen angezeigt werden.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Stunde, Minute und Sekunde gleichzeitig in analoger Form angezeigt wird, indem Impulse mit vier Arten von Spannungsverläufen an die Elektroden auf einem Substrat und mit fünf Arten von Spannungsverläufen an die Elektroden des anderen Substrates angelegt werden.
- 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Stunde, Minute und Sekunde gleichzeitig angezeigt werden, indem Impulse mit vier Arten von Spannungsverläufen an die Elektroden eines Substrates und mit sechs Arten von Spannungsverläufen an die Elektroden des anderen Substrates angelegt werden.
- 4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Elektroden eines Substrates in zehn Segment-Elektrodenmuster und die Elektroden des anderen Substrates in zwanzig Elektrodenmuster unterteilt sind.
- 5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Elektroden eines Substrates in zehn Segment-Elektrodenmuster und die Elektroden des anderen Substrates in dreissig Elektrodenmuster unterteilt sind.

Die vorliegende Erfindung bezieht sich auf ein Verfahren 40 zum Steuern eines Flüssigkristall-Anzeigeelementes mit einem Substrat-Paar und darauf angeordneten Elektroden, wobei die Elektroden in eine Vielzahl von Abschnitten unterteilt sind, um eine analoge Anzeige mit mindestens drei Arten von Informationen zu geben.

Herkömmliche Analog-Flüssigkristall-Anzeigeelemente für Uhren besitzen auf ihrer Vorderseite 60-Minuten-Anzeigesegmente, die auch für die Anzeige der Sekunden benutzt werden und 60-Stunden-Anzeigesegmente, die auch für zeige damit möglich ist, die derjenigen der mechanischen gleicht. Ein solches Element enthält die 60-Minuten-Anzeigesegmente, die radial ausserhalb der 60-Stunden-Anzeigesegmente angeordnet sind, wobei diese Segmente in einer ½-Vorspannungs- und ½-Arbeitsperioden-Teilungsantriebsart betrieben werden. Um jedoch ein solches Element mit 120 Anzeigesegmenten zu steuern, sind 60 Segmentelektroden für das obere Elektrodenmuster und zwei gemeinsame Elektroden für das untere Elektrodenmuster, d.h. 62 Anschlüsse insgesamt notwendig. Das bedeutet, dass zwei LSI-Plättchen für das Element benötigt werden, da die maximale Anzahl Anschlüsse eines LSI-Plättchens um ein Flüssigkristall-Anzeigeelement zu steuern 50 beträgt. Da die Benutzung von zwei Plättchen mehr als das doppelte Volumen eines Plättchens benötigt, war es sehr schwierig, beispielsweise eine Armbanduhr dünn, klein und leicht herzustellen. Ausserdem werden durch die Verwendung von zwei Steuer-LSI-Plättchen nicht nur die Kosten der Steuerung erhöht,

sondern auch der Produktionsausstoss erniedrigt und ferner infolge der erhöhten Anzahl von Verbindungen zwischen den Plättchen und den Substraten die Funktionssicherheit bezüglich Stösse beim Tragen vermindert.

In der Veröffentlichung Conference Record of 1978 Biennial Display Research Conference, 24. bis 26. Oktober 1978, Cherry Hill Inn, Cherry Hill, N.J., The Institute of Electrical and Electronics Engineers, Inc., New York (US) R.L. Gruebel et al.: «A radial format LCD/semiconductor und Impulse mit mindestens fünf Arten Spannungsverläufen 10 system for analog watch applications», Seiten 59-61 wird ein Verfahren zum Steuern eines Analog-Flüssigkristall-Anzeigeelementes beschrieben, bei dem ein Multiplexverfahren mit einem I²L-Plättchen angewandt wird, wodurch zwei Arten Informationen gleichzeitig angegeben werden können.

15 Oft genügen jedoch zwei gleichzeitige Anzeigearten nicht, insbesondere, falls auch die Sekunden angezeigt werden sollen und es ist daher Aufgabe der vorliegenden Erfindung, ein Verfahren zum Steuern eines Analog-Flüssigkristall-Anzeigeelementes zur gleichzeitigen Anzeige von drei Arten von 20 Informationen anzugeben, bei welchem die Anzahl der Anschlüsse vermindert werden kann, so dass nur noch ein LSI-Plättchen benötigt wird. Das Verfahren, das diese Aufgabe löst, ist in dem Kennzeichnungsteil des Patentanspruchs 1 umschrieben.

Ausführungsbeispiele des Erfindungsgegenstandes werden im folgenden anhand der Zeichnungen näher erläutert.

Fig. 1 zeigt eine Anordnung von Anzeigesegmenten einer herkömmlichen Uhr,

Fig. 2A und 2B zeigen obere, bzw. untere Elektrodenmu-30 ster der Segmente gemäss Fig. 1,

Fig. 3A und 3B zeigen obere, bzw. untere Elektrodenmuster die mit dem erfindungsgemässen Verfahren angesteuert werden,

Fig. 4A und 4B zeigen Spannungsverläufe, die beim er-35 findungsgemässen Verfahren benutzt werden,

Fig. 5A und 5B zeigen die Anordnung eines Hauptteils von Segmenten einer ersten Ausführungsvariante,

Fig. 6 zeigt eine Anordnung von Segmenten einer zweiten Ausführungsvariante,

Fig. 7A und 7B zeigen obere, bzw. untere Elektrodenmuster der Segmente gemäss Fig. 6, und

Fig. 8 zeigt einen Teil der Segmente der zweiten Ausführungsvariante.

Anhand der Fig. 1 und 2 wird nun im folgenden ein vor-45 bekanntes Ausführungsbeispiel beschrieben. Man erkennt in Fig. 1 Anzeigesegmente eines herkömmlichen Flüssigkristall-Anzeigeelements einer Uhr mit drei Arten einer analogen Anzeige für Stunde, Minute und Sekunde. Die Segmente 1₁, 1₂, 1₃ bis 1₆₀ sind Minuten-Anzeigesegmente 1, die auch die Anzeige der Minuten verwendet werden, so dass eine An- 50 dazu benützt werden, die Sekunden anzuzeigen. Sie werden im folgenden als Sekunden-Minuten-Anzeigesegmente bezeichnet. Sie sind radial und gleichmässig in sechzig Teilen am Umfang der nicht gezeigten Stundenplatte angeordnet. Die Segmente 2₁, 2₂, 2₃ bis 2₆₀ sind Stunden-Anzeigeseg-55 mente 2 und werden auch zur Anzeige der Minuten verwendet. Im folgenden werden sie als Minuten-Stunden-Anzeigesegmente bzeichnet. Sie sind ebenfalls radial entlang der gleichen Achsen wie die Anzeigesegmente 1 und innerhalb dieser angeordnet. Die in Fig. 1 angezeigte Zeit ist 3 Uhr 30 und 60 vierzig Sekunden. In einer Uhr mit einer solchen Anzeigevorrichtung sind die oberen und unteren Elektrodenmuster 3 und 4, bei der die Sekunden-Minuten-Anzeigeelemente 1 und Minuten-Stunden-Anzeigeelemente 2 durch eine ½-Vorspannungs- und ½-Arbeitsperioden-Ansteuerung dieser 65 Muster zur Anzeige gebracht werden auf einem oberen, bzw. unteren Substrat 5 und 6 angebracht, wie aus den Fig. 2A

und 2B hervorgeht. Zwischen diesen oberen und unteren

Elektrodenmuster 3 und 4 ist ein nicht gezeigter Flüssigkri-

stall angeordnet, um ein Flüssigkristall-Anzeigeelement zu bilden.

In einer solchen Anzeigevorrichtung für Uhren, jedoch mit 120 Anzeigesegmenten, die in einem 1/2-Vorspannungsund 1/2-Arbeitsperioden-Teilungsmodus betrieben werden, sind 60 Segmentelektroden (obere Elektroden 3) und zwei gemeinsame Elektroden (untere Elektrodenmuster 4), d.h. 62 Anschlüsse insgesamt notwendig (s. Fig. 2A und 2B). Es werden daher zwei LSI-Plättchen benötigt, da ein Plättchen höchstens 50 Anschlüsse aufweist.

Im folgenden wird nun die Erfindung näher erläutert werden.

In den Fig. 3A und 3B erkennt man Elektrodenmuster für die Anzeigesegmente 1 und 2. Fig. 3A zeigt insbesondere einen Teil der oberen Elektrodenmuster 7, die auf der inneren Oberfläche des oberen Substrates 5 gebildet sind und 20 Elektrodenmuster 7₁, 7₂, 7₃.... bis 7₂₀ aufweisen, die angeordnet sind, um 10 Abschnitte zu bilden, wodurch die 60 Anzeigesegmente 1 durch 6 geteilt werden und analog auch die sechzig Anzeigesegmente 2. Diese 20 Elektrodenmuster bilden im wesentlichen fächerartige Abschnitte. Fig. 2B zeigt insbesondere einen Teil der unteren Elektrodenmuster 8, die auf dem unteren Substrat 6 angeordnet sind. Die unteren Elektrodenmuster 8 sind im wesentlichen gleich wie die Anzeigesegmente 1 und 2 angeordnet und bestehen aus 10 Abschnitten von Segmentelektrodenmustern 81, 82, 83 bis 8₁₀, wobei jeder Abschnitt 6 Elektroden mit 6 Anschlüssen aufweist, die in Serie mit einer Elektrode des nächsten Abschnittes verbunden sind.

Mit diesen Anordnungen der Elektroden wird die Anzahl 30 EIN-Zustände des Flüssigkristall-Anzeigeelementes an, der Anschlüsse der oberen und unteren Elektrodenmuster 7 und 8 auf eine Gesamtzahl von 26 reduziert. Von diesen sind

20 Anschlüsse auf dem oberen Substrat 5 und sechs auf dem unteren Substrat 6 angeordnet, so dass nur ein einziges LSI-Plättchen benötigt wird, um das Element zu steuern.

Ein Verfahren dieser Erfindung um ein Flüssiganzeige-5 element zu betreiben verwendet ¹/₃-Arbeits-Abschnitts-Teilungssteuerung mit Spannungsverläufen gemäss den Fig. 4A und 4B. Insbesondere werden die unteren Elektrodenmuster mit Impulsen mit den Spannungsverläufen θ_1 bis θ_4 gemäss Fig. 4A, wobei diese Spannungsverläufe auch kombiniert 10 sein können, während die oberen Elektrodenmuster mit Impulsen mit Spannungsverläufen Φ_1 bis Φ_6 gemäss Fig. B betrieben, wobei auch Kombinationen der Spannungsverläufe vorkommen können. Die Kombinationen der beiden Spannungsverläufe, einer aus denjenigen von θ_1 bis θ_3 mit einem $_{15}$ anderen von denjenigen von Φ_1 bis Φ_6 sind diejenigen, die in herkömmlichen ¹/₃-Vorspannungs- und ¹/₃-Arbeitsperioden-Teilungsmodus verwendet werden. In diesem Ausführungsbeispiel wird ferner ein Impuls mit dem Verlauf θ_4 verwendet, der an die unteren Elektrodenmuster angelegt wird. 20 Der Zustand des Flüssigkristall-Anzeigeelements mit solchen Spannungsverlauf-Kombinationen ist in Tabelle 1 dargestellt. Da bei der gemeinsamen Elektrode drei Arten von Spannungsverläufen und bei den unteren Elektroden acht Arten von Spannungsverläufen in einem herkömmlichen 1/3-25 Vorspannungs- und ¹/₃-Arbeitsperioden-Teilungssystem beteiligt sind, sind 3 \times 8, d.h. 24 Kombinationen möglich. Anderseits erreicht die vorliegende Erfindung die gewünschte Anzeige durch eine geeignete Auswahl aus den 4 × 6, d.h.

24 Kombinationsmöglichkeiten. EIN in Tabelle 1 zeigt die während AUS die AUS-Zustände bezeichnet.

Tabelle 1

Φ_i	Φ_1	Φ_2	Φ ₃ .	Φ_4	Φ_5	Φ_6
$egin{array}{c} heta_1 \ heta_2 \ heta_3 \ heta_4 \end{array}$	AUS AUS	AUS AUS	AUS EIN AUS AUS	AUS EIN	EIN AUS	EIN

Mit diesen Spannungsverläufen für Abschnittsteilungen, im nachfolgenden als Abschnitts-Teilungsspannungsverlauf bezeichnet und mit den 120 Anzeigesegmenten gemäss Fig. 3A und 3B, die zu den oberen und unteren Elektrodenmustern 7 und 8 gehören, ist eine gleichzeitige analoge Anzeige von Stunde, Minute und Sekunde, wie in Fig. 1 dargestellt, mittels 4 × 5, d.h. 20 Kombinationen möglich, d.h. die gleichzeitige Anzeige kann durch Benutzung von 20 oberen Elektrodenmustern und 6 unteren Elektrodenmustern durchgeführt werden, die eine Gesamtanzahl von 26 Elektrodenanschlüssen benötigen. Auch kann eine gleichzeitige Anzeige von Stunde, Minute und Sekunde in einer Anzeigevorrichtung gemäss Fig. 6 mittels 4 × 6, d.h. 24 Kombinationen der Spannungsverläufe Φ_1 bis Φ_6 angelegt an die oberen Elektrodenmuster 12, siehe Fig. 7A und θ_1 bis θ_4 angelegt an die unteren Elektrodenmuster 8, siehe Fig. 7B, durchgeführt werden.

Die Fig. 5A und 5B zeigen eine Anordnung des grössten Teils von 120 Anzeigesegmenten für eine gleichzeitige analoge Anzeige von drei Arten von Informationen, insbesondere Stunde, Minute und Sekunde einer Uhr mit Flüssigkristall-Anzeige, deren oberes und unteres Elektrodenmuster 7 und 8

in Abschnitte gemäss Fig. 3A und 3B unterteilt sind. Die Teile der Fig. 5A und 5B, die mit den vorhergehenden identisch sind, weisen die gleiche Numerierung auf, und werden 50 nicht nochmals beschrieben. Eine gleichzeitige Anzeige einer bestimmten Stunde durch beispielsweise das Anzeigesegment 2_1 , einer bestimmten Minute durch die Anzeigesegmente 1_{11} und 211 und einer bestimmten Sekunde durch das Anzeigesegment 1₁₀, welche Segmente in Fig. 5A quergestrichelt 55 dargestellt sind, wird durch Anlegen von Impulsen mit geeigneten Spannungsverläufen θ_1 bis θ_4 und Φ_1 , Φ_3 , Φ_4 und Φ_5 , gemäss Fig. 4A und 4B durchgeführt, so dass der Zustand gemäss Tabelle 2 hergestellt wird, wobei die Sekunden-Minuten-Anzeigesegmente 1₁₀ und 1₁₁ und die Minuten-Stun-60 den-Anzeigesegmente 21 und 211 eingeschaltet sind.

Es ist auch möglich, eine gleichzeitige analoge Anzeige einer bestimmten Stunde durch die Anzeigesegmente 24, einer bestimmten Minute durch die Anzeigesegmente 1, und 27 und einer bestimmten Sekunde durch das Anzeigesegment 65 16 zu bewerkstelligen, welche Segmente schräg schraffiert sind, wobei Impulse mit Spannungsverläufen Φ_1 bis Φ_3 und θ_1 bis θ_3 an die Elektroden angelegt werden, um einen Zustand herzustellen, der in Tabelle 3 beschrieben ist.

Tabelle 2

Untere Elektrod	e Y ₁	Y ₂	Y ₃	Y ₄	Y ₅	Y ₆
Spannungsverlauf an der unteren Elektrod	e θ ₃	θ_2	θ_1	θ_4	θ ₄	θ_4
Spannungsverlauf an der oberen Elektrode			-			
Φ_1	AUS	AUS	AUS	AUS	AUS	AUS
Φ_{4}						AUS
						AUS
						AUS
						AUS
Φ_1	AUS	AUS	AUS	AUS	AUS	AUS
Untere Elektrode	Y ₁	Tabelle 3	Y ₃	Y ₄	Y ₅ .	Y ₆
Untere Elektrode Spannungsverlauf an der unteren Elektrode Spannungsverlauf an der oberen Elektrode			Υ ₃	Υ ₄	Υ ₅	Υ ₆
Spannungsverlauf an der unteren Elektrode Spannungsverlauf an der oberen	e θ ₃	Y ₂ θ ₃	θ ₃	θ ₁	θ ₃	θ ₂
Spannungsverlauf an der unteren Elektrode Spannungsverlauf an der oberen Elektrode	AUS AUS	Y ₂ θ ₃ AUS AUS	θ ₃ AUS AUS	θ ₁ AUS EIN	θ ₃ AUS AUS	θ ₂ EIN AUS
Spannungsverlauf an der unteren Elektrode Spannungsverlauf an der oberen Elektrode Φ_3	AUS AUS AUS AUS	Y ₂ θ ₃ AUS AUS AUS AUS	θ ₃ AUS AUS AUS AUS	θ ₁ AUS EIN AUS	θ ₃ AUS AUS AUS AUS	θ ₂ EIN AUS EIN
Spannungsverlauf an der unteren Elektrode Spannungsverlauf an der oberen Elektrode Φ_3 Φ_2 Φ_3 Φ_3 Φ_3	AUS AUS AUS AUS AUS	Y ₂ θ ₃ AUS AUS AUS AUS AUS	θ ₃ AUS AUS AUS AUS AUS	θ ₁ AUS EIN AUS AUS AUS	θ ₃ AUS AUS AUS AUS AUS	θ ₂ EIN AUS EIN EIN
Spannungsverlauf an der unteren Elektrode Spannungsverlauf an der oberen Elektrode Φ_3 Φ_2 Φ_3	AUS AUS AUS AUS	Y ₂ θ ₃ AUS AUS AUS AUS	θ ₃ AUS AUS AUS AUS	θ ₁ AUS EIN AUS	θ ₃ AUS AUS AUS AUS	θ ₂ EIN AUS EIN
	Spannungsverlauf an der unteren Elektrod Spannungsverlauf an der oberen Elektrode Φ_1	$\begin{array}{c c} \text{an der oberen} \\ \hline \Phi_1 & \text{AUS} \\ \Phi_4 & \text{EIN} \\ \Phi_5 & \text{AUS} \\ \Phi_3 & \text{AUS} \\ \Phi_1 & \text{AUS} \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Ähnlich kann die gleichzeitige Beleuchtung der Sekunden-Minuten-Anzeigesegmente 1_4 und 1_9 und der Minuten-Stunden-Anzeigeelemente 2_4 und 2_9 , in Fig. 5A schräg schräffiert, durch Anlegung von Impulsen mit Spannungsverläufen θ_1 , θ_2 , Φ_1 und Φ_2 hergestellt werden, wobei dieser Zustand in Tabelle 4 dargestellt ist.

Tabelle 4

Y ₃	Y ₄	Y ₅
le θ ₂	θ_1	θ_2
AUS AUS AUS	EIN EIN AUS	AUS AUS AUS
	AUS AUS	AUS EIN AUS EIN

Die in Fig. 5B dargestellte Anzeige kann durch die Kombination von in Tabelle 5 dargestellten Spannungsverläufe erhalten werden, wobei die Sekunden-Minuten-Anzeigesegmente 1_3 und 1_{11} und die Minuten-Stunden-Anzeigesegmente 2_1 und 2_{11} , in Fig. 5B schräg schraffiert, aktiviert werden. Durch Aktivieren der Sekunden-Minuten-Anzeigesegmente 1_7 und 1_8 und der Minuten-Stunden-Anzeigesegmente 2_5 und 2_7 , in Fig. 5 schräg schraffiert, wird durch die Kombinationen von Spannungsverläufen gemäss Tabelle 6 ermöglicht.

Tabelle 5

 Y_2

 Y_3

Y₄

Untere Elektrode Y₁

	\ \ d	pannungsverlauf an er unteren Elektrode	θ1		θ_2	θ ₃	θ ₄
5	Obere Elektrode	Spannungsverlauf an der oberen Elektrode			-		
0	X ₁ X ₂ X ₃ X ₄ X ₅	$egin{array}{c} \Phi_4 & & & & & & & & & & & & & & & & & & &$	AU EII AU AU	N JS JS	AUS AUS EIN EIN AUS	EIN AUS AUS AUS	AUS AUS AUS AUS AUS
5		Tabe	ode	Y ₄		Y ₅	Y ₆
0		Spannungsverlau der unteren Elektrode		θ ₄		θ_2	θ_1
	Obere Elektrode	Spannungsverlauf an der oberen Elektrode	-				
5	X ₁ X ₂ X ₃ X ₄	$egin{array}{c} \Phi_1 \ \Phi_3 \ \Phi_5 \ \Phi_2 \end{array}$	-	AU AU AU AU	JS JS	AUS EIN EIN AUS	AUS AUS EIN EIN

10

Dadurch ist eine gleichzeitige analoge Anzeige von Stunden, Minuten und Sekunden mittels 120 Anzeigesegmente und durch Anlegung von Impulsen mit Spannungsverläufen Φ_1 bis Φ_5 an die oberen Elektroden und mit Spannungsverläufen θ_1 bis θ_4 an die unteren Elektroden möglich, wodurch sich 4×5 , d.h. 20 Kombinationen solcher Spannungsverläufe ergeben.

Fig. 6 zeigt eine andere Anordnung von Flüssigkristall-Anzeigesegmente für eine Uhr, wobei eine andere Ausführungsform der Steuerung dargestellt ist. In dieser Fig. 6 bilden die Segmente 9₁, 9₂, 9₃ bis 9 60 einen Satz radial angeordneter Sekunden-Anzeigesegmente 9, gleichmässig über den Umfang der nicht gezeigten Stundenplatte verteilt. Die Segmente 10₁, 10₂, 10₃ bis 10₆₀ bilden einen Satz Sekunden-Anzeigesegmente 10, die auch als Minuten-Anzeigesegmente dienen (nachfolgend als Minuten-Sekunden-Anzeigesegmente bezeichnet) und sind ebenfalls entlang der gleichen radialen Achsen innerhalb der Segmente 9 angeordnet. Segmente 11₁, 11₂, 11₃ bis 11₆₀ bilden einen Satz von Sekunden-Anzeigesegmente 11, die auch als Stunden- und Minuten-Anzeigesegmente dienen (nachfolgend als Stunden-Minuten-Sekunden-Anzeigesegmente bezeichnet) und sind entlang der gleichen radialen Achsen innerhalb der Segmente 10 angeordnet. Auf diese Weise erhält man 180 Anzeigesegmente, so dass sie die Zeit wie eine mechanische analoge Uhr mit drei Zeigern anzeigen können. In Fig. 6 ist 3 Uhr 30 und 40 Sekunden dargestellt.

Die Fig. 7A und 7B zeigen Beispiele von Elektrodenmuster für die Anzeigesegmente 9, 10 und 11. Im besonderen zeigt Fig. 7A einen Teil der oberen Elektrodenmuster 12, die auf der inneren Oberfläche eines oberen Substrates 5 gebildet sind. In den oberen Elektrodenmustern 12 sind 30 im wesentlichen fächerförmige Elektrodenmuster 12₁, 12₂, 12₃ bis 12₃₀ inbegriffen, wobei jedes Muster einem der zehn Abschnitt der Segmente 9, einem der zehn Abschnitte der Segmente 10 und einem der zehn Abschnitte der Segmente 11 gegenüberliegt, und jeder Abschnitt sechs solchen Segmenten entspricht. Fig. 7B zeigt untere Elektrodenmuster 8. die auf der inneren Oberfläche des unteren Substrates 6 entsprechend den Anzeigesegmenten 9, 10 und 11 angeordnet sind. In diesen unteren Elektrodenmustern sind zehn Segmentelektroden-Abschnitte 8₁, 8₂ bis 8₁₀ enthalten, wobei jeder Abschnitt sechs Elektrodenmuster umfasst und jedes Muster in Serie mit einem anderen Elektrodenmuster des benachbarten Abschnittes geschaltet ist, wie vorhergehend im Zusammenhang mit den Fig. 3A und 3B beschrieben wurde. Daraus folgt, dass die unteren Elektrodenmuster sechs Anschlüsse aufweisen.

Bei dieser Anordnung beträgt die Anzahl Anschlüsse der oberen und unteren Elektrodenmuster 36, d.h. 30 Anschlüsse für die oberen Elektrodenmuster 12_1 , 12_2 , 12_3 bis 12_{30} und sechs Anschlüsse für die unteren Elektrodenmuster 8_1 , 8_2 , 8_3 bis 8_{10} , so dass nur ein einziges LSI-Steuerplättchen benötigt wird. Die analoge Anzeige mit drei Zeigern gemäss Fig. 6, wie bei einer mechanischen analogen Anzeige, kann durch Anlegen von Impulsen mit Spannungsverläufen Φ_1 bis Φ_6 gemäss Fig. 4A an die oberen Elektrodenmuster und von Impulsen mit Spannungsverläufen θ_1 bis θ_4 an die unteren Elektrodenmuster 8 erzeugt werden, wobei 4×6 , d.h. 24 verschiedene Kombinationen von Spannungen erhalten werden.

Fig. 8 zeigt einen wesentlichen Teil der 180 in Abschnitten eingeteilten Anzeigeelemente der Fig. 7A und 7B, wobei die gleichen Teile gleich bezeichnet werden. In einer gleichzeitigen Analoganzeige in der die Stunde durch die Anzeigeelemente 11₁, die Minute durch die Anzeigesegmente 10₁₁

und 11_{11} und die Sekunden durch die Anzeigeelemente 9_{15} , 10_{15} und 11_{15} durch Anschalten des Sekundenanzeigesegmentes 9_{15} , der Minuten-Sekunden-Anzeigesegmente 10_{11} und 10_{15} und der Stunden-Sekunden-Anzeigesegmente 11_{1} , 11_{11} und 11_{15} in Fig. 8 schräg schräffiert, angezeigt werden, werden Impulse mit den Spannungsverläufen θ_1 bis θ_4 und Φ_1 bis Φ_4 der Fig. 4A und 4B selektiv an die Elektroden angelegt, so dass der durch Intervalle 7 definierte Zustand erhalten wird.

Tabelle 7

15		Untere Elektrode	Y ₁	Y ₂	Y ₃	Y ₄
		Spannungsverlauf an Ier unteren Elektrode	θ_1	θ_2	θ_3	θ_4
20	Obere Elektrode	Spannungsverlauf an der oberen Elektrode			-	
	X ₁	Φ_2	EIN	AUS	AUS	AUS
	X ₂	Φ_3	AUS	EIN	AUS	AUS
25	X ₃	Φ_4	AUS	AUS	EIN	AUS
	X ₄	Φ_1	AUS	AUS	AUS	AUS

Um auf ähnliche Weise die Stunde durch die Anzeigesegmente 10_7 , die Minute durch die Anzeigesegmente 10_8 und die Sekunde durch die Anzeigesegmente 9_9 , 10_9 und 11_9 durch Erregen des Sekunden-Anzeigesegmentes 9_9 , der Minuten-Sekundenanzeigesegmente 10_8 und 10_9 und der Stunden-Minuten-Sekunden-Anzeigesegmente 11_7 , 11_8 und 11_9 zu erzeugen, schräg schraffiert in Fig. 8, werden Impulse mit den Spannungsverläufen θ_1 bis θ_4 , Φ_1 , Φ_2 , Φ_5 und Φ_6 der Fig. 4A und 4B selektiv an die Elektroden angelegt, um den durch Tabelle 8 definierten Zustand zu erzeugen.

Tabelle 8

45		Untere Elektrode	Y ₁ _	Y ₄	Y ₅	Y ₆
		annungsverlauf an r unteren Elektrode	θ_4	. θ ₁	θ_2 .	θ_3
50	Obere Elektrode	Spannungsverlauf an der oberen Elektrode				-
55	X ₁ X ₂	$egin{array}{c} \Phi_1 \ \Phi_6 \end{array}$	AUS AUS	AUS EIN	AUS EIN	AUS EIN
	X ₅	Φ_5	AUS	EIN	EIN	AUS
	X ₈	Φ_2	AUS	EIN	AUS	AUS

In analoger Weise werden die Sekunden-Anzeigesegmente 9_4 , die Minuten-Sekunden-Anzeigesegmente 10_4 und 10_{10} und die Stunden-Minuten-Sekunden-Anzeigesegmente 11_2 , of 11_4 und 11_{10} , in Fig. 8 quergestrichelt, erregt durch selektives Anlegen von Impulsen mit Spannungsverläufen 0_1 bis 0_4 , 0_1 , 0_3 , 0_4 und 0_5 , um den durch Tabelle 9 definierten Zustand zu erzeugen.

Tabelle 9

	Untere Elektrode	Y ₂	Y ₃	Y ₄	Y ₅
	Spannungsverlauf an der unteren Elektrode	θ_1	θ_3	θ_2	θ ₄
Obere Elektrode	Spannungsverlauf an der oberen Elektrode				
X ₁ X ₂ X ₄ X ₈	Φ_{5} Φ_{4} Φ_{3} Φ_{1}	EIN AUS AUS AUS	AUS EIN AUS AUS	EIN AUS EIN AUS	AUS AUS AUS AUS
0	-				

Auf diese Weise kann eine dreifache Information, d.h. Stunden, Minuten und Sekunden einer Uhr mit Flüssigkristall-Anzeigevorrichtung mit 180 Anzeigesegmenten durch

Anlegen von Impulsen mit 4×6 , d.h. 24 Kombinationen der Spannungsverläufe Φ_1 bis Φ_4 an die unteren Elektroden erzeugt werden.

Die anderen Anzeigen wie Alarmanzeige, Vormittags-,

Nachmittagsanzeige, Datums- und Tagesanzeige auf der
gleichen Stundenplatte, auf welcher die Zeitanzeigesegmente
angeordnet sind, können mit dem ¹/₃-Arbeitsperioden-Teilungsmodus nicht durchgeführt werden. Um zumindest für
die Datums- und Tagesanzeige die Anzahl Anschlüsse zu
verringern, sollten sie im ¹/₃ - ¹/₃ Perioden-Teilungsmodus
betrieben werden, während die Alarm- und Vormittags- und
Nachmittagsanzeige in einem statischen Modus oder in einem ¹/₃ - ¹/₃ Perioden-Teilungsmodus betrieben werden
sollte.

Obwohl sich die obige Beschreibung auf ein Flüssigkristall-Anzeigeelement für Uhren mit runden Zifferblättern bezieht, ist die Erfindung nicht auf eine solche beschränkt. Sie kann vielmehr auch für rechteckförmige Anzeigeelemente sowohl für Uhren als auch für verschiedene Messinstrumente verwendet werden.

6 Blatt Zeichnungen

FIG.1

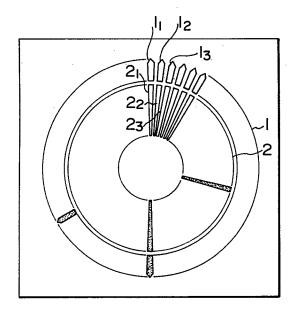


FIG. 2A

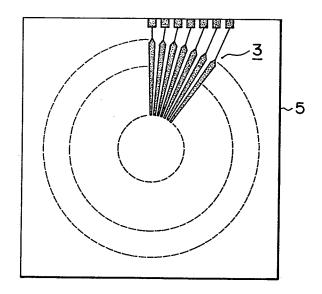


FIG.2B

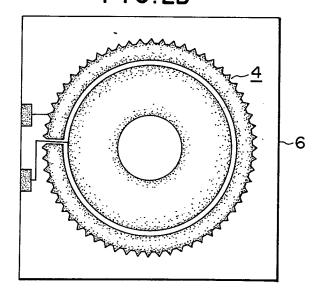


FIG. 3A

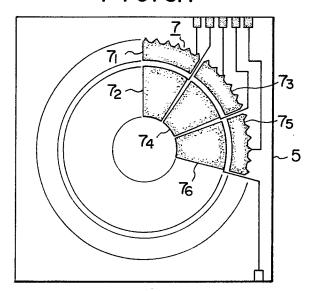


FIG. 3B

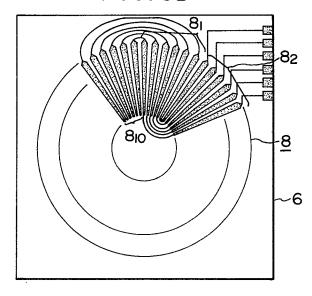


FIG. 4A

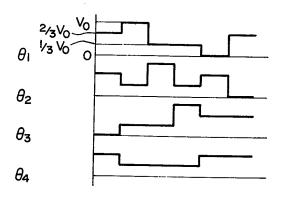
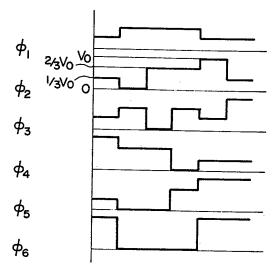



FIG. 4B

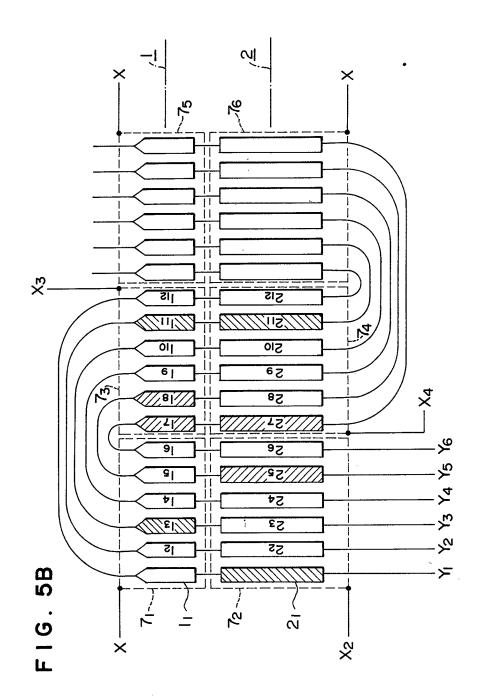


FIG.6

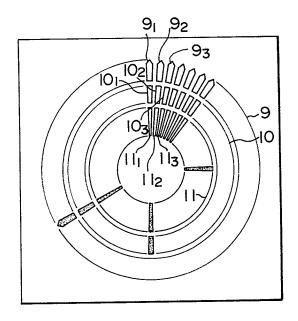
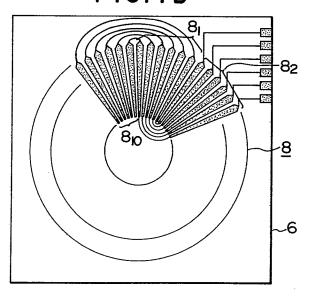
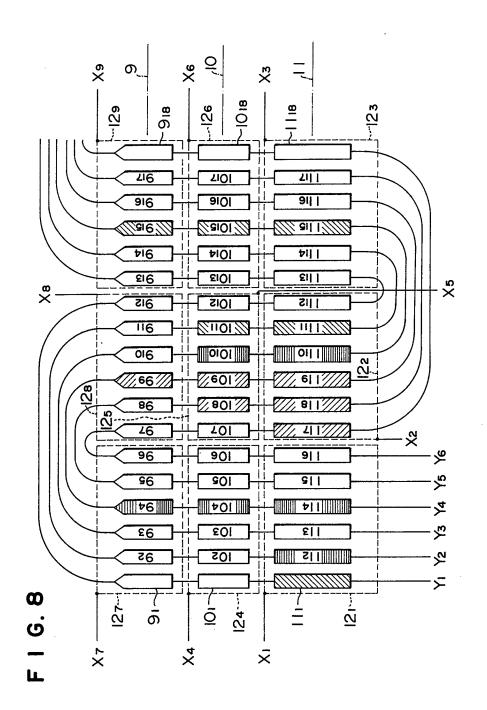




FIG. 7A

FIG.7B

