Title: ADAPTIVE ENGINE MOUNTING

Bezeichnung: ADAPTIVES MOTORLAGER

Abstract: The invention relates to a hydraulic mounting (1) comprising a closable bypass (6) and a decoupling membrane (7). When the bypass (6) is opened, however, the main effect that can be achieved by opening the bypass (6), namely the decrease in the spring rate at higher frequencies, is worsened. It is thus desirable to render the decoupling membrane (7) ineffective when the bypass (6) is open. Said aim is achieved in that the closure device (17) of the bypass (6) comprises locking elements (19), by means of which the decoupling membrane (7) can be locked in the first switching position of the closure device (17) when the bypass (6) is open and can be released in the second position of the closure device (17) when the bypass (6) is closed.

Zusammenfassung: Die Erfindung betrifft ein Hydrolager (1) mit einem verschließbaren Bypass (6) und einer Entkopplungsmembran (7). Beim Öffnen des Bypasses (6) wird jedoch der Haupteffekt, der durch das Öffnen des Bypasses (6) erzielbar ist, nämlich die Absenkung der Federsteife bei höheren Frequenzen, verschlechtert. Daher ist es wünschenswert, die Entkopplungsmembran (7) bei geöffnetem Bypass (6) unwirksam zu machen. Diese Aufgabe wird dadurch gelöst, dass die Verschlussvorrichtung (17) des Bypasses (6) blockierende Elemente (19) aufweist, die die in erster Schaltstellung der Verschlussvorrichtung (17) bei geöffnetem Bypass (6) die Entkopplungsmembran (7) blockierbar und in zweiter Stellung der Verschlussvorrichtung (17) bei geschlossenem Bypass (6) freigebar ist.

Veröffentlicht: mit internationalem Recherchenbericht (Artikel 21 Absatz 3)
Beschreibung

Adaptives Motorlager

Die Erfindung betrifft ein Hydrolager mit einer fluidgefüllten Arbeitskammer mit einem elastomeren Federelement und einer fluidgefüllten Ausgleichskammer mit einer elastomeren Ausgleichsmembran und einer Drosselscheibe, die die Arbeitskammer und die Ausgleichskammer voneinander trennt, wobei
- die Arbeitskammer und die Ausgleichskammer durch elastische Verformung mindestens eines Elastomerkörpers wechselwirkend veränderliche Volumina aufweisen,
- die Drosselscheibe einen Dämpfungskanal aufweist, über den die Arbeitskammer mit der Ausgleichskammer fluidführend in Verbindung steht,
- die Drosselscheibe eine parallel zum Drosselkanal wirkende Entkopplungsmembran aufweist,
- die Drosselscheibe einen Bypass aufweist, über den die Arbeitskammer und die Ausgleichskammer im geöffneten Zustand des Bypasses fluidführend in Verbindung stehen und der Bypass mit einer ein Verschlusssteil und einem Antrieb aufweisenden Verschlussvorrichtung zu öffnen und zu schließen ist, wobei die Verschlussvorrichtung parallel zur Achse des Bypasses bewegbar ist und die Öffnungsrichtung der Verschlussvorrichtung der Hauptwirkrichtung des Druckes in der Arbeitskammer entgegengesetzt ist.

Derartige Lager sind an sich bekannt und insbesondere als Motorlager vielfach in Kraftfahrzeugen im Einsatz. Lager dieser Art haben sich sehr gut bewährt bei der Dämpfung sowohl von tieffrequenter Schwingungen als auch bei hochfrequenten Schwingungen. Wenn die Durchtrittsöffnung in der Trennwand geschlossen ist, werden hochfrequente Schwingungen mit kleinen Amplituden durch die Gestaltung der
Drosselscheibe und der darin angeordneten Membran gut isoliert. Sobald der Bypass in der Drosselscheibe geöffnet ist, werden niederfrequente Schwingungen, beispielsweise im Leerlauf, noch besser isoliert. Der Bypass in der Drosselscheibe ist durch eine Verschlussvorrichtung verschließbar.

In der EP 1 426 651 A1 ist ein Lager offenbart, bei dem über einen elektromagnetisch bestätigten Schieber sowohl der Bypass zu öffnen als auch die Entkopplungsmembran festklemmbar ist. Der Schieber wirkt allerdings quer zur Wirkrichtung des Lagers und verursacht zusätzlichen Aufwand zur Reduktion der Reibkräfte und zur Kompensation des zu verdrängenden Fluids.

Der Erfindung liegt die Aufgabe zugrunde, ein Lager der eingangs geschilderten Art so zu verbessern, dass auf einfache Weise die Schwingsfähigkeit der Entkopplungsmembran bei geöffnetem Bypass blockierbar ist.

Diese Aufgabe wird dadurch gelöst, dass die Entkopplungsmembran als starre Platte ausgebildet ist, die in Schwingungsrichtung des Fluids gegen die Drosselscheibe einen Freiweg aufweist und dadurch in der Drosselscheibe schwingbar gelagert ist und die Verschlußvorrichtung des Bypasses Blockierelemente aufweist, durch die in erster Schaltstellung der Verschlußvorrichtung bei geöffnetem Bypass die Entkoppelungsmembran blockierbar und in zweiter Stellung der Verschlußvorrichtung bei geschlossenem Bypass freiegebbar ist.

Diese Anordnung hat den Vorteil, dass nur sehr geringe Reibkräfte in den Führungen der Verschlußvorrichtung zu überwinden sind und durch nur eine Bewegung der Verschlußvorrichtung sowohl der Bypass zu öffnen als auch gleichzeitig die Entkopplungsmembran blockierbar ist.
In einer Weiterbildung der Erfindung weist die Verschlussvorrichtung den Blockierelementen zugeordnete Federn auf, wobei die Federn eine Kraftwirkung aufweisen, die der Öffnungsrichtung der Verschlussvorrichtung entgegen gerichtet ist.

Die Anordnung derartiger Federn hat den Vorteil, dass die Schließwirkung der Verschlussvorrichtung auch bei abgeschalteten Antrieb der Verschlussvorrichtung erhalten bleibt. Die Zuordnung der Federn zu den Blockierelementen hat den Vorteil, dass die Federn ohne zusätzlich notwendige Bauteile eine Führung aufweisen, so dass ein Versagen der Verschlussvorrichtung durch ein Ausknicken der Federn minimiert ist.

In einer weiteren Ausführungsform der Erfindung ist der Antrieb der Verschlussvorrichtung als elektronisch ansteuerbarer Schrittmotor mit einer translatorisch bewegbaren Spindel ausgebildet.

Der Einsatz eines Schrittmotors als Antrieb für die Verschlussvorrichtung hat den Vorteil, dass ein Schrittmotor durch eine Bestromung im Stillstand nicht zerstört wird, so dass in beiden Schaltstellungen der Verschlussvorrichtung die jeweilige Position durch den Schrittmotor haltbar ist. Es ist keine Endabschaltung erforderlich. Da ein Schrittmotor mit niedriger Drehzahl und hohem Drehmoment betreibbar ist, ist auch kein Untersetzungsgetriebe erforderlich.

In einer weiteren Ausführungsform der Erfindung weist die Ausgleichsmembran einen als Abdeckbalg ausgebildeten, mit der Ausgleichsmembran einstückig verbundenen Fortsatz auf, der auf der Ausgleichskammer abgewandten Seite der Ausgleichsmembran so angeordnet ist, dass der Abdeckbalg um die Spindel des Schrittmotors herum und bis zu dem Schrittmotor reicht und mit dem Schrittmotor feuchtigkeitsdicht verbunden ist.

Diese Anordnung hat den Vorteil, dass beispielsweise bei Fahrten im schlechten Gelände, insbesondere bei Wasserdurchfahrten, die Spindel und der Schrittmotor gut gegen eindringende Feuchtigkeit geschützt sind.
Anhand der Zeichnung wird nachstehend ein Beispiel der Erfindung näher erläutert. Es zeigt

Fig. 1: eine prinzipielle Darstellung eines erfindungsgemäßen Lagers mit geschlossenem Bypass in einem Längsschnitt,

Fig. 2: eine prinzipielle Darstellung des erfindungsgemäßen Lagers mit geöffnetem Bypass in einem Längsschnitt,

Fig. 3: eine prinzipielle Darstellung des erfindungsgemäßen Lagers mit geöffnetem Bypass und Federn in einem Längsschnitt,

Fig. 4: eine prinzipielle Darstellung des erfindungsgemäßen Lagers mit Dichtfortsatz der Ausgleichsmembran.

Die Fig. 1 zeigt den prinzipiellen Aufbau eines erfindungsgemäßen Motorlagers 1. Das Lager 1 weist ein Anschlussstück 2 mit einem Befestigungbolzen 3 auf, mit dem das Lager 1 an einem nicht gezeigten Motor eines Kraftfahrzeugs befestigbar ist. Das Anschlussstück 2 ist in eine Tragfeder 4 aus elastomerem Material einvulkanisiert. Auf der dem Anschlussstück 2 abgewandten Seite ist die Tragfeder an einer Drosselscheibe 5 fluiddicht befestigt. Die Drosselscheibe 5 weist einen Bypass 6 und eine Entkoppelungsmembran 7 auf. Die Entkoppelungsmembran 7 ist als starre Platte ausgebildet und in einer Aufnahme 8 derart gelagert, dass sie in axialer Richtung gegen die Drosselscheibe 5 bewegbar ist. Die Drosselscheibe 5 umfasst weiterhin einen Drosselkanal 9, der an seinem ersten Ende 10 mit einer Arbeitskammer 11, an seinem zweiten Ende 12 mit einer Ausgleichskammer 13 fluidführend in Verbindung steht. Die Ausgleichskammer 13 ist neben der Drosselscheibe 5 durch eine Ausgleichsmembran 15 begrenzt.

An der Ausgleichsmembran 15 ist eine Verschlussvorrichtung 17 fluiddicht anvulkanisiert, wobei die Verschlussvorrichtung 17 ein Verschlusssteil 18, Blockierelemente 19, von denen hier nur eins gezeigt ist und einen Antrieb 20 aufweist.

Der Antrieb 20 umfasst einen Schrittmotor 21 und eine Spindel 22, die durch den Schrittmotor translatorisch bewegbar ist und die mit der Verschlussvorrichtung 17 fest

Soll der Bypass 6 geöffnet werden, ist die Spindel 22 durch den Schrittmotor 20 in Richtung auf die Arbeitskammer 11 axial verschiebbar, so dass das Verschlusssteil 18 den Bypass 6 freigibt.

Dieser Zustand ist in Fig. 2 dargestellt. Fig. 2 zeigt das Motorlager 1 nochmals, nun mit geöffnetem Bypass. Die Verschlussvorrichtung 17 ist durch die axial durch den Schrittmotor 21 verschobene Spindel 22 in Richtung auf die Arbeitskammer 11 angehoben, so dass das Verschlusssteil 18 den Bypass 6 freigibt. Gleichzeitig sind die Blockierelemente 19 gegen die Entkoppelungsmembran 7 gepresst, so dass die Entkoppelungsmembran in den Aufnahmen 18 gegen die Drosselscheibe 5 festgelegt ist und nicht mehr schwingen kann.

In Fig. 3 ist das Lager 1 mit einer veränderten Anordnung der Federunterstützung gezeigt. Eine zentrale Feder ist hier nicht vorgesehen. Stattdessen weisen die Blockierelemente 19 jeweils eine Feder 30 auf, die als Schraubenfedern ausgebildet sind und von denen hier nur eine gezeigt ist. Die Federn 30 sind um die Blockierelemente 19 herum angeordnet, so dass jeweils ein Blockierelement 19 eine Feder 30 zentriert.
Die Federn 30 stützen sich an ihrem ersten Ende an der Verschlussvorrichtung 17 und an ihrem zweiten, der Drosselscheibe 5 zugewandten Ende gegen mit der Drosselscheibe 5 verbundene Widerlager 31 ab.

Das in der Fig. 4 gezeigte Lager 1 entspricht dem der Fig. 1, weist hier aber zusätzlich einen mit der Ausgleichsmembran 15 stoffschlüssig verbundenen, balgförmigen Fortsatz 32 auf. Der Fortsatz 32 weist in Richtung auf den Schrittmotor 21 und ist um die Spindel 22 herum angeordnet. Der Fortsatz 32 ist an seinem der Ausgleichsmembran 15 abgewandten Ende fest und fluddicht mit dem Schrittmotor 21 verbunden. Eventuell durch die Bohrung 24 in den Lagertopf 23 eindringende Feuchtigkeit kann dadurch nicht zwischen der Spindel 22 und dem Schrittmotor 21 in den Schrittmotor 21 eindringen.
Bezugszeichenliste

(Teil der Beschreibung)

1 erfindungsgemäßes Motorlager
5 2 Anschlussstück
3 Befestigungsbolzen
4 Tragfeder
5 Drosselscheibe
6 Bypass
10 7 Entkoppelungsmembran
8 Aufnahme
9 Drosselkanal
10, 12 Enden des Drosselkanals
11 Arbeitskammer
15 13 Ausgleichskammer
15 Ausgleichsmembran
17 Verschlussvorrichtung
18 Verschlusssteil
19 Blockierelemente
20 20 Antrieb
21 Schrittmotor
22 Spindel
23 Lagertopf
24 Bohrung im Lagertopf
25 25 Befestigungsbolzen
26 Fluid
27 Feder
30 Federn der Blockierelemente
31 Widerlager der Federn
30 32 Fortsatz der Ausgleichsmembran
Patentansprüche

1. Die Erfindung betrifft ein Hydrolager (1) mit einer fluidgefüllten Arbeitskammer (11) mit einem elastomeren Federelement und einer fluidgefüllten Ausgleichskammer (13) mit einer elastomeren Ausgleichsmembran (15) und einer Drosselscheibe (5), die die Arbeitskammer (11) und die Ausgleichskammer (13) voneinander trennt, wobei
- die Arbeitskammer (11) und die Ausgleichskammer (13) durch elastische Verformung mindestens eines Elastomerkörpers (4, 15) wechselwirkend veränderliche Volumina aufweisen,
- die Drosselscheibe (5) einen Drosselkanal (9) aufweist, über den die Arbeitskammer (11) mit der Ausgleichskammer (13) fluidführend in Verbindung steht,
- die Drosselscheibe (5) eine parallel zum Drosselkanal (9) wirkende Entkoppelungsmembran (7) aufweist,
- die Drosselscheibe (5) einen Bypass (6) aufweist, über den die Arbeitskammer (11) und die Ausgleichskammer (13) im geöffneten Zustand des Bypasses (6) fluidführend in Verbindung stehen und der Bypass (6) mit einer ein Verschlussteil (18) und einen Antrieb (20) aufweisenden Verschlussvorrichtung (17) zu öffnen und zu schließen ist, wobei die Verschlussvorrichtung (17) parallel zur Achse des Bypasses (6) bewegbar ist und die Öffnungsrichtung der Verschlussvorrichtung (17) der Hauptwirkrichtung des Druckes in der Arbeitskammer (11) entgegengesetzt ist,
dadurch gekennzeichnet, dass die Entkoppelungsmembran (7) als starre Platte ausgebildet ist, die in Schwingungsrichtung des Fluids (26) gegen die Drosselscheibe (5) einen Freiweg (8) aufweist und dadurch in der Drosselscheibe (5) schwingbar gelagert ist und die Verschlussvorrichtung (17) des Bypasses (6) Blockierelemente (19) aufweist, durch die in erster Schaltstellung der Verschlussvorrichtung (17) bei geöffnetem Bypass (6) die Entkoppelungsmembran (7) blockierbar und in zweiter Stellung der Verschlussvorrichtung (17) bei geschlossenem Bypass (6) freigebar ist.

2. Hydrolager (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Verschlussvorrichtung (17) den Blockierelementen (19) zugeordnete Federn (130) aufweist, wobei die Federn (130) eine Kraftwirkung aufweisen, die der Öffnungsrichtung
der Verschlussvorrichtung (17) entgegen gerichtet ist.

3. Hydrolager (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Antrieb (20) der Verschlussvorrichtung (17) als elektronisch ansteuerbarer Schrittmotor (21) mit einer translatorisch bewegbaren Spindel (22) ausgebildet ist.

4. Hydrolager (1) nach Anspruch 3, dadurch gekennzeichnet, dass die Ausgleichsmembran (15) einen als Abdeckbalg ausgebildeten, mit der Ausgleichsmembran (15) einstückig verbundenen Fortsatz (32) aufweist, der auf der der Ausgleichskammer (13) abgewandten Seite der Ausgleichsmembran (15) so angeordnet ist, dass der Abdeckbalg (32) um die Spindel (22) des Schrittmotors (21) herum und bis zu dem Schrittmotor (21) reicht und mit dem Schrittmotor (21) feuchtigkeitsdicht verbunden ist.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. F16F13/26
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

F16F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 03/071156 A1 (TRELLEBORG AUTOMOTIVE TECH CT [DE]; GRAVE ARNDT [DE]; GRIES JUERGEN []) 28 August 2003 (2003-08-28) Ausgleichsmembran pos. 16; Drosselscheibe pos.15; Elast. Körper pos.11,16; Drosselkanal pos.18; Entkopplungsmembran pos.28,31; Bypass pos.19; Antrieb pos.24.; page 2, line 9 - page 8, line 27; claims; figures</td>
<td>1-4</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of Box C.
X See patent family annex.

* Special categories of cited documents:
 * "A" document defining the general state of the art which is not considered to be of particular relevance
 * "E" earlier document but published on or after the international filing date
 * "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 * "O" document referring to an oral disclosure, use, exhibition or other means
 * "P" document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

D. DATE OF THE ACTUAL COMPLETION OF THE INTERNATIONAL SEARCH

20 January 2011

E. DATE OF MAILING OF THE INTERNATIONAL SEARCH REPORT

28/01/2011

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel: (+31-70) 340-3040,
Fax: (+31-70) 340-3016

Tiedemann, Dirk
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DE 33 40 152 A1 (TOYOTA MOTOR CO LTD [JP]) 16 August 1984 (1984-08-16) page 8, line 27 - page 26, line 22; claims; figures</td>
<td>1-4</td>
</tr>
<tr>
<td>A</td>
<td>DE 43 30 560 C1 (FREUDENBERG CARL FA [DE]) 24 November 1994 (1994-11-24) column 1, line 40 - column 5, line 6; figures</td>
<td>1-4</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 10206927 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1476675 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005051936 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2045053 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 59151637 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4610421 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2093471 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7151181 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5462261 A</td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

PCT/EP2010/065081

A. KLASSEIFIZIERUNG DES ANMELDGANGSSTANDES

INV. F16F13/26

ADD.

Nach der Internationalen Patentklassifikation (IPC) oder nach der nationalen Klassifikation und der IPC

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestrüftstoff (Klassifikationssystem und Klassifikationssymbole)

F16F

Recherchierte, aber nicht zum Mindestrüftstoff gehörnde Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

C. ALS WESENTLICH ANGEGEBENE UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie*</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 03/071156 A1 (TRELLEBORG AUTOMOTIVE TECH CT [DE]; GRAVE ARNDT [DE]; GRIES JUERGEN []) 28. August 2003 (2003-08-28) Ausgleichsmembran pos. 16; Drosselscheibe pos.15; Elast. Körper pos.11,16; Drosselkranal pos.18; Entkopplungsmembran pos.28,31; Bypass pos.19; Antrieb pos.24.; Seite 2, Zeile 9 - Seite 8, Zeile 27; Ansprüche; Abbildungen</td>
<td>1-4</td>
</tr>
</tbody>
</table>

X Weiterte Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

Datum des Abschlusses der internationalen Recherche

20. Januar 2011

Absendetermin des internationalen Recherchenberichts

28/01/2011

Name und Postanschrift der Internationalen Recherchebehörde

Europäisches Patentamt, P.B. 5816 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-3040, Fax. (+31-70) 340-3016

Bevollmächtigter Bediensteter

Tiedemann, Dirk

Formblatt PCT/ISA/210 (Blatt 2) (April 2005)
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Im Recherchenbericht angeführtes Patentdokument</td>
<td>Datum der Veröffentlichung</td>
<td>Mitglied(er) der Patentfamilie</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 10206927 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1476675 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005051936 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2045053 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 59151637 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4610421 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2093471 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7151181 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5462261 A</td>
</tr>
</tbody>
</table>