These compounds are useful as drugs, for example, in the treatment of tauopathies, such as Alzheimer's disease.
3,6-Disubstituted Xanthium Salts

Technical Field
This invention pertains generally to processes, uses, methods and materials utilising particular xanthium compounds. These compounds are useful as drugs, for example, in the treatment of tauopathies, such as Alzheimer's disease.

Background
A number of patents and publications are cited herein in order to more fully describe and disclose the invention and the state of the art to which the invention pertains. Each of these references is incorporated herein by reference in its entirety into the present disclosure, to the same extent as if each individual reference was specifically and individually indicated to be incorporated by reference.

Throughout this specification, including the claims which follow, unless the context requires otherwise, the word "comprise," and variations such as "comprises" and "comprising," will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.

It must be noted that, as used in the specification and the appended claims, the singular forms "a," "an," and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a pharmaceutical carrier" includes mixtures of two or more such carriers, and the like.

Ranges are often expressed herein as from "about" one particular value, and/or to "about" another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by the use of the antecedent "about," it will be understood that the particular value forms another embodiment.

Conditions of dementia such as Alzheimer's disease (AD) are frequently characterised by a progressive accumulation of intracellular and/or extracellular deposits of proteinaceous structures such as β-amyloid plaques and neurofibrillary tangles (NFTs) in the brains of affected patients. The appearance of these lesions largely correlates with pathological neurofibrillary degeneration and brain atrophy, as well as with cognitive impairment (see, e.g., Mukaetova-Ladinska, E.B., et al., 2000, Am. J. Pathol., Vol. 157, No. 2, pp. 623-636).
In AD, both neuritic plaques and NFTs contain paired helical filaments (PHFs), of which a major constituent is the microtubule-associated protein tau (see, e.g., Wischik et al., 1988, PNAS USA, Vol. 85, pp. 4506-4510). Plaques also contain extracellular β-amyloid fibrils derived from the abnormal processing of amyloid precursor protein (APP) (see, e.g., Kang et al., 1987, Nature, Vol. 325, p. 733). An article by Wischik et al. (in 'Neurobiology of Alzheimer's Disease', 2nd Edition, 2000, Eds. Dawbarn, D. and Allen, SJ., The Molecular and Cellular Neurobiology Series, Bios Scientific Publishers, Oxford) discusses in detail the putative role of tau protein in the pathogenesis of neurodegenerative dementias. Loss of the normal form of tau, accumulation of pathological PHFs, and loss of synapses in the mid-frontal cortex all correlate with associated cognitive impairment. Furthermore, loss of synapses and loss of pyramidal cells both correlate with morphometric measures of tau-reactive neurofibrillary pathology, which parallels, at a molecular level, an almost total redistribution of the tau protein pool from a soluble to a polymerised form (i.e., PHFs) in Alzheimer's disease.

The phase shift which is observed in the repeat domain of tau incorporated into PHFs suggests that the repeat domain undergoes an induced conformational change during incorporation into the filament. During the onset of AD, it is envisaged that this conformational change could be initiated by the binding of tau to a pathological substrate, such as damaged or mutated membrane proteins (see, e.g., Wischik, C.M., et al., 1997, in "Microtubule-associated proteins: modifications in disease", Eds. Avila, J., Brandt, R. and Kosik, K. S. (Harwood Academic Publishers, Amsterdam) pp. 185-241).

In the course of their formation and accumulation, PHFs first assemble to form amorphous aggregates within the cytoplasm, probably from early tau oligomers which become truncated prior to, or in the course of, PHF assembly (see, e.g., Mena, R., et al., 1995, Acta Neuropathol., Vol. 89, pp. 50-56; Mena, R., et al., 1996, Acta Neuropathol., Vol. 91, pp. 633-641). These filaments then go on to form classical intracellular NFTs. In this state, the PHFs consist of a core of truncated tau and a fuzzy outer coat containing

Xanthylium compounds (also known as pyronine compounds) have previously been shown to act as fluorescent dyes. Xanthylium compounds previously disclosed include:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure and Name</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>Cl⁻</td>
</tr>
<tr>
<td></td>
<td>2,3,6,7,12,13,16,17-Octahydro-1H,5H,11H,15H-diquinolizino[1,9-bc:1',9'-hi] xanthylium chloride</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>ClO₄⁻</td>
</tr>
<tr>
<td></td>
<td>8-[(Trifluoromethyl)-2,3,5,6,11,12,14,15-octahydro-1H,4H,10H,13H-diquinolizino[9,9a,1-bc;9',9a'1'-hi] xanthylium perchlorate</td>
<td></td>
</tr>
<tr>
<td>Compound</td>
<td>Structure and Name</td>
<td>Citation</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| X | ![Structure X](image) | ClO₄⁻[−]
2,3,6,7,12,13,16,17-Octahydro-1H,5H,11H,15H-diquinolizino[1,9-bc:1′,9′-hi] xanthylum perchlorate | See e.g.: Prostota et al. |
| E | ![Structure E](image) | Cl⁻[−]
3,6-Bis-diethylamino xanthylum chloride | See e.g.: J. Biehringer
Journal Fur Praktische Chemie |
| G | ![Structure G](image) | FeCl₄⁻[−]
3,6-Bis-diethylamino xanthylum iron tetrachloride | See e.g.: JP 2000 344684 Chamberlin et al. |
| LZ | ![Structure LZ](image) | ZnCl₃⁻[−]
3,6-Bis(dimethylamino)thioxanthylum zinc trichloride | See e.g.: Nealey et al. |
| LP | ![Structure LP](image) | ClO₄⁻[−]
3,6-Bis(dimethylamino)thioxanthylum perchlorate | See e.g.: Müller et al. |
<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure and Name</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC</td>
<td> (Cl^-)</td>
<td>See e.g.: Gloster et al.</td>
</tr>
<tr>
<td>MP</td>
<td> (ClO_4^-)</td>
<td>See e.g.: Müller et al.</td>
</tr>
<tr>
<td>O</td>
<td> (ClO_4^-)</td>
<td>See e.g.: Müller et al.</td>
</tr>
<tr>
<td>Y</td>
<td> (ZnCl_3^-)</td>
<td>See e.g.: Albert</td>
</tr>
<tr>
<td>Z</td>
<td> (Cl^-)</td>
<td>See e.g.: DE 65282</td>
</tr>
</tbody>
</table>
JP 2000/344684 describes the use of xanthylium compounds, such as compound G and AA, as probes for diseases which accumulate β-amyloid protein.

WO 96/30766 describes the use of a xanthylium compound, DMAXC, as capable of inhibiting tau-tau protein interactions:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure and Name</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td> 9-(2-Carboxyethyl)-3,6-Bis-dimethylamino xanthylium chloride</td>
<td>See e.g.: JP 2000/344684</td>
</tr>
<tr>
<td>AL</td>
<td> 2,6,10-Tris-diethylamino-4,8,12-trioxatrianguleum hexafluorophosphate</td>
<td>See e.g.: Laursen, et al</td>
</tr>
</tbody>
</table>

Diaminophenothiazines have previously been shown to inhibit tau protein aggregation and to disrupt the structure of PHFs, and reverse the proteolytic stability of the PHF core (see, e.g., WO 96/30766, F Hoffman-La Roche). Such compounds were disclosed for
use in the treatment or prophylaxis of various diseases, including Alzheimer's disease. These included, amongst others:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure and Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTC</td>
<td></td>
</tr>
<tr>
<td>DMMTC</td>
<td></td>
</tr>
</tbody>
</table>

It will be understood that the term 'xanthylum compounds', as used herein, refers generally to compounds having a xanthylum core structure and compounds having related core structures including, but not limited to thioxanthylum, phenazinium, oxazinium, and thioninium.

Notwithstanding the above disclosures, it will be appreciated that the provision of one or more xanthylum compounds, not previously specifically identified as being effective tau protein aggregation inhibitors, would provide a contribution to the art.

Description of the Invention

As discussed above, tau proteins are characterised as being one among a larger number of protein families which co-purify with microtubules during repeated cycles of assembly and disassembly (Shelanski *et al.* Proc. Natl. Acad. Sci. USA **1973**, 70, 765-768), and are known as microtubule-associated-proteins (MAPs). Members of the tau family share the common features of having a characteristic N-terminal segment, sequences of approximately 50 amino acids inserted in the N-terminal segment, which are developmentally regulated in the brain, a characteristic tandem repeat region consisting of 3 or 4 tandem repeats of 31-32 amino acids, and a C-terminal tail.
One or more of the xanthylum compounds are known in the art - for example compound A (2,3,6,7,12,13,16,17-Octahydro-1H,5H,1H,15H-diquinolizino[1,9-bc:1',9'-hi] xanthylum chloride) is described in US 3 932 415. However it is believed that none of these have previously been disclosed in the prior art as tau protein aggregation inhibitors.

The invention therefore relates to methods, uses, compositions and other materials employing these compounds as tau protein aggregation inhibitors and as therapeutics or prophylactics of diseases associated with tau protein aggregation ("tauopathies"). The invention further provides processes for making these compounds.

These and other aspects of the invention are discussed in more detail hereinafter.

Compounds

In one aspect the present invention provides compounds of formula (I), and particularly their use in medicine:

\[
\begin{align*}
\text{X}^- & \quad \text{I} \\
\text{X}_1^{13a} & \quad \text{R}_1^{13a} \\
\text{X}_1^{13b} & \quad \text{R}_1^{13b} \\
\text{X}_1^{14a} & \quad \text{R}_1^{14a} \\
\text{X}_1^{14b} & \quad \text{R}_1^{14b} \\
\text{X}_1^{15a} & \quad \text{R}_1^{15a} \\
\text{X}_1^{16a} & \quad \text{R}_1^{16a} \\
\text{X}_1^{16b} & \quad \text{R}_1^{16b} \\
\end{align*}
\]

wherein:

- \(\text{X}\) is an anion;
- \(\text{R}^6\) is independently -H, or saturated \(\text{C}_1-4\) alkyl, which is unsubstituted or substituted with one or more substituents - \(\text{R}^6\); or phenyl, which is unsubstituted or substituted with one or more substituents - \(\text{R}^6\);
- each \(\text{R}^6\) is independently selected from -F, -Cl, -Br, -I, -OH, -OR\(^6\), -SH, -SR\(^6\), -CN, -NO\(_2\), -NH\(_2\), -NHR\(^6\), -NR\(^6\), -NHC(=O)R\(^6\), -C(=O)OR\(^6\), -OC(=O)R\(^6\), -C(=O)NH\(^2\), -C(=O)NR\(^6\), -C(=O)NR\(^6\), -C(=O)R\(^6\), -C(=O)OH, -S(=O)R\(^6\), -S(=O) \(_2\)R\(^6\), and -S(=O)\(_2\)OH; and
- each \(\text{R}^6\) is independently saturated aliphatic \(\text{C}_1-4\) alkyl, phenyl, or benzyl;

In one embodiment - \(\text{R}^6\) and \(\text{R}^6\) are each independently selected from H and saturated aliphatic \(\text{C}_1-4\) alkyl.

In one embodiment - \(\text{R}^6\), and - \(\text{R}^6\) are all H, providing a compound of formula (I).
wherein X and R^5 are as defined above.

In one embodiment - R^5 is independently -H, or saturated C$_{1-6}$ alkyl, which is unsubstituted or substituted with one or more substituents -R^{5A}.

In one embodiment, the compound of the invention is a compound of formula (I) or (I') with the proviso that the compound is not:

- 2,3,6,7, 12,13,16,17-octahydro-1H,5H,1H,15H-diquinolizino[1',9'-hi]
 xanthylum chloride ("compound A");
- 8-(trifluoromethyl)-2,3,5,6,1 1,12,14,15-octahydro-1H,4H,10H,13H-diquinoli2ino[9,9a,1-bc;9',9a'1'-hi] xanthylum perchlorate ("compound C"); or
- 2,3,6,7, 12, 13, 16, 17-octahydro-1H,5H, 11H,15H-diquinolizino[1',9'-hi]
 xanthylum perchlorate ("compound X").

In a further aspect of the present invention there are provided compounds of formula (II) and particularly their use in medicine:

wherein:

- X^- is a counter ion;
- Y is O, and Z is N or C-R^5; or
- Y is NH, and Z is N; or
Y is S, and Z is C-R^5;
-R^1 and -R^2, are each independently saturated C_{1-6} alkyl,
or R^1 and R^2, together with the nitrogen atom to which they are bound, form a
saturated C_3^7 heterocycle;
-R^3 and -R^4 are each independently saturated d^4 alkyl,
or R^3 and R^4, together with the nitrogen atom to which they are bound, form a
saturated C_3^7 heterocycle;
-R^5 is independently -H, saturated C_{1-6} alkyl, which is unsubstituted or substituted
with one or more substituents -R^{6a}, or phenyl, which is unsubstituted or substituted with
one or more substituents -R^{6a};

each -R^{6a} is independently selected from -F, -Cl, -Br, -I, -OH, -OR^6, -SH, -SR^6,
-CN, -NO_2, -NH_2, -NHR^6, -NR^6_2, -NHC(=O)R^6, -NR^6C(=O)R^6, -C(=O)OR^6, -OC(=O)R^6,
-C(=O)NH_2, -C(=O)NHR^6, -C(=O)NR^6_2, -C(=O)R^6, -C(=O)OH, -S(=O)R^6, -S(=O)_{2}R^6, and
-S(=O)_2OH;

each -R^6 is independently selected from -F, -Cl, -Br, -I, -OH, -OR^6, -SH, -SR^6,
-CN, -NO_2, -NH_2, -NHR^6, -NR^6_2, -NHC(=O)R^6, -NR^6C(=O)R^6, -C(=O)OR^6, -OC(=O)R^6,
-C(=O)NH_2, -C(=O)NHR^6, -C(=O)NR^6_2, -C(=O)R^6, -C(=O)OH, -S(=O)R^6, -S(=O)_{2}R^6, and
-S(=O)_2OH;

-R^7 and -R^8 are each independently selected from: -H, saturated C_{1,4} alkyl,
C_{2,4} alkenyl, and halogenated C_{1,4} alkyl; and
additionally, when Z is C-R^5 and R^5 is phenyl, -R^7 and -R^8 may each
independently be a bridging group, W, which is bonded to said R^5; and

W is O, NR^17, S, or C(R^{17})_2 wherein each R^{17} is independently selected from H,
saturated aliphatic C_{1,4} alkyl, and R^{6a}.

In one embodiment, -R^1, -R^2, -R^3 and -R^4 are each independently saturated aliphatic
C_{1-6} alkyl.

In one embodiment, -R^7 and -R^8 are each independently selected from: -H, saturated
C_{1-4} alkyl, C_{2-4} alkenyl, and halogenated C_{1,4} alkyl.

In one embodiment, -R^8 is independently -H, saturated d^6 alkyl, which is unsubstituted or
substituted with one or more substituents -R^{6a}.

In one embodiment, at least one of -R^1, -R^2, -R^3 and -R^4 is independently unsubstituted
saturated aliphatic C_{2-6} alkyl.

In one embodiment, the compound of the invention is a compound of formula (II) with the
proviso that the compound is not:
3,6-bis(dimethylamino)thioxanthylum zinc trichloride ("compound LZ");
3,6-bis(dimethylamino)thioxanthylum perchlorate ("compound LP");
3,7-bis(dimethylamino)phenazinium chloride ("compound MC");
3,7-Bis(dimethylamino)phenazinium perchlorate ("compound MP"); or
3,7-bis(dimethylamino)oxazinium chloride ("compound O").

In another embodiment, the compound of the invention is a compound of formula (II) with the proviso that the compound is not:

3,6-bis-diethylamino xanthylum chloride ("compound E");
3,6-bis-diethylamino xanthylum iron tetrachloride ("compound G"); or
3,6-bis-diethylamino xanthylum zinc trichloride ("compound Y").

In another embodiment, the compound of the invention is a compound of formula (II) with the proviso that the compound is not 9-(2-carboxyethyl)-3,6-Bis-dimethylamino xanthylum chloride ("compound AA").

In another embodiment, the compound of the invention is a compound of formula (II) with the proviso that the compound is not 3,6-bis-dimethylamino xanthylum chloride ("DMAXC").

* * * * *

In a preferred embodiment of the invention there are provided compounds of formula (Na) and particularly their use in medicine:

wherein:

X⁺ is a counter ion;

- R⁹ and - R¹⁰ are each independently saturated C₄₋₆ alkyl; or - R⁹ and - R¹⁰, together with the nitrogen atom to which they are bound, form a saturated C₃₋₇ heterocycle;

- R¹¹ and - R¹₂ are each independently saturated C₄₋₆ alkyl, or - R¹¹ and - R¹₂, together with the nitrogen atom to which they are bound, form a saturated C₃₋₇ heterocycle; and

- R⁵ is defined according to the compounds of formula (II).
In one embodiment, \(R_9, - R_{10}, - R_{11} \) and \(- R_{12} \) are each independently saturated \(\text{C}_2\text{-}6\text{alkyl}. \)

In one embodiment, the compound of the invention is a compound of formula (Ma) with the proviso that the compound is not:

- \(3,6\text{-}\text{bis-diethylamino xanthylum chloride} \) ("compound E");
- \(3,6\text{-}\text{bis-diethylamino xanthylum iron tetrachloride} \) ("compound G");
- \(3,6\text{-}\text{bis-diethylamino xanthylum zinc trichloride} \) ("compound Y");

In one embodiment, the compound of the invention is a compound of formula (Ua) with the proviso that the compound is not \(3,6\text{-}\text{bis-dimethylamino xanthylum chloride} \) (DMAXC).

In a preferred embodiment of the invention there are provided compounds of formula (Iib) and particularly their use in medicine:

\[
\begin{matrix}
R^1 & R^7 \\
R^2 & Z \\
R^3 & R^8 \\
R^4 & N^1 \\
R^5 & N^2 \\
\end{matrix}
\]

wherein:

- \(X^- \) is a counter ion;
- \(Y \) is O or NH, and \(Z \) is N; or
- \(Y \) is S, and \(Z \) is C-R^5;
- \(\text{N} = \text{R}^6 \text{ancl} = \text{R}^8 \text{ated} \text{defin} \text{ed} \text{ac} \text{c} \text{or} \text{d} \) to the "COMP" of formula (II).

In one embodiment, the compound of the invention is a compound of formula (Iib) with the proviso that the compound is not:

- \(3,6\text{-}\text{bis(dimethylamino)thioxanthylum zinc trichloride} \) ("compound L");
- \(3,7\text{-}\text{bis(dimethylamino)phenazinium chloride} \) ("compound M"); or
- \(3,7\text{-}\text{bis(dimethylamino)oxazinium chloride} \) ("compound O").
In an alternative embodiment of the invention, there are provided compounds of formula (Ie) and particularly their use in medicine:

\[
\begin{align*}
\text{(IIe)}
\end{align*}
\]

wherein:

- \(X^−\) is a counter ion;
- \(Y\) is O or S;
- \(-R^9\) and \(-R^{10}\) are each independently saturated \(C_{1-6}\) alkyl; or \(R^9\) and \(R^{10}\), together with the nitrogen atom to which they are bound, form a saturated \(C_{3-7}\) heterocycle;
- \(-R^{11}\) and \(-R^{12}\) are each independently saturated Chalkyl, or \(R^{11}\) and \(R^{12}\), together with the nitrogen atom to which they are bound, form a saturated \(C_{3-7}\) heterocycle; and
- \(-R^5\) is defined according to the compounds of formula (II).

In one embodiment, \(R^9\), \(-R^{10}\), \(-R^{11}\) and \(-R^{12}\) are each independently saturated \(C_{2-6}\) alkyl.

In one embodiment, the compound of the invention is a compound of formula (Ie) with the proviso that the compound is not:
- 3,6-bis-diethylamino xanthylum chloride ("compound E");
- 376=bis-diethylamino xanthylum iron tetrachloride ("compound G") or
- 3,6-bis-diethylamino xanthylum zinc trichloride ("compound Y")

In one embodiment, the compound of the invention is a compound of formula (Ie) with the proviso that the compound is not 3,6-bis-dimethylamino xanthylum chloride (DMAXC).
In an alternative embodiment, there are provided compounds wherein \(Z \) is C-R\(^5 \), R\(^5 \) is phenyl, and - R\(^7 \) and - R\(^8 \) are each independently a bridging group, W, which is bonded to said R\(^5 \), and their use in medicine.

These compounds can also be described as compounds of formula (VI):

\[
\text{Diagram of structure (VI)}
\]

wherein X\(^-\), Y, W, - R\(^1\), - R\(^2\), - R\(^3\), - R\(^4\) and - R\(^{5A}\) are as defined according to the compounds of formula (II).

In one embodiment, at least one of - R\(^1\), - R\(^2\), - R\(^3\) and - R\(^4\) is independently unsubstituted saturated aliphatic C\(_{2\text{m}}\)alkyl.

In one embodiment, the compound of the invention is a compound of formula (VI) with the proviso that the compound is not 2,6,10-tris-diethylamino-4,8, 12-trioxatrianguleum hexafluorophosphate ("compound AL").

In a preferred embodiment of the invention, there are provided compounds of formula -(Vla)-and-particularly-their-use-in-medicine:-

\[
\text{Diagram of structure (Vla)}
\]

wherein X\(^-\), - R\(^1\), - R\(^2\), - R\(^3\), - R\(^4\), - R\(^5\) and - R\(^{5A}\) are as defined according to the compounds of formula (VI).
In one embodiment, the compound of the invention is a compound of formula (Via) with the proviso that the compound is not 2,6,10-tris-diethylamino-4,8,12-trioxatrianguleum hexafluorophosphate ('compound AL').

In a further aspect of the present invention there are provided compounds of formula (III), and particularly their use in medicine:

\[
\begin{array}{c}
\text{\[R^9, R^{10}, R^{11}, R^{12}\]}
\end{array}
\]

wherein:

- \(X^+\) is a counter ion;
- \(Y\) is O or S;
- \(-R^9\) and \(-R^{10}\) are each independently saturated \(C_{1-6}\) alkyl; or \(R^9\) and \(R^{10}\), together with the nitrogen atom to which they are bound, form a saturated \(C_{3-7}\) heterocycle;
- \(-R^{11}\) and \(-R^{12}\) are each independently saturated \(C_{1-6}\) alkyl, or \(R^{11}\) and \(R^{12}\), together with the nitrogen atom to which they are bound, form a saturated \(C_{3-7}\) heterocycle; and
- \(-R^5\) is defined according to the compounds of formula (II).

In one embodiment, \(R^9, -R^{10}, -R^{11}\) and \(-R^{12}\) are each independently saturated \(C_{2-6}\) alkyl.

In one embodiment, the compound of the invention is a compound of formula (III) with the proviso that the compound is not 3,6-bis-diethylamino xanthene dihydrochloride ("compound H").

The compounds (I), (Ic), (II), (Ha), (Mb), (lie), (III), (VI), and (Via) are described herein as "xanthylum compounds" or "compounds of the invention" or (unless context demands otherwise) "active compounds".
The preferred counter ions and substituents for the compounds (I), (Ic), (II), (Ha), (lib), (lie), (III), (Vl) and (Via) are each independently selected from H and saturated aliphatic C₁₋₄ alkyl.

Preferences for X

X⁻ is a counter ion. X⁻ is one or more anionic counter ions to achieve electrical neutrality.

In one embodiment, X⁻ is one anionic counter ion.

In one embodiment, each X⁻ is a pharmaceutically acceptable anion.

In one embodiment, each X⁻ may be selected from the group consisting of: NO₃⁻, ClO₄⁻, F⁻, Cl⁻, Br⁻, I⁻, ZnCl₃⁻, FeCl₄⁻, and PF₆⁻.

In one embodiment, each X⁻ may be selected from NO₃⁻, Cl⁻, and ClO₄⁻.

In one embodiment, each X⁻ may be selected from NO₃⁻, Cl⁻, Br⁻ and FeCl₄⁻.

In one embodiment, each X⁻ may be selected from I⁻, Br⁻, NO₃⁻ and Cl⁻.

X⁻ may be ZnCl₃⁻.
X⁻ may be NO₃⁻.
X⁻ may be Cl⁻.
X⁻ may be ClO₄⁻.
X⁻ may be Br⁻.
X⁻ may be I⁻.
X⁻ may be FeCl₄⁻.

In one embodiment, X⁻ is a mixed anionic counter ion. In one embodiment, the compound is in the form of a mixed salt, for example, a HNO₃ mixed salt. In one embodiment the compound is in the form of a NO₃⁻ and HNO₃ mixed salt.

Preferences for -R₁³a, -R₁³b, -R₁⁴a, -R₁⁴b, -R₁⁵a, -R₁⁵b, -R₁⁶a, and -R₁⁶b

- R₁³a, - R₁³b, - R₁⁴a, - R₁⁴b, - R₁⁵a, - R₁⁵b, - R₁⁶a, and - R₁⁶b are each independently selected from H and saturated aliphatic C₁₋₄ alkyl.
In one embodiment, -R\textsubscript{13a}, -R\textsubscript{13b}, -R\textsubscript{14a}, -R\textsubscript{14b}, -R\textsubscript{15a}, -R\textsubscript{15b}, -R\textsubscript{16a}, and -R\textsubscript{16b} are each independently H.

In one embodiment, -R\textsubscript{13a}, -R\textsubscript{13b}, -R\textsubscript{14a}, -R\textsubscript{14b}, -R\textsubscript{15a}, -R\textsubscript{15b}, -R\textsubscript{16a}, and -R\textsubscript{16b} are all H.

In one embodiment, -R\textsubscript{13a}, -R\textsubscript{13b}, -R\textsubscript{14a}, -R\textsubscript{14b}, -R\textsubscript{15a}, -R\textsubscript{15b}, -R\textsubscript{16a}, and -R\textsubscript{16b} are each independently saturated aliphatic C\textsubscript{1-4} alkyl.

In one embodiment, -R\textsubscript{13a}, -R\textsubscript{13b}, -R\textsubscript{14a}, -R\textsubscript{14b}, -R\textsubscript{15a}, -R\textsubscript{15b}, -R\textsubscript{16a}, and -R\textsubscript{16b} are each independently selected from methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, and t-butyl.

In one embodiment, -R\textsubscript{13a}, -R\textsubscript{13b}, -R\textsubscript{14a}, -R\textsubscript{14b}, -R\textsubscript{15a}, -R\textsubscript{15b}, -R\textsubscript{16a}, and -R\textsubscript{16b} are each independently methyl or ethyl.

In one embodiment, -R\textsubscript{13a}, -R\textsubscript{13b}, -R\textsubscript{14a}, -R\textsubscript{14b}, -R\textsubscript{15a}, -R\textsubscript{15b}, -R\textsubscript{16a}, and -R\textsubscript{16b} are each independently methyl.

Preferences for Y, Z, and W

For the compounds of formula (II), Y is independently O, NH or S.

In one embodiment, Y is O.

In one embodiment, Y is NH.

In one embodiment, Y is S.

In one embodiment, Y is O or NH, and Z is N.

In one embodiment, Y is O or S, and Z is C-R\textsubscript{5}.

In one embodiment, Y is O, and Z is N or C-R\textsubscript{5}.

In one embodiment, Y is O, and Z is N.

In one embodiment, Y is O, and Z is C-R\textsubscript{5}.

For the compounds of formula (Iib), Y is independently O, NH or S.

In one embodiment, Y is O, and Z is N.

In one embodiment, Y is NH, and Z is N.

In one embodiment, Y is S, and Z is C-R\textsubscript{5}.

For the compounds of formula (Iic), Y is independently O or S.

In one embodiment, Y is O.

In one embodiment, Y is S.

For the compounds of formula (III), Y is independently O or S.

In one embodiment, Y is O.

In one embodiment, Y is S.
For the compounds of formula (IV), Y is independently O, NH or S.
In one embodiment, Y is O.
In one embodiment, Y is NH.
In one embodiment, Y is S.
5
Each W is independently O, NR17, CR17\textsubscript{2}, or S.
In one embodiment, each W is independently O, NR17 or S.
In one embodiment, each W is independently O, NH or S.
In one embodiment, each W is independently O or S.
10
In one embodiment, each W is independently O.
In one embodiment, each W is independently CR17\textsubscript{2}.
15
In one embodiment, each W is independently CH\textsubscript{2}.
Preferences for - R17
Each R17 is independently H, saturated aliphatic C\textsubscript{1-4} alkyl, or is as defined for R6A.
In one embodiment, each R17 is H.
In one embodiment, each R17 is independently H or saturated aliphatic C\textsubscript{1-4} alkyl.
In one embodiment, each R17 is independently saturated aliphatic C\textsubscript{1-4} alkyl.
In one embodiment, each R17 is independently selected from methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, and t-butyl.
20
In one embodiment, each R17 is independently selected from H or methyl.
In one embodiment W is NR17 and R17 is H or saturated aliphatic C\textsubscript{1-4} alkyl.
In one embodiment W is NR17 and R17 is H.
in one embodiment vv is NR17 and R17 is saturated aliphatic C\textsubscript{1-4} alkyl.
30
In one embodiment W is CR17\textsubscript{2} and each R17 is H or saturated aliphatic C\textsubscript{1-4} alkyl.
In one embodiment W is CR17\textsubscript{2} and each R17 is H.
In one embodiment W is CR17\textsubscript{2} wherein one R17 is H and the other is saturated aliphatic C\textsubscript{1-4} alkyl.
In one embodiment W is CR17\textsubscript{2} and each R17 is saturated aliphatic C\textsubscript{1-4} alkyl.
35
Preferences for - R1, - R2, - R3 and - R4
In one embodiment, - R1 and - R2, are each independently saturated d8alkyl,
or R1 and R2, together with the nitrogen atom to which they are bound, form a saturated
C\textsubscript{5-7} heterocycle; and - R3 and - R4 are each independently saturated C\textsubscript{1-6}alkyl.
\(\text{O} \text{R}^3 \text{ and R}^4 \), together with the nitrogen atom to which they are bound, form a saturated C\(_{3-7}\) heterocycle.

In one embodiment, -R\(^1\), -R\(^2\), -R\(^3\) and -R\(^4\) are each independently saturated aliphatic C\(_{1-5}\) alkyl.

In one embodiment, at least one of -R\(^1\), -R\(^2\), -R\(^3\) and -R\(^4\) is independently saturated aliphatic C\(_{2-6}\) alkyl.

In one embodiment, -R\(^1\), -R\(^2\), -R\(^3\) and -R\(^4\) are each independently saturated aliphatic C\(_{2-6}\) alkyl.

In one embodiment, -R\(^1\), -R\(^2\), -R\(^3\) and -R\(^4\) are each independently saturated C\(_{3-6}\) cycloalkyl.

In one embodiment, at least one of -R\(^1\), -R\(^2\), -R\(^3\) and -R\(^4\) is independently saturated C\(_{3-6}\) cycloalkyl.

In one embodiment, -R\(^1\), -R\(^2\), -R\(^3\) and -R\(^4\) are defined according to -R\(^9\), -R\(^10\), -R\(^11\) and -R\(^12\) respectively.

In one embodiment, -R\(^1\) and -R\(^2\) are the same.

In one embodiment, -R\(^1\) and -R\(^2\) are each -Me.

In one embodiment, -R\(^1\) and -R\(^2\) are each -Et.

In one embodiment, -R\(^1\) and -R\(^3\) are the same.

In one embodiment, -R\(^3\) and -R\(^3\) are the same.

In one embodiment, -R\(^3\) and -R\(^4\) are each -Me.

In one embodiment, -R\(^3\) and -R\(^4\) are each -Et.

In one embodiment, -R\(^2\) and -R\(^4\) are the same.

In one embodiment, one of -R\(^1\) and -R\(^2\) is -Me.

In one embodiment, one of -R\(^1\) and -R\(^2\) is -Et.

In one embodiment, one of -R\(^3\) and -R\(^3\) is -Me.

In one embodiment, one of -R\(^3\) and -R\(^3\) is -Et.

In one embodiment, -R\(^1\), -R\(^2\), -R\(^3\) and -R\(^4\) are each -Me.

In one embodiment, -R\(^1\), -R\(^2\), -R\(^3\) and -R\(^4\) are each -Et.

In one embodiment, -R\(^1\) and -R\(^2\), together with the nitrogen atom to which they are bound, form a saturated C\(_{3-7}\) heterocycle; and -R\(^3\) and -R\(^4\), together with the nitrogen atom to which they are bound, independently form a saturated C\(_{3-7}\) heterocycle.

In one embodiment the saturated C\(_{3-7}\) heterocycle formed by R\(^1\) and R\(^2\) and the saturated C\(_{3-7}\) heterocycle formed by R\(^3\) and R\(^4\) are independently selected from: aziridine,
azetidine, pyrrolidine, imidazolidine, pyrazolidine, oxazolidine, isoxazolidine, piperidine, piperazine, morpholine, azepine, oxazepine, and diazepine.

In one embodiment the saturated C_{3-7} heterocycle formed by R^1 and R^2 and the saturated C_{3-7} heterocycle formed by R^3 and R^4 are independently selected from: morpholine, piperidine, and pyrrolidine.

In one embodiment the saturated C_{3-7} heterocycle is morpholine.

In one embodiment the saturated C_{3-7} heterocycle is piperidine.

In one embodiment the saturated C_{3-7} heterocycle is pyrrolidine.

In one embodiment the saturated C_{3-7} heterocycle formed by R^1 and R^2 and the saturated C_{3-7} heterocycle formed by R^3 and R^4 are the same.

Preferences for $-R^5$ and $-R^{5A}$

In one embodiment, $-R^5$ is independently -H, saturated C_{1-6} alkyl, which is unsubstituted or substituted with one or more substituents $-R^{5A}$, or phenyl, which is unsubstituted or substituted with one or more substituents $-R^{5A}$. $-R^{5A}$ is independently selected from -F, -Cl, -Br, -I, -OH, -OR, -SH, -SR, -CN, -NO$_2$, -NH$_2$, -NHR, -NR, -NHC(O)R, -NR, -C(O)OR, -OC(O)R, -C(O)NH$_2$, -C(O)NHR, -C(O)NR, -C(O)R, -C(O)OH, -S(O)R, -S(O)$_2$R, and -S(O)$_2$OH.

In one embodiment, $-R^5$ is -H.

In one embodiment, $-R^5$ is saturated aliphatic C_{1-6} alkyl, which is unsubstituted or substituted with one or more substituents $-R^{5A}$.

In one embodiment, $-R^5$ is saturated C_{3-4} cycloalkyl or saturated aliphatic C_{1-4} alkyl, both of which are unsubstituted or substituted with one or more substituents $-R^{5A}$.

In one embodiment, $-R^5$ is saturated C_{3-4} cycloalkyl, which is unsubstituted or substituted with one or more substituents $-R^{5A}$.

In one embodiment, $-R^5$ is unsubstituted saturated aliphatic C_{1-4} alkyl.

In one embodiment, $-R^5$ is saturated aliphatic C_{1-4} alkyl, which is unsubstituted or substituted with one or more substituents $-R^{5A}$.

In one embodiment, $-R^5$ is C_{1-4} alkyl substituted with one or more substituents $-R^{5A}$.

In one embodiment, $-R^5$ is saturated aliphatic C_{1-4} alkyl substituted with one or more substituents $-R^{5A}$.
In one embodiment, -R₅ is -Me or -Et, which is unsubstituted or substituted with one or more substituents -R₅\.

In one embodiment, -R₅ is -CF₃ or -Et.

In one embodiment, -R₅ is -CF₃.

In one embodiment, -R₅ is -Et.

In one embodiment, -R₅ is independently phenyl, which is unsubstituted or substituted with one or more substituents -R₅\.

In one embodiment, -R₅ is independently phenyl, which is substituted with one or more substituents -R₅\.

When R₅ is phenyl, it may be substituted with one or more substituents -R₅ in a position ortho, meta or para to the tricyclic core.

In one embodiment, a substituent -R₅ is in the ortho position.

In one embodiment, a substituent -R₅ is in the meta position.

In one embodiment, a substituent -R₅ is in the para position.

In one embodiment, each -R₅ is independently selected from -F, -Cl, -Br, -I, -OH, -OR₆, -SR₆, -NO₂, -NH₂, -NHR₆, -NR₂, -NHC(O)=O=O(R)₆, -C(O)=O=O(R)₆, -C(O)=O=O(OH).

In one embodiment, each -R₅ is independently selected from -F, -Cl, -Br, -I, -OH, -OR₆, -SR₆, -NO₂, -NH₂, -NHR₆, -NR₂, -NHC(O)=O=O(R)₆, -C(O)=O=O(R)₆, -C(O)=O=O(OH).

In one embodiment, each -R₅ is independently selected from -F, -Cl, -Br, -I, -OH, -OR₆, -SR₆, -NO₂, -NH₂, -NHR₆, -NR₂.

In one embodiment, each -R₅ is independently selected from -F, -Cl, -Br, -I, or -OH.

In one embodiment, each -R₅ is independently selected from -F, -Cl, -Br, or -I.

In one embodiment, each R₅ is independently selected from -NH₂, -NHR₆, -NR₂ and -NO₂.

In one embodiment, each R₅ is independently selected from -NR₂ and -NO₂.

In one embodiment, -R₅ is substituted with one substituent -R₅\.

In one embodiment, -R₅ is substituted with two substituents -R₅\. The substituents may be the same or different.

In one embodiment, -R₅ is substituted with three substituents -R₅\. The substituents may be the same or different.
Preferences for -R₆

Each -R₆ is independently saturated aliphatic C₁₋₄ alkyl, phenyl, or benzyl.

In one embodiment, -R₆ is saturated aliphatic d^alkyl.
In one embodiment, -R₆ is phenyl.
In one embodiment, -R₆ is benzyl.

Preferences for -R⁷ and -R⁸

-R⁷ and -R⁸ are each independently selected from: -H, saturated C₁₋₄ alkyl, C₂₋₄ alkenyl, and halogenated C₁₋₄ alkyl; and

10 additionally, when Z is C-R⁵ and R⁵ is phenyl, - R⁷ and - R⁸ may each independently be a bridging group, W, which is bonded to said R⁵.

In one embodiment -R⁷ and -R⁸ are each independently selected from: -H; saturated C₁₋₄ alkyl; C₂₋₄ alkenyl; and halogenated C₁₋₄ alkyl.

In one embodiment, -R⁷ and -R⁸ are each independently -H.

In one embodiment, the C₁₋₄ alkyl groups are selected from: linear C₁₋₄ alkyl groups, such as -Me, -Et, -nPr, -iPr, and -nBu; branched C^alkyl groups, such as -iPr, -iBu, -sBu, and -tBu; and cyclic C₃₋₄ alkyl groups, such as -cPr and -cBu.

In one embodiment, the C₂₋₄ alkenyl groups are selected from linear C₁₋₄ alkenyl groups, such as -CH=CH₂ (vinyl) and -CH₂-CH=CH₂ (allyl).

25 In one embodiment, the halogenated C₁₋₄ alkyl groups are selected from: -CF₃, -CH₂CF₃, and -CF₂CF₃.

In one embodiment, each of -R⁷ and -R⁸ is independently C₁₋₄ alkyl.

In one embodiment, each of -R⁷ and -R⁸ is independently -H, -Me, -Et, or -CF₃.
In one embodiment, each of -R⁷ and -R⁸ is independently -H, -Me, or -Et.
30 In one embodiment, each of -R⁷ and -R⁸ is independently -H.
In one embodiment, each of -R⁷ and -R⁸ is independently -Me.
In one embodiment, each of -R⁷ and -R⁸ is independently -Et.

In one embodiment, -R⁷ and -R⁸ are the same.
In one embodiment, -R⁷ and -R⁸ are different.
In one embodiment, when Z is C-R^5 and R^5 is phenyl, - R^7 and - R^8 may each independently be a bridging group, W, which is bonded to said R^5.

In one embodiment, - R^7 and - R^8 are each a bridging group, W, which is bonded to said phenyl group R^5.

In one embodiment, - R^7 and - R^8 are each a bridging group, W, which is bonded to said phenyl group R^5 at an ortho position, relative to the xanthylum core, to produce a six-membered fused ring.

In one embodiment, both - R^7 and - R^8 are bridging groups, W, and are each bonded to said phenyl group R^5 at respective ortho positions, to produce six-membered fused rings as shown in formula (VI).

Preferences for -R^9, -R^10, -R^11 and -R^12

-R^9, -R^10, -R^11 and -R^12 are each independently saturated C^alkyl.

In one embodiment, -R^9, -R^10, -R^11 and -R^12 are each independently saturated C_{26}alkyl.

In one embodiment, the C_{26}alkyl groups are selected from: linear C_{26}alkyl groups, such as -Et, -nPr, -iPr, and -nBu; branched C_{3,4}alkyl groups, such as -iPr, -iBu, -sBu, and -tBu; and cyclic C_{3,4}alkyl groups, such as -cPr and -cBu.

In one embodiment, each -R^9, -R^10, -R^11 and -R^12 is independently saturated C_{3,6}cycloalkyl or unsubstituted saturated aliphatic C_{2,6}alkyl.

In one embodiment, each -R^9, -R^10, -R^11 and -R^12 is independently saturated C_{3,6}cycloalkyl.

In one embodiment, each -R^9, -R^10, -R^11 and -R^12 is independently saturated aliphatic U_{2,6}alkyl.

In one embodiment, each -R^9, -R^10, -R^11 and -R^12 is independently saturated aliphatic C_{2,4}alkyl.

In one embodiment each -R^9, -R^10, -R^11 and -R^12 is independently selected from -Et; -n-Pr, -/so-Pr, -n-Bu, -sec-Bu, -/so-Bu, and -terf-Bu.

In one embodiment, one of -R^9 and -R^10 is -Et.

In one embodiment, one of -R^11 and -R^12 is -Et.

In one embodiment, -R^9 and -R^10 are the same.

In one embodiment, -R^9 and -R^10 are each -Et.
In one embodiment, -R₁¹ and -R₁² are the same.
In one embodiment, -R₁¹ and -R₁² are each -Et.

In one embodiment, -R₉ and -R₁¹ are the same. In one embodiment -R₉ and -R₁¹ are each -Et.

In one embodiment, -R₁⁰ and -R₁² are the same. In one embodiment, -R₁⁰ and -R₁² are each -Et.

In one embodiment, -R₉, -R₁⁰, -R₁¹ and -R₁² are the same.
In one embodiment, -R₉, -R₁⁰, -R₁¹ and -R₁² are each -Et.

In one embodiment, -R₉ and -R₁⁰, together with the nitrogen atom to which they are bound, form a saturated C₃₋₇ heterocycle; and -R₁¹ and -R₁², together with the nitrogen atom to which they are bound, independently form a saturated C₃₋₇ heterocycle.

In one embodiment the saturated C₃₋₇ heterocycle formed by R₉ and R₁⁰ and the saturated C₃₋₇ heterocycle formed by R₁¹ and R₁² are independently selected from: aziridine, azetidine, pyrrolidine, imidazoline, pyrazolidine, oxazolidine, isoxazolidine, piperidine, piperazine, morpholine, azepine, oxazepine, and diazepine.

In one embodiment the saturated C₃₋₇ heterocycle formed by R₉ and R₁⁰ and the saturated C₃₋₇ heterocycle formed by R₁¹ and R₁² are independently selected from: morpholine, piperidine, and pyrrolidine.

In one embodiment the saturated C₃₋₇ heterocycle is morpholine.
In one embodiment the saturated C₃₋₇ heterocycle is piperidine.
In one embodiment the saturated C₃₋₇ heterocycle is pyrrolidine.

In one embodiment the saturated C₃₋₇ heterocycle formed by R₉ and R₁⁰ and the saturated C₃₋₇ heterocycle formed by R₁¹ and R₁² are the same.

Preferred Compounds

In general, the present invention relates to one or more compounds selected from the following compounds, and their use in medicine:
<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure and Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td> Cl⁻</td>
</tr>
<tr>
<td></td>
<td>2,3,6,7,12,13,16,17-Octahydro-1H,5H,11H,15H-diquinolizino[1,9-bc:1',9'-hi] xanthylum chloride</td>
</tr>
<tr>
<td>B</td>
<td> NO₃⁻</td>
</tr>
<tr>
<td></td>
<td>2,3,6,7,12,13,16,17-Octahydro-1H,5H,11H,15H-diquinolizino[1,9-bc:1',9'-hi] xanthylum nitrate</td>
</tr>
<tr>
<td>C</td>
<td> ClO₄⁻</td>
</tr>
<tr>
<td></td>
<td>8-(Trifluoromethyl)-2,3,5,6,11,12,14,15-octahydro-1H,4H,10H,13H-diquinolizino[9,9a,1-bc;9',9a'1'-hi] xanthylum perchlorate</td>
</tr>
<tr>
<td>D</td>
<td> Cl⁻</td>
</tr>
<tr>
<td></td>
<td>8-Ethyl-2,3,6,7,12,13,16,17-octahydro-1H,5H,11H,15H-diquinolizino[1,9-bc;1',9'-hi] xanthylum chloride</td>
</tr>
<tr>
<td>Compound</td>
<td>Structure and Name</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>E</td>
<td> 3,6-Bis-diethylamino xanthylum chloride</td>
</tr>
<tr>
<td>F</td>
<td> 3,6-Bis-diethylamino xanthylum bromide</td>
</tr>
<tr>
<td>G</td>
<td> 3,6-Bis-diethylamino xanthylum iron tetrachloride</td>
</tr>
<tr>
<td>H</td>
<td> 3,6-Bis-diethylamino xanthene dihydrochloride</td>
</tr>
<tr>
<td>I</td>
<td> 3,6-Bis-diethylamino xanthylum nitrate</td>
</tr>
<tr>
<td>I·HNO₃</td>
<td> 3,6-Bis-diethylamino xanthylum nitrate · HNO₃</td>
</tr>
<tr>
<td>Compound</td>
<td>Structure and Name</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>J</td>
<td> Cl⁻</td>
</tr>
<tr>
<td></td>
<td>9-Ethyl-3,6-bis-diethylamino xanthylum chloride</td>
</tr>
<tr>
<td>K</td>
<td> I⁻</td>
</tr>
<tr>
<td></td>
<td>3,6-Bis(diethylamino)thioxanthylum iodide</td>
</tr>
<tr>
<td>L</td>
<td> ZnCl₃⁻</td>
</tr>
<tr>
<td></td>
<td>3,6-Bis(dimethylamino)thioxanthylum zinc trichloride</td>
</tr>
<tr>
<td>M</td>
<td> ZnCl₃⁻</td>
</tr>
<tr>
<td></td>
<td>3,6-Bis(dimethylamino)-1,9-dimethylthioxanthylum zinc trichloride</td>
</tr>
<tr>
<td>N</td>
<td> Cl⁻</td>
</tr>
<tr>
<td></td>
<td>3,7-Bis(dimethylamino)phenazinium chloride</td>
</tr>
<tr>
<td>Compound</td>
<td>Structure and Name</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>O</td>
<td> ClO₄⁻ 3,7-Bis(dimethylamino)oxazinium perchlorate</td>
</tr>
<tr>
<td>AB</td>
<td> NO₃⁻ 3,6-Bis-dimethylamino xanthylum nitrate</td>
</tr>
<tr>
<td>AC</td>
<td> NO₃⁻ 3,6-Bis-diethylamino-9-(4-diethylamino) xanthylum nitrate</td>
</tr>
<tr>
<td>AD</td>
<td> NO₃⁻ 3,6-Bis-diethylamino-9-(4-nitrophenyl) xanthylum nitrate</td>
</tr>
<tr>
<td>Compound</td>
<td>Structure and Name</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>AE</td>
<td> NO_3^- 1,1,7,7,11,11,17,17-Octamethyl-2,3,6,7,12,13,16,17-octahydro-1H,5H,11H,15H-diquinolizino [1,9-bc:1',9'-hi] xanthylum nitrate</td>
</tr>
<tr>
<td>AF</td>
<td> NO_3^- 3,6-Bis-morpholino xanthylum nitrate</td>
</tr>
<tr>
<td>AG</td>
<td> NO_3^- 3,6-Bis-piperidino xanthylum nitrate</td>
</tr>
<tr>
<td>AH</td>
<td> NO_3^- 3,6-Bis-pyrrolidino xanthylum nitrate</td>
</tr>
<tr>
<td>Al</td>
<td> 0.2HCl 3,6-Bis-morpholino xanthene dihydrochloride</td>
</tr>
<tr>
<td>Compound</td>
<td>Structure and Name</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>AJ</td>
<td> (\cdot)HCl</td>
</tr>
<tr>
<td>AK</td>
<td> (\cdot)HCl</td>
</tr>
<tr>
<td>AL</td>
<td> PF_6^-</td>
</tr>
<tr>
<td>AM</td>
<td> Cl^-</td>
</tr>
</tbody>
</table>
In *this and all other* aspects of the invention, unless context demands otherwise, a compound may be selected from the list consisting of A, B, C, D, E, F, G, H, I, I \cdot HNO₃, J, K, L, M, N, O, AB, AC, AD, AE, AF, AG, AH, AI, AJ, AK, AL, AM and AN.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure and Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN</td>
<td> 3-Diethylamino-7-dimethylaminooxazinium perchlorate</td>
</tr>
</tbody>
</table>

- In one embodiment, a compound may be selected from the list consisting of A, B, C, D, E, F, G, H, I, I \cdot HNO₃, J, K, L, M, N, and O.
- In one embodiment, a compound may be selected from the list consisting of A, B, C, D, E, F, G, H, I, I \cdot HNO₃, and J.
- In one embodiment, the compound is selected from list consisting of A, B, C, and D.
- In one embodiment, the compound is selected from list consisting of B and D.
- In one embodiment, the compound is selected from list consisting of E, F, G, H, I, I \cdot HNO₃, J, and K.
- In one embodiment, the compound is selected from list consisting of E, F, G, I, I \cdot HNO₃, J, and K.
- In one embodiment, the compound is selected from list consisting of F, I, I \cdot HNO₃, and J.
- In one embodiment, the compound is selected from list consisting of N and O.
- In one embodiment, the compound is selected from list consisting of K, L, and M.
- In one embodiment, the compound is selected from list consisting of L and M.
- In one embodiment, the compound is selected from list consisting of AB, AC, AD, AE, AF, AG, AH, AI, AJ, AK, and AL
- In one embodiment, the compound is selected from the list consisting of AB, AC, AD, AE, AF, AG, AH, AI, AJ, and AK.
- In one embodiment, the compound is selected from the list consisting of AC and AD.
In one embodiment, the compound is selected from the list consisting of AF, AG, AH, Al, AJ, and AK.

In one embodiment, the compound is selected from the list consisting of AF, AG and AH.

In one embodiment, the compound is selected from the list consisting of Al, AJ, and AK.

In one embodiment, the compound is selected from the list consisting of AM and AN.

In one embodiment, it is compound A.

In one embodiment, it is compound B.

In one embodiment, it is compound C.

In one embodiment, it is compound D.

In one embodiment, it is compound E.

In one embodiment, it is compound F.

In one embodiment, it is compound G.

In one embodiment, it is compound H.

In one embodiment, it is compound I.

In one embodiment, it is compound I \cdot \text{HNO}_3.

In one embodiment, it is compound J.

In one embodiment, it is compound K.

In one embodiment, it is compound L.

In one embodiment, it is compound M.

In one embodiment, it is compound N.

In one embodiment, it is compound O.

In one embodiment, it is compound AB.

In one embodiment, it is compound AC.

In one embodiment, it is compound AD.

In one embodiment, it is compound AE.

In one embodiment, it is compound AF.

In one embodiment, it is compound AU.

In one embodiment, it is compound AH.

In one embodiment, it is compound Al.

In one embodiment, it is compound AJ.

In one embodiment, it is compound AK.

In one embodiment, it is compound AL.

In one embodiment, it is compound AM.

In one embodiment, it is compound AN.

In one embodiment the xanthylum compound may be one which is obtained by, or is obtainable by, a method as described herein (see "Methods of Synthesis" below).
Preferred compounds of the present invention are those which show high activity in the assays described herein, particularly the in vitro assay described below. Preferred compounds have a 50% of less than 500, more preferably less than 300, 200, 100, 90, 80, 70, 60, 50, or 40 μM, as determined with reference to the Examples herein.

In one embodiment the xanthylum compound has a RxIndex (RxI) value obtained as determined with reference to the Examples herein of greater than or equal to 150, more preferably greater than or equal to 200, 250, 300, 500, 1000, 1500, or 2000.

The present invention also provides intermediates for use in the preparation of the compounds of the invention. Such intermediates are described below in the methods of synthesis section.

Isotopic Variation

In one embodiment, one or more of the carbon atoms of the compound is 11C or 13C or 14C.

In one embodiment, one or more of the carbon atoms of the compound is 11C.

In one embodiment, one or more of the carbon atoms of the compound is 13C.

In one embodiment, one or more of the carbon atoms of the compound is 14C.

In one embodiment, one or more of the nitrogen atoms of the compound is 15N.

In one embodiment, one or more or all of the carbon atoms of one or more or all of the groups -R₁, -R₂, -R₃, -R₄, -R⁹, -R¹⁰, -R¹¹, and -R¹² is 11C.

In one embodiment, the groups -R₁, -R₂, -R₃ and -R⁴ are each -(CH₂)11CH₂(CH₂)₃.

In one embodiment, the groups -R₁, -R₂, -R₃ and -R⁴ are each -(CH₃)₃.

In one embodiment, the groups -R⁹, -R¹⁰, -R¹¹ and -R¹² are each -(CH₂)11CH₂(CH₂)₃.

In one embodiment, one or more or all of the carbon atoms, where present, of the groups -R⁵, -R⁶A, -R⁶, -R⁷, or -R⁸ is 11C.

In one embodiment, one or more or all of the carbon atoms, where present, of the groups -R⁵, -R⁶A, or -R⁶ is 11C.

In one embodiment, one or more or all of the carbon atoms, where present, of the groups -R⁷ or -R⁸ is 11C.

Uses to reverse or inhibit the aggregation of tau protein.

One aspect of the invention is the use of a xanthylum compound to reverse or inhibit the aggregation of tau protein. This aggregation may be in vitro, or in vivo, and may be
associated with a tauopathy disease state as discussed herein. Also provided are
methods of reversing or inhibiting the aggregation of tau protein comprising contacting the
aggregate or protein with a compound as described herein.

5 As discussed below, various tauopathy disorders that have been recognized which
feature prominent tau pathology in neurons and/or glia and this term has been used in the
art for several years. The similarities between these pathological inclusions and the
characteristic tau inclusions in diseases such as AD indicate that the structural features
are shared and that it is the topographic distribution of the pathology that is responsible
for the different clinical phenotypes observed. In addition to specific diseases discussed
below, those skilled in the art can identify tauopathies by combinations of cognitive or
behavioural symptoms, plus additionally through the use of appropriate ligands for
aggregated tau as visualised using PET or MRI, such as those described in
WO02/075318.

15 Methods of treatment or prophylaxis and 1st & 2nd medical uses
One aspect of the present invention pertains to a method of treatment or prophylaxis of a
tauopathy condition in a patient, comprising administering to said patient a
therapeutically-effective amount of a xanthyllium compound, as described herein.

20 Aspects of the present invention relate to "tauopathies". As well as Alzheimer's disease
(AD), the pathogenesis of neurodegenerative disorders such as Pick's disease and
Progressive Supranuclear Palsy (PSP) appears to correlate with an accumulation of
pathological truncated tau aggregates in the dentate gyrus and stellate pyramidal cells of
the neocortex, respectively. Other dementias include fronto-temporal dementia (FTD);
parkinsonism linked to chromosome 17 (FTDP-17); disinhibition-dementia-parkinsonism-
amyotrophy complex (DDPAC); pallido-ponto-nigral degeneration (PPND); Guam-ALS
syndrome; pallido-nigro-luysian degeneration (PNLD); cortico-basal degeneration (CBD);
Dementia with Argyrophilic grains (AgD); Dementia pugilistica (DP) wherein despite
different topography, NFTs are similar to those observed in AD (Hof P.R., Bouras C,
neurofibrillar tangles in the cerebral cortex of dementia pugilistica and Alzheimer's
disease cases. Acta Neuropathol. 85, 23-30); Chronic traumatic encephalopathy (CTE),
a tauopathy including DP as well as repeated and sports-related concussion (McKee, A.,
tauopathy after repetitive head injury. Journal of Neuropathology & Experimental
Neurology 68, 709-735). Others are discussed in Wischik et al. 2000, loc. cit, for detailed
discussion - especially Table 5.1).

Additionally there is a growing consensus in the literature that a tau pathology may also contribute more generally to cognitive deficits and decline, including in mild cognitive impairment (MCI) (see e.g. Braak, H., Del Tredici, K., Braak, E. (2003) Spectrum of pathology. In Mild cognitive impairment: Aging to Alzheimer's disease edited by Petersen, R.C. (pp. 149-189).

All of these diseases, which are characterized primarily or partially by abnormal tau aggregation, are referred to herein as "tauopathies" or "diseases of tau protein aggregation".

In this and all other aspects of the invention relating to tauopathies, preferably the tauopathy is selected from the list consisting of the indications above, i.e., AD, Pick's disease, PSP, FTD, FTDP-17, DDPAC, PPND, Guam-ALS syndrome, PNLD, and CBD and AgD, DS, SSPE, DP, PEP, DLB, CTE and MCI.

In one preferred embodiment the tauopathy is Alzheimer's disease (AD).
One aspect of the present invention pertains to a xanthylium compound, as described herein, for use in a method of treatment or prophylaxis (e.g., of a tauopathy condition) of the human or animal body by therapy.

One aspect of the present invention pertains to use of a xanthylium compound, as described herein, in the manufacture of a medicament for use in the treatment or prophylaxis of a tauopathy condition.

A further embodiment is a method of treatment or prophylaxis of a disease of tau protein aggregation as described herein, which method comprises administering to a subject a xanthylium compound, or therapeutic composition comprising the same, such as to inhibit the aggregation of the tau protein associated with said disease state.

Other methods and uses

In a further embodiment there is disclosed a xanthylium compound, or therapeutic composition comprising the same, for use in a method of treatment or prophylaxis of a disease of tau protein aggregation as described above, which method comprises administering to a subject the xanthylium compound or composition such as to inhibit the aggregation of the tau protein associated with said disease state.

In a further embodiment there is disclosed use of a xanthylium compound in the preparation of a medicament for use in a method of treatment or prophylaxis of a disease of tau protein aggregation as described above, which method comprises administering to a subject the medicament such as to inhibit the aggregation of the tau protein associated with said disease state.

In one embodiment there is disclosed a method of regulating the aggregation of a tau protein in the brain of a mammal, which aggregation is associated with a disease state as described above, the treatment comprising the step of administering to said mammal in need of said treatment, a prophylactically or therapeutically effective amount of an inhibitor of said aggregation, wherein the inhibitor is a xanthylium compound.

One aspect of the invention is a method of inhibiting production of protein aggregates (e.g. in the form of paired helical filaments (PHFs), optionally in neurofibrillary tangles (NFTs)) in the brain of a mammal, the treatment being as described herein.

In one aspect the invention provides a drug product for the treatment of a disease state associated with tau protein aggregation in a mammal suffering therefrom, comprising a container labeled or accompanied by a label indicating that the drug product is for the treatment of said disease, the container containing one or more dosage units each
comprising at least one pharmaceutically acceptable excipient and, as an active ingredient, an isolated pure xanthylum compound of the invention.

Compositions, formulations and purity

In one embodiment, the xanthylum compound may be provided or used in a composition which is equal to or less than 100, 99, 98, 97, 96, 95, 94, 93, 92, 91, or 90% pure.

One aspect of the present invention pertains to a dosage unit (e.g., a pharmaceutical tablet or capsule) comprising 20 to 300 mg of a xanthylum compound as described herein (e.g., obtained by, or obtainable by, a method as described herein; having a purity as described herein; etc.), and a pharmaceutically acceptable carrier, diluent, or excipient.

In one embodiment, the dosage unit is a tablet.
In one embodiment, the dosage unit is a capsule.

Dosage units (e.g., a pharmaceutical tablet or capsule) comprising 20 to 300 mg of a xanthylum compound as described herein and a pharmaceutically acceptable carrier, diluent, or excipient are discussed in more detail hereinafter.

In one embodiment, the amount is 30 to 200 mg.
In one embodiment, the amount is about 25 mg.
In one embodiment, the amount is about 35 mg.
In one embodiment, the amount is about 50 mg.
In one embodiment, the amount is about 70 mg.
In one embodiment, the amount is about 125 mg.
In one embodiment, the amount is about 175 mg.
In one embodiment, the amount is about 250 mg.

In one embodiment, the pharmaceutically acceptable carrier, diluent, or excipient is or comprises one or both of a glyceride (e.g., Gelucire 44/14 ®; lauroyl macrogol-32 glycerides PhEur, USP) and colloidal silicon dioxide (e.g., 2% Aerosil 200 ®; Colloidal Silicon Dioxide PhEur, USP).

Formulations

While it is possible for the xanthylum compound to be used (e.g., administered) alone, it is often preferable to present it as a composition or formulation.

In one embodiment, the composition is a pharmaceutical composition (e.g., formulation, preparation, medicament) comprising a xanthylum compound, as described herein, and a pharmaceutically acceptable carrier, diluent, or excipient.
In one embodiment, the composition is a pharmaceutical composition comprising at least one xanthylum compound, as described herein, together with one or more other pharmaceutically acceptable ingredients well known to those skilled in the art, including, but not limited to, pharmaceutically acceptable carriers, diluents, excipients, adjuvants, fillers, buffers, preservatives, anti-oxidants, lubricants, stabilisers, solubilisers, surfactants (e.g., wetting agents), masking agents, colouring agents, flavouring agents, and sweetening agents.

In one embodiment, the composition further comprises other active agents, for example, other therapeutic or prophylactic agents.

Another aspect of the present invention pertains to methods of making a pharmaceutical composition comprising admixing at least one [11C]-radiolabelled xanthylum or xanthylum-like compound, as defined herein, together with one or more other pharmaceutically acceptable ingredients well known to those skilled in the art, e.g., carriers, diluents, excipients, etc. If formulated as discrete units (e.g., tablets, etc.), each unit contains a predetermined amount (dosage) of the active compound.

The term "pharmaceutically acceptable," as used herein, pertains to compounds, ingredients, materials, compositions, dosage forms, etc., which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of the subject in question (e.g., human) without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio. Each carrier, diluent, excipient, etc. must also be "acceptable" in the sense of being compatible with the other ingredients of the formulation.

The formulations may be prepared by any methods well known in the art of pharmacy. Such methods include the step of bringing into association the active compound with a carrier which constitutes one or more accessory ingredients. In general, the formulations are prepared by uniformly and intimately bringing into association the active compound with carriers (e.g., liquid carriers, finely divided solid carrier, etc.), and then shaping the product, if necessary.
The formulation may be prepared to provide for rapid or slow release; immediate, delayed, timed, or sustained release; or a combination thereof.

Formulations suitable for parenteral administration (e.g., by injection), include aqueous or non-aqueous, isotonic, pyrogen-free, sterile liquids (e.g., solutions, suspensions), in which the active ingredient is dissolved, suspended, or otherwise provided (e.g., in a liposome or other microparticulate). Such liquids may additional contain other pharmaceutically acceptable ingredients, such as anti-oxidants, buffers, preservatives, stabilisers, bacteriostats, suspending agents, thickening agents, and solutes which render the formulation isotonic with the blood (or other relevant bodily fluid) of the intended recipient. Examples of excipients include, for example, water, alcohols, polyols, glycerol, vegetable oils, and the like. Examples of suitable isotonic carriers for use in such formulations include Sodium Chloride Injection, Ringer’s Solution, or Lactated Ringer’s Injection. Typically, the concentration of the active ingredient in the liquid is from about 1 ng/ml to about 10 µg/ml, for example from about 10 ng/ml to about 1 µg/ml. The formulations may be presented in unit-dose or multi-dose sealed containers, for example, ampoules and vials, and may be stored in a freeze-dried (lyophilised) condition requiring only the addition of the sterile liquid carrier, for example water for injections, immediately prior to use. Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules, and tablets.

Dosage

It will be appreciated by one of skill in the art that appropriate dosages of the xanthylum compound, and compositions comprising the xanthylum compound, can vary from patient to patient. Determining the optimal dosage will generally involve the balancing of the level of therapeutic benefit against any risk or deleterious side effects. The selected dosage level will depend on a variety of factors including, but not limited to, the activity of the particular compound, the route of administration, the time of administration, the rate of excretion of the compound, the duration of the treatment, other drugs, compounds, and/or materials used in combination, the severity of the condition, and the species, sex, age, weight, condition, general health, and prior medical history of the patient. The amount of compound and route of administration will ultimately be at the discretion of the physician, veterinarian, or clinician, although generally the dosage will be selected to achieve local concentrations at the site of action which achieve the desired effect without causing substantial harmful or deleterious side-effects.

Administration can be effected in one dose, continuously or intermittently (e.g., in divided doses at appropriate intervals) throughout the course of treatment. Methods of determining the most effective means and dosage of administration are well known to those of skill in the art and will vary with the formulation used for therapy, the purpose of the therapy, the target cell(s) being treated, and the subject being treated. Single or
multiple administrations can be carried out with the dose level and pattern being selected by the treating physician, veterinarian, or clinician.

In general, a suitable dose of the active compound is in the range of about 100 ng to about 25 mg (more typically about 1 µg to about 10 mg) per kilogram body weight of the subject per day. Where the active compound is a salt, an ester, an amide, a prodrug, or the like, the amount administered is calculated on the basis of the parent compound and so the actual weight to be used is increased proportionately.

In one embodiment, the active compound is administered to a human patient according to the following dosage regime: about 100 mg, 3 times daily.

In one embodiment, the active compound is administered to a human patient according to the following dosage regime: about 150 mg, 2 times daily.

In one embodiment, the active compound is administered to a human patient according to the following dosage regime: about 200 mg, 2 times daily.

However in one embodiment, the xanthylium compound is administered to a human patient according to the following dosage regime: about 50 or about 75 mg, 3 or 4 times daily.

In one embodiment, the xanthylium compound is administered to a human patient according to the following dosage regime: about 100 or about 125 mg, 2 times daily.

Preferred combination therapies

Combination treatments and therapies, in which two or more treatments or therapies are combined, for example, sequentially or simultaneously, are discussed in more detail hereinafter. Thus it will be understood that any of the medical uses or methods described herein may be used in a combination therapy.

In one embodiment, a treatment of the invention (e.g., employing a compound of the invention) is in combination with a cholinesterase inhibitor such as donepezil (Aricept™), rivastigmine (Exelon™) or galantamine (Reminyl™).

In one embodiment, a treatment of the invention (e.g., employing a compound of the invention) is in combination with an NMDA receptor antagonist such as memantine (Ebixa™, Namenda™).

In one embodiment, a treatment of the invention (e.g. employing a compound of the invention) is in combination with a muscarinic receptor agonist.
In one embodiment, a treatment of the invention (e.g. employing a compound of the invention) is in combination with an inhibitor of amyloid precursor protein to beta-amyloid (e.g., an inhibitor of amyloid precursor protein processing that leads to enhanced generation of beta-amyloid).

Ligands and labels

Xanthyllium compounds discussed herein that are capable of inhibiting the aggregation of tau protein will also be capable of acting as ligands or labels of tau protein (or aggregated tau protein). Thus, in one embodiment, the xanthyllium compound is a ligand of tau protein (or aggregated tau protein).

Such xanthyllium compounds (ligands) may incorporate, be conjugated to, be chelated with, or otherwise be associated with, other chemical groups, such as stable and unstable detectable isotopes, radioisotopes, positron-emitting atoms, magnetic resonance labels, dyes, fluorescent markers, antigenic groups, therapeutic moieties, or any other moiety that may aid in a prognostic, diagnostic or therapeutic application.

For example, as noted above, in one embodiment, the xanthyllium compound is as defined above, but with the additional limitation that the compound incorporates, is conjugated to, is chelated with, or is otherwise associated with one or more (e.g., 1, 2, 3, 4, etc.) isotopes, radioisotopes, positron-emitting atoms, magnetic resonance labels, dyes, fluorescent markers, antigenic groups, or therapeutic moieties.

In one embodiment, the xanthyllium compound is a ligand as well as a label, e.g., a label for tau protein (or aggregated tau protein), and incorporates, is conjugated to, is chelated with, or is otherwise associated with, one or more (e.g., 1, 2, 3, 4, etc.) detectable labels.

For example, in one embodiment, the xanthyllium compound is as defined above, but with the additional limitation that the compound incorporates, is conjugated to, is chelated with, or is otherwise associated with, one or more (e.g., 1, 2, 3, 4, etc.) detectable labels.

Labelled xanthyllium compounds (e.g., when ligated to tau protein or aggregated tau protein) may be visualised or detected by any suitable means, and the skilled person will appreciate that any suitable detection means as is known in the art may be used.

For example, the xanthyllium compound (ligand-label) may be suitably detected by incorporating a positron-emitting atom (e.g., \(^{11}\)C) (e.g., as a carbon atom of one or more alkyl group substituents, e.g., methyl group substituents) and detecting the compound using positron emission tomography (PET) as is known in the art.
Treatment

The term "treatment," as used herein in the context of treating a condition, pertains generally to treatment and therapy, whether of a human or an animal (e.g., in veterinary applications), in which some desired therapeutic effect is achieved, for example, the inhibition of the progress of the condition, and includes a reduction in the rate of progress, a halt in the rate of progress, regression of the condition, amelioration of the condition, and cure of the condition. Treatment as a prophylactic measure (i.e., prophylaxis, prevention) is also included.

The term "therapeutically-effective amount," as used herein, pertains to that amount of an active compound, or a material, composition or dosage from comprising an active compound, which is effective for producing some desired therapeutic effect, commensurate with a reasonable benefit/risk ratio, when administered in accordance with a desired treatment regimen.

Similarly, the term "prophylactically-effective amount," as used herein, pertains to that amount of an active compound, or a material, composition or dosage from comprising an active compound, which is effective for producing some desired prophylactic effect, commensurate with a reasonable benefit/risk ratio, when administered in accordance with a desired treatment regimen.

The term "treatment" includes combination treatments and therapies, in which two or more treatments or therapies are combined, for example, sequentially or simultaneously. Examples of treatments and therapies include, but are not limited to, chemotherapy (the administration of active agents, including, e.g., drugs, antibodies (e.g., as in immunotherapy), prodrugs (e.g., as in photodynamic therapy, GDEPT, ADEPT, etc.); surgery; radiation therapy; and gene therapy.

Routes of Administration

The xanthylum compound, or pharmaceutical composition comprising it, may be administered to a subject/patient by any convenient route of administration, whether systemically/peripherally or topically (i.e., at the site of desired action).

Routes of administration include, but are not limited to, oral (e.g., by ingestion); buccal; sublingual; transdermal (including, e.g., by a patch, plaster, etc.); transmucosal (including, e.g., by a patch, plaster, etc.); intranasal (e.g., by nasal spray); ocular (e.g., by eyedrops); pulmonary (e.g., by inhalation or insufflation therapy using, e.g., via an aerosol, e.g., through the mouth or nose); rectal (e.g., by suppository or enema); vaginal (e.g., by pessary); parenteral, for example, by injection, including subcutaneous, intradermal, intramuscular, intravenous, intraarterial, intracardiac, intrathecal, intraspinal, intracapsular, subcapsular, intraorbital, intraperitoneal, intratracheal, subcuticular,
intraarticular, subarachnoid, and intrasternal (including, e.g., intracatheter injection into the brain); by implant of a depot or reservoir, for example, subcutaneously or intramuscularly.

The Subject/Patient

The subject/patient may be an animal, mammal, a placental mammal, a marsupial (e.g., kangaroo, wombat), a monotreme (e.g., duckbilled platypus), a rodent (e.g., a guinea pig, a hamster, a rat, a mouse), murine (e.g., a mouse), a lagomorph (e.g., a rabbit), avian (e.g., a bird), canine (e.g., a dog), feline (e.g., a cat), equine (e.g., a horse), porcine (e.g., a pig), ovine (e.g., a sheep), bovine (e.g., a cow), a primate, simian (e.g., a monkey or ape), a monkey (e.g., marmoset, baboon), an ape (e.g., gorilla, chimpanzee, orangutang, gibbon), or a human.

Furthermore, the subject/patient may be any of its forms of development, for example, a foetus.

In one preferred embodiment, the subject/patient is a human.

Suitable subjects for the method may be selected on the basis of conventional factors. Thus the initial selection of a patient may involve any one or more of: rigorous evaluation by experienced clinician; exclusion of non-AD diagnosis as far as possible by supplementary laboratory and other investigations; objective evaluation of level of cognitive function using neuropathologically validated battery.

In one embodiment, the subject/patient is not a human.

The invention will now be further described with reference to the following non-limiting Examples. Other embodiments of the invention will occur to those skilled in the art in the light of these.

The disclosure of all references cited herein, inasmuch as it may be used by those skilled in the art to carry out the invention, is hereby specifically incorporated herein by cross-reference.

Methods of Synthesis

Methods for the chemical synthesis of compounds of the present invention are described in the Examples herein. These and/or other well known methods may be modified and/or adapted in known ways in order to facilitate the synthesis of other compounds of the present invention.
Thus one aspect of the invention provides a method of synthesising a compound of the invention as described herein, described, or substantially as described, with reference to any of the Examples hereinafter.

The invention further provides a xanthylum compound of the invention which is obtained by or is obtainable by, a method as described herein.

One aspect of the present invention pertains to methods for the preparation of xanthylum compounds, as described herein.

The present invention also provides intermediate compounds for use in the preparation of the compounds of the invention.

Compounds (IVa) and (IVb)

The compounds of formula (Ic) may be prepared from a compound of formula (IVa) and the salts thereof, the compounds of formula (I) may be prepared from a compound of formula (IVd) and the salts thereof, and the compounds of formula (Ma) and (III) may be prepared from the compound of formula (IVb) and the salts thereof:

wherein substituents -R\(^5\), -R\(^9\) to -R\(^{12}\), -R\(^{13a}\), -R\(^{13b}\), -R\(^{14a}\), -R\(^{14b}\), -R\(^{15a}\), -R\(^{15b}\), -R\(^{16a}\), and -R\(^{16b}\) are as defined for the compounds of formula (I), (Ic), (Ma) and (III) as appropriate.
In one aspect of the invention there is provided a compound of formula (IVa) and salts thereof, where -R₅ is saturated C₁₋₆ alkyl, which is unsubstituted or substituted with one or more substituents -R⁵A, and -R⁵A is as defined for the compounds of formula (I).

In one embodiment, -R₃ and -R₄ are the same.

In another aspect of the invention there is provided a compound of formula (IVb) and salts thereof, where -R⁵ to -R¹² are defined according to the compounds of formula (Na) and (III), and -R⁵ is saturated C₆ alkyl, which is unsubstituted or substituted with one or more substituents -R⁵A, where -R⁵A is as defined for the compounds of formula (Ma) and (III).

In one aspect of the invention there is provided a method of preparing a compound of formula (IVa), the method comprising the step of reacting a mixture of 8-hydroxyjulolidine and a compound R⁵-CHO in a solvent at room temperature or above, wherein -R⁵ is as defined for the compounds of formula (IVa).

In another aspect of the invention there is provided a method of preparing a compound of formula (IVb) from a compound of formula (V):

![Diagram](V)

wherein -R¹³ and -R¹⁴ are each independently saturated C₁₋₆ alkyl.

In one embodiment, -R¹³ and -R¹⁴ are each independently saturated C₂₋₆ alkyl.

In one embodiment, the C₂₋₆ alkyl groups are selected from: linear C₂₋₆ alkyl groups, such as -Et, -nPr, -iPr, and -nBu; branched C₃₋₄ alkyl groups, such as -iPr, -iBu, -sBu, and -tBu; and cyclic C₃₋₄ alkyl groups, such as -cPr and -cBu.

In one embodiment, each -R¹³ and -R¹⁴ is independently saturated aliphatic C₁₋₄ alkyl. In one embodiment, each -R¹³ and -R¹⁴ is independently saturated aliphatic C₂₋₄ alkyl. In one embodiment each -R¹³ and -R¹⁴ is independently selected from -Me, -Et, -n-Pr, -iso-Pr, -n-Bu, -sec-Bu, -iso-Bu, and -tert-Bu.

In one embodiment, -R¹³ and -R¹⁴ are the same.
In one embodiment, -R₁³ and -R₁⁴ are each -Et. In one embodiment, -R₁³ and -R₁⁴ are each -Me.

The method comprises the step of reacting a mixture of a compound of formula (V) and a compound R⁵-CHO in a solvent at room temperature or above, wherein -R⁵ is as defined for the compounds of formula (IVb).

The preferences for -R⁵ for the compounds of formula (I) are also applicable to the compounds of formula (IVa) and (IVb), and compound R⁵-CHO, where appropriate.

Where -R⁵ is -H, the compound R⁵-CHO is formalin. Where -R⁵ is -Et, the compound R⁵-CHO is propionaldehyde.

In the methods described above, the reaction may be performed at 35°C or above, 40°C or above, 50°C or above, or 55°C or above.

In one embodiment, the temperature may be performed at ±2°C of the temperature specified.

The solvent may be a Cᵣ-₄ alkyl alcohol. The solvent may be methanol or ethanol. The reaction may be performed in the presence of an acid. Preferably the acid is hydrochloric acid. In one embodiment, the compounds of formula (IVa) and (IVb) may be obtained as hydrochloride salts.

In one embodiment, the method further comprises the step of adding sufficient base to the product of the reaction such that the resulting mixture has a pH of 7 or more. In one embodiment the compounds of formula (IVa) and (IVb) may be obtained as a free base.

Compound P

In one embodiment, there is provided a method of preparing a compound P and the salts thereof, the method comprising the step of reacting a mixture of 8-hydroxyjulolidine and formalin in a solvent at room temperature or above.

![Compound P]

7,7′-Methylenebis-2,3,6,7-tetrahydrobenzo[i,j]quinolizine-8,8′-diol
The solvent may be methanol.

The reaction mixture may be heated to reflux.

The reaction may be performed at 35°C or above, 40°C or above, 50°C or above, or 55°C or above.

In one embodiment the reaction is performed at 55°C or above.

In one embodiment the temperature may be performed at ±2°C of the temperature specified.

The reaction may be performed in the presence of an acid. Preferably the acid is hydrochloric acid. In one embodiment, compound P may be obtained as a hydrochloride salt.

In one embodiment, the method further comprises the step of adding sufficient base to the product of the reaction such that the resulting mixture has a pH of 7 or more. In one embodiment, compound P may be obtained as a free base.

Compound P finds use as an intermediate in the synthesis of compounds A and B.

In one aspect of the methods described herein, the hydrochloride salt of compound P finds use in the synthesis of compounds of formula (I), and preferably the synthesis of compounds A and B.

The method described herein provides a greater yield of compound P than described previously in US 3 932 415. The present method has a yield of 81%, whilst the method described in US 3 932 415 is said to have a yield of 68%. Furthermore, compound P may be obtained substantially free of impurities in the present method without the need for column chromatography in contrast to the method of US 3 932 415.
Compound Q

The present invention provides an intermediate compound Q and the salts thereof:

![Chemical structure of compound Q](image)

5 Compound Q finds use as an intermediate in the synthesis of compound D.

In one embodiment, there is provided a method of preparing a compound of formula Q and the salts thereof, the method comprising the step of reacting a mixture of 8-hydroxyjulolidine and propionaldehyde in a solvent at room temperature or above.

10 The solvent may be ethanol.

The reaction may be performed at about 35°C or above, or about 40°C or above. In one embodiment the reaction is performed at about 40°C or above.

15 In one embodiment the reaction may be performed at ± 2°C of the temperature specified.

The reaction may be performed in the presence of an acid. Preferably the acid is hydrochloric acid. In one embodiment, compound Q may be obtained as a hydrochloride salt.

20 In one embodiment, the method further comprises the step of adding sufficient base to the product of the reaction such that the resulting mixture has a pH of 7 or more. In one embodiment, compound Q may be obtained as a free base.
Compound R

The present invention provides an intermediate compound R and the salts thereof:

\[
\text{R} \quad \begin{array}{c}
\text{Et}_2\text{N} \\
\text{OH} \\
\text{OH} \\
\text{NH}_2
\end{array}
\]

5,5'-Bis-diethylamino-2,2'-propyldine-di-phenol

Compound R finds use as an intermediate in the synthesis of compound J.

In one embodiment, there is provided a method of preparing a compound of formula R and the salts thereof, the method comprising the step of reacting a mixture of 3-diethylaminophenol and propionaldehyde in a solvent at room temperature or above.

The solvent may be methanol.

The reaction may be performed at about 35°C or above, or about 40°C or above. In one embodiment the reaction is performed at about 40°C or above.

In one embodiment the reaction may be performed at ±2°C of the temperature specified.

The reaction may be performed in the presence of an acid. Preferably the acid is hydrochloric acid. In one embodiment, compound R may be obtained as a hydrochloride salt.

In one embodiment, the method further comprises the step of adding sufficient base to the product of the reaction such that the resulting mixture has a pH of 7 or more. In one embodiment, compound R may be obtained as a free base.

Compounds (I), (Ha) or (III)

In one aspect of the invention there is provided a method of preparing a compound of formula (I), (Ma) or (III), the method comprising the steps of (i) reacting a compound of formula (IVa) or (IVb) with acid; and (ii) subsequently adding sufficient base to the reaction mixture such that the resulting mixture has a pH of 7 or more.

The compound of formula (IVa) may be used to prepare compounds of formula (I). The compound of formula (IVb) may be used to prepare compounds of formula (II) and (III).
The acid may be sulfuric acid.

Step (i) may comprise reacting a compound of formula (IVa) or (IVb) with acid at 40°C or above, 60°C or above, or 80°C or above.

Step (ii) may comprise adding sufficient base to the reaction mixture such that the resulting mixture has a pH of 8 or more, or 9 or more.

Step (ii) may comprise adding sufficient base to the reaction mixture such that the resulting mixture has a pH of around 7-8.

Step (ii) may comprise adding sufficient sodium hydroxide to the reaction mixture such that the resulting mixture has a pH of 7 or more. The sodium hydroxide may be an aqueous solution.

During the addition of the base, the mixture may be maintained at a temperature of 20°C or below.

The method described herein may provide a greater yield of the product, compared to the reactions that have been previously described in the art.

In another aspect of the invention there is provided a method of preparing a compound of formula (I), (Ha) or (III), the method comprising the steps of (i) reacting a compound of formula (IVa) or (IVb) with acid; and (ii) subsequently adding an oxidant to the product of step (i).

In step (ii) the oxidant is independently selected from nitric acid, chloranil, benzoquinone, DDQ, sodium hypochlorite, hydrogen peroxide, potassium permanganate, chromium-containing oxidants, manganese dioxide, sodium nitrite, isopentyl nitrite, tert-butyl nitrite and FeCl₃. In one embodiment, the oxidant is nitric acid. In another embodiment the oxidant is FeCl₃. The inventors have established that use of the oxidant FeCl₃ allows the preparation of product having a greater purity compared to the products produced using other oxidants.

In one embodiment, step (i) comprises the step of (i) reacting a compound of formula (IVa) or (IVb) with acid and subsequently adding sufficient base to the reaction mixture such that the resulting mixture has a pH of 7 or more.

In one aspect of the invention there is provided a method for the preparation of compounds formula (I), (Ma) or (III) where X is NO₃⁻, the method comprising the steps of (i) reacting a compound of formula (IVa) or (IVb) with acid and, and then treating the
product with FeCl$_3$ and optionally an acid, and (ii) subsequently adding nitric acid to the product of step (i).

It has been found that the addition of nitric acid to the iron tetrachloride product formed in this step (i) provides compounds (I), (Ha) or (III) with low levels of iron. Excessive levels of iron are generally unacceptable in pharmaceutical products. It has also been established such compounds may be produced having low levels of other pharmaceutically unacceptable metals such as lead, aluminium, and mercury.

Compound A or Compound B

In one aspect of the invention there is provided a method of preparing compound A or compound B, the method comprising the steps of: (i) reacting compound P with acid; and (ii) subsequently adding sufficient base to the reaction mixture such that the resulting mixture has a pH of 7 or more.

The preferences for the method for the preparation of compounds of formula (I) described above, also apply to the methods for the preparation of compounds A and B, where appropriate.

The method described herein may provides a greater yield of compound A than described previously in US 3 932 415. The present method has a yield of 52%, whilst the method described in US 3 932 415 gives 33%.

Compound E, Compound F, Compound H or Compound I

In one aspect of the invention there is provided a method of preparing compound E, compound F, compound H, or compound I, the method comprising the steps of: (i) reacting a compound of formula (IVb) with acid; and (ii) adding sufficient base to the reaction mixture such that the resulting mixture has a pH of 7 or more.

The preferences for the method for the preparation of compounds of formula (Ma) described above, also apply to the methods for the preparation of compounds E, F, H, and I, where appropriate.

Compound AB, Compound AC, Compound AD, Compound AF, Compound AG, Compound AH, Compound AI, Compound AJ, and Compound AK

In one aspect of the invention there is provided a method of preparing compound AB, compound AC, compound AD, compound AF, compound AG, compound AH, compound AI, compound AJ, and compound AK, the method comprising the steps of: (i) reacting a
compound of formula (IVb) with acid; and (ii) adding sufficient base to the reaction mixture such that the resulting mixture has a pH of 7 or more.

The preferences for the method for the preparation of compounds of formula (Ha) described above, also apply to the methods for the preparation of compounds AB, AC, AD, AF, AG, AH, AI, AJ, and AK, where appropriate.

Compound (Ia)

In one aspect of the invention there is provided a method of preparing a compound of formula (Ia):

![Chemical structure](image)

wherein -R⁵ is as defined according to the compounds of formula (I), the method comprising the steps of (i) reacting a compound of formula (IVa) with acid; and (ii) subsequently adding an oxidant to the product of step (i).

The acid may be sulfuric acid.

Step (i) may comprise reacting a compound of formula (IVa) with acid at 40°C or above, 60°C or above, or 80°C or above.

Step (i) may comprise reacting a compound of formula (IVa) with acid then adding sufficient base to the reaction mixture such that the resulting mixture has a pH of 7 or more. Sufficient base may be added to the reaction mixture such that the resulting mixture has a pH of 8 or more, or 9 or more. The step may comprise adding sufficient sodium hydroxide to the reaction mixture such that the resulting mixture has a pH of 7 or more. The sodium hydroxide may be an aqueous solution.

During the addition of the base, the mixture may be maintained at a temperature of 20°C or below.

In step (ii), the oxidant is preferably nitric acid or FeCl₃.
In step (ii), nitric acid may be added to the product of step (i), and the resulting solid may be isolated from the reaction mixture.

In step (ii), nitric acid may be added to the product of step (i), and the resulting mixture heated to 40°C or above, or 50°C or above.

The resulting solid may be further treated with nitric acid and the solid product may be isolated from the reaction mixture.

Compound B

In one aspect of the invention there is provided a method of preparing compound B, the method comprising the steps of: (i) reacting compound P with acid; and (ii) subsequently adding nitric acid to the product of step (i).

The preferences for the method for the preparation of compounds of formula (Ia) described above, also apply to the methods for the preparation of compound B, where appropriate.

Compound (lb)

In one aspect of the invention there is provided a method of preparing a compound of formula (lb) from a compound of formula (IVc).

The compound of formula (lb) is represented thus:

![Chemical Structure](image)

wherein -R^5 is independently saturated C_{1-6} alkyl, which is unsubstituted or substituted with one or more substituents -R^{5A}, where -R^{5A} is as defined according to the compounds of formula (I).
The compound of formula (IVc) is represented thus:

![Chemical Structure](image)

(IVc)

wherein -R^5 is independently saturated C_6 alkyl, which is unsubstituted or substituted with one or more substituents -R^{SA}, where -R^{SA} is as defined according to the compounds of formula (I).

The method comprises the steps of (i) reacting a compound of formula (IVc) with acid; and (ii) adding sufficient base to the reaction mixture such that the resulting mixture has a pH of 7 or more; then (iii) subsequently adding hydrochloric acid and sodium nitrite to the reaction mixture.

The acid may be sulfuric acid.

Step (ii) may comprise adding sufficient base to the reaction mixture such that the resulting mixture has a pH of 8 or more, or 9 or more.

Step (ii) may comprise adding sufficient base to the reaction mixture such that the resulting mixture has a pH of around 7-8.

Step (ii) may comprise adding sufficient sodium hydroxide to the reaction mixture such that the resulting mixture has a pH of 7 or more. The sodium hydroxide may be an aqueous solution.

Compound D

In one aspect of the invention there is provided a method of preparing compound D, the method comprising the steps of: (i) reacting 7,7'-propyldinebis(2, 3,6,7-tetrahydrobenzo[i,j]quinolizine-8,8'-diol) with acid; and (ii) adding sufficient base to the reaction mixture such that the resulting mixture has a pH of 7 or more; then (iii) subsequently adding hydrochloric acid and sodium nitrite to the reaction mixture.

The preferences for the method for the preparation of compounds of formula (Ib) described above, also apply to the methods for the preparation of compound D, where appropriate.
Compound (Ie)

In one aspect of the invention there is provided a method of preparing a compound of formula (Ie) from a compound of formula (IVe).

5 The compound of formula (Ie) is represented thus:

![Chemical structure of Ie](image)

wherein \(-R^5\) is as defined according to the compounds of formula (I).

10 The compound of formula (IVe) is represented thus:

![Chemical structure of IVe](image)

wherein \(-R^5\) is as defined according to the compounds of formula (I).

15 The method comprises the steps of (i) reacting a compound of formula (IVe) with acid; and-(ii)-subsequently-adding-an-oxidant-to-the product-of-step-(i).-

The acid may be sulfuric acid.

20 Step (i) may comprise reacting a compound of formula (IVe) with acid at 40°C or above, 50°C or above, or 65°C or above.

Step (i) may comprise reacting a compound of formula (IVe) with acid then neutralising the reaction mixture. Sufficient base may be added to the reaction mixture such that the resulting mixture has a pH of 7 or more, 8 or more, or 9 or more. The step may comprise adding sufficient sodium hydroxide to the reaction mixture such that the resulting mixture has a pH of 7 or more. The sodium hydroxide may be an aqueous solution.
During the addition of the base, the mixture may be maintained at a temperature of 20°C or below, or 18 °C or below.

In step (ii), the oxidant comprises FeCl₃.

In step (ii), the oxidant may be added to the product of step (i), and the resulting solid may be isolated from the reaction mixture.

The resulting solid may be further treated with nitric acid and the solid product may be isolated from the reaction mixture.

Compound AE

In one aspect of the invention there is provided a method of preparing compound AE, the method comprising the steps of: (i) reacting 1,1,7,7,-tetramethyl-8-hydroxyjulolidine with acid; and (ii) subsequently adding sufficient base to the reaction mixture such that the resulting mixture has a pH of 7 or more.

The preferences for the method for the preparation of compounds of formula (I) described above, also apply to the methods for the preparation of compounds AE, where appropriate.

Compound (Hd)

In one aspect of the invention there is provided a method of preparing a compound of formula (Md) from a compound of formula (IVb).

The compound of formula (lid) is represented thus:

![Chemical Structure](image)

wherein

X⁻ is a counter ion selected from Cl⁻, Br⁻ and NO₃⁻;
-R5, -R9, -R10, -R11 and -R12 are as defined according to the compounds of formula (Ha), the method comprising the steps of (i) reacting a compound of formula (III) with acid; and (ii) subsequently adding hydrochloric acid, hydrobromic acid or nitric acid to the product of step (i);

with the proviso that where X⁻ is Cl⁻, -R5 is not -H.

In one embodiment, the method comprises the step of preparing a compound of formula (Hd) where the group -R5 is independently saturated C₃₋₆alkyl, which is unsubstituted or substituted with one or more substituents -R5A.

In one embodiment X⁻ is a counter ion selected from Br⁻ and NO₃⁻. Consequently step (ii) comprises subsequently adding hydrobromic acid or nitric acid to the product of step (i).

In step (ii) hydrobromic acid may be used to generate a product where X⁻ is Br⁻. Step (ii) may comprise subsequently adding hydrobromic acid to the product of step (i), and then adding an alkali metal nitrite to the subsequent mixture. The alkali metal nitrite may be sodium nitrite.

In the embodiment above, step (ii) comprises subsequently adding hydrobromic acid to the product of step (i). Alternatively, step (ii) comprises subsequently nitric acid to the product of step (i), and then subsequently treating with product with KBr. In this embodiment, the method comprises the step of (i) reacting a compound of formula (III) with acid, and then subsequently treating the product with FeCl₃ and optionally an acid.

Step (i) may comprise reacting a compound of formula (III) with sulfuric acid.

Step (i) may comprise reacting a compound of formula (III) with acid then subsequently adding sufficient base to the reaction mixture such that the resulting mixture has a pH of 7 or more. The base may be sodium hydroxide. During the addition of the base, the mixture may be maintained at a temperature of 20°C or below.

In step (ii) nitric acid may be used to generate a product where X⁻ is NO₃⁻.

In an alternative embodiment, the method comprises the step of (i) reacting a compound of formula (III) with acid, and then subsequently treating the product with FeCl₃ and optionally an acid. The acid may be hydrochloric acid. Step (ii) comprises subsequently adding nitric acid to the product of step (i).
As noted above, it has been found that the addition of nitric acid to the iron tetrachloride product formed in this step (i) provides compound (Md) with low levels of iron and other metals.

5 In step (ii) hydrochloric acid may be used to generate a product where \(X^- \) is \(\text{Cl}^- \). Step (ii) may comprise subsequently adding hydrochloric acid to the product of step (i), and then adding an alkali metal nitrite to the subsequent mixture. The alkali metal nitrite may be sodium nitrite.

Compound F, Compound I or Compound J

10 In one aspect of the invention there is provided a method of preparing compound F or compound I, the method comprising the steps of: (i) reacting 5,5'-bis-diethylamino-2,2'-methandiyl-di-phenol or 5,5'-bis-diethylamino-2,2'-propylidine-di-phenol with acid; and (ii) subsequently adding hydrobromic acid, nitric acid or hydrochloric acid to the product of step (i).

The preferences for the method for the preparation of compounds of formula (Md) described above, also apply to the methods for the preparation of compounds F, I or J, where appropriate.

20 **Compound (lie)**

In an alternative aspect of the invention, there is provided a method of preparing a compound of formula (Me) from a compound of formula (IVb), wherein the compound of formula (Me) is as defined according to the compound of formula (lid) except that \(X \) is \(\text{FeCl}_4^- \).

25 The method comprising the steps of (i) reacting a compound of formula (III) with acid; and (ii) subsequently adding \(\text{FeCl}_3 \) to the product of step (i).

Step (i) may comprise reacting a compound of formula (III) with sulfuric acid.

30 **Compound (lib)**

The present invention provides methods of preparing compounds of formula (lib) as described herein.

Compound M

35 In one aspect of the invention there is provided a method of preparing compound M, the method comprising the step of reacting 4,4'-bis(dimethylamino)diphenylmethane with sulfur and acid.
The acid in step (i) may be sulfuric acid.

In step (i), the sulfur may be added to the acid, followed subsequently by addition of 4,4'-bis(dimethylamino)diphenylmethane to the reaction mixture. The reaction mixture may be kept at 5°C prior to addition of bis(dimethylamino)diphenylmethane. The reaction mixture may be maintained at 20°C or below during addition of bis(dimethylamino)diphenylmethane.

The method may comprise the additional step of (ii) subsequently adding zinc chloride to the product of step (i).

Examples

Example 1 - Methods of Synthesis

The following syntheses are provided solely for illustrative purposes and are not intended to limit the scope of the invention, as described herein.

Synthesis 1

2,3,6,7, 12,13,16, 17-Octahydro-1 H,5H, 11H, 15H-diquinolizino[1,9-bc: 1',9'-hi]xanthylum chloride

\[\text{OH} \quad \text{CH}_2\text{O}, \text{HCl}, \text{MeOH} \quad \text{OH} \]

\[\text{2 HCl} \]

\[\text{(i) H}_2\text{SO}_4 \quad \text{(ii) HCl, NaN}_2 \text{O} \]

Method A - From US 3,932,415

7, 7'-Methylenebis(2,3,6,7-tetrahydrobenzo[i,j]quinolizine-8,8'-dial)

Hydrochloric acid (0.8 cm³, 32%) was added drop wise to a solution of 8-hydroxyjulolidine (3.00 g, 15.9 mmol) in methanol (16 cm³) at 5°C. Formalin (0.593 cm³, 40% in water) was then added to the reaction and the resulting mixture was allowed to stand overnight.
at 5°C. The mixture was then poured into water (50 cm³) before being neutralised with a saturated solution of sodium bicarbonate. The mixture was extracted with chloroform (3 x 40 cm³), the combined extracts were dried over sodium sulphate, filtered and the solvent removed under reduced pressure. Column chromatography (3:7 ethyl acetate/hexane) gave the target material as a colourless solid (2.11 g, 68%).

δ_H (250 MHz, CDCl₃): 6.68 (2H, s, CH), 3.64 (2H, s, CH₂), 3.00 (8H, t, J₁ = 6 Hz, CH₂), 2.67 (4H, J₁ = 6 Hz, CH₂), 2.60 (4H, t, J₂ = 7 Hz, CH₂), 1.97 - 1.90 (8H, m, CH₂); δ_C (100 MHz, CDCl₃): 149.3, 142.7, 127.6, 114.6, 114.5, 108.5, 50.2, 49.4, 30.9, 27.0, 22.5, 21.7, 21.2; ν_max (KBr)/cm⁻¹: 3431, 2927, 2853, 1618, 1494, 1450, 1350, 1332, 1310, 1281, 1270, 1153, 1132; m/z (ESI): 389.3 (100%, [M-H]+).

2, 3, 6, 7, 12, 13, 16, 17-Octahydro-1H,5H, 11H, 15H-diquinolizino[1, 9-bc; 1′,9′-hi]xanthylum chloride

7,7'-Methylenebis(2,3,6,7-tetrahydrobenzo[i,j]quinolizine-8,8'-diol) (630 mg, 1.62 mmol) was added to concentrated sulphuric acid (2.5 cm³) at 25°C. The resulting solution was heated to 95°C for 3 hours. The reaction was allowed to cool to room temperature before being poured onto ice (15 cm³). The pH of the solution was adjusted to pH 5 with sodium hydroxide (40%) whilst maintaining the temperature below 15°C. Hydrochloric acid (1 cm³, 32%) was added and the reaction temperature was then allowed to rise to room temperature. A solution of sodium nitrite (222 mg, 3.23 mmol) in water (10 cm³) was added drop wise with stirring and the reaction allowed to stand for 20 hours. The solution was then saturated with sodium chloride before being extracted with chloroform (6 x 30 cm³). The combined extracts were dried over sodium sulphate, filtered and the solvent removed under reduced pressure to give the target material as a green solid (214 mg, 33%).

Method B

7, 7'-Methylenebis(2,3,6,7-tetrahydrobenzo[i,j]quinolizine-8, 8'-diol) dihydrochloride

Hydrochloric acid (1 cm³, 32%) was added drop wise to a solution of 8-hydroxyjulolidine (3.51 g, 18.57 mmol) in methanol (17.5 cm³) at 5°C. Formalin (0.72 cm³, 40% in water) was then added to the reaction and the resulting mixture was heated to 60°C for 6 hours. Hydrochloric acid (1 cm³, 32%) was added to the mixture, prior to cooling to room temperature. The product was then collected by filtration, washed with cold methanol (2 x 5 cm³) and dried under vacuum overnight to give the target material as a colourless solid (3.49 g, 81%).
δ H (250 MHz, D2O): 6.76 (2H, s, CH), 3.76 (2H, s, CH₂), 3.46 - 3.38 (8H, m, CH₂), 2.78 - 2.72 (8H, m, CH₂). νmax (KBr)/cm⁻¹: 3463, 2930, 1634, 1477, 1435, 1306, 1224, 1095; m/z (ESI): 391.3 (89%), [M-HClH₂O], 196.7 (100%).

2,3,6,7,12,13,16,17-Octahydro-1H,5H,11H,15H-diquinolizino[1,9-bc;1',9'-hi]xanthylum chloride

7,7'-Methylenebis(2,3,6,7-tetrahydrobenzo[i,j]quinolizine-8,8'-diol) dihydrochloride (1.00 g, 2.15 mmol) was added to concentrated sulphuric acid (4 cm³) at 25°C. The resulting solution was heated to 90°C for 3 hours. The reaction was allowed to cool before being poured onto ice (5 cm³). The pH of the solution was adjusted to pH 9 with sodium hydroxide (40%) whilst maintaining a temperature below 15°C. Hydrochloric acid (2 cm³, 32%) was added and the reaction temperature was allowed to rise to room temperature. A solution of sodium nitrite (298 mg, 4.32 mmol) in water (5 cm³) was added drop wise with stirring and the reaction stirred at room temperature for 20 hours. The mixture was filtered and solid collected and dried under vacuum overnight. The solid was then extracted with methanol (15 cm³) and solvent removed under reduced pressure to yield the product as a green solid (455 mg, 52%).

δ H (250 MHz, CD₃OD): 8.18 (1H, s, CH), 7.32 (2H, s, CH), 3.63 (8H, t, J₁ = 6 Hz, CH₂), 3.00 (4H, J₁ = 6 Hz, CH₂), 2.87 (4H, t, J₂ = 7 Hz, CH₂), 2.09 - 2.02 (8H, m, CH₂); δ C (100 MHz, CD₃OD): 152.4, 151.7, 142.7, 128.0, 124.1, 113.7, 105.3, 50.8, 50.2, 27.2, 20.6, 19.6, 19.5; νmax (KBr)/cm⁻¹: 3042, 3028, 2921, 1600, 1580, 1517, 1305, 1166, 1147; m/z (ESI): 371.3 (100%), [M-Cl]⁺.

Synthesis 2

2,3,6,7,12,13,16,17-Octahydro-1H,5H,11H,15H-diquinolizino[1,9-bc;1',9'-hi]xanthylum nitrate

7,7'-Methylenebis(2,3,6,7-tetrahydrobenzo[i,j]quinolizine-8,8'-diol) dihydrochloride (1.00 g, 2.15 mmol) was added to concentrated sulphuric acid (3 cm³) at 25°C. The resulting solution was heated to 90°C for 2 hours. The reaction was allowed to cool to room temperature. The resulting solid was washed with methanol (15 cm³) and dried in vacuo overnight. The solid was then extracted with methanol (15 cm³) and solvent removed under reduced pressure to yield the product as a green solid (455 mg, 52%).

δ H (250 MHz, CD₃OD): 8.18 (1H, s, CH), 7.32 (2H, s, CH), 3.63 (8H, t, J₁ = 6 Hz, CH₂), 3.00 (4H, J₁ = 6 Hz, CH₂), 2.87 (4H, t, J₂ = 7 Hz, CH₂), 2.09 - 2.02 (8H, m, CH₂); δ C (100 MHz, CD₃OD): 152.4, 151.7, 142.7, 128.0, 124.1, 113.7, 105.3, 50.8, 50.2, 27.2, 20.6, 19.6, 19.5; νmax (KBr)/cm⁻¹: 3042, 3028, 2921, 1600, 1580, 1517, 1305, 1166, 1147; m/z (ESI): 371.3 (100%), [M-Cl]⁺.
temperature before ice water (6 cm³) was added. The pH of the solution was adjusted to pH 9 with sodium hydroxide (40%) whilst maintaining a temperature below 20°C. Nitric acid (0.5 cm³, 70%) was added and the reaction temperature was allowed to rise to room temperature. The reaction was stirred at room temperature for 1 hour, prior to filtration. The solid was collected and dissolved in fresh water (50 cm³). Nitric acid (0.5 cm³, 70%) was added and the reaction stirred at room temperature for 24 hours. The crude product was collected by filtration and dried under vacuum overnight. The solid was re-dissolved in water (25 cm³) and nitric acid (70%) added until turbidity point reached. Mixture heated to 50°C for 1 hour before cooling to room temperature over 1 hour. Precipitate collected and dried under vacuum overnight to give the product as a green solid (323 mg, 34%).

δ_H (250 MHz, DMSO-CD₃): 8.26 (1H, s, CH), 7.35 (2H, s, CH), 3.49-3.41 (8H, m, CH₂), 2.90 - 2.71 (8H, m, CH₂), 2.00 - 1.82 (8H, m, CH₂); δ_C (100 MHz, DMSO-(D₆): 152.2, 151.6, 143.1, 128.6, 124.0, 113.5, 105.3, 51.0, 50.4, 27.4, 20.7, 19.8, 19.7; ν_max (KBr)/cm⁻¹: 2972, 2853, 1600, 1514, 1436, 1361, 1336, 1299, 1200, 1164, 1093, 1030.

Synthesis 3
δ^TrifluoromethyO^-S.S.e.H^-H.IS-octahydro-1H^-H.IOH.ISH-diquinolizinotg. 9a.i-bc;9',9a'1'-hijxanthylum perchlorate

-8-(Trifluoromethyl)---273:5; 11:1 2: 14,15-octahydro-1H,4H,10H,13H-diquinolizino[9,9a;1- bc;9',9a'1'-hijxanthylum perchlorate

Trifluoroacetic acid (0.25 cm³), 8-hydroxyjulolidine (1.00 g, 5.29 mmol) and trifluoroacetic anhydride (3.94 g, 21.1 mmol) were stirred together in dichloromethane (8 cm³) under nitrogen at room temperature for 4 days. The solvent was removed under vacuum and remaining solid added to water (100 cm³). The resulting mixture was filtered and the solid washed with water (2 x 10 cm³). Perchloric acid (3 cm³) was added to the filtrate and the mixture left to stand at room temperature overnight. The precipitate was collected by filtration and dried. Column chromatography (1:9 methanol/dichloromethane) gave the target material as a purple solid (67 mg, 5%).
\[\delta_H (250 \text{ MHz, CDCl}_3): 7.52 \text{ (2H, s, CH)}, 3.60 \text{ (8H, t, } J_1 = 6 \text{ Hz, CH}_2), 2.97 \text{ (4H, } J_1 = 6 \text{ Hz, CH}_2), 2.88 \text{ (4H, } J_2 = 7 \text{ Hz, CH}_2), 2.07 - 2.03 \text{ (8H, m, CH}_2); \ \delta_C (100 \text{ MHz, CD}_2\text{OD}): 152.2, 151.4, 125.9, 124.0, 123.9, 106.2, 51.0, 50.4, 27.7, 20.6, 19.7, 19.5; \ \nu_{\text{max}} (\text{KBr})/\text{cm}^{-1}: 2926, 1598, 1500, 1317, 1297, 1265, 1150, 1109; \ m/z (\text{ESI}): 439.3 \text{ (100\%, [M-ClO}_4^-J^+)}. \]

Synthesis 4

8-Ethyl-2,3,6,7, 12,13,16,1 7-Octahydro-1 H,5H,11H,15H-diquinolizino[1',9'-bc; 1',9"-M] xanthylum chloride

![Chemical structure](image)

8-Hydroxyjulolidine (5.00 g, 26.45 mmol) was dissolved in a solution of ethanol (50 cm\(^3\)) and hydrochloric acid (1.3 cm\(^3\), 32\%). Propionaldehyde (767 mg, 13.23 mmol) was added to the mixture and the reaction heated to 40°C for 18 hours. An additional quantity of propionaldehyde (767 mg, 13.23 mmol) was added and the reaction heated for a further 24 hours. The resulting solution was cooled and poured into water (75 cm\(^3\)). The mixture was neutralised with sodium bicarbonate (saturated solution) and extracted with dichloromethane (3 x 40 cm\(^3\)). The combined extracts were dried over sodium sulphate and the solvent removed under reduced pressure. Column chromatography (3:7 ethyl acetate/hexane) gave the target material as a low melting colourless solid (2.76 g, 50%).

\[\delta_H (250 \text{ MHz, CDCl}_3): 6.69 \text{ (2H, s, CH)}, 5.57 \text{ (2H, s, OH), 3.83 \text{ (1H, t, } J_1 = 6.5 \text{ Hz, CH}_2), 3.02 - 3.00 \text{ (8H, m, CH}_2); 2.68-2.65 \text{ (4H, m, CH}_2), 2.60 - 2.55 \text{ (4H, m, CH}_2), 2.02 - 1.91 \text{ (6H, m, CH}_2), 0.88 \text{ (3H, t, } J_2 = 7 \text{ Hz, CH}_3); \ \nu_{\text{max}} (\text{KBr})/\text{cm}^{-1}: 3411, 2930, 1626, 1493, 1353, 1197. \]
8-Ethyl-2, 3, 6, 7, 12, 13, 16, 17-Octahydro-1H, 5H, 11H, 15H-diquinolizino[1',9-bc;1',9'-hi] xanthylum chloride

7,7'-Propylidine-bis-(2,3,6,7-tetrahydrobenzo[i,j]quinolizine-8,8'-diol) (1.00 g, 2.39 mmol) was dissolved in concentrated sulphuric acid (4 cm³) and the resulting solution heated to 90°C for 3 hours. The reaction was allowed to cool to room temperature prior to quenching with ice water (20 cm³). The mixture was neutralised with sodium hydroxide (40%) whilst maintaining a reaction temperature of 15°C or below. Hydrochloric acid (2 cm³, 32%) was added and the mixture allowed to warm to room temperature. Sodium nitrite (330 mg, 4.78 mmol) in water (15 cm³) was added drop wise and the reaction stirred at room temperature for 16 hours. The resulting precipitate was collected by filtration and dried under vacuum overnight. Column chromatography (1:9 methanol/dichloromethane) gave the target material as a green solid (94 mg, 9%).

δ_H (250 MHz, CD_3OD): 7.64 (2H, s, CH), 3.53 (8H, t, J_1 = 5 Hz, CH_2), 3.00-2.89 (8H, m, CH_2), 2.03 - 2.01 (10H, m, CH_2), 1.34 (3H, t, J_2 = 7 Hz, CH_3); m/z (ESI): 399.3 (100%, [M-Cl]^+).

Synthesis 5

3,6-Bis-diethylamino xanthylum chloride

5,5'-Bis-diethylamino-2,2'-methandiyl-di-phenol

Adapted from J. Biehringer, Journal Fur Praktische Chemie 1896, 54, 235.

A suspension of 3-diethylaminophenol (200 g, 1.21 mmol) and isopropanol (600 cm³) was stirred in a 2L jacketed reactor vessel. The jacket was maintained at 20°C whilst concentrated hydrochloric acid (67 cm³, 32%) was added. The reaction was allowed to cool to 20°C before formalin (47 cm³, 39% in water) was added drop wise over a 10 minute period. The resulting solution was stirred at 20°C for 3.5 hour after which the
reaction was judged complete by TLC \([R_f = 0.4 \text{ (product)} \text{ vs. } 0.7 \text{ (starting material)} \text{ (3:7 Ethyl acetate/Pet. Ether 40/60)}] \). A solution of ammonium bicarbonate (90.0 g) in water (800 cm³) was prepared, and then added drop wise to the reaction over 35 minutes. The reaction was stirred for an additional 1 hours after which the resulting solid was filtered and washed with water (2 x 200 cm³). The solid was dried at 60°C overnight and then dissolved in isopropanol (250 cm³) under reflux for 1 hour. The solution was cool to 5°C over 90 minutes, and stirred at 5°C for an additional 1 hour. The product was collected by filtration, washed with pre-chilled isopropanol (2 x 100 cm³), and dried at 50°C for 2 hours to give the target material as a light brown crystalline solid (141 g, 68%).

\[\delta_h (250 \text{ MHz, CDCl}_3): 7.03 (2H, d, J_1 = 8 \text{ Hz, CH}), 6.20 (2H, dd, J_1 = 8 \text{ Hz, J_2 = 3 Hz, CH}), 6.14 (2H, d, J_2 = 3 \text{ Hz, CH}), 3.71 (2H, s, CH_2), 3.22 (8H, q, J_3 = 7 \text{ Hz, CH}_2), 1.07 (12H, t, J_3 = 7 \text{ Hz, CH}_2), 29.8, 12.3; \nu_{\text{max}} \text{ (KBr)/cm}^{-1}: 3446, 3383, 2975, 2925, 1596, 1519, 1396, 1374, 1262, 1169, 1152; m/z (ESI): 343.3 (100%, [M+H]^+).

3,6-Bis-diethylamino xanthylum chloride

5,5'-Bis-diethylamino-2,2'-methandiyl-di-phenol (2.00 g, 5.85 mmol) was added portion-wise to a mixture of concentrated sulphuric acid (7.2 cm³) and water (0.8 cm³). The solution was heated to 140°C for 2 hours under nitrogen. The solution was allowed to cool to 5°C prior to the addition of ice water (10 cm³). The pH of the solution was adjusted to pH 9 by the slow addition of sodium hydroxide (40%) whilst maintaining a temperature of 20°C or below. Hydrochloric acid (3.5 cm³, 32%) was added and the solution allowed to warm to room temperature. Sodium nitrite (807 mg, 11.7 mmol) dissolved in water (10 cm³) was added drop wise. Once the addition was complete the reaction was stirred at room temperature for 16 h. The mixture was filtered and the solid dried under vacuum for 20 hours. The solid was extracted with methanol and the solvent removed under reduced pressure to give the product as a green solid (1.18g, 56%).

Scaled-up procedure:

5,5'-Bis-diethylamino-2,2'-methandiyl-di-phenol (10.00 g, 29.24 mmol) was added portion-wise to a mixture of concentrated sulphuric acid (28.5 cm³) and water (9.5 cm³) precooled to 5°C. The solution was heated to 140°C for 2 hours under nitrogen. The solution was allowed to cool to 5°C prior to the addition of ice water (50 cm³). The pH of the solution was adjusted to pH 9 by the slow addition of sodium hydroxide (40%) whilst maintaining a temperature of 20°C or below. Hydrochloric acid (17.5 cm³, 32%) was
added and the solution allowed to warm to room temperature. Sodium nitrite (4.03 mg, 58.48 mmol) dissolved in water (25 cm³) was added dropwise. Once the addition was complete, the reaction was stirred at room temperature for 2 h. The mixture was filtered and the solid dried under vacuum. The solid was extracted with methanol (60 cm³) and the solvent removed under reduced pressure to give the product as a green solid (5.78 g, 55%).

δ_H (250 MHz, CD_3OD): 8.51 (1 H, s, CH), 7.76 (2H, d, J₁ = 9 Hz, CH), 7.13 (2H, dd, J₁ = 9 Hz, J₂ = 3 Hz, CH), 6.88 (2H, d, J₂ = 3 Hz, CH), 3.68 (8H, q, J₃ = 7 Hz, CH₂), 1.31 (12H, t, J₃ = 7 Hz, CH₃)

δ_C (100 MHz, DMSO-d₆): 158.2, 156.2, 146.3, 134.2, 114.9, 114.3, 96.4, 46.0, 13.1; \nu_{max} (KBr): 2975, 2925, 1596, 1579, 1519, 1347, 1169, 1132, 1076; m/z (ESI): 323.3 (100%, [M-Cl]^+).

Synthesis 6

3,6-Bis-diethylamino xanthylum bromide

Method A

5,5'-Bis-diethylamino-2,2'-methandiyl-di-phenol (5.00 g, 14.62 mmol) was added portion-wise to a mixture of concentrated sulphuric acid (15 cm³) and water (5 cm³). The solution was heated to 160°C for 2 hours under nitrogen. The solution was allowed to cool to 5°C prior to the addition of ice-water (25 cm³). The pH of the solution was adjusted to pH 9 by the slow addition of sodium hydroxide (40%) whilst maintaining a temperature of 20°C or below. Hydrobromic acid (8 cm³, 48%) was added dropwise and the solution allowed to warm to room temperature. Sodium nitrite (2.02 mg, 29.24 mmol) dissolved in water (25 cm³) was added dropwise. Once the addition was complete, the reaction was stirred at room temperature for 18 hours. The resulting precipitate was collected by filtration and dried under vacuum to give the product as a green/brown solid (2.51 g, 43%).
Method B

Concentrated sulphuric acid (10.8 cm³) was added to water (1.2 cm³) and the mixture cooled to 5°C in ice. 5,5'-Bis-diethylamino-2,2'-methandiyl-di-phenol (4.00 g, 11.70 mmol) was added portion wise with stirring. The mixture was then heated at 110°C for 22 hours under nitrogen. The resulting dark orange solution was cooled in ice to 5°C before the addition of ice water (20 cm³). The mixture was neutralised by the slow addition of sodium hydroxide (40% in water) whilst maintaining a temperature of 20°C or below. Hydrochloric acid (12 cm³, 32%) was added drop wise and the mixture stirred at room temperature for 30 minutes. Iron (III) chloride (12.64 g, 46.78 mmol) in water (12 cm³) was added and the mixture heated to 90°C for 4 hours. The solution was allowed to cool to room temperature over 3 hours. The resulting green precipitate was collected by filtration. The solid was dissolved in water (60 cm³). Nitric acid (3 cm³, 70%) was added and the mixture stirred at room temperature for 30 minutes. The resulting solid was collected by filtration and dried under vacuum overnight. The solid was dissolved in water (40 cm³) and KBr (4.00 g, 33.61 mmol) was added and the mixture heated to 60°C for 30 minutes. The mixture was allowed to cool to room temperature over 3 hours. The resulting solid was collected by filtration and dried under vacuum overnight to give the product as a green crystalline solid (3.52 g, 74%).

Method C

Concentrated sulphuric acid (162 cm³) was added to water (18 cm³) and the mixture cooled to 5°C in ice. 5,5'-Bis-diethylamino-2,2'-methandiyl-di-phenol (60.00 g, 0.175 mol) was added portion wise with stirring. The mixture was then heated at 110°C for 22 hours under argon. The resulting dark orange solution was cooled in ice to 5°C before the addition of ice water (300 cm³). Iron (III) chloride (94.74 g, 0.351 mol) in water (240 cm³) was added and the mixture heated to 90°C for 22 hours in air. The solution was allowed to cool to room temperature over 3 hours. The resulting green precipitate was collected by filtration. The solid was dissolved in water (90 cm³). Nitric acid (50 cm³, 70%) was added and the mixture stirred at room temperature for 30 minutes. The resulting solid
was collected by filtration and dried under vacuum overnight. The solid was dissolved in water (170 cm³) and KBr (38.00 g, 0.319 mol) was added and the mixture heated to 60°C for 30 minutes. The mixture was allowed to cool to room temperature over 3 hours. The resulting solid was collected by filtration and dried under vacuum overnight to give the product as a green crystalline solid (34.34 g, 48%).

δ_H (250 MHz, DMSO-CD₆): 8.74 (1H, s, CH), 7.85 (2H, d, J₁ = 9 Hz, CH), 7.19 (2H, d, J₁ = 9 Hz, CH), 6.88 (2H, s, CH), 3.65 (8H, q, J₂ = 6 Hz, CH₂), 1.20 (12H, t, J₂ = 6 Hz, CH₃);
δ_C (100 MHz, DMSO-CD₆): 158.1, 156.2, 146.2, 134.2, 114.9, 114.3, 96.4, 46.0, 19.1;
ν_max (KBr)/cm⁻¹: 2970, 1650, 1594, 1520, 1489, 1428, 1396, 1346, 1265, 1168, 1073, 1006, 968; m/z (ESI): 323.2 (100%, [M-Br]+).

Synthesis 7
3,6-Bis-diethylamino xanthylum iron tetrachloride

Method A

3,6-Bis-diethylamino xanthylum chloride (40 mg, 0.111 mmol), was dissolved in water (5 cm³). Iron (III) chloride (30 mg, 0.111 mmol) was added and the solution was allowed to stand at room temperature for 2 hours. Sodium chloride was added until a green precipitate was observed. This was collected by filtration and dried under vacuum overnight (53 mg, 91%).

Modified method:

3,6-Bis-diethylamino xanthylum chloride (100 mg, 0.279 mmol), was dissolved in water (15 cm³). Iron (III) chloride (75 mg, 0.279 mmol) was added and the solution was allowed
to stand at room temperature for 30 minutes. Sodium chloride was added until a green precipitate was observed. This was collected by filtration and dried under vacuum overnight (141 mg, 97%).

5 Method B

\[
\begin{align*}
\text{OH} & \quad \text{OH} \\
\text{Et}_2\text{N} & \quad \text{Et}_2\text{N} \\
\end{align*}
\]

Concentrated sulphuric acid (27 cm\(^3\)) was added to water (3 cm\(^3\)) and the mixture cooled to 5°C in ice. 5,5'-Bis-diethylamino-2,2'-methandiyl-di-phenol (10.00 g, 29.24 mmol) was added portion wise with stirring. The mixture was then heated at 140°C for 90 minutes under nitrogen. The resulting dark orange solution was cooled in ice to 5°C before the addition of ice water (60 cm\(^3\)). The mixture was neutralised by the slow addition of sodium hydroxide (40% in water) whilst maintaining a temperature of 20°C or below. Hydrochloric acid (10 cm\(^3\), 32%) was added drop wise and the mixture stirred at room temperature for 30 minutes. The mixture was filtered and the solid sodium sulphate washed with water (3 x 50 cm\(^3\)). Iron (III) chloride (15.79 g, 58.47 mmol) in water (50 cm\(^3\)) was added to the filtrate and the mixture heated to 90°C for 2 hours. The solution was allowed to cool to room temperature and concentrated hydrochloric acid was added slowly until precipitation of the product occurred (pH ~ 1). The mixture was filtered and the solid dried under vacuum overnight to give the product as a green solid (1.43 g, 0Vo).

\[
\begin{align*}
\delta_H (250 \text{ MHz, } \text{DMSO-CZ}_6): & \quad 8.76 (1H, s, \text{CH}), 7.85 (2H, d, J_1 = 9 \text{ Hz, CH}), 7.16 (2H, dd, J_1 = 9 \text{ Hz, } J_2 = 3 \text{ Hz, CH}), 6.86 (2H, d, J_2 = 3 \text{ Hz, CH}), 3.64 (8H, q, J_3 = 7 \text{ Hz, CH}_2), 1.27 (12H, t, J_3 = 7 \text{ Hz, CH}_3); \\
\nu_{\text{max}} (\text{KBr})/\text{cm}^{-1}: & \quad 2970, 2926, 1585, 1495, 1396, 1343, 1252, 1074; \\
m/z (\text{ESI}): & \quad 323.2 (100\%, [M-FeCU]^+) .
\end{align*}
\]
3,6-Bis-diethylamino xanthene dihydrochloride

Concentrated sulphuric acid (6 cm³) was added to water (2 cm³) and the mixture cooled to 5°C in ice. 5,5'-Bis-diethylamino-2,2'-methandiyl-di-phenol (2.00 g, 5.85 mmol) was added portion wise with stirring. The mixture was then heated at 160°C for 2 hours under nitrogen. The resulting dark orange solution was cooled in ice to 5°C before the addition of ice water (10 cm³). The mixture was neutralised by the slow addition of sodium hydroxide (40% in water) keeping the temperature below 2°C. The resulting precipitate was collected by filtration, washed with water (2 x 10 cm³) and dried under vacuum overnight. The intermediate was added to a solution of methanol (20 cm³) and hydrochloric acid (1.3 cm³, 32%) and stirred for 1 hour until homogeneous. The solvent was removed under reduced pressure and the solid dried under vacuum overnight to give the product as a purple solid (1.03 g, 44%).

δHaz (250 MHz, D₂O): 7.49 (2H, d, J₁ = 8 Hz, CH), 7.26 - 7.21 (4H, m, CH), 4.16 (2H, s, CH₂), 3.63 (8H, q, J₃ = 7 Hz, CH₂), 1.12 (12H, t, J₃ = 7 Hz, CH₃); νmax (KBr)/cm⁻¹: 2980, 2614, 1612, 1479, 1414, 1344, 1290, 1153, 1106, 1015; m/z (ESI): 325.3 (41%, [M-HCl₂D⁺).

Synthesis 9
3,6-Bis-diethylamino xanthium nitrate

3,6-Bis-diethylamino xanthium nitrate

Method A

Concentrated sulphuric acid (5.4 cm³) was added to water (0.6 cm³) and the mixture cooled to 5°C in ice. 5,5'-Bis-diethylamino-2,2'-methandiyl-di-phenol (2.00 g, 5.85 mmol)
was added portion wise with stirring. The mixture was then heated to 140°C for 90 minutes under nitrogen. The resulting dark orange solution was cooled in ice to 5°C before the addition of ice water (12 cm³). The mixture was neutralised by the slow addition of sodium hydroxide (40% in water) whilst maintaining a temperature of 20°C or below. Nitric acid (1 cm³, 70%) was added drop wise and the mixture stirred at room temperature for 30 minutes. The mixture was filtered and the solid sodium sulphate washed with water (3 x 10 cm³). Nitric acid (1 cm³, 70%) was added to the filtrate followed by the drop wise addition of sodium nitrite (807 mg, 11.70 mmol) in water (10 cm³). The reaction was stirred at room temperature for 15 minutes, whereupon the resulting solid was collected by filtration and dried under vacuum overnight to give the product as a purple/green solid (643 mg, 29%).

δ_H (250 MHz, DMSO-CD₃): 8.55 (1H, s, CH), 7.79 (2H, d, J = 9 Hz, CH), 7.17 (2H, dd, J = 9 Hz, J₂ = 2 Hz, CH), 6.93 (2H, d, J₂ = 2 Hz, CH), 3.69 (8H, q, J₃ = 7 Hz, CH₂), 1.32 (12H, t, J₃ = 7 Hz, CH₃); δ_c (100 MHz, DMSO-CD₃): 158.2, 156.2, 146.3, 134.2, 114.9, 96.4, 45.0, 13.1; ν_max (KB/r/cm⁻¹): 2978, 1596, 1522, 1493, 1387, 1347, 1264, 1168, 1074, 1007; m/z (ESI): 323.2 (100%, [M-NO₃]⁺).

3,6-Bis-diethylamino xanthylum nitrate · HNO₃

Method B

Concentrated sulphuric acid (5.4 cm³) was added to water (0.6 cm³) and the mixture cooled to 5°C in ice. 5,5'-Bis-diethylamino-2,2'-methandiyl-di-phenol (2.00 g, 5.85 mmol) was added portion wise with stirring. The mixture was then heated at 140°C for 90 minutes under nitrogen. The resulting dark orange solution was cooled in ice to 5°C before the addition of ice water (12 cm³). The mixture was neutralised by the slow addition of sodium hydroxide (40% in water) whilst maintaining a temperature of 20°C or below. Nitric acid (6 cm³, 70%) was added drop wise and the mixture stirred at room temperature for 30 minutes until the precipitate completely dissolved. The reaction was heated to 100°C for 24 hours and then cooled to room temperature. Nitric acid (0.5 cm³, 70%) was added and the resulting solid collected by filtration.

The crude product was dissolved in fresh water (20 cm³) and nitric acid (few drops, 70%) added until product began to precipitate. The mixture was then heated to 60°C for 30 minutes before cooling to room temperature over 4 hours. The mixture was then filtered
and the precipitate dried under vacuum overnight to give the product as a green/purple solid (467 mg, 21%).

Alternatively, the crude product was dissolved in fresh water (20 cm³) and nitric acid (few drops, 70%) added until the product precipitated. The mixture was then filtered and the precipitate dried under vacuum overnight. Material was dissolved in the minimum volume of hot IPA, cooled to 5 °C overnight, and the solid collected by filtration and dried under vacuum to give the product as a green/purple solid (401 mg, 18%).

3,6-Bis-diethylamino xanthylum nitrate · HNO₃

Method C

3,6-Bis-diethylamino xanthylum iron tetrachloride (1.00 g, 21.1 mmol) was dissolved in water (40 cm³). Nitric acid (2 cm³, 70%) was added and the mixture stirred at room temperature for 30 minutes. The resulting solid was collected by filtration and dried under vacuum overnight to give the product as a purple solid (7.11 g, 54%).

δ_H (250 MHz, DMSO-de): 8.73 (1H, s, CH), 7.86 (2H, d, J = 9 Hz, CH), 7.21 (2H, d, J = 9 Hz, CH), 6.90 (2H, s, CH), 3.72 - 3.55 (8H, m, CH₂), 1.21 (12H, t, J = 7 Hz, CH₃).

Method C described above involves the preparation of an intermediate having an iron tetrachloride counter ion. Nitric acid may be used to replace that counter ion. Excessive levels of iron are generally unacceptable in pharmaceutical products. Table 1 below shows the metal levels within a product obtained by Method C (Pyronin B NO₃⁻ · HNO₃) in comparison with the intermediate iron tetrachloride salt (Pyronin FeCl₄⁻).

Table 1: Metal levels in the product of Method C

<table>
<thead>
<tr>
<th>Sample</th>
<th>Pyronin FeCl₄⁻</th>
<th>Pyronin B NO₃⁻ · HNO₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metals (μg/g)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>31.5</td>
<td>1.7</td>
</tr>
<tr>
<td>Mg</td>
<td>3.6</td>
<td>2.3</td>
</tr>
<tr>
<td>Al</td>
<td>12</td>
<td>1.8</td>
</tr>
<tr>
<td>V</td>
<td>3.7</td>
<td>0.2</td>
</tr>
<tr>
<td>Cr</td>
<td>2.7</td>
<td>0.3</td>
</tr>
</tbody>
</table>
indicates an inhomogeneity between samples.

Synthesis 10

9-Ethyl-3,6-bis-diethylamino xanthylum chloride

3-Diethylaminophenol (10.00 g, 60.61 mmol) was dissolved in methanol (15 cm³). The solution was cooled to 5°C before hydrochloric acid (3 cm³, 32%) was added. Propionaldehyde (1.76 g, 30.30 mmol) was then added drop wise and the resulting solution was heated to 40°C overnight. A second portion of propionaldehyde (1.76 g, 30.30 mmol) was added and the mixture heated for a further 24 hours. The mixture was
poured into water (30 cm3) before the pH was adjusted to pH 8 with a saturated solution of ammonium bicarbonate. The mixture was extracted with dichloromethane (3 x 20 cm3). The combined organic extracts were dried (sodium sulphate), filtered and the solvent removed under reduced pressure. Column chromatography (3:7 ethyl acetate/hexane) gave the target material as a pink solid (2.11 g, 19%).

δ$_H$ (250 MHz, CDCl$_3$): 7.05 (2H, d, $J_1 = 8.5$ Hz, CH), 6.23 (2H, dd, $J_1 = 8.5$ Hz, $J_2 = 2.5$ Hz, CH), 6.09 (2H, d, $J_2 = 2.5$ Hz, CH), 3.96 (1H, t, $J_3 = 7$ Hz, CH), 3.23 (8H, q, $J_4 = 7$ Hz, CH$_2$), 2.06-2.00 (2H, m, CH$_2$), 1.08 (12H, t, $J_4 = 7$ Hz, CH$_3$), 0.90 (3H, t, $J_3 = 7$ Hz, CH$_3$);

δ$_C$ (62.5 MHz, CDCl$_3$): 153.8, 147.4, 127.5, 118.5, 105.8, 99.9, 44.3, 36.6, 26.3, 12.8, 12.5; ν_{max} (KBr/cm$^{-1}$): 2967, 2899, 1620, 1517, 1354, 1210, 1091, 1076; m/z (ESI+): 371.3 (100%, [M+H]$^+$).

9-Ethyl-3, 6-Bis-diethyl/amino xanthylum chloride

Adapted from US 3,932,415

5,5'-Bis-diethylamino-2,2'-propylidine-di-phenol (500 mg, 1.35 mmol) was added portion-wise to concentrated sulphuric acid (2 cm3). The solution was heated to 90°C for 3 hours.

The solution was allowed to cool to room temperature and then poured into ice water (20 cm3). The pH of the solution was adjusted to pH 6 by the slow addition of sodium hydroxide (40% in water). Hydrochloric acid (1 cm3, 32%) was added and the solution allowed to warm to room temperature. Sodium nitrite (186 mg, 2.70 mmol) dissolved in water (10 cm3) was added drop wise. Once the addition was complete the reaction was stirred at room temperature for 16 hours. The resulting precipitate was collected by filtration and dried under vacuum. The solid was extracted with methanol/dichloromethane (1:20, 3 x 10 cm3). The solvent was removed under vacuum to give a green solid. This was then dissolved in water (10 cm3), filtered and the solid residue washed with water (2 x 5 cm3). The aqueous solution was saturated with sodium chloride before it was extracted with chloroform (7 x 30 cm3). The combined organic extracts were dried (sodium sulphate), filtered and the solvent removed under reduced pressure to give the product as a green solid (59 mg, 11%).

δ$_H$ (250 MHz, CD$_3$OD): 8.11 (2H, d, $J_1 = 8$ Hz, CH), 7.17 (2H, dd, $J_1 = 8$ Hz, $J_2 = 3$ Hz, CH), 6.89 (2H, d, $J_2 = 3$ Hz, CH), 3.65 (8H, $J_3 = 7$ Hz, CH$_2$), 3.45 - 3.38 (2H, m, CH$_2$), 1.40 - 1.20 (15H, m, CH$_3$); ν_{max} (KBr/cm$^{-1}$): 2972, 1592, 1469, 1398, 1343, 1248, 1185, 1132, 1073; m/z (ESI): 351.2 (100%, [M-Cl]$^+$).
Synthesis 11

3,6-Bis(diethylamino)thioxanthylum iodide

\[
\begin{align*}
\text{Et}_2N & \quad \text{CH}_2O, \text{CH}_3\text{CO}_2\text{H} \\
\text{Et}_2N & \quad \text{S, KI, H}_2\text{SO}_4 \\
\text{Et}_2N & \quad \text{I}^{-}
\end{align*}
\]

4,4'-Bis(diethylamino)diphenylmethane

Acetic acid (8.05 g, 0.134 mol) was added dropwise to N,N-diethylaniline (10.0 g, 67.1 mmol). Formalin (3.00 cm³, 37% in water) was added with stirring and the mixture heated to reflux for 90 minutes. The reaction was allowed to cool, before dilution with ice water (50 cm³). The reaction was basified with saturated sodium bicarbonate (pH 9). The resulting mixture was extracted with DCM (3 x 50 cm³), the combined extracts were dried over sodium sulphate, filtered and the solvent removed under reduced pressure. Column chromatography (1:9 ethyl acetate/hexane, R, 0.3) gave the target material as a colourless oil (10.01 g, 96%).

δ\text{H} (250 MHz, CDCl₃): 7.02 (4H, d, J = 8.5 Hz, CH), 6.61 (4H, d, J = 8.5 Hz, CH), 3.77 (2H, s, CH₂), 3.30 (8H, q, J = 7 Hz, CH₂), 1.21 (12H, t, J = 7 Hz, CH₃); δ\text{c} (63 MHz, CDCl₃): 146.1, 129.9, 129.6, 129.2, 112.2, 44.5, 39.8, 12.7; ν\text{max} (neat)/cm⁻¹: 2969, 2928, 2842, 1564, 1454, 1450, 1493, 1551, 1075, 1012; m/z (ESI): +1-1-1.3-(-100%-[M+H]+).

3,6-Bis(diethylamino)thioxanthylum iodide

Adapted from R. H. Nealey, J. S. Driscoll, J. Hetero. Chem. 1966, 3, 228.

Sulphur (1.65 g, 51.6 mmol) was added in small portions with vigorous stirring to fuming sulphuric acid (8.00 g) over a 15 minute period. The reaction was cooled to 5°C and 4,4'-bis(diethylamino)diphenylmethane (2.00 g, 6.45 mmol) was added at such a rate to maintain the temperature below 20°C. The reaction was then stirred at ambient temperature for 90 minutes and then poured into 40 cm³ of ice. The resulting red mixture was boiled for 1 hour and then allowed to cool to ambient temperature before filtration.
Potassium iodide was added to the filtrate until a precipitate was observed. The mixture was cooled in ice before the green solid was collected by filtration and dried under reduced pressure (253 mg, 8%).

δ\(_H \) (250 MHz, DMSO-\(\text{d}_{6} \)): 8.62 (1H, s, CH), 7.98 (2H, d, \(J = 9 \) Hz, CH), 7.36 (2H, d, \(J = 3 \) Hz, CH), 7.23 (2H, dd, \(J = 9 \) Hz, 3 Hz, CH), 3.68, (8H, q, \(J = 7 \) Hz, \(\text{CH}_{2} \)), 1.23 (12H, t, \(J = 7 \) Hz, \(\text{CH}_{3} \)); \(\nu_{\text{max}} \) (KBr)/cm\(^{-1}\): 3456, 3393, 1593, 1560, 1509, 1392, 1343, 1191, 1152, 1071; m/z (ESI): 393.4 (100%, [M-I]\(^+\)).

Synthesis 12

3,6-Bis(dimethylamino)thioxanthylium zinc trichloride

\[
\begin{array}{c}
\text{Me}_2\text{N} \\
\text{CH}_2\text{O, CH}_3\text{CO}_2\text{H} \\
\text{Me}_2\text{N}
\end{array}
\]

\[
\begin{array}{c}
\text{S, ZnCl}_2, \text{H}_2\text{SO}_4 \\
\text{Me}_2\text{N} \\
\text{ZnCl}_3
\end{array}
\]

4,4'-Bis(dimethylamino)diphenylmethane

Acetic acid (9.91 g, 0.165 mol) was added drop wise to \(\Lambda, \Lambda \)-dimethylaniline (10.00 g, 82.6 mmol). Paraformaldehyde (1.23 g, 41.3 mmol) was added with stirring and the mixture heated to reflux for 90 minutes. The reaction was allowed to cool, before dilution with ice water (50 cm\(^3\)). The reaction was basified with 10% sodium hydroxide (pH 9) and the resulting solid collectecTby filtrationT. The solid was washed with water (2 x 5 cm\(^3\)) and dried. Recrystallisation from ethanol gave the target material as a colourless solid (6.54 g, 63%).

δ\(_H \) (250 MHz, CDCl\(_3\)): 7.05 (4H, d, \(J = 8.5 \) Hz, CH), 6.68 (4H, d, \(J = 8.5 \) Hz, CH), 3.80 (2H, s, \(\text{CH}_2 \)), 2.62 (12H, s, \(\text{CH}_3 \)); δ\(_C \) (62.5 MHz, CDCl\(_3\)): 149.1, 130.4, 129.5, 113.1, 41.0, 39.9; \(\nu_{\text{max}} \) (KBr)/cm\(^{-1}\): 2886, 2797, 1615, 1499, 1361, 1230, 1070, 828, 796; m/z (ESI): 253.2 (100%, [M-H]\(^+\)).
3,6-Bis(dimethylamino)thioxanthylium zinc trichloride

Sulphur (10.0 g, 0.33 mol) was added in small portions with vigorous stirring to fuming sulphuric acid (50 g) over a 15 minute period. The reaction was cooled to 5 °C and 4,4'-bis(dimethylamino)diphenylmethane (10.00 g, 39.4 mmol) was added at such a rate to maintain the temperature below 20 °C. The reaction was then stirred at ambient temperature for 90 minutes and then poured into 250 cm³ of ice. The resulting red mixture was boiled for 1 hour and then allowed to cool to ambient temperature before filtration. A 40% aqueous solution of zinc chloride was added to the filtrate until a green colour was observed. The mixture was cooled in an ice bath and the solid collected by filtration. The solid was dried overnight under reduced pressure to give the target material as a green solid (1.81 g, 10%).

δH (250 MHz, DMSO-CD₆): 8.68 (1H, s, CH), 8.01 (2H, d, J = 9 Hz, CH), 7.37 (2H, d, J = 3 Hz, CH), 7.25 (2H, dd, J = 9 Hz, 3 Hz, CH), 3.28 (2H, s, CH₃); δc (62.5 MHz, DMSO-CD₆): 154.5, 149.3, 143.6, 138.1, 119.0, 116.2, 106.4, 110.1; νmax (KBr)/cr: 1: 3755, 3381, 1614, 1599, 1527, 1395, 1179, 1073; m/z (ESI): 283.2 (100%), [M-ZnCl3D-]

Synthesis 13

3,6-Bis(dimethylamino)-1,9-dimethylthioxanthylium zinc trichloride

Hydrochloric acid (1.5 cm³, 10 M) was added drop wise to a solution of 3-N,N-trimethylaniline (5.00 g, 37.0 mmol) in methanol (10 cm³) cooled to 5°C. Formalin (1.50 cm³, 40% in water) was added and the reaction allowed to stand at 6°C for 48
hours. The resulting colourless crystals were collected by filtration, washed with cold methanol (5 cm³) and dried under reduced pressure (4.13 g, 79%).

δ_H (250 MHz, CDCl₃): 6.77 (2H, d, J = 8.5 Hz, CH), 6.64 (2H, d, J = 3 Hz, CH), 6.54 (2H, dd, J = 8.5, 3 Hz, CH), 3.75 (2H, s, CH₂), 2.91 (12H, s, CH₃), 2.24 (6H, s, CH₃);

δ_C (62.5 MHz, CDCl₃): 149.2, 137.1, 129.9, 127.7, 114.9, 110.7, 41.0, 34.9, 20.2; m/z (ESI): 283.2 (100%, [M+H]+).

3,6-Bis(dimethylamino)-1,9-dimethylthioxanthylium zinc trichloride

Adapted from R. H. Nealey, J. S. Driscoll, J. Hetero. Chem. 1966, 3, 228.

Sulphur (907 mg, 28.4 mmol) was added in small portions with vigorous stirring to fuming sulphuric acid (5.0 cm³) over a 15 minute period. The reaction was cooled to 5°C and 4,4'-bis(dimethylamino)-2,2-dimethylidiphenylmethane (1.00 g, 3.55 mmol) was added at such a rate to maintain the temperature below 20°C. The reaction was then stirred at ambient temperature for 90 minutes and then poured into 30 cm³ of ice. The resulting red mixture was boiled for 1 hour and then allowed to cool to ambient temperature before filtration. A 40% aqueous solution of zinc chloride was added to the filtrate until a green colour was observed. The mixture was cooled in an ice bath and the solid collected by filtration. This precipitation was repeated and the resulting solid was dried overnight under reduced pressure to give the target material as a green solid (98 mg, 6%).

δ_H (250 MHz, DMSO-d₆): 8.58 (1H, s, CH), 7.19 (2H, s, CH), 7.17 (2H, s, CH), 3.24 (12H, s, CH₃), 2.84 (6H, s, CH₃); δ_C (62.5 MHz, DMSO-Cd₆): 154.1, 145.7, 144.2, 141.6, 118.1, 116.7, 104.6, 40.9, 20.2; m/z (ESI): 311.2 (100%, [M-ZnCl₃]⁺).
3,7-Bis(dimethylamino)phenazinium chloride

N,N-dimethyl-1,3-phenylenediamine

\[\text{Me}_2N \text{NO}_2 \rightarrow \text{Me}_2N \text{NH}_2 \]

\[
\text{MsCl, NaOH, H}_2\text{O} \quad \text{Me}_2N \text{NHMs} + \text{Me}_2N \text{NH}_3\text{Cl}
\]

\[
\text{K}_2\text{Cr}_2\text{O}_7, \text{H}_2\text{O} \quad \begin{array}{c}
\text{Me}_2N \text{NMe} \text{Cl} \\
\text{Me}_2N \text{NMe} \text{Cl}
\end{array}
\]

N,N-dimethyl-1,3-phenylenediamine

\[\Delta \text{N-dimethyl-3-nitroaniline (3.00 g, 18.1 mmol) was dissolved in ethanol (40 cm}^3\text{). Tin dichloride (16.3 g, 72.0 mmol) was added and the reaction heated under reflux for 16 h. The reaction mixture was allowed to cool before the bulk of the solvent was removed under reduced pressure. The remaining residue was poured into water (100 cm}^3\text{), and basified with sodium hydroxide (3M). The mixture was extracted with chloroform (3 x 30 cm}^3\text{). The combined extracts were dried over sodium sulphate, filtered and the solvent removed under reduced pressure to give the product as a brown oil (2.01 g, 82%).} \]

\[\delta_H (250 \text{ MHz, CDCl}_3): 7.02 (1H, t, J = 8 \text{ Hz, CH}), 6.23 (1H, dd, J = 6 \text{ Hz, J} = 3 \text{ Hz, CH}), 6.09 (1H, s, \text{CH}); 2.94 (6H, s, CH}_3); \delta_c (62.5 \text{ MHz, CDCl}_3): 151.8, 147.4, 129.9, 104.3, 103.8, 99.6, 40.7; \nu_{\text{max}} \text{(neat)/crf} \text{ cm}^{-1}: 2879, 2800, 1611, 1504, 1443, 1354, 1260, 1174, 994. \]

\[\text{N-[3-(dimethylamino)phenyl]methanesulphonamide} \]

Methanesulphonyl chloride (838 mg, 7.35 mmol) was added slowly to a cooled solution (5 °C) of N,N-dimethyl-1,3-phenylenediamine (1.00 g, 7.35 mmol) and sodium hydroxide (5M, 1.5 cm}^3\text{) in water (10 cm}^3\text{). The reaction was allowed to warm to room temperature overnight. The mixture was extracted with chloroform (3 x 15 cm}^3\text{). The combined extracts were dried over sodium sulphate, filtered and the solvent removed under}
reduced pressure. Column chromatography (1:20 methanol/dichloromethane) gave the target material as a brown oil (1.24 g, 79%).

δ_H (250 MHz, CDCl_3): 7.20 (1H, t, J = 8 Hz, CH), 6.55 - 6.47 (3H, m, CH), 3.00 (3H, s, CH_3). 2.95(6H, s, CH_3); δ_C (62.5 MHz, CDCl_3): 151.6, 137.8, 130.1, 109.5, 108.5, 104.6, 40.8, 38.7; ν_max (neat)/cm⁻¹: 2929, 2806, 1607, 1511, 1394, 1321, 1231, 1148, 104, 940;

3.7-Bis(dimethylamino)phenazinium chloride

Δ,N'-dimethyl-1,4-phenylenediamine hydrochloride (402 mg, 2.34 mmol) in water (40 cm³) was added slowly to N-[3-(dimethylamino)phenyl]methanesulphonamide (500 mg, 2.34 mmol) in methanol (20 cm³). A saturated solution of potassium dichromate (1 cm³) was added and the mixture refluxed for 15 min. The mixture was cooled and diluted with water (80 cm³), acidified with hydrochloric acid (1M) and then extracted with chloroform (3 x 30 cm³). The combined extracts were dried over sodium sulphate, filtered and the solvent removed under reduced pressure. Column chromatography (1:9 methanol/dichloromethane) gave the target material as a green solid (153 mg, 22%).

δ_a (250 MHz, CDCl_3): 7.90 (2H, d, J = 10 Hz, CH), 7.35 (2H, dd J = 10 Hz, J = 3 Hz, CH), 7.02 (2H, d, J = 3 Hz, CH), 3.18 (12H, s, CH_3); ν_max (KBr)/cm⁻¹: 2854, 1596, 1506, 1475, 1428, 1338, 1167, 1142, 807.

Synthesis 15

3,7-Bis(dimethylamino)oxazinium chloride
3, 7-Bis(dimethylamino)oxazinium chloride

3-Dimethylaminophenol (910 mg, 6.67 mmol), \(\Lambda, \Lambda \)-dimethyl-4-nitrosoaniline (1.00 g, 6.67 mmol) and perchloric acid (1 cm³) were heated together in ethanol (20 cm³) for 5 min. The reaction was left to stand at room temperature overnight. The resulting solid was collected by filtration and washed with EtOAc (2 × 5 cm³). Column chromatography (1:9 methanol/dichloromethane) gave the product as a green/blue solid (13 mg, 1%).

\[\delta_H (250 \text{ MHz, } \text{CD}_3\text{OD}): 7.80 (2H, d, J = 10 \text{ Hz, CH}), 7.41 (2H, dd, J = 10 \text{ Hz, 3 Hz, CH}), 6.96 (2H, d, J = 3 \text{ Hz, CH}), 3.31 (12H, s, \text{CH}_3) ; \nu_{\text{max}} (\text{KBr})/\text{cm}^{-1}: 1607, 1526, 1490, 1397, 1346, 1179, 1094, 772. \]

Synthesis 16

3,6-Bis-(dimethylamino)xanthylium nitrate

\[
\begin{align*}
\text{Me}_2\text{N} & \quad \text{OH} \\
\text{Me}_2\text{N} & \quad \text{OH} \\
\text{Me}_2\text{N} & \quad \text{NMe}_2 \\
\text{Me}_2\text{N} & \quad \text{NMe}_2 \\
\text{NO}_3^- &
\end{align*}
\]

5,5'-Bis-(dimethylamino)-2, 2'-methandiyl-di-phenol

3-(Dimethylamino)phenol (3.00 g, 21.87 mmol) was added to MeOH (30 cm³). The mixture was cooled to 6 °C in ice before HCl (1.24 cm³, 10.93 mmol, 32 %) was added. Formalin (842 µl, 10.93 mmol, 39 %) was added to the reaction mixture. The reaction was stirred at \(\sim 6 \text{ °C} \) for 22 h after which TLC analysis [2:3 EtOAc/Hexane \(\langle R' \rangle : 0.3 \)] showed the reaction to be complete. The reaction mixture was poured into \(\text{H}_2\text{O} (40 \text{ cm}³) \) and the resulting mixture neutralised by the addition of an aqueous solution of NaHCO₃ (sat.). The mixture was extracted with DCM (3 × 30 cm³) and the combined extracts dried (Na₂SO₄). The solvent was removed under reduced pressure to yield a purple solid.

Column chromatography (2:3 EtOAc/Hexane) gave the product as a purple solid (1.74 g, 56 %).
δ\(_h\) (250 MHz, CDCl\(_3\)) \(7.05\) (2H, d, \(J=8\) Hz, 2ArH), \(6.27\) (2H, d, \(J=8\) Hz, 2ArH), \(6.13\) (2H, s, 2ArH), \(3.73\) (2H, \(s\)), \(3.37\) (2H, \(d\)), \(3.27\) (2H, \(d\)), \(2.75\) (12H, \(s\)), \(\delta\) (62.5 MHz, CDCl\(_3\)) \(153.5\), \(150.9\), \(130.8\), \(116.5\), \(106.5\), \(111.2\), \(101.2\), \(29.8\); \(\nu_{\text{max}}\) (KBr)/cr: \(2921\), \(1653\), \(1604\), \(1528\), \(1497\), \(1384\), \(1168\), \(918\); \(m/z\) (ESI): \(267.15\) (100%), [M-NO\(_3\)]

3,6-Bis-(dimethylamino)xanthylum nitrate

H\(_2\)SO\(_4\) (1.6 cm\(^3\), 98 %) was added to H\(_2\)O (160 DI) and cooled to 6 °C in ice. 5,5′-Bis-(dimethylamino)-2,2′-methandiyl-di-phenol (440 mg, 1.40 mmol) was added and the mixture heated to 90 °C under N\(_2\) for 17 h. The resulting solution was cooled to 6 °C in ice and H\(_2\)O (4 cm\(^3\)) added. The mixture was neutralised by the addition of NaOH (40 %) whilst maintaining a reaction temperature of less than 15 °C. HCl (800 µl, 32 %) was added and the reaction stirred at 20 °C for 30 min. under N\(_2\). FeCl\(_3\).6H\(_2\)O (755 mg, 2.80 mmol) in H\(_2\)O (4 cm\(^3\)) was added and the mixture heated to 90 °C for 2 h in air. The reaction was allowed to cool to room temperature overnight whereupon a green oil precipitated. The bulk pinkish solution was decanted and the remaining oil taken up in MeOH (20 cm\(^3\)). The mixture was filtered and the solvent removed under vacuum. The oil was dissolved in H\(_2\)O (8 cm\(^3\)) and HNO\(_3\) (few drops, 70 %) was added slowly until a purple/green solid precipitated. This was collected by filtration and dried under vacuum overnight to give the product as a green solid (190 mg, 41 %).

\(\delta\)\(_{H}\) (250 MHz, DMSO-CD\(_3\)) \(8.72\), (1H, s ArH), \(7.83\) (2H, d, \(J=7\) Hz, 2ArH), \(7.17\) (2H, d, \(J=7\) Hz, 2ArH), \(6.83\) (2H, s, 2ArH), \(3.27\) (12H, s, 4CH\(_3\)); \(\delta\) (62.5 MHz, DMSO-CD\(_3\)) \(157.8\), \(157.7\), \(145.9\), \(132.8\), \(114.1\), \(114.0\), 95.9, 39.6; \(\nu_{\text{max}}\) (KBr)/cr: \(2921\), \(1653\), \(1604\), \(1528\), \(1497\), \(1384\), \(1168\), \(918\); \(m/z\) (ESI): \(267.15\) (100%), [M-NO\(_3\)]
5,5'-Bis-dimethylamino-2,2'- (4-diethylaminobenzilidine)-di-phenol

3-Dimethylamino-phenol (5.00 g, 30.30 mmol) was added to MeOH (20 cm³). 4-Diethylamino-benzaldehyde (2.68 g, 15.15 mmol) was added to the reaction mixture. The reaction was stirred at room temperature for 20 h after which TLC analysis [2:3 EtOAc/Hexane (Rf: 0.25)] showed the reaction to be complete. The reaction mixture was poured into H₂O (40 cm³) and the resulting mixture neutralised by the addition of an aqueous solution of NaHCO₃ (sat.). The mixture was extracted with DCM (3 x 40 cm³) and the combined extracts dried (Na₂SO₄). The solvent was removed under reduced pressure to yield a red oil. Column-chromatography (2:3 EtOAc/Hexane) gave the product as a red solid (4.15 g, 57%).

δ_H (250 MHz, CDCl₃): 7.03 (2H, d, J = 8 Hz, 2ArH), 6.71 (2H, d, J = 8 Hz, 2ArH), 6.57 (2H, d, J = 8 Hz, 2ArH), 6.23 - 6.18 (2H, m, 2ArH), 6.21 (2H, s, 2ArH), 5.33 (1H, s, CH), 4.98 (2H, s, OH), 3.33 - 3.24 (12H, m, 6CH₂), 1.12 (18H, t, J = 7 Hz, 6CH₃); δ_C (100 MHz, CDCl₃): 155.1, 148.3, 146.7, 130.5, 130.2, 130.1, 128.1, 116.1, 112.1, 104.7, 100.0, 44.3, 44.0, 12.7, 12.6; ν_max (KBr)/cm⁻¹: 2969, 2929, 2869, 1618, 1516, 1465, 1399, 1374, 1355, 1266, 1228, 1199, 1094; m/z (ESI): 490.34 (100%, [M+H]⁺).
3,6-Bis-diethylamino-9-(4-diethylanilino)xanthylium nitrate

H₂SO₄ (5.4 cm³, 98%) was added to H₂O (600 µl) and cooled to 5 °C in ice. 5,5'-Bis-dimethylamino-2,2'- (4-diethylaminobenzilidene)-di-phenol (2.00 g, 4.19 mmol) was added and the mixture heated to 150 °C under N₂ for 3 h. The resulting solution was cooled to 5 °C in ice and H₂O (20 cm³) added. The mixture was neutralised by the addition of NaOH (40%) whilst maintaining a reaction temperature of less than 20 °C. HCl (4 cm³, 32%) was added and the reaction stirred at 5 °C for 2 h under N₂. FeCl₃·6H₂O (2.26 g, 8.39 mmol) in H₂O (20 cm³) was added and the mixture heated to 90 °C for 2 h in air. The reaction was allowed to cool to room temperature overnight. NaCl was added until a precipitate appeared. The solid was collected by filtration and dried under vacuum. The solid was extracted with MeOH (40 cm³). The solvent was removed under vacuum to yield a green solid. This material was dissolved in H₂O (12 cm³) and HNO₃ (1 cm³, 70%) was added slowly until a purple/green solid precipitated. After 10 min the solid was collected by filtration and dried under vacuum to give the product as a green solid (1.11 g, 50%).

δₕ (250 MHz, CD₃OD): 7.50 - 7.40 (4H, m, 4ArH), 7.20 - 7.03 (4H, m, 4ArH), 6.93 (2H, s, 2ArH), 3.72 - 3.45 (12H, m, 6CH₂), 1.30 - 1.15 (18H, 1, J = 7 Hz, 6CH₃); δ_c (100 MHz, CDCl₃): 159.6, 157.3, 156.5, 141.3, 133.4, 123.5, 115.9, 97.7, 54.5, 47.1, 13.0, 11.2; v_max (KBr)/cm⁻¹: 1646, 1594, 1473, 1419, 1384, 1349, 1186, 1073; m/z (ESI): 470.32 (100%, [M-NO₃]⁺).

Synthesis 18

3,6-Bis-diethylamino-9-(4-nitrophenyl)xanthylium nitrate

\[
\begin{align*}
\text{Et}_2\text{N} & \quad \text{OH} \quad + \quad \text{NO}_2 \\
\text{Et}_2\text{N} & \quad \text{CHO} \quad \rightarrow \quad \text{NO}_2 \\
\end{align*}
\]

\[
\begin{align*}
\text{Et}_2\text{N} & \quad \text{NO}_2 \quad \text{OH} \quad \text{Et}_2\text{N} \\
\text{Et}_2\text{N} & \quad \text{NO}_3^- \\
\end{align*}
\]
5,5'-Bis-dimethylamino-2,2'-(4-nitrobenzilidine)-di-phenol

3-Dimethylamino-phenol (3.00 g, 18.18 mmol) was added to MeOH (30 cm³). HCl (1.04 cm³, 9.09 mmol, 32%) was then added to the mixture. 4-nitro-benzaldehyde (1.37 g, 9.09 mmol) was added to the reaction mixture. The reaction was heated to 40 °C for 18 h and the 50 °C for 24 h after which TLC analysis [1:1 EtOAc/Hexane (Rf 0.3)] showed the reaction to be almost complete. The reaction mixture was poured into H₂O (40 cm³) and the pH of resulting mixture basified by the addition of an aqueous solution of NaHCO₃ (sat.). The mixture was extracted with DCM (3 x 30 cm³) and the combined extracts dried (Na₂SO₄). The solvent was removed under reduced pressure to yield a red oil. Column chromatography (1:1 EtOAc/Hexane) gave the product as an orange red solid (2.84 g, 69%).

δH (250 MHz, CDCl₃): 8.11 (2H, d, J = 8 Hz, 2ArH), 7.34 (2H, d, J = 8 Hz, 2ArH), 6.65 (2H, d, J = 8 Hz, 2ArH), 6.20 - 6.15 (4H, m, 4ArH), 5.71 (1H, s, CH), 3.27 (8H, q, J = 7 Hz, 4CH₂), 1.11 (12H, t, J = 7 Hz, 4CH₃); δc (100 MHz, CDCl₃): 154.5, 151.8, 148.4, 146.2, 130.6, 130.0, 123.4, 115.1, 104.8, 99.8, 44.4, 43.9, 12.6; v max (KBr)/cr τ V: 2971, 1559, 1519, 1550, 1522, 1457, 1343, 1375, 1228, 1094; m/z (ESI): 464.25 (100%), [M+H]⁺.

3,6-Bis-diethylamino-9-(4-nitrophenyl)xanthylum nitrate

H₂SO₄ (1.2 cm³, 98%) was added to H₂O (120 µl) and cooled to 5 °C in ice. 5,5'-Bis-dimethylamino-2,2'-(4-nitrobenzilidine)-di-phenol (400 mg, 0.863 mmol) was added and the mixture heated to 70 °C under N₂ for 20 h and then at 90 °C for 29 h. The resulting solution was cooled to 6 °C in ice and H₂O (4 cm³) added. The mixture was neutralised by the addition of NaOH (20%) whilst maintaining a reaction temperature of less than 16 °C. HCl (1.2 cm³, 32%) was added and the reaction stirred at 19 °C for 30 min under N₂. FeCl₃, 6H₂O (467 mg, 1.73 mmol) in H₂O (4 cm³) was added and the mixture heated to 88 °C for 3 h in air. The reaction was allowed to cool to 20 °C overnight. The resulting green precipitate was collected by filtration and dried under vacuum overnight. This material was dissolved in H₂O (4 cm³) and HNO₃ (few drops, 70%) was added slowly until a purple/green solid precipitated. After 10 min the solid was collected by filtration and dried under vacuum. Column chromatography (1:9 MeOH/DCM) gave the product as a green solid (243 mg, 56%).

δH (250 MHz, CD₂OD): 8.53 (2H, d, J = 7 Hz, 2ArH), 7.76 (2H, d, J = 7 Hz, 2ArH), 7.30 (2H, d, J = 7 Hz, 2ArH), 7.10 (2H, d, J = 7 Hz, 2ArH), 7.02 (2H, s, 2ArH), 3.83 - 3.57 (8H, m, 4CH₂), 1.44 - 1.18 (12H, m, 4CH₃); δc (100 MHz, CD₂OD): 158.0, 155.9, 154.5, 148.9, 138.7, 131.1, 130.8, 123.6, 114.4, 112.8, 96.2, 45.5, 11.4; v max (KBr)/cr τ V: 2977, 1647, 1593, 1467, 1384, 1347, 1184, 1074; m/z (ESI): 444.23 (100%), [M-NO₃⁺].
3-Methoxy-N,N-Bis(3-methylbut-2-ene)aniline

To a solution of anisidine (5.00 g, 40.65 mmol) in CH₃CN (20 cm³), K₂CO₃ (11.22 g, 80.13 mmol) and 1-chloror-3-methylbut-2-ene (8.49 g, 80.13 mmol) were added. Molecular sieves (4 A, 10 g) were added and the reaction stirred at room temperature for 48 h. The resulting mixture was filtered and the solid washed with CH₃CN (2 x 15 cm³). The solvent was removed from the filtrate under reduced pressure. Column chromatography [1:1 40:60 petrol/DCM (Rf: 0.4)] gave the product as a colourless oil (8.54 g, 81%).

δₜ (250 MHz, CDCl₃): 7.14 – 7.07 (1H, m, ArH), 6.32 (1H, d, J = 8 Hz, ArH), 6.30 – 6.25
(2H, m, 2ArH), 5.23 – 5.19 (2H, m, 2CH), 3.84 (4H, d, J = 6 Hz, 2CH), 3.77 (3H, s, OCH), 1.72 (6H, s, 2CH), 1.70 (6H, s, 2CH), δ₂ (62.5 MHz, CDCl₃): 160.8, 150.5, 134.1, 129.8, 121.8, 105.9, 101.0, 99.1, 55.1, 48.4, 25.8, 18.0; ν max (neat)/cm⁻¹: 2967, 2927, 1671, 1610, 1498, 1452, 1376, 1327, 1263, 1214, 1164, 1060, 1043, 986, 941; m/z (ESI): 260.20 (100%, [M+H]⁺).
3-Methoxy-N,N-Bis(3-methylbut-2-ene)aniline hydrochloride

3-Methoxy-Λ,Λ'-Bis(3-methylbut-2-ene)aniline (7.50 g, 28.96 mmol) was dissolved in EtOH (20 cm³). HCl (9.65 cm³, 32 %) was added and the reaction mixture stirred at room temperature for 1 h. The solvent was removed under vacuum overnight to yield the product as a colourless sticky solid (8.33 g, 97 %).

δ_H (250 MHz, CDCl_3): 6.89 (1H, d, J = 8 Hz, ArH), 6.00 (1H, d, J = 8 Hz, ArH), 4.50 (1H, s, OH), 3.09 - 2.99 (4H, m, 2CH2), 1.80 - 1.72 (4H, m, 2CH2), 1.42 (6H, s, 2CH3), 1.24 (6H, s, 2CH3); δ_D (62.5 MHz, CDCl_3): 153.2, 143.6, 125.0, 124.3, 116.8, 105.3, 47.8, 47.4, 40.6, 37.4, 32.4, 32.3, 29.2; ν_max (KBr)/cm⁻¹: 2953, 2928, 2859, 2826, 1586, 1424, 1385, 1272, 1165, 1133, 1102, 952, 800; m/z (ESI): 246.19 (100%, [M+H]^+).

7, 7-Methylene-bis(1, 1, 7-tetramethyl-8-hydroxyjulolidine) dihydrochloride

1,1,7,7-tetramethyl-8-hydroxyjulolidine (800 mg, 3.27 mmol) was added to MeOH (10 cm³). HCl (186 µl, 1.63 mmol, 32 %) was then added to the mixture. Formalin (122 µl, 1.63 mmol, 39 %) was added to the reaction mixture. The reaction was heated to 60 °C for 16 h and the after which TLC analysis [3:7 EtOAc/Hexane (R_f: 0.6)] showed the reaction to be complete. The reaction volume was reduced by half under reduced pressure and the remainder cooled to ~ 6 °C overnight. The resulting precipitate was collected by filtration and dried under vacuum to give the product as a green solid (494 mg, 60 %).
\[\delta_H (250 \text{ MHz}, \text{DMSO-CD}_3): 8.95 (2H, bs, 2OH), 7.08 (2H, s, 2ArH), 3.90 (2H, s, CH₂), 3.39 - 3.25 (4H, m, 2CH₂). 2.19 - 1.86 (4H, m, 2CH₂), 1.41 (6H, s, 2CH₃), 1.17 (6H, s, 2CH₃); \]
\[\nu_{\text{max}}(\text{KBr})/\text{cr} \tau^1: 3390, 2960, 2928, 2619, 2531, 1472, 1428, 1386, 1361, 1265, 1177; m/z (ESI): 503.36 (100%, [M-HNO₃]⁺). \]

1, 1, 7, 7, 11, 11, 17, 17-Octamethyl-2,3, 6, 7, 12, 13, 16, 17-octahydro-1H, 5H, 11H, 15H-diquinolizino[1,9-bc; 1',9'-hi]xanthylum nitrate

H₂SO₄ (600 µl, 98 %) was added to H₂O (60 µl) and cooled to 5 °C in ice. 7,7-Methylenebis(1,1,7,7-tetramethyl-8-hydroxyjulolidine) dihydrochloride (200 mg, 0.348 mmol) was added and the mixture heated to 50 °C under N₂ for 4 h and then 65 °C for 2 h. The resulting solution was cooled to 6 °C in ice and H₂O (2 cm³) added. The mixture was neutralised by the addition of NaOH (20 %) whilst maintaining a reaction temperature of less than 18 °C. HCl (400 µl, 32 %) was added and the reaction stirred at 20 °C for 30 min under N₂. FeCl₃.6H₂O (188 mg, 0.696 mmol) in H₂O (1 cm³) was added and the mixture heated to 89 °C for 3 h in air. The reaction was allowed to cool to room temperature overnight. The resulting solid was collected by filtration and dried under vacuum overnight. This material was dissolved in H₂O (20 cm³) and HNO₃ (70 %) was added slowly until a green solid precipitated. After 10 min the solid was collected by filtration and dried under vacuum to give the product as a green solid (126 mg, 66 %).

\[\delta_H (250 \text{ MHz}, \text{CD}_3\text{OD}): 8.29 (1H, s, ArH), 7.58 (2H, d, J = 8 Hz, 2ArH), 3.66 (4H, t, J = 6 Hz, 2CH₂), 3.57 (4H, t, J = 5 Hz, 2CH₂), 1.87 (4H, t, J = 5 Hz, 2CH₂), 1.82 (4H, t, J = 6 Hz, 2CH₂), 1.71 (13H, s, 4CH₃), 1.37 (12H, s, 4CH₃); \delta_c (100 \text{ MHz}, \text{CD}_3\text{OD}): 154.3, 151.8, 144.3, 132.9, 126.7, 114.3, 114.2, 38.8, 33.8, 31.9, 31.6, 27.8, 27.6; \nu_{\text{max}}(\text{KBr})/\text{cr}^1: 2957, 1596, 1507, 1384, 1309, 1202, 1038; m/z (ESI): 483.34 (100%, [M-HNO₃]⁺). \]
Synthesis 20

3,6-Bis-morpholino-xanthylium nitrate

\[
\begin{align*}
\text{Br} & \longrightarrow \text{N} \bigg\text{\begin{tabular}{c}
\text{O} \\
\text{N}
\end{tabular}} & \longrightarrow \text{OH} \\
\text{OH} & \quad & \text{OH} \\
& \quad & \text{OH}
\end{align*}
\]

\[\text{N-(3-Hydroxyphenyl)morpholine}\]

Pd(OAc)\(_2\) (78 mg, 0.347 mmol) was added to morpholine (1.81 g, 20.81 mmol) and 3-bromophenol (3.00 g, 17.34 mmol) under N\(_2\). 2,8,9-trisobutyl-2,5,8,9-tetraaza-1-phosphabicyclo[3.3.3]undecane (238 mg, 0.694 mmol), LiHMDS (39.88 cm\(^3\), 1 M in THF) and dry toluene (80 cm\(^3\)) were added sequentially. The mixture was heated to 80 °C for 18 h, before being cooled to room temperature. The solvent was removed under vacuum and the residue extracted with hot EtOAc/DCM (1:1, 200 cm\(^3\)). The mixture was filtered and the solvent removed. Column chromatography [1:1 EtOAC/DCM (R: 0.25)] gave the product as an off-white solid (2.38 g, 77%).

\[\delta_H (250 \text{ MHz, CCl}_4): 7.14 - 7.08 (1H, m, ArH), 6.48 (1H, d, J = 8 \text{ Hz, ArH}), 6.36 - 6.32 (2H, m, 2ArH), 5.82 (1H, bs, OH), 3.85 (4H, t, J = 5 \text{ Hz, 2CH}_2), 3.11 (4H, t, J = 5 \text{ Hz, 2CH}_2); \delta_C (62.5 \text{ MHz, CCl}_4): 156.9, 152.6, 138.2, 108.2, 108.2, 108.2, 108.2, 108.2, 108.2, 108.2; \nu_{\text{max}} \text{(KBr/CRV)}: 3242, 2974, 2816, 1610, 1582, 1491, 1448, 1267, 1191, 1104, 1064, 975, 773; m/z (ESI): 180.10 (100%, [M+H]+)\]

5,5'-Bis-morpholino-2,2'-methandiyl-di-phenol

N-(3-Hydroxyphenyl)morpholine (2.00 g, 11.17 mmol) was added to MeOH (25 cm\(^3\)). The mixture was cooled to 5 °C in ice before HCl (637 μl, 5.89 mmol, 32 %) was added. Formalin (419 μl, 5.89 mmol, 39 %) was added to the reaction mixture. The reaction was stirred at 5 °C for 18 h, and then at room temperature for 24 h. The reaction mixture was poured into H\(_2\)O (40 cm\(^3\)) and the resulting mixture neutralised by the addition of an aqueous solution of NaHCO\(_3\) (sat.). The mixture was extracted with DCM (3 x 30 cm\(^3\))
and the combined extracts dried (Na₂SO₄). The solvent was removed under reduced pressure. Column chromatography [4:1 EtOAc/Hexane (Rf: 0.3)] gave the product as a purple solid (684 mg, 33%).

δH (250 MHz, DMSO-CD₃): 9.08 (2H, s, OH), 6.76 (2H, d, J = 8 Hz, 2ArH), 6.35 (2H, s, 2ArH), 6.29 (2H, d, J = 8 Hz, 2ArH), 3.72 - 3.68 (8H, m, 4CH₂), 3.59 (2H, t, CH₂), 2.98 - 2.94 (8H, m, 4CH₂); δC (62.5 MHz, DMSO-CD₃): 155.3, 150.5, 130.4, 118.7, 106.5, 102.2, 66.2, 49.0, 28.0; νmax (KBr)/cm⁻¹: T286571 598; 1489; 1384, 1244; 1109; νmax (ESI)r351 :17 - (100%, [M-NO₃]+).

3.6-Bis-(morpholino)xanthylum nitrate

H₂SO₄ (900 μl, 98 %) was added to H₂O (100 μl) and cooled to room temperature. 5,5’-bis-morpholino-2,2’-methandiyl-di-phenol (300 mg, 0.81 1 mmol) was added and the mixture heated to 140 °C under N₂ for 3 h. The resulting solution was cooled to room temperature and H₂O (2 cm³) added. The mixture was neutralised by the addition of NaOH (40 %) whilst maintaining a reaction temperature of less than 15 °C. HCl (600 μl, 32 %) was added and the reaction stirred at room temperature for 30 min. under N₂. FeCl₃·6H₂O (438 mg, 1.62 mmol) in H₂O (2 cm³) was added and the mixture heated to 90 °C for 2 h in air. The reaction was allowed to cool to room temperature. The resulting solid was collected by filtration and dried under vacuum. This material was dissolved in H₂O (10 cm³) and HNO₃ (300 μl, 70 %) was added slowly until a green solid precipitated. After 10 min the solid was collected by filtration and dried under vacuum to give the product as a green solid (198 mg, 67%).

δH (250 MHz, CD₃OD): 8.70 (1H, s, ArH), 7.87 (2H, d, J = 7 Hz, 2ArH), 7.37 (2H, d, J = 7 Hz, 2ArH), 7.15 (2H, s, 2ArH), 3.86 - 3.85 (8H, m, 4CH₂), 3.79 - 3.67 (8H, m, 4CH₂); δC (100 MHz, CD₃OD): 158.4, 157.9, 146.5, 133.3, 115.2, 114.6, 96.9, 66.0, 46.9; νmax (KBr)/cm⁻¹: T286571 598; 1489; 1384, 1244; 1109; O34r903m/z (ESI): r351 :17 - (100%, [M-NO₃]+).
Synthesis 21

3,6-Bis-piperidino-xanthylum nitrate

\[
\begin{align*}
\text{Br} & \xrightarrow{\text{N}} \text{N} & \xrightarrow{\text{N}} & \text{N} \\
\text{OH} & \xrightarrow{\text{OH}} & \text{OH} & \xrightarrow{\text{OH}} & \text{OH}
\end{align*}
\]

5 \text{N-(3-Hydroxyphenyl)piperidine}

Pd(OAc)$_2$ (129 mg, 0.578 mmol) was added to piperidine (2.95 g, 34.68 mmol) and 3-bromophenol (5.00 g, 28.90 mmol) under N$_2$. 2,8,9-trisobutyl-2,5,8,9-tetraaza-1-phosphabicyclo[3,3,3]undecane (397 mg, 1.16 mmol), LiHMDS (66.50 cm3, 1 M in THF) and dry toluene (110 cm3) were added sequentially. The mixture was heated to 80 °C for 18 h, before being cooled to room temperature. H$_2$O (50 cm3) was added and the layers separated. The aqueous layer was extracted with toluene (3 x 30 cm3). The combined organics were dried (Na$_2$SO$_4$) and the solvent removed under reduced pressure. Column chromatography [3:7 EtOAc/Hexane (Rf: 0.4)] gave the product as an off-white solid (2.56 g, 50 %).

\[\delta_H (250 \text{ MHz}, \text{CDCl}_3); 7.11 - 7.04 (1H, m, ArH), 6.52 (1H, d, J = 8 \text{ Hz}, \text{ArH}), 6.35 (1H, s, ArH), 6.29 (1H, d, J = 8 \text{ Hz}, \text{ArH}), 5.84 (1H, bs, OH), 3.08 (4H, t, J = 5 \text{ Hz}, 2\text{CH}_2), 1.75 - 1.62 (4H, m, 2\text{CH}_2), 1.60 - 1.50 (2H, m, \text{CH}_2); \delta_c (62.5 \text{ MHz}, \text{CDCl}_3); 156.7, 153.4, 130.0, 109.3, 107.4, 104.6, 51.0, 25.5, 24.2; \nu_{\max} (\text{KBr})/\text{cm}^{-1}: 3064, 2959, 2937, 2921, 2856, 1597, 1503, 1454, 1276, 1201, 1133, 1104, 971, 877; m/z (ESI): 178.12 (100\%, [M+H]$^+\)).

5,5'-Bis-piperidino-2,2'-methandiy1-di-phenol

25 N-(3-Hydroxyphenyl)piperidine (1.50 g, 8.52 mmol) was added to MeOH (20 cm3). The mixture was cooled to 5 °C in ice before HCl (486 \mu, 4.26 mmol, 32 %) was added. Formalin (327 \mu, 4.26 mmol, 39 %) was added to the reaction mixture. The reaction was stirred at 5 °C for 18 h, and then at 30 °C for 18 h. The reaction mixture was poured into
H₂O (30 cm³) and the resulting mixture neutralised by the addition of an aqueous solution of NaHCO₃ (sat.). The mixture was extracted with DCM (3 x 30 cm³) and the combined extracts dried (Na₂SO₄). The solvent was removed under reduced pressure. Column chromatography (3:7 EtOAc/Hexane (Rf 0.4)) gave the product as a purple/pink solid (886 mg, 57%).

δ_H (250 MHz, CDCl₃): 7.06 (2H, d, J = 8 Hz, ArH), 6.44 (2H, d, J = 8 Hz, ArH), 6.23 (2H, s, ArH) 3.72 (2H, s, CH₂). 2.96 - 2.83 (8H, m, 4CH₂). 1.70 - 1.56 (8H, m, 4CH₂). 1.56 - 1.40 (4H, m, 2CH₂); δ_c (62.5 MHz, CDCl₃): 153.4, 151.7, 130.8, 119.9, 110.1, 105.4, 51.3, 30.2, 25.4, 24.2; v_max (KBr)/cm⁻¹: 3268, 2928, 2854, 2874, 2798, 1618, 1577, 1522, 1497, 1447, 1383, 1253, 1177, 1115, 969; m/z (ESI): 367.24 (100%, [M+H]^+).

3,6-Bis-(piperidino)xanthylum nitrate

H₂SO₄ (900 μl. 98 %) was added to H₂O (100 μl) and cooled to room temperature. 5,5’-bis-piperidino-2,2’-methandiyl-di-phenol (350 mg, 0.956 mmol) was added and the mixture heated to 140 °C under N₂ for 3 h. The resulting solution was cooled to room temperature and H₂O (5 cm³) added. The mixture was neutralised by the addition of NaOH (40 %) whilst maintaining a reaction temperature of less than 20 °C. HCl (700 μl, 32 %) was added and the reaction stirred at room temperature for 30 min. under N₂. FeCl₃·6H₂O (516 mg, 1.91 mmol) in H₂O (3 cm³) was added and the mixture heated to 80 °C for 2 h in air. The reaction was allowed to cool to room temperature overnight whereupon a green oil precipitated. The bulk pinkish solution was decanted and the remaining oil taken up in fresh H₂O (8 cm³). HNO₃ (few drops, 70 %) was added slowly until a green solid precipitated. This was collected by filtration and dried under vacuum. Column chromatography (1:9 MeOH/DCM (Rf 0.2)) gave the product as a green solid (117 mg, 30%).

δ_c (100 MHz, CD₃OD): 158.5, 157.1, 144.9, 133.1, 114.5, 96.6, 46.9, 25.7, 23.9; v_max (KBr)/cm⁻¹: 2928, 1653, 1577, 1560, 1490, 1384, 1244, 1169, 1017; m/z (ESI): 347.21 (100%, [M-NO₃D]⁺).
Synthesis 22

3,6-Bis-pyrolidino-xanthylium nitrate

\[
\begin{align*}
\text{Br} & \quad \text{OH} \\
\text{N} & \quad \text{OH} \\
\text{N} & \quad \text{OH}
\end{align*}
\]

\[
\text{N-(3-Hydroxyphenyl)pyrolidine}
\]

Pd(OAc)$_2$ (129 mg, 0.578 mmol) was added to pyrolidine (2.46 g, 34.68 mmol) and 3-bromophenol (5.00 g, 28.90 mmol) under N$_2$. 2,8,9-trisobutyl-2,5,8,9-tetraaza-1-phosphabicyclo[3.3.3]undecane (397 mg, 1.16 mmol), LiHMDS (66.50 cm3, 1 M in THF) and dry toluene (110 cm3) were added sequentially. The mixture was heated to 80°C for 18 h, before being cooled to room temperature. H$_2$O (50 cm3) was added and the layers separated. The aqueous layer was extracted with toluene (3 x 40 cm3). The combined organics were dried (Na$_2$SO$_4$) and the solvent removed under reduced pressure. Column chromatography [3:7 EtOAc/Hexane (R_f: 0.5)] gave the product as an off-white solid (1.92 g, 51%).

\[\delta_H (250 \text{ MHz, CDCl}_3): 7.10 - 7.04 (1H, m, ArH), 6.18 - 6.11 (2H, m, 2ArH), 6.05 (1H, s, \text{ArH}); 4.70 \text{THrbi(OH)73Tn30} \quad \Delta: 3:204\text{Hrm}: \quad 2\text{CH}_2\text{0r-} \quad \text{1796} (4\text{H}; \text{i}72\text{CH}_2\text{f} \quad \Delta\text{a62:5 M}\text{Hz, CDCl}_3): 156.5, 149.5, 130.1, 104.8, 102.5, 98.7, 47.7, 25.5; v\text{max (KBr)/cmrT}}: 3315, 2979, 2891, 2852, 1618, 1578, 1518, 1491, 1459, 1217, 1202, 1170, 817; m/z (ESI):
\]
\[164.11 (100\%, [M+H]^{+}).
\]

5,5'-Bis-pyrolidino-2,2'-methandiyl-di-phenol

N-(3-Hydroxyphenyl)pyrolidine (1.00 g, 6.13 mmol) was added to MeOH (15 cm3). HCl (350 µl, 3.07 mmol, 32%) was then added. Formalin (236 µl, 3.07 mmol, 39%) was added to the reaction mixture. The reaction was stirred at room temperature overnight, and then at 30°C for 24 h. The reaction mixture was poured into H$_2$O (30 cm3) and the resulting mixture neutralised by the addition of an aqueous solution of NaHCO$_3$ (sat.).
The mixture was extracted with DCM (3 x 30 cm³) and the combined extracts dried (Na₂SO₄). The solvent was removed under reduced pressure. Column chromatography [3:7 EtOAc/Hexane (R_f: 0.3)] gave the product as an off-white solid (384 mg, 37%).

δ_H (250 MHz, CDCl₃): 7.01 (2H, d, J = 8 Hz, ArH), 6.92 (2H, bs, OH), 6.05 (2H, d, J = 8 Hz, 2ArH), 5.93 (2H, s, ArH), 3.72 (2H, s, CH₂). 3.13 - 3.00 (8H, m, 4CH₂). 1.96 - 1.85 (8H, m, 4CH₂). δ_c (62.5 MHz, CDCl₃): 153.2, 148.2, 130.8, 114.9, 105.3, 99.5, 47.7, 29.7, 25.4; ν_max (KBr)/cm⁻¹: 3389, 2967, 2834, 1624, 1560, 1515, 1483, 1431, 1371, 1204, 1176, 1126; m/z (ESI): 339.21 (100%, [M+H]⁺).

3,6-Bis-(pyrrolidino)xanthylum nitrate

H₂SO₄ (500 µl, 98 %) was added to H₂O (50 µl) and cooled to room temperature. 5,5'-bis-pyrollidino-2,2'-methandiyl-di-phenol (150 mg, 0.419 mmol) was added and the mixture heated to 140 °C under N₂ for 3 h. The resulting solution was cooled to room temperature and ice H₂O (1 cm³) added. The mixture was neutralised by the addition of NaOH (40 %) whilst maintaining a reaction temperature of less than 20 °C. HCl (300 µl, 32 %) was added and the reaction stirred at room temperature for 30 min. under N₂. FeCl₃.6H₂O (226 mg, 0.838 mmol) in H₂O (1 cm³) was added and the mixture heated to 90 °C for 2 h in air. The reaction was allowed to cool to room temperature overnight. The resulting solid was collected by filtration and dried under vacuum. This material was dissolved in H₂O (5 cm³) and HNO₃ (few drops, 70 %) was added slowly until a green solid precipitated. After 10 min the solid was collected by filtration and dried under vacuum to give the product as a green solid (121 mg, 71 %).

δ_H (250 MHz, CD₃OD): 8.51 (1H, s, ArH), 7.74 (2H, d, J = 9 Hz, ArH), 7.00 (2H, d, J = 9 Hz, 2ArH), 6.72 (2H, s, ArH), 3.69 - 3.52 (8H, m, 4CH₂). 2.23 - 2.10 (8H, m, 4CH₂); δ_c (100 MHz, CDCl₃): 157.4, 155.0, 145.6, 132.8, 114.7, 114.0, 96.2, 47.0, 24.7; ν_max(KBr)/Cm⁻¹: 296172865, 1652, 1601, 1518, 13847345 + 1165π 820; m/z (ESI): 319.18 (100%, [M-NO₃D].
Synthesis 23
3,6-Bis-morpholino xanthene dihydrochloride

\[
\begin{align*}
\text{OH} & \quad \text{OH} \\
\begin{array}{c}
\text{N} \\
\text{O}
\end{array} & \quad \begin{array}{c}
\text{N} \\
\text{O}
\end{array} \\
\begin{array}{c}
\text{N} \\
\text{O}
\end{array} & \quad \begin{array}{c}
\text{N} \\
\text{O}
\end{array}
\end{align*}
\]

\[
\rightarrow
\begin{align*}
\text{O} & \quad \text{O} \\
\begin{array}{c}
\text{N} \\
\text{O}
\end{array} & \quad \begin{array}{c}
\text{N} \\
\text{O}
\end{array} \\
\begin{array}{c}
\text{N} \\
\text{O}
\end{array} & \quad \begin{array}{c}
\text{N} \\
\text{O}
\end{array}
\end{align*}
\]

\[
\cdot 2\text{HCl}
\]

3,6-Bis-morpholino xanthene dihydrochloride

\(\text{H}_2\text{SO}_4 \) (1 cm³, 98 %) was added to water (100 µl) and the mixture cooled to room temperature. 5,5’-Bis-morpholino-2,2’-methandiyl-di-phenol (300 mg, 0.811 mmol) was added portion wise with stirring. The mixture was then heated at 140 °C for 3 h under nitrogen. The resulting solution was cooled to room temperature before the addition of ice water (5 cm³). The mixture was neutralised by the slow addition of sodium hydroxide (40% in water) keeping the temperature below 20 °C. The resulting pink precipitate was collected by filtration, washed with water (2 x 3 cm³). The intermediate was added to a solution of methanol (5 cm³) and HCl (600 µl, 32%) and stirred for 30 min until homogeneous. The solvent was removed under reduced pressure and the solid dried under vacuum overnight to give the product as a purple solid (276 mg, 80 %).

\(\delta_\text{H} \) (250 MHz, DMSO-CD₆): 7.24 (2H, d, J = 8 Hz, 2ArH), 7.10 - 7.00 (2H, m, 2ArH), 7.05 (2H, s, 2ArH), 3.94 (2H, s, CH₂), 3.92 - 3.81 (8H, m, 4CH₂), 3.35 - 3.27 (8H, m, 4CH₂);

\(\nu_{\text{max}} \) (KBr/cm⁻¹): 2916, 2866, 2637, 2581, 1649, 1597, 1487, 1459, 1384, 1246, 1167, 1118, 1058; m/z (ESI): 353.19 (100%, [M-HCb]⁺).

Synthesis 24
3,6-Bis-pyrrolidino xanthene dihydrochloride

\[
\begin{align*}
\text{OH} & \quad \text{OH} \\
\begin{array}{c}
\text{N} \\
\text{N}
\end{array} & \quad \begin{array}{c}
\text{N} \\
\text{N}
\end{array} \\
\begin{array}{c}
\text{N} \\
\text{N}
\end{array} & \quad \begin{array}{c}
\text{N} \\
\text{N}
\end{array}
\end{align*}
\]

\[
\rightarrow
\begin{align*}
\text{O} & \quad \text{O} \\
\begin{array}{c}
\text{N} \\
\text{N}
\end{array} & \quad \begin{array}{c}
\text{N} \\
\text{N}
\end{array} \\
\begin{array}{c}
\text{N} \\
\text{N}
\end{array} & \quad \begin{array}{c}
\text{N} \\
\text{N}
\end{array}
\end{align*}
\]

\[
\cdot 2\text{HCl}
\]

3,6-Bis-pyrrolidino xanthene dihydrochloride

\(\text{H}_2\text{SO}_4 \) (900 µl, 98 %) was added to water (100 µl) and the mixture cooled to room temperature. 5,5’-Bis-pyrrolidino-2,2’-methandiyl-di-phenol (100 mg, 0.296 mmol) was added portion wise with stirring. The mixture was then heated at 140 °C for 3 h under nitrogen. The resulting solution was cooled to room temperature before the addition of
ice water (5 cm³). The mixture was neutralised by the slow addition of sodium hydroxide
(40 %) keeping the temperature below 20 °C. The resulting precipitate was collected by
filtration, washed with water (5 cm³). The intermediate was added to a solution of
methanol (5 cm³) and HCl (400 µl, 32%) and stirred for 30 min until homogeneous. The
solvent was removed under reduced pressure and the solid dried under vacuum
overnight to give the product as a purple solid (84 mg, 72 %).

δ_H (250 MHz, DMSO-Cl): 7.13 (2H, d, J = 8 Hz, ArH), 6.70 - 6.58 (6H, m, 6ArH), 3.87 (2H,
s, CH₂), 3.40 - 3.29 (4H, m, 4CH₂), 2.10 - 1.94 (4H, m, 4CH₂); ν_max (KBr)/crT: 2984,
2658, 1604, 1508, 1384, 1345, 1221, 1164, 1117, 1059, 1000; m/z (ESI): 321.20
(100%, [M-HCl₂⁺]).

Synthesis 25

3,6-Bis-piperidino xanthene dihydrochloride

3,6-Bis-piperidino xanthene dihydrochloride

H₂SO₄ (900 µl, 98 %) was added to water (100 µl) and the mixture cooled to room
temperature. 5,5'-Bis-piperidino-2,2'-methandiyl-di-phenol (350 mg, 0.956 mmol) was
added portion wise with stirring. The mixture was then heated at 140 °C for 3 h under
nitrogen. The resulting solution was cooled to room temperature before the addition of
ice water (5 cm³). The mixture was neutralised by the slow addition of sodium hydroxide
(40 %) keeping the temperature below 20 °C. The resulting pink precipitate was collected
by filtration, washed with water (20 µl of 5% HCl) and dried under vacuum. The
intermediate was added to a solution of methanol (5 cm³) and HCl (600 µl, 32%) and stirred for 30 min until homogeneous. The
solvent was removed under reduced pressure and the solid dried under vacuum
overnight to give the product as a purple solid (298 mg, 74 %).

δ_H (250 MHz, DMSO-d₆): 7.73 (2H, s, ArH), 7.65 (2H, d, J = 8 Hz, ArH), 6.47 (2H, d, J = 8
Hz, ArH), 4.12 (2H, s, CH₂), 3.64 - 3.47 (8H, m, 4CH₂), 2.20 - 1.89 (8H, m, 4CH₂), 1.77 -
1.57 (4H, m, 2CH₂); ν_max (KBr)/crT: 2951, 2522, 1613, 1504, 1479, 1447, 1412, 1300,
1272, 1225, 1198, 1154, 1119; m/z (ESI): 349.23 (100%, [M-HCl₂⁺]).
Synthesis 26

2,6,10-tris-diethylamino-4,8,12-trioxatrianguleum hexafluorophosphate

Tris-(2,4,6-trimethoxyphenyl)carbenium tetrafluoroborate

PhLi (20 cm³, 35.71 mmol, 1.8 M dibutyl ether) was added to trimethoxybenzene (5.00 g, 29.76 mmol) in dry benzene (20 cm³) under N₂. The reaction was stirred at room temperature for 5 days. Diethyl carbonate (1.17 g, 9.22 mmol) in benzene (30 cm³) was added and the reaction heated to reflux for 3 days, before being cooled to room temperature. The reaction mixture was poured into NaOH (60 cm³, 1 M). The mixture was extracted with diethyl ether (3 x 40 cm³) and the combined extracts dried (MgSO₄). HBF₄ (2.3 cm³, 48 %) was added to the solution and the resulting precipitate collected by filtration and dried under vacuum. The solid was dissolved in CH₃CN (30 cm³) and H₂O was added until precipitation of the product occurred. The bulk solution was decanted and the residue dried under vacuum. Column chromatography [1:9 MeOH/DCM (RF: 0.2)] gave the product as a green solid (1.68 g, 28 %).

δ_H (250 MHz, CDCl₃): 6.04 (6H, s, 6ArH), 3.97 (9H, s, 3OCH₃), 3.57 (18H, s, 6OCH₃); v_{max} (KBr/cm⁻¹): 2941, 1594, 1560, 1474, 1420, 1260, 1229, 1166, 1118, 1084, 1060, 1022;
m/z (ESI): 513.21 (100%, [M-HBF₄]+).
Tris(4-diethylamino-2,6-dimethoxyphenyl) carbenium hexafluorophosphate

Tris-(2,4,6-trimethoxyphenyl)carbenium tetrafluoroborate (270 mg, 0.450 mmol) was dissolved in NMP (3 cm3). Diethylamine (7.56 g, 0.103 mol) was added and the reaction stirred at room temperature for 9 days. The mixture was then poured into an aqueous solution of KPF$_6$ (20 cm3, 0.2 M). The mixture was then stirred at room temperature for 1 h, collected by filtration and dried under vacuum to give the product as a green/blue solid (295 mg, 84 %).

$\delta$$_H$ (250 MHz, CDCl$_3$): 5.71 (6H, s, 6ArH), 3.60 - 3.21 (3OH, m, 6OCH$_3$ and 6CH$_2$). 1.24 (18H, t, J = 7 Hz, 6CH$_3$); $\delta$$_C$ (100 MHz, CDCl$_3$): 163.3, 153.9, 114.9, 88.4, 56.0, 45.2, 13.0 (1 carbon missing); ν_max (KBr)/cm$^{-1}$: 2974, 1595, 1507, 1458, 1386, 1340, 1269, 1124, 1076, 843; m/z (ESI): 636.40 (100%, [M-HPF$_6$]$^+$).

2,6, 10-Tris-diethylamino-4,8, 12-trioxatrianguleum hexafluorophosphate

Tris(4-diethylamino-2, 6-dimethoxyphenyl) carbenium hexafluorophosphate (250 mg, 0.32 mmol) and LiI (428 mg, 3.20 mmol) were added to NMP (25 cm3). The mixture was heated to 170 $^\circ$C for 4 h under N$_2$. The reaction was allowed to cool to room temperature overnight before being poured into an aqueous solution of KPF$_6$ (125 cm3, 0.2 M). The resulting orange precipitate was collected by filtration, and then dissolved in DCM (100 cm3). The solution was washed with an aqueous solution of KPF$_6$ (2 x 30 cm3, 0.2 M), dried (Na$_2$SO$_4$) and the solvent removed. Column chromatography [1:2 EtOAc/DCM (R_f: 0.35)] gave the product as an orange solid (96 mg, 47 %).

$\delta$$_H$ (250 MHz, CDCl$_3$): 6.45 (6H, s, 6ArH), 3.53 (12H, q, J = 7 Hz, 6CH$_2$). 1.24 (18H, t, J = 7 Hz, 6CH$_3$); $\delta$$_C$ (100 MHz, CDCl$_3$): 155.8, 150.3, 94.3, 94.2, 46.0, 12.3; ν_max (KBr)/cm$^{-1}$: 2977, 1647, 1605, 1509, 1446, 1349, 1281, 1139, 843; m/z (ESI): 498.27 (100%, [M-HPF$_8$]+).
Synthesis 27
3-Diethylamino-7-dimethylaminophenazinium chloride

\[
\text{Me}_2\text{N} - \text{NO}_2 \xrightarrow{\text{SnCl}_2 \text{ EtOH}} \text{Me}_2\text{N} - \text{NH}_2
\]

\[
\text{Me}_2\text{N} - \text{NHMs} + \text{Et}_2\text{N} - \text{NH}_3\text{Cl}
\]

\[
\text{K}_2\text{Cr}_2\text{O}_7, \text{H}_2\text{O} \rightarrow \left[\begin{array}{c}
\text{Et}_2\text{N} - \text{NMe}_2 \\
\text{Cl}^-
\end{array} \right]
\]

5 3-Diethylamino-7-dimethylaminophenazinium chloride

Λ-N-diethyl-1,4-phenylenediamine (1.00 g, 6.17 mmol) was added slowly to dilute HCl (700 µl, 32%) in H₂O (100 cm³). The mixture was stirred until it was homogeneous. Λ-[3-(dimethylamino)phenyl]methanesulphonamide (1.32 g, 6.17 mmol) in methanol (60 cm³) was added, followed by a saturated aqueous solution of potassium dichromate (2 cm³). The mixture refluxed for 15 min. The mixture was cooled and diluted with water (200 cm³), acidified with hydrochloric acid (1M) and then extracted with chloroform (6 x 30 cm³). The combined extracts were dried over sodium sulphate, filtered and the solvent removed-under-reduced-pressure.-Column-chromatography-(1:9 methanol/dichloromethane) gave the target material as a green solid (451 mg, 22%).

\[\delta_\text{H} (250 \text{ MHz, CDCl}_3): 7.85 (2H, d, J = 10 \text{ Hz, 2ArH}), 7.30 - 7.25 (2H, m, 2ArH), 6.97 (2H, s, 2ArH), 3.51 (4H, q, J = 7 \text{ Hz, 2CH}_2), 3.13 (6H, s, 2CH_3), 1.26 (6H, J = 7 \text{ Hz, 2CH}_3); \]

m/z (ESI): 295 (26%, [M-Cl]+), 324 (100%).
3-Diethylamino-7-dimethylaminooxazinium perchlorate

3-Diethylaminophenol (1.10 g, 6.67 mmol), \(\Lambda.N \)-dimethyl-4-nitrosoaniline (1.00 g, 6.67 mmol) and perchloric acid (1 cm\(^3\)) were heated together in ethanol (30 cm\(^3\)) for 5 min. The reaction was allowed to cool to room temperature. The resulting solid was collected by filtration and dried under vacuum overnight. Column chromatography (1:9 methanol/dichloromethane) gave the product as a green solid (184 mg, 7%).

\[\delta_H (250 \text{ MHz, CDCl}_3): 7.76 - 7.71 (2H, m, 2ArH), 7.19 - 7.14 (2H, m, 2ArH), 6.98 - 6.95 (2H, m, 2ArH), 3.75 (4H, q, \text{J} = 7 \text{ Hz, 2CH}_2), 3.43 (6H, s, 2CH)_3, 1.39 (6H, \text{J} = 7 \text{ Hz, 2CH}_3); \text{m/z (ESI): 296 (100\%, [M-Cl]})] \)

Example 2 - Activity and Therapeutic Index

In vitro assay for establishing B50

This is described in detail in WO 96/30766. Briefly, a fragment of tau corresponding to the core repeat domain, which has been adsorbed to a solid phase substrate, is able to capture soluble full-length tau and bind tau with high affinity. This association confers stability against proteolytic digestion of the aggregated tau molecules. The process is self-propagating, and can be blocked selectively by prototype pharmaceutical agents.

More specifically, truncated tau (residues 297-390; dGA) diluted in carbonate buffer (pH 9.6) was bound to the assay plate, and full-length tau (T40) was added in the aqueous phase. The aqueous phase binding buffer contained 0.05% Tween-20 and 1% gelatine in phosphate-buffered saline (pH 7.4). Bound tau was detected using mAb 499 that
recognises an N-terminal epitope within the aqueous phase full-length tau but that fails to recognise the solid phase-bound truncated tau fragment.

The concentration of compound required to inhibit the tau-tau binding by 50% is referred to as the B50 value.

Cell-based assay for establishing EC50

The process is described in more detail in WO 02/055720. In essence, fibroblast cells (3T6) express full-length tau ("T40") under control of an inducible promotor, and low constitutive levels of the PHF-core tau fragment (12 kD fragment). When T40 expression is induced, it undergoes aggregation-dependent truncation within the cell, N-terminally at ~αα 295 and C-terminally at ~αα 390, thereby producing higher levels of the 12 kD PHF-core domain fragment. Production of the 12 kD fragment can be blocked in a dose-dependent manner by tau-aggregation inhibitors. Indeed the quantitation of inhibitory activity of compounds with respect to proteolytic generation of the 12 kD fragment within cells can be described entirely in terms of the same parameters which describe inhibition of tau-tau binding in vitro. That is, the extent of proteolytic generation of the 12 kD fragment within cells is determined entirely by the extent to tau-tau binding through the repeat domain. The availability of the relevant proteases within the cell is non-limiting.

Results are expressed as the concentration at which there is a 50% inhibition of generation of the 12 kD fragment. This is referred to as the EC50 value.

Toxicity in cells - LD50 and therapeutic index (RxI)

Toxicity of the compounds described herein was assessed in the cell based assay used to assess EC50. Toxicity was measured by cell numbers after 24 hrs exposure to the compound using a lactate dehydrogenase assay kit TOX-7(Sigma Biosciences) according to the manufacturer's instructions after lysis of remaining cells. Alternatively a kit from Promega UK (CytoTox 96) was used, again according to the manufacturer's instructions.

The therapeutic index (RxI) was calculated as follows: \(\text{RxI} = \frac{\text{LD50}}{\text{EC50}} \).
Table 2: Activity and Therapeutic Index of Compounds A to O

<table>
<thead>
<tr>
<th>Compound</th>
<th>B50 (µM)</th>
<th>EC50 (µM)</th>
<th>LD50 (µM)</th>
<th>RxI</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTC</td>
<td>218 ± 20.1 (6)</td>
<td>0.59 ± 0.04 (69)</td>
<td>65.0 ± 5.0 (38)</td>
<td>110</td>
</tr>
<tr>
<td>DMMTC</td>
<td>3.4 ± 0.2 (2)</td>
<td>0.04 ± 0.004 (22)</td>
<td>2.7 ± 1.2 (6)</td>
<td>67</td>
</tr>
<tr>
<td>DMAXC</td>
<td>38.5 ± 6.9 (3)</td>
<td>0.2 ± 0.11 (2)</td>
<td>39.2 ± 10.5 (5)</td>
<td>196</td>
</tr>
<tr>
<td>A</td>
<td>33.8 ± 5.2 (3)</td>
<td>0.0061 ± 0.0024 (9)</td>
<td>19 ± 2.7 (22)</td>
<td>3115</td>
</tr>
<tr>
<td>B</td>
<td>254.1 ± 26.4 (3)</td>
<td>0.0081 ± 0.0035 (9)</td>
<td>30.8 ± 4.6 (4)</td>
<td>3802</td>
</tr>
<tr>
<td>C</td>
<td>461 ± 130 (3)</td>
<td>0.47</td>
<td>5.99 ± 2.6 (4)</td>
<td>13</td>
</tr>
<tr>
<td>D</td>
<td>49.4 ± 7.6 (5)</td>
<td>0.017 ± 0.01 (4)</td>
<td>30 ± 3.4 (10)</td>
<td>1764</td>
</tr>
<tr>
<td>E*</td>
<td>312.1 ± 28.4 (7)</td>
<td>0.014 ± 0.002 (7)</td>
<td>15.8 ± 2.8 (16)</td>
<td>1131</td>
</tr>
<tr>
<td></td>
<td>389.6 ± 322.0 (2)</td>
<td>0.048 ± 0.008 (17)</td>
<td>19.37 ± 2.3 (7)</td>
<td>404</td>
</tr>
<tr>
<td>F</td>
<td>260.1 ± 57.1 (3)</td>
<td>0.042 ± 0.030 (5)</td>
<td>24.6 ± 6.3 (5)</td>
<td>586</td>
</tr>
<tr>
<td>G</td>
<td>89.4 ± 15.7 (3)</td>
<td>0.079 ± 0.024 (6)</td>
<td>35.8 ± 5.5 (6)</td>
<td>453</td>
</tr>
<tr>
<td>H</td>
<td>NE</td>
<td>0.054 ± 0.01 (10)</td>
<td>113 ± 18 (11)</td>
<td>2093</td>
</tr>
<tr>
<td>I · HNO₃</td>
<td>NE</td>
<td>0.032 ± 0.007 (6)</td>
<td>20.4 ± 3.5 (8)</td>
<td>638</td>
</tr>
<tr>
<td>J</td>
<td>NE</td>
<td>0.011 ± 0.006 (5)</td>
<td>17 ± 3 (10)</td>
<td>1545</td>
</tr>
<tr>
<td>K</td>
<td>NE</td>
<td>0.23 ± 0.13 (3)</td>
<td>21.2 ± 12 (3)</td>
<td>91</td>
</tr>
<tr>
<td>L</td>
<td>21.7 ± 2.7 (3)</td>
<td>0.30</td>
<td>22 ± 8.6 (3)</td>
<td>73</td>
</tr>
<tr>
<td>M</td>
<td>110.4 ± 6.2 (3)</td>
<td>0.44</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>N</td>
<td>93.1 ± 17 (3)</td>
<td>NT</td>
<td>136 ± 19.3 (4)</td>
<td>NT</td>
</tr>
<tr>
<td>O</td>
<td>190.2 ± 33.2 (3)</td>
<td>3.9 ± 3.5 (3)</td>
<td>115 ± 17 (9)</td>
<td>29</td>
</tr>
<tr>
<td>AB</td>
<td>413.5</td>
<td>1.72 ± 1.0 (4)</td>
<td>78 ± 54 (6)</td>
<td>45</td>
</tr>
<tr>
<td>AC</td>
<td>129.4 ± 11.9 (3)</td>
<td>1.43 ± 0.14 (4)</td>
<td>14.5 ± 8.4 (8)</td>
<td>34</td>
</tr>
<tr>
<td>AD</td>
<td>126.4 ± 3.0 (3)</td>
<td>0.35 ± 0.10 (5)</td>
<td>19 ± 9 (5)</td>
<td>54</td>
</tr>
<tr>
<td>AE</td>
<td>324.5 ± 87.1 (3)</td>
<td>0.051 ± 0.012 (5)</td>
<td>21 ± 8 (7)</td>
<td>412</td>
</tr>
<tr>
<td>AF</td>
<td>186.7 ± 28.3 (4)</td>
<td>22 ± 4.2 (5)</td>
<td>144 ± 67 (10)</td>
<td>7</td>
</tr>
<tr>
<td>AG</td>
<td>257.1 ± 50.3 (5)</td>
<td>1.12 ± 0.75 (5)</td>
<td>13.8 ± 6.2 (8)</td>
<td>12</td>
</tr>
<tr>
<td>AH</td>
<td>129.4 ± 15.5 (3)</td>
<td>0.26 ± 0.073 (9)</td>
<td>121 ± 52 (12)</td>
<td>465</td>
</tr>
<tr>
<td>AI</td>
<td>NE</td>
<td>16 ± 11 (3)</td>
<td>280 ± 121 (10)</td>
<td>17</td>
</tr>
<tr>
<td>AJ</td>
<td>NE</td>
<td>0.37 ± 0.1 (6)</td>
<td>125 ± 57 (10)</td>
<td>334</td>
</tr>
<tr>
<td>AK</td>
<td>284.1 ± 101.2 (5)</td>
<td>0.64 ± 0.27 (5)</td>
<td>44 ± 26 (8)</td>
<td>69</td>
</tr>
<tr>
<td>AL</td>
<td>8.5 ± 0.9 (3)</td>
<td>0.13 ± 0.07 (4)</td>
<td>8 ± 4 (6)</td>
<td>62</td>
</tr>
<tr>
<td>AM</td>
<td>634.1</td>
<td>1.1 ± 0.24 (5)</td>
<td>93 ± 19 (6)</td>
<td>85</td>
</tr>
<tr>
<td>AN</td>
<td>NE</td>
<td>0.54 ± 0.08 (4)</td>
<td>167 ± 29 (6)</td>
<td>309</td>
</tr>
</tbody>
</table>

NE = no effect when tested to 500 µM.
NT = not tested
B50, EC50, LD50 values are expressed as mean values (in µM) ± SE, with number of replications in parentheses.
RxI = EC50/LD50.
* results from two different synthetic batches of compound E.
References:

The following references are hereby incorporated by reference in their entirety:

5 US 3,932,415
 DE 65282
 JP 2000/344684
 WO 96/30766
 WO 02/055720
10 WO02/075318

Albert, Journal of the Chemical Society 1947, 244.
Biehringer, Chemische Berichte 1894, 27, 3299.
Kang et aM987, Nature, Voir325 jp7733;
Nealey and Driscoll, J. Hetero. Chem. 1966, 3, 228.
Wischik et al., 1988, PNAS USA, Vol. 85, pp. 4506-4510.
Claims:

1. A compound for use in a method of treatment or prophylaxis of the human or animal body by therapy, wherein the compound is a compound of formula (I), (II) or (III):

\[
\begin{align*}
&\text{(I)} \quad X^- \\
&\text{(II)} \\
&\text{(III)} \\
\end{align*}
\]

wherein:

\(X^+\) is a counter ion;

where Z is present:

\(Y\) is O, and Z is N or C-R\(^5\); or
\(Y\) is NH, and Z is N; or
\(Y\) is S, and Z is C-R\(^5\);

where Z is absent:

\(Y\) is O or S;
- R1, and - R2 are each independently saturated C1-6 alkyl, or R1 and R2, together with the nitrogen atom to which they are bound, form a saturated C3-7 heterocycle;

- R3 and - R4 are each independently saturated C1-6 alkyl, or R3 and R4, together with the nitrogen atom to which they are bound, form a saturated C3-7 heterocycle;

- R9, and - R10 are each independently saturated dalkyl; or - R9 and - R10, together with the nitrogen atom to which they are bound, form a saturated C3-7 heterocycle;

- R11 and - R12 are each independently saturated C1-6 alkyl, Oα-R11 and - R12, together with the nitrogen atom to which they are bound, form a saturated C3-7 heterocycle;

- R5 is independently -H, or saturated C1-6 alkyl, which is unsubstiuted or substituted with one or more substituents - R5a, or phenyl, which is unsubstituted or substituted with one or more substituents - R5a;

each - R5a is independently selected from - F, - Cl, - Br, - I, - OH, - OR6, - SH, - SR6, - CN, - NO2, - NH2, - NHR6, - NR62, - NHC(=O)R6, - NR6C(=O)R6, - C(=O)OR6, - OC(=O)R6, - C(=O)NH2, - C(=O)NHR6, and - C(=O)NR62, - C(=O)R6, - C(=O)OH, - S(=O)R6, - S(=O)2R6, and - S(=O)2OH;

each - R6 is independently saturated aliphatic C1-4 alkyl, phenyl, or benzyl;

- R7 and - R8 are each independently selected from: - H, saturated C1-4 alkyl, C2-4 alkenyl, and halogenated C1-6 alkyl; and,

additionally, when Z is C-R5 and R5 is phenyl, - R7 and - R8 may each independently be a bridging group, W, which is bonded to said R5;

W is O, NR17, S, or C(R17)2 wherein each R17 is independently selected from H, saturated aliphatic C1-4 alkyl, and R5a;

- R13a, - R13b, - R14a, - R14b, - R15a, - R15b, - R16a, and - R16b are each independently selected from H and saturated aliphatic C1-4 alkyl;

with the proviso that the compound is not 3,6-bis-dimethylamino xanthylum chloride (DMAXC).
2. A compound for use according to claim 1, wherein X^- is selected from the group consisting of: NO_3^-, ClO_4^-, F^-, Cl^-, Br^-, I^-, ZnCl_3^-, FeCl_4^- and PF_6^-.

3. A compound for use according to claim 1 or claim 2, wherein $-R^5$ is independently $-\text{H}$, or saturated aliphatic C_{1-4}alkyl, which is unsubstituted or substituted with one or more substituents $-R^{5A}$.

4. A compound according to claim 1 or claim 2, wherein $-R^5$ is $-\text{H}$.

5. A compound according to claim 1 or claim 2, wherein $-R^5$ is saturated aliphatic C_{1-4}alkyl, which is unsubstituted or substituted with one or more substituents $-R^{5A}$.

6. A compound according to claim 1 or claim 2, wherein $-R^5$ is saturated aliphatic C_{1-4}alkyl, which is substituted with one or more substituents $-R^{5A}$.

7. A compound according to claim 5, wherein each $-R^{5A}$ is independently selected from $-\text{F}$, $-\text{Cl}$, $-\text{Br}$, or $-\text{I}$.

8. A compound according to claim 6, wherein $-R^5$ is $-\text{CF}_3$.

9. A compound according to claim 1 or claim 2, wherein $-R^5$ is phenyl, which is unsubstituted or substituted with one or more substituents $-R^{5A}$.

10. A compound according to claim 1 or claim 2, wherein $-R^5$ is phenyl, which is substituted with one or more substituents $-R^{5A}$.

11. A compound according to claim 9 or claim 10, wherein each $-R^{5A}$ is independently selected from NH_2 and NO_2.

12. A compound according to claim 1 or claim 2, wherein $-R^5$ is unsubstituted saturated aliphatic C_{1-4}alkyl.

13. A compound according to claim 12, wherein $-R^5$ is $-\text{Et}$.

14. A compound according to any one of claims 1 to 13, wherein the compound is a compound of formula (I).
15. A compound according to claim 14, wherein the compound is a compound of formula (Ic):

\[
\text{(Ic)}
\]

wherein \(X \) and \(R^5 \) are as defined for the compounds of formula (I).

16. A compound according to claim 15, wherein the compound is selected from the group consisting of:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure and Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2,3,6,7,12,13,16,17-Octahydro-1H,5H,11H,15H-diquinolizino[1,9-bc:1',9'-hi] xanthylium chloride</td>
</tr>
<tr>
<td>B</td>
<td>2,3,6,7,12,13,16,17-Octahydro-1H,5H,11H,15H-diquinolizino[1,9-bc:1',9'-hi] xanthylium nitrate</td>
</tr>
</tbody>
</table>
17. A compound according to claim 14, wherein the compound is selected from the group consisting of:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure and Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td> 8-(Trifluoromethyl)-2,3,5,6,11,12,14,15-octahydro-1H,4H,10H,13H-diquinolizino[9,9a,1-bc;9',9a'1'-hi] xanthylium perchlorate</td>
</tr>
<tr>
<td>D</td>
<td> 8-Ethyl-2,3,6,7,12,13,16,17-octahydro-1H,5H,11H,15H-diquinolizino[1,9-bc;1',9'-hi] xanthylium chloride</td>
</tr>
</tbody>
</table>

18. A compound according to any one of claims 1 to 13, wherein the compound is a compound of formula (II).
19. A compound according to claim 18, wherein \(-R^1, -R^2, -R^3\) and \(-R^4\) are each independently saturated aliphatic \(C_\text{alkyl}\).

20. A compound according to claim 18 or claim 19, wherein \(-R^7\) and \(-R^8\) are each independently selected from: \(-H\), saturated \(C_{1-4}\) alkyl, \(C_{2-4}\) alkenyl, and halogenated \(C_{1-4}\) alkyl.

21. A compound according to any one of claims 18 to 20, wherein the compound is a compound of formula (Ha):

\[
\begin{align*}
\text{[Diagram]} \\
\text{wherein:} \\
X^- \text{ is a counter ion;} \\
\text{-}R^9, \text{ and -}R^{10} \text{ are each independently saturated } C^\text{alkyl}; \text{ or -}R^9 \text{ and -}R^{10}, \\
\text{together with the nitrogen atom to which they are bound, form a saturated } C_{37} \\
\text{heterocycle;} \\
\text{-}R^{11} \text{ and -}R^{12} \text{ are each independently saturated } C_{1-6}\text{alkyl,} \\
\text{or -}R^{11} \text{ and -}R^{12}, \text{ together with the nitrogen atom to which they are bound, form a} \\
\text{-saturated-G}_{37}^\text{-heterocycle and-} \\
\text{-}R^5 \text{ is as defined according to the compounds of formula (II).}
\end{align*}
\]

22. A compound according to claim 21, wherein \(R^9, -R^{10}, -R^{11}\) and \(-R^{12}\) are each independently saturated \(C_{2-6}\) alkyl.

23. A compound according to claim 22, wherein each of \(-R^9, -R^{10}, -R^{11}\) and \(-R^{12}\) is independently saturated aliphatic \(C_{2-6}\) alkyl.

24. A compound according to claim 23, wherein one of \(-R^9\) and \(-R^{10}\), and one of \(-R^{11}\) and \(-R^{12}\) is \(-Et\).
25. A compound according to claim 24, wherein -R⁹, -R¹⁰, -R¹¹ and -R¹² are each -Et.

26. A compound according to claim 21, wherein R⁹ and R¹⁰, together with the nitrogen atom to which they are bound, form a saturated C₃₋₇ heterocycle and R¹¹ and R¹², together with the nitrogen atom to which they are bound, independently form a saturated C₃₋₇ heterocycle.

27. A compound according to claim 26, wherein the saturated C₃₋₇ heterocycle formed by R⁹ and R¹⁰ and the saturated C₃₋₇ heterocycle formed by R¹¹ and R¹² are independently selected from: morpholine, piperidine, and pyrrolidine.

28. A compound according to claim 21 wherein the compound is selected from the group consisting of:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure and Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Cl⁻</td>
</tr>
<tr>
<td>F</td>
<td>Br⁻</td>
</tr>
<tr>
<td>G</td>
<td>FeCl₄⁻</td>
</tr>
<tr>
<td>I</td>
<td>NO₃⁻</td>
</tr>
</tbody>
</table>

3,6-Bis-diethylamino xanthylum chloride
3,6-Bis-diethylamino xanthylum bromide
3,6-Bis-diethylamino xanthylum iron tetrachloride
3,6-Bis-diethylamino xanthylum nitrate
29. A compound according to claim 21 wherein the compound is selected from the group consisting of:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure and Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>I·HNO₃</td>
<td>3,6-Bis-diethylamino xanthylum nitrate·HNO₃</td>
</tr>
<tr>
<td>J</td>
<td>9-Ethyl-3,6-bis-diethylamino xanthylum chloride</td>
</tr>
<tr>
<td>AB</td>
<td>3,6-Bis-dimethylamino xanthylum nitrate</td>
</tr>
<tr>
<td>AC</td>
<td>3,6-Bis-diethylamino-9-(4-diethylanilino) xanthylum nitrate</td>
</tr>
</tbody>
</table>
30. A compound according to any one of claims 18 to 20 of formula (lib):

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure and Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td></td>
</tr>
<tr>
<td>AF</td>
<td></td>
</tr>
<tr>
<td>AG</td>
<td></td>
</tr>
<tr>
<td>AH</td>
<td></td>
</tr>
</tbody>
</table>

* * * * *
wherein:

Y is O or NH, and Z is N; or

Y is S, and Z is C-R^5; and

X', -R^1, -R^2, -R^3, -R^4, -R^5, -R^7 and -R^8 are defined according to the compound of formula (II).

31. A compound according to claim 30, wherein -R^1, -R^2, -R^3, and -R^4 are each -Me.

32. A compound according to claim 30 or claim 31 wherein Y is S and Z is C-R^5.

33. A compound according to claim 30 or claim 31, wherein Y is O or NH, and Z is N.

34. A compound according to any one of claims 30 to 33, wherein each of -R^7 and -R^8 is independently -H, saturated C_{1-4} alkyl or halogenated C_{1-4} alkyl.

35. A compound according to any one of claims 30 to 33, wherein each of -R^7 and -R^8 is -H.

36. A compound according to claim 30 wherein the compound is selected from the group consisting of:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure and Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td></td>
</tr>
<tr>
<td>Compound</td>
<td>Structure and Name</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------</td>
</tr>
</tbody>
</table>
| L | ![Structure L](image) ZnCl₃
3,6-Bis(dimethylamino)thioxanthylum zinc trichloride |
| M | ![Structure M](image) ZnCl₂
3,6-Bis(dimethylamino)-1,9-dimethylthioxanthylum zinc trichloride |
| N | ![Structure N](image) Cl⁻
3,7-Bis(dimethylamino)phenazinium chloride |
| O | ![Structure O](image) ClO₄
3,7-Bis(dimethylamino)oxazinium perchlorate⁻ |
| AM | ![Structure AM](image) Cl⁻
3-Diethylamino-7-dimethylaminophenazinium chloride |
37. A compound according to any one of claims 18 to 20 of formula (VI):

\[
\begin{align*}
\text{Structure and Name} & \\
\text{AN} & \\
\text{3-Diethylamino-7-dimethylaminooxazinium} & \\
\text{perchlorate} & \\
\end{align*}
\]

38. A compound according to claim 37, wherein each \(W\) is independently selected from O, NH or S.

39. A compound according to claim 38, wherein each \(W\) is independently O.

40. A compound according to claim 39 which is a compound of formula (Via):
wherein X, $-R_1$, $-R_2$, $-R_3$, $-R_4$, $-R_5$ and $-R_{5A}$ are as defined according to the compounds of formula (VI).

41. A compound according to claim 37 wherein the compound is selected from the group consisting of:

42. A compound according to any one of claims 1 to 13, wherein the compound is a compound of formula (III).

43. A compound according to claim 42, wherein each of $-R_9$, $-R_{10}$, $-R_{11}$ and $-R_{12}$ is independently saturated aliphatic C_{2-6}-alkyl.

44. A compound according to claim 43, wherein $-R_9$, $-R_{10}$, $-R_{11}$ and $-R_{12}$ are each $-\text{Et}$.

2,6,10-Tris-diethylamino-4,8,12-trioxotrianguleum hexafluorophosphate
45. A compound according to claim 42 wherein the compound is:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure and Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td> 2 HCl 3,6-Bis-diethylamino xanthene dihydrochloride</td>
</tr>
</tbody>
</table>

46. A compound according to claim 42 wherein \(R^9 \) and \(R^{10} \), together with the nitrogen atom to which they are bound, form a saturated \(C_{37} \) heterocycle and \(R^{11} \) and \(R^{12} \), together with the nitrogen atom to which they are bound, independently form a saturated \(C_{37} \) heterocycle.

47. A compound according to claim 46, wherein the saturated \(C_{37} \) heterocycle formed by \(R^9 \) and \(R^{10} \) and the saturated \(C_{37} \) heterocycle formed by \(R^{11} \) and \(R^{12} \) are independently selected from: morpholine, piperidine, and pyrrolidine.

48. A compound according to claim 42 wherein the compound is selected from the group consisting of:

| AI | ![Structure](image) 0.2HCl 3,6-Bis-morpholino xanthene dihydrochloride |
| AJ | ![Structure](image) 0.2HCl 3,6-Bis-pyrrolidino xanthene dihydrochloride |
49. A compound for use in a method of treatment or prophylaxis of a tauopathy condition in a patient, wherein the compound is a compound as defined in any one of claims 1 to 48.

50. A compound for use in a method of treatment or prophylaxis of a disease of tau protein aggregation in a patient, wherein the compound is a compound as defined in any one of claims 1 to 48.

51. A compound for use in a method of treatment or prophylaxis of Alzheimer's disease (AD), Pick's disease, Progressive Supranuclear Palsy (PSP), fronto-temporal dementia (FTD), parkinsonism linked to chromosome 17 (FTDP-17), disinhibition-dementia-parkinsonism-amyotrophy complex (DDPAC), pallido-ponto-nigral degeneration (PPND), Guam-ALS syndrome, pallido-nigro-luysian degeneration (PNLD), cortico-basal degeneration (CBD), Dementia with Argyrophilic grains (AgD), Dementia pugilistica (DP), Down's Syndrome (DS), Dementia with Lewy bodies (DLB) Subacute sclerosing panencephalitis (SSPE), MCI, Neumann Pick disease, type C (NPC), Sanfilippo syndrome type B, mucopolysaccharidosis III B (MPS III B), myotonic dystrophies (DM), DM1 or DM2, or chronic traumatic encephalopathy (CTE) in a patient, wherein the compound is a compound as defined in any one of claims 1 to 48.

52. A compound for use in a method of treatment or prophylaxis of Alzheimer's disease (AD) in a patient, wherein the compound is a compound as defined in any one of claims 1 to 48.

53. A compound according to any one of claims 1 to 52, wherein the compound is provided in the form of a dosage unit comprising the compound in an amount of from 20 to 300 mg and a pharmaceutically acceptable carrier, diluent, or excipient.
A compound according to any one of claims 1 to 53, wherein the treatment or prophylaxis comprises administration of the compound according to the following dosage regime: about 50 or about 75 mg, 3 or 4 times daily.

A compound according to any one of claims 1 to 53, wherein the treatment or prophylaxis comprises administration of the compound according to the following dosage regime: about 100 or about 125 mg, 2 times daily.

A compound according to any one of claims 1 to 55, wherein the treatment or prophylaxis comprises oral administration of the compound.

A compound according to any one of claims 1 to 56, wherein the treatment or prophylaxis further comprises treatment with a cholinesterase inhibitor.

A compound according to any one of claims 1 to 56, wherein the treatment or prophylaxis further comprises treatment with Donepezil (Aricept™), Rivastigmine (Exelon™), or Galantamine (Reminyl™).

A compound according to any one of claims 1 to 56, wherein the treatment or prophylaxis further comprises treatment with an NMDA receptor antagonist.

A compound according to any one of claims 1 to 56, wherein the treatment or prophylaxis further comprises treatment with Memantine (Ebixa™, Namenda™).

A compound according to any one of claims 1 to 56, wherein the treatment or prophylaxis further comprises treatment with a muscarinic receptor agonist.

A compound according to any one of claims 1 to 56, wherein the treatment or prophylaxis further comprises treatment with an inhibitor of amyloid precursor protein processing to beta-amyloid.

Use of a compound in the manufacture of a medicament for use in a method of treatment or prophylaxis of a tauopathy condition in a patient, wherein the compound is a compound as defined in any one of claims 1 to 48.

Use of a compound in the manufacture of a medicament for use in a method of treatment or prophylaxis of a disease of tau protein aggregation in a patient, wherein the compound is a compound as defined in any one of claims 1 to 48.
65. Use of a compound in the manufacture of a medicament for use in a method of treatment or prophylaxis of Alzheimer's disease (AD), Pick's disease, Progressive Supranuclear Palsy (PSP), fronto-temporal dementia (FTD), parkinsonism linked to chromosome 17 (FTDP-17), disinhibition-dementia-parkinsonism-amyotrophy complex (DDPAC), pallido-ponto-nigral degeneration (PPND), Guam-ALS syndrome, pallido-nigro-luysian degeneration (PNLD), cortico-basal degeneration (CBD), Dementia with Argyrophilic grains (AgD), Dementia pugilistica (DP), Down's Syndrome (DS), Dementia with Lewy bodies (DLB) Subacute sclerosing panencephalitis (SSPE), MCI, Neumann Pick disease, type C (NPC), Sanfilippo syndrome type B, mucopolysaccharidosis III B (MPS III B), myotonic dystrophies (DM), DM1 or DM2, or chronic traumatic encephalopathy (CTE) in a patient, wherein the compound is a compound as defined in any one of claims 1 to 48.

66. Use of a compound in the manufacture of a medicament for use in a method of treatment or prophylaxis of Alzheimer's disease (AD) in a patient, wherein the compound is a compound as defined in any one of claims 1 to 47.

67. Use according to any one of claims 63 to 66, wherein the medicament is a dosage unit comprising the compound in an amount of from 20 to 300 mg and a pharmaceutically acceptable carrier, diluent, or excipient.

68. Use according to any one of claims 63 to 67, wherein the treatment or prophylaxis comprises administration of the compound according to the following dosage regime: about 50 or about 75 mg, 3 or 4 times daily.

69. Use according to any one of claims 63 to 67, wherein the treatment or prophylaxis comprises administration of the compound according to the following dosage regime: about 100 or about 125 mg, 2 times daily.

70. Use according to any one of claims 63 to 69, wherein the treatment or prophylaxis comprises oral administration of the compound.

71. Use according to any one of claims 63 to 70, wherein the treatment or prophylaxis further comprises treatment with a cholinesterase inhibitor.

72. Use according to any one of claims 63 to 71, wherein the treatment or prophylaxis further comprises treatment with Donepezil (Aricept™), Rivastigmine (Exelon™), or Galantamine (Reminyl™).

73. Use according to any one of claims 63 to 72, wherein the treatment or prophylaxis further comprises treatment with an NMDA receptor antagonist.
74. Use according to any one of claims 63 to 73, wherein the treatment or prophylaxis further comprises treatment with Memantine (Ebixa™, Namenda™).

5 75. Use according to any one of claims 63 to 74, wherein the treatment or prophylaxis further comprises treatment with a muscarinic receptor agonist.

76. Use according to any one of claims 63 to 75, wherein the treatment or prophylaxis further comprises treatment with an inhibitor of amyloid precursor protein processing to beta-amyloid.

77. A method of reversing or inhibiting the aggregation of tau protein comprising contacting the aggregate or protein with a compound as defined in any one of claims 1 to 48.

78. A method of regulating the aggregation of a tau protein in the brain of a mammal, which aggregation is associated with a disease of tau protein aggregation, comprising the step of administering to said mammal a prophylactically or therapeutically effective amount of a compound as defined in any one of claims 1 to 48.

79. A method of inhibiting production of protein aggregates in the brain of a mammal, comprising the step of administering to said mammal a prophylactically or therapeutically effective amount of a compound as defined in any one of claims 1 to 48.

80. A method of treatment or prophylaxis of a tauopathy condition in a patient comprising administering to said patient a compound as defined in any one of claims 1 to 48.

81. A method of treatment or prophylaxis of a disease of tau protein aggregation in a patient comprising administering to said patient a compound as defined in any one of claims 1 to 48.

82. A method of treatment or prophylaxis of Alzheimer's disease (AD), Pick's disease, Progressive Supranuclear Palsy (PSP), fronto-temporal dementia (FTD), parkinsonism linked to chromosome 17 (FTDP-17), disinhibition-dementia-parkinsonism-amyotrophy complex (DDPAC), pallido-ponto-nigral degeneration (PPND), Guam-ALS syndrome, pallido-nigro-luysian degeneration (PNLD),
cortico-basal degeneration (CBD), Dementia with Argyrophilic grains (AgD), Dementia pugilistica (DP), Down’s Syndrome (DS), Dementia with Lewy bodies (DLB) Subacute sclerosing panencephalitis (SSPE), MCI, Neumann Pick disease, type C (NPC), Sanfilippo syndrome type B, mucopolysaccharidosis III B (MPS III B), myotonic dystrophies (DM), DM1 or DM2, or chronic traumatic encephalopathy (CTE) in a patient, comprising administering to said patient a compound as defined in any one of claims 1 to 48.

83. A method of treatment or prophylaxis of Alzheimer’s disease (AD) in a patient, comprising administering to said patient a compound as defined in any one of claims 1 to 48.

84. A compound for use in a method of diagnosis or prognosis of a tau proteinopathy, wherein the compound is a compound as defined in any one of claims 1 to 48; and wherein the compound incorporates, is conjugated to, is chelated with, or is otherwise associated with, one or more detectable labels.

85. Use of a compound in the manufacture of a diagnostic or prognostic reagent for use in the diagnosis or prognosis of a tau proteinopathy of patient, wherein the compound is a compound as defined in any one of claims 1 to 48; and wherein the compound incorporates, is conjugated to, is chelated with, or is otherwise associated with, one or more detectable labels.

86. A method of labelling tau protein or aggregated tau protein comprising the step of: contacting the tau protein or aggregated tau protein with a compound as defined in any one of claims 1 to 48; wherein the compound incorporates, is conjugated to, is chelated with, or is otherwise associated with, one or more detectable labels.

87. A method of detecting tau protein or aggregated tau protein comprising the steps of:

contacting the tau protein or aggregated tau protein with a compound as defined in any one of claims 1 to 48; wherein the compound incorporates, is conjugated to, is chelated with, or is otherwise associated with, one or more detectable labels; and
detecting the presence and/or amount of said compound bound to tau protein (or aggregated tau protein).
88. A method of diagnosis or prognosis of a tau proteinopathy in a subject believed to suffer from the disease, comprising the steps of:

(i) introducing into the subject a compound as defined in any one of claims 1 to 48; wherein the compound incorporates, is conjugated to, is chelated with, or is otherwise associated with, one or more detectable labels,

(ii) determining the presence and/or amount of said compound bound to tau protein or aggregated tau protein in the brain of the subject,

(iii) correlating the result of the determination made in (ii) with the disease state of the subject.

89. A compound of formula (I):

\[\text{X} \]

wherein \(X \), \(R^5 \), \(-R^{13a}, \-R^{13b}, \-R^{14a}, \-R^{14b}, \-R^{15a}, \-R^{15b}, \-R^{16a}, \text{and } \-R^{16b} \) are as defined in any one of claims 14 to 17,

with the proviso that the compound is not:

- 2,3,6,7,12,13,16,17-octahydro-1H,5H,11H,15H-diquinolizino[1,9-bc:9'-hi]xanthylidium perchlorate ("compound C");

8-(trifluoromethyl)-2,3,5,6,11,12,14,15-octahydro-1H,4H,10H,13H-diquinolizino[9,9a,1-bc:9,9a'1'-hi]xanthylidium perchlorate ("compound X").
90. A compound of formula (Ic):

\[
\begin{array}{c}
\text{R}^5 \\
\text{X} \\
\text{R}^5
\end{array}
\]

wherein \(X \) and \(R^5 \) are as defined in any one of claims 14 to 16,

with the proviso that the compound is not:

- \(2,3,6,7,12,13,16,17 \)-octahydro-1\(H \).5\(H \), 11\(H \), 15\(H \)-diquinolizino[1',9-bc: 1',9'-hi] xanthylum chloride ("compound A");
- \(8 \)-(trifluoromethyl)-2,3,5,6, 11,12,14,1 5-octahydro-1\(H \).4\(H \), 10\(H \), 13\(H \)-diquinolizino[9,9a,1-bc;9',9a'1'-hi] xanthylum perchlorate ("compound C"); or
- \(2,3,6,7,12,13,16,17 \)-octahydro-1\(H \).5\(H \), 1\(H \), 15\(H \)-diquinolizino[1',9-bc:9',9'-hi] xanthylum perchlorate ("compound X").

91. A compound of formula (Ii):

\[
\begin{array}{c}
\text{R}^7 \\
\text{R}^8 \\
\text{X} \\
\text{R}^1 \\
\text{R}^2 \\
\text{R}^3 \\
\text{R}^4 \\
\text{R}^7 \\
\text{R}^8
\end{array}
\]

wherein \(X \), \(Y \), \(Z \), \(R^1 \), \(R^2 \), \(R^3 \), \(R^4 \), \(R^7 \) and \(R^8 \) are as defined in any one of claims 18 to 41,

with the proviso that the compound is not:

- 3,6-bis(dimethylamino)thioxanthylum zinc trichloride ("compound LZ");
- 3,6-bis(dimethylamino)thioxanthylum perchlorate ("compound LP");
- 3,7-bis(dimethylamino)phenazinium chloride ("compound MC");
- 3,7-Bis(dimethylamino)phenazinium perchlorate ("compound MP");
- 3,7-bis(dimethylamino)oxazinium chloride ("compound O");
- 3,6-bis-diethylamino xanthylum chloride ("compound E");
- 3,6-bis-diethylamino xanthylum iron tetrachloride ("compound G");
- 3,6-bis-diethylamino xanthylum zinc trichloride ("compound Y");
9-(2-carboxyethyl)-3,6-Bis-dimethylamino xanthylium chloride ("compound AA");
3,6-bis-dimethylamino xanthylium chloride (DMAXC);
2,6,10-tris-diethylamino-4,8,12-trioxatrianguleum hexafluorophosphate ("compound AL").

92. A compound according to claim 89, of formula (Ha):

\[
\begin{array}{c}
\text{[}\begin{array}{c}
R^5 \\
N \\
R^9 \\
N \\
R_{10} \\
N \\
R_{11} \\
+ \\
\end{array}\text{]} \quad \text{X}^{-} \quad \text{(IIa)}
\end{array}
\]

wherein \(X, R^5, R^9, R_{10}, R_{11}\) and \(R_{12}\) are as defined in any one of claims 21 to 29,

with the proviso that the compound is not:
3,6-bis-diethylamino xanthylium chloride ("compound E");
3,6-bis-diethylamino xanthylium iron tetrachloride ("compound G");
3,6-bis-diethylamino xanthylium zinc trichloride ("compound Y")
3,6-bis-dimethylamino xanthylium chloride ("DMAXC").

93. A compound according to claim 89, of formula (Mb):

\[
\begin{array}{c}
\text{[}\begin{array}{c}
R^7 \\
R^2 \\
N \\
R^6 \\
N \\
R^3 \\
R^4 \\
N \\
+ \\
\end{array}\text{]} \quad \text{X}^{-} \quad \text{(IIb)}
\end{array}
\]

wherein \(X, Y, Z, R^1, R^2, R^3, R^4, R^7\) and \(R^8\) are as defined in any one of claims
92. to 36,

with the proviso that the compound is not:
3,6-bis(dimethylamino)thioxanthylum zinc trichloride ("compound LZ");
3,6-bis(dimethylamino)thioxanthylum perchlorate ("compound LP");
3,7-bis(dimethylamino)phenazinium chloride ("compound MC");
3,7-Bis(dimethylamino)phenazinium perchlorate ("compound MP"); or 3,7-bis(dimethylamino)oxazinium chloride ("compound O").

A compound according to claim 89, of formula (VI):

wherein X', Y, W, $-R^1$, $-R^2$, $-R^3$, $-R^4$ and $-R^{5A}$ are as defined in any one of claims 37 to 41, with the proviso that the compound is not 2,6,10-tris-diethylamino-4,8,12-trioxotrianguleum hexafluorophosphosphate.

A compound according to claim 89, of formula (Via):

wherein X', Y, W, $-R^1$, $-R^2$, $-R^3$, $-R^4$ and $-R^{5A}$ are as defined in any one of claims 39 to 40, with the proviso that the compound is not 2,6,10-tris-diethylamino-4,8,12-trioxotrianguleum hexafluorophosphosphate.
96. A compound of formula (III):

\[
\begin{array}{c}
\text{Y} \\
\text{X} \\
\text{R}^{5} \\
\text{R}^{9} \\
\text{R}^{10} \\
\text{R}^{11} \\
\text{R}^{12} \\
\end{array}
\]

\[
2 \text{H}^{+}\text{X}^{-} \quad (\text{III})
\]

wherein \(Y, X, R^5, R^9, R^{10}, R^{11}\) and \(R^{12}\) are as defined in any one of claims 42 to 48, with the proviso that the compound is not 3,6-bis-diethylamino xanthene dihydrochloride ("compound H").