WO 2005/069101 A2 || 000 00 0 0 000 O OO A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

AT OO0 O AR

(10) International Publication Number

(25) Filing Language:

(26) Publication Language:

(22) International Filing Date:

23 December 2004 (23.12.2004)
English

English

(30) Priority Data:

10/753,820 8 January 2004 (08.01.2004) US

(71) Applicant (for all designated States except US): INTER-

NATIONAL BUSINESS MACHINES CORPORA-
TION [US/US]; New Orchard Road, Armonk, NY 10504
(US).

(74)

(81)

28 July 2005 (28.07.2005) PCT WO 2005/069101 A2
(51) International Patent Classification”: GOGF 1/00 (71) Applicant (for MG only): IBM UNITED KING-
DOM LIMITED [GB/GB]; PO Box 41 North Harbour,
(21) International Application Number: Portsmouth Hampshire PO6 3AU (GB).
PCT/EP2004/053702 (72) Inventor; and
(75) Inventor/Applicant (for US only): CHAO, Ching-Yun

[US/US]; 11518 Rustic Rock Drive, Austin, TX 78750
(us).

Agent: MATHER, Belinda; IBM United Kingdom Lim-
ited, Intellectual Property Law, Hursley Park, Winchester
Hampshire SO21 2JN (GB).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,

[Continued on next page]

EXTERNAL SMART KEY DEVICE (EXSKD) 502

[EXSKD PRIVATE KEV 12 | CR;’N’,’S‘?,@Q’;'G

EXSKD PUBLIC KEY CERTIFICATE 514
[exsoruaLickeYs1g |

INSKD PUBLIC KBY CERTIFICATE 518
[msxoPustcKeYS2) |

[ExskoPUBLCKEY 534 |

|| INSKD_SW PRIVATE KEY 536 l

INSKD_SW PUBLIC KEY CERTIFICATE
88

| INSKD_SW PUBLIC KEY 56 |

INSKD_SW PUBLIC KEY CERTIFICATE
542

[INSkD_SW PUBLIC KEY 544 |

DIGITAL SIGNATURE
COMPUTED OVER SWSKLS BASED ON
INSKD_SW PRIVATE KEY 562

SWSKD PUBLIC KEY CERTIFICATE 548

| SWSKDPUBLICKEYS48 |

(54) Title: METHOD AND SYSTEM FOR ESTABLISHING A TRUST FRAMEWORK BASED ON SMART KEY DEVICES

(57) Abstract: A mechanism is provided for
securing cryptographic functionality within a host
system such that it may only be used when a system
administrator physically allows it via a hardware
security token. In addition, a hardware security unit
is integrated into a data processing system, and the
hardware security unit acts as a hardware certificate
authority. The hardware security unit may be viewed
as supporting a trust hierarchy or trust framework

within a distributed data processing system. The
— ELEGTRICAL INTERFACE TO SYSTEM UNIT 504 — hardware security unit can sign software that is
SYSTEM LN installed on the machine that contains the hardware
506 ELECTRICAL INTERFACE TO EXSKD 508 security unit. Server processes that use the signed
| SR T DRI (NS APPLIGATIONSH software that is run on thf? machine can establi'sh
[CRYPTOGRAPHIC ENGINE 524 SOFTWARE SMART KEY UNIT mutual trust relationships with the hardware security
(SWSKU) 538 unit and amongst the other server processes based
[INsKD PRIVATEREY 626 | | CRYPTOGRAPHIC ENGINE 552 | on their common trust of the hardware security unit.
INSKD PUBLIC KEY CERTIFICATE 528 ™ SWEKU PRIVATE KEY 580, |
[sKopustickevae |
SWSKU PUBLIC KEY CERTIFICATE 554
EXSKD PUBLIC KEY CERTIFICATE 532 [swsku puBLIC KEY 556 |

WO 2005/069101 A2

0 00000 00 O

TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
7ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,

SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— without international search report and to be republished

upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

WO 2005/069101 PCT/EP2004/053702

AUS030854

Description

METHOD AND SYSTEM FOR ESTABLISHING A

[001]

[002]

[003]

[004]

[005]

TRUST FRAMEWORK BASED ON SMART KEY

DEVICES
Technical Field

The present invention relates to an improved data processing system and, in
particular, to a method and apparatus for daia storage protection using cryptography.
Background Art

In virtvally every networking system, an administrative system secures resources by
restricting access to those resources. A network within an enterprise may have many
types of resources to be accessed: physical resources, such as client machines; and
logical resources, such as computer programs. Different resources may have various
arthentication schemes. When an entity wants to access a restricted resource, the entity
is required to authenticate itself to a requested service or an authentication service that
acts on behalf of the requested service. The management of information about
authorized entities to support these arthentication schemes entails significant costs and
administrative labor.

Therefore, it would be advantageous to have a mechanism for managing trust rela-
tionships among entities in a data processing system that is founded on trust provided
by a hardware entity within the data processing system.

Disclosure of Invention

A mechanism is provided for securing cryptographic functionality within a host
system such that it may only be used when a system administrator physically allows it
via a hardware security token. In addition, a hardware security unit is integrated into a
data processing system, and the hardware security unit acts as a hardware certificate
authority. The hardware security unit may be viewed as supporting a trust hierarchy or
trust framework within a distributed data processing system. The hardware security
unit can sign software that is installed on the machine that contains the hardware
security unit. Server processes that use the signed software that is run on the machine
can establish mutual trust relationships with the hardware security unit and amongst
the other server processes based on their common trust of the hardware security unit.

For example, a data processing system accepts a removable hardware device, which

becomes electrically engaged with a system unit within the data processing system,

WO 2005/069101 PCT/EP2004/053702

AUS030854

[006]

[007]

[008]

[009]

[010]

[011]

[012]

[013]

[014]

[015]

after which the removable hardware device and the hardware security unit mutually
arthenticate themselves, thereby enabling certain functions within the hardware
security unit. While the removable hardware device remains electricaly engaged with
the system unit, the hardware security unit may act as a certificate anthority to issue
digital certificates for software modules. While the removable hardware device
remains electrically engaged with the system unit, the hardware security unit may also
receive and store a digital certificate corresponding to a private key possessed by a
second hardware security unit that is not included in the system unit. Thereafter,
software modules can mutually anthenticate based on the digital certificates that are
stored within the hardware security unit.
Brief Description of the Drawings

The novel features believed characteristic of the invention are set forth in the
appended claims. The invention itself, further objectives, and advantages thereof, will
be best understood by reference to the following detiled description when read in
conjunction with the asccompanying drawings, wherein:

FIG. 1A depicts a typical network of data processing systems, each of which may
implement the present invention;

FIG. 1B depicts a typical computer architecture that may be used within a data
processing system in which the present invention may be implemented;

FIG. 2 depicts a block diagram that shows a typical manner in which an
individual obtains a digital certificate;

FIG. 3 depicts a block diagram that shows a typical manner in which an entity
may use a digital certificate to be anthenticated to a data processing system;

FIG. 4 depicts a block diagram that shows a portion of a data processing system
that accepts a removable hardware device to enable cryptographic functionality in a
hardware security unit within the data processing system;

FIG. 5 depicts a block diagram that shows a system unit that contains an internal
smart key device and that uses an external smart key device to enable the cryp-
tographic functionality within the internal smart key device;

FIG. 6 depicts a flowchart that shows an overview of a process for enabling the
cryptographic functionality of the internal smart key device of a host system;

FIG. 7 depicts a flowchart that shows an overview of a process for enabling the
cryptographic functionality of the internal smart key device of a host system for use by
a particular software smart key unit;

FIG. 8 depicts a flowchart that shows a process for disabling the cryptographic

WO 2005/069101 PCT/EP2004/053702

AUS030854

[016]

[017]

[018]

[019]

[020]

[021]

[022]

[023]

[024]

[025]

[026]

[027]

[028]

functionality of the internal smart key device of a host system;

FIGs. 9A-9B depict a pair of flowcharts that show further detail for the mutual
anthentication procedure that is shown in step 604 of FIG. 6;

FIGs. 10A-10B depict a pair of flowcharts that show further detail for the mutual
anthentication procedure that is shown in step 704 of FIG. 7;

FIG. 11A depicts a flowchart that shows a process in an internal smart key device
for performing operations as requested by a software smart key unit in which the
operations are enabled or disabled based on the presence of an external smart key
device;

FIG. 11B depicts a flowchart that shows a process in an internal smart key device
for performing operations as requested by a software smart key unit in which the
operations are not required to be enabled by the presence of an external smiart key
device;

FIG. 12 depicts a block diagram that shows an embodiment of the present
invention for protecting master secrets;

FIGs. 13-15 depict block diagrams that show different relationships between
multiple external smart key devices and multiple internal smart key devices;

FIGs. 16A-16C depict block diagrams that show a typic set of trusted rela-
tionships;

FIG. 17 depicts a block diagram that shows an example of a trust model that is
constructed of trust relationships that are based on the trust provided by internal smart
key devices;

FIG. 18 depicts a block diagram that shows a data processing system for
generating operating system files in which each programmatic entity in the operating
system confains functionality for establishing trust relationships in a trust hierarchy
based on internal smart key devices;

FIG. 19 depicts a flowchart that shows a process for generating operating system
modules that contain software smart key units such that the operating system modules
are able to perform authentication operations with each other;

FIG. 20 depicts a block diagram that shows a data processing system for
generating project code in which each programmatic entity contains functionality for
establishing trust relationships in a trust hierarchy based on internal smart key devices;

FIG. 21 depicts a flowchart that shows a process for extending the certificate
chain for an internal smart key device;

FIG. 22 depicts a block diagram that shows an example of a trust model that is

WO 2005/069101 PCT/EP2004/053702

AUS030854

[029]

[030]

[031]

[032]

[033]

[034]

[035]

constructed of trust relationships that are based on the trust provided by a single local
internal smart key device that mainfains a certificate chain containing multiple root
certificates for foreign internal smart key devices;

FIG. 23 depicts a flowchart that shows a process for obtaining a current root
certificate chain maintained by the local internal smart key device;

FIG. 24 depicts a flowchart that shows a process for determining whether a
digital certificate from a foreign internal smart key device is trustworthy;

FIG. 25 depicts a dataflow diagram that shows entities within a hardware-assisted
trust model that may be used to ensure the integrity of software modules; and

FIG. 26 depicts a flowchart that shows a process for ensuring the integrity of
software modules.
Mode for the Invention

In general, the devices that may comprise or relate to the present invention include
a wide variety of dala processing technology. Therefore, as background, a typical or-
ganization of hardware and software components within a distributed daa processing
system is described prior to describing the present invention in more detail.

With reference now to the figures, FIG. 1A depicts a typical network of data
processing systems, each of which may implement a portion of the present invention.
Distributed data processing system 100 contains network 101, which is a medium that
may be used to provide communications links between various devices and computers
connected together within distributed data processing system 100. Network 101 may
include permanent connections, such as wire or fiber optic cbles, or temporary
connections made through telephone or wireless communications. In the depicted
example, server 102 and server 103 are connected to network 101 along with storage
unit 104. In addition, clients 105-107 also are connected to network 101. Clients
105-107 and servers 102-103 may be represented by a variety of computing devices,
such as mainframes, personal computers, personal digital assistants (PDAs), etc.
Distributed data processing system 100 may include additional servers, clients, routers,
other devices, and peer-to-peer architectures that are not shown.

In the depicted example, distributed data processing system 100 may include the
Internet with network 101 representing a worldwide collection of networks and
gateways that use various protocols to communicate with one another, such as
Lightweight Directory Access Protocol (LDAP), Transport Control Protocol/Internet
Protocol (TCP/IP), Hypertext Transport Protocol (HTTP), Wireless Application Prot
ocol (WAP), etc. Of course, distributed data processing system 100 may also include a

WO 2005/069101 PCT/EP2004/053702

AUS030854

[036]

[037]

[038]

[039]

number of different types of networks, such as, for example, an intranet, a locl area
network (LAN), or a wide area network (WAN) For example, server 102 directly
supports client 109 and network 110, which incorporates wireless communication
links. Network-enabled phone 111 connects to network 110 through wireless link 112,
and PDA 113 connects to network 110 through wireless link 114. Phone 111 and PDA
113 can dlso directly transfer data between themselves across wireless link 115 using
an appropriate technology, such as Bluetooth™ wireless technology, to create so-
cdled personal area networks (PAN) or personal ad-hoc networks. In a similar manner,
PDA 113 can transfer data to PDA 107 via wireless communication link 116.

The present invention could be implemented on a variety of hardware platforms;
FIG. 1A is intended as an example of a heterogeneous computing environment and not
as an architectural limitation for the present invention.

With reference now to FIG. 1B, a diagram depicts a typical computer architecture
of a data processing system, such as those shown in FIG. 1A, in which the present
invention may be implemented . Data processing system 120 contains one or more
central processing units (CPUs) 122 connected to internal system bus 123, which in-
terconnects random access memory (RAM) 124, read-only memory 126, and input/
output adapter 128, which supports various I/O devices, such as printer 130, disk units
132, or other devices not shown, such as an aidio output system; etc. System bus 123
also connects communication acapter 134 that provides access to communication link
136. User interface adapter 148 connects various user devices, such as keyboard 140
and mouse 142, or other devices not shown, such as a touch screen, stylus,
microphone, etc. Display adapter 144 connects system bus 123 to disply device 146.

Those of ordinary skill in the art will appreciate that the hardware in FIG. 1B may
vary depending on the system implementation. For example, the system may have one
Of more processors, such as an Intel® Pentium -based processor and a digital signal
processor (DSP), and one or more types of volatile and non-volatile memory. Other
peripheral devices may be used in addition to or in place of the hardware depicted in
FIG. 1B. The depicted examples are not meant to imply architectural limitations with
respect to the present invention.

In addition to being able to be implemented on a variety of hardware platforms, the
present invention may be implemented in a variety of software environments. A
typica operating system may be used to control program execution within each cata
processing system. For example, one device may run a Unix ° operating system, while

. - . ® . . .
another device confains a simple Java ~ runtime environment. A representative

WO 2005/069101 PCT/EP2004/053702

AUS030854

[040]

[041]

[042]

[043]

[044]

computer platform may include a browser, which is a well known software application
for accessing hypertext documents in a variety of formats, such as graphic files, word
processing files, Extensible Markup Language (XML), Hypertext Markup Language
(HTML), Handheld Device Markup Language (HDML), Wireless Markup Language
(WML), and various other formats and types of files.

The present invention may be implemented on a variety of hardware and software
platforms, as described above with respect to FIG. 1A and FIG. 1B. More
specificdly, though, the present invention is directed to a mechanism for securing
secret information through the use of a hardware security token. Before describing the
present invention in more detail, though, some background information about digital
certificates is provided for evaluating the operational efficiencies and other advantages
of the present invention.

Digitdl certificites support public key cryptography in which each party involved in
a communication or transaction has a pair of keys, caled the public key and the private
key. Each party’s public key is published while the private key is kept secret. Public
keys are numbers associated with a particular entity and are intended to be known to
everyone who needs to have trusted interactions with that entity. Private keys are
numbers that are supposed to be known only to a particular entity, i.e. kept secret. In a
typicdl asymmetric cryptographic system, a private key corresponds to exactly one
public key.

Within a public key cryptography system, since all communications involve only
public keys and no private key is ever transmitted or shared, confidential messages can
be generated using only public information and can be decrypted using only a private
key that is in the sole possession of the intended recipient. Furthermore, public key
cryptography can be used for aithentication, i.e. digital signatures, as well as for
privacy, 1.e. encryption.

Encryption is the transformation of data into a form unreadable by anyone without a
secret decryption key; encryption ensures privacy by keeping the content of the in-
formation hidden from anyone for whom it is not intended, even those who can see the
encrypted data. Authentication is a process whereby the receiver of a digitall message
can be confident of the identity of the sender and/or the integrity of the message.

For example, when a sender encrypts a message, the public key of the receiver is
used to transform the data within the original message into the contents of the
encrypted message. A sender uses a public key of the intended recipient to encrypt

data, and the receiver uses its private key to decrypt the encrypted message.

WO 2005/069101 PCT/EP2004/053702

AUS030854

[045]

[046]

[047]

[048]

[049]

When anthenticating data, dita can be signed by computing a digital signature from
the data using the private key of the signer. Once the data is digitally signed, it can be
stored with the identity of the signer and the signature that proves that the data
originated from the signer. A signer uses its private key to sign data, and a receiver
uses the public key of the signer to verify the signature.

A certificate is a digital document that vouches for the identity and key ownership
of entities, such as an individual, a computer system, a specific server running on that
system, etc. Certificates are issued by certificate aithorities. A certificate anthority
(CA) is an entity, usually a trusted third party to a transaction, that is trusted to sign or
issue certificates for other people or entities. The certificate anthority usually has some
kind of legal responsibilities for its vouching of the binding between a public key and
its owner that allow one to trust the entity that signed a certificate. There are many
commercia certificate aithorities; these aithorities are responsible for verifying the
identity and key ownership of an entity when issuing the certificate.

If a certificate anthority issues a certificate for an entity, the entity must provide a
public key and some information about the entity. A software tool, such as specially
equipped Web browsers, may digitally sign this information and send it to the
certificate arthority. The certificate anthority might be a commercial company that
provides trusted third-party certificate anthority services. The certificate anthority will
then generate the certificate and return it. The certificate may contain other in-
formation, such as a serial number and dates during which the certificate is valid. One
part of the value provided by a certificate arthority is to serve as a neutral and trusted
introduction service, based in part on their verification requirements, which are openly
published in their Certification Service Practices (CSP)

- A certificate anthority creates a new digital certificate by embedding the requesting
entity’s public key along with other identifying information and then signing the
digital certificate with the certificate anthority’s private key. Anyone who receives the
digital certificate during a transaction or communication can then use the public key of
the certificate anthority to verify the signed public key within the certificate. The
intention is that the certificate anthority’s signature acts as a tamper-proof seal on the
digital certificate, thereby assuring the integrity of the data in the certificate.

Other aspects of certificate processing are also standardized. Myers et al., “Internet
X.509 Certificate Request Message Format”, Internet Engineering Task Force (IETH
Request for Comments (REC) 2511, March 1999, specifies a format that has been

recommended for use whenever a relying party is requesting a certificate from a

WO 2005/069101 PCT/EP2004/053702

AUS030854

[050]

[051]

[052]

[053]

certificate anthority. Adams et al., “Internet X.509 Public Key Infrastructure
Certificaie Management Protocols”, IETF REC 2511, March 1999, specifies protocols
for transferring certificates. The present invention resides in a distributed data
processing system that employs digital certificates; the description of FIGs. 2-3
provides background information about typical operations involving digital cer-
tificates.

With reference now to FIG. 2, ablock diagram depicts a typical manner in which
an individual obtains a digital certificate. User 202, operating on some type of client
computer, has previously obtained or generated a public/private key pair, e.g., user
public key 204 and user private key 206. User 202 generates a request for certificate
208 containing user public key 204 and sends the request to certificate authority 210,
which is in possession of CA public key 212 and CA private key 214. Certificate
authority 210 verifies the identity of user 202 in some manner and generates X.509
digital certificate 216 containing user public key 218. The entire certificate is signed
with CA private key 214; the certificate includes the public key of the user, the name
associated with the user, and other attributes. User 202 receives newly generated
digital certificate 216, and user 202 may then present digital certificate 216 as
necessary to engage in trusted transactions or trusted communications. An entity that
receives digital certificate 216 from user 202 may verify the signature of the certificate
authority by using CA public key 212, which is published and available to the
verifying entity.

With reference now to FIG. 3, a block diagram depicts a typical manner in which
an entity may use a digital certificate to be anthenticated to a data processing system.
User 302 possesses X.509 digital certificte 304, which is transmitted to an Internet or
intranet application 306 on host system 308; application 306 comprises X.509 func-
tionality for processing and using digital certificates. User 302 signs or encrypts data
that it sends to application 306 with its private key.

The entity that receives certificate 304 may be an application, a system, a
subsystem, etc. Certificate 304 contains a subject name or subject identifier that
identifies user 302 to application 306, which may perform some type of service for
user 302. The entity that uses certificte 304 verifies the anthenticity of the certificate
before using the certificate with respect to the signed or encrypted data from user 302.

Host system 308 may also contain system registry 310 which is used to aithorize
user 302 for accessing services and resources within system 308, i.e. to reconcile a

user’s identity with user privileges. For example, a system administrator may have

WO 2005/069101 PCT/EP2004/053702

AUS030854

[054]

[055]

[056]

[057]

configured a user’s identity to belong to certain a security group, and the user is
restricted to being able to access only those resources that are configured to be
available to the security group as a whole. Various well-known methods for imposing
an anthorization scheme may be employed within the system.

In order to properly validate or verify a digital certificate, an application must check
whether the certificate has been revoked. When the certificate anthority issues the
certificate, the certificate anthority generates a unique serial number by which the
certificate is to be identified, and this serial number is stored within the “Serial
Number” field within an X.509 certificate. Typically, a revoked X.509 certificate is
identified within a CRL via the certificate’s serial number; a revoked certificate’s
serial number appears within a list of serial numbers within the CRL.

In order to determine whether certificate 304 is still valid, application 306 obtains a
certificate revocation list (CRL) from CRL repository 312 and validates the CRL. Ap-
plication 306 compares the serial number within certificate 304 with the list of seria
numbers within the retrieved CRL, and if there are no matching serial numbers, then
application 306 validates certificate 304. If the CRL has a matching serial number,
then certificate 304 should be rejected, and application 306 can take appropriate
measures to reject the user’s request for access to any controlled resources.

Most data processing systems contain sensitive daa that needs to be protected. For
example, the data integrity of configuration information needs to be protected from il-
legitimate modification, while other information, such as a password file, needs to be
protected from illegitimate disclosure. An operator of a given dita processing system
may employ many different types of security mechanisms to protect the data
processing system. For example, the operating system on the data processing system
may provide various software mechanisms to protect sensitive data, such as various
arthentication and anthorization schemes, while certain hardware devices and software
applications may rely upon hardware mechanisms to protect sensitive data, such as
hardware security tokens and biometric sensor devices. Even though multiple software
and hardware mechanisms may be employed within a given daa processing system to
protect sensitive data, the sensitive data may also be encrypted so that if someone
gains illegitimate access to the encrypted sensitive data any copy of the encrypted
sensitive data would be useless without the ability to decrypt the encrypted sensitive
chta.

The ability to ultimately protect all information that is contained within the data

processing system has limitations, though. For example, in an effort to further protect a

WO 2005/069101 PCT/EP2004/053702

AUS030854

[058]

[059]

10

password file, the password file may be encrypted using yet another secret, such as a
password or a cryptographic key, often referred to as a master secret. However, this
new secret also needs to be protected in some manner. Thus, a system administrator
may enter a type of dilemma in which any attempt to implement another layer of
security results in additional sensitive information that also needs to be protected.
Turning now to the present invention, the remaining figures depict exemplary em-
bodiments of the present invention which resolves this dilemma.

With reference now to FIG. 4, a block diagram depicts a portion of a data
processing system that accepts a removable hardware device to enable cryptographic
functionality in a hardware security unit within the data processing system in
accordance with an embodiment of the present invention. The present invention
employs a pair of matching smart key devices that hold cryptographic keys and
perform encryption functions. System unit 402 interfaces with external smart key
device (EXSKD) 404, which is a portable or removable device. System unit 402 also
contains internal smart key device (INSKD) 406, which is a matching device that is an
integral part of the host system that receives the removable device, such as a
motherboard. The internal smart key device is preferably a packaged, integrated circuit
that is difficult to remove from the host system; while it may be described as a
hardware security unit or device, it may also comprise a processing unit for executing
instructions. In this example, EXSKD 404 and INSKD 406 are paired devices. The
removable device is physiclly secured by system administration personnel, e.g., an IT
administrator; the removable device, i.e. EXSKD 404, is inserted into a host machine,
such as system unit 402, when an IT administrator needs to enable certain cryp-
tographic functions that can only be performed by the matching device on the host
mechine, i.e. INSKD 406. In other words, cerfain cryptographic functions are available
when the external smart key device is inserted into the system unit. Only INSKD 406
an produce the results that are needed by the IT administrator becaise only INSKD
406 contains one or more particular cryptographic private keys for producing certain
cryptographic output. Application 408 on system unit 402 has software smart key unit
(SWSKU) 410 that is analogous to EXSKD 404 and INSKD 406. Application 408 uses
SWSKU 410 to perform certain functions, which are explined in more detail
hereinbelow.

With reference now to FIG. 5, a block diagram depicts a system unit that contains
an internal smart key device and that uses an external smart key device to enable the

cryptographic functionality within the internal smart key device in accordance with an

WO 2005/069101 PCT/EP2004/053702

AUS030854

[060]

[061]

[062]

[063]

11

embodiment of the present invention. FIG. 5 is similar to FIG. 4 except that FIG.
5 includes additional detail on the cryptographic keys that are stored within the various
components.

External smart key device (EXSKD) 502 is a removable hardware device; EXSKD
502 is preferably a portable device that is controlled by a system administrator and that
acts as hardware security token. External smart key device 502 with electrical interface
504 is insertable into system unit 506 with electrical interface 508; external smart key
device 502 and system unit 506 electrically engage through their respective interfaces
to exchange electricl signals representing digital information.

External smart key device 502 contains cryptographic engine 510 for performing
cryptographic functions using various daa items that are stored in external smart key
device 502. EXSKD private key 512 is stored in a manner such that it cannot be read
or accessed by entities that are external to EXSKD 502; EXSDK 502 does not contain
functionality for transmitting or otherwise providing a copy of EXSKD private key
512. EXSKD public key certificate 514 contains a copy of EXSKD public key 516 that
corresponds to EXSKD private key 512 as an asymmetric cryptographic key pair.
EXSKD 502 also contains a copy of INSKD public key certificate 518, which itself
contains a copy of INSKD public key 520 that corresponds to INSKD private key 526
as an asymmetric cryptographic key pair. The copy of INSKD public key certificate
518 may be written onto EXSKD 502 as part of its manufacturing or initialization
processes.

System unit 506 contains internal smart key device (INSKD) 522. Internal smart
key device 522 contains cryptographic engine 524 for performing cryptographic
functions using various data items that are stored in internal smart key device 522.
INSKD private key 526 is stored in a manner such that it cannot be read or accessed by
entities that are external to INSKD 522; INSKD 522 does not contain functionality for
transmitting or otherwise providing a copy of INSKD private key 526. INSKD public
key certificate 528 contains a copy of INSKD public key 530 that corresponds to
INSKD private key 526 as an asymmetric cryptographic key pair. INSKD 522 adso
contains a copy of EXSKD public key certificate 532, which itself contains a copy of
INSKD public key 534 that corresponds to EXSKD private key 512 as an asymmetric
cryptographic key pair. The copy of EXSKD public key certificate 532 may be written
into INSKD 522 as part of its manufacturing or initialization processes.

In dlternative embodiments, INSKD private key 526 and INSKD public key 530

may be used for other functions. In a preferred embodiment as shown in FIG. 5,

WO 2005/069101 PCT/EP2004/053702

AUS030854

[064]

[065]

12

INSKD private key 526 and INSKD public key 530 are reserved for communications
between INSKD 522 and EXSKD 502 while INSKD 522 employs one or more other
cryptographic key pairs for other functions. In this example, INSKD_SW private key
536 is used by INSKD 522 for securing communications between INSKD 522 and
software smart key unit (SWSKU) 538 in application 540. INSKD_SW public key
certificate 542 contains a copy of INSKD_SW public key 544 that corresponds to
INSKD_SW private key 536 as an asymmetric cryptographic key pair. INSKD 522
also contains a copy of SWSKU public key certificate 546, which itself contains a
copy of SWSKU public key 548 that corresponds to SWSKU private key 550 as an
asymmetric cryptographic key pair.

System unit 506 supports execution of application 540 that contains SWSKU 538,
which itself contains cryptographic engine 552 for performing cryptographic functions
using various dafa items that are stored in software smart key unit 538. SWSKU 538
does not contain functionality for transmitting or otherwise providing a copy of
SWSKU private key 550. SWSKU public key certificate 554 contains a copy of
SWSKU public key 556 that corresponds to SWSKU private key 550 as an
asymmetric cryptographic key pair. SWSKU 538 also confains a copy of INSKD_SW
public key certificate 558, which itself contains a copy of INSKD_SW public key 560
that corresponds to INSKD_SW private key 536 as an asymmetric cryptographic key
pair. As explained in more detail further below, SWSKU 538 may be digitally signed.
In the example that is shown in FIG. 5, SWSKU 538 contains digital signature 562
that has been computed over SWSKU 538 using INSKD_SW private key 536; in other
words, INSKD 522 has digitally signed SWSKU 538 using INSKD_SW private key
536.

With reference now to FIG. 6, a flowchart depicts an overview of a process for
enabling the cryptographic functionality of the internal smart key device of a host
system. The process commences when the external smart key device is electricaly
engaged with a system unit that includes an internal smart key device (step 602) For
example, an IT administrator may insert the external smart key device into a receiving
unit that includes a slot for receiving the external smart key device. The internal smart
key device and the external smart key device then perform a mutual anthentication
procedure (step 604), after which the internal smart key device is enabled to perform
cryptographic functions (step 606), and the process is concluded. It may be assumed
that any error in the mutual anthentication procedure results in the continued

disablement of the internal smart key device. In a less restrictive embodiment, the

WO 2005/069101 PCT/EP2004/053702

AUS030854

[066]

{067]

[068]

13

cryptographic functions of the internal smart key device may then be invoked by any
application that is running on the host system. In a more restrictive embodiment, the
cryptographic functions of the internal smart key device may be invoked only by an
application that includes a software smart key unit, as shownin FIG. 7.

With reference now to FIG. 7, a flowchart depicts a process for enabling the cryp-
tographic functionality of the internal smart key device of a host system for use by a
particular software smart key unit in accordance with an embodiment of the present
invention. The process commences when an application or an applet containing a
software smart key unit invokes a cryptographic function of the internal smart key
device, e.g., through an application programming interface (API) (step 702) The
internal smart key device and the software smart key unit then perform a mutval ai-
thentication procedure (step 704), after which the internal smart key device is enabled
to perform cryptographic functions for the software smart key unit (step 706), and the
process is concluded. Assuming that multiple software smart key units on a host
system have completed a mutual arthentication procedure with the internal smart key
device, then the internal smart key device may be simultaneously enabled to perform
cryptographic functions on behalf of the multiple software smart key units.

While the external smart key device remains engaged with the system unit
containing the internal smart key device, the internal smart key device is enabled to
provide functionality to act as a certificate aithority, i.e. generate new public cer-
tificates. In one embodiment, the external smart key device should be engaged with the
system unit containing the internal smart key device when installing a new software
package. A new public certificate may be issued to the new software package during
the software installation; the private key that corresponds to the public key in the
newly issued digital certificate may be embedded within the software package, and the
private key may be protected by having the internal smart key device sign the software
package. Furthermore, in a Java ® environment, a JAR file and the Java ° package in
which the private key is embedded may be further sealed to prevent a malicious user
from tampering with the private key.

With reference now to FIG. 8, a flowchart depicts a process for disabling the
cryptographic functionality of the internal smart key device of a host system in
accordance with an embodiment of the present invention. The process commences
when the external smart key device is electrically disengaged from the system unit
containing the internal smart key device (step 802), e.g., at some subsequent point in
time after the external smart key device had been inserted and the internal smart key

WO 2005/069101 PCT/EP2004/053702

AUS030854

[069]

[070]

[071]

14

device had been enabled. When the system unit detects the disengagement of the
external smart key device, then the internal smart key device becomes disabled from
further performing cryptographic functions (step 804), and the process is concluded.

The process that is shown in FIG. 8 operates as a complementary process to either
of the processes that are shown in FIG. 6 or FIG. 7. It should be noted, though, that
the internal smart key device may still perforrﬁ some functions such that it is not
completely disabled, depending on the implementation of the present invention. It may
be assumed that the cryptographic functionality in the internal smart key device may
be enabled or disabled through software or hardware. For example, in a hardware
mode, the operation of particular circuitry in the internal smart key device might be
prevented from entering an operable state by certain flip-flops or other mechanisms
that must be set or cleared based on an enablement state that represents whether the
external smart key device has been accepted; in a software mode, the operation of
cerfain cryptographic functions may be protected by setting and clearing special
enablement flags that logically control the execution of the cryptographic functions.

With reference now to FIGs. 9A-9B, a pair of flowcharts depict further detail for
the mutual arthentication procedure that is shown in step 604 of FIG. 6.FIG. 9A
depicts the process for the internal smart key device to aithenticate the external smart

~key device, while FIG. 9B depicts the process for the external smart key device to
anthenticate the internal smart key device. The process that is shown in FIG. 9A may
be performed prior to the process that is shown in FIG. 9B or vice versa; depending
on the manner in which the present invention is implemented, the processes may be in-
dependent and/or may be performed simultaneously, e.g., through appropriate signals
or status flags that indicate the operations that are being attempted.

Referring now to FIG. 9A, the process commences when the internal smart key
device uses the public key of the external smart key device to encrypt a message, e.g.,
a random text string (step 902) The internal smart key device, through the appropriate
interface of the host system, transfers the encrypted message to the external smart key
device (step 904), which then decrypts the encrypted message with its private key (step
906) The external smart key device then encrypts the decrypted message with the
public key of the internal smart key device (step 908) and passes the encrypted
message to the interna smart key device (step 910) The internal smart key device then
decrypts the encrypted message with its private key (step 912) and compares the
received message with its original message (step 914) If the two messages match, then

the internal smart key device provides an indication, e.g., with an appropriate signal or

WO 2005/069101 PCT/EP2004/053702

AUS030854

[072]

[073]

[074]

15

by setting a logical flag variable, that the internal smart key device has determined that
the external smart key device is authentic (step 916), thereby concluding the process.

Referring now to FIG. 9B, the process commences when the external smart key
device uses the public key of the internal smart key device to encrypt a message, e.g., a
random text string (step 922) The external smart key device transfers the encrypted
message to the internal smart key device (step 924), which then decrypts the encrypted
message with its private key (step 926) The internal smart key device then encrypts
the decrypted message with the public key of the external smart key device (step 928)
and passes the encrypted message to the external smart key device (step 930) The
external smart key device then decrypts the encrypted message with its private key
(step 932) and compares the received message with its original message (step 934) If
the two messages match, then the external smart key device provides an indication,
e.g., with an appropriate signal or by setting a logical flag variable, that the external
smart key device has determined that the internal smart key device is authentic (step
936), thereby concluding the process.

With reference now to FIGs. 10A-10B, a pair of flowcharts depict further detail
for the mutual arthentication procedure that is shown in step 704 of FIG. 7.FIG.
10A depicts the process for the software smart key unit to aithenticate the internal
smart key device, while FIG. 10B-depicts the process for the internal smart key
device to arthenticate the software smart key unit. The process that is shown in FIG.
10A may be performed prior to the process that is shown in FIG. 10B or vice versa;
depending on the manner in which the present invention is implemented, the processes
may be independent and/or may be performed simultaneously, e.g., through ap-
propriate messages or status flags that indicate the operations that are being attempted.

Referring now to FIG. 10A, the process commences when the software smart key
unit uses the public key of the internal smart key device to encrypt a message, e.g., a
random text string (step 1002) The software smart key unit transfers the encrypted
message to the internal smart key device (step 1004), which then decrypts the
encrypted message with its private key (step 1006) The internal smart key device then
encrypts the decrypted message with the public key of the software smart key unit
(step 1008) and passes the encrypted message to the software smart key unit (step 1010
) The software smart key unit then decrypts the encrypted message with its private key
(step 1012) and compares the received message with its original message (step 1014)
If the two messages match, then the software smart key unit provides an indication,
e.g., with an appropriate message or by setting a logical flag variable, that the software

WO 2005/069101 PCT/EP2004/053702

AUS030854

[075]

[076]

[077]

16

smart key unit has determined that the internal smart key device is anthentic (step 1016
), thereby concluding the process.

In contrast to FIG. 10A, FIG. 10B illustrates the use of a session key instead of
a random text string as the message that is passed between the two entities. The session
key is to be used for securing subsequent message traffic during a session between the
two entities if the mutual athentication process between the two entities is suc-
cessfully completed; the session may be timed, or the session may terminated by a
particular event, such as the termination of the execution of a software entity or the
power shutdown of a hardware entity. The session key may be placed within a larger
message containing other information prior to encryption, whereafter the encrypted
message is passed between the two entities. In an alternative embodiment, a random
text string may be used for the aithentication procedure, after which the two entities
may exchange a session key. As explained in more defail further below, additional in-
formation may be securely passed between the two entities during the authentication
process to reduce the number of steps that are used to exchange information.

Referring now to FIG. 10B, the process commences when the internal smart key
device uses the public key of the software smart key unit to encrypt a session key (step
1022) The internal smart key device transfers the encrypted session key to the
software smart key unit (step 1024), which then decrypts the encrypted:session key
with its private key (step 1026). The software smart key unit then encrypts the
decrypted session key with the public key of the internal smart key device (step 1028)
and passes the encrypted session key to the internal smart key device (step 1030). The
internal smart key device then decrypts the encrypted session key with its private key
(step 1032) and compares the received session key with its original session key (step
1034) If the two versions of the session key match, then the internal smart key device
provides an indication, e.g., with an appropriate message or by setting a logical flag
variable, that the internal smart key device has determined that the software smart key
unit is arthentic (step 1036), thereby concluding the process.

Additional security steps may be performed in conjunction with the process that is
shown in FIG. 7. For example, at step 702, an application or an applet has requested
the use of functionality embedded in the internal smart key device. At some point in
time, prior to starting the process that is shown in FIG. 10B, the internal smart key
device may perform an additional step of verifying whether the software smart key
unit in the requesting application or applet contains secure code. As mentioned above
with respect to FIG. 5, SWSKU 538 may be digitally signed; SWSKU 538 contains

WO 2005/069101 PCT/EP2004/053702

AUS030854

[078]

[079]

[080]

[081]

17

digital signature 562 that has been computed over SWSKU 538 using INSKD_SW
private key 536. Hence, the internal smart key device may verify whether or not the
software smart key unit in the requesting application or applet contains secure code by
verifying the digital signature associated with the software smart key unit.

TnaJaa® environment, the software smart key unit may be implemented as a
signed JAR file; in one embodiment, the internal smart key device is used to verify the
digita signature of the signed JAR file. In a different embodiment, the JAR file and
the Java ® package may be further sealed so that the class loader would enforce that all
code in the package should be loaded from the sealed JAR file. The act of sealing the
JAR file and the Java ° package can prevent functionality from being modified by
malicious users via injecting code into the class path. Moreover, the class loader itself
may be signed and sealed such that the integrity of the class loader can be verified.

In a more generic computational environment, while internal smart key device may
digitally sign a software smart key unit and later valicate the digital signature, the
process of ensuring that the software smart key unit is signed and validated may be
controlled by an appropriate operating system module within the data processing
system with assistance from the internal smart key device, e.g., a program loader that
loads software modules for execution. Prior to allowing the software module to
execute, the program loader could perfoiin additional security processes. Moreover,
the program loader itself may be signed and sealed such that the integrity of the
program loader can be verified.

Although the above-mentioned process provides a mechanism for ensuring the
integrity of the software smart key unit, the operations of the software smart key unit
within a daa processing system may still be regarded as somewhat vulnerable becaise
its cryptographic keys may be viewed and copied by inspecting the code that
comprises the software smart key unit; it may be assumed that the cryptographic keys
are stored in the clear within the software smart key unit.

Hence, in order to protect the software smart key unit, in particular its private key,
yet another security step may be performed in conjunction with the process that is
shown in FIG. 7. At some prior point in time, the software smart key unit can be
encrypted, thereby concealing any sensitive information within the software smart key
unit, particularly its private key. In a different embodiment, a software module that
includes a software smart key unit could be encrypted. For example, when a software
module is instilled on a data processing system, the internal smart key device on the

data processing system could encrypt the software module as part of the installation

WO 2005/069101 PCT/EP2004/053702

AUS030854

[082]

[083]

[084]

18

procedure for the application program that includes the software module.

In a system in which this additional step is performed, then the software smart key
unit and/or a software module that includes the software smart key unit would require
decryption before it could be executed. At a point in time similar to that described
above with respect to protecting the integrity of the software smart key unit using
digital signatures, e.g., at some point in time prior to starting the process that is shown
in FIG. 10B, the internal smart key device would perform an additional step of
decrypting the software smart key unit and/or the software module that includes the
software smart key unit. Again, in a manner similar to that described above, the
decryption process may be controlled by an appropriate operating system module
within the daa processing system with assistance from the internal smart key device.
Further detail about the process of modifying software modules upon installation for
use in conjunction with an internal smart key device and about the process of
executing such software modules in a secure manner is provided hereinbelow.

With reference now to FIG. 11A, a flowchart depicts a process in an internal
smart key device for performing operations as requested by a software smart key unit
in which the operations are enabled or disabled based on the presence of an externa
smart key device. The process commences when the internal smart key device receives
a request messageifrom the software smart key unit (step 1102); the request message *+
contains a message-type variable that indicates the type of operation that is being
requested by the software smart key unit. A determination is then made as to whether
or not the software smart key unit has been anthenticated by the internal smart key
device (step 1104); the determination may be performed by successfully decrypting the
contents of the received message using the session key that the internal smart key
device passed to the software smart key unit during a prior arthentication procedure,
e.g., as described above with respect to FIG. 10B. If the software smart key unit has
not been aithenticated, then the internal smart key device generates an appropriate
error response (step 1106) and returns the response message to the requesting software
smart key unit (step 1108), thereby concluding the process.

If the software smart key unit has been anthenticated, then the internal smart key
device determines if the external smart key device is still electrically engaged with the
system unit (step 1110) For example, the determination may merely entail checking a
special register that would have been cleared had the electrical connection between the
system unit and the external smart key device been broken. If the external smart key
device is not electrically engaged with the system unit, then the internal smart key

WO 2005/069101 PCT/EP2004/053702

AUS030854

19

device generates an error response at step 1106 and returns the response message to the
software smart key unit at step 1108, thereby concluding the process.

[085] If the software smart key unit has been arthenticated and the external smart key
device is still electrically engaged with the system unit, then the internal smart key
device performs the requested function for the software smart key unit, if possible.
Step 1112 and step 1114 depict examples of functionality that may be provided by an
internal smart key device; the enumeration of these examples does not imply that other
functions may not be available in other implementations of the present invention. In a
preferred embodiment, the internal smart key device performs the following functions
only if the external smart key device remains electrically engaged with the internal
smart key device after mutual asthentication: issuing new digital certificates while
acting as a certificate axthority; and signing a software module using a private key of
the internal smart key device, wherein the private key corresponds to an available
public key certificate. It should be noted that the present invention does not allow any
interface for retrieving a private key of the internal smart key device; hence,
performing a signing operation using its private key can only be performed by the
internal smart key device.

[086] If the software smart key unit has requested a digital signature on a data item that

e was embedded within the request message, then the internal siart key device
computes a digital signature over the data item using an appropriate private key and
inserts the digitally signature (preferably, along with the copy of the data item that it
returns) into the response message (step 1112) If the software smart key unit has
requested a digital certificate, then the internal smart key device generates a digital
certificate using an appropriate private key and inserts the digital certificate into the
response message (step 1114); the digital certificate may include various identifying
information that was provided by the software smart key unit within the request
message. After the appropriate response message has been generated, which would
include encrypting any sensitive data with the appropriate session key, the response
message is returned to the software smart key unit at step 1108, and the process is
concluded.

[087] Referring again to step 1112, any type of digital data item may be signed.
Referring again to FIG. 4, application 408 represents many different types of ap-
plications that may incorporate the functionality of the present invention. In one
embodiment, the application may be an application server that signs Java ®JAR files,
either files that have been generated directly by the application server or on behalf of

WO 2005/069101 PCT/EP2004/053702

AUS030854

[088]

[089]

[090]

20

other applications on the host system. In certain cases, a newly generated JAR file may
itself contain a software smart key unit that is able to invoke functionality in the
internal smart key device of the host system.

With reference now to FIG. 11B, a flowchart depicts a process in an internal
smart key device for performing operations as requested by a software smart key unit
in which the operations are not required to be enabled by the presence of an external
smart key device. The process commences when the internal smart key device receives
a request message from the software smart key unit (step 1122); the request message
contains a message-type variable that indicates the type of operation that is being
requested by the software smart key unit. A determination is then made as to whether
or not the software smart key unit has been aithenticated by the internal smart key
device (step 1124); the determination may be performed by successfully decrypting the
contents of the received message using the session key that the internal smart key
device passed to the software smart key unit during a prior aithentication procedure,
e.g., as described above with respect to FIG. 10B. If the software smart key unit has
not been anthenticated, then the internal smart key device generates an appropriate
error response (step 1126) and returns the response message to the requesting software
smart key unit (step 1128), thereby concluding the process.

If the software smart key unit has been aathenticated, then the internal smart key
device performs the requested function for the software smart key unit, if possible.
Step 1130 and step 1132 depict examples of functionality that may be provided by an
internal smart key device; the enumeration of these examples does not imply that other
functions may not be available in other implementations of the present invention. In a
preferred embodiment, the following functions would be performed by an internal
smart key device without the presence of an external smart key device: encryption and
decryption given the required keys; validating a digital signature given the certificate;
mutually anthenticating a software smart key unit; and allowing stored sensitive in-
formation to be read/write accessed by a mutwally arthenticated software smart key
unit.

If the software smart key unit has requested the registration of a master secret that
was embedded within the request message, then the internal smart key device stores
the master secret in association with some identifying information for the software
smart key unit and generates a response message (step 1130) If the software smart key
unit has requested the retrieval of a previously registered master secret, then the

internal smart key device retrieves the master secret based on the identity of the

WO 2005/069101 PCT/EP2004/053702

AUS030854

[091]

[092]

A

[093]

[094]

21

software smart key unit and generates a response message (step 1132) After the ap-
propriate response message has been generated, which would include encrypting any
sensitive data with the appropriate session key, the response message is returned to the
software smart key unit at step 1128, and the process is concluded.

In this manner, it is only necessary to keep an external smart key device electrically
engaged with the internal smart key device if particularly sensitive operations need to
be performed by the internal smart key device, such as issuing digital certificates. As
described with respect to FIG. 11B, a software smart key unit can save sensitive in-
formation, such as cryptographic keys, in the internal smart key device after the
software smart key unit has mutually arthenticated with the internal smart key device
without requiring the presence of an external smart key device; the sensitive in-
formation can only be retrieved by the same software smart key unit.

This approach is advantageous because the software smart key unit can mutually
arthenticate with the internal smart key device in a manner that is independent from
the external smart key device. For example, this approach allows starting a software
program in an unattended mode, i.e. no human to insert the external smart key device;
the program may use a previously signed and sealed software smart key unit to retrieve
any sensitive information from the internal smart key device. The software program
may retrieve a master secret from the internal smart key device tordecrypt passwords
and other encrypted configuration information to complete the start-up process
securely without human intervention.

With reference now to FIG. 12, a block diagram illustrates an embodiment of the
present invention for protecting master secrets. As noted above, secret information that
is stored on a data processing system may be encrypted with a master secret, which ne-
cessitates the need to protect the master secret. In prior art system, the protection of the
master secret is typically protected through mechanisms that are external to the host
system on which the master secret is being used. In contrast to a typical prior art
system, an embodiment of the present invention may be used to protect master secrets
on the host system in which the master secrets will be used.

FIG. 12issimilar to FIG. 4; system unit 1202 interfaces with external smart
key device 1204, and system unit 1202 aso contains internal smart key device 1206.
System unit 1202 also supports software smart key units 1208-1212. In contrast to
FIG. 4, though, internal smart key device 1206 in FIG. 12 has been enhanced to
include master secret registry 1214 for securing master secrets, which may be a

password, an encryption key, or some other form. As briefly described above with

WO 2005/069101 PCT/EP2004/053702

AUS030854

[095]

[096]

22

respect to steps 1130 and 1132 in FIG. 11B, software smart key units 1208-1212
may store a master secret in internal smart key device 1206 through a secure request/
response mechanism. Internal smart key device 1206 stores the master secrets from
software smart key units 1208-1212 in association with identifying information for the
requesting software smart key unit. For example, master secret registry 1214 contains
SWSKU identifier 1216 associated with master secret 1218; a lookup operation that
might be performed on SWSKU ID 1216 would relate it to master secret 1218. Al-
ternatively, master secret registry 1214 may support more than one master secret per
software smart key unit; a group of master secrets may be registered or retrieved with
each requested operation as appropriate. Although FIG. 11B only illustrates a reg-
istration operation and a retrieval operation, other operations that may be relevant to

the management of master secrets, e.g., a deletion operation or an overwrite operation,
may also be supported.

As noted above the description of FIG. 10B, additional information may be
securely passed between the internal smart key device and the software smart key unit
during the anthentication process to reduce the number of steps that are used to
exchange information. To that end, the master secrets for the software smart key unit
may be passed during the aithentication process. Since the anthentic software smart
key unit is the only entity that should-have a copy of the software smart key unit’s
private key, then only the software smart key unit should be able to decrypt the
software smart key unit’s master secrets that are provided by the internal smart key
device during the aathentication process.

With reference now to FIGs. 13-15, block diagrams illustrate different rela-
tionships between multiple external smart key devices and multiple internal smart key
devices. The description of the previous figures may appear to imply that the there is a
unique one-to-one relationship between an external smart key device and an internal
smart key device. Referring to FIG. 13, solitary internal smart key device 1302 may
be enabled through the use of any of multiple external smart key devices 1304-1308.
For example, each of a small group of IT administrators may have a removable smart
key device that may be inserted into a particular server machine that contains internal
smart key device 1302. Referring to FIG. 14, solitary external smart key device 1402
may enable any of multiple internal smart key devices 1404-1408. For example, an IT
administrator may use a single removable smart key device on multiple server
mechines, each of which contains only one of internal smart key devices 1404-1408.
Referring to FIG. 15, multiple external smart key devices 1502-1506 may enable any

WO 2005/069101 PCT/EP2004/053702

AUS030854

[097]

[098]

[099]

23

of multiple internal smart key devices 1512-1516. For example, each of a small group
of IT administrators may have a removable smart key device that may be inserted into
many different server machines, each of which contains only one of internal smart key
devices 1512-1516. In order to support a many-to-one relationship or a one-to-many
relationship on a given smart key device, the given smart key device only requires the
storage or configuration of additional public key certificates for the additional cor-
responding internal smart key devices and/or external smart key devices.

Before discussing additional embodiments for the present invention, some
background information about trust relationships based on digital certificates is
provided for evaluating the operational efficiencies and other advantages of the
additional embodiments of present invention.

With reference now to FIGs. 16A-16C, each block diagram depicts a typical set
of trusted relationships. Referring now to FIG. 16A, certificate arthority 1602 has
issued digital certificates to servers 1604 and 1606. As noted above, a certificate
anthority is a trusted entity that issues digital certificates on behalf of other entities,
possibly human users but possibly on behalf of programmatic entities or hardware
entities, such as applications or data processing devices. Thus, servers 1604 and 1606
may have been represented by users, such as users 202 or 302 shown in FIG. 2 or
FIG. *3; dternatively, servers 1604 and 1606 may be some other type of* pro-
grammatic entities, such as application 408 shown in FIG. 4. The certificate anthority
1602 has issued digital certificates to servers 1604 and 1606. Servers 1604 and 1606
can establish trust relationships 1608 and 1610 with the certificate athority 1602 sub-
sequently by performing mutual anthentication with the certificate anthority 1602 as
described by this invention. At some point in time, server 1604 may present its digital
certificate to server 1606 along with proof-of-possession of the corresponding private
key, e.g., a data item that has been signed using its private key, while requesting a
service that is provided by server 1606. Becaise server 1606 trusts certificate aithority
1602, server 1606 is able to aithenticate server 1604 by verifying that the digital
certificate which was received from server 1604 was signed by certificate aithority
1602. The reverse situation is also true, and server 1604 would be able to athenticate
server 1606. In this manner, server 1604 and server 1606 are able to establish trust re-
lationship 1612 between themselves.

Referring to FIG. 16B, server 1614 has established trust relationship 1616 with
server 1606. In this example, no basis is provided for trust relationship 1616, and
server 1604 has not accepted trust relationship 1616 with server 1614.

WO 2005/069101 PCT/EP2004/053702

AUS030854

[100]

[101]

[102]

24

Referring to FIG. 16C, similar reference numerals refer to similar elements as
shown in FIG. 16A; FIG. 16C, though, shows additional elements to those shown
in FIG. 16A. Certificate anthority 1620 has issued digital certificates to servers 1606
and 1622. Given that certificate anthority 1620 has issued digital certificates to servers
1606 and 1622, certificate anthority is said to have established trust relationships 1624
and 1626 with servers 1606 and 1622, respectively. At some point in time, server 1622
may present its digital certificate to server 1606 while requesting a service that is
provided by server 1606. Becaise server 1622 trusts certificate aithority 1620, server
1606 is able to aithenticate server 1622 by verifying that the digitd certificate which
was received from server 1622 was signed by certificate aithority 1620. The reverse
situation is also true, and server 1622 would be able to athenticate server 1606. In this
manner, server 1622 and server 1606 are able to establish trust relationship 1628
between themselves.

Trust relationships may be transitive. As noted above with respect to FIG. 16B,
server 1606 had established trust relationship 1616 with server 1614. However, server
1604 did not recognize trust relationship 1616, possibly becaise server 1606 was not
able to provide sufficient information about the basis for trust relationship 1616. In
FIG. 16C, though, server 1606 is able to provide sufficient information about its
trusted relationships among the servers with'which server 1606 has established trust re-
lationships. In this example, server 1606 provides information about trust relationship
1628 to server 1604. Given trust relationship 1612 between server 1604 and server
1606 and trust relationship 1628 between server 1606 and server 1622, server 1604
and server 1622 are able to establish transitive trust relationship 1630 between server
1604 and server 1622. The servers may transfer certificates in accordance with the
certificate management protocols that were mentioned above.

In this manner, the servers are able to form complex, hierarchical, trust rela-
tionships between themselves and the certificate anthorities. Each certificate anthority
may be considered as the root of a tree structure; a certificate asthority is sometimes
referred to as the root authority, especialy when other entities within a tree structure
dlso act as secondary certificate anthorities. The use of multiple root certificate an-
thorities allows multiple tree structures to overlap, e.g., as shown in FIG. 16C.
Turning back now to the present invention, the remaining figures depict examples of
embodiments of the present invention in which the present invention is implemented to
construct a trust model using the advantages of the internal and external smart key

devices that have been described above.

WO 2005/069101 PCT/EP2004/053702

AUS030854

[103]

[104]

[105]

25

With reference now to FIG. 17, a block diagram depicts an example of a trust
model that is constructed of trust relationships that are based on the trust provided by
internal smart key devices in accordance with an embodiment of the present invention.
The internal smart key devices of the present invention provide a high level of trust-
worthiness in acting as a certificate aithority. As described above with respect to other
figures, the internal smart key device provides a mechanism for securing information.
As described with respect to FIG. 11, one of the functions that may be provided by
an interndl smart key device is the issvance of digital certificates. Since the internal
smart key device would be implemented as part of a system unit within a data
processing system, e.g., such as a specialized chip on a motherboard, the internal smart
key device should be protected physiclly, thereby making it difficult for malicious
users to implement improper schemes. In addition, the trustworthiness of an internal
smart key device is enhanced by the fact that the issuance of digital certificates by the
internal smart key device may be controlled by a system administrator through the use
of an external smart key device. Hence, the ability of an internal smart key device to
issue digital certificates allows an internal smart key device to act as the foundation for
a trust model.

In this manner, different types of entities, e.g., different kinds of hardware and
software computing resources, are able to form complex, hierarchicd, trust rela-
tionships between themselves and the internal smart key devices acting as hardware-
based certificate arthorities. In this trust model, trust is rooted in the certificate
anthority functionality that is provided by an internal smart key device on a daa
processing system. The trust relationship hierarchy may be represented, asin FIG. 17
, by an inverted pyramid in which the internal smart key device is at the apex of the
inverted pyramid, and the computing resources form the inverted pyramid. In a
distributed data processing environment, the trust relationships may be viewed as a
collection of overlapping inverted pyramids where each pyramid is based on the
internal smart key device on each mechine, as shownin FIG. 17.

In FIG. 17, an example of a trust model shows two internal smart key devices
1702 and 1704, which include certificate anthority modules 1706 and 1708, re-
spectively, that contain functionality for allowing each internal smart key device to act
as a certificate arthority. Internal smart key device 1704 has issued a certificate to
secondary software certificate authority module 1710, which is a software application
executing on the same system unit on which internal smart key device 1704 resides.

Hierarchicaly superior software certificate axthority modules within the data

WO 2005/069101 PCT/EP2004/053702

AUS030854

[106]

[107]

[108]

26

processing system, such as secondary software certificate aithority module 1710,

derive authority from a hierarchicaly inferior software certificate aithority within the

' trust hierarchy, such as the root trust that is provided by the certificate aathority func-

tionality of the internal smart key device on the data processing system, i.e., internal
smart key device 1704. For example, internal smart key device 1704 may sign the
digital certificate of secondary software certificate anthority module 1710, which uses
the corresponding private key to sign the digital certificates that it issues. In this
manner, secondary software certificate aithority module 1710 acts as a subordinate
certificate anthority to internal smart key device 1704, which would be reflected in
certificate chains which are rooted by internal smart key device 1704. In another
example, internal smart key device 1704 may sign a subordinate software certificate
authority module, which itself may sign another subordinate software certificate
authority module.

Internal smart key device 1702 has issued digital certificates to entities 1712-1718,
while secondary software certificate aithority 1710 has issued digital certificates to
entities 1722-1728, thereby establishing trust relationships between certificate issuers
and the certificate issuees; entities 1712-1718 and entities 1722-1728 may be ap-
plications or some other type of programmuatic entity. In addition, secondary software
certificate authority 1710 has issued a digital certificate to entity 1716, thereby es-
tablishing a trust relationship between those two entities.

While FIG. 17 represents a trust model in which all of the computing resources
may comprise certificate-handling functionality for axthenticating themselves with
each other, these computing resources need to be configured to include the certificate-
handling functionality. For example, if the different entities in FIG. 17 represent
software applications, these software applications need to include a module that has
been provided a unique public key certificate and that bears a unique corresponding
private key.

For example, each computing resource that is to act independently such that it
requires the ability to perform arthentication operations with other resources may have
an embedded software smart key unit, e.g., in the manner shown in FIG. 5 in which
application 540 contains SWSKU 538. Application 540 contains SWSKU 538 which
includes SWSKU private key 550; SWSKU public key certificate 554 contains a copy
of SWSKU public key 556 that corresponds to SWSKU private key 550 as an
asymmetric cryptographic key pair. SWSKU 538 also contains a copy of INSKD_SW
public key certificate 558. Hence, application 540 is part of a trust hierarchy that is

WO 2005/069101 PCT/EP2004/053702

AUS030854

[109]

[110]

[111]

[112]

[113]

27

rooted in INSKD 522. Using the information that is embedded within SWSKU 538
and the functional abilities of SWSKU 538, application 540 is able to anthenticate with
any other computing resource that also trusts INSKD 522. Thus, in order to implement
a trust model in which all of the computing resources may comprise certificate-
handling functionality for aithenticating themselves with each other in accordance

with the present invention, a system administrator needs to ensure that each computing
resource comprises an internal smart key device, if the computing resource is a data
processing device, or comprises a software smart key unit, if the computing resource is
a programmutic entity.

However, in the example shown in FIG. 5, SWSKU 538 came to be embedded in
appliction 540 in some manner. Various processes may be used to embed the required
functionality in each of the programmatic resources, as described hereinbelow.

With reference now to FIG. 18, a block diagram depicts a data processing system
for generating operating system files in which each programmatic entity in the
operating system contains functionality for establishing trust relationships in a trust
hierarchy based on interna smart key devices in accordance with an embodiment of
the present invention. FIG. 18 is similar to FIG. 4; system unit 1802 interfaces with
external smart key device 1804, and system unit 1802 also contains internal smart key
device 1806. = . R

In this example, operating system installation application 1808 is responsible for
installing operating system files on a machine that includes system unit 1802. During
the installation procedure, operating system installation application 1808 reads
operating system files 1812 from the distribution medium, such as magnetic tape or
CD-ROM, and generates fully operable modules 1814, as explained in more detail
hereinbelow.

It should be noted that although FIG. 18 depicts an example in which actions are
performed with respect to operating system files, an alternative embodiment is
applicable to any type of application file. For example, operating system installation
application 1808 may be generalized to be described as an installation application for
any given software appliction, and the given software application may be represented
by generic application files that are similar to operating system files 1812. After the in-
stallation process is completed, the installation application has generated application
files with certificate-bearing software smart key units that are similar to signed
operating system files 1814.

Whereas FIG. 18 depicts an example of a system in which all operating system

WO 2005/069101 PCT/EP2004/053702

AUS030854

[114]

[115]

28

files are secured so that only properly installed operating system modules may be
executed on system unit 1802, the alternative embodiment that is mentioned above
could restrict execution of all software within the system. Using an appropriate in-
stallation process for each installed application, each application module may be
secured. In this manner, system unit 1802 may restrict software execution only to
éoftware modules that have been installed on the system through a process that is
controlled by the presence of an external smart key device. In a Java ®_based imple-
mentation of the present invention, al Java ® applications may be required to contain a
software smart key unit that is placed into the application during an installation
process; as mentioned above, all JAR files and Java ® packages may be sealed so that
the class loader would enforce that all code in the package should be loaded from a
sedled JAR file.

With reference now to FIG. 19, a flowchart depicts a process for generating
operating system modules that contain software smart key units such that the operating
system modules are able to perform aithentication operations with each other in
accordance with an embodiment of the present invention. The process begins with an
operating system installation application checking whether there is at least one
additional operating system module that has not yet been processed (step 1902). If not,
then the process is concluded. If so, then the operatingsystem installation application
reads an operating system module from a distribution medium (step 1904). For
example, referring again to FIG. 18, the operating system modules on the distribution
medium is not complete; the operating system modules may not be installed without
further processing. Operating system modules 1812 incorporate stub routines or empty
modules in the form of distribution versions of the operating system files; if these
operating system files are installed and then executed without further modification, the
operating system services would not be able to perform aithentication operations,
thereby caising the operating system to be inoperable.

Hence, after the operating system installation application has read an operating
system module 1812 from the distribution medium, such as magnetic tape or CD-
ROM, the operating system installation application deletes the stub routines or empty
modules from the operating system module that is currently being processed (step
1906) The operating system installation application generates an asymmetric cryp-
tographic key pair (step 1908) and then requests the internal smart key device on the
local system unit to issue a digital certificate based on the newly generated key pair on

behalf of the operating system module that is currently being processed (step 1910) In

WO 2005/069101 PCT/EP2004/053702

AUSO030854

[116]

[117]

29

this manner, the SWSKU of the operating system installation application impersonates
the entity on behalf of which the digital certificate is being requested and issued; -
ternatively, a software certificate anthority function within the operating system in-
stallation application may issue the digital certificate, thereby requiring the public key
certificate of the software certificate arthority along with the public key certificate of
the internal smart key device to become part of the certificate chain of the entity on
behalf of which the digital certificate is being requested and issued. It may be assumed
that the operating system instalation operation is controlled by a system administrator
who possesses an external smart key device; by engaging the external smart key device
with the system unit during the operating system installation procedure, the system ad-
ministrator enables the internal smart key device to issue digital certificates, thereby
preventing the instalation procedure from being spoofed in some manner by a
malicious user. It may dso be assumed that each operating system module has a

unique identifier within a namespace that covers all of the operating system modules
such that the unique identifier may be incorporated into the digital certificate.

The operating system installation application then generates an instance of a
software smart key unit (step 1912) The newly generated SWSKU incorporates the
unique private key that was generated by the operating system installation application
on behalf of the new SWSKU. The new SWSKU also incorporates the public key
certificate that corresponds to the private key that was issued by the local INSKD; in
addition, any other public key certificates that form part of the digital certificate chain
for the new SWSKU may also be included. Certificate chains represent a trust path
through a trust hierarchy. Although public key certificates are generally freely given
and freely obfainable, building a certificate chain can be computationally expensive;
thus, the inclusion of any digital certificates that the new SWSKU may need to
represent its certificate chain allows the new SWSKU, when executing, to quickly
present its certificate chain during an axthentication operation, thereby making the a-
thentication operation more efficient.

The operating system installation application then generates a fully operable
module, such as one of modules 1814 in FIG. 18, by embedding the new SWSKU
into the operating system module that is currently being processed, i.e. in place of the
removed stubs and empty modules (step 1914) The process then loops back to step
1902 to check if there are any unprocessed operating system modules, and if not, the
process is concluded. As operating system modules are processed, the newly generated

SWSKU modules are incorporated into modified operating system modules as

WO 2005/069101 PCT/EP2004/053702

AUS030854

[118]

[119]

[120]

30

necessary. The deployed operating system modules and/or the newly embedded
SWSKU modules may also be digitally signed<by SWSKU 1810 to show their au-
thenticity.

In this manner, al of the operating system files are enabled to perform a-
thentication operations with embedded functionality for implementing trust rela
tionships. During the operating system installation procedure, INSKD 1806 zcts as a
certificate arthority to issue digital certificates, or aternatively, operating system in-
stallation application 1808 acts as a certificate anthority to issue digital certificates for
modules 1814; in their certificate chains, each module in modules 1814 has its own
private key and corresponding public key certificate, the public key certificate of
INSKD 1806, and if necessary because it acted as a certificate authority, the public key
certificate of the operating system installation application ~ 1808. Thus, each module has
a certificate chain that asserts a trust hierarchy that is based on INSKD 1806. In the
runtime environment, when a first module in modules 1814 attempts to aithenticate to
a second module in modules 1814, the first module would present its certificate chain
along with proper proof-of-possession, e.g., a digital signature signed by using the cor-
responding private key, to the second module; becaise the second module trusts
INSKD 1806 on which the first module’s certificate chain is based, the second module
will authenticate and trust the first module. Becaise each module in modules 1814
trusts INSKD 1806 and is able to present a certificate chain that relates back to INSKD
1806, each module is able to trust the other similar modules, thereby implementing the
trust model as described with respect to FIG. 17.

With reference now to FIG. 20, a block diagram depicts a data processing system
for generating project code in which each programmatic entity contains functionality
for establishing trust relationships in a trust hierarchy based on internal smart key
devices in accordance with an embodiment of the present invention. FIG. 20 is
similar to FIG. 4; system unit 2002 interfaces with external smart key device 2004,
and system unit 2002 also contains internal smart key device 20086.

In this example, software configuration management (SCM) application 2008 is re-
sponsible for managing all code modules and other types of files for a particular
project in which a software application is being created. As project files are created by
software engineers, the project files are checked into the SCM system, which is able to
track versions of the source code in accordance with discrepancy reports and project
timelines. The engineers incorporate stub routines or empty modules into the project

modules such that preliminary versions of the project modules are able to be tested and

Gl

WO 2005/069101 PCT/EP2004/053702

AUS030854

[121]

[122]

[123]

31

integrated without regard to fully implementing aithentication considerations.

However, when the need arises to generate a so-called production-level application
that may be distributed to customers or otherwise deployed in a production en-
vironment, the SCM system removes the stubs and empty modules and replaces them
with embedded software smart key units, which are software modules themselves.
Hence, at some point in time when the final compilation and linking operations occur,
SWSKU 2010 in SCM application 2008 generates asymmetric key pairs along with
SWSKU modules containing the newly generated key pairs and corresponding digital
certificates. As project modules 2012 are processed, the newly generated SWSKU
modules are linked into project modules 2014 as necessary. The production-level
project modules 2014 and/or the newly embedded SWSKU modules may also be
digitally signed by SWSKU 2010 to show their authenticity.

In this manner, each computing resource within a project application that requires
the ability to complete an anthentication operation may be provided with a software
smart key unit that is able to perform the arthentication operation. However, the
scenario that is illustrated within FIG. 20 differs significantly from the scenario that
is illustrated within FIG. 18.In FIG. 18, the operating system modules 1814 are
modified by operating system installation application 1808 on system unit 1802. In a
preferred embodiment, the digital certificates that have been issued to the SWSKU’s in
the modified operating system modules 1816 have been signed by INSKD 1806 on
system unit 1802.

Hence, when the modified operating system modules are executing in a runtime en-
vironment, the certificate anthority that issued the digital certificates for the modified
operating system modules is part of the runtime environment. This is not the case in
the scenario that is presented in FIG. 20. When the modified project modules are
executing in a runtime environment, the digital certificates that are embedded in the
SWSKU’s of the modified project modules have been signed by the internal smart key
device of the system unit on which the production version of the project application
was created. In other words, the certificate aithority that issued the digital certificates
to the SWSKU’s in the modified project modules is not part of the runtime en-
vironment. When a modified project module attempts to complete an aithentication
operation with another modified project module, the arthentication operation can be
completed becaise each of the modified project modules trusts the internal smart key
device of the system unit on which the production version of the project application

was created. However, when a modified project module attempts to complete an a-

WO 2005/069101 PCT/EP2004/053702

AUS030854

[124]

[125]

[126]

32

thentication operation with an operating system module, e.g., one of operating system
modules 1814, the aithentication operation fails becaise the operating system module
does not trust the internal smart key device that acted as the certificate authority for the
operating system module’s digital certificate. Therefore, a mechanism is needed for
extending the trust relationships in a runtime environment.

With reference now to FIG. 21, a flowchart depicts a process for extending the
certificate chain for an internal smart key device in accordance with an embodiment of
the present invention. As noted above, some modules that are executing within a
runtime environment may have functionality for establishing trust relationships that are
based on an internal smart key device that is present within the runtime environment;
since the internal smart key device has acted as the certificate authority for these
modules, these modules are able to present digital certificate chains that are easily
verifiable becaise the internal smart key device is at the root of the trust hierarchy.
‘When an application is installed into a runtime environment that supports the internal
smart key device of the present invention, the application modules may have the func-
tionality for establishing trust relationships between the application modules yet lack
the ability to establish trust relationships with other modules in the runtime en-
vironment because the root certificate anthorities differ; the other modules do not have
the ability to trust the digital certificates that are presented by the application modules.

The process that is described with respect to FIG. 21 hereinbelow provides a
mechanism for allowing those application modules to establish themselves as
trustworthy. The process is preferably performed when the application modules are
being installed within a runtime environment that includes an internal smart key
device, although the runtime environment can be modified at any time before the ap-
plicttion modules are executed within the runtime environment. In this example,
though, the application modules do not need to be modified. Thus, the process that is
described hereinbelow differs from the process that is described with respect to FIG.
19 in which the modification of the operating system modules was required.

The process commences when the internal smart key device receives a request
message from a software smart key unit in an installation application or some other
form of administrative utility application in which the request message indicates a
request to assert the root digital certificate of a fofeign internal smart key device, i.e.
outside of the locll runtime environment (step 2102). For example, the administrative
utility application has access to configuration files that accompany the production

version of the application modules that have been installed or that are being installed

WO 2005/069101 PCT/EP2004/053702

AUS030854

[127]

[128]

[129]

33

within the local runtime environment. These configuration files contain a copy of the
digital certificate that was used by a foreign internal smart key device to generate the
digital certificates for the software smart key units that were embedded within the ap-
plication modules, e.g., in a manner similar to that described with respectto FIG. 20.
In other words, the configuration files may be accompanied by a copy of the public
key certificate that was used by the foreign internal smart key device of the runtime
environment of a vendor that produced the application that is being instaled. The
request to assert the digital certificate of the foreign internal smart key device is made
without the ability of the internal smart key device of the current runtime environment
to check for a common trusted entity; since each internal smart key device acts as the
root trusted entity within its own trust hierarchy, there is no other common trusted
entity on which trust can be founded for the internal smart key device of the current
runtime environment and the foreign internal smart key device. Hence, the process of
asserting the digital certificate must be a secure procedure that provides the trust-
worthiness for completing the task.

In order to ensure the trustworthiness of the operation to assert the digital certificate
of a foreign internal smart key device, a determination is made as to whether or not the
software smart key unit of the requesting application has been aithenticated by the
internal smart key device (step 2104); the determination may*be performed by Suc-
cessfully decrypting the contents of the received message using the session key that the
internal smart key device passed to the software smart key unit during a prior ai-
thentication procedure, e.g., as described above with respect to FIG. 10B. If the
software smart key unit has not been anthenticated, then the internal smart key device
generates an appropriate error response (step 2106) and returns the response message
to the requesting software smart key unit (step 2108), thereby concluding the process.

If the software smart key unit has been aithenticated, then the internal smart key
device determines if the external smart key device is still electrically engaged with the
system unit (step 2110) In this manner, the entire procedure is determined to be under
the control of a system administrator that has the privilege of performing the
procedure. If the external smart key device is not electrically engaged with the system
unit, then the internal smart key device generates an error response at step 2106 and
returns the response message to the software smart key unit at step 2108, thereby
concluding the process.

If the software smart key unit has been authenticated and the external smart key
device is still electrically engaged with the system unit, then the internal smart key

WO 2005/069101 PCT/EP2004/053702

AUS030854

[130]

[131]

[132]

34

device performs the requested function for the software smart key unit. The internal
smart key device adds the asserted root certificate of the foreign internal smart key
device to a table or a list of trusted root certificates (step 2112), which possibly
contains multiple certificates that have been previously asserted. After the appropriate
response message has been created (step 2114), the response message is returned to the
software smart key unit at step 2108, and the process is concluded.

With reference now to FIG. 22, a block diagram depicts an example of a trust
model that is constructed of trust relationships that are based on the trust provided by a
single local internal smart key device that maintains a certificate chain containing
multiple root certificates for foreign internal smart key devices in accordance with an
embodiment of the present invention. As explained with respect to FIG. 5 and other
figures, an internal smart key device possesses at least one private key and its cor-
responding public key certificate; similarly, FIG. 22 shows internal smart key device
2202 containing digital certificate 2204. As explined with respect to FIG. 21, it may
be necessary for a system administrator to assert additional root certificates into the
trust hierarchy of a particular runtime environment; FIG. 22 shows that digital cer-
tifictes 2206 and 2208 have been previously asserted and are now stored within
internal smart key device 2202 as part of its trusted certificate chain.

As noted above, when application modules are installed into a runtime environment
that supports the internal smart key device of the present invention, the application
modules may have been provided with the functionality for establishing trust rela-
tionships between the application modules yet lack the ability to establish trust rela-
tionships with other modules in the runtime environment becaise the root certificate
arthorities differ. The application modules can be regarded as residing in one trust
hierarchy with the other modules residing within a different trust hierarchy.

In order to overcome this problem, the process that is described with respect to
FIG. 21 illustrates a mechanism for introducing multiple trust hierarchies within a
single runtime environment. This solution is further illustrated with respect to FIG.
22. By accepting digitdl certificates 2206 and 2208, internal smart key device 2202
implicitly forms trust relationships 2210 and 2212 with the foreign internal smart key
devices that are associated with the accepted digital certificates. In this manner,
internal smart key device 2202 supports trust hierarchies 2214, 2216, and 2218 with
root certificates 2204, 2206, and 2208, respectively. Given that root certificates 2206
and 2208 are available for validting the digital certificates of application modules that

were signed by the foreign internal smart key devices that are represented by root ¢ er-

WO 2005/069101 PCT/EP2004/053702

AUS030854

[133]

[134]

[135]

wh

35

tificates 2206 and 2208, other modules in the runtime environment are able to form
trust relationships 2220 and 2222 that bridge the trust hierarchies.

With reference now to FIG. 23, a flowchart depicts a process for obtaining a
current root certificate chain maintained by the loc internal smart key device.

Whereas FIG. 21 depicts a process for a system administrator to assert a root
certificate into the trust hierarchy of a particular runtime environment by storing the
root certificate within the local smart key device, FIG. 23 illustrates a process for
obtaining the current root certificate chain from the loal internal smart key device.

The process commences when the internal smart key device receives a request
message from a software smart key unit whereby it requests the current root certificate
chain that is maintained by the local internal smart key device (step 2302) The local
internal smart key device then returns a response message containing the current root
certificate chain to the requesting software smart key unit (step 2304), and the process
is concluded. The locd internal smart key device may require that the requesting
software smart key unit had previously anthenticated to the local internal smart key
device. In contrast to FIG. 11 or FIG. 21, which illustrate operations in an internal
smart key device that are only performed when the system administrator has used an
externdl smart key device to enable the operations, the process that is illustrated in
FIG. 23 does not require enablement via an external smart keydevice.

With reference now to FIG. 24, a flowchart depicts a process for determining
whether a digitd certificate from a foreign internal smart key device is trustworthy. At
some point in time, a module requests access to a computing resource that is controlled
by another module within a runtime environment. Assuming that the two modules
have not previously completed a mutual aithentication operation, then the two
modules attempt to complete a mutual aithentication operation, e.g., similar to the
mutual anthentication operation that is described with respect to FIGs. 9A-9B. In this
example, it may be assumed that the module that is controlling the desired computing
resource is included within the locd trust hierarchy that is based on the local internal
smart key device while the requesting module is included within a trust hierarchy that
is based on a foreign internal smart key device; however, a root certificate for the
foreign internal smart key device has been previously asserted into the local smart key
device.

The process commences when the controlling module and the requesting module
have initiated an anthentication operation (step 2402) The controlling module then
obtains the digital certificate of the requesting module (step 2404), most likely directly

WO 2005/069101 PCT/EP2004/053702

AUS030854

[136]

[137]

[138]

[139]

36

from the requesting module; the public key from the digital certificate is used to
determine whether the requesting module possesses the private key that corresponds to
the public key, dthough these steps are not shown in FIG. 24.

In order to determine the anthenticity of the digital signature on the requesting
module’s digital certificate, the controlling module requires a trustworthy copy of the
foreign internal smart key device’s digital certificate, thereby providing a copy of the
public key that corresponds to the private key that was used to generate the digital
signature. Although the requesting module should possess a copy of the digital
certificate for the foreign internal smart key device that has issued the requesting
module’s digital certificate, thereby allowing the requesting module to provide a copy
of the foreign internal smart key device’s digital certificate to the controlling module, -
the controlling module needs an independent, trustworthy method for obtaining a copy
of the foreign internal smart key device’s digitd certificate. In an attempt to obtain a
copy of the foreign internal smart key device’s digital certificate, the controlling
module obtains the root certificate chain that is currently being maintained by the loca
internal smart key device (step 2406).

The controlling module then verifies that the root certificate for the foreign internal
smart key device is in the retrieved root certificate chain (step 2408). As mentioned
above, in the example that is shown in FIG. 24, it may be assumed that a root
certificate for the foreign internal smart key device has been previously asserted into
the local smart key device. Hence, step 2406 results in the return of a root certificate
chain that includes a copy of the foreign internal smart key device’s digital certificate.

The controlling module then verifies the arthenticity of the requesting module’s
digital certificate by verifying the digital signature on the requesting module’s digital
certificate (step 2410), and the process is concluded. Assuming that the digital
signature is verified, the controlling module may proceed with the authentication
operation.

Another embodiment of the present invention is provided hereinbelow with respect
to FIG. 25 and FIG. 26, and the example of this implementation relies on various
aspects of the present invention that have been previously described. As described
above, a hardware security unit within a data processing system, such as an internal
smart key device, can function as a certificate aathority. As described with respect to
FIG. 17, the certificate anthority functionality of an internal smart key device may be
viewed as the root of a trust model in which the computing resources within a data

processing system are entities within a trust relationship hierarchy. The trust re-

WO 2005/069101 PCT/EP2004/053702

AUS030854

[140]

[141]

[142]

37

lationship hierarchy may be represented, as in FIG. 17, by an inverted pyramid in
which the internal smart key device is at the apex of the inverted pyramid, and the
computing resources form the inverted pyramid. As described with respect to FIGs.
18-20, the certificate anthority functionality of a hardware security unit may be used to
sign software cryptographic modules, i.e. software security units or software smart key
units, and also to issue digital certificates to software cryptographic modules. As
mentioned briefly above, the software package of the software cryptographic module
can be sedled to prevent code tampering.

With reference now to FIG. 25, a dataflow diagram illustrates entities within a
data processing system that implements a hardware-assisted trust model that may be
used to ensure the integrity of software modules in accordance with an implementation
of the present invention. Before describing FIG. 25, a specific example is described
within a Java ® runtime environment. After the class files of a Java © application, which
includes some form of software cryptographic unit, have been sealed to prevent code
tampering, program integrity is enforced by class loaders. To ensure that a class loader
can be trusted, the class loader needs to be signed and sealed as well. To guarantee the
integrity of the class loader, the loader that loads the class loader, i.e., the operating
system program loader, needs to be signed and seadled in some manner. To guarantee
the integrity of the operating system program loader, the loader that loads the operating
system program loader, i.e. the boot loader in a ROM of the data processing system,
needs to be signed and sealed.

‘With respect to a more generic, non-Java ® environment, after the software package
of a software cryptographic module has been sealed to prevent code tampering,
program integrity is enforced by the operating system program loader. To ensure that
the operating system program loader can be trusted, the operating system program
loader needs to be signed and sedled as well. To guarantee the integrity of the
operating system program loader, the loader that loads the operating system program
loader, i.e. the boot loader in the system ROM, needs to be signed and sealed as well.
These requirements and operations are reflected in FIG. 25.

Boot ROM 2502 has been signed by the private key of internal smart key device
2504; this may occur during the manufacturing process, during an site-specific in-
stallation procedure in which the boot ROM is configured using a flash memory
update, or in some other manner. Thereafter, boot ROM 2502 is able to perform a
mutual authentication procedure with internal smart key device 2504, thereby creating
a trust relationship between boot ROM 2502 and internal smart key device 2504.

WO 2005/069101 PCT/EP2004/053702

AUS030854

[143]

[144]

[145]

38

Operating system program loader 2506 has also been signed by the private key of
internal smart key device 2504; this may occur in accordance with the process that is
described with respect to FIG. 18 and FIG. 19. Boot ROM 2502 is able to
guarantee the integrity of operating system program loader 2506 by validiting the
signature on the sealed program module(s) of the operating system program loader
2506 with assistance from internal smart key device 2504, which assists boot ROM
2502 because it has already established a trust relationship with boot ROM 2502
through the completion of a mutual arthentication procedure. Thereafter, operating
system program loader 2506 is able to perform a mutual arthentication procedure
with internal smart key device 2504, thereby creating a trust relationship between
operating system program loader 2506 and internal smart key device 2504.

Appliction module 2508 has been signed by the private key of internal smart key
device 2504 or by a software cryptographic unit in the operating system that acts as a
certificate anthority with internal smart key device 2504 acting as the root certificate
anthority; this may occur in accordance with the process that is described with respect
to FIG. 20. Operating system program loader 2506 is able to guarantee the integrity
of application module 2508 by validating the signature on the sealed application
program module with assistance from internal smart key device 2504, which assists
operating system program loader 2506 becaise it has already established a trust re-
Iationship with operating system program loader 2506 through the completion of a
mutual anthentication procedure. Thereafter, application module 2508 is able to
perform a mutual arthentication procedure with internal smart key device 2504,
operating system modules 2510, or other application modules 2512 in order to trust re-
ltionships as necessary.

With reference now to FIG. 26, a flowchart illustrates a process for uring the integ
rity of software modules in accordance with an implementation of the present
invention. The process begins during the startup of a data processing system when
hardware circuitry within the data processing system validates the digital signature on
the boot ROM through assistance of the internal smart key unit within the data
processing system (step 2602) Assuming that the digital signature on the boot ROM
has been successfully validated, the startup hardware on the data processing system
then activates the boot ROM of the data processing system (step 2604), thereby
preventing the boot ROM from performing many types of operations until the internal
smart key device has validated it, or in alternative implementations, preventing the

boot ROM from performing any operations until the internal smart key device has

WO 2005/069101 PCT/EP2004/053702

AUS030854

[146]

[147]

[148]

39

validated it.

At some subsequent point in time, presumably still during the startup procedure of
the data processing system, the boot ROM verifies the digital signature(s) on signed/
sealed operating system module(s) that are required for further initialization of the daa
processing system (step 2606). Assuming that the boot ROM is able to validite the
digital signature(s) on operating system module(s), the boot ROM then loads the
operating system module(s) (step 2608) and passes execution control to the operating
system module(s) (step 2610)

At some subsequent point in time, a program loader within the operating system
verifies the digital signature on signed/sealed application module(s) that are being
invoked on the data processing system (step 2612), e.g., in response to a request by a
user of the data processing system. Assuming that the program loader is able to
validate the digital signature(s) on the application module(s), then the program loader
loads the application module(s) (step 2614) and passes execution control to the ap-
plication module(s) (step 2616), thereby concluding the process. In this manner, the
preéent invention may be employed to ensure the integrity of all software modules that
execute on the data processing system; all software that executes on the data
processing system must be signed by the internal smart key device or by a software
certificate aathority module that is trusted by the internal smart key device. The trust
relationship is established via mutual arthentication between the software certificate
anthority module and the internal smart key device and also via a configuration
process to add the certificate of the software certificate arthority module into the list of
trusted certificates into the internal smart key device. As partially described with
respect to FIG. 25 and more fully with respect to the previous figures, appropriate
trust relationships are established during software execution through mutual ai-
thentication procedures that employ the digital certificates that have been previously
embedded in the respective entities.

The advantages of the present invention should be apparent in view of the detailed
description that is provided above. The present invention provides a mechanism for
securing cryptographic functionality within a host system such that it may only be used
when a system administrator physically allows it via a hardware security token. In
addition, a hardware security unit is integrated into a data processing system, and the
hardware security unit acts as a hardware certificate authority. The hardware security
unit may be viewed as supporting a trust hierarchy or trust framework within a

distributed data processing system. The hardware security unit can sign software that is

o

WO 2005/069101 PCT/EP2004/053702

AUS030854

[149]

[150]

[151]

[152]

[153]

40

installed on the machine that contains the hardware security unit. Server processes that
use the signed software that is run on the machine can establish mutual trust rela-
tionships with the hardware security unit and amongst the other server processes based
on their common trust of the hardware security unit.

It is important to note that while the present invention has been described in the
context of a fully functioning data processing system, those of ordinary skill in the art
will appreciate that the processes of the present invention are capable of being
distributed in the form of instructions in a computer readable medium and a variety of
other forms, regardless of the particular type of signal bearing media actually used to
carry out the distribution. Examples of computer readable media include media such as
EPROM, ROM, tape, paper, floppy disc, hard disk drive, RAM, and CD-ROMs and
transmission-type media such as digital and analog communications links.

A method is generally conceived to be a self-consistent sequence of steps leading to
a desired result. These steps require physical manipulations of physical quantities.
Uswully, though not necessarily, these quantities take the form of electrical or magnetic
signals capable of being stored, transferred, combined, compared, and otherwise ma-

nipulated. It is convenient at times, principally for reasons of common usage, to refer

to these signals as bits, values, parameters, items, elements, objects, symbols,

characters, terms, numbers, or the like. It should bernoted, however, that all of these
terms and similar terms are to be associated with the appropriate physica quantities
and are merely convenient Jabels applied to these quantities.

The description of the present invention has been presented for purposes of il-
lustration but is not intended to be exhaustive or limited to the disclosed embodiments.
Many modifications and variations will be apparent to those of ordinary skill in the art.
The embodiments were chosen to explain the principles of the invention and its
practical applications and to enable others of ordinary skill in the art to understand the
invention in order to implement various embodiments with various modifications as
might be suited to other contemplated uses.

It will be understood by those skilled in the art that, although the present invention
has been described in relation to the preceding example embodiments, the invention is
not limited thereto and that there are many possible variations and modifications which
fall within the scope of the invention.

The scope of the present disclosure includes any novel feature or combination of
features disclosed herein. The applicant hereby gives notice that new claims may be

formulated to such features or combination of features during prosecution of this ap-

WO 2005/069101 PCT/EP2004/053702

AUS030854

[154]

4

plication or of any such further applications derived therefrom. In particular, with
reference to the appended claims, features from dependent claims may be combined
with those of the independent claims and features from respective independent claims
meay be combined in any appropriate manner and not merely in the specific com-
binations enumerated in the claims.

For the avoidance of doubt, the term “comprising”, as used herein throughout the

description and claims is not to be construed as meaning “consisting only of”.

WO 2005/069101 PCT/EP2004/053702

AUS030854

[001]

[002]

[003]

[004]

[005]

[006]

42

Claims

A data processing system comprising: a system unit including: a processor for
executing instructions in software modules; and a first hardware security unit
including: means for storing a private key of a first asymmetric cryptographic
key pair and a public key of a second asymmetric cryptographic key pair; means
for anthenticating a software module; and means for acting as a certificate
arthority to issue digital certificates to software modules; and a first software
module executable on the system unit including:means for storing a private key
of the second asymmetric cryptographic key pair and a public key of the first
asymmetric cryptographic key pair; and means for arthenticating the hardware
security unit.

The data processing system of clim 1 wherein the hardware security unit further
comprises: means for receiving a digital certificate corresponding to a private
key possessed by a second hardware security unit that is not included in the
system unit; and means for storing the received digital certificate.

The data processing system of claim 1 or 2 further comprising: a removable
hardware device including: means for storing a private key of a third asymmetric
cryptographic key pair and a public key of the first asymmetric cryptographic
key pair; a first hardware interface for elééh‘i(ally engaging the system unit; and
means for anthenticating the hardware security unit; and the system unit further
including: a second hardware interface for electrically engaging a removable
hardware device.

The data processing system of claim 3 wherein the hardware security unit further
comprises: means for enabling the hardware security unit to act as a certificate
anthority to issue digital certificates to software modules based on whether the
removable hardware device remains electrically engaged with the system unit
after the removable hardware device and the hardware security unit have been
mutually anthenticated.

The data processing system of any preceding claim wherein the first software
module further comprises: means for aithenticating a second software module
that is executing in the data processing system.

The data processing system of claim 5 further comprising: means for receiving a
digital certificate for the second software module; and means for verifying the

received digital certificate as having been issued by the hardware security unit.

WO 2005/069101 PCT/EP2004/053702

AUS030854

43

[007] The data processing system of claim 5 further comprising: means for receiving a
digital certificate for the second software module; means for retrieving a set of
digital certificates from the hardware security unit; and means for verifying the
digital certificate for the second software module based on a certificate in the set
of digital certificates from the hardware security unit.

[008] The data processing system of any preceding claim further comprising: means
for requiring a software module executable on the system unit to have been
signed by the first hardware security unit before executing the software module.

[009] The data processing system of any preceding claim further comprising: means
for requiring all software modules executable on the system unit to have been
signed by the first hardware security unit before execution.

[010] The data processing system of any preceding claim further comprising: means
for requiring all software modules executable on the system unit to be able to a-
thenticate to the first hardware security unit before execution.

[011] The data processing system of any preceding claim further comprising:a
software smart key module that is signed by the first hardware security unit,
wherein the first hardware security unit includes means for acting as a certificate
authority.

[012] The data processing system of claim 11 further comprising: means for requiring
software modules executable on the system unit to have been signed either by the
software smart key module or by the first hardware security unit before
execution.

[013] The data processing system of claim 11 further comprising: means for requiring
all software modules executable on the system unit to be able to aithenticate
either to the software smart key module or to the first hardware security unit
before execution.

[014] The data processing system of claim 11 further comprising: means for secondary
software certificate anthority modules to derive trust anthority from the first
hardware security unit in an inverted pyramid form of a trust hierarchy.

[015] The data processing system of claim 11 further comprising: means for allowing
software certificate aathority modules to sign subordinate software certificate
authority modules.

[016] The dita processing system of claim 1 further comprising: means for requiring
al interacting software applications that are installed on the system unit to be

able to mutually authenticate to one another.

WO 2005/069101 PCT/EP2004/053702

AUS030854

44

[017] The data processing system of claim 16 further comprising: means for allowing
interacting software applications to verify each other as signed by a trusted
software certificate aithority or by the first hardware security unit.

[018] The data processing system of any preceding claim further comprising: means
for asserting a digital certificate of a hardware security unit on a different system
unit into a list of trusted certificate aithorities in the first hardware security unit.

[019] The data processing system of any preceding claim further comprising: means
for asserting a digital certificate of a software certificate aithority trusted on a
different data processing system into a list of trusted certificate aithorities in the
first hardware security unit.

[020] A method for performing cryptographic functions in a data processing system,
the method comprising: executing a software module on a system unit including
a hardware security unit, wherein the hardware security unit confains a private
key of a first asymmetric cryptographic key pair and a public key of a second
asymmetric cryptographic key pair; performing a mutual authentication
operation between the hardware security unit and the software module, wherein
the software module contains a private key of the second asymmetric cryp-
tographic key pair and a public key of the first asymmetric cryptographic key
pair; and issuing digital certificates by the hardware security unit to software
modules.

[021] The method of claim 20 further comprising: receiving at the hardware security
unit a digital certificate corresponding to a private key possessed by a second
hardware security unit that is not included in the system unit; and storing the
received digital certificate.

[022] The method of claim 21 further comprising: receiving a request from the
software module to retrieve the received digital certificate; and providing the
received digita certificate to the software module.

[023] The method of claim 20 further comprising: electricily engaging a removable
hardware device with the system unit, wherein the removable hardware device
confains a private key of a third asymmetric cryptographic key pair and a public
key of a fourth asymmetric cryptographic key pair, and wherein the hardware .
security unit confains a private key of the fourth asymmetric cryptographic key
pair and a public key of the third asymmetric cryptographic key pair; performing
a mutual aathentication operation between the removable hardware device and

the hardware security unit.

WO 2005/069101 PCT/EP2004/053702

AUS030854

45

[024] The method of claim 23 further comprising: in response to successfully
performing the mutual authentication operation between the removable hardware
device and the hardware security unit, enabling the hardware security unit to act
as a certificate authority to issue digital certificates while the removable
hardware device remains electrically engaged with the system unit.

[025] The method of claim 23 further comprising: in response to successfully
performing the mutual aithentication operation between the removable hardware
device and the hardware security unit, enabling the hardware security unit to
receive and store at the hardware security unit a digital certificate corresponding
to a private key possessed by a second hardware security unit that is not included
in the system unit.

[026] The method of claim 20 further comprising: aithenticating, by the software
module, a second software module that is executing in the data processing
system.

[027] The method of claim 26 further comprising: receiving a digita certificate for the
second software module; and verifying the received digital certificate as having
been issued by the hardware security unit.

[028] The method of claim 26 further comprising: receiving a digitd certificate for the
second software'module; retrieving a set of digital certificates from the hardware
security unit; and verifying the digital certificate for the second software module
based on a certificate in the set of digital certificates from the hardware security
unit.

[029] The method of any of chims 20 to 28 further comprising: requiring a software
module executable on the system unit to have been signed by the hardware
security unit before executing the software module.

[030] The method of any of claims 20 to 28 further comprising: requiring all software
modules executable on the system unit to have been signed by the hardware
security unit before execution.

[031] The method of any of claims 20 to 28 further comprising: requiring all software
modules executable on the system unit to be able to aithenticate to the hardware
security unit before execution.

[032] The method of any of claims 20 to 31 further comprising: signing a software
smart key module by the hardware security unit, wherein the hardware security
unit includes means for acting as a certificate authority.

[033] The method of claim 32 further comprising: requiring software modules

WO 2005/069101 PCT/EP2004/053702

AUS030854
46
executable on the system unit to have been signed either by the software smart
key module or by the hardware security unit before execution.
[034] The method of claim 32 further comprising: requiring all software modules

executable on the system unit to be able to aithenticate either to the software
. smart key module or to the hardware security unit before execution.

[035] The method of claim 32, 33 or 34 further comprising: allowing secondary
software certificate anthority modules to derive trust aithority from the hardware
security unit in an inverted pyramid form of a trust hierarchy.

[036] The method of claim 32, 33, 34 or 35 further comprising: alowing software
certificate authority modules to sign subordinate software certificate aithority
modules.

[037] The method of any of claims 20 to 36 further comprising: requiring all in-
teracting software applications that are installed on the system unit to be able to
mutually anthenticate to one another.

[038] The method of claim 37 further comprising: allowing interacting software ap-
plications to verify each other as signed by a trusted software certificate
anthority or by the hardware security unit.

[039] The method of any of claims 20 to 38 further comprising: asserting a digital

e certificate of a hardware security unit on a different system unit into a list of
trusted certificate anthorities in the hardware security unit.

[040] The method of any of claims 20 to 38 further comprising: asserting a digital
certificate of a software certificate aithority trusted on a different data
processing system into a list of trusted certificate arthorities in the hardware
security unit.

[041] A computer program product on a computer readable medium for use in a cata
processing system for performing cryptographic functions, the computer
program product comprising: means for executing a software module on a
system unit including a hardware security unit, wherein the hardware security
unit contains a private key of a first asymmetric cryptographic key pair and a
public key of a second asymmetric cryptographic key pair; means for performing
a mutual arthentication operation between the hardware security unit and the
software module, wherein the software module contains a private key of the
second asymmetric cryptographic key pair and a public key of the first
asymmetric cryptographic key pair; and means for issuing digital certificates by

the hardware security unit to software modules.

WO 2005/069101 PCT/EP2004/053702

AUS030854
47
[042] A computer program product comprising computer-implementable instructions
to carry out the method of any of claims 20 to 40.
[043] A computer program product comprising computer-implementable instructions

for execution in a data processing system to provide the data processing system

of any of claims 1 to 19.

WO 2005/069101
1/14
[Fig. 001]
1/14
100
106
ERSONN-
DIGITAL ASSISTANT
/{& " FIG. 14
/_Z_S_«—-'-"“;ERSONAL
—— DIGITALASSISTANT (PRIOR ART)
WIRELESS
PHONE
120 1= '
\ cPU freveiond Ej 146
L 13 e DISPLAY
124 ~J RAM ™ “
. {usERINTERFACE |
e~ R
_ _ 142
PRINTER MovsE
— 128 /O ADAPTER
o] "
- KEYBOARD 136
? COMMUNICATION |_ COMMUNICATION ¢ _
ADAPTE o LINK o
FIG. 1B

(PRIOR ART)

PCT/EP2004/053702

WO 2005/069101

USER
PUBLIC KEY
204

&=

USER
PRIVATE KEY
206

=

FIG. 2
(PRIOR ART)

FIG. 3

(PRIOR ART)

302

CRL
REPOSITORY
312

2114

[Fig. 002]

2/14

REQUEST FOR CERTIFICATE
208

USER
PUBLIC KEY
204

=

PCT/EP2004/053702

CERTIFYING
AUTHORITY
210

CA

202

PUBLIC KEY
212

(P~

X.509 CERTIFICATE
216
cA
USER
PUBLIC KEY e PR“’QE KeY
213
X509 CERTIFIGATE
304

Serial Numbsr x000a¢
Issuer Name >000¢

Sigr;ature XR0

Sut;ject Name /C=US/O=IBM/OU=DEVT/CN=JSMITH

310

SUBJECTISECURITY GROUP

JSMITH| so0000x

HOST SYSTEM
308

INTERNET/ANTRANET
APPLICATION
308

WO 2005/069101 PCT/EP2004/053702

3/14
[Fig. 003]
3/14
EXTERNAL SMART KEY | _ .@.
DEVICE (EXSKD) 404
aver . APPLICATION WITH SOFTWARE SMART
EM UNIT 402 KEY UNIT (SWSKU) INVOKES
INTERNAL SMART KEY CRYPTOGRAPHIC FUNCTION IN INTERNAL
DEVICE (INSKD) 406 SMART KEY DEVICE (INSKD)
) 102
APPLICATION 498 4
SWSKU AND INSKD PERFORM MUTUAL
SOFTWARE SMART AUTHENTICATION PROCEDURE
KEY UNIT 704
(SWSKU) 410 T
- INSKD IS ENABLED TO PERFORM
FIG. 4 CRYPTOGRAPHIC FUNGTIONS FOR SWSKU
. 706

FIG. 7

EXTERNAL SMART KEY DEVICE (EXSKD)
BECOMES ELECTRICALLY ENGAGED WITH
SYSTEM UNIT CONTAINING (" eeen)
INTERNAL SMART KEY DEVICE (INSKD) -
802
T EXTERNAL SMART KEY DEVICE (EXSKD)
BECOMES ELECTRICALLY DISENGAGED
EXSKD AND INSKD PERFORM MUTUAL FROM SYSTEM UNIT CONTAINING
AUTHENTICATION PROCEDURE INTERNAL SMART KEY DEVICE (INSKD)
504 a0
INSKD IS ENABLED TO PERFORM INSKD 1S DISABLED FROM PERFORMING
CRYPTOGRAPHIC FUNCTIONS CRYPTOGRAPHIC FUNCTIONS
£08 804

FIG. 6 FIG. 8

WO 2005/069101

4/14

[Fig. 004]

PCT/EP2004/053702

4/14

1

EXTERNAL SMART KEY DEVICE (EXSKD) 502

| ExskoPRVATEKEYstz | | CRYFTOCRAPHIC

EXSKD PUBLIC KEY CERTIFICATE 514
| EXSKD PUBLICKEY 51§ |

INSKD PUBLIC KEY CERTIFICATE 518

| _NskDPUBLICKEVS20 |

- ELECTRICAL INTERFACE TO SYSTEM UNIT 504

—

SYSTEM UNIT
506

ELECTRICAL INTERFACE TO EXSKD 508

INTERNAL SMART KEY DEVICE (INSKD) 522

APPLICATION 540

{ CRYPTOGRAPHIC ENGINE 524 |

{_INSKD PRIVATEKEY 526 |

SOFTWARE SMART KEY UNIT
(SWSKU) 538

| CRYPTOGRAPHIC ENGINE 552

INSKD PUBLIC KEY CERTIFICATE 528
[INSKDPUBLICKEVE3D |

EXSKD PUBLIC KEY CERTIFICATE §32
[ExskoPUBLICKEY53s |

|_SWSKU PRIVATE KEY 550 |

SWSKU PUBLIC KEY CERTIFICATE 554
.|_SWSKUPUBLICKEY S8 | .

| INSKD_SW PRIVATE KEVERD 1

INSKD_SW PUBLIC KEY CERTIFICATE
542

[mskD_sw PuBLIC KEY 544 |

INSKD_SW PUBLIC KEY CERTIFICATE
£h8 :

INSKD_SW PUBLIC KEY 581 |

DIGITAL SIGNATURE
COMPUTED OVER SWSKU BASED ON

INSKD_SW PRIVATE KEY §62

SWSKD PUBLIC KEY CERTIFICATE 548

| swskpPuBLICKEVS48 |

FIG. 5

WO 2005/069101 PCT/EP2004/053702

5/14

[Fig. 005]

5/14

INSKD USES PUBLIC KEY OF EXSKD TO

EXSKD USES PUBLIC KEY OF INSKD TO

* ENCRYPT MESSAGE ENCRYPT MESSAGE
902 922
INSKD PASSES ENCRYPTED MESSAGE EXSKD PASSES ENCRYPTED MESSAGE
TO EXSKD TO INSKD
804 924
EXSKD DECRYPTS ENCRYPTED MESSAGE INSKD DECRYPTS ENCRYPTED MESSAGE
USING ITS PRIVATE KEY USING ITS PRIVATE KEY
206 226
EXSKD ENCRYPTS MESSAGE INSKD ENCRYPTS MESSAGE
WITH PUBLIC KEY OF INSKD WITH PUBLIC KEY OF EXSKD
208 28
EXSKD PASSES ENCRYPTED MESSAGE INSKD PASSES ENCRYPTED MESSAGE
TO INSKD " TOEXSKD
219 930
INSKD DECRYPTS ENCRYPTED MESSAGE EXSKD DECRYPTS ENCRYPTED MESSAGE
USING ITS PRIVATE KEY : USING ITS PRIVATE KEY
174 232
INSKD COMPARES DECRYPTED MESSAGE EXSKD COMPARES DECRYPTED MESSAGE
. WITH ORIGINAL MESSAGE WITH ORIGINAL MESSAGE o+
14 834)

INSKD INDICATES THAT EXSKD IS
AUTHENTIC IF MESSAGES MATCH

EXSKD INDICATES THAT INSKD IS
AUTHENTIC {F MESSAGES MATCH

916 936
FIG 94 FIG. 9B

WO 2005/069101

PCT/EP2004/053702

6/14

[Fig.

006]

6/14

SWSKU USES PUBLIC KEY OF INSKD TO

INSKD USES PUBLIC KEY OF SWSKU TO

ENCRYPT MESSAGE ENCRYPT SESSION KEY
1002 1022
SWSKU PASSES ENCRYPTED MESSAGE INSKD PASSES ENCRYPTED SESSION KEY
TO INSKD TO SWSKU
1004 1024
INSKD DECRYPTS ENCRYPTED MESSAGE SWSKU DECRYPTS ENCRYPTED SESSION
USING ITS PRIVATE KEY KEY USING ITS PRIVATE KEY
1006 1026
INSKD ENCRYPTS MESSAGE SWSKU ENCRYPTS SESSION KEY .
WITH PUBLIC KEY OF SWSKU WITH PUBLIC KEY OF INSKD
1008 1028
INSKD PASSES ENCRYPTED MESSAGE SWSKU PASSES ENCRYPTED
TO SWSKU SESSION KEY TO INSKD
1010 1030
SWSKU DECRYPTS ENCRYPTED MESSAGE INSKD DECRYPTS ENCRYPTED SESSION
USING ITS PRIVATE KEY KEY USING ITS PRIVATE KEY
1012 1032

SWSKU COMPARES DECRYPTED MESSAGE]

INSKD COMPARES DECRYPTED SESSION

WITH ORIGINAL MESSAGE KEY WITH ORIGINAL SESSION KEY
1014 1034

SWSKU INDICATES THAT INSKD IS
AUTHENTIC IF MESSAGES MATCH
1016 ’

INSKD INDICATES THAT SWSKU IS
AUTHENTIC IF SESSION KEYS MATCH
3036

FIG. 104

FIG. 10B

WO 2005/069101 PCT/EP2004/053702

714

[Fig. 007]

7/14

INSKD RECEIVES REQUEST MESSAGE
FROM SWSKU
1102

IF SWSKU REQUESTS A DIGITAL INSKD GENERATES ERROR
SIGNATURE, INSKD SIGNS DATA ITEM RESPONSE MESSAGE
FROM REQUEST MESSAGE AND INSERTS 3108
IT INTO RESPONSE MESSAGE
1142

¥

{F SWSKU REQUESTS A DIGITAL
CERTIFICATE, INSKD GENERATES
DIGITAL CERTIFICATE AND INSERTS
IT INTO RESPONSE MESSAGE
1114

y

INSKD RETURNS RESPONSE MESSAGE
TO Swsku
1108

FIG. 114

WO 2005/069101 PCT/EP2004/053702

8/14

[Fig. 008]

8/14

INSKD RECEIVES REQUEST MESSAGE
FROM SWSKU
22

IF SWSKU REQUESTS REGISTRATION
OF MASTER SECRET,
INSKD REGISTERS MASTER SECRET AND
GENERATES RESPONSE MESSAGE
1130

A
l INSKD GENERATES ERROR
IF SWSKU REQUESTS PREVIOUSLY RESPONSE MESSAGE
REGISTERED MASTER SECRET, 1126
INSKD RETRIEVES MASTER SECRET AND
INSERTS IT INTO RESPONSE MESSAGE
132

%

INSKD RETURNS RESPONSE MESSAGE TO
SWSKU)
1128

FIG. 1IB

WO 2005/069101
9/14
[Fig. 009]
9/14
| EXTERNAL SMART KEY
DEVICE (EXSKD) 1204 | SYSTEM UNIT 1202
| MASTER SECRET REGISTRY 1214
SMART' ' ',GYE'" Louéwcs | swsku 1D 1216 | MASTER SECRET 1218 |
(INSKD) 1208 :
[SWSKU "A" 1208 I I SWSKU -s~1zﬁﬂ ' SWSKU *C* 1212 I
FIG. 12
INTERNAL
SMART KEY DEVICE
1302 FIG. 13
EXTERNAL EXTERNAL EXTERNAL
SMART KEYDEVICE | | SMARTKEY DEVICE | | SMART KEY DEVICE
1304 1308 i308
EXTERNAL
SMART KEY DEVICE
1402
I FIG. 14
INTERNAL INTERNAL INTERNAL
SMART KEY DEVICI SMART KEYDEVICE | | SMART KEY DEVICE
1404 1408 1408
EXTERNAL EXTERNAL EXTERNAL
SMART KEY DEVICE | | SMART KEYDEVICE | | SMART KEY DEVICE
1502 1504 1506
FIG. 15
INTERNAL INTERNAL INTERNAL
SMART KEYDEVICE | | SMARTKEY DEVICE | [SMART KEY DEVICE
1612 R4 1518

PCT/EP2004/053702

WO 2005/069101

PCT/EP2004/053702
10/14
[Fig. 010]
10/ 14
CERTIFICATE AUTHORITY (CA #1)
1602
1608
SERVER WITH DIGITAL SERVER WITH DIGITAL
CERTIFICATE FROM CA #1 CERTIFICATE FROM CA #1
1604 1606
(PRIOR ART)
CERTIFICATE AUTHORITY (CA #1)
1602
1608 o
}/m 1618
SERVER WITH DIGITAL SERVER WITH DIGITAL SERVER
CERTIFICATE FROM CA #1 CERTIFICATE FROM CA #1 P
1604 1606
(PRIOR ART)
CERTIFICATE Aln'HORITY (cA#) CERTIFICATE AUTHORITY (CA #2)
1620
1608 1626
}/1m 16287624 \

SERVER WITH DIGITAL SERVER WITH SERVER WITH DIGITAL
CERTIFICATE mommm DIGITAL CERTIFICATES CERTIFICATE FROM CA #2
1604 FROM CA # AND CA#2 622
1606
}’\/ 1630 i
FIG. 16C

(PRIOR ART)

PCT/EP2004/053702

WO 2005/069101
11/14
[Fig. 011]
11714
1712 | 1714 hvali 1718 2 1724 1726 1728
INTERNAL SMART KEY DEVICE SECONDARY SOFTWARE
(INSKD) 1702 CERTIFICATE AUTHORITY
MODULE 1710
CERTIFICATE AUTHORITY
MODULE 1706
INTERNAL SMART KEY DEVICE
{INSKD) 1704
CERTIFICATE AUTHORITY
FIG. 17 MODULE 1708
| EXTERNAL SMARTKEY { EXTERNAL SMART KEY |
DEVICE (EXSKD) 1804 [l pEVICE (EXSKD) 2004
SYSTEM UNIT 1802 SYSTEM UNIT 2002
INTERNAL SMART KEY INTERNAL SMART KEY
DEVICE (INSKD) 1806 DEVICE (INSKD) 2006
OPERATING SYSTEM SOFTWARE
INSTALLATION CONFIGURATION
APPLICATION MANAGEMENT (SCM)
1808 APPLICATION 2008
SOFTWARE SMART SOFTWARE SMART ||
KEY UNIT KEY UNIT
(SWSKU) 16810 (SWSKU) 2010
OPERATING SIGNED OPERATING PROJECT SIGNED PROJECT
YSTEM FILE SYSTEM FILES WITH MODULES MODULES WiTH
WITH SWSKU] | CERTIFICATE-BEARING WITH CERTIFICATE-BEARING
STUBS SWSKU'S SWSKU SWSKU'S
1842 1814 ngS;.JiBZs 2014

WO 2005/069101 PCT/EP2004/053702

12/14
[Fig. 012]
12/ 14
(o)
, END
INSKD RECEIVES REQUEST
MORE MESSAGE FROM SWSKU
UNPROCESSED . |ASSERTING ROOT CERTIFICATE
OPERATING SYSTEM OF ANOTHER INSKD
FILES? NO 2102
YES
OPERATING SYSTEM INSTALLATION
APPLICATION READS
UNPROCESSED OPERATING
SYSTEM MODULE FROM
DISTRIBUTION MEDIUM
904 -
EXSKD
d STILL ENGAGED?
DELETE STUB ROUTINES AND/OR 2110
EMPTY MODULES WITHIN MODULE
THAT IS BEING PROCESSED
1808
INSKD ADDS ASSERTED ROOT
1 CERTIFICATE TQ TRUST CHAIN
GENERATE PUBLIC/PRIVATE a2
KEYPAIR)
1908
INSKD CREATES RESPONSE
v MESSAGE FOR SWSKU
REQUEST INSKD TO ISSUE DIGITAL 2114
CERTIFICATE BASED ON PUBLIC/ '
PRIVATE KEY PAIR
1810 { .-
4 A _ | nsko GENERATES
GENERATE INSTANCE OF SWSKU RO e ONSE
HAVING DIGITAL CERTIFICATE, 2106
PRIVATE KEY, AND PUBLIG KEY
CERTIFICATES OF APPROPRIATE
CERTIFICATE CHAIN
812 Y
i INSKD RETURNS RESPONSE
MESSAGE TO SWSKU
EMBED SWSKU INTO 2108
OPERATING SYSTEM MODULE
1914

R
FIG. 19 FIG. 21

WO 2005/069101

PCT/EP2004/053702

13/14
[Fig. 013]
2220 13/14 2222
TRUST HIERARCHY OF
LOCAL INSKD
214
D
SELF-SIGNED 2210F ;yGITAL CERTIFICATE {2212] DIGITAL CERTIFICATE
DIGITAL CERTIFICATE CREATED BY CREATED BY
CREATED BY LOCAL INSKD FOREIGN INSKD FOREIGN INSKD
2204 ’ 2208 2208
INTERNAL SMART KEY DEV‘ICE (INSKD) 2202
INSKD RECEIVES REQUEST CONTROLUNG MODULE INITIATES
MESSAGE FROM SWSKU TO AUTHENTICATION OPERATION WITH
ASK FOR CERTIFICATE CHAIN REQUESTING MODULE
MAINTAINED BY INSKD 2402
2302 J'
J OBTAIN CERTIFICATE OF REQUESTING
poey. NS RESPONSE MODULE FROM REQUESTING MODULE
MESSAGE TO REQUESTING 2484
BWSKU WITH CERTIFICATE L
A A oo OBTAIN ROOT CERTIFICATE CHAIN
MAINTAINED BY LOCAL INSKD
ii,, . 2408 .
VERIFY ROOT CERTIFICATE FOR

FIG. 23

REQUESTING MODULE IS IN CERTIFICATE
CHAIN MAINTAINED BY LOCAL INSKD

2408

¥

VERIFY AUTHENTICITY OF DIGITAL
SIGNATURE ON CERTIFICATE OF

REQUESTING MODULE
2410

FIG. 24

WO 2005/069101

PCT/EP2004/053702
14/14
[Fig. 014]
14714
BOOTROM | MUTUAL AUTHENTICATION |\ ecnnt smaRT KEY DEVICE
(SIGNED BY INSKD) [{INSKD)
2502 2504
GUARANTEES INTEGRITY
OF OS PROGRAM LOADER
y
OPERATING SYSTEM (OS) | MUTUAL AUTHENTICATION
PROGRAM LOADER > INSKD
(SIGNED BY INSKD) 2504
200 -
ENSURES INTEGRITY OF
OTHER
APPLICATION MODULE _ AP
| ~ MODULES
APPLICATIONMODULE | MUTUAL AUTHENTICATION 2512
(SIGNED BY INSKD OR 0S CA) [g
2508 INSKD 0S MODULES
FIG. 25
HARDWARE STARTUP CIRCUITRY BOOT ROM PASSES CONTROLTO
ENFORCES VALIDATION OF BOOT ROM OPERATING SYSTEM MODULES
2602 2610
ACTIVATE BOOT ROM 0S PROGRAM LOADER VALIDATES
DURING SYSTEM STARTUP PROGRAM MOQULE
. 2604 2612
BOOT ROM VALIDATES 0S PROGRAM LOADER LOADS
OPERATING SYSTEM MODULES PROGRAM MODULE
26808 2614
BOOT ROM LOADS 0S PROGRAM LOADER PASSES
OPERATING SYSTEM MODULES CONTROL TO PROGRAM MODULE
2008 2618

— e

FIG. 26

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

