wo 2017/143263 A1 [N 000 OO O A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(43) International Publication Date

24 August 2017 (24.08.2017) WIPO I PCT

(10) International Publication Number

WO 2017/143263 Al

(51) International Patent Classification: (81)
G060 10/06 (2012.01) GO6F 9/44 (2006.01)

(21) International Application Number:
PCT/US2017/018477

(22) International Filing Date:
17 February 2017 (17.02.2017)

(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
62/296,376 17 February 2016 (17.02.2016) Us

(71) Applicant: SILVERTHREAD, INC. [US/US]; 101 Main
Street, 14th Floor, Cambridge, MA 02142 (US).

(72) Inventors: STURTEVANT, Daniel J.; ¢c/o Silverthread,
Inc., 101 Main Street, 14th Floor, Cambridge, MA 02142
(US). BALDWIN, Carliss; c/o Silverthread, Inc., 101
Main Street, 14th Floor, Cambridge, MA 02142 (US).
MACCORMACK, Alan; ¢/o Silverthread, Inc., 101 Main
Street, 14th Floor, Cambridge, MA 02142 (US). AHN,

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN,
KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA,
MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG,
NI NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS,
RU, RW, SA, SC, SD, SE, S@G, SK, SL, SM, ST, SV, SY,
TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, ZIM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Sunny; c¢/o Silverthread, Inc., 101 Main Street, 14th Floor, Published:

Cambridge, MA 02142 (US). GILLILAND, Sean; c/o Sil-
verthread, Inc., 101 Main Street, 14th Floor, Cambridge,
MA 02142 (US).

(74) Agents: VALLABH, Rajesh et al.; Foley Hoag LLP, Pat-
ent Group, Seaport West, 155 Seaport Blvd., Boston, MA
02210-2600 (US).

with international search report (Art. 21(3))

(54) Title: COMPUTER-IMPLEMENTED METHODS AND SYSTEMS FOR MEASURING, ESTIMATING, AND MANAGING
ECONOMIC OUTCOMES AND TECHNICAL DEBT IN SOFTWARE SYSTEMS AND PROJECTS

— Dashboard

0 O O 0

re— Business as usual

N

T O =2

CITT T T

tem Refactoring
{Hypacthetical or actual)

g - @
=

Cost savings

Internal Rate of Return{iRR)
iRR calculation
Refactoring investment
Annual cost savings
Number of years

& risk reduction
-$800,000
-$321,577

3

internal Rate of Return{iRR) ! 2.98% ‘ F;G 5 38

(57) Abstract: An interrelated set of tools and methods is disclosed for: (1) measuring the relationship between software source code
attributes (such as code quality, design quality, test quality, and complexity metrics) and software economics outcome metrics (such
as maintainability, agility, and cost) experienced by development and maintenance organizations, (2) using this information to pro-
ject or estimate the level of technical debt in a software codebase, (3) using this information to estimate the financial value of efforts
focused on improving the codebase (such as rewriting or refactoring), and (4) using this information to help manage a software de -
velopment effort over its lifetime so as to improve software economics, business outcomes, and technical debt while doing so.

WO 2017/143263 PCT/US2017/018477

COMPUTER-IMPLEMENTED METHODS AND SYSTEMS FOR MEASURING,
ESTIMATING, AND MANAGING ECONOMIC OUTCOMES AND TECHNICAL DEBT
IN SOFTWARE SYSTEMS AND PROJECTS

CROSS REFERENCE TO RELATED APPLICATION

[0001] This application claims priority from U.S. Provisional Patent Application No.
62/296,376 filed on February 17, 2016 entitled TOOLS AND METHODS FOR
MEASURING, ESTIMATING, AND MANAGING BUSINESS OUTCOMES AND
TECHNICAL DEBT IN SOFTWARE SYSTEMS AND PROJECTS, which is hereby
incorporated by reference.

BACKGROUND

[0002] The present application generally relates to methods and systems for
analysis of software codebases and, more particularly, to an interrelated set of tools and
methods for (1) measuring the relationship between software source code attributes
(such as code quality, design quality, test quality, and complexity metrics) and software
economics / business outcome metrics (such as maintainability, agility, and cost)
experienced by development and maintenance organizations, (2) using this information
to project or estimate the level of technical debt in a software codebase, (3) using this
information to estimate the financial value of efforts focused on improving the codebase
(such as rewriting or refactoring), and (4) using this information to help manage a
software development effort over its lifetime so as to improve software economics,

business outcomes, and technical debt while doing so.
BRIEF SUMMARY OF THE DISCLOSURE

[0003] A computer-implemented method in accordance with one or more
embodiments is provided for analyzing a computer software codebase. The method
comprises the steps performed by one or more computer systems of: (a) generating
software economic output metrics for the software codebase using one or more fitted
statistical models, said software economic output metrics including defect density
projections and/or developer productivity projections for the codebase; (b) exploring the
impact of a code quality improvement initiative, a design quality improvement initiative,

-1 -

WO 2017/143263 PCT/US2017/018477

or a test quality improvement initiative by adjusting code quality inputs, design quality
inputs, or test quality inputs to the one or more fitted statistical models to generate
updated software economic output metrics including updated defect density projections
and/or updated developer productivity projections for the codebase; (c) computing costs
associated with the defect density projections and/or developer productivity projections
determined in (a) and costs associated with the updated defect density projections
and/or updated developer productivity projections determined and (b); (d) analyzing the

costs computed in (¢) and outputting results thereof.

[0004] A computer-implemented method in accordance with one or more
embodiments is provided for determining the technical debt of a computer software
codebase. The method comprises the steps performed by one or more computer
systems of:. (a) generating software economic output metrics for the software codebase
using one or more fitted statistical models, said software economic output metrics
including defect density projections and/or developer productivity projections for the
codebase over a period of time the codebase is expected to be in service; (b)
calculating a total cost of development including costs associated with fixing defects and
developing new features based on the defect density projections and/or developer
productivity projections over the period of time; (c) calculating a capitalized value of the
costs calculated in (b) based on a given interest rate to determine the technical debt of
the codebase; and (d) outputting the technical debt.

[0005] A computer-implemented method in accordance with one or more
embodiments is provided for analyzing a computer software codebase. The method
comprises the steps performed by one or more computer systems of: (a) generating first
level software economic output metrics for the software codebase using one or more
fitted statistical models, said first level software economic output metrics including at
least one of: defect density or developer productivity projections for the codebase; (b)
receiving additional information including at least one of. benchmark data collected from
analysis of other codebases, information related to version control or change
management systems, and user input parameters; and (c) using the first level software
economic output metrics generated in (a) and the additional information received in (b)

to generate second level software economic output metrics including at least one of:

-2.

WO 2017/143263 PCT/US2017/018477

metrics related to maintainability, agility, cost, risk, defects, waste, security, technical
debt, and schedule, and outputting the second level software economic output metrics.

[0006] A computer-implemented method in accordance with one or more
embodiments is provided for analyzing a computer software codebase. The method
comprises the steps performed by one or more computer systems of: (a) storing one or
more custom fitted statistical models in a data store, each custom fitted statistical model
calibrated for a different single codebase and created by applying statistical regression
techniques to code quality metrics, design quality metrics, and/or test quality metrics
independent variables and software economic outcome dependent variables for a
codebase; (b) retrieving said one or more custom fitted statistical models from the data
store and using said one or more custom fitted statistical models to generate a standard
fitted statistical model for another codebase, and storing the standard fitted statistical
model in a data store; and (c) retrieving said standard fitted statistical model from the
data store and using said standard fitted statistical model to make defect density or
developer productivity projections for said another codebase, and outputting the defect

density or developer productivity projections.
BRIEF DESCRIPTION OF THE DRAWINGS
[0007] FIG. 1 is a simplified block diagram illustrating the overall structure of a
software analysis system in accordance with one or more embodiments.
[0008] FIG. 2 illustrates an exemplary software development timeline.
[0009] FIG. 3illustrates an exemplary developer workflow.
[0010] FIG. 4 illustrates an exemplary developer workflow and release cycle.
[0011] FIG. §illustrates a simplified software analysis tool structure.
[0012] FIG. 6 illustrates an exemplary data store structure.
[0013] FIG. 7 illustrates linked version control and issue tracking data.
[0014] FIG. 8 is a table of exemplary file-level descriptive statistics.

[0015] FIG. 9 shows tables of exemplary system-level descriptive statistics, using

core-periphery (top) and cyclomatic complexity (bottom) paradigms.

-3-

WO 2017/143263 PCT/US2017/018477

[0016] FIG. 10 is a table of exemplary system-level descriptive statistics for

multiple snapshots of the same system.

[0017] FIG. 11 is a table showing exemplary measures of development activity

during different releases.

[0018] FIG. 12 is a table showing exemplary system-level descriptive statistics for

multiple snapshots of the same system.
[0019] FIG. 13 is an exemplary complexity graph of a system with all benchmarks.

[0020] FIG. 14 is an exemplary complexity graph of a system with comparable

benchmarks.

[0021] FIG. 15 is statistical table showing an example of a significant relationship

between both cyclomatic complexity and architectural complexity and defects in a file.

[0022] FIG. 16 is a statistical table showing an example of a significant
relationship between both architectural complexity of the files developers work in and

their productivity.

[0023] FIG. 17 is an exemplary table showing turnover predictions amongst

developers.

[0024] FIG. 18 is a screenshot showing an exemplary input GUI panel for tool
allowing exploration of CQ, DQ, TQ, and SE. Users can enter information about a

development project for use in software economic calculations.

[0025] FIG. 19 is a flow diagram showing weighting and aggregating individual file

metrics before calculating additional business outcome metrics.

[0026] FIG. 20 is a flow diagram showing an exemplary generalized method of

calculating additional business outcome metrics.
[0027] FIG. 21 is an exemplary maintainability summary screenshot from a tool.

[0028] FIG. 22 is a graph illustrating details of exemplary maintainability

calculations.

WO 2017/143263 PCT/US2017/018477

[0029] FIG. 23 is a graph illustrating exemplary defect ratio benchmarks with all
systems in a Zoo.

[0030] FIG. 24 is a graph illustrating an exemplary bug labor benchmark vs all

systems in a Zoo.
[0031] FIG. 25 is an exemplary agility summary screenshot from a tool.
[0032] FIG. 26 shows exemplary schedule implications details in a tool GUI.

[0033] FIG. 27 is a graph showing an agility score (log of LOC vs. days to
complete 1000 LOC) for an example system, measured against all benchmarks in a

Z00.

[0034] FIG. 28 is a graph showing an agility score (log of LOC vs. days to
complete 1000 LOC) for an example system, measured against selected comparable

benchmarks.

[0035] FIG. 29 shows a detailed analysis of exemplary waste implications in tool
GUL.

[0036] FIG. 30 illustrates an exemplary breakdown of coding activity during the
development of a 1000 LOC feature.

[0037] FIG. 31 shows an exemplary cost summary screenshot from a tool.
[0038] FIG. 32 shows a detailed exemplary cost analysis in tool GUI.

[0039] FIG. 33 is a graph showing cost score (log of LOC vs. cost per 1000 LOC)

for an example system, measured against all benchmarks in a Zoo.

[0040] FIG. 34 is a graph showing cost score (log of LOC vs. cost per 1000 LOC)

for an example system, measured against selected comparable benchmarks.

[0041] FIG. 35 is a graph showing cost score (cost per 1000 LOC) for an example

system, measured against an optimal system from the top decile of the Zoo.

[0042] FIG. 36 is a table showing exemplary assumptions and client-provided data

enabling hypothetical decision valuation.

WO 2017/143263 PCT/US2017/018477

[0043] FIG. 37 illustrates an exemplary screen from a software investment tool
showing comparison of two hypothetical improvement scenarios.

[0044] FIG. 38 shows an exemplary technical debt balance sheet with

subdivisions.
[0045] FIG. 39 is a block diagram illustrating an exemplary computer system.
DETAILED DESCRIPTION

Section 1: Overview

[0046] Various embodiments disclosed herein relate to an interrelated set of tools,
technologies, and processes that can be used, e.g., by leaders in a software
development organization or in an organization that contracts for software development
to manage in a better-informed and more financially rational way. These tools help them
better assess individual software systems/projects and portfolios of those
systems/projects. The tools can also be used by those responsible for independent
verification and validation (IV&V) and those doing “due diligence” during the acquisition
of a software system or development organization to assess future software economics,

operational performance, and financial performance.

[0047] Tools described in accordance with various embodiments allow managers
to make better decisions by helping them clearly and quantifiably understand the link
between codebase quality and its impact on the business. A fundamental idea behind
these tools is that the quality of an existing software codebase is a key driver of
software economic outcomes experienced by those doing further development of a
system. Quality in a software codebase affects how well engineers understand their
code, how effectively teams can communicate about it, and how adaptable the system
is to future change. For these reasons, quality strongly impacts a system’s
maintainability, agility, and cost. Quality in a codebase is a multifaceted concept. Three
important facets of quality include code quality (CQ), design quality (DQ), and test
quality (TQ). Code quality relates to how well individual parts (such as files or functions)
within the system are constructed. Design quality relates to how well they are

assembled architecturally, or whether important things (such as modularity) have

-6 -

WO 2017/143263 PCT/US2017/018477

degraded. Test quality relates to the suitability of unit and system tests to exercise the
system and prevent errors and regressions. Metrics related to CQ, DQ, and TQ are
often captured and computed by tools that examine product code and exercise test
suites. Software economic (SE) outcomes (or business outcomes) experienced by
development organizations relate to the speed and cost of adding useful features, the
ability to meet schedules, the productivity of developers when adding functionality or
removing bugs, the fraction of time wasted fixing bugs, the cost and risk of quality or
security problems, and the agility with which the organization can adapt to changing
customer needs or market conditions.

[0048] Various embodiments described herein include tools and methods with

many purposes including, but are not limited to the following:

(1) Measuring the relationship between software attributes (such as
CQ, DQ, TQ metrics) and SE outcomes experienced by organizations developing or
maintaining that code.

(2) Benchmarking CQ, DQ, TQ across software systems.

(3) Making quantitative financial estimates of the maintainability, agility,
and cost of further development in an existing software source-codebase.

(4) Better evaluating the performance of a development or
maintenance team working within a legacy system.

(5) Better assessing the risk associated with adopting, purchasing, or
making oneself reliant upon a software system.

(6) Better assessing the work done by a contractor or other third party.

(7) Better assessing the financial value of a software asset or a
software development organization.

(8) Improving detailed planning and budgeting by constructing more
realistic estimates of the cost of future work in an existing codebase.

(9) Estimating or measure the ‘technical debt’ in a codebase in a
manner that is analogous to the concept of ‘financial debt’.

(10) Helping executives decide whether to fund the refactoring or
rewriting of a software system by estimating the financial ROI of such an effort.

WO 2017/143263 PCT/US2017/018477

(11) Steering a development effort to better reduce risk, improve
financial & operational outcomes, and extend its lifetime.

(12) Helping managers more wisely choose whether and how much to
invest in CQ, DQ, or TQ improvement initiatives of various kinds.

(13) Helping product developers make a financial business case for CQ,

DQ, or TQ improvement.

[0049] The interrelated processes, tools, and technologies described herein in
accordance with various embodiments are useful both in combination and individually

for more targeted or more general purposes.

[0050] For illustrative purposes, the detailed description herein is broken into the
following interrelated parts shown in FIG. 1. In the diagram, the numbers 2-9

correspond to section numbers in the specification.

[0051] Section 2: Tool for capturing and linking software codebase, project, and
software economic information - Captures, links, stores, and presents information about
a software codebase, software project management information related to its
development, software code changes, software development organization information,
information gathered from the codebase’s build, test, and continuous integration
environments, information from software analysis tools, and other information that can
be gathered about the technical artifact, its software management process, and
financial, operational, and business outcomes experienced by the development
organization as they co-evolve.

[0052] Section 3: A ‘Zoo’ containing information about many systems - A system
for managing the capture, linking, storage, and presentation of information about many
codebases, development projects, and outcomes, as well as a data-store containing this
information.

[0053] Section 4: CQ, DQ, TQ, & SE benchmarks and descriptive statistics - Tools
and processes for computing and presenting CQ, DQ, TQ, and other metrics from raw
data in the Zoo. Enables comparison and benchmarking within and across codebases

and development efforts.

WO 2017/143263 PCT/US2017/018477

[0054] Section 5: Tools to create ‘custom fitted models’ linking CQ, DQ, TQ and
resulting SE metrics - Statistical and other computational models can embody theories
about the relationships between CQ, DQ, and TQ metrics and the impact they have
during future development or maintenance as captured by SE outcome metrics. A
model-fitting regression can be run on quality data and SE data captured from a single
software codebase and development project. This results in a ‘custom fitted model’ with
symbols and definitions calibrated for that project. Custom fitted models can provide
estimates for low-level (or first level) SE parameters such as ‘defect ratio’ (the ratio of
lines modified to fix bugs vs. implement features) or ‘developer productivity’ (lines of
code produced per developer per year). Many such ‘low level’ metrics can be estimated
or projected from ‘custom fitted models’. This tool can also create ‘custom fitted models’

for multiple projects and store those models in appropriate data stores.

[0055] Section 6: Tools to create ‘standard fitted models’ linking CQ, DQ, TQ and
resulting SE metrics — Multiple ‘custom fitted models’ capturing information about quality
and SE from different contexts can be combined to create a ‘standard fitted models.” By
merging multiple ‘custom’ models and adding over time, the ‘standard fitted model’
gains in applicability and predictive power. These standard models can be used to
generate SE projections in situations where code is available, but project information is
incomplete or missing. CQ, DQ, or TQ values can be captured from a codebase. This
information can be fed into ‘standard fitted models’ to make projections about SE
outcomes that should be experienced by the organization developing or maintaining the

codebase.

[0056] Section 7: Analytic tool for producing higher-level SE metrics — Fitted
models produce low-level SE metrics, which are often associated with independent
variables from regression models or closely related metrics. This tool ingests low level
estimates and projections generated by fitted models to produce and present higher
level (second level) SE metrics for use in managerial decision-making. Examples
include things such as ‘days required to develop and debug a 1000 LOC feature.’
These higher-level SE metrics may also include user-input in their formulation. Derived

SE values provide meaningful insights to software leaders.

WO 2017/143263 PCT/US2017/018477

[0057] Section 8: Tool to help managers explore software economics and
software quality on a project where project data may be unavailable or incomplete —
Tools that help software leaders understand their current situation make use of quality
and SE benchmarks from a Zoo, custom fitted models constructed from project data,
and analytics for giving strategic insight into the relationship between CQ, DQ, TQ, and
SE can help managers make better strategic decisions. These tools can help software
leaders understand their current situation even when sources of SE outcome data (such
as version control or issue tracking systems) are missing. When low-level SE data is
missing, tools make use of quality and SE benchmarks from a Zoo, standard fitted
models constructed from other data-sets to give SE projections for a current system,
and further analytics for giving strategic insight into the possible relationship between
CQ, DQ, TQ, and SE.

[0058] Section 9: Tool to help managers explore the economics of refactoring,
rewrite, or quality improvement opportunities — Software leaders deciding whether to
refactor or rewrite a system need the ability to compare the cost of a rewrite or
refactoring effort against the likely benefits in terms of improved project SE after quality
is improved. Custom fitted models created from existing project data or the standard
fitted model can be applied to estimate future SE outcomes in a ‘business as usual’
case. Goals for CQ, DQ, or TQ improvement achieved via refactoring or rewriting can
then be fed into these models to project the achievable SE in the case where
improvement takes place. Financial modeling can help leaders make estimates of the
value of the intervention by projecting parameters such as the ROI or break-even point

of an investment in quality improvement.

[0059] Section 10: Applications of business outcome methods and metrics — This
section highlights a few examples to illustrate the use and value of the novel tools and

techniques described in this document.

Section 2: Tool for Capturing and Linking Software Codebase, Project, And Business

Qutcome Information

[0060] This section describes an exemplary process for capturing information from

a software codebase, capturing information about the development process from

-10 -

WO 2017/143263 PCT/US2017/018477

version control, issue tracking systems, and other management systems, and inserting
that information into a data store for further use.

[0061] A single codebase can be scanned using tools (such as static analysis
tools) to capture information about its structure, properties, and metrics at a single point
in time. As illustrated in FIG. 2, the same codebase can be scanned at multiple points
during its evolution to enable comparison and trending. Each of these snapshots of the
codebase may also be linked with its contemporaneous change request and version
control data (as explained in the next section) to add more depth and data necessary for
understanding the development process and evolution as well as code structure. This
process can also be repeated for many heterogeneous systems, allowing comparisons
to be made between different codebases in the same project or portfolio, or between
entirely unrelated codebases and portfolios as part of a large-scale benchmarking

system.

2.1 Background on developer workflow in a complex project

[0062] The following describes some features of the workflow of a software
developer for a large and/or long-running project and the tools and databases used in
the development process to assist in the understanding of which data to capture from
each system, how to link it, and how it might be used.

[0063] In one common software development workflow as illustrated in FIG. 3, a
software engineer will interact with both a change request system and a version control
system. A change request system (also known as an issue tracking system) often
stores feature requests and bug reports or ‘tickets’. It is used by developers to manage
tasks and to track work progress. A version control system (also known as a source
code management system) stores all versions of the source code and information about
the changes that go into it over time. It allows developers to look at the history and
evolution of every file it manages and determine who contributed each line of code.
Widely used examples of change request systems include JIRA and Bugzilla, while

widely used examples of version control systems include Git and Subversion.

[0064] As an illustrative example, imagine that a developer named “Jill” has
undertaken the task of making a change to the software. Jill chooses a task to work on

-11 -

WO 2017/143263 PCT/US2017/018477

from a list of tasks in the change request system. (If the task she wishes to work on is
not in the system, she creates a new entry.) She engages in planning activities
appropriate to the task such as requirements gathering, functional design, architectural
design, and communication with other people and teams. When Jill is ready to begin
coding, she creates a copy of the most recent version of the code from the version
control system’s central repository. She makes a local copy, sometimes known as a
“sandbox,” that she is free to modify, recompile, and test without interfering with the
work of others. Jill implements the required changes by modifying existing source code

files or creating new ones.

[0065] When Jill believes the task is complete, she submits her new and modified
files to the version control system for inclusion in a new “most recent” version of the
code. The version control system compares Jill's locally modified files against the
current version and does two things: (1) creates changes which store information about
specific lines that must be added to and removed from each modified file to
incrementally update it from one version to the next; and (2) inserts those changes into
the version control system repository so that the next person to create a sandbox will

obtain Jil’'s new version of the code.

[0066] Once this process is complete, Jill will modify the change request in the
issue tracking system to indicate that the work has been completed and will begin the

process anew on her next task.

[0067] FIG. 4 shows the workflow from above in the context of software releases
and customer interactions. Customers receiving a new version of software (shown in the
lower left) often have unmet needs, encounter limitations, or discover defects in the
product. Through various planning processes, marketing activities, and technical
support channels, customer needs are translated into prioritized feature requests and
bug reports, which are stored and tracked in the change tracking system. Requests are
also entered by employees who need to track their own work, encounter bugs, or need
functionality developed by other teams. They enter information about features they wish

to develop, bugs they need to fix, and refactoring that should be done. (Refactoring is

-12 -

WO 2017/143263 PCT/US2017/018477

the process of restructuring code architecture to improve code quality by relocating,
consolidating, and otherwise modifying functions and files in a systematic manner.)

[0068] Developers and managers use the change tracking system to monitor the
progress of their work. Change requests are assigned owners and passed between
people. They contain information about whether a request is to correct a bug, implement
a feature, or do some other task such as refactoring. Each change request can put into
a number of states indicating development progress beginning with “New” and ending

as either “Completed” or “Discarded.”

[0069] Note that these example workflows are not definitive descriptions of how
organizations conduct their development process and use project management
systems. Every organization is different, and aspects of these processes may be
adjusted depending on organizational needs. The tool uses project management data in
service of calculating business outcomes, and the windows of time under scrutiny may

or may not align with software release windows, depending on organizational protocol.

2.2 Data store linking information from software, software development, software project

tracking, HR, etc. for analysis

[0070] Source code, tools to extract code metrics, version control, and issue
tracking systems all contain useful data in separate heterogeneous data stores that are
often not linked. This data is useful for various purposes. When aggregated and linked,
we can derive additional value. The first step in the process of analyzing a codebase
and its attendant project management data is to establish, index, link, and (in some
cases) collect some of the contents of these various data sources into an aggregated
data store or ‘Zo0’. This involves organizing a number of data sources containing
different types of information and directing various tools to form input/output pathways
between them. Once the data has been collected or indexed, it can be further analyzed
to produce low-level CQ, DQ, TQ, and SE outcome parameters. These parameters can
be used as independent and dependent variables to specify statistical models and
create fitted models. Projection techniques can be used to fill data gaps. Specifications

for the types of data required for such analysis are given in this section.

-13 -

WO 2017/143263 PCT/US2017/018477

[0071] FIG. 5 depicts a simplified version of an exemplary tool’s structure. The
first layer of tool code extracts and gathers code data, project management data
(version control, issue tracking, human resources, etc.), and any other relevant
contextual data sources. Successive coding elements then organize this data into an
appropriate data store (possibly a relational database) and construct relevant data
tabulations from it. Finally, the tool performs various types of statistical analysis to
determine various file-by-file metrics, which can ultimately be aggregated and visualized
in a number of ways.

2.2.1 Inputs and Data store structure

[0072] Data used for such analysis is the source code itself, which will come in the
form of at least one snapshot at a particular point in time, possibly with additional
snapshots over time for comparison purposes. For some systems inserted into this
data store, only code will be available. A variety of tools can be used to run analysis
(such as static analysis) on the snapshot(s) to capture metrics, identify issues, extract
the code’s dependency structure. Given only the code (and possibly also the ability to
run or execute automated test scripts) the following types tools might be used to capture
useful information from each snapshot.

(1) Static code analysis can be used to analyze code to collect metrics,
identify problems, identify violations of coding standards, and extract dependency
information for use in network graphs, dependency structure matrix analysis, and other
architectural analysis.

(2) Code compiling may also produce useful results in terms of
warnings or other notifications from the compiler.

(3) Dynamic code analysis can be used to extract runtime behavior,
discover how often code paths are used, identify dead code, and find other useful
information about the code and the system.

(4) Code testing can be done to measure the level of test coverage for
different parts of the system and measure the frequency of regression test failures in
different parts of the system.

-14 -

WO 2017/143263 PCT/US2017/018477

(5) Automated defect-finding tools may be used in tandem with issue
tracking data to get a more complete picture of defect proportions in the codebase.

[0073] The above list of processing methods is meant to be exemplary rather than
exclusive, and other methods may be used to gain more data and further refine the
tool’s statistical models.

[0074] Comparing data between snapshots reveals changes in the code and other
development activity over time, such as the fluctuations in various defect metrics, or
between diffs (line-by-line version control lists of differences between any two
snapshots). Code can be moved to new locations between snapshots: a file can change
names or move to a different directory or component, or entire entities can be moved to
different locations in the codebase. Taking steps to account for these possibilities can

mitigate the potential for unwanted discrepancies in code measurement.

[0075] In some instances, project management data that may also be available for
capture and analysis. This includes data from version control, issue tracking, and
human resource tracking systems, which serve to improve the tool’s understanding of
various features of developer activity, defects, code change over time, and other
elements of the development process. If information about patches (or changes) from a
version control system is added to the data store, one can extract information about
which lines of code were changed in each file by which developer on what date. This
information can be used to determine how much development activity or change is
occurring in different parts of the system. When combined with code metrics, one
potential benefit is that analysis might be done to determine if more complex or less

complex parts of the code are under active development, for instance.

[0076] Similarly, information about tickets in the issue tracking system can be
added as well. This data may contain information about each task including (1) whether
it is a bug being fixed, a new feature, or some other task, (2) information about severity
level, criticality, or priority, (3) information about when the bug was found, how long it
has been opened, and when fixed, (4) information about when features were requested

and when implemented, and (5) information about which developer(s) did the work.

-15 -

WO 2017/143263 PCT/US2017/018477

[0077] Other contextual information may be captured as well. Release planning
information (such as dates for the project’s start, code freeze, release, etc.) can aid in
accounting for changes over time in version control information and/or successive code
snapshots. Data indicating which files belong to each subsystem, system, layer,
component, or product (examples) can be included as well to add utility to analysis and
reporting. Additionally, having access to the code’s build & test suite will allow the tool
to factor the results of the build & test phase into its analysis, in order to understand

code structure and failure points.

[0078] FIG. 6 shows examples of the types of data that may be captured in a data
store, and how the data is linked. The precise structure of the data store used to house
such information may vary according to the needs of a particular project, but each entry
in the data store (whether from version control, issue tracking, testing, extracted
metrics, etc.) is linked to a particular project snapshot. All snapshots of that project, in

turn, are linked together under that snapshot’'s heading in a time series over its lifecycle.

[0079] In some development environments, data is available on the relationship
between software patches stored in the version control system and tickets managed in
the issue tracking system. In these situations, tools will be configured to capture
information about which coding task is related to which changes being submitted by a
developer. In other situations, development processes may require that this information
to be entered by developers despite a lack of tool integration. For instance,
management may demand that developers enter a ‘ticket id’ into the comments
associated with each patch that goes into the version control system. FIG. 7 depicts an
exemplary mapping between issue tracking and version control that can be done in the
data store in these instances so that particular feature implementations or bug fixes can
be linked with the files in which they take place. When this high-quality data is available,
it can be used for many purposes such as to calculate the overall prevalence of defects

in individual files, or in different sections of the code.

[0080] Developer-specific activity can also be tracked by means of project

management data, permitting, e.g., the determination of whether a developer becomes

-16 -

WO 2017/143263 PCT/US2017/018477

less productive when moved to a more a difficult section of code by controlling for
experience, role changes, and managerial status.

[0081] Finally, a project may be considered as a whole, in order to determine
trends over time between many code snapshots, and overall quality metrics for the
entire project can be calculated. Characteristics of full projects can also be compared
with others managed by the same team, department, or company in order to obtain a
higher-level view, or with the much larger set of projects in the “Zoo” for benchmarking

and projection purposes (see Section 2).

2.3 Capture process

[0082] A capture program extracts data from heterogeneous sources and inserts
information into the data store. The sources include project management data and the
outputs of third-party tools that have been used to analyze the codebase (including build
& test code) and extract both simple metrics (filenames, filepaths, lines of code, etc.)
and more complex metrics (architectural & complexity features, etc.). The program
places information into the data store in such a way that it is appropriately segmented
into the different data types, as well as appropriately linked to other relevant data

segments.

2.4 Data cleaning and tagging

[0083] In an optional data cleaning step, the tool can automatically tag certain
types of code that it is able to recognize due to distinctive features, such as test code,
machine-generated code, or third party, or open-source code allowing it to be excluded
or treated separately during analysis. It also allows manual tagging, if the user wishes to
track certain types of files by tagging them at point of capture. Metadata may be
supplied to with a codebase so that these features can be automatically identified
correctly. Alternatively, heuristic rules could be devised to attempt identification,
perhaps imperfectly. Data cleaning can also be done to identify and tag other issues,
such as excessively large version control patches that might indicate code being moved
between files rather than code developed immediately prior to the patch. This can be
used as a filter when using version control data to estimate the amount of development

activity occurring in a time-period.

-17 -

WO 2017/143263 PCT/US2017/018477

2.5 Data presentation

[0084] Once the data has all been correctly cleaned, organized, and linked in the
data store, it can be accessed and presented in different forms depending on the nature
of the project and the user’s requirements. These access methods can range from
command-line interfaces or web APIs to simpler methods like exporting data to
programs such as Microsoft Excel or Tableau, or serving it through a web-based
presentation. This range of possibilities allows for tailoring the level of customizability
versus legibility: the more technical options may be preferable for users who wish to use
the data for supplemental calculations, while the more user-friendly options may be
better for clear and immediate understanding of complex data through means of charts

& graphs, color-coded quality indicators, and other design elements.

2.6 Types of data captured and linked

[0085] The type and quality of data available, as well as its intended use, will
determine what is captured and linked in a data store. Below are examples of some of

the different types of data that may be available and captured for a given system:

(1 Code only: This is the bare minimum that the tool will accept.

(2) Multiple versions of code: Deltas between multiple versions can be
used to show trends and identify overall activity levels in a coarse way.

(3) Code + version control: The codebase is accompanied by a version
control system, allowing individual line-by-line file modifications to be tracked by date &
time, size, user ID, and so on.

(4) Code + version control + issue tracking: The codebase is now also
accompanied by an issue tracking system, allowing bug reports and feature requests to
be tracked by opening & closing date & time, opening & closing user IDs, type,
criticality, priority, and so on.

(5) Code + linked version control + issue tracking: Same as previous,
except that version control and issue tracking systems have linkages between them

allowing bugs to be located in specific files, providing a major boost to analytical ability.

-18 -

WO 2017/143263 PCT/US2017/018477

(6) Continuous integration + testing info: Information about build
failures, compiler warnings, unit + system test failures, and test coverage can be
captured.

(7) Release planning info: A list of scheduled release dates allows the
tool to determine how frequently the project missed its intended releases, and by how
long.

(8) Human resources metadata: Developer information including work-
hours, salary (and other employee expenses), level of experience, and identifiers
allowing individuals to be linked to version control and issue tracking data.

(9) Outcome data: Historical data regarding development cost, how
much development labor was applied, how much time was spent fixing bugs, whether
the project failed, etc.

Section 3: A ‘Zo0’ Containing Information About Many Systems

3.1 Collection of codebases and project data

[0086] By pulling data from each system that is analyzed and storing it in a large
collection, herein called the “Z00,” it is possible to gain various kinds of comparative
insight into the nature of large software systems, as well as to improve the quality of
analysis for any single system.

3.2 Z00 management

[0087] As is the case with the data store, the Zoo may be structured in a number
of different ways depending on project needs. Its functions include creating a new
system entry, adding data to the entry, updating that data, searching the Zoo for

relevant data, and extracting it on either a case-by-case or recurring basis.

3.2.1 System for creating and adding to Zoo

[0088] Systems may be added to the Zoo via an incremental capture model, in
which data from new versions of a codebase is added incrementally along with new
information about the development process. There are multiple methods for
implementing this, including: a push model, in which the system periodically sends an

update to the Zoo; a pull model, in which the Zoo periodically sends an information

-19 -

WO 2017/143263 PCT/US2017/018477

request to its data sources; and a continuous integration model, in which the system
owner manages development and integration using a tool such as Jenkins, which then
triggers Zoo updates. If desired, the Zoo manager (the person in charge of the tool’s
global Zoo, or a designated person from an organization who is responsible for a local
Z00) can set the tool to pull statistics on these information exchanges back to a central

repository for further analysis.

3.2.2 System for collecting information from Zoo

[0089] The Zoo manager may collect high-level information from across the entire
Z00 by submitting a Zoo-wide query. The results of this query can include information
such as the number of projects, the total number and per-project average number of
snapshots, a breakdown of project languages by percentage, an ordered list (or a
subset of that list, such as the top decile) of all the Zoo systems ranked by a particular

parameter, and so on.

3.2.3 System for running jobs to extract information from Zoo

[0090] By contrast, when information is desired on specific subsets of the Zoo,
smaller jobs may be run to isolate subsets according to specifications and then extract

the required data from them.

[0091] There are multiple potential ways to select different subsets of the Zoo.
First, a subset of snapshots may be selected based on characteristics, such as all
snapshots of code in a particular language, or all snapshots whose size (or any other
scalar metric) falls within a given range. A search may also be conducted on the basis
of strings associated with snapshots (snapshot, filenames in the codebase, etc.);
potential string search mechanisms include regular expressions, globs (wildcard
characters), and string search within ranges supplied by other search mechanisms.
Finally, isolating all the snapshots in a particular project into a subset allows for

longitudinal statistical comparisons to be run.

[0092] Once the target set has been isolated, data from each system can be
collected and aggregated, e.g., by determining averages (or other statistical measures)

for various scalar metrics, or by further subsetting. Ultimately, the extracted data, and

-20 -

WO 2017/143263 PCT/US2017/018477

basic statistics derived from it, may be condensed into a high-level summary of subset-
wide values and metrics, which can then be stored with timestamp data and descriptive

information about the nature of the subset under scrutiny.

Section 4: CQ, DQ, TQ, And SE Benchmarks and Descriptive Statistics

4.1.1 Descriptive statistics

[0093] Each analyzed system will have a set of descriptive statistics associated
with it, which summarize the system’s salient points. These may include statistics
relating to real code/process metrics, modeled business outcomes, historical data (e.g.,
actual business outcomes, future project snapshots, refactoring data), and so on. All of
this information forms a longer-term and more comprehensive picture of a given system,

and may be used as inputs to statistical modeling.

[0094] Once data has been extracted and stored in the Zoo, it becomes possible
to calculate basic descriptive statistics both within and across projects. These measures
can facilitate understanding of the key individual features of each system, as well as
high-level features that can be ascertained from looking at the spectrum of Zoo projects;
in particular, descriptive statistics can be used in the formulation of benchmarks.

Descriptive statistics and benchmarks could be stored in the Zoo or externally.

4.2 System for generating descriptive statistics

[0095] To generate descriptive statistics, the Zoo data is passed through a
number of basic statistical formulas and the outputs are stored appropriately. System-
specific statistics, such as the mean or median of a particular CQ, DQ, or TQ value for
all files in the codebase, can be calculated and stored in the appropriate system entry in
the Zoo; Zoo-wide statistics, such as mean or median complexity values across all
codebases in the Zoo, can be calculated and centralized into a high-level summary.

[0096] The statistical formulas used can define relationships between any pieces
of data present in the data store, or consistent statistical transformations of that data;
they can also change over time if needed, because the original data used for calculation
will remain available. The generation of descriptive statistics can follow automatically

from the placement of a new system’s data into the Zoo.

-21 -

WO 2017/143263 PCT/US2017/018477

4.3 Example descriptive statistics that can be captured for source code files

[0097] The tools and methods described herein do not pertain to any particular
type of CQ, DQ, or TQ metric that may be captured for a software entity (such as a file).
FIG. 8 shows an example of file-level descriptive statistics for illustration. This example
shows 8 files written in different languages and with different sizes (in ‘lines of code’ or
LOC). It shows values for three example quality metrics: “Core Periphery Type” (a DQ
metric), “Cyclomatic Complexity” (a CQ metric), and “Test Coverage” (a TQ metric).

These quality metrics will be used throughout this document for illustration.

[0098] An example CQ metric, sometimes called McCabe complexity, is the total
number of possible routes through a function, accounting for all of its control flow
statements (e.g., if-else conditions); a particular file’s maximum cyclomatic complexity is
the highest cyclomatic complexity exhibited by any single function in that file. Files can

be assigned ‘Cyclomatic Complexity’ scores of ‘low’, ‘medium’, ‘high’, and ‘untestable’.

[0099] An example DQ metric relates to architectural properties within the
codebase. These software metrics can be computed using network-based techniques.
They are defined in publications authored by Baldwin, MacCormack, Rusnak, and
Sturtevant. Files can be assigned ‘Core Periphery” complexity scores (in order of
increasing complexity) of ‘peripheral’, ‘shared’, ‘control’, and ‘core’.

[00100] An example TQ metric relates to the number of source lines of code
exercised at least once when a software unit and system test suite is run. It is a ratio of

lines exercised to overall number of lines in the source code file.

[00101] FIG. 8 also shows two parameters related to SE outcomes: lines modified

to enhance the product and lines modified to fix bugs.

[00102] Various complexity scores, quality scores, and other metrics can be
assigned to files or other entities in the codebase such as classes, methods, functions,

data structures, etc.

[00103] FIG. 9 shows two examples of tables of descriptive statistics calculated on
the system level rather than the file level, using an example system of 19 files. The first

table shows files categorized by their ‘core-periphery type.” The second shows files

-22 -

WO 2017/143263 PCT/US2017/018477

categorized by ‘cyclomatic complexity type.” Each row shows the total lines of code
(LOC) across all files in that segment, the number of files in that segment, and the
percentages of the total that the first two numbers represent. Many other types and

permutations of such statistics are possible.

[00104] FIG. 10 indicates the number of source code files in a system with each of
the complexity classifications previously described. Eight successive snapshots of the

same system are shown to illustrate the illustrate the evolution of the system.

[00105] FIG. 11 illustrates descriptive statistics that can be generated from a Zoo
when multiple snapshots of the same codebase have been captured, when version
control and issue tracking data has been incorporated, and when changes to files have
been linked to the associated task in the version control system. When this data is
available, activity between subsequent releases can be used to determine the number
of files modified, the number of changes, and the number of lines of code (LOC)
developed. This activity can be further segmented into ‘bug fixing’ activity and ‘feature

development’ activity.

[00106] Similarly, FIG. 12 shows that a Zoo with more complete data can be used
to link information about file characteristics (such as their age and size) with
development process information.

4 4 Data presentation

[00107] There are a number of possible ways for the descriptive statistics to be
accessed and presented, depending on the user’s requirements, including a command-
line interface, web API, exporting data to a preformatted Excel or Tableau file, or
presenting the data through a web portal. Again, the more technical options allow for
enhanced customizability, while the more user-friendly options facilitate legibility and
immediacy of understanding. Data can be transformed to allow for cross-system
analysis or time-series analysis on a project to explore change (e.q. its evolution over

time, or the impact of refactoring efforts).

4.5 Benchmarks

-23 -

WO 2017/143263 PCT/US2017/018477

[00108] Benchmarking refers to the process of ordering systems in the Zoo
according to certain metrics and then ranking specific systems along the scale. In
benchmarking, various metrics from a particular codebase may be ranked against those
from a database of such metrics from Zoo codebases, or a subset thereof (such as
codebases of a similar size, or from the same project, organization, or industry), in order
to determine how well formed the target code is along various axes of quality in
comparison to others. Rankings may be as simple as upper vs. lower half, increasing in
granularity to decile, percentile, or any other level desired, or calculated against a flat
value (or set of values) rather than a particular rank. These results may be used as
comparison points for newly analyzed systems, which can be plotted against the results
in different ways.

[00109] Some metrics are more useful as identifiers that can be combined through
further calculation and modeling, rather than as elements in a ranked system in
isolation. Examples include the number of files and lines of code, primary programming
language, architecture and complexity metrics, and amount of change (measured in
modified LOC or otherwise). FIG. 13 shows an example graph of a system whose
cyclomatic complexity is measured against the complete Zoo, plotting the logarithm of
the system’s total LOC against the percentage of the system’s files that fall into the high
cyclomatic complexity segment. Files with high cyclomatic complexity should, generally

speaking, be minimized in well-formed code.

[00110] Isolating comparable benchmarks, rather than the entire Zoo, permits a
more nuanced understanding of a system’s position. The selection of comparable
systems can be user-specified in accordance with desired comparisons, or chosen
automatically through code and process metrics. Common points of comparability
include language, size, or belonging to the same team, department, organization, or
industry. Choosing comparable systems can be helpful if the user is reasonably
confident that the subset forms a representative group of systems to which the target

system bears more resemblance than to the entire Zoo.

[00111] FIG. 14 shows a complexity graph similar to the full set, but using

comparable systems instead of the entire Zoo.

-24.

WO 2017/143263 PCT/US2017/018477

Section 5: Tools to Create ‘Custom Fitted Models’ Linking CQ, DQ. TQ and Resulting
Low-Level SE Metrics

[00112] When a Zoo has been populated with code and project data, for a
particular system, that data can be used as inputs into a model fitting regression. One
skilled in the art of statistical analysis can examine data, construct appropriate
regressions, and create ‘custom fitted models’ using a set of CQ, DQ, and TQ metrics
as independent variables and SE outcome metrics as dependent variables.
Regressions can be used to test the significance and strength of those relationships
while controlling for other features. With enough data points, machine learning
techniques rather than humans can also be used to construct and run regressions and

to generate new or improved custom fitted models.

5.1 SE outcomes that matter

[00113] The most important SE outcomes are, generally speaking, those that relate
to defects, productivity, cost, schedule, risk, and adaptability. Concepts that may be

captured by important SE outcome parameters include:

(1) Productivity: Developer productivity for both feature development
and bug-fixing can be computed by the model and aggregated accordingly. (See
Sturtevant & MacCormack for methods)

(2) Defects: Defect ratios can be drawn directly from the model
outputs, while the buildup of a backlog of defects in particular files can serve as an
indicator of the degree to which those files are brittle and difficult to repair. (See
Sturtevant & MacCormack for methods)

(3) Staff turnover: Human resource data can track those developers
who quit or were fired, which in turn allows the tool to assign higher difficulty values to
the individual files in which those developers spent the most time working. (See
Sturtevant & MacCormack for methods)

(4) Growth rates: The growth rate of a project or of an organization,
and the acceleration of those rates, can be determined from version control data and
human resource data. These factors tend to lead to increased complexity of file

interactions (unless mitigated through carefully modularized code) and thereby heighten

-25-

WO 2017/143263 PCT/US2017/018477

defect probability and lower productivity, which can be reflected in parametric
calculations for individual files in a project.

[00114] Project schedule & cost: The degree to which a project runs over its initial
release schedule or budget can serve as an indicator of quality issues. The proportion
of outright project failures from a team, department, or organization can indicate chronic

problems in project design and structure.

5.2 Running statistical tests linking CQ, DQ, and TQ independent variables to low-level

SE outcome dependent variables

[00115] To create ‘custom fitted models’ for a system, regressions are set up
according to certain hypotheses about the nature of the relationship between CQ, DQ,
TQ, and low- SE outcomes. To illustrate, we include statistical tables from previously

conducted studies.

[00116] The table if FIG. 15 shows a significant relationship between the
complexity of source code files (measured along multiple dimensions) and the LOC
modified to fix defects in those files after controlling for file size, file age, and the LOC

modified to implement features during the same time window.

[00117] The table of FIG. 16 shows a significant relationship between the
complexity of source code files developers work in in a time period and their productivity
in that time period after controlling for individual effects, managerial status, years of
employment, relative effort spent on bug fixes vs. features, relative effort spent dong
‘green-field’ development vs. work in legacy files.

[00118] The table of FIG. 17 shows the results of regression analysis looking into
the probability of developer attrition (quitting or being fired) in relation to the amount of
time spent in highly complex files when controlling for years employed, managerial
status, production, time spent fixing bugs, time on new development (vs legacy). This
shows a statistically significant relationship between working in poorly architected parts

of a codebase and attrition.

[00119] These studies can be found in Dan Sturtevant’'s 2013 MIT dissertation titled

“System Design and the Cost of Architectural Complexity.”

-26 -

WO 2017/143263 PCT/US2017/018477

[00120] Based on this study and others published by Baldwin, MacCormack,
Rusnak, Sosa, Sturtevant, and others, it can reasonably be hypothesized that a large
codebase with poor quality might experience low feature productivity for developers

working in those parts of the code exhibiting low modularity.

5.3 Custom fitted models

[00121] Once statistical tests (such as those discussed above) have been run, the
resulting ‘custom fitted models’ can be used to ‘predict’ or ‘simulate’ values of interest.
Tools for doing so include the Zelig package in R or the statsmodels package in Python.
By holding control variables constant, and varying input along independent variables of
interest, we can capture information about the impact that an explanatory variable of
interest (such as CQ, DQ, or TQ metrics) has on an independent variable such as ‘lines
of code modified to fix bugs’, ‘developer productivity’, ‘probability of attrition’, ‘probability
that a bug is not caught during development’, ‘probability that a file contains a security
vulnerability’, etc. Using simulation or predictive techniques, one can make inferences
and predict expected value and variance for some SE outcome datapoint given
knowledge about characteristics of the independent variables.

[00122] For example, given the statistical tests similar to those shown here, and
knowledge of mean values for control variables, it should be clear to a statistician how
to derive expected values for the following 4 business outcome parameters as a
function of complexity scores (for files) or % effort in complex files (for developers): (1)
‘defect ratio’ - the ratio of lines modified to fix bugs over lines modified to implement
features in each file. More complex files have a higher defect ratio. (2) ‘fallout ratio’ -
similar to defect ratio, but only including bugs that escape the development process in
the numerator. (i.e. they have a potential impact on customers.) (3) ‘feature
productivity’ - the productivity of developers (in terms of LOC produced or features
delivered) per unit time when they are implementing features. (4) ‘bug fix productivity’ -
the productivity of developers (in terms of LOC produced or features delivered) per unit

time when they are implementing features.

[00123] ‘Custom fitted models’ are calibrated by extracting CQ, DQ, TQ and low-

level SE outcome data from the codebase and from project management systems for a

-27 -

WO 2017/143263 PCT/US2017/018477

single codebase. In addition to its primary function as an input to the process of creating
custom fitted models, this set of data can be used to provide general identifying
characteristics of the system so that a subset of comparable systems from the Zoo with
which the target system can be more easily isolated, depending on user specifications

(as will be discussed below).

5.4 Storing fitted models

[00124] ‘Custom fitted models’ can be stored in a data store attached to a particular

codebase snapshot.

Section 6: Tools to Create ‘Standard Fitted Models’ Linking CQ, DQ, TQ and Resulting
Low-Level SE Metrics When Project Data Is Incomplete or Missing

[00125] When working with codebases in different environments it is possible data
necessary to perform the calculations described above will be missing or incomplete.
This section describes the construction of ‘standard fitted models’ in accordance with
one or more embodiments from which missing data may be projected into a software
system, allowing calculations described above to be performed with a reasonable
approximation. The process falls into the following primary categories: projecting from a
single system into another system, supplementing this projection with data from more
than one system by creating a ‘standard fitted model,’ finally creating a ‘standard fitted
model’ using comparable systems from which to derive missing information to ensure

the approximation is reasonably accurate.

6.1 Applying ‘custom fitted models’ from one system to project SE outcomes in another

when data is missing

[00126] The description of the tool so far assumes complete data is available from
the codebase and linked project management systems, allowing full calculation of
calibrated SE outcome metrics to construct a ‘custom fitted model’. However, in many
cases, complete data may not be available to the tool for calculation purposes. In these
cases, it is possible to instead use a ‘custom fitted model’ created from a codebase
where this data is available to project SE outcomes into a codebase with missing or

incomplete data. This allows similar calculations to be run, resulting in reasonably well-

-28 -

WO 2017/143263 PCT/US2017/018477

informed projections of SE outcome metrics. For instance, given a codebase with
missing productivity data due to lack of task tracking information, it is possible to
substitute productivity data from another codebase when performing these calculations

to create a reasonable approximation.

6.2 Creating ‘standard fitted models’

[00127] When a Zoo contains multiple systems, it is possible to aggregate data
from more than one system to create better-informed models from which to project data
into a system with missing information. This process involves first identifying
independent and dependent variables, and second applying statistical regression given

those variables to identify trends and mitigate outliers.

6.2.1 ldentifying Independent and Dependent Variables

[00128] Independent system variables include such values as system size,
language, age, and system complexity metrics such as core size and propagation cost.
These metrics represent measurable attributes of a system that provide details about its

context and meaningfully impact dependent system variables.

[00129] Dependent system variables include such values as engineer productivity
in lines of code, file defectfulness, and likelihood of critical defects occurrence in certain
areas of a codebase. These metrics represent derived attributes of a system which
provide details about its performance, business outcomes, and software economics. In

general, these variables are considered to provide meaningful insight.

6.2.2 Applying Statistical Regression to Produce Expected Values

[00130] Given a set of independent variables and corresponding dependent
variables from multiple systems it is possible to apply mathematical regression (linear,
binomial, etc.) to create fitted predictive curves from which missing data may be
projected. For instance, a system missing productivity data, and given two secondary
systems with sets of independent variables and corresponding dependent variables, a
regression model based on available data can be used to project a value for the missing
productivity data. These regression models become more accurate as further system

information is added to the Zoo.

-29 -

WO 2017/143263 PCT/US2017/018477

6.3 Selection of comparable models for construction of an appropriate ‘standard fitted

model’

[00131] As data points are added to a Zoo, it becomes possible to restrict systems
from which a ‘standard fitted model’ is created to those systems with which the target
system shares attributes. Systems with similar independent variable attributes, such as
language, size, organizational relationship, etc., are considered comparable. When
used as an element of the projection modeling process comparable data sets allow a
model to be fine-tuned to produce more accurate projections. Standard fitted models
derived from comparable systems (as opposed to the entire Zoo) are more useful when

projecting data into systems with missing information.

6.4 Example: Scenario analysis using ‘custom fitted models’ and ‘standard fitted

models’

[00132] An application of creating a ‘custom fitted model’ and more generally a
‘standard fitted model’ is to perform outcome prediction of meaningful metrics on
systems for which information is missing. Specifically, these models allow a codebase
to be examined and produce predictions of its status at time 12, given data at time t1
and possibly also at time t0. The modeling process is thereby able to “train” models to
the point that they will be able to take a completely new codebase, even when project
management data is unavailable or incomplete, and make predictions of its future

condition at a target point in time, given variable inputs.

[00133] The chief goal is to develop a general statistical modeling mechanism that
unites data elements to evaluate at least three different goals: (1) to calculate business
outcome metrics by combining code metrics, process metrics, and Zoo data; (2) to
project various metrics by supplementing standard calculations with historical data from
the Zoo when certain elements of the primary modeling method, such as process
metrics, are unavailable for projects; and (3) to estimate future changes in projects
based on historical data from the Zoo and user inputs.

[00134] From the models associated with individual points in time, generalized
models for the entire codebase can also be produced targeting outcomes, as well as a
single codebase-wide model for a consistent set of outcomes, allowing easier

-30 -

WO 2017/143263 PCT/US2017/018477

comparisons with other codebase models; these high-level models can be stored in
databases specific to a single outcome or a set of outcomes. Applying data from a new
‘standard’ or ‘custom’ fitted model requires first refining the model using correlation
significance, verifying the outcomes of the model against any available real data,
calibrating projected values as necessary following the verification, and finally adding

the data back into the Zoo as a new point of data to refine existing and future models.

6.4.1 Refine projections using significance and relationship strength

[00135] When projections are first made from a ‘custom’ or ‘standard’ fitted model
into a system missing data, hypotheses are made and then verified about the possible
impacts of independent variables on meaningful dependent variables. An example
hypothesis may be how much defect-related activity occurs in the files of a particular
system’s core, or, in other words, to what degree “coreness” contributes to the presence
of defects. Any input metric and any desired outcome may be checked for meaningful

linkage given appropriate data.

[00136] Regressions, among other methods, may be used to determine these
correlations. Correlations appearing to be statistically significant can then be verified by
controlling for other potential confounding variables; this can be done by setting other
variables to constant values, such as their mean values, and determining whether the
apparent correlation still holds true. Once this modeling has been done on a system-
specific basis for the desired outcomes, it can be conducted in a cross-system or multi-
system fashion to verify that the suspected correlations are still true for larger and more
diverse datasets.

[00137] If the suspected relationships continue to be found valid, the appropriate
correlation coefficients can be utilized in the formula(s) intended to project the targeted
outcome. These projections are grouped together by expected use case - such as for
systems with nothing but a codebase, or with a codebase plus a version control system,
etc. When used, the appropriate group of formulas is selected for use in the projection
model to estimate the full set of necessary business outcomes, which in turn are used

for calculations of technical debt, etc.

-31-

WO 2017/143263 PCT/US2017/018477

6.4.2 Verify projection consistency using multiple derivation

[00138] If a project includes process metrics it is possible to perform a verification
of the model’s accuracy by deriving the same results by multiple means — ensuring
results are within an acceptable margin. For example, if the project includes both
version control data (from which file-specific activity levels can be computed) and
human resource data (including number of active developers and experience levels),
but not issue tracking data, it is possible to estimate productivity levels in the codebase
through at least two different methods. The estimated results may be compared with
each other to verify both calculations. If the model has been set up correctly, there

should be no significant difference between results of the different methods.

6.4.3 Compute calibrated parameters from this system to compare against projections

[00139] Projected values may be calibrated by comparing projected parameters
against actual parameters, i.e., compare output calculated with real metrics against
projected outputs calculated with a mixture of real and modeled metrics. This assists in
determining whether the model’s estimations fall within an acceptable range of

accuracy, and insure against flaws that could skew modeling results.

[00140] In a fully calibrated system, real parameters can be compared against
parameters that have been calculated from a version of the system from which certain
metrics have been artificially excluded, forcing the model to project those metrics
instead. This serves as a means of verifying the model’s projection abilities for future
cases where full calibration is not available. In a system that is not fully calibrated,
certain calibrated metrics can still be calculated from the real data and compared in the

same way against projected metrics from the model.

6.4.4 Add calibrated system’s information to Zoo (another data point)

[00141] To improve quality of the model's projection abilities over time, new
systems can be added to the Zoo as the tool receives them. This allows a project to be
utilized for future analysis, both as a data point to refine the overall Zoo and, to a more
significant degree for those projects where it is relevant, as a potentially comparable

system. For more details on this process, see Section 2.

-32 -

WO 2017/143263 PCT/US2017/018477

Section 7: Analytic Tool for Producing Higher-Level SE Metrics

7.1 Higher-level derived SE metrics with user input

[00142] Using low-level (first level) SE outcome metrics produced by ‘custom fitted
models’ or ‘standard fitted models’, a tool in accordance with one or more embodiments
can compute additional higher-level (second level) SE outcome metrics that are
managerially interesting. Examples include metrics related to maintainability, agility,
cost, risk, waste, security, and technical debt. These will be used in this section as
examples but do not constitute an exhaustive list of possible high-level SE outcome
metrics. These metrics may be calculated on a file-by-file basis or on various levels of

aggregation, depending on user preference.

[00143] Tools may analytically compute SE metrics using the outputs from ‘custom
fitted models’ or ‘standard fitted models’ in combination with other information provided
from benchmarks, from descriptive statistics, from information drawn from version
control or change management systems, or information provided by a tool user with

project knowledge.

7.2 User inputs to higher-level SE metric computation

[00144] Where expert knowledge is required, tools give users the ability to set and
test different parameters of interest for use in higher-level SE metric computation.
Examples of modifiable parameters that might be set by a user include: (1) Amount of
code modified annually (% code turnover) is useful when only code is available for
automated analysis by the tool, and data from version control is unavailable. This can
be used to estimate the amount of labor going on in a codebase when used in
combination with productivity estimates. (2) Current knowledge or future expectations
about the number of developers that will be working in a codebase. This can be used to
estimate the amount of code change when used in combination with productivity
estimates. (3) The number of years and amount of development labor that will be
expended before system decommissioning. This can be useful when reasoning about
whether a CQ, DQ, or TQ improvement initiative will pay off. (4) The downstream cost of

bugs that escape the development and QA process and are deployed (higher in nuclear

-33 -

WO 2017/143263 PCT/US2017/018477

plant control code than a cell-phone app.) (5) Developer salary. (6) The discount rate
used in ‘present value’ financial calculations estimating ROI.

[00145] Some of these examples are shown in the example tool graphical user
interface (GUI) shown in FIG. 18.

[00146] Higher level SE metrics computed from low-level fitted model’ SE
projections, other metrics, and user input can include: (1) Delta features: LOC expected
to be modified over the time period to implement features in the system. (2) Delta bugs:
LOC expected to be modified over the time period to fix bugs in the system. Files with
greater complexity generally require more defect correction than those with lower
complexity. (3) Bug LOC released: LOC expected to be modified over the time period to
fix bugs that were released to end users, with the potential to have an adverse impact
downstream. Files with greater complexity have more bugs with downstream impact

than those with lower complexity.

[00147] Based on these parameters, along with the others discussed earlier in this
section, at least three cost subtotals can be calculated, though others are conceivable
(e.g. a more specific subtotal dealing with security risk): (1) Bugfixing and feature
development costs: Expected development effort (in the cost of full-time equivalents
(FTEs), defined as the amount of work done by one full-time employee over the time
period) allocated to fix bugs or develop features in the codebase, based partly on the
relevant productivity metrics. Productivity is higher when developers work in code with
lower architectural complexity and when they are implementing features, and lower
when they are fixing bugs. This figure can also be considered the cost of continuing
development. (2) Downstream risk of released bugs: Expected cost over some time-
period resulting from bugs in the deployed system, based partly on the “delta bugs”
number from above. Downstream impact (the total downstream risk and cost of
released defects relating to, e.g., security, safety, recall, user productivity, waste, or
reputation) is higher in code with higher complexity. (3) Staff turnover costs: Expected
cost over the time period resulting from staff turnover and the ensuing productivity
decreases, human capital loss, and knowledge loss. Using developer experience data,

productivity metrics, and known features of the nature of the developer learning curve, it

-34 -

WO 2017/143263 PCT/US2017/018477

is possible to trace the effects of quality issues on attrition rates, productivity rates, and

their associated costs.
[00148] These metrics and others will be shown as examples in the next section.

7.3 Weighting and aggregation

[00149] Because fitted models’ are often derived with the ‘source code file’ or
‘person’ as the unit of analysis, high-level metrics are often computed at the file-level or
individual level as well. For example, file-level CQ, DQ, or TQ metrics might be inputted
into a fitted model to get a file-level score for potential for bugs in the next development
period. Itis possible to aggregate file-level information at the module, directory, or
whole-system level as well using weighed sums or averages. It is similarly possible to
aggregate person-level information to the team, division, or whole-organization level.
This section will describe aggregation methods, using the ‘source file’ in future

examples.

[00150] Before each calculation step, some details are determined about the
relationships between the metrics of individual files: namely, each file is weighted
relative to others in the system. The weighting factor can be dependent on different file-
level parameters, such as LOC, LOC changed over a given time period (extractable
from version control data), LOC changed over time to fix bugs or develop features, and
so on. If metrics are being calculated across multiple files, the level of aggregation is
also specified: sets of files within the same directory, module, or entire system may be

grouped together for analysis purposes, or even files across multiple systems.

[00151] FIG. 19 shows the exemplary weighting and aggregation steps in the
context of business outcome calculations. File-level metrics are weighted and
aggregated according to user specifications, then fed into the calculations that are
specific to the desired set of new metrics, along with any particular parameters (user-

defined, Zoo-derived, etc.) that are specifically needed for those calculations.

[00152] The weighting process can take a number of different forms depending on
what information is available, as specified by user input. If a change-based weighting

factor is desired, e.g., and the system has linked version control data showing the

-35-

WO 2017/143263 PCT/US2017/018477

precise amount of activity on a file-by-file basis, the option exists for each file to be
weighted according to activity over a specified period of time. If no such data is
available, the rate of change can be estimated by applying a flat global activity rate
equally to each file, or by the predicted degree of development activity in different

sections of the codebase as specified by the user.

[00153] The aggregation process, if needed, can occur at the level of the directory,
module, system, collection of systems, or any other desired segmentation, depending
on the user’s specifications. The files are grouped together to calculate weighted
averages for each input metric for that group, which in turn are fed as single inputs into
the stage-specific calculations, resulting in output metrics specific to that group. If the
aggregation step is eschewed, then the weighted metrics can be fed into the stage-
specific calculations on a file-by-file basis, producing output metrics for each file

independently.

[00154] FIG. 20 shows a generalized method of calculating additional business
outcome metrics (such as maintainability, agility, cost, and technical debt) from a
combination of user input, Zoo data, and code metrics and business metrics (the latter
being direct outputs of the modeling process) on both a file and system level. Values for
system-level metrics can be distributed to individual files according to the weighting
method utilized. Different versions of this method can be used, with varying inputs and
calculations, to produce different business outcome metrics. Examples of the groups of
metrics that can be calculated, as well as examples of individual metrics within those

groups, are given below.

Section 8: Tool to Help Managers Explore Software Economics and Software Quality

On a Project Where Project Data May Be Unavailable or Incomplete

[00155] A tool in accordance with one or more embodiments is intended for
software leaders can help with strategic decision-making by enabling the combination of
information including: (1) scanned CQ, DQ, and TQ information from a codebase, (2)
project SE information, SE estimates from a ‘custom fitted model’ or SE projections from
a ‘standard fitted model’, (3) user inputted values related to code, CQ, DQ, TQ, SE,

project, or program information, and (4) benchmarks.

-36 -

WO 2017/143263 PCT/US2017/018477

[00156] Among other things, this tool allows leaders to explore the economics of
development on top of an existing codebase and to reason about the value of redesign,
rewriting, or some other improvement. The following examples contain screen-shots

from tool GUIs to illustrate utility.

8.1 Example: Maintainability

[00157] Maintainability is related to how many bugs there are in a system, how
many new bugs result from ongoing development, and/or the effort/cost required to fix
bugs. This could be measured in terms of total bugs, lines of code that must be modified
to fix those bugs, or the defect ratio when adding new code (for calculations of the latter,
see Section 4). Statistical models developed by performing regression analysis on
systems in the Zoo can be used to predict a defect ratio for files in a newly analyzed
system. Similar regression analysis may have been done on prior Zoo systems to

compute feature productivity, bug productivity, and downstream risk.

[00158] Productivity can be measured in lines of code (LOC) produced in a year for
a given activity type (feature development or bugs fixing). It makes sense to distinguish
between these activities because developers are less productive when fixing lines of
buggy code (in terms of LOC produced per unit time) because bug fixing involves
significant investigative activity. Most bugs will be caught and fixed by developers prior
to release, which can be very time-consuming. Some bugs may be missed by the
developers and will emerge in the shipped product; there is therefore a downstream

cost associated with missed bugs.

[00159] As an example, FIG. 21 shows summary maintainability metrics for an
entire system in a situation where code was available, but version control and issue
tracking data was not. In this example (and all subsequent examples in this section),
CQ and DQ measures were taken for the system and for each file in that system. File
level ‘standard fitted models’ were applied to compute file-level low-level projections for:
(1) Defect ratio’ - the ratio of defect correction LOC to feature development LOC over
some period of time. (2) ‘Downstream risk’ - the ratio of released defect correction LOC
to feature development LOC over some period of time. ‘Released defects’ are those

that are shipped into production or to customers rather than being caught in the

-37 -

WO 2017/143263 PCT/US2017/018477

development process. (3) Developer productivity when coding features (in changed
LOC /time). (4) Developer productivity when fixing bugs (in changed LOC / time).

[00160] These low level metrics were then aggregated to the system-level using a
weighted average formula, where files with more LOC volume are weighted more
heavily. (This aggregation method assumes that every LOC in the system was equally
likely to be worked on.) ‘Bug labor %’ was computed by algebraically combining the
‘defect ratio’ (which is the ratio of lines changed for bugs vs non-bugs) with ‘Developer
bug-fix productivity’ and ‘Developer feature development productivity’ (both in units of
changed LOC / time) to arrive at an estimate for the amount of labor hours spent fixing

bugs vs

[00161] In FIG. 22, we see a detailed analysis showing how the high-level
summary statistics were arrived at. Such an analysis can help senior leaders
understand the relationship between CQ, DQ, and TQ in a codebase. In this GUI,
panels on the left show code metrics extracted from a code-base such as ‘Total lines of
code’, user entered estimates or assumptions such as ‘Code turnover per year’, and
low-level SE projections such as ‘Bug productivity’. On the right, we see higher-level

SE projections such as ‘Lines of bug code shipped’.

[00162] FIGS. 23 and 24 show benchmark scatter plots for two maintainability
metrics. In both plots, the X-axis is system size (in LOC on a log scale). Each data-
point is computed by applying ‘standard fitted models’ to each system’s code metrics.
Some systems in this plot were used source data to create ‘custom fitted models’ that
were used to generate ‘standard fitted models.” These charts can show a manager
where their system stands relative to others, and helps them understand if there is a
problem and if there is room to improve.

8.2 Example: Aqility

[00163] Agility is related to how much time it takes to develop code and how much
waste is associated with that development. A programmer introduces bugs that must be
eliminated as he or she generates feature code, as discussed in the “Maintainability”
section above, and a line of bug code takes more time to fix than a line of feature code
takes to develop. Furthermore, programmers are less productive on both feature and

-38 -

WO 2017/143263 PCT/US2017/018477

bug code when working in files with high complexity and low modularity. There are
therefore at least two forms of waste accrued by agility problems: (1) time spent
debugging and (2) lost productivity. These are indicated in the subsections below as

schedule implications and waste implications.

[00164] In terms of specific metrics, agility can be measured by factors such as
lines of code written per day, or days needed to write a given number of lines of code.
The measurement of agility problems can be conducted in at least two ways:
comparison against internal targets or against external benchmarks. Internally, the pace
of actual or average estimated code development can be analyzed to determine the
degree of deviation from the desired schedule. Modifications to inputs can show how

the pace of development would change under various hypothetical situations.

[00165] FIG. 25 shows SE outcome projections from ‘standard fitted models’ for
‘feature productivity’ and ‘bug productivity’. In combination with projections of the
amount of time the developer will spend in bug-fixing vs feature development, and with
other information from the input panel, we can compute an SE estimate for the days
required to develop and ship a bug-free 1000 LOC feature. This assumes the
developer will need time to develop the feature, and time to find and fix the bugs that

are introduced or exposed during that development process.

8.3 Schedule implications

[00166] FIG. 26 shows details of calculations used to arrive at the high-level
summary stats. On the left, we see values captured from the codebase, computed
using ‘standard fitted models’, or computed somewhere else in the application (number
of FTEs required annually for ‘bug fixing’ and ‘feature development’). On the right side,
we see calculated values showing how we arrive at the number of weeks required to
develop 1000 LOC in this system.

[00167] FIGS. 27 and 28 show benchmarks comparing the system being examined
against other codebases in the Zoo. Standard fitted models and analytic methods are
applied to all codebases to arrive at projections for ‘days to code 1000 lines.” The first
chart shows comparisons against all Zoo systems. Small blue dots indicate other
systems from the same organization. Different subsets can be used for benchmarking

-39 -

WO 2017/143263 PCT/US2017/018477

and comparison purposes. The second chart shows the system relative to a chosen
subset thought to be ‘representative.” The subset includes systems written in the same
language have more than half and less than double the number of LOC contained in the

system under examination.

8.4 Waste implications

[00168] In terms of external benchmarking, the overall efficiency of development in
a system can be determined by comparing time to produce a given number of lines of
code in the system to the same number of lines of code in other systems, whether the
full Zoo, a comparable subset, or an “optimal”’ system—that is, one from the top decile
(or other segment, if desired) of the Zoo. Zoo data is thus used as a stage-specific
parameter in the final calculation to isolate benchmarks against which waste

implications can be calculated.

[00169] FIG. 29 shows detailed analysis related to waste during the development
process. Less than optimal quality (CQ, DQ, or TQ) will lead to lost productivity, extra
bugs, more downstream cost, and other sources of cost and schedule slippage. This
GUI allows a software leader to compare the software economics of their system
against one considered ‘optimal’. (An ‘optimal’ system is one in the top 10% of Zoo
benchmarks in this case.) This picture shows the amount of time required to develop
and ship a 1000 LOC feature in the codebase being examined (22 days of developer

time) vs the ‘optimal’ system (13 days).

[00170] FIG. 30 shows a comparison between the system and the ‘optimal’ system,
which in this example comes from the top 10% of all systems in the Zoo (though this
value is adjustable, as is the set of systems to draw from). Drawing comparisons with
the optimal system allows for more precise calculations of the waste present in various
metrics of the system (feature development days and bug-fixing days, in this example)
that can be traced to suboptimal CQ, DQ, or TQ features. This figure illustrates the time
lost from less-than-optimal feature productivity (in blue) and from more bugs and low
bug-fix productivity (in red).

-40 -

WO 2017/143263 PCT/US2017/018477

8.5 Example: Labor and Risk Related Cost

[00171] The cost of a system can be measured through transformations of various
metrics, such as developer productivity, the number of bugs introduced, and the salary
of developers. The annual code turnover rate will determine the magnitude of the total
cost per year. Bugs that are not fixed, based on the downstream risk, have an
associated cost per line that may be estimated by the user. Essentially, cost metrics
show the amount of money required to keep code development continuing at its current
pace, as well as the relationship between code quality problems and the degree of
downstream cost & risk being generated. Downstream cost and risk is related to the
number of bugs that are shipped or deployed (rather than being caught during
development) and the probabilistic cost associated with each. The cost or risk of bugs
in production will be higher in a nuclear plant than in a cell-phone App, for instance.
These values are given as labor cost and risk cost below, respectively.

[00172] As with agility measurements, cost can be measured against both internal
and external baselines. Internal budgets can be used to determine how much the
project is deviating from expectations, and input modifications can show hypothetical
changes. Development efficiency can be determined by comparing the cost of
producing a given number of lines of code in this system to the same number of lines of

code in an optimal system, as calculated from the Zoo.

[00173] FIG. 31 shows summary statistics for the cost of developing a 1000 LOC
feature and for the cost associated with downstream risk. The first is a function of the
labor-days required for development and developer salary. The second is a function of
the probability that bugs are shipped and the expected value of cost associated with
each bug that has a customer impact. Risk is a probabilistic concept. Some bugs will
have relatively low costs (support calls to a call center) while others will be large
(property destruction or loss of life.) The probability of bugs, combined with a risk model
can be used to generate appropriate estimates for cost that are application specific.
Also shown in this panel is a measure of ‘technical debt’ which will be explained in later

sections.

-41 -

WO 2017/143263 PCT/US2017/018477

[00174] FIG. 32 shows a detailed calculation of cost and waste relative to the
‘optimal’ system. It relies on previous calculations from the ‘maintainability’ and ‘agility’

panels. Development time (and wasted time) can be directly translated into money.

[00175] The example above shows the same example of how labor-related metrics
(full-time equivalents and the resulting labor cost, both on an annual basis) can be
calculated, using the same code metrics and model results as in the maintainability
example, as well as the previously calculated outputs of that example: new LOC and
new bug LOC. (Note that not all cost metrics are reliant upon maintainability metrics for
their calculation; however, this example demonstrates that such linking between
additional SE metrics is possible.) Developer salary is included as an additional user-

supplied or data-derived input.

[00176] The full-time equivalent (FTE) value is the sum of the feature and bug FTE
values which are the new LOC and new bug LOC values divided by their respective
productivity rates (i.e. the amount of work needed to develop the target LOC at the
given productivity rate). The labor cost is the number of FTEs multiplied by the annual
developer salary. All of these calculated figures can be totaled and averaged according

to the same weighting system as in previous sections.

[00177] It also shows how risk-related metrics (shipped bug LOC and the resulting
risk cost, both on an annual basis) can be calculated, using the same code metrics and
‘standard fitted model’ results as in previous examples, as well as the new LOC value
from the maintainability section. The user estimate of the downstream risk cost per bug

line of code is included as well.

[00178] The lines of bug code that are expected to be shipped to the end user can
be calculated by using a standard fitted model’ to estimate a downstream risk ratio.
Applying this downstream risk factor to the new lines of code (i.e. the proportion of
released feature LOC that can be expected to contain unknown bugs). The risk cost is
the shipped bug LOC muiltiplied by the downstream risk cost per bug LOC. Again,
these figures can be totaled and averaged according to the previously utilized weighting

system.

-42.

WO 2017/143263 PCT/US2017/018477

[00179] As with agility, it is possible to determine measures of efficiency for the
funds spent on a particular project’s development by comparing the cost to produce a
given number of lines of code in the target system versus others. The costs of a
system’s development that exceed those of an “optimal” system, isolated via Zoo data

as in the agility example, can be considered as waste in the system.

[00180] FIGS. 33, 34, and 35 show a cost-based approach to waste calculation for
the same system that was benchmarked in the agility section above, using cost per
1000 LOC as the key metric. They show a comparison with the entire Zoo, a
comparison with selected comparable, and a comparison against an optimal system

from the top decile of the Zoo.

Section 9: Tool to Help Managers Explore the Economics of Refactoring, Rewrite, Or

Quality Improvement Opportunities

[00181] A tool intended for managers explores the projected long term impact of
strategic decision-making by treating hypothetical CQ, DQ, and TQ improvements as
financial instruments when combined with a ‘standard’ or ‘calibrated fitted model.” This
tool allows decision makers to reason about long term costs, benefits, and overall return
on investment of various software improvement initiatives, and to explore optimal
strategic direction and investment balance. The approach described here can be
applied to various file attributes categorized as CQ, DQ, and TQ, providing a full picture
of strategic choice to software decision makers. The following examples contain

screen-shots from tool GUIs to illustrate this utility.

9.1 Example: Valuing Quality Initiatives

[00182] A hypothetical software initiative may consist of exploring the financial
impact of investing time and money in improving CQ, DQ, or TQ by improving certain
metrics in a code base. A tool may be written to determine the estimated value of such
initiatives by projecting outcomes from a ‘custom’ or ‘standard’ fitted model given

hypothetical improvements to certain independent variables.

[00183] FIG. 36 illustrates an example of assumptions and client-provided data

enabling hypothetical decision valuation.

-43.-

WO 2017/143263 PCT/US2017/018477

[00184] Such valuations depend on calculating two values: total cost of the
proposed initiative, and total benefit of the proposed initiative. When provided such
data as number of developers working in a code base, cost of engineering per
developer, downstream risk per defect that escapes test, and the number of lines of
code modified to fix defects in the code base per year (among others) it becomes
possible to calculate the total cost of a proposed software initiative. If an estimated
duration of the initiative is also known, it becomes possible to turn this total cost into a

“net present cost” by properly discounting the cost over the number of years expected.

[00185] Similarly, information regarding expected benefit of the initiative must be
known and can be reasonably estimated given a ‘custom’ or ‘standard’ fitted model.
Given changes in independent variables (for example, assuming the improvement of a
DQ metric from X to Y) the model can provide estimated corresponding improvements
in defect density, engineering hours gained, and reduced risk. All such improvements
constitute the total benefit of a proposed software initiative, and may be discounted over

the expected lifetime of the system.

[00186] Once total cost, benefit, and duration of a hypothetical initiative have been
determined it is possible to treat the initiative as a revenue stream over time. Such
treatment allows a tool to calculate the Return on Investment (benefit / cost), Internal
Rate of Return, Time to Breakeven, and other common financial metrics. FIG. 37
shows an example of a tool comparing such costs and benefits of two hypothetical
improvement scenarios —a CQ and TQ improvement initiatives. From top to bottom
given the improvement target, the scope and cost of such a change is calculated,
followed by a breakdown of predicted future software economic benefit. The figure
concludes with a summary of present value for each initiative, and a breakdown of

common financial metrics.

Section 10: Technical Debt

[00187] Technical Debt is a financial representation of total expected cost of
degraded software quality over time. This differs from typical industry definitions of
Technical Debt in two ways: it considers total incurred costs (cost of engineering, cost of

risk, cost of turnover, cost of lost productivity, etc.) from degraded quality instead of only

-44 -

WO 2017/143263 PCT/US2017/018477

cost of engineering required to correct code deficiencies, and it treats these costs as a
financial instrument over time instead of as a static number.

[00188] This broader definition and treatment of Technical Debt as a financial
instrument subsequently leads to two further observations: Technical Debt may be
“paid” by improving software quality (thereby reducing engineering cost, mitigating risk,
reducing turnover, etc.), and if not “paid” will “accrue interest” over time as software
quality continues to degrade. It is essential to consider software quality and cost
together when calculating Technical Debt. Real or hypothetical software improvement,
while it requires an investment of funds, can measurably alter code quality in groups of
files, leading to changes in cost metrics of those files and ultimately in Technical Debt.
The total amount spent per year on the project (including costs from development, risk,
turnover, etc.) is considered an interest payment on the system's technical debt. Using
yearly interest payments and user-specified assumptions about the appropriate interest
rate for capitalization, a tool can compute “principal” on the “loan.” This value is the

Technical Debt within the existing system.

[00189] Calculating Technical Debt involves the following stages: determining real
or estimated annualized costs including lost productivity, summing these annualized

costs, finally applying an appropriate capitalization rate to calculate principal on debt.

10.1 Determine real or estimated annualized cost subtotals

[00190] Because of technical debt’'s emphasis on refactoring as an investment
mechanism, based on available parameters and timeframe being examined, the
annualized costs from technical debt in the system (cost of engineering, cost of risk,
cost of turnover, cost of lost productivity, etc.) may be calculated and recorded as
subtotals of debt with three different methods — real costs as recorded in the past,
calibrated past cost from the system being analyzed to determine estimated cost in the

future, and projected cost from external systems in the case data is missing.

[00191] Ideally real costs can be included for present and past states of the
system. However, when estimating future costs multiple snapshots may be used to
calibrate annual cost calculation by factoring in past rates of change along with
expected rates of change in the future. If parameters are missing entirely, due to, e.g.,

-45.

WO 2017/143263 PCT/US2017/018477

an absence of version control or issue tracking data, modeled parameters may be
projected from comparable systems to estimate future costs (For more details on

projection see Section 6.).

10.2 Add up real or estimated annualized costs

[00192] Cost subtotals, together with any other costs not falling into those
categories listed, are now summed to determine an annualized cost total. This figure
constitutes the total risk and project costs for that codebase over the year in question,
and represents an interest payment on the system’s underlying technical debt, or an
expense in perpetuity that can be expected to remain similar if the system’s technical

debt continues at the same levels.

10.3 Apply interest rate and compute principal on debt

[00193] Once annualized costs have been determined a capitalization rate can now
be applied to finalize the calculation of a system’s Technical Debt. The interest rate for
capitalization is a user-modifiable parameter that can be reasonably approximated by
the interest rate for high-yield bonds, around 6-7%. The interest rate can be combined
with the number of years the codebase is expected to remain in service, T, using the

following standard formula:

T

CapRate =
P ; (1+7)

[00194] Note that for a codebase expected to last in perpetuity, the CapRate = 1/r.
Value in perpetuity is a good approximation for an expected life of 40-50 years.

[00195] Multiplying the interest payment (total risk and project costs) by the
CapRate allows a tool to calculate a capitalized value for those costs. This can also be
done for the subtotals before they are added together, allowing capitalized values to be

calculated for each segment of the total interest payment.

[00196] The capitalized value of the total risk and project costs is a liability for
future payments that represents the total technical debt of the system. This may be

thought of as the “principal” on a loan with contractual payments equal to the project

- 46 -

WO 2017/143263 PCT/US2017/018477

costs. Together with the segmented technical debt totals (technical debt from cost,
technical debt from risk, technical debt from turnover, technical debt from lost
productivity, etc.), these figures present the user with a more generalized summary of

the project’s technical debt profile.

10.4 Applying Technical Debt to Software Valuation

[00197] Effectively determining Technical Debt now provides a key missing factor
when determining the value of a software asset. When performing due diligence
(during, for instance, an acquisition) the total value of a software asset should be
represented as the value of that software asset (the total of both engineering cost
necessary to create another software asset with an equivalent feature set AND the
expected revenue stream enabled by that software asset) minus the cost of that
software asset (Technical Debt). The cost of a software asset has traditionally not been
included when performing such valuations, and can now reasonably represent the total

value of the software asset.

Section 11: Applications of Business Qutcome Methods and Metrics

[00198] The methods described in previous sections allow the tool to calculate
various business outcomes such as technical debt, maintainability, agility, cost, etc. This
section describes some examples of ways to apply the methods outlined above. There
are numerous potential applications of these methods, including but by no means
limited to the examples given in this section. These examples are intended to serve as
demonstrations of the types of outcomes that the tool is able to produce, with the
understanding that various alternative applications are possible depending on project
specifications, users’ needs, and further developments and refinements in the tool’s
capabilities.

11.1 Technical debt balance sheet

As an example application of the tool and its methods, the Technical Debt Balance
Sheet (TDBS) provides a detailed breakdown of the various elements of a codebase
and its development process that contribute to technical debt. It presents technical debt

figures for a particular snapshot of the project, incorporating user-defined parameters

- 47 -

WO 2017/143263 PCT/US2017/018477

into its calculations; in addition, it provides estimations of future technical debt based on
hypothetical or actual refactoring efforts, and ultimately calculates various high-level

financial outcomes to aid decision-making processes.

11.1.1 Description

[00199] The technical debt balance sheet provides a single-page breakdown of the
technical debt calculations for a snapshot of a single project at a single point in time. As
shown in FIG. 38, the sheet is divided into 4 major areas:

(1) The dashboard contains a number of user-modifiable parameters
whose values affect the calculations on the rest of the sheet. These include general
financial parameters (developer salary, expected cost per defective LOC shipped, and
interest rate for technical debt capitalization) as well refactoring-related parameters (time
and investment allotted to refactoring, as well as expected success rate), which may be
applied to both hypothetical and actual refactoring calculations, depending on the
circumstances.

(2) The business as usual (BAU) area shows various calculations
dealing with the project at a particular moment in time, culminating in technical debt
totals at that time. The calculations for this section are derived from the methods
described in section 5, drawing from the same body of data as well as dashboard input;
the data can be either fully calibrated or partly projected, as detailed in section 6.

(3) The refactoring area computes new values for each element in the
BAU area based on the outcome of a refactoring effort, which may be hypothetical or
actual. A hypothetical refactoring effort incorporates values from the dashboard to
compute projected changes, while a real refactoring effort incorporates values from a
second snapshot, which may be calibrated or partly projected. Like BAU, its ultimate
outputs are hypothetical or real technical debt figures.

(4) The cost savings & risk reduction area computes the difference
between the BAU and refactoring areas, the amount of technical debt paid down, and,
finally, the net present value (NPV) and internal rate of return (IRR) from refactoring,
which provide a summary of the financial value of the refactoring effort in terms of return

on investment.

-48 -

WO 2017/143263 PCT/US2017/018477

[00200] Taken as a whole, the TDBS provides a high-level, customizable overview
of a given system’s current technical debt situation and associated financial parameters,
while also enabling the user to understand the value of a past or future refactoring effort

intended to improve code quality and design quality.

11.1.2 Projection and calibration

[00201] As with other types of modeled calculations that the tool can produce, the
TDBS calculations can be calibrated from real data or projected from Zoo-based
estimates. If the codebase and the full complement of project management data are
available for the BAU calculation, real business outcome metrics can first be modeled
as described in section 4, then technical debt can be calculated as outlined in section 5
using the same subtotals (bugfixing/feature costs, risk, and turnover), which are then
annualized, summed, and capitalized. If the full complement is not available, the
missing project metrics can be bypassed by the model, which can use Zoo data to

directly determine projected business outcome metrics.

[00202] The financial parameters in the dashboard can be considered “tunable
dials,” whose manipulation by the user can reveal new insights about the interrelated
elements that compose the technical debt calculations. Well-informed estimation on the
part of users can be important here. For instance, the cost of defective LOC shipped will
depend on the criticality of the system: bugs in critically important software, such as
military systems or transportation infrastructure, will have substantially greater impact
than bugs in software with less life-or-death functionality. For consistency, these same
financial parameters will also affect hypothetical refactoring calculations. Paradigms of
user interaction other than the “tunable dial” mechanism, such as graphical
representation of a variety of scenarios, are conceivable alternative developments in the
structure of the TDBS.

11.2 IRR / ROl Retrospective cost benefit of refactoring: Compare two balance sheets

(actual before, actual after)

[00203] A primary benefit of the TDBS is the option of comparing before-and-after
scenarios with regard to the refactoring of a project, either actual or hypothetical, to
determine the internal rate of return (IRR). In the case of an actual refactoring, the

-49.-

WO 2017/143263 PCT/US2017/018477

TDBS will have at least two datasets available: a snapshot of the system at a given
time, and a second snapshot at a later time, after some degree of refactoring has
occurred. The snapshots do not necessarily have to be taken before and after a large-
scale refactoring effort: it is also possible to take a number of snapshots throughout the
process and compare them, in pairs or other groupings, to get a sense of the ongoing

value of a refactoring effort (or lack thereof).

[00204] In the actual vs. actual scenario, the two balance sheets are calculated in
essentially the same way as each other. It can generally be assumed in most cases that
project management systems will not have been newly attached to or detached from the
codebase in the interim between the first and second snapshots; therefore, the two
snapshots should have the same proportion of calibrated vs. projected metrics. Careful
attention should be paid to which metrics, if any, are being held constant between the
two snapshots.

11.2.1 Refactoring inputs or calculations

[00205] Another important component of the actual vs. actual calculations is the set
of parameters related to refactoring, either derived from user-modified dashboard inputs
or from calculations of the differences between the two snapshots. All systems can use
basic financial parameters from the dashboard, and will be able to calculate real
refactoring-based changes purely in codebase-extracted code metrics, i.e. refactoring
success rates. Using architectural quality and file complexity metrics as examples,
these success parameters might include the proportion of files shifted from high-
centrality to low-centrality areas of the code, or the proportion of files shifted from high
complexity to low complexity, and so on. (Other success metrics are conceivable, based
on different quality metrics.)

[00206] The methods of determining other refactoring parameters will vary between
fully calibrated and partially projected systems. The amount of time and resources
dedicated to the refactoring effort should be calculable from real data in fully calibrated
systems, but will involve some projection (based on Zoo data) in less calibrated

systems.

-50-

WO 2017/143263 PCT/US2017/018477

11.2.2 Deltas with IRR

[00207] Once the two sheets have been set up correctly, the internal rate of return
calculation can take place to factor in the opportunity cost of the capital outlay required
to undertake the refactoring effort. The IRR is defined as the rate of return for the total
of all the project’s cash flows at which the net present value (NPV) becomes equal to
zero, or breaks even. The NPV over n periods (considering the initial investment to be n
= 0), conversely, is calculated by dividing each of the n cash flows by the nth power of

the sum of 100% and the IRR, then summing all n terms.

[00208] The annual cost & risk difference between the older snapshot and the
newer one—representing some degree of savings over time, assuming that the
refactoring has been effective—is the annual cash flow, while the user can define both
the number of years that the refactoring is expected to take and the initial refactoring
investment in the dashboard. The IRR calculation then returns a simple value that

allows the user to determine whether or not the refactoring was worth the cost.

11.3 IRR / ROl Prospective cost benefit of refactoring: Actual before, hypothesized after

[00209] In the event that no refactoring has yet occurred in a codebase, technical
debt calculations from the most recent snapshot can be compared with a hypothesized
snapshot at a future point in time to determine the expected IRR of a hypothetical
refactoring effort. The mechanism for projecting this future snapshot entails using Zoo
data to estimate the degree to which, given a certain user-defined input of time and
resources, a particular improvement in code and design quality will result, using
methods such as shifting files between different sectors in order to strengthen quality
metrics.

11.3.1 Projecting complexity reduction with data from other projects

[00210] Obtaining an accurate estimation of the hypothetical refactoring effort’s
success rate is dependent on several user-supplied factors about the purpose and high-
level situation of the system. For example, if the codebase is growing rapidly,
refactoring will be more difficult, as new features (and bugs) are constantly being

produced; if the codebase is in “maintenance mode,” on the other hand, it can be

-51 -

WO 2017/143263 PCT/US2017/018477

anticipated that refactoring efforts will be more effective due to the low degree of
interference from new code. Alternatively, to simplify the initial calculations, it may be
desirable to assume that normal feature development and other change in the
codebase is minimized during the refactoring period: total lines of code remain the

same, and efforts focus on maximizing the refactoring success rate.

[00211] Assuming that the success rate has been accurately estimated, the
hypothetical future snapshot of the system will now have a new set of code metrics.
Plugging these code metrics into the Zoo-derived projection formulas will generate
projected business outcome metrics, which can be combined with the code metrics to

calculate hypothetical technical debt.

11.3.2 Deltas with IRR

[00212] Once the second snapshot has been estimated, the IRR calculation
proceeds in much the same way as with the actual vs. actual case. Adjusting the
hypothetical outcomes of the refactoring effort (e.g. by increasing or decreasing the
percentage of files moved to less complex areas of the code) thus produces instantly

visible results for the user in terms of how the IRR would change.

11.4 Technical debt cash flow analysis

11.4.1 Simulated project evolution with multiple balance sheets

[00213] Another potential application, which may be considered an extension of the
TDBS, is a longitudinal cash flow analysis of changes in technical debt over time. This
can be constructed from a series of balance sheets, each feeding forward into the next,
then using projection modeling techniques to make predictions based on different
amounts and time periods of real or hypothetical refactoring. In essence, this is a project
management and staffing tool that simulates the evolution of a codebase and project

over time to provide estimations of long-term future cash flows.

11.5 Determining contractor efficiency based on estimated difficulty

[00214] Another potential use case of the tool is allowing the owner of a codebase
to determine the efficiency rate of external organizations that have been contracted to
maintain or develop that codebase. If file-level productivity rates (feature and bug) and

-52 .-

WO 2017/143263 PCT/US2017/018477

defect ratios can be modeled with reasonable accuracy with the amount of project and
system data available, then it is possible to calculate the length of time it should take to
write a given amount of lines of code in each file. Over a sufficient period of time and
number of files, the degree to which a contracting organization’s work rate matches or
deviates from expectations should become evident, allowing the user to make informed

decisions about current and future development and maintenance contracts.

[00215] The methods, operations, modules, and systems described herein may be
implemented in one or more computer programs executing on a programmable
computer system. FIG. 39 is a simplified block diagram illustrating an exemplary
computer system 100, on which the computer programs may operate as a set of
computer instructions. The computer system 100 includes, among other things, at least
one computer processor 102, system memory 104 (including a random access memory
and a read-only memory) readable by the processor 102. The computer system 100
also includes a mass storage device 106 (e.g., a hard disk drive, a solid-state storage
device, an optical disk device, etc.). The computer processor 102 is capable of
processing instructions stored in the system memory or mass storage device. The
computer system additionally includes input/output devices 108, 110 (e.g., a display,
keyboard, pointer device, etc.), a graphics module 112 for generating graphical objects,
and a communication module or network interface 114, which manages communication

with other devices via telecommunications and other networks.

[00216] Each computer program can be a set of instructions or program code in a
code module resident in the random access memory of the computer system. Unitil
required by the computer system, the set of instructions may be stored in the mass
storage device or on another computer system and downloaded via the Internet or other
network.

[00217] Having thus described several illustrative embodiments, it is to be
appreciated that various alterations, modifications, and improvements will readily occur
to those skilled in the art. Such alterations, modifications, and improvements are
intended to form a part of this disclosure, and are intended to be within the spirit and

scope of this disclosure. While some examples presented herein involve specific

-53 -

WO 2017/143263 PCT/US2017/018477

combinations of functions or structural elements, it should be understood that those
functions and elements may be combined in other ways according to the present
disclosure to accomplish the same or different objectives. In particular, acts, elements,
and features discussed in connection with one embodiment are not intended to be

excluded from similar or other roles in other embodiments.

[00218] Additionally, elements and components described herein may be further
divided into additional components or joined together to form fewer components for
performing the same functions. For example, the computer system may comprise one
or more physical machines, or virtual machines running on one or more physical
machines. In addition, the computer system may comprise a cluster of computers or

numerous distributed computers that are connected by the Internet or another network.

[00219] Accordingly, the foregoing description and attached drawings are by way of
example only, and are not intended to be limiting.

-54 -

WO 2017/143263 PCT/US2017/018477

CLAIMS

1. A computer-implemented method of analyzing a computer software
codebase, comprising the steps performed by one or more computer systems of:

(a) generating software economic output metrics for the software codebase
using one or more fitted statistical models, said software economic output metrics
including defect density projections and/or developer productivity projections for the
codebase;

(b) exploring the impact of a code quality improvement initiative, a design
quality improvement initiative, or a test quality improvement initiative by adjusting code
quality inputs, design quality inputs, or test quality inputs to the one or more fitted
statistical models to generate updated software economic output metrics including
updated defect density projections and/or updated developer productivity projections for
the codebase;

(c) computing costs associated with the defect density projections and/or
developer productivity projections determined in (a) and costs associated with the
updated defect density projections and/or updated developer productivity projections
determined and (b);

(d) analyzing the costs computed in (c) and outputting results thereof.

2. The method of claim 1, wherein (c) comprises computing a return-on-
investment (ROI) value for implementing the code quality improvement initiative, the
design quality improvement initiative, or the test quality improvement initiative based on
the costs computed in (c).

3. The method of claim 1, wherein (c) comprises computing a break-even
time value for implementing the code quality improvement initiative, the design quality
improvement initiative, or the test quality improvement initiative based on the costs
computed in (C).

4, The method of claim 1, wherein (c) comprises computing a rate of return
value for implementing the code quality improvement initiative, the design quality
improvement initiative, or the test quality improvement initiative based on the costs
computed in (C).

-55.

WO 2017/143263 PCT/US2017/018477

5. A computer-implemented method of determining the technical debt of a
computer software codebase, comprising the steps performed by one or more computer
systems of:

(a) generating software economic output metrics for the software codebase
using one or more fitted statistical models, said software economic output metrics
including defect density projections and/or developer productivity projections for the
codebase over a period of time the codebase is expected to be in service;

(b) calculating a total cost of development including costs associated with
fixing defects and developing new features based on the defect density projections
and/or developer productivity projections over the period of time;

(c) calculating a capitalized value of the costs calculated in (b) based on a
given interest rate to determine the technical debt of the codebase; and

(d) outputting the technical debt.

6. The method of claim 5, further comprising exploring the impact of a code
quality improvement initiative, a design quality improvement initiative, or a test quality
improvement initiative by adjusting code quality inputs, design quality inputs, or test
quality inputs to the one or more fitted statistical models to generate updated software
economic output metrics including updated defect density projections and/or updated
developer productivity projections for the codebase, and repeating (b), (c), and (d)
based on the updated defect density projections and/or updated developer productivity
projections.

7. The method of claim 5, wherein the costs associated with the defect
density projections over the period of time include costs for identifying and fixing defects
and costs associated with the use of the software.

8. The method of claim 5, further comprising using the technical debt output
in (d) for determining valuation of the codebase.

9. A computer-implemented method of analyzing a computer software
codebase, comprising the steps performed by one or more computer systems of:

(a) generating first level software economic output metrics for the software

codebase using one or more fitted statistical models, said first level software economic

-56 -

WO 2017/143263 PCT/US2017/018477

output metrics including at least one of: defect density or developer productivity
projections for the codebase;

(b) receiving additional information including at least one of. benchmark data
collected from analysis of other codebases, information related to version control or
change management systems, and user input parameters; and

(c) using the first level software economic output metrics generated in (a) and
the additional information received in (b) to generate second level software economic
output metrics including at least one of: metrics related to maintainability, agility, cost,
risk, defects, waste, security, technical debt, and schedule, and outputting the second
level software economic output metrics.

10. The method of claim 9, wherein the user input parameters includes at
least one of: information on amount of code modified over a given time period,
information on the number of developers for the codebase, development cost over a
given period of time, information on labor to be expended before decommissioning of
the codebase, downstream cost of bugs in the codebase, developer salaries, and
financial discount rate.

11. A computer-implemented method of analyzing a computer software
codebase, comprising the steps performed by one or more computer systems of:

(a) storing one or more custom fitted statistical models in a data store, each
custom fitted statistical model calibrated for a different single codebase and created by
applying statistical regression techniques to code quality metrics, design quality metrics,
and/or test quality metrics independent variables and software economic outcome
dependent variables for a codebase;

(b) retrieving said one or more custom fitted statistical models from the data
store and using said one or more custom fitted statistical models to generate a standard
fitted statistical model for another codebase, and storing the standard fitted statistical
model in a data store; and

(c) retrieving said standard fitted statistical model from the data store and
using said standard fitted statistical model to make defect density or developer
productivity projections for said another codebase, and outputting the defect density or

developer productivity projections.

-57 -

WO 2017/143263 PCT/US2017/018477

12. The method of claim 11, wherein the defect density or developer productivity
projections include one or more of: a number of expected defects in the codebase, a
probability that a defect will be present in a released product and corresponding
expected cost thereof, productivity of a developer when fixing bugs, and productivity of
a developer when creating new features in the codebase.

13. The method of claim 11, further comprising improving accuracy of the
standard fitted statistical model using a plurality of custom fitted statistical models.

14. The method of claim 11, wherein generating the standard fitted statistical
model includes using only custom fitted statistical models from the data store for
codebases having similar independent variable attributes as said another codebase.

15. The method of claim 11, further comprising using the standard fitted
statistical model to produce projected software economic outcome projections for a
plurality of codebases; and storing the projected software economic outcome
projections in a data store for use as benchmarks in codebase analysis.

16. The method of claim 11, further comprising generating benchmark data by
applying the standard fitted statistical model on a plurality of codebases, comparing the
defect density or developer productivity projections to the benchmark data, and
graphically displaying comparisons of the defect density or developer productivity

projections to the benchmark data.

-58 -

PCT/US2017/018477

WO 2017/143263

1/35

18heUy + 001

L Old

o1 9id

gl Old

Vi ol

j

Emmao,a% 21820 0} mcﬁ@_m;
| puejesgns mﬁm‘“m%am\zmam

385<=0L 000D
(SPO DORL
PIERUELS PESIULBAIS,

N

SWiaISAS JusayIp

¥-3

WO} BIED Ui PaIRIGED

MN.-I.I.

- SIPPOW DBJIL WOsny
PESIGLBAIS, SjotHNiA

SIBPOW

PERIL PIEPUELS, 818810 O] SISPOI PeRid Wopsng

BUIGUIOT 0} [00L

e1ep 108010 mey

B1B0 WBISAS MEY

SJEIS SARCLISe(]

LS wesAg

B
88j0BleA
wspuadap
DBILIBS BUIONG
35 ‘eieg oslold

33| gBLRA
spusdepUl pajeRl
OL 10 jpue D 00

BIEp JOYI0 'SIUSIDIIR0T + 9P
so|geuRA Juepuadap IS <= SO|gRLEA Juspusdapul B L/DADD
LS WlSAS 10§ JOPOY PBHIA WOISNT) PEBILLOAIS,

2

(suopuyep @
sjoquuks) Buiping-epopy |

e

%

——

uoissaibias Bunil 1BDOW

i

BL 0 DO 01 pejess eyep ainjden o moop,ma

$9I015 BlRp Juswabeusw
pUB 800D WU SoL8W 38 pue ‘eloid

¢

SIPO}Y PRI WOISN PEaIYLaAYS, 818810 01100] [¢]
U

Vi ©ld

SUBSTITUTE SHEET (RULE 26)

PCT/US2017/018477

WO 2017/143263

2/35

SOHLIOUCDS 3IBMOS §1818 sapduosap
pue pafoid jo aejs suonosfoid o T1_Ened Ajgissog N
g1 ([2OUOISIY J0) TUBIMD e oiydelf SUIO0ING TS [9A8] J84BIY
ﬁm%oﬂﬁo%%% % “m%mmwwmmgm 8onposd 0] 100] jBonA|BuUy €. . , nmwmwwwwgwwww%@ eep joefoid enled
| 108N 35 Jo ejep peloid [HH L2 22000
uonenddy 7 / iensed Alqissod
sueld 1osioid aimny b X BIED WalsAs MBY
pue j08ioid noge mwfmo%mmo& /PO PoRL o
indu [eLebeuepy @/Em%@ 35|] PEPUES 1] goqepen |z walsAs
uspuadspui pajeis¥
g1e(] 108l01d {BiiRd 10 9jgBRARUN %g,a mcmx) 2Jemyos MG _,w o \EM Gm wmo
1880 PUB SJILICU0ST 2Jemog aiojdxs Wammcm mwmﬁbwm,oﬁ _
- - - - - - - - - \\it -H/:..//r - - - - —— -

dl 9ld

SUBSTITUTE SHEET (RULE 26)

PCT/US2017/018477

WO 2017/143263

3/35

ol

Old

SOIUCUODT 2JBMHCS = 3¢ ‘AlenD 188 = 1L ‘Aijent ubisag = Big ‘AlenDd spon = 1Y) [SUsHBIAIGOY

suoneoiddy

n

198Q [eoriyan]

(01]

| N——

&

SOLBURDS USSP
Jspun j9sloud
R
noge SUCHISIOT
Buimoys inding

o1

sugjd 1osloid ainmng
pue 19sioid noge
ndui jeusbeueiy

_—

¥

1880

SILBLURACIGU
1881 J0 ‘ubissp
‘apoo ejqissod 1noge
ndul jpuabeusy

—

{eoyderd
Ajqissod
‘Sa0BUSI
138}
uoneoyddy

SUIGMIN0 IS |9A8)
Jsybiy sonposd
0} j00} {eondjBUY

Blep

\
L

paAckdu st welsAs
Jsye suonosiold 38

paAcIduwl s waysAs
lsye welsAs aumny
noge suonduinsse

DLDJ 0D
saniunuoddo ubisepal

51818 sanduosap

d

renied Ajgissod 7

19POY paRL
DIBUE]S

HO
[P0 PoRI
WIoIsnTy

—
5

pue BuloBlRl O SOIUOU0OR 8i0i0xe siebeurw diBy 0} 1001

[SPOIN
penld prEpUElS
asn ‘8s|3 "Jepoul

wepusdspul psiea)
0L io/pue ‘00 DD

pely wapsng
asn ‘sigejieae
3jqelee
sieA Juspuadepul mwmhwmmw%awg Mw,wm
paje|a.) SUWIOoING P s
38 pue 108l0id J|
BIED WaSAS mEY
», 0S WesAS
sajqenea

SUBSTITUTE SHEET (RULE 26)

WO 2017/143263 PCT/US2017/018477

4/35
Snapshot
Snapshot N+2
N+1
Snapshot

Snapshot N |

1 g(N+1) c{N+2)
Software codebase| o~z | N
tN) HN+1)

Work done between t{N) and t{N+1)

From version controt: IpAl [pC] |pE]

patches or changes . .

submitted

From issue tracking iy

sysiem:

features, bugs, test __

points, etc. iX |
S AN N G+
Developers, QA, elc.

Alice Cathy Doug

FIG. 2

SUBSTITUTE SHEET (RULE 26)

WO 2017/143263

Developer’s Local
Copy of Most
Recent Version of
Code

Primary
Developer
Workfiow

PCT/US2017/018477
5/35
Version Control System
Stores All Versions of Cade
System To

Integrate Changes,
Compile Code, and
Run Test Suite

Developer

Change Tracking System
Stores Change Requests

SUBSTITUTE SHEET (RULE 26)

FIG. 3

PCT/US2017/018477

WO 2017/143263

6/35

JBsuwiosnn

7 Old

sisanbay abueyn saiois
wiaisAs Buppei] sbueyn

£

Jadopasc

pOSESIoN
L+N UOISIBA
SIEMYOS

sebueyn

¥

a}ng s8] uny
puR ‘epony sidwion
‘saburyn oibaiyy
O] Weshg

MOLINIOM
Jedojpasg

Ao

(
-

Jowosny

3poH
1O UCISIaA U808y
1501 jo Adon
12307 8ledoBas(

PAsSRo|8Y
N UOCISIBA
BIBMYOS

BP0 JO SUBISIBA Iy $84015
LISISAS |0JILIOD) UDISIaA

SUBSTITUTE SHEET (RULE 26)

PCT/US2017/018477

WO 2017/143263

sebeyoed
SIBMYOS
LUOIBZIBNSIA
pue
SONBWSIBIN

‘3je 'BiEp
BZIBNSIA pue
‘suoissasbal

7/35

sisAjleur J0) BIRD

&

groad
\ ‘Biep egindiuew
0} 8p0N

UOIBILSS S

iind 01 8poD

G Old

epoed O

Bupipne
WasAs ping

Buidoous
SLUUNY

&

SOSEa|9N
SIBMYOS

sisAiBUE 211B1S

LOIORAXD
Acuspuads(

S82IN0S
aidinw wol

. ejep Jodwi pue
\ J0BAXS 0} 8p0OY)

sany ubiseq

aidinp Jo}
8p0D 81UNCS

WioIshAg
wswiebeueiy
ApoD 2UIN0Y

Walsig
Bupoes
aburyn

saseqeied
20IN0OSY
UBWNH

SUBSTITUTE SHEET (RULE 26)

PCT/US2017/018477

WO 2017/143263

sied ﬂmm ! \\\\ UOISIBA OSEB|OM
‘aBioyos (; pabueynsey) UOISIBA JusUodWoy LOISIaA 1oNpoId sieg diys
Mw& J owep eji4 leulBug | sweN| SUEN 1 SUIBN
'aao = LOISIaA A suodwioy | asealay
adA | 84 814 9pO7 92IN0G SIEMOS 17po.d 5 alemyog
SWeN eji4 jeulbug £
3{id 3psn 23Inog SULISIA HH
Baly Jonpoid ———" ¢ ORE0|as ON-DIoM
JODEUEN 1o s (Bnd J1) 2,5ng To4EN
sjed] pud dH (Bng 11 Ajlieasg
BIBCT 84IH {(bng §) Asuenball
suieN 81B¢] PBIBIAWON
Tel iadoisasq aie(} pausdy
< gjeq SHIEIS
w© PEAOIISY D0 | 3 o Binjes)
DBUPOIA DO LUOLEDHEA SSB DIC] se)
DSPPY D01 e IEQICE0Y >
USIEd Siiy PN -dTS ek
108 abueyn apid 1sanboy sbueyn
9 Old QWOooINQ \ SUTGETG wa)shg
53] TS8] UOHEPI[EA M%www% o mg%u@ Il
UCIIEPIBA PBULIGIOD BUOSIB e f
89 'Ol : e UOISISA) mhnmm,m
s8om
Y3 'Ol Mmmwmmw
unsa})
UCHEDIEA Mw@ @mm

SUBSTITUTE SHEET (RULE 26)

PCT/US2017/018477

WO 2017/143263

9/35

iopenxg

73

SIS
BIBMYOS

SUOISIOA
BIBMUYOS

POAIYOIY

a9 9Old

018

SHHOA UOHOUN S

SUCHOUNS JO J8qUInN

SOSSe|T) 10 JeQUUNN

8p07y 10 S8Ul

Axsidwion peaisieH

Auaiduion [enusssy

AUXBIAWOD) DIBWIOIAD

S35 8poY 80IN0%

N

1030BIIXT
» Asuspuadag
3iBMOS
¥
BT
‘aouBIBUUI

‘uonensdesus
‘UonBIUBISU
‘552008 B1ep [eqoib
‘1B Uoouny

adA | Aouapusdag

_ 824N0% Bl

3INPNAS WaIsSAS

mmwmu&a JuBdolBAS(] 1ONPoId

‘pusbss

O]
Aouspuads(] 10 82408

Aauspuadag
3jid BP0 82IN0G

Asuspuadag
jusuocdwion

2JBMYOS

7

SUBSTITUTE SHEET (RULE 26)

PCT/US2017/018477

uiBoj ledoeas(y

ayep abueyn

PBIDBIBD BPOD O SBUIT

DBPPE 8POD JO SBUIM

10/35

BLUBU 31

pl ebueyo a4

L Ol

wboy sadoeraq

21ep UouBIdWOoID

21D Uoneasn

(Bng 1) Ajusreg

(sinead vse| ‘Ong) odAL

4

sabueys ojid

WaIsAg
[OJIIOT) UGISIBA

saysed sy pue
sisonbas aBueyo
usamisqg Buiddep

D1 1senbal abueyn

sisenbey abueyn

Bupjorip abBueyn

WO 2017/143263

wisysAg

SUBSTITUTE SHEET (RULE 26)

PCT/US2017/018477

WO 2017/143263

11/35

8 9Ol

0 0 %G6 Ul pejosuuoaun| 002 BAEP g00=14
0 0 %06 UbBiH jessydusd| 002 eAgp 100814
04 0 %06 ubiH paIeyS ! 002 BARS 900314
0§ 0 %0€ ybiH jesoyduad | 002 eAep G081
01 0e %0% WINIPSH [0RUOTD T 001 ++3 PO0RI
0 0ge %0% sjqeisaiun [0HUOD 1 001 ++3 €o0=1
4 0¢ %08 Mo 2031 001 #O AV
0 Ol %01 O Q031 001 #D LOOSIY

Iesh joud LSdAL

Jesh soud ui sBng | uijonposd oosueyus | abeieacn Apxaidwion Aeudusy
Xl O} payipow 907~ IS | O poYIpow DG~ IS | 1591 - DL onBwWoOAD - D) 8103, - DA 201 sbenbue| sweusiid

SUBSTITUTE SHEET (RULE 26)

WO 2017/143263 PCT/US2017/018477

12/35

LOC Files LOC% Files%
Control 200 4 21.1% 21.1%
Core 350 & 36.8% 31.6%
Periphery 100 3 10.5% 15.8%
Shared 250 4 28.3% 21.1%
Unconnected 50 2 53% 10.5%
Total 950 19 100% 100%,

LOC Files LOC% Files%
Low 100 7 10.5% 36.8%
Medium 250 5 26.3% 26.3%
High 200 2 21.1% 10.5%
Untestable 400 5 42.1% 26.3%
Total 850 19 100% 100%

FIG. 9

SUBSTITUTE SHEET (RULE 26)

PCT/US2017/018477

WO 2017/143263

13/35

0L "Old

LG L 6Ll A AL 08721 86'¢L 0g'el AR N? AN 4 BIODS BYEID VBB
BEY 1A Y 82v (424 ey AN Y 247 Ovv ybip Aiaa 2Qen0W
818t LLOL L961 9851 8061t 1514 051 8vvi yBi agesom
Gyo2 GaGe cive 9Eve 9eee 8022 Vil 808 DIy 2GQeoW
L¥ee 1698 ¥06. AV YA 8L FEGS L2EQ €465 MO 8GeDIIW

UOIBOLISSEID

Anxepduwios jusuocduion
1989 8059 9p8s Sy AY YO6¥ 90sY LE0Y Lyhe 2407
LOvp YXANY ¥0L8 AN 1251512 LLEE e0se TASTAS JOBUCT
8L/ 589 084 6.9 Gi6 929 209 1944 AN
LO6L Gi6L L86¢ Gegl £6le 8G1LE 50ed 169¢ jeraydiiag

UCIBOLISSEID

Auxaiduwios [Binioaliydy

LP6EL S6ZEL blect 98LEL GLGLHL bAB0L ZvPOL 1866 $81} JO JSeqQUInU [BI0]

8 L 9 g 14 12 4 2 55e98Y

uonesisse]n Alxajduio sy AQ UMO(] USNOIE JUNOY) 84 1§ JigB]

SUBSTITUTE SHEET (RULE 26)

PCT/US2017/018477

WO 2017/143263

14/35

Ll Ol

SAGvGE BOBEZZ ZLABBEL Z¥SBZC 000002 186261 910441 S68181 saxy Bnqg 404
8P20GE CEBGPY 8B6L0F 9PiSBY B00GPP 0626Ly B8CYZEE 80LB6L S¥se} p S24med} J0§
£C8v0s LPiviO 002965 8BUEL.L 800SPY LP2ZEO PO.B0G €OV0OE Payipoul Saul} JO IBQUINN
Oveeeds £69960. 0401688 €O0LLLLY L294489 048908 TLIESES viI0LL9SG S3[H Ul ssul] JO Jsquunp
gyie 886y P86E geey G88¢ €ely 580¢€ 8982 sexy Bng 40}
G605 ELP9 101G VRAL 0£89 0129 184814 ESle SHsSEL ¥ saanes) Jo]
£0Z8 6EVvLL 8001 L0901 GL501 eyedl 82LL 6109 safiueyo JO Jaquiny
cioi 9v0Z 6511 0861 L¥8L 0861 c0si 9eel saxiy Bng 40j
1% 24 c88e GGLe PEBE P3Gl 0vac 8CCl cavi SYSE] P S0UMB3] J0f
0GLE AVIAS esve 6voL Vive 8LL€ Py8e BELZ Payipow saj JO I3quInN
Lyeel S6et LLedt 98igi 94511 LLO0L Jyp0l LEGO g3} JO Jequinu [Bj0]
8 A 9 g |4 £ A } SSETOY

aseajoy yoel Buung ANAROY JUBWdO|aAS(] JO SIINSES 19 dja8]

SUBSTITUTE SHEET (RULE 26)

PCT/US2017/018477

WO 2017/143263

15/35

¢l Old

80'LL ZZLL £ESL S2'8L §Z4L 0 80'8L SR9L BZOL saxj} Bng 4o}
ZLGE E5EE PLEE L86S vPRE LI PRILE 89681 SYSE} 9 2UIMBay J0f
1298 G208 i¥9F /S8S BG5S GZBS BL8Y 1ZOE 3y 1ad pabueyd saujj ueay
€20 280 AN a9e’0 20 8E0 0E'0 6820 saxy Bng 4oy
980 6%0 080 LG °0 50 850 2 Zen SHSE] § 94NIBs8y J0§
650 980 Z29°0 280 160 160 ¥L0 19°0 8y J0d sebiueyd uesy
PGL9 BB'8S ZLBS ZEL9 PELS £LL9 96'G9 BR'6S azis sbueyo uesly
CEBLS BLEEG GLBSG £1°68S OCTYS 94996 PRE9S L2996 3715 BJ1) UBBIY
L9'¥ ISP AN LZ¥ AN P6°€ 8¢ 0.°€ abe o)l uespy
8 L 9 G ¥ £ 4 k =13 TR Y

aseajoy yses Buung Alanoy wswidoieasq pue ‘azig sbueyn ‘ezig o 4o sebeisay 1 sjael

SUBSTITUTE SHEET (RULE 26)

WO 2017/143263 PCT/US2017/018477
16/35

Complexity for all benchmarks

90%
80%
70%
% 60%
2= 50%
@ o °°,su i ©
2 40%
¢ B ST L BT
< 30%
B 20%
T
10% A
0% %a::’oﬁge gl
0.001 001 0.1 1 10 100 1000 10000 100000
Lines of code (logarithmic, thousands)

total)

%
[

- All Benchmarks € This Organization ¥ This System

FIG. 13

Complexity for comparable benchmarks

60%
g a
B 50% s -
o] i)
oot
Soon &
3..;} e o & o
Fil) o/ QQ ¢ n o o °©
o 0% 5 e 5
o o

S 209 % LN
= (+] R G@aa 60 Y oag o i N o

o P o
j%’ 10% &0@%%, b © a ‘fa ob

& gzesa [*) [L*J
-+ @@ e, ‘@ B® o8 “

@3 98 o o Q&
o
0% %’}ﬂ @ H

0 100 200 300 400 500 600 700 800 900
Lines of code (thousands)

s Comparable benchmarks @ System

FIG. 14

SUBSTITUTE SHEET (RULE 26)

WO 2017/143263 PCT/US2017/018477
17735
Predicting LOC Changed in a File to Fix Bugs. (Negative Binomial Model}
Parameter Model 1: Model 2: Model 3 Model 4
controls cyclomatic architectural combined
complexity complexity
LOCinfile | 0.00156486] ++ | 0.001M1712} == | 0.00143183 | »+ | 0.00104115] »
Non-bug lines
change 0.00372536] =+ | 0.00353601] = | 0.00355368 | » | 0.00335322] **
File age -0.10050305] + 1-0.11730352 =+ | -0.1026859 | ** {-0.11853279} *~
Cyclomatic: mid 0.774720} 0.70392074 *
Cyclomatic: high 0.93363115 ** .95513134]
Cyclomatic:
very high 0.91923347 | == .96444505
Architectural:
utility (.2018549 | ~ {0.35797922}
Architectural:
control 0.94111466 § =+ | 0.84721344 »~
Architectural: , s
core 1 ’E 482352 i dkk 1 ‘E 4683088
Residual
Deviance 30370 30418 30428 30475
Degrees of
Fresdom 94353 94350 94350 94347
AlC 227861 227512 227403 227079
Theta 0.030212 (.030692 0.030836 0.031295
Std-err 0.000285 0.00029 0.000291 0.000295
2 xlog-ik 1-227837.302 -227482.025 -227373.408 -227042.661
N = 94364 files observations
(from 8 releases)
Dummy variables for each
of 8 releases omifted.
Significance codes: <0.1, *<0.05,
*<0.01, **<0.001
FIG. 15

SUBSTITUTE SHEET (RULE 26)

WO 2017/143263 PCT/US2017/018477

18/35

Predicting LOC Produced per Developer For One Release.

{Neg Binomial Panel Data Model)

Parameter | Model 1 Model 2: Model 3: Model 4: Model §: Madel &
developer type of cyclomatic all architecturall | combined
attributes work complexity controls complexity

log {years

employed) | 0.233711 (.32335) * 0.336831% *

is manager? | -0.12336 -0.0397 -0.081573

Petlines in w* w* hid

new files 0.524365] « (.56379) « 0.578597} «
Pct lines ** i
for bugs -1.075852] « -1.08704] < -1.076668
Pct lines high
cyclomatic -0.312413 0.14775 0171612
Pctlines in x
core 0417167 « 1-0.309158] **
Residual
Deviance 500.67 485.95 500.63 495 81 500.51 4958
Degrees of
Freedom 291 291 292 288 292 287
AlC §752.2 8624 5 87493 8625.3 §745.8 86194
Theta 3.521 4.51 3.527 4.557 3.551 4628
Std-err 0.218 (.283 0.219 (.286 0.22 0.29
2xlog-lik 1-8376.187] |-8248.529 -8375.3271 1-8243.285 -§371.818F |-8235.376
N=478
developer/
refeases
Dummy variables for each of 8 releases omitted.
Dummy variables for each of 178 developers omitted.
Significance codes: .<0.1, *<0.05,
“*<0.01, **<0.001

FIG. 16

SUBSTITUTE SHEET (RULE 26)

WO 2017/143263

19/35

PCT/US2017/018477

Predicting Turnover Among Developers {Logistic Model)

Parameter

Model 1:
developer
attributes

Model 2:
developer
productivity

type
of
work

Model 31

Model 4:
cyclomatic
complexity

Model 5:
all
conirols

Model 8
architectural
complexity

Model 7
full

Years
ampioyed

Is
manager?

-1.1398

Lines
oroduced
per
release

-0.0002

-0.0002

-0.0003

Fraction
gilines to
fix bugs

Fraction
oflines in
new files

Fraction
fines in
high
McCabe
files

-0.0954

-1.4194

Fraction
oflines in
core files

kS

Residual
Deviance

91.525

93112

Degrees
of
Freedom

105

AIC

97.525

99.112

98.03

100.66

94,632

N = 108 software developers

Significance codes: .<0.1, *<0.05, **<(0.01, **<0.001

FIG. 17

SUBSTITUTE SHEET (RULE 26)

WO 2017/143263 PCT/US2017/018477

20/35

inputs

Set parameters

Business outcome melrics (maintainability, agﬂify and cost) are sensitive to changes in the
parameters below, please consider carefully when inserting values other than the defoults.

% code turnover per year 40%
The feature lines of code (LOC) midified or added in a year divided by the fofal LOC

Base LOC for calculations 1,000
The base unit fo normalize calculations across alf systems

Percentile for comparison 10%
The fop percentile range to compare actual system (o

Programmer yearly salary $120,000
Programmer hours per year 2087
Average or expected downstream cost $50.00

per defective LOC in shipped product

interest rate for technical debt 6.5%
capitalization

FIG. 18

SUBSTITUTE SHEET (RULE 26)

PCT/US2017/018477

WO 2017/143263

21/35

siepweled
siosds
-abeig

__—

6l ©Old

—

sSuUoIRINDIED
syoads-ebeg

SoLawW
nding

I
‘wieysAs-nul vopoipaud | % @m%%mma
‘wejshs 1osn 1o ‘I ‘fenbg I Pap
‘anpou "Aiojoau(] BuguUBIa ~1es)
uonebaubby
= 5.
SoLISW
[2AS]-8)i
s B

SUBSTITUTE SHEET (RULE 26)

WO 2017/143263 PCT/US2017/018477

7

22135
Zoo data
(when needed) | _ Additional
. business
File-level outcome
- , metrics
COC?% /
metrics I Weighting & | . .
y 3 aggregation ¥ (Calculations
. Y M
Business
autcolme
Metrcs /) User input
{when needed)
System-level
metrics

FIG. 20

Maintainability Summary

System metrics

Metric
Defect ratio 16%
Downstream risk 13.4%
Bug labor (% of total) 38.5%

FIG. 21

SUBSTITUTE SHEET (RULE 26)

PCT/US2017/018477

WO 2017/143263

23/35

¢c Old

%Z8 {sBngq [e10} jo %) peddiys sbng %E1l ¥SU WEBSHSUMO(]
OviLe paddiys apoo Bng jo sour 7827201 SPOT MOU JO $BUIT
-paeinoie]n H{parenoies ApRSJR J0) UBSAID

s5rq pessili ylim PEIBICOSSE JS0D WBRISUMOP B SI 849U
jonpoud paddiys syg ui ebisius fim pue siadonrap sy Aqg pessiw ag Aew sbng swiog

%BE (12101 §O 94} Joge] Bng 90/'61 Aanonposd aunjes
Z's Brigy 40 871 A JO JBQUINN STARS Ayngonpoud Bng
A SBINESL JO) $1 4 JO JOQUINN %91 oljel 138j8(]
CEY'OZ paoNPAUL 8pod Bng jo saul o400 JBaA Jad Jeaouin} 8pon
PANATAS]) 2pO0 BINIBSL MBU JO SBUIT 6/5'C0V 2poo JO SBUl |B10L
paRinsien TUBAID

Buiunsuoo-auily Aien g UBd Yoiym ‘esesial 0} joud sisdojenrap Aq paxyy pue 1ybnes aq jim sBng 1Isop

SISATYNY ALIMGVNIVINIVIA

SUBSTITUTE SHEET (RULE 26)

WO 2017/143263 PCT/US2017/018477

24/35

Defect ratio for all benchmarks

50%
45%
40%

5%
30%
25%
20% :
15% :
10%

5% s A

0%
.001 0.01 0.1 1 10 100 1000 10000 100000

Lines of code {logarithmic, thousands)
- All Benchmarks € This Organization 2 This System

FIG. 23

Defect ratio (%)

Bug labor (%) risk for all benchmarks

70%

60%

50%

40%

30%

Bug labor (%)

20%

10%

0%
0.001 0.01 01 1 10 100 1000 100030 100000
Lines of code {logarithmic, thousands)
» All Benchmarks € This Organization This System

FIG. 24

SUBSTITUTE SHEET (RULE 26)

PCT/US2017/018477

WO 2017/143263

25/35

9¢ 9Old

£ S3UH J00L 8P00 O SHeoMm A OY L9g
2 saulll 0001 @poo 0} sheQ 1802
0L 2P0 MBU JO sUl Jad SANUIN 78
'Oy Aep 1ad apoo msu Jo saul Z'G
CEY'S 3000 Mau Sejduion o1 sheg 782701
:pageinsen

Jeah 314 ue usAep inoy @
Jeah 314 ue Ul Sinoy

2IN1B8Y J0) 81 4 10 JBQUINY
sBng Jo) $3 14 10 J8GInN

Jeak 1ad apoo MaU JO ST
(poinoies Apesiie Jo) UsAID

8p0T O SaUl 000 L JoIsASD 0] S8xe] J 8Ll JO Junowe syl Ag painsesiui oq ues siswriboid jo Aypbe syy

sucnesidu sinpsyag - sisAjpuy Anby

G¢ Old

GZL'G Aynonpoud Bng

80761 Auanonposd ainjes 4

G'Lz 13070001 GORASD 0} SAB(

LIS

SoUIBLL WBISAS

Arewung Aunby

SUBSTITUTE SHEET (RULE 26)

WO 2017/143263 PCT/US2017/018477

Days to code 1000 lines

Days to code 1000 lines

26/35
Agility for all benchmarks

90
80
70
60
50 .
40
30
20
10

O H H H
0.001 0.01 01 1 10 100 1000 10000 100000

Lines of code {logarithmic, thousands)

< All Benchmarks @ This Organization

FIG. 27

& This System

Agility for comparable benchmarks

40
35
30
25
20
15
10

0 100 200 300 400 500 600 700 800 800
Lines of code (thousands)

SUBSTITUTE SHEET (RULE 26)

WO 2017/143263 PCT/US2017/018477

27135

Agility Analysis - Waste implications

The efficiency of programmers con be determined by comparing time
fo produce 1000 lines of code in this system to 1000 lines of code in
on optimal system (top 10%)}

Given

Lines to model 1,000

Percentile for comparison 10%

Days per year 261

Developer salary $129,000

Given Actual {current) Optimal {top 10%)" Waste
Feature code productivity 18,706 24,238 4,532
Buggy code productivity 5,125 6,366 1,242
Defect ratio 16.3% 51% 11%
Days to complete new code 22 13 8.1
Calculated Actual (current) Optimal (top 10%})" Waste
Number of bugs 163 51 111.5
Days on feature 13 11 2.5
Days on bugs 8 2 2.2
Days per 1000 LOC 22 13 8.7
FPercent feature time 61% 84% 22.1%
FPercent bug time 39% 16% 22.1%
Time efficiency 60% 100% 40.2%

* Note that this is the optimal top percentile of alf benchmarks

FIG. 29

SUBSTITUTE SHEET (RULE 26)

WO 2017/143263 PCT/US2017/018477

28/35

Breakdown of coding activity
{actual vs. optimal)

25

20

15 4

£

10

11 .

Actual (current) Optimal {top 10%)*

Days to code 1000 lines

Days on feature Days on bugs

FIG. 30

Cost Summary

System metrics

Metric
Cost per 1000 lines of new code $16,605
Technical debt per 1000 LOC $255,467
Downstream risk $ per 1000 LOC $6,700

FIG. 31

SUBSTITUTE SHEET (RULE 26)

WO 2017/143263 PCT/US2017/018477

29/35

Cost Analysis & Technical Debt Analysis

Given {(or already calculated) for this system:

Total new LOC / year 162,232

Bugs shipped (downstream) / vear 21,740

FTEs for features 8.2

FTEs for bugs 52

Developer salary (annual) $120,000

Days / year 261

$ / downstream bug LOC $50

interest rate for capitalization 6.5%

inputs Actual {current) Optimal {top 10%)"

Days per 1000 feature LOC 22 13

Downstream risk 13.4% 3.3%

Quiputs Actual {current) Optimal {top 10%) Waste

Labor cost $9,905 $5,821 $3,984
Downstream bugs 134,0 33.3 100.7
Downstream bug cost $6,700 $1,664 $5,037
Cost per 1000 feature LOC $16,605 $7,585 $9,021
Percent labor cost 60% 78%

Percent downstream cost 40% 22%

Cost efficiency 46% 100% 54 3%

For every $1,000,000 spend, $543,241 is wasted
* Note that this is the optimal top percentile of all benchmarks

——
We can calculate: Total (40% turnover} Per 1000 lines
Total FTEs / year 13.4 0.08
Total FTEs / year $1,606,888 $9,905
Total downstream risk $ / year $1,087.,023 $6,700
Total § / year $2,693,911 $16,605
Total technical debt $41,444,787 $255,467
FIG. 32

SUBSTITUTE SHEET (RULE 26)

WO 2017/143263 PCT/US2017/018477

30/35

Cost for gll benchmarks

$60,000

$50,000

$40,000

$30,000 .

$20,000 .

Cost per 1000 feature LOC

$10,000

ov oo on 0%

3.001 0.0t 0.1 1 10 100 1000 10000 1000060
Lines of code {logarithmic, thousands)

« All Benchmarks € This Organization & This System
FIG. 33
Cost for comparable benchmarks

$35,000
€
& $30,000
i
& $25,000 2
= &
] 2a
£ $20,000
=2 &P o
£ $15,000 e
3
2.$10,000 o
8
& 55,000

$0

0 100 200 300 400 500 600 700 800 900
Lines of code {thousands)

s All benchmarks @ System

FIG. 34

SUBSTITUTE SHEET (RULE 26)

WO 2017/143263 PCT/US2017/018477

31/35

Breakdown of coding cost
{actual vs. optimal)
$18
$16
$14
$12
$10
$8
$6
34 //
$2
. 0)

Actual {(current) Optimal (top 10%)”

—
b &
g =
Q:’i
A
8 =
o]
@ om
=
o
o
&
o
&
[4)]
@

Cost per 1000 feature LOC thousands

FIG. 35

SUBSTITUTE SHEET (RULE 26)

PCT/US2017/018477

WO 2017/143263

32/35

9¢ Old

sanea Auanonpold pue auw wWo
sanjea Auanonpold pue oL Wo4

sisAfeue APAIISUSS 10} JsiBlieied

SiSAfRUR AJAIISURS 10} Jopwieied

SUOISIDAD JUSLISBAUL SO} QLN JO 8iNS 04D
SUOISIORP JUBSLLISBAUL JOf QUINY O 8iNE 040
D1BUNISS HH

FBUNISS [BIOURULY

SJLUNISE 1800 100E]| MH

DIBUHISS LOYS J0qe| Japes] Wweay

BPOW AN ANARINPOId
IBPO peRid AiARONpOId

BupoRI| BNSS| PUB [ORUOT) UOISIBA
HOUCT) UCISIBA

22IN0% Bleq

anjeA palBINg|En
anjeA parginoen)

ndu Jesn
ndu Jasn
indug Jesn
wndu Jasn
ndul Jesn
indug Jesn
ndu Jasn
indug Jesn

mding peliid prepuels
Inding pejld plepuels

B1ep sadiosag
giep sadunsag

gIep jo adA}

vy 3

cCZ 3

G000

L0

g

%01

G2¢

000Qs 3

000 0013

0c

P992

8L

/1

896901

YOURIE 8GRI BUQD Xi4 01 1S07)
307 1 18A0D 011800

{sAe(]) BP0 PRIBACIUN [0 DT | IBAD O Ul
{sheq) uoueig 80BNOK SUO S1RUIUYS O] Sl
{SJ28A) SPOUBY S JO JBQUWINN - |

1807 Anpodd / winsy Jo siey - o

1834 184 SAR(WIOM

Bng pases|sy Jad 1507 WRaISUMOQ

{5043} JsdopAR(] 18 1507 [Bnuly

85808p0o Ui siadojerap 1o Jequiny Bay

(Bupas-Bng Jop) Aunionpoud Jadogasy
(uswidosasp ainyesy Jop Aaanpoud Jedojsnsg

Bng peq, t8d 107 abrieay
2sBgaped s ui seah Jad pebusud N7

siaiauweied 18

SUBSTITUTE SHEET (RULE 26)

WO 2017/143263

33/35

PCT/US2017/018477

Exploring RO and Rate of return on Hypothetical Quality Improvement Initiatives

Scenario#1: | | Scenario #2: | | Scenario #3;
Baseline ACQ ATQ
improvement | | Improvement
Hypothetical Quality Improvement Details No Change fo | | Cyclomatic Test coverage
Management | | Complexity increased fo
Practices driven down § 190% or above
10 10 or below
Quality Improvement Details
Numbers of Files that Must be Modified 0 387 1473
McCabe Branches Eliminated 0 41643 IN/A
LOC that must be covered with new tesis 01 IN/A 500719

Cost of Quality Improverment

Estimate Cost of Quality Improvement

0l 1€ 185.067) [€1,112,700]

Future Technical Benefit Details

Reduction in annual LOC changed to fix bugs 0 8348 21197
Reduction in annuat LOC changed to fix downstream bugs 0 624 0
Person Year Gained 0 3.13 7.96
Bad Bug Reduction 0 3.55 -
Future Software Economics Benefit Details

Annual Money Saved From Lower Bug Fix Activity 0l 1€ 313334 (€ 795616
Annual Money Saved From Fewer Bad Bugs Of 1€ 1774501 1€ -
Annual Total Money Saved OF1€ 4907841 1€ 795616

Benefit of Quality Improvement (Present Value)

Present Value of Money Saved from Quality Improvement |

01 | £1.860.456] [€3,016,0091

Is it Worth It?

investment ROl - Lower Bound
investment ROl - Expectation
investment ROl - Upper Bound

Years to breakeven point - Lower Bound
Years to breakeven point - Expectation
Years to breakeven point - Upper Bound

0 453% 45%
0 905% 171%
0 1559% 347%
0 0.75 2.80
0 .38 1.40
0 0.25 0.93

FiG. 37

SUBSTITUTE SHEET (RULE 26)

WO 2017/143263

34/35

SEEESE N O | T
s T s

SEEE NN O

SEEEEEN N O O O | I

PCT/US2017/018477

< DJashboard

< Business as usual

< Refactoring
{Hypothetical or actual)

internal Rate of Return{iRR)
IRR calculation
Refactoring Investment

Annual cost savings
Number of years

internal Rate of Return{(iRR)

Cost savings
& risk reduction

/
-$800,000

-$321,577
3

9.98%

FIG. 38

SUBSTITUTE SHEET (RULE 26)

PCT/US2017/018477

WO 2017/143263

35/35

6¢ 9Old

ol

901
abelo)g sse

oLl

2oIAaq IndinO

801
=B=TgRlale V]

vil
9INPON
SUOIIBDIUNWIWOYD

zH
SINPON
solydelo)

0l

abelo)g

Z01
lossaoo.d

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2017/018477

A. CLASSIFICATION OF SUBJECT MATTER
G06Q 10/06(2012.01)i, GOGF 9/44(2006.01)i

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
G06Q 10/06; GOGF 9/44;, GO6F 17/60;, GO6F 11/36

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
cKOMPASS(KIPO internal) & Keywords: software, codebase, economic, output, metrics, statistical, model, impact, improvement, costs

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 7890924 B2 (DAVID M. RAFFO) 15 February 2011 1-16
See column 8, lines 35-56, column 10, lines 27-45, claims 1,6-7,9,15 and
figures 1-2,4.
Y KR 10-2010-0070206 A (KOREA UNIVERSITY RESEARCH AND BUSINESS FOUNDATION) 25 1-8
June 2010

See claims 1,11 and figure 2.

Y US 2015-0363292 A1 (TOYOTA JIDOSHA KABUSHIKI KAISHA) 17 December 2015 1-16
See paragraphs [0032],[0064], claim 1 and figure 5.

A US 8578348 B2 (ALON MORDECHAI FLIESS et al.) 05 November 2013 1-16
See claim 1 and figures 2-4.

A US 2005-0137950 A1 (GINO ANTHONY PALOZZI et al.) 23 June 2005 1-16
See claims 1,8-10 and figure 2.

. . . . N .
|:| Further documents are listed in the continuation of Box C. See patent family annex.
* Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
"E" carlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
"O" document referting to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later "&" document member of the same patent family
than the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
05 June 2017 (05.06.2017) 07 June 2017 (07.06.2017)
Name and mailing address of the [SA/KR Authorized officer N

International Application Division

Korean Intellectual Property Office KIM HYEON JIN
189 Cheongsa-ro, Seo-gu, Daejeon, 35208, Republic of Korea

Facsimile No. +82-42-481-8578 Telephone No. +010-4310-7635

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2017/018477
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 7890924 B2 15/02/2011 US 2005-0160103 Al 21/07/2005
KR 10-2010-0070206 A 25/06/2010 KR 10-1002025 Bl 16/12/2010
US 2015-0363292 Al 17/12/2015 JP 2016-004569 A 12/01/2016
US 8578348 B2 05/11/2013 US 2012-0060142 Al 08/03/2012
WO 2012-031165 A2 08/03/2012
WO 2012-031165 A3 05/07/2012
US 2005-0137950 Al 23/06/2005 None

Form PCT/ISA/210 (patent family annex) (January 2015)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - claims
	Page 57 - claims
	Page 58 - claims
	Page 59 - claims
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - wo-search-report
	Page 96 - wo-search-report

