47114093 A2 | IO 00 A0 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

29 December 2004 (29.12.2004)

(10) International Publication Number

WO 2004/114093 A2

(51) International Patent Classification’: GO6F
(21) International Application Number:
PCT/US2004/019831

(22) International Filing Date: 21 June 2004 (21.06.2004)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/479,952
10/870,428

UsS
UsS

20 June 2003 (20.06.2003)
18 June 2004 (18.06.2004)

(71) Applicant (for all designated States except US): THOM-
SON PROMETRIC [US/US]; 1000 Lancaster Street, Bal-
timore, MD 21202 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CROWHURST,
Christopher; 1701 Whitehall Road, Whitehall, MD
21161. BOONE, Doug; 20721 York Road, Baltimore,
MD 21202. KERSHAW, Roger, C.; 400 Beverly Court,
Melbourne Beach, FL 32951.

(74) Agent: CHERDAK, FErik, B.; Arent Fox PLLC, 1050
Connecticut Avenue, NW, Suite 400, Washington, D.C.
200036 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
7ZW), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: SYSTEM AND METHOD FOR COMPUTER BASED TESTING USING CACHE AND CACHEABLE OBJECTS TO
EXPAND FUNCTIONALITY OF A TEST DRIVER APPLICATION

& (57) Abstract: A system and method for computer-based testing includes a test driver that controls delivery of a computer-based test
& to one or more test candidates and that controls caching of test components during delivery of the test. The system includes various
monitoring components, including monitoring of candidate progress, candidate performance, network bandwidth, network latency
and server response, during delivery of the test and adjusting the source of the test components or the volume of the test components
being cached for delivery of the test. Based upon this monitoring of the system, for example, if network communication failure is
detected, the test candidate is able to continue computer-based testing while connectivity is being reestablished.

10

15

20

WO 2004/114093 PCT/US2004/019831

TITLE OF THE INVENTION

[0001] SYSTEM AND METHOD FOR COMPUTER BASED TESTING USING
CACHE AND CACHEABLE OBJECTS TO EXPAND FUNCTIONALITY OF A

TEST DRIVER APPLICATION

CROSS REFERENCE TO RELATED APPLICATIONS

[0002] This application is ‘related to and claims priority
from U.S. Provisional Patent Application No. 60/479,952,
filed June 20, 2003, the disclosure of which is incorporated
herein by reference in its entirety, and is further related
to U.S. Patent Publication No. 20030203342, published on
October 30, 2003 and -entitled ™“METHOD AND SYSTEM FOR
COMPUTER BASED TESTING USING CUSTOMIZABLE TEMPLATES”, U.S.
Patent Publication No. 20030196170, published on October 16,
2003 and entitled “METHOD AND SYSTEM FOR COMPUTER BASED
TESTING USING A NON-DETERMINISTIC EXAM EXTENSIBLE LANGUAGE
(XXIL,) PROTOCOL”, U.S. Patent Publication No. 20030182602,
published on September 25, 2003 and entitled “METHOt) AND
SYSTEM FOR COMPUTER BASED TESTING USING PLUGINS TO EXPAND
FUNCTIONALITY OF A TEST DRIVER”, and U.S. Patent Publication
No. 20030138765, published on July 24, 2003 and entitled
“METHOD AND ‘SYSTEM FOR COMPUTER BASED TESTING USING AN
AMALGAMATED RESOURCE FILE”, and U.S. Patent Publication No.

20030129573, published on July 10, 2003 and entitled

10

15

20

WO 2004/114093 PCT/US2004/019831

“EXTENSIBLE EXAM LANGUAGE (XXL) PROTOCOL FOR COMPUTER BASED
TESTING”, all of which were filed concurrently and all of
which are incorporated herein by reference in their

1

entirety.

BACKGROUND OF THE INVENTION

Field of the Invention

[0003] The present invention 1is related to systems and
methods used to facilitate computer based testing such as
those that utilize network systems. More particularly, thé
present invention uses cacheable objects to expand
functionality of a test driver application. And, even more
particularly, such cacheable objects include cacheable data
objects and cacheable program and application objects that
may be used by a test driver application in facilitating

test taking and administration.

Description of the Related Art

[0004] For many years, standardized testing has been a’
common method of assessing examinees as regards educational
placement, skill evaluation, etc. Due to the prevalence and
mass distribution of standardized tests, computer-based

testing has emerged as a superior method for providing

-2-

10

15

20

WO 2004/114093 PCT/US2004/019831

standardized tests, guaranteeing accurate scoring, and

ensuring prompt return of test results to examinees.

[0005] Tests are developed based on the requirements and
particulars of test developers. Typically, test developers
employ psychometricians or statisticians and psychologists
to determine the specific requirements specific to human
assessment. These experts often have their own, unique ideas
regarding how a test should be presented and regarding the
necessary contents of that test, including the visual format
of the test as well as the data content of the test.
Therefore, a particular computer-based test has to be

customized to fulfill the client's requirements.

[0006] FIG. 1 illustrates a ©prior art ©process for
computerized test customizatién, denoted generally by
reference numeral 10. PFirst, a'client details the desired
test requirements and specifications, step 12. The
computerized test publisher then creates -the tools that
allow the test publisher to author the items, presentations,
etc., required to fulfill the requirements, step 14. The
test publisher then writes an item viewer, which allows the

test publisher to preview what is being authored, step 16.

10

15

20

WO 2004/114093 PCT/US2004/019831

[0007] An item presenter is then written to present the new
item, for example, to the test driver, step 18. Presenting
the new item to the test driver requires a modification of
the test driver's executable code. The test driver must be
modified so that it is aware of the new item and can
communicate with the new item presenter, step 20. The test
packager must then also be modified, step 22. The test
packager, which may also be a compiler, takes what the test
publisher has created and writes the result as new object
codes for the new syntax. Subsequently, the scoring engine
must also be modified to be able to score the new item type,
step 24. Finally, the results processor must be modified to
be able to accept the new results from the new item, step
26. This process requires no less than seven software

creations or modifications to existing software.

[0008] U.S. Pat. No. 5,827,070 (Kershaw et él.) and U.S.
Pat. No. 5,565,316 (Kershaw et al.) are incorporated herein
by reference. The '070 and '316 patents, which have similar
specifications, disclose a computer-based testing system
comprising a test development system and a test delivery
system. The . test development system comprises a test
document creation system for specifying the test contents,

an item preparation system for computerizing each of the

-4 -

10

15

20

WO 2004/114093 PCT/US2004/019831

items in the test, a test preparation system for preparing a
computerized test, and a test packaging system for combining
all of the items and test components into a computerized
test package. The computerized test package 1s then
delivered to authorized examinees on a workstation by the

test delivery system.

[0009] FIGS. 2A and 2B illustrate the test preparation
process as disclosed in the '070 and '316 patents. Test
developers assemble the test as shown at 32. As shown at 36,
item selection is preferably automated (AIS) using the test
development/document creation ("TD/DC") system or an
equivalent. test document creation system. Using "TD/DC",
test developers enter the test specifications into the
"TD/DC" system. Based on these specifications, "TD/DC"
searches its central database for items, which satisfy the
test specification, e.g., 50 math questions, 25 of which are
algebra problems and 25, which are geometry problems. Then,
the test developers review the items selected by "TD/DC" for
sensitivity and overlap constraints described in the
background section. If the test developer decides that the
sensitivity or overlap constraints are not satisfied by the
current selection of items, certain items may be designated

to be replaced by another item from the database. 1In

10

15

20

WO 2004/114093 PCT/US2004/019831

addition, test developers provide a test description
specifying the directions, messages, timing of sections,
number of sections of the test, etc. as shown at 42. If a
computer adaptive test (CAT) is to be run, test developers
may run a computer adaptive test simulation at 34, which are
known to skilled test developers. Using the Test Preparation
Tool (TPT) and TOOLBOOK 46, the test preparation system
("TPS") prepares the test level components as shown at 50.
TOOLBOOK is commercially available from Asymetrix
Corporation. The test level components include scripts 66,
item table block sets 56, general information screens 58,
direction screens 60, message screens 62, and tutorial units
64. Each of the test components will be described in detail
below. As the components are prepared, the TPT sfores them
in a TPS network directory 52. Then, the components are
entered into the TPS Production database 54. The components
stored in the TPS Production database 54 will be retrieved

during test packaging.

[0010] U.S. Pat. No. 5,513,994 (Kershaw et al.), which is
incorporated herein by reference, discloses a centralized
administrative system and method of administering
standardized test to a plurality of examinees. The

administrative system is implemented on a central

-6-

10

15

20

WO 2004/114093 PCT/US2004/019831

adminiétration workstation and at least one test workstation
located in different rooms at a test center. The
administrative system software, which provides substantially
administrative functions, 1is executed from tﬁe central
administration workstation. The administrative . system
software, which provides function carried out in connection
with a test session, is executed from the testing

workstations.

[0011] However, computér—based testing has expanded from
standalone distribution administered at a local test center
to wide area network digtribution administered viarclustered
servers af multiple locations. Thus, a distributed
computer-based testing system requires scalability to
support continuous exam administration and a high volume of
concurrent test candidates who may be located at many remote

locations.

[0012] Additionally, computer-based tests have evolved from
mere display of simple text-based content to include
streaming of audio and video content. Thus, a distributed

computer-based testing system demands sufficient system

- resources and storage capacity as well as efficient data

10

15

20

WO 2004/114093 PCT/US2004/019831

communication management to serve bandwidth-intensive

multimedia content in a consistent manner.

[0013] Moreover, computer-based test models have advanced to
include adaptive and simulation test models. Thus, a
distributed computer-based testing system must support a

variety of complex test models.

[0014] Further, a distributed computer-based testing system
must facilitate a fair testing environment within a dynamic
networked environment to test candidates who may have
varying workstation capabilities or network connectivity. A
number of factors affect the creation and maintenance of a
fair testing environment, including bandwidth mismatches and
network latency between a test candidate workstation and a
test distribution server as well as between a test
distribution server and a test source server, the available
system resources of the test source server, the test
distribution servers and the test candidate workstations,
and test component characteristics (e.g., whether the obﬁect
is text, audio or video). Thus, it is necessary to monitor
candidate progress, candidate performance, network
bandwidth, network latency, and server response, among other

testing environment variables, during computer-based testing

-8-

10

15

20

WO 2004/114093 PCT/US2004/019831

and cache test components in response to changes in the
testing environment in order to ensure timely and consistent
delivery of the computer-based test. In other words, a
distributed computer-based testing system must be adjustable
to emulate a suitable testing environment on test candidate
workstations concurrently executing the same computer-based

test.

SUMMARY OF THE INVENTION

[0015] The present invention discloses a computer-based
testing system that controls delivery of a computer-based
test to a high volume of concurrent test candidates and that
adapts delivery of the computer-based test in response to

changes in the testing environment.

[0016] It is one feature and adVantage of the present
invention to deliver computer-based tests to a high volume

of concurrent test candidates located at multiple locations.

[0017] It is another feature and advantage of the present
invention to securely administer computer-based tests among

concurrent test candidates located at multiple locations.

10

15

20

WO 2004/114093 PCT/US2004/019831

[0018] It is another feature and advantage of the present
invention to monitor candidate progress during computer-
based testing for ensuring that test components are timely

available for delivery to a test candidate during testing.

[0019] It is another feature and advantage of the present
invention to monitor candidate performance during computer-
based testing for ensuring that suitable test components are
available for delivery to a test candidate during testing,

for example, to support Computer Adaptive Testing (CAT).

[0020] It is another feature and advantage of the present
invention to monitor network bandwidth during computer-based
testing for adapting delivery of a computer-based test to a

test candidate in accordance with the network bandwidth.

[0021] It is another feature and advantage of the present
invention to monitor network latency during computer-based
testing for adapting delivery of a computer-based test to a

test candidate in accordance with the network latency.

[0022] It is- another feature and advantage of the present

invention to monitor server response during computer-based

-10 -

10

15

20

WO 2004/114093 PCT/US2004/019831

testing for adapting delivery of a computer-based test to a

test candidate in accordance with the server response.

[0023] It is another feature and advantage of the present
invention to enable a test candidate to launch a computer-—
based test on the candidate’s workstation prior to all the
test components having been delivered to the candidate

workstation.

[0024] It is another feature and advantage of the present
invention to enable a test candidate to continue computer-
based testing when network connectivity fails during

computer-based testing.

[0025] These and other features and advantages of the
present invention are achieved in systems and methods for
computer-based testing including a test driver application
that controls delivery of a computer-based test to a test
candidate. Particularly, the system includes ~cacheable
objects, including cacheable data objects (test items) and
cacheable program and application objéects .(plugins),
collectively, test components, to expand the functionality
of the test driver application, enabling the test driver

application to control caching of test components in

211 -

10

15

20

WO 2004/114093 PCT/US2004/019831

response to changes in the testing environment du£ing
delivery of a computer-based test to a candidate
workstation. The systems and methods include monitoring
candidate progress, candidate performance, network
bandwidth, network latency and server response - during
delivery of the computer-based test and adjusting either the
source of test components or the volume of test components
being cached for delivery of the test. Based upon such
monitoring, for example, if network communication failure is
detected, the test candidate is able to continue computer-—
based testing while connectivity is being reestablished in

the background.

[0026] There has thus been outlined, rather broadly, the
more important features of the invention and the preferred
embodiments in order that the detailed description thereof
that follows may be better understood, and in order that the
present contribution to the art may be better appreciated.
There are, of course, additional features of the invention
that will be described hereinaftef and which will form the

subject matter of the claims appended hereto.

[0027] In this respect, before explaining the preferred

embodiments of the invention 1n detail, it 1is to be

-12-

10

15

20

WO 2004/114093 PCT/US2004/019831

understood that the invention 1s not 1limited in its
application to the details of construction and to the
arrangements of the components set forth in the following
description or illustrated in the drawings. The invention is
capable of other embodiments and of being practiced and
carried out in various ways. Also, it is to be understood
that the phraseology and terminology employed herein are for
the purpose of description and should not be regarded as

limiting.

[0028] As such, those skilled in the art will appreciate
that the conception, uébn which this disclosure is based,
may readily be utilized as a basis for the designing of
other structures, methods and systems for carrying out the
several purposes of the present invention. It is important,
therefore, that the claims be regarded as including such
equivalent constructions insofar as they do not depart from

the spirit and scope of the present invention.

[0029] Further, the purpose of the foregoing abstract is to
enable the U.S. Patent and Trademark Office and the public
generally, and especially the scientists, engineers and
practitioners in the art who are not familiar with patent or

legal terms or phraseology, to determine quickly from a

-13 -

10

15

20

WO 2004/114093 PCT/US2004/019831

cursory inspection the nature and essence of the technical
disclosure of the application. The abstract is neither
intended to define the invention of the application, which
is measured by the claims, nor is it intended to be limiting

as to the scope of the invention in any way.

[0030] These, together with other objects of the invention,
along with the various features of novelty, which
characterize the invention, are pointed out with
particularity in the claims annexed to and forming a part of
this disclosure. For a better understanding of the
invention, its operating advantages and the specific objects
attained by its uses, reference should be had to the
accompanying drawings and descriptive matter in which there

is illustrated preferred embodiments of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0031] FIG. 1 is a flow diagram of a prior art method of

computerized test customization;

[0032] FIGS. 2A and 2B are block diagrams of a prior art

process for test production;

-14 -

10

15

20

WO 2004/114093 PCT/US2004/019831

[0033] FIG. 3 is a schematic diagram of a computer-based

testing system;

[0034] FIG. 4 1is a block diagram illustrating different
types of plugins that are wused with the computer-based

testing system;

' [0035] FIG. 5 illustrates various components that comprise

an exam source file;

[0036] FIGS. 6A and 6B are a schematic illustrating the
1
components, classes, and interfaces that comprise a test

definition language compiler;
[0037] FIG. 7 is a schematic illustrating the components
that comprise a test driver and a test administration

system;

[0038] FIGS. 8A and 8B are schematics illustrating the

classes and interfaces that comprise the test driver;

[0039] FIG. 9 illustrating the interfaces that comprise a

structured storage;

-15 -

10

15

20

WO 2004/114093 PCT/US2004/019831

[0040] FIGS. 10A and 10B are schematics illustrating the
classes and interfaces that comprise the structure storage

and associated operations;

[0041] FIG. 11 is a block diagram of main storage branches

of an exam resource file;

[0042] FIG. 12 1is a block diagram illustrating an exams

branch of the exam resource file;

[0043] FIGS. 13A and 13B are block diagrams illustrating a

o

forms branch of the exam resource file;

[0044] FIG. 14 is a block diagram illustrating an items

branch of the exam resource file;

[0045] FIG. 15 is a block diagram illustrating a categories

branch of the exam resource file;

[0046] FIG. 16 is a block diagram illustrating a templates

branch of the exam resource file;

[0047] FIG. 17 is a block diagram illustrating a sections

branch of the exam resource file;

-16 -

10

15

20

WO 2004/114093 PCT/US2004/019831

[0048] FIG. 18 is a block diagram illustrating a groups

branch of the exam resource file;

[0049] FIGS. 19A, 19B, 19C, and 19D are block diagrams
illustrating an events sub-branch of the groups branch of

the exam resource file;

[0050] FIG. 20 is a block diagram illustrating a plugins

branch of the exam resource file;

[0051] FIG. 21 is a block diagram illustrating a data branch

of the exam resource file;

[0052] FIG. 22 is a block diagram illustrating a formGroups

branch of the exam resource file;

[0053] FIG. 23 is a block diagram illustrating an attributes

branch of the exam resource file;

[0054] FIG. 24 is a block diagram illustrating a scripts

branch of the exam resource file:

-17-

10

15

20

WO 2004/114093 PCT/US2004/019831

[0055] FIG. 25 is a block diagram illustrating a message box

branch of the exam resource file;

[0056] FIGS. 26A, 26B, 26C, and 26D are block diagrams of an

exam instance file;

[0057] FIG. 27 is a flow diagram of a method of computerized

test customization;

[0058] FIG. 28 1is a flow chart of a method of test

production and test delivery;

[0059] FIG. 29 is a flow chart of a method for validation of

test specification and content;

[0060] FIG. 30 1is a flow chart of a method for test

delivery;

[0061] FIG. 31 is a flow chart of a method of restarting a

test after interruption;

[0062] FIG. 32 is a diagram of a life cycle of a plugin;

-18 -

10

15

20

WO 2004/114093 PCT/US2004/019831

[0063] FIG. 33 is a flow diagram of a process for compiling

plugins;

[0064] FIGS. 34A, 34B, 34C, and 34D are flow diagrams of a
process for delivering plugins to an examinee during a

computer-based test;

[0065] FIG. 35 is a block diagram illustrating an example of
a network environment for a computer-based testing system
according to the present invention;

[0066] FIG. 36 is a block diagram illustrating a caching
architecture for a computer-based testing system according

to the present invention;

[0067] FIGS. 37A and 37B are flow charts of methods for
caching test components according to the present invention;

and

[0068] FIGS. 38A, 38B, 38C, 38D and 38E are flow charts of
methods for monitoring candidate performance, candidate
progress, network latency, network bandwidth and server

response according to the present invention.

-19-

10

15

20

WO 2004/114093 PCT/US2004/019831

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0069] Reference now will be made in detail to the presently
preferred embodiments of the invention. Such embodiments are
provided by way of explanation of the invention, which is
not intended to be 1limited thereto. In fact, those of
ordinary skill in the art may appreciate upon reading the
present specification and viewing the present drawings that

various modifications and wvariations can be made.

[0070] For example, features illustrated or described as
part of one embodiment can be used on other embodiments to
yield a still further embodiment. Additionally, certain
features may be interchanged with similar devices or
features not mentioned yet which perform the same or similar
functions. It is therefore intended that such modifications
and variations are included within the totality of the

present invention.

[0071] The present invention discloses a system and method
of computer-based testing using a test driver that is, for
example, object-oriented and is architected to dynamically
add functionality through, for example, the use of an
expansion module, and preferably through the use of plugins.

The test driver preferably references component object model

-20-

10

15

20

WO 2004/114093 PCT/US2004/019831

servers using standard interfaces, and uses, for example,
class names (that can be an Active Document) defined in a
custom test definition language entitled eXtensible eXam
Language ("XXL") based on extensible Markup Language ("XML")
format to interact with existing applications while offering
the flexibility of allowing development of new plugins.

These new plugins can be customized to a client's needs

without changing the core test driver. The specific format

and protocol of XXL is also described in U.S. Patent
Publication No. 20030129573, published July 10, 2003 and
entitled “EXTENSIBLE EXAM LANGUAGE (XXL) PROTOCOL FOR

COMPUTER BASED TESTING”, incorporated herein by reference.

[0072] The plugins advantageously enable the test.driver to
support, for example, new item types, navigation algorithms,
information displays, scoring algorithms, timing algorithms,
test unit selection algorithms, results persistence
reporting, printed score reporting, and/or helm types
without change to the test driver's executable. Plugins also
allow expansion of the test driver's functionality without
requiring the test driver to be recompiled or re-linked, and
without requiring the test publisher to learn to program.
Since plugins are written independently of the test driver,

plugins can be written long after the test driver is built.

-21-

10

15

20

WO 2004/114093 PCT/US2004/019831

The client and the software developer can design and test
the plugins and distribute the plugins to each ﬁest site. By
using this method, large-scale regression testing of other
examinations will not usually be necessary unless changes
are made to the plugins that may be used Dby many
examinations. The specific use of plugins is described in
U.S. Patent Publication No. 20030182602, published September

25, 2003 and entitled “METHOD AND SYSTEM FOR COMPUTER BASED

TESTING USING PLUGINS TO EXPAND FUNCTIONALITY OF A TEST

DRIVER”, incorporated herein by reference.

[0073] The test driverm of the present invention controls
delivery of a computer-based test to a test candidate,
including controlling caching of test components during
delivery of the test. In accordance to monitoring of the
testing environment, including monitoring candidate
progress, candidate performance, network bandwidth, network
latency and server response, during deiivery of the test,
the test driver adjusts either the source of test components
or the volume of test components being cached for delivery
of the test. Based on such monitoring, for example, if
network communication failure is detected, the test
candidate is able to continue computer-based testing while

connectivity is being reestablished in the background. By

-22.

WO 2004/114093 PCT/US2004/019831

using this system, a uniform testing environment can be
established and maintained during computer-based testing in

a distributed computer-based testing environment.

-23 -

10

15

20

WO 2004/114093 PCT/US2004/019831

[0074] I. Overview of Computer-Based Test Delivery System

[0075] FIG. 3 shows an overview of the software architecture
for the computer-based test delivery system of the present
invention, denoted generally by reference numeral 100. Test
driver 110 is responsible for controlling all aspects of the
computer-based test. Test driver 110 identifies candidates
scheduled to take the computer-based test and identifies and
creates the appropriate.test. Test driver 110 then presents
all of the test components to candidates using a display
device (not shown), such as a computer monitor, and enables
candidates to enter responses to test questions through the
use of an input device (not shown), such as é keyboard, a
mouse, etc. Test driver 110 also monitors the security of
the test. For example, test driver 110 can prevent access to
the Internet and can validate candidates, although, these
functions are preferably performed by the test center
administration system. Test driver 110 also monitors the
timing of the test, providing relevant warnings to candidate
regarding the elapsed time of the test and the time
remaining for a particular section of the test or for the
entire test. Test driver 110 is also responsible for scoring
the test, once the test is completed or while the test is in

progress, and for reporting the results of the test by

Y

10

15

20

WO 2004/114093 PCT/US2004/019831

physical printout using printer 182 or in a file format
using candidate exam results file 180. If the test is
interrupted while in progress, for example, due to a power
failure, test driver 110 restarts the test, preferably at
the point at which the test was interrupted, as will be
described subsequently in more detail. Finally, if the test
is left incomplete, test driver 110 cleans up the incomplete
test. An incomplete test will have an exam instance file in
the candidate's directory but will not have created a
results file. A results file 1s created even though
generally the candidate will fail. The number of items
delivered to the candidéfe is recorded in the results file.
Test driver 110 picks up where the event was interrupted and

invisibly delivers the rest of the units of the test.

[0076] A test specification is authored by a test publisher
according to the specifications of the client and stored in
exam source files 130. Exam source files 130 include data
files 132, XXL files 134, multimedia files 136, and
hypertext markup language ("HTML") files 138. XXL files 134
include the test specification, which contains the client's
requirements - for the +test, a Dbank of test items or
questions, templates that determine the physical appearance

of the test, plugins, and any additional data necessary to

\

-25-

10

15

20

WO 2004/114093 PCT/US2004/019831

implement the test. Additional data is also stored in data
files 132. For example an adaptive selection plugin may need
a, b & c theta values. These values are stored in a binary

file created by a statistical package.

[0077] HTML files 130 include, for example, any visual
components of the test, such as the appearance of test items
or questions, the appearance of presentations on the display
device, the appearance of any client specified
customizations, and/or the appearance of score reports. HTML
files 130 preferably also include script, for example,
VBscript and Jscript, or Java script. HTML files 130 are
preferably authored wusing Microsoft's FrontPage 2000.
FrontPage 2000 is preferably also used to manage £he source
files in a hierarchy that is chosen by the test publisher.
Multimedia files 136 include, for example, any images (.jpg,
.gif, etc.) and/or sound files (.mp3, .wav, .au, etc.) that

are used during the test.

[0078] XXL compiler 140 retrieves XXL files 134 from exam
source files 130 using interface 190 and compiles the XXL
test content stored in XXL files 134. XXL compiler 140
stores the compiled test files in exam resource file 120. In

another embodiment, exam source files 130 do not contain XXL

-26 -

10

15

20

WO 2004/114093 PCT/US2004/019831

files 134 and contains, for example, only multi-media files.
In this embodiment, XXL compiler 140 is merely a test
packager that writes the data directly to exam resource file
120 without modification or validation. The data appears in
a stream under the "data" branch of exam resource file 120.

The name of the stream is specified by the test author.

[0079] In a preferred embodiment, XXL files 134 also include

XXL laﬂguage that defines plugins 150, in which case,
plugins 150 assist XXL compiler 140 in compiling XXL files
134. Test driver 110 preferably supports, for example, nine
different types of plugins 150, including, for example:
display plugin 152; helm plugin 154; item plugin 156; timér
plugin 158; selection plugin 160; navigation plugin 162;
scoring plugin 164; results plugin 166; and report plugin
168. Plugins 150, which are also included in XXL files 134,
are the first XML files compiled into exam resource file

120.

[0080] Plugins 150 allow a test designer to customize the
behavior of test driver 110 and are divided into two types,
for example: visible plugins and invisible plugins, as shown
in FIG. 4. The visible plugins, which include display plugin

152, helm plugin 154, and item plugin 156, enable the test

_27-

10

15

20

WO 2004/114093 PCT/US2004/019831

driver to control what is presented visually to an candidate
on the display device. The invisible plugins, which include
timer plugin 158, selection plugin 160, navigation plugin
162, scoring plugin 164, results plugin 166, and report
plugin 168, enable the test driver to control more
functional aspects of the test. Plugins 150 are used to
validate data stored in exam source files 130 that is to be

used by one of plugins 150 during delivery of the test to

the candidate, as 1s described below in greater detail.

Plugins 150 are, preferably, component object model ("COM")
objects, as described below. Plugins 150, may also utilize
Java implementation. Piugins 150 are preferably written
using Microsoft Visual C++ or Visual Basic 6.0 or any fully
COM enabled language. Plugins 150 may be in or out-of-
process, and, therefore, can exist as executable (".EXE")

files or as dynamic link library (".DLL") files.

[0081] An application or component that wuses objects
provided by another component is called a client. Components
are characterized by their location relative to clients. An
out-of process component is an .exe file that runs in its
own process, with its own thread of execution. Communication

between a <client and an out-of-process component is

-28 -

10

15

20

WO 2004/114093 PCT/US2004/019831

therefore called Cross—-process or out~-of-process

communication.

[0082] An in-process component, such as a .dll or .ocx file,
runs in the same process as the client. It provides the
fastest way of accessing objects, because property and
method calls don't have to be marshaled across process
boundaries. However, an in-process component must use the

client's thread of execution.

[0083] Exam resource file 120 receives the compiled test
content from XXL compiler 140 and plugins 150, if
applicable, and stores the compiled test content in an
object-linking and embedding ("OLE") structured storage
format, called POLESS, which is described in greater detail
below. Other storage formats may optionally be used. OLE
allows different objects to write information into the same
file, for example, embedding an Excel spreadsheet inside a
Word document. OLE supports two types of structures,
embedding and linking. In OLE embedding, the Word document
of the example is a container application and the Excel
spreadsheet is an embedded object. The container application
contains a copy of the embedded object, and changes made to

the embedded object affect only the container application.

-29-

10

15

20

WO 2004/114093 PCT/US2004/019831

In OLE 1linking, the Word document of the example is the
container application and the Excel spreadsheet is a linked
object. The container application contains a pointer to the
linked object and any changes made to the linked object
change the original 1linked object. Any other applications
that link to the linked object are also updated. POLESS
supports structured storage such that only one change made
to an object stored in exam resource file 120 is globally
effective. Test driver 110 comprises Active Document
container application 112 for the visible plugins, display
plugin 152; helm plugin 154, and item plugin 156, which

function as embedded objects, preferably COM objects.

[0084] Both XXL compiler 140 and plugins 150 are involved in
storing the compiled test content into exam resource file
120, if any of plugins 150 are being used. Exam resource

file 120 comprises, for example, a hierarchical storage

.structure, as will be described in further detail Dbelow.

Other storage structures may optionally be used. XXL

compiler 140 determines to which storage location a specific
segment of the compiled test content is to be stored.
However, 1if any of plugins 150 are used to wvalidate the
portion of any of the data from exam source files 130, then

the plugins 150 store the data directly to the exam resource

-30 -

10

15

20

WO 2004/114093 PCT/US2004/019831

file, based upon directions from XXIL compiler 140. XXL
compiler -uses IPersistResource interface 192, co-located
with I-Plugin interface 167 in FIG. 3, to control the
persistence 6f the data to exam resource file 120. XXL
compiler 140 and plugins 150 write the data to exam resource

file 120 using POLESS interfaces 191.

[0085] FIG. 5 illustrates the contents of exam source file
130, which are compiled into exam resource file 120 by XXL
compiler 140 and plugins 150. FrontPage 2000 Web 200 is
used, for example, to author the test. Exam source files 130
contain media files 210t visual files 220, and logic files
230. Media files 210 are multimedia files used to enhance
the presentation of - the test, including, for exémple, XML
data files 212, sound files 214, image files 216, and binary
files 218. XML data files 212 include the XXL test
definition language and the XXL extensions from the plugins
150 that use XML. The test specification, presentation,
scoring and other information is specified in the XML fiies.
Sound files 214 include any sounds that are to be used
during the test, such as .mp3 files, .au files, etc. Image
files 216 include any images to be used during the test,
such as .jpg files, .gif files, etc. Binary files 218

include any data needed by a plugin 150 that is not in XXL

-31-

10

15

20

WO 2004/114093 PCT/US2004/019831

format. Visual files 220 are HTML files that specify the
visual presentation of the test as presented to the examine
on the display device, including items files 222,
presentation files 224, score report files 226, and custom
look files 228. Items files 222 include HTML files that are
used to specify the visual component of test questions,
e.g., stems and distractors. Items files 222‘ are capable
also of referencing external exhibits. An exhibit could be a
chart, diagram or photograph. Formats of exhibits include,
for example: .jpg, .png, etc. Presentation files 224 define
what is seen by the candidate on the display device at a
particular instant during the test. Score report files 226
is' typically an HTML file with embedded script that
includes, for example candidate demographics, appointment
information, and candidate performance. The performance
might include pass/fail, achievement in different content
areas, etc. Custom look files 228 are typically HTML files
with embedded script to layout, for example, the title bar
and information contained therein. Logic files 230 are XML
files that specify the functional aspects of the test,
including test specification files 232, plugin files 234,
item bank files 236, and template files 238. Test
specification files 232 specify the content and progress of

the test as provided by the client. Plugin files 234 define

-32-

WO 2004/114093 PCT/US2004/019831

plugins 150 and contain any data necessary to implement
plugins 150. Item bank files 236 include the data content
and properties of the items, or test questions, that are to
be presented to the candidate during the test. Properties of
5 an item include the correct answer for the item, the weight
Igiven. to the item, etc. Template files 238 define visual

layouts that are used with the display screen during the

test.

10 [0086] Referring again to FIG. 3, once a test has begun,
test driver 110 accesses exam resource file 120 for the
instructions and files needed to implement the test, using
POLESS interfaces 193. Test driver 110 also accesses plugins
150 for additional data that expands the functionality of

15 test driver 110 in the areas of items,A navigation
algorithms, information displays, scoring algorithms, timing
algorithms, test unit selection algorithms, results
persistence reporting, printed score reporting, and/or helm
types. Test driver 110 communicates with plugins 150 using

20 various COM interfaces 169. COM interfaces facilitate OLE
linking. As stated previously, test driver 110 is an Active
Document container application and plugins 150 are embedded
objects. The COM interfaces function as communications paths

between the container application and the objects.

233

10

15

WO 2004/114093 PCT/US2004/019831

[0087]‘There are, for example, ten COM interfaces utilized
in computer-based test delivery system 100. IPlugin
interface 167, which is also a COM interface, is supported
by all of plugins 150. COM interfaces 169, therefore,
includes the IPlugin interface. The IPlugin interface
contains generic operations such as loading and unloading,

required of all plugins 150. In addition to the global

IPlugin interface, each plugin 150 also uses, for example, a

second, individual COM interface 169 to communicate with
test driver 110. Alternative structures of the IPlugin
interface may also be used. Table 1 shows the relationship
between each plugin 150 and the COM interface 169 used with

that particular plugin 150.

TABLE 1: COM INTERFACE FOR PLUGINS.

PLUGIN COM INTERFACE DESCRIPTION

All Plugins 150 TIPlugin Passes data between the
test driver and all plugins
regarding generic

- operations, e.g., loading

and unloading.

-34 -

WO 2004/114093

PCT/US2004/019831

PLUGIN

COM INTERFACE

DESCRIPTION

Display 152

IDisplay

Passes data Dbetween the
test driver and the visible
plugins that handle title
bars, displays, non-
answered items, and

summaries.

Helm 154

IHelm

Passes data Dbetween the
test driver and the visible
plugins that display
navigation controls or
reviews. Communicates with
a navigation plugin to
perform the actual
navigation. Also functions
as a user interface
connection to the test

driver.

Item 156

Iltem

Passes data between the
test driver and the visible
plugins that govern test

items or simulations.

-35-

WO 2004/114093

PCT/US2004/019831

PLUGIN COM INTERFACE DESCRIPTION

Timer 158 IUnitTimer Passes data between the
test drivers and the
invisible plugins used to
perform timing ' across
examination sections.

Selection 160 ISelection Passes data between the
test drivers and the
invisible plugins used to
select forms, sections,
groups, or items for
delivery to the candidate.

Navigation 160 INavigate Passes data Dbetween the

test drivers and the
invisible plugins used to

control section navigation

and define rules for
traversing through the
test.

-36-

WO 2004/114093

PCT/US2004/019831

PLUGIN COM INTERFACE DESCRIPTION

Scoring 164 IScore Passes data between the
test drivers and the
invisible plugins used to
control scoring of
delivered testing units.

Results 166 IResults Passes data Dbetween the
test drivers and the
invisible plugins that
control writing of
candidate results, for

* example, to candidate exam

results file 180.

Report 168 IReport Passes data between the

test drivers and the
invisible plugins that
control printing of score
reports and other material,
for example, printed
reference material and post
exam instructions to

printer 182.

-37-

10

15

20

WO 2004/114093 PCT/US2004/019831

[0088] Exam instance file 170 1s used to restart a test if
the test has been interrupted, for example, because of a
power failure. During delivery of the test, exam instance
file 170 receives examination state information £from test
driver 110 and plugins 150 regarding the state of all
runniﬁg objects being used to deliver the test. The
examination state information includes the presentation that
was being delivered on the display device before the
interruption, the responses the candidate had entered in
that presentation, etc. When the test is restarted, the exam
instance file 170 loads the state information back to test
driver 110 and plugins 150, allowing the test to return to
operation at the point where the test had been interrupted.
Preferably, the running state of all objécts is saved, to
exam instance file 170 rather than of only some of the
objects. Saving the state of only some of the objects to
exam instance file 170 causes the potential problem of only
a portion of the test information being restored after a
test interruption. Exam instance file 170 may also store
additional information relating to the test, including, for
example: the timing utilized and time remaining on units of
the exam, the current unit of delivery, candidate score,
etc. Test driver 110 and plugins 150 communicate with exam

instance file 170 using POLESS interfaces 195. Test driver

-38-

10

15

20

WO 2004/114093 PCT/US2004/019831

110 controls communications between test driver 110 and
plugins 150 using IPersistInstance interface 196, which is

collocated with COM interfaces 169 in FIG. 3.

[0089] -Several administrative environments perform the
administrative functions of computer-based test delivery

system 100, for example: Test Center Manager ("TCM") Bridge

172; Educational Testing Service ("ETS") Bridge 174; and

Unified Administration System ("UAS") 174. Administrative
functions include, for example: checking-in an candidate,
starting the test, aborting the test, pausing the test,

resuming the test, and transmitting results.

[0090] There are preferably two ways to run test driver 110.
The first is through a series of command line options and
the second is using COM interfaces describing appointment
information. The command line option exists for backwards
compatibility 1in a standard ETS environment and a TCM
environment. Table 2 shows a list of command line options
test driver 110 supports. There are, for example, four
programs which launch the test through the COM interface,
for example: 1) LaunchTest.exe (for test production and
client review); 2) UAS; 3) UTD2ETS.dll (an internal

compatibility module for use with the ETS administration

-39.

WO 2004/114093 PCT/US2004/019831

environment); and 4) UTD2TCM (for the Test Center Manger
environment). Other number of environments and/or programs

may optionally be used.

TABLE 2: COMMAND LINE OPTIONS SUPPORT BY TEST DRIVER.

SWITCH(ES) OPTION(S) PURPOSE

/? n/a Displays command line
/help switches in dialog box.
/UnregServer n/a Unregisters the test driver

core COM server.

/RegServer n/a Registers the test driver

core COM server.

/T Form name Name of the form or form

group to run in the exam.

/F Resource file The exam resource file to
use.

/S n/a Suppress any printing.

/W n/a Run in close-of-day mode.

/TI n/a Set tracing level to
information. (Very 1large

instance file).

-40-

10

WO 2004/114093 PCT/US2004/019831

SWITCH(ES) OPTION(S) PURPOSE

/TW n/a Set tracing level to
warning. (Large instance
file.)

/TE n/a Set tracing level to error.
(Average sized instance
file.)

/K Resource dir, Used to point to
SKSID, candidate directories. A space
director separates each of the three

options.

[0091] The administration environments use several

interfaces to communicate with test driver 110. IAppointment
interface 176 1s part of UAS 174 and allows access by test
driver 110 to candidate information for the candidate taking
the test, such as demographics. The candi&ate information is
included in candidate exam results file 180, which is

created by the test driver. ILaunch2 interface 177 functions

as the primary control interface for UAS 174 and allows UAS

174 to control various components such as test driver 110,
screen resolution change, accommodations for disabled
candidates, candidate check-in, etc., 1in a test center,

which is the physical location where the candidate is taking

-41 -

10

15

20

WO 2004/114093 PCT/US2004/019831

~ the test. ITransfer interface 199 transfers candidate exam

results file 180 and other files back to UAS 174. IPrint
interface 198 sends information regarding any reports to

printer 182.

[0092] The test driver is described in greater detail in
U.S. Patent Publication No. 20030182602, entitled “METHOD
AND SYSTEM FOR COMPUTER BASED TESTING USING PLUGINS TO
EXPAND FUNCTIONALITY OF A TEST DRIVER”, incorporated herein

by reference.
[0092] II. XXL Compiler Interfaces and Classes

[0093] FIGS. 6A and 6B i1llustrate the main diagram for XXL
compiler 140. XXL compiler 140 comprises the following
classes, for example: cCompile 2000; cData 2004; cArea 2006;
cTemplate 2008; cCategory 2010; cItem 2012; cPresentation
2014; cGroup é016; cSection 2018; cForm 2020; cFromGroup
2022; cExam 2024; cMsgBox 2026; cChecksum 2028; cEvent 2030;

cResult 2032; cReport 2024; cPlugin 2036; and cXXL 2038.

[0094] The main interface to XXL compiler 140 is ICompile
interface 2002. ICompile interface 2002 is implemented by

cCompiler class 2000. All control and dinitiation of

-4 -

10

15

20

WO 2004/114093 PCT/US2004/019831

compilation of exam source files 130 into exam resource file
120 occurs by way of this single public interface. The core,
non-plugin related elements of the XXL test definition
language, as stored in XXL files 134, are compiled by
classes in XXL compiler 140. For example, cSection class
2018, compiles the section element, and cGroup class 2016

compiles the group element.

[0095] ICompile interface 2002 supports the following

operations, for example: createResource(); addSource();
addData(); closeResource(); about(); linkResource();
openResource() and getCryptoObject(). CreateResource()

creates a resource file, for example, an XXL based resource
file such as exam resource file 120. AddSource() compiles
an XXI, file into the resource file. AddData() adds a file
directly to a data branch of the resource file.
CloseResource() closes the resource file. LinkResource()
links a resource in the resource file and is performed after
all compiling of the source files . are completed.
GetCryptoObject() returns an ICrypto object containing the

current encryption setting of POLESS, as described below.

[0096] The classes of XXL compiler 1040, e.g., cForm 2020

and cItem 2012, handle individual XXIL core language

-43 -

10

15

20

WO 2004/114093 PCT/US2004/019831

elements. All of these classes compile the specific XXL
source element into exam resource file 120. All of these
class language elements are also symbols used in later
references. Therefore, the classes all derive from cSymbol
class 2040. cSymbol class 2040 allows the classes -of XXL

compiler 140 to reside in a symbol table.

[0097] For example, the XXL element plugin 150 appears as

follows in XXL files 134:

3 <plugin name="helmNextPrevious"

progid="UTDP.cNextPrevious" />

[0098] This XXL call causes an instance of cPlugin class
2036 to be created, compiles the source, and writes the
compiled result to exam resource file 120. The name and ID
of Plugin 150 is also added to the symbol table for later

reference.

[0099] XXL compiler 140 also contains the following token
classes, for example: cToken 2042; cTokenCreatorNoRef 2044;
cTokenCreator 2046; ctokenCreatorRef 2048; cTokenCreatorBase
2050; and cTokenFactory 2054. These token <classes are

involved in the identification of tokens. Tokens turn into

44 -

10

15

20

WO 2004/114093 PCT/US2004/019831

symbols after identification. Symbols are any class derived

from cSymbol, e.g., cTemplate, cSection, etc.

[0100] XXI compiler 140 also contains the following symbol
table classes, for example: cPluginSymbolTable = 2058;
cTemplateSymbolTable 2060; cSymbolTable 2062;

CFFGSymbolTable 2064; cSGPSymbolTable 2066; and

cSymbolTableBase 2068. These classes are varieties of symbol

tables. There are different symbol tables for different
groups of symbols. A group of symbols define a name space
for the symbol. Common symbol table funqtions are located in

the base symbol table classes and templates.

[0101] All content and specification destined for a plugin
150 appears in the data element in XXL. For example, below

is an item definition in XXL:

4 <item name="wantABreakl" skipAllowed="false"> <data>
<multiChoice correctAnswer="A" maxResponses="1"
minResponses="1" autoPrompt="false"

URI="itembank/info item.htm#wantABreak"/>- ; </data> </item>

[0102] The item element is handled by a cItem class 2012

object. The data element in the XXL definition is handled by

-45.

10

15

20

WO 2004/114093 PCT/US2004/019831

a cData class 2004 object. Item plugin 156 Plugin 150 will
receive the source to compile from the cData class 2004

object, in this example, a multiChoice element.

[0103] cWrapXML class 2052, a wrapper class for XML DOM
nodes, supports error handling. cCustomAttributes class 2056
compiles the custom attributes XXL element. cWrapPropertySet

class 2070 is a wrapper class for a POLESS property storage.
[0104] III. Test Driver Interfaces and Classes
[0105] A. Interfaces

[0106] FIG. 7 shows test driver 110, UAS 174; and the
interfaces used by and between the test driver 110 and UAS
174 to deliver the test. UAS 174 defines ILaunch2 interface
177, which is used by UAS 174 to initiate test events.
ILaunch? interface 177 1is an extension of ILaunch interface
178, which, in other embodiments of the present invention,
is also used by UAS 174 to initiate test events. UAS 174
also defines and implements édditional interfaces, for
example: IAppointment interface 176; IPrint interface 198;
and ITransfer interface 199. IAppointment interface 176

transfers examinee candidate information and appointment

- 46 -

10

15

20

WO 2004/114093 PCT/US2004/019831

details from UAS 174 to test driver 110, as is illustrated
by the dashed arrow connecting IAppointment interface 176 to
test driver 110. IPrint interface 198 allows UAS 174 to send
print requests to printer 198 regarding reports, for
example, score reports. ITransfer interface 199 allows UAS
174 to request the transfer of information from candidate

exam results file 180 back to UAS 174.

[0107] Test driver 110 defines various interfaces to allow
test driver 110 to communicate with different parts of
computer-based test delivery system 100. Test driver 110
includes, for example, ten COM interfaces 169 to communicate
and transfer data with plugins 150. (See Table 1 above) The
COM interfaces 169 are denoted in FIG. 7 as follows, for
example: IDisplay interface 169%a; IHelm interface 169b;
ITtem interface 169c; IUnitTimer interface 169d; ISelection
interface 169e; INavigate interface 169f; IScore interface
169g; IResults interface 169h; IReport interface 169i; and

IPlugin interface 169j.

[0108] Test driver 110 and plugins 150 communicate and
transfer data with exam resource file 120 using, for
example, three IPersistResource interfaces 192:

IPersistResourceStream interface 192a; IPersistResourceSet

-47 -

10

15

20

WO 2004/114093 PCT/US2004/019831

interface 192b; and IPersistResourceStore interface 192.
IPersistResource interfaces 192 are used by plugins 150
during compilation of exam source files 130 and are used by
both test driver 110 and plugins 150 during delivery of the
test. During compilation of exam source files 130, XXL
compiler 140 directs plugins 150 in which storage location
of exam resource file 120 to store any information that
plugins 150 have validated. Plugins 150 can then retrieve
the stored information from exam resource file 150 during
delivery of the test. Other number of interfaces and
different combination of functionality may alternatively be

used.

[0109] Information is saved from plugins 150, or from XXL
compiler 140 in general, to exam resource file 120, for
example, as either a stream of data, as a set of data, or as
a storage structure, depending on which of the three
IPersistResource interfaces 192 1is implemented to save the
information from plugins 150, to exam resource file 120.
IPersistResourceStream interface 192a saves the information,
for example, as a stream of data or other data storage
format. A stream of data is simply a stream of bytes stored
as a linear sequence. IPersistResourceSet interface 192b

saves the information, for example, as a set of data. A set

-48 -

10

15

20

WO 2004/114093 PCT/US2004/019831

of data is preferably a name-value property pair. For
example, the name of a particular property for an item is
distractors and the value 1is the number of distractors
required for that item. IPersistResourceSet interface 192
allows the name-value property pair to be éaved together in
exam resource file 120. IPersistResourceStore interface 192c
saves the information, for example, in a directory format
with storage areas. The directory format allows other
streams of data to be saved within the storage area, other
property sets to be stored within the storage area, and for
sub-storages to be saved under the storage area.

[0110] IPersistInstance interface 196, likewise, comprises,
for example, three, different interfaces, for example:
IPersistInstanceStream interface 196a; IPersistInstanceSet
interface 196b; and IPersistInstanceStore interface 196c.
Examination state information is saved to exam instance file
170 as, for example, a stream of data, as a set of data, or
as a storage element, depending on which of the three

IPersistResource interfaces 192 is implemented.

[0111] Two of the interfaces, IContainerNotify interface 200
and IContainerNotifyHelm interface 206, function as callback

interfaces from plugins 150 to test driver 110.

-49 .

10

15

20

WO 2004/114093 PCT/US2004/019831

IContainerNotify interface 200 allows a visible plugin to

inform test driver 110, for example, that the plugin is

displayed and ready ‘ for examinee interaction.

IContainerNotifyHelm interface 206 allows helm plugin 154 to
request navigation from test driver 110 after receiving an
input from the examinee to move to another section of the
test. IMore interface 202 is used to convey whether the
examinee has seen all content in a presentation. For
example, a "more" button appears in place of the next button
when the content exceeds the window length. When the
examinee scrolls to the bottom, the "more" button disappears
and is replaced with the "next" button. Collection interface
204 is used by test driver 110 to hold any group entities,

for example, categories and sections of the test.

[0112] The remaining interfaces are, for example, Microsoft
defined Active Document interfaces, used to implement OLE
linking functions of test driver 110 and the visible
plugins, display plugin 152, helm plugin 154, and item
plugin 156. TIOleInPlaceFrame interface 210 controls the
container's top-level frame window, which involves allowing
the container to insert its menu group into the composite
menu, install the composite menu into the appropriate window

frame, and remove the container's menu elements from the

-50 -

10

15

20

WO 2004/114093 PCT/US2004/019831

composite menu. TIOleInPlaceFrame interface 210 sets and
displays status text relevant to the end-place object.
I0leInPlaceFrame interface 210 also enables or disables the
frames modeless dialogue boxes, and translates accelerator
key strokes intended for the container's - frame.
I0leInPlaceUI window interface 211 is dimplemented by

container applications and used by object applications to

‘negotiate boarder space on the document or frame window. The

container provides . a RECT structure in which the object can
place toolbars and other similar controls, determine if
tools can in fact be installed around the objects' window
frame, allocates space for the boarder, and establishes a
communication channel between the object and each frame and
document window. IAdviseSync interface 212 enables
containers and other objects to receive notifications of
data changes, view changes, and compoﬁnd—document changes
occurring in objects of interest. Container applications,
for example, require such notifications to keep cached
presentations of their linked and embedded objects up-to-

date.

[0113] Calls to IAdviseSync interface 212 methods are a
synchronous, so° the «call is sent and then the next

instruction is executed without waiting for the calls

-51-

10

15

20

WO 2004/114093 PCT/US2004/019831

return. IOleWindow interface 213 provides methods that allow
an application to obtain the handle to the various windows
that participate in-place activation, and also to enter and
exit context-sensitive help mode. IOleInPlaceSite interface
214 manages interaction between the container and the
objects in-place client site. The client site is the display
site for embedded objects, and provides position and
conceptual information about the object. IOleClientSite
interface 215 is the primary means by which an embedded
object obtains information about the location and extent of
its display site, its moniker, its user interface, and other
resources provided by i%s container. Test driver 110 called
I0leClientSite interface 215 to request services from the
container. A container must provide one instance of
IO0leClientSite interface 215 for every compound-document it
contains. IOleDocumentSite interface 216'enables a document
that has been implemented as a document object to bypass the
normal activation sequence for in-place-active objects and
to directly instruct its client site to activate it as a
document object. A client site with this ability is called a

"document site".

[0114] B. Core Classes

-52.

10

15

20

WO 2004/114093 PCT/US2004/019831

[0115] FIGS. 8A and 8B illustrate the main classes of test
driver 110 and the interfaces between test driver 110 and
plugins 150. Also shown are the classes that interface to
UAS 174. ITransfer interface 199, IPrint interface 198,
ILaunch2 interface 177, and IAppointment interface 176
represent the connections from test driver 110 to UAS 174,
as described previously. Some of the lines depicted in FIG.
8 are solid and some are dashed. The solid 1lines, for
example, between IcResults interface 240 and cEvent class
252, represent inheritance. The dashed lines, for example,
between IExam interface 222 and IPlugin interface 1697,

represent instantiation.

[0116] Inheritance, or generalization, relates to a
generalized relationship between classes that shows that the
subclass shares the structure or behavior defined in one or
more superclasses. A generalized relationship is a solid
line with an arrowhead pointing to the superclass.
Instantiation, or dependency, represents a relationship
between two classes, or between a class and an interface, to
show that the client class depends on the supplier
class/interface to provide certain services. The arrowhead
points to the supplier class/interface. Some services from a

supplier class to a client class include, for example: the

-53-

10

15

20

WO 2004/114093 PCT/US2004/019831

client class access a value (constant or wvariable) defined
in the supplier class/interface; methods of the line class
invoke methods of the supplier class/interface; and methods
of the client class have signatures whose return class or
arguments are instances of the supplier class/interface. For
instantiation, the <cardinality of +the relationship is
illustrated in FIG. 8 1if the relationship represents
containment. Cardinality specifies how many instances of one
class may be associated with a single instance of another
class. Cardinality can be shown for relationships to
indicate the number of links allowed between one instance of

a class and the instances of another class.

[0117] Test driver 110 also has several interfaces and
implementing classes. Test driver 110 interfaces include,
for example: IExam interface 222; IMsgBox interface 224;
ICategory interface 232; 1IForm interface 238; IcResults
interface 240; IcReport interface 242; IScript interface
246; 1ISection interface 250; IPresentation interface 248;
and/or IcItem interface 256. The classes that implement the
main interfaces include, for example: cScreenMinimum class
226; cFormGroup class 228; cPlugin class 230; cArea class
234; cTemplate class 236; cActivePlugin class 250; and

cEvent class 252. The interfaces that are prefaced by "Ic"

-54-

10

15

20

WO 2004/114093 PCT/US2004/019831

have names that already exist for plugins 150 to enact, for
example, item plugin 156 implements IItem interface 169c.
IcItem interface 256, however, is the interface implemented
by test driver 110 class cItem (not shown). Of course, any
number of interfaces may be used, depending on the necessary

functionality.

[0118] The core class cExam (not shown) implements ILaunch2
interface 177 so that UAS 174 can control test driver 110.
The appointment object, which implements IAppointment
interface 176, is the main object UAS 174 supplies to test
driver 110. The appoinfﬁent object is available to plugins
150 by way of IPlugin interface 169j. Furthermore, all
plugins 150 get (TExam) using the IPlugin inte?face 169,

also.

[0119] The cExam class selects and delivers the form, using
cFormGroup class 228 and IForm interface 238. The form
delivers results using IcResults interface 240, reports
using IcReport interface 242, and sections contained with in
the test using ISection interface 250. Classes that are in
the test delivery chain preferably derive from cEvent class

252.

-55.

10

15

20

WO 2004/114093 PCT/US2004/019831

[0120] The cResults class (not shown) delivers a results
plugin 166 that implements IResult interface 169i. The
cReport class (not shown) delivers a report plugin 168 that
implements IReport interface 16%9h. The cSection, cGroup, and
cForm classes (not shown) use several invisible plugins 150
to control the delivery of the test. These plugins 150 are
timer plugins 158, which implement IUnitTimer interface
169d, selection plugins 160, which implement ISelection
interface 169e, scoring plugins 164, which implement IScore
interface 169g, and navigation plugins 162, which implement
INavigate interface 169f. The cPresentation «class (not
shown) supplies data to its template for the display of the
pregentation. The three visible plugins 150 are created and
controlled through cTemplate class 236 and child objects
cArea class 234. Item plugins 156 have an extension class in
the cItem class (not shown) that wraps the item plugin 156
and provides generic extended services that all item plugins
156 implements. The cItem class in test driver 110 is a
wrapper class. The cItem class provides two base services,
for example: generic item‘functionality and access to item
plugin 156, which is the wrapping function. Item generic
functionality includes, for example: having an item name,
having an item title, determining if the ifem is scored or

un-scored, determining whether the item has been presented

-56-

10

15

20

WO 2004/114093 PCT/US2004/019831

to the examinee, etc. These services are generic to all
items and are provided by test driver 110. Item plugins 156
perform the actual scoring of the item, which is unique to
each item type. Item plugins 156 present the content of the
item and allow the examinee to interact with the item. These

services are unique to each item type.

'[0121] In addition to the interfaces described previously,

test driver 110 implements IRegistry interface 220, which
allows VB code to access the Windows registry. Test driver
110 also implements ILegacyltem interface 258 and
ILegacyScore interface 260, which are defined by test driver
110 and are implements by certain item plugins 156 and
scoring plugins 164. ILegacyItem interface 258 and
ILegacySche interface 260 allow old item types that existed
in previous test drivers to report results like the previous
test drivers. For some tests, test driver 110 must report
results for old item types, which had very specific ways of
reporting results. ILegacylItem interface 258 and
ILegacyScore interface 260 allow the new item plugins 156
that represent old item types to report this legacy format
of information to result plugins 166 trying to imitate

previous test drivers.

-57-

10

15

20

WO 2004/114093 PCT/US2004/019831

[0122] A complete description of test driver 110 classes and

interfaces is included in Appendix A.

[0123] IV. POLESS

[0124] All persistent storages, exam resource file 120 and
exam instance file 170, preferably utilize POLESS. POLESS
allows data to be embedded, linked, or references as
external files from the persistent storage to test driver
110 and Active Document container application 112 (FIG. 3).
POLESS supports a hierarchical tree structure with node or
branch level additions,“replacements, and deletions. POLESS
also supports optional data encryption at the node level.
The type of encryption employed depends on the destination
of the information in the persistent storage. For example,
different encryption keys may optionally be used for data
being routed to test centers, data being routed to
administrative data centers, and data being routed for
client use (e.g., client review). Microsoft Crypto-API is
preferably used to perform encryption of data in the
persistent storage. Finally, POLESS also supports optional

compression at the node level, preferably using Lempal-Zev

compression.

-58 -

10

15

20

WO 2004/114093 PCT/US2004/019831

[0125] POLESS 1is an extension of OLE structufed storage
compound document implementation. A compound document is a
single document that contains a combination of data
structures such as text, graphics, spreadsheets, sound and
video clips. The document may embed the additional data
types or reference external files by pointers of some kind.
There are several benefits to structured storage. Structured
storage providgs file and data persis£ence by treating a
single file as a structured collection of objects known as
storage elements and streams. Another benefit is incremental
access. If test driver 110 or plugins 150 need access to an
object within a compound file, only that particular object
need be loaded and saved, rather than the entire file.
Additionally, structure storage supports transaction
processing. Test driver 110 or plugins 150 can read or write
to compound files in transacted mode, where changes made can

subsequently be committed or reverted.
[0126] A. POLESS Components

[0127] FIG. S shows the major components that support POLESS
and the interfaces that connect the components. POLESS 300
may be either exam resource file 120 or exam instance file

170. POLESS 300 utilizes PKware library component 330 for

-59.

10

15

20

WO 2004/114093 PCT/US2004/019831

storage compression and decompression. POLESS 300 wuses
Crypto API component 332, a Microsoft application, for
storage encryption and decryption. Crypto API component 332
relies on a crypto service provided ("CSP") 334 to perform
the actual encryption algorithms. Access to the services of
these components is facilitated by standard (API) interfaces

exposed by these components.

[0128] OLE2SS component 310 contains all the interface
definition that makeup structure storage. These interfaces
can be realized by any structured storage implementation,
such as compound document implementation OLE2 320 and POLESS
300. The interfaces include, for example: IStream interface
340; TISequentialStream interface 342; IStorage interface
344; and IRootstorage interface 346. POLESS 300 additionally
implements IStreamVB interface 348 and IStorageVB interface

350.

[0129] IStreamVB interface 348 supports several functions,
for example: ReadVB(); WriteVB(); Clear(); Reset():
get sName(); get oStream(); and CopyTo(). ReadVB() reads
a specified number of bytes to a data array. WriteVB()
writes the byte data to the stream. Clear() clears the

stream of all data. Reset() sets position to the beginning

-60 -

10

15

20

WO 2004/114093 PCT/US2004/019831

of the stream. get sName() is a read-only function that
returns the name of the stream. get oStream() is a read-
only function that returns the IStream interface 348.

CopyTo() copies a source stream to a destination stream.

[0130] IStorageVB interface 350 supports several functions,

for example: Clear()7 CommitVB (); RevertVB () :
sElementName(); bStorage(); oElement(); CreateStream();
OpenStream(); CreateStorage(); OpenStorage(); get sName (
); get oStorage(); get_nCount(); GetCompression();
GetEncryption() GetCRC(); CreateStreamLinked() ;

CreatePropertyStg() mOpenPropertyStg(); SetClass()7
RegisterAlias(); Destroy(); and get ElementType(). Clear(
) clears the storage of all elements. CommitVB() causes
transacted mode changes to be reflected in the parent.
RevertVB() discards changes made since the last commit.
sElementName() returns the name of the element. bStorage()
returns TRUE if the element is a sub-storage. oElement()
returns IStreamVB interface 348 or IStorage interface VB 350
for the element. CreateStream() creates and opens a stream

and returns IStreamVB interface 348.

[0131] OpenStream() opens a stream and returns IStreamVB

interface 348. CreateStorage() creates and opens a nested

-61 -

10

15

20

WO 2004/114093 PCT/US2004/019831

storage and returns IStreamVB interface 348. OpenStorage()
opens an existing storage and returns IStreamVB interface
348. get sName() is a read-only function that returns the
name of the storage. get oStorage() is a read-only function
that returns IStorage interface 350. get_nCount() is a
read-only function that returns a count of the elements.
GetCompression() returns the status of file compression.
GetEncryption() returns the status of file encryption.
GetCRC() returns the status of file CRC checking.
CreateStreamLinked() creates and opens a linked stream and
returns IStreamVB interface 348. CreatePropertyStg()
creates and opens a property storage and returns
IPropertyStorageVB interface 414. OpenPropertyStg() opens a
property storage and returns IPropertyStorageVB interface
414. SetClass () sets the CLSID for the storage.
RegisterAlias() registers a pluggable protocol. Destroy()
destroys the specified elements. get_ElementType() is a

read-only function that returns the type of the element.
[0132] B. POLESS Classes

[0133] FIGS. 10A and 10B illustrate the main class of POLESS
300, the interfaces used to implement the classes, and the

flow of the creation of streams 424 and storages 426.

-62 -

10

15

20

WO 2004/114093 PCT/US2004/019831

cFileRoot class 400 is the first object instantiated and is
used to create a Anew or open an existing a POLESS file.
cStorageRoot class 406 is returned, which is a slightly
overloaded version of cStorage class 410. From cStorageRoot
class 406 creates or opens cStream class 408 and cStorage
class 410, from which any streams or storages and sub-

storages of those can be created or opened, respectively.

.For instance, cStorage class 410 creates cPropertyStorage

class 412, which creates storage for property sets. The
classes implement interfaces that perform operations and/or
define attributes that further define the function or
properties of the class. A complete description of POLESS

300 classes and interfaces is included in Appendix B.

[0134] 1) cFileRoot Class

[0135] cFileRoot class 400 is the root POLESS class and
controls the creation and opening of all POLESS files.
cFileRoot class 400 is generally instantiated first before
any other POLESS objects can be created, although other
sequences are possible. cFileRoot class 400 implements
IFileRoot interface 401, which is collocated in FIG. 10 with
cFileRoot class 400. IFileRoot interface 401 is used to open

one file at a time and is not released until all other

-63 -

10

15

20

WO 2004/114093 PCT/US2004/019831

storage object 426, stream object 424, and property storage
interfaces are released and the file is ready to be closed.

cFileRoot class 400 and IRoot interface support the

following operations, for example: StorageFileCreate()7
StorageFileOpen () ; CryptoGet () ; bStorageFile () ;
StorageAmalgamatedGet () DeltaFileCreate()i
Delta¥FileApply () ; GetObjechromPath():
CreateStreamFromBSTR () : MemoryStreamFromStream ()i
GetPicture(); and SavePicture().

[0136] StorageFileCreate() creates a new storage file,

[

returns the root storage to interface, marks the new
structured storage file as a POLESS file by storing the
class ID ("CLSID") of this class in a stream in the root
storage. StorageFileOpen() opens an existing storage file
and returns the root storage interface. CryptoGet() gets a
default configured crypto class and should be set and used
on the open or create of the stdrage file. bStorageFile()
returns true 1f the file provided is an OLLE structured
storage file and not a POLESS storage file.
StorageAmalgamatedGet () gets an empty small
cStorageAmalgamated class 404. DeltaFileCreate() creates a
POLESS difference file by comparing the original POLESS file

to the updated POLESS file. DeltaFileApply() applies a

-64 -

10

15

20

WO 2004/114093 PCT/US2004/019831

POLESS delta file and applies the original POLESS file to
the delta file to create an wupdated POLESS file.
GetObjectFromPath() uses monikers to retrieve the object
named by the path and returns a pointer to the object
retrieved. CreateStreamFromFile() creates a structured
storage stream and populates it with the contents of the
file. CreateStreamFromBSTR() creates a structures storage

stream and fills it with the specified string.

MemoryStreamFromStream() is used to copy a stream to a
newly created memory stream object. GetPicture() loads a
picture from stream object 424. SavePicture() saves the

picture into the stream 426.

[0137] 2) cCrypto Class

[0138] cCrypto class 402 controls the configuration of the
encryption/decryption of POLESS 300. cCrypto class 402 has
the following attributes, for example: sProviderName;
eProviderType; sContainerName; and sPassword. SProviderName
represents the name of CSP 334 being used to perform the
encryption/decryption services. eProviderType is the type of
CSP 334. The field of cryptography is large and growing.
There are many different standard data formats and

protocols. These are generally organized into groups or

-65 -

10

15

20

WO 2004/114093 PCT/US2004/019831

families, each of which has its own set of data formats and
way of doing things. Even 1f two families used the same
algorithm, for example, the RCZ block cipher, they would
often use different padding schemes, different key links,
and different default modes. Crypto API is designed so that
a CSP provider type represents a particular family.
sContainerName 1is the key name and must be provided by
cCrypto class 402. sPassword is an optional password on the
public/private key pair and can only be entered by a human
operator. The password can be used for review disks and

their resource files.

[0139] cCrypto class 402 implements ICrypto interface 401
and they support the following properties and method, for
example: ProviderName; Password; FileType; Algorithm;
EnumProviders(); and EnumAlgorithms(). Get ProviderName()
returns the name of the Crypto provider. Put ProviderName()
sets the name of the Crypto provider. Get_ Password() and
Put Password() are only used for sponsor resource files.

Get FileType() gets the file type and put_FileType() sets

the file type. Get Algorithm() gets the encryption
algorithm and put Algorithm() sets the encryption
algorithm. EnumProviders() returns an enumerator for the

- 66 -

10

15

20

WO 2004/114093 PCT/US2004/019831

list of installed providers. EnumAlgorithms() enumerate a

list of algorithms for the current provider.

[0140] 3) cStoragePmalgamated Class

[0141] cStorageAmalgamated class 404 is an implementation of
IStorage interface 344. cStorageAmalgamated class 404 holds
references to an ordered collection of IStorage objects.
When a stream is opened, cStorageAmagalmated class 404

searches the collection of storage objects in order to find
the first storage object that has the requested stream and
returns this stream. cétorageAmalgamated class 404 handles
compound storage resolution and delegates all other work to

cStorage class 410. cStorageAmalgamated class 404 is, for

. example, read-only. cStorageAmalgamated class 404 will not

allow stream or storages to be created but is primarily for
reading exam resource file 120. cStorageRmalgamated class
404 implements IStorageAmalgamated interface 405.
cStorageAmalgamated class 404 and IStorageAmalgamated
interface 405 support the following operations, for example:
StorageAdd(); ClearStorage(); OpenStoragePAmalgamated();
and OpenPropertyStgAmalgamated(). StorageAdd() adds a new
storage to the collection of storages. ClearStorage()

clears all the storage objects from the collection.

-67 -

10

15

20

WO 2004/114093 PCT/US2004/019831

OpenStorageRmalgamated() opens a sub-storage of the current
amalgamatéd storages in an amalgamated fashion.
OpenPropertyStgAmalgamated() opens a property storage of
the current amalgamated storages in an amalgamated fashion.
Amalgamation is described in greater detail, in U.S. Patent
Publication No. 20030129573, entitled "EXTENSIBLE EXAM
LANGUAGE (XXL) PROTOCOL FOR COMPUTER BASED TESTING,"

incorporated herein by reference.

[0142] 4) cStorageRoot Class

[0143] cStorageRoot class 406 is the POLESS implementation
of IStorage interface 344 and IRootstorage interface 346.
cStorageRoot class 406 handles any storage object 426 that
is POLESS specific and then delegates work to the cStorage
class 410. IRootstorage interface 346 supports the
SwitchToFile() operation, which copies the current file
associated with the storage object to a new file, which is
then used for the storage object and any uncommitted
changes. cStorageRoot class 406 also implements IPersistFile
interface 418, which provides methods that permit an object
to be loaded from or saved to a disk file, rather than a
storage object or stream. Because the information needed to

open a file varies greatly from one application to another,

-68 -

10

15

20

WO 2004/114093 PCT/US2004/019831

the implementation of IPersistFile::Load on the object
preferably also open its disk file. IPersistFile interface
418 inherits its definition from IPersist, so all
implementations must also include the GetClassID() method

of IPersist interface 418.

[0144] 5) cStream Class

[0145] cStream class 408 is the POLESS implementation of
IStream interface 340. cStream class 408 handles any storage
object 426 that is POLESS specific and then delegates work

to compound document implementation OLE2 320. The specific

. work includes compression/decompression and

encryption/decryption of stream object 424.

[0146] IStream interface 340 supports the following

operations, for example: Seek(); SetSize(); CopyTo():
Commit (); Revert(); LockRegion(); UnlockRegion(); Stat(
)7 and Clone(). Seek() changes the seek pointer to a new

location relative to the beginning of stream object 424, the
end of stream object 424, or the current seek pointer.
SetSize() changes the size of stream object 424. CopyTo()
Copies a specified number of bytes from the current seek

pointer in stream object 424 to the current seek pointer in

-69 -

10

15

20

WO 2004/114093 PCT/US2004/019831

another stream object 424. Commit() ensures that any
changes made to a stream object 424 open in transacted mode
are reflected in the parent storage object. Revert()
discards all changes that have been made to a transacted
stream since the last call to IStream::Commit. LockRegion()
restricts access to a specified range of bytes in stream
object 424. Supporting this functionality is optional since
some file systems do not provide this operation.
UnlockRegion() removes the access restriction on a range of
bytes previously restricted with IStream::LockRegion. Stat (
) retrieves the STATSTG structure for the stream object 424.
Clone{) creates a ne& stream object that references the

same bytes as the original stream but provides a separate

seek pointer to those bytes.

[0147] IStreamVB interface 348 is an automation f£friendly
version of IStream interface 340. IStreamVB interface 348
supports thé following operations, for example: Read();
Write(); Clear(); Reset(); get sName(); get_oStream; and
CopyTo(). Read() reads data from stream object 424. Write(
) writes data, including the entire byte array, to stream
object 424. Clear() clears stream object 424 of all data.
Reset() resets the position in stream object 424 to the

beginning of stream object 424. Get_ sName() returns the

-70 -

10

15

20

WO 2004/114093 PCT/US2004/019831

name of the stream. Get_ oStream() returns the IDispatch
interface. CopyTo() copies the coﬁtents of a source stream

to a destination stream.

[0148] 6) cStorage Class

[0149] cStorage class 410 is the POLESS implementation of
IStorage interface 344 and IcStorage interface 411. cStorage
class 410 handles any storage object 426 that 1is POLESS
specific and then delegates work to compound document

implementation OLE2 320.

[0150] IStorage interface 344 supports the following
operations, for example: CreateStream() ; OpenStream();
CreateStorage(): OpenStorage(); CopyTo(); MoveElementTo (
); Commit(); Revert(); EnumElements(); DestroyElement();
RenameElement () ; SetElementTimes () SetClass()
SetStateBits(); and Stat(). CreateStream() creates and
opens a stream object 424 with the specified name contained
in a storage object. OpenStream() opens an existing stream
object 424 within a storage object using specified access
permissions. CreateStorage() creates and opens a new stream
object 424 within a storage object. OpenStorage() opens an

existing storage object 426 with the specified name

-71 -

10

15

20

WO 2004/114093 PCT/US2004/019831

according to the specified access mode. CopyTo() copies the
entire contents of an open storage object 426 into another
storage object. The layout of the destination storage object
may differ from the layout of the source storage object.
MoveElementTo() copies or moves a sub-storage or stream
object 424 from one storage object 426 to another storage

object.

[0151] Commit() reflects changes for a transacted storage
object 426 to the Dparent level. Revert() discards all
changes that have been made to the storage object 426 since
the last IStorage::Commit operation. EnumElements() returns
an enumerator object that can be used to enumerate storage
objects 426 and stream objects 424 contained within a
storage object. DestroyElement() removes the specified
storage object 426 or stream object 424 from a storage
object. RenameElement() renames the specified storage
object 426 or stream object 424 in a storage object.
SetElementTimes() sets the modification, access, and
creation times of the indicated storage element, if
supported by the underlying file system. SetClass() assigns
the specified CLSID to a storage object. SetStateBits()

stores state information in a storage object, for example up

“T2-

10

15

20

WO 2004/114093 PCT/US2004/019831

to 32 bits. Stat() returns the STATSTG structure for an

open storage object.

[0152] IStorageVB interface 350 is an automation friendly

version of IStorage interface 344. IStorageVB interface 350

supports the following operations, for example: Clear();:
Commit(); Revert(}); sElementName(); DbStorage()-
bElement (); CreateStream(); OpenStream(); Createstorage(

); OpenStorage(); get_sName(); getoStorage(); get_nCount(
); GetCompression () GetEncryption () ; GetCRC () :
CreateStreamLinked() CreatePropertyStg() ;
OpenPropertyStg() Set&lass(); RegisterAlias(); Destroy(
); and get ElementType(). Clear() clears the storage of
all elements, e.g. sub-storages and streams. Commit()
ensures that any changes made to a storage object opened in
transacted mode are reflected in the parent storage. For
non-root storage objects in direct mode, this method has no
effect. For a root storage, it reflects the changes in the
actual device, for example, a file on disk. For a root
storage object open in direct mode, the commit() method is
always called prior to releasing the object. Commit()
flushes all memory buffers to the disk for a root storage in
direct mode and will return an error code upon failure.

Although releasing the object also flushes memory buffers to

-73 -

10

15

20

WO 2004/114093 PCT/US2004/019831

disk, it has no capacity to return any error codes upon
failure. Therefore, calling releasing without first calling
commit() causes indeterminate results. Revert() discards

all changes that have been made to the storage object since

the last Commit() operation.

[0153] sElement() returns the name of the element.
bStorage() returns true if the element is a sub-storage.
bElement() returns either iStreamVB interface 412 or

iStreamVB interface 414 or IStorageVB interface 412 for the
selected element. CreateStream() creates and opens‘a stream
object with the specified name contained in the storage
object. Nothing is returned if the stream cannot be created.
OpenStream() opens an existing stream object within this
storage object in the specified access mode. Nothing is
returned if the stream cannot be opened. CreateStorage()
creates and opens a new storage object nested within the
storage object. Nothing is returned if the storage cannot be
created. OpenStorage() opens an existing storage object
with a specified name in the specified access mode. Nothing
is returned if the storage cannot be opened. Get sName()
returns the name of the storage. Get oStorage() returns the
IDispatch interface, which exposes objects, methods and

properties to programming tools and other applications that

-74 -

10

15

20

WO 2004/114093 PCT/US2004/019831

support Automation. COM components implement the IDispatch
interface to enable access by Automation clients, such as

Visual Basic.

[0154] Get nCount() returns the count of elements in the
storage. GetCompression() determines if streams may be

compressed in the file and if enabled streams may optionally

be compressed when created. GetCRC() indicates whether a

cyclic-redundancy-check ("CRC"), or a digital signature,
check is to be performed on the file. CreateStreamLinked()
creates a link to a stream in aﬁother POLESS file.
CreatePropertyStg() creates a property storage.
OpenPropertyStg() opens a property storage. SetClass()
assigns the specified CLSID to a storage object.
RegisterAlias() registers an alias to a storage in the
POLESS file for access by the pluggable protocol. Destroy()
destroys the specified element. Get ElementType() is a

read-only command that returns the type of the element.

[0155] 7) cPropertyStorage Class

[0156] cPropertyStorage class 412 implements
IPropertyStorage interface 413, which supports the following

operations, for example: ReadMultiple(); WriteMultiple();

75 -

10

15

20

WO 2004/114093 PCT/US2004/019831

DeleteMultiple(); ReadPropertyNames(); WritePropertyNames (

)i DeletePropertyNames(); SetClass(); Commit(); Revert(

); Enum(); Stat(); and SetTimes(). ReadMultiple() reads
property values in a property set. WriteMultiple() writes
property values in a property set. DeleteMultiple() deletes
property values in a property set. ReadPropertyNames() gets

corresponding strung names fro given property identifiers.

WritePropertyNames() creates or changes string names
_ corresponding to given property identifiers.
DeletePropertyNames() deletes string names for given
property identifiers. SetClass() assigns a CLSID to a

o

property set. Commit() flushes or commits changes to a
property storage object, as 1is done with the command
IStorage::Commit, described previously. Revert() discards
all changes made since the last commit call when a property
storage is opened in transacted mode. Enum() creates and
gets a pointer to an enumerator for properties within a
property set. Stat() receives statistics about a property
set. SetTimes() sets modification, creation, and access

times for a property set.

[0157] IPropertyStorageVB interface 414 1is an automation
friendly version of IPropertyStorage interface 413 that

manages the persistent properties of a single property set.

-76 -

10

15

20

WO 2004/114093 PCT/US2004/019831

iPropertyStorageVB interface 414 supports the following
operations, for example: ReadVB(); WriteVB(); Delete();
CommitVB(); RevertVB(); SetClass(); get nCount();
CopyTo(); GetName(); WriteMultiple(); and ReadMultiple(
). ReadVB() reads the value of a specified property from
the property set. WriteVB() writes a value for a specified
property to the property set. If the property does not exist
the property/value pair will be created. If the property
already exists, the value will be updated if opened in
eAccess Write mode. Delete() removes a property from the
property set. CommitVB() flushes or commits changes to a
property storage object, as 1is done with the command
IStorage::Commit, described previously. RevertVB() discards
all changes made since the last commit call when a property
storage is opened in transacted mode. SetClass() assigns
the specified CLSID to a property storage object.
Get_nCount() returns the count of properties in the
property set. CopyTo() copies the contents of the source
property set to a destination property set. GetName()
returns the name of the specified property. WriteMultiple()
writes property values in a property set. ReadMultiple()

reads property values in a property set.

[0158] 8) cPropertyStorageAmalgamated Class

-77 -

10

15

20

WO 2004/114093 PCT/US2004/019831

[0159] cPropertyStorageAmalgamated class 416 implements
IPropertyStorageAmalgamated interface 417, which supports
the following operations, for example: PropertyStorageAdd()
and ClearStorage(). PropertyStorageAdd() adds a property
set to the collection of property sets. ClearStorage()

clears the collection of property sets.

[0160] C. POLESS Exam Resource File

[0lel] FIGS. 11 and 12-25 illustrate the POLESS layout of
exam resource file 120. Exam resource file 120 stores the
various pieces of compiled information from exam source
files 130, as shown in FIG. 5. Exam resource file 120
contains all of the content required to deliver the test.
However, where the test is media-intense, exam resource file
120 will contain the core elements for the test with "links"
to the external content. XXL compiler 140 and plugins 150
store the compiled information to exam instance file 120
using one of IPersistResourceStream interface 192a,
IPersistResourceSet interface 192b, or IPersistResourceStore
interface 192 to store the compiled information as a stream
of data, a set of data, or a storage element, respectively.

In a preferred embodiment, the layout of exam resource file

-78 -

10

15

20

WO 2004/114093 PCT/US2004/019831

120 is 1in a hierarchical POLESS format that directly
implements the format of the XXL test definition language.
The test developer uses the XXL test definition language to
create the logic files 230 and data files 212 (FIG. 5) of
exam source file 130. By having a storage sfructure that
follows the format of the XXL test definition language, the
incremental access aspect of POLESS is easily implemented.
XXL compiler 140 determines the storage location in exam
resource file 120 that stores a particular piecé of compiled
information, even information stored into exam resource file

120 by one of plugins 150.

[0162] FIG. 11 illustrates the main storage branches of exam
resource filé 120, - which corresponds to the top-level
elements of the XXL test definition 1language, denoted by
reference numeral.lSOO. The main storage branches of exam

resource file 120 are, for example: exams branch 550; forms

"branch 600; items branch 650; category branch 700; templates

branch 750; sections branch 800; groups branch 850; plugins
branch 900; data branch 950; formGroups branch 1000;
attributes branch 1050; scripts branch 1100; and messageAbox
("Msgbox") branch 1150. Other storage branches may

alternatively be used.

-79 -

10

15

20

WO 2004/114093 PCT/US2004/019831

[0163] Exam branch 550, as seen in FIG. 12, stores, for
example, the primary attributes, properties, and data that
govern the test. Exam branch 550 can store information for
various tests, as 1is denoted by the three, vertical
ellipses. A specific test is identified by the data stored
in name attribute storage 552. Again, the various tests may
each be identified by a different name, as denoted by the
solid border around name attribute storage 0552 or other
identification scheme. Attributes storage 554 stores, for
example, version information 555, and title information 556
of the test as a stream of data or other data storage
format. Title information 556 is optional, as is denoted gy
the' broken border. Any optional, customized information
regarding the test is stored in custom properties 558 as a
property storage or other data storage format. Information
relating to the forms of the test are optionally stored in
forms property storage 560. A form is a fixed or
substantially fixed order of testing events. Many different
forms can be stored in forms storage 560, giving flexibility
to test driver 110 in controlling progression of the test.
FormGroups storage 562 optionally stores information
relating to a collection of exam forms as a stream of data

or other data storage format. Preferably, a single form from

the formGroup 1s chosen to deliver to an examinee. The

-80-

10

15

20

WO 2004/114093 PCT/US2004/019831

selection of the form from the group is performed by a
selection plugin 160. Exam branch 550 preferably contains at
least one forms storage 560 either independently or within
formGroups storage 562. Other information relating to the
test may be stored under exam branch 550. Other storage

formats may optionally be used

[0164] Forms branch 600, as seen in FIGS. 13A and 13B,
stores, for example, the primary attributes, properties, and
data that govern the progress of the test. Forms branch 600
can store information for various forms, as 1is denoted by
the three, vertical ellipses. As described previously, a
form is a fixed or substantially fixed or substantially
fixed order of testing events. A single form is identified
by the data stored in name attribute storage 602. Other
identification formats may optionally be used. Again, the
various forms may each be identified, for example, by a
different name, as denoted by the solid border around name
attribute storage 602. Attribute storage 604 stores, for
example, beginl section information 605, end section
information 606, event information 607, and optionally
stores version information 608, title information 609, skip
allowed information 610, restartable information 611, with

information 612, height information 613, and bit depth

-81-

10

15

20

WO 2004/114093 PCT/US2004/019831

information 614. All information stored in attribute storage
604 1s stored as a stream of data or other data storage
format. Begin section information 605 and end section
information 606 indicates, for example, respectively, which

section of the test begins and ends the test.

[0165] Event information 607 indicates, for example, the
order of events of the test for that form. Each event has a
name and is prefixed with an event type and a colon. Other
formats are optional. The event type includes "section",
"report", and "results". Version information 608 and title
information 609 indicate the version and title of the form,
respectively. Skip allowed information 610 indicates, for
example, whether or not by default skipping of sections is
allowed. Restartable information 611 indicates, for example,
whether the form can be restarted. Any optional, customized
information regarding the form is stored in custom storage
616 as a property set or other data storage format. Timer
storage 628 stores, for example, information relating to how
the form is to be timed as a storage element. Attributes
storage 630 stores, for example, the names of Timer Plugin
158 to be used with the form. Plugin data storage 632 and
plugin data storage 633 store any data necessary for timer

plugin 158 as a storage element and a stream of data,

-82-

10

15

20

WO 2004/114093 PCT/US2004/019831

respectively. Plugin data storage 632 and plug in data
storage 633 are optional. Scoring storage 634 stores, for
example, information relating to the scoring of the form.
Attributes storage 636 stores, for example, the name of
scoring plugin 164 to be used with the form. Plugin data 638
and plugin data 639 optionally store any data needed for
scoring Plugin 164 as a storage element and a stream of data

respectively.

[0166] Items Branch 650, as seen in FIG. 14, stores, for
example, the primary attributes, properties, and data that
govern the items, or te;t questions, to be delivered to the
examinee during the test. Items branch 650 can store
information for various items, as is denoted by the three,
vertical ellipses. A single item is identified by the data
stored in name attributes storage 652. Again, the various
items may each be identified by a different name, as denoted
by the solid border around name attributes storage 652.
Attributes storage 654 stores, for example, weight
information 654, scored information 655, and optionally
stores skip allowed information 656, title information 657,
start information 658, finish information 659, and condition
information 660. Weight information 654 indicates, for

example, a value used for judging and scoring the item. In

-83-

10

15

20

WO 2004/114093 PCT/US2004/019831

one embodiment, by default an item is given a weight of one
in accordance with one embodiment, but other values may be
utilized. Scored information 655 indicates, for example,
whether or not the item is scored as opposed to whether the
item 1s being used as an exampl%. The default of scored
information 655 is true. Skip allowed information 656
indicates, for example, whether the examinee can skip the

item without answering.

[0167] Start information 658 indicates, for example, script
execution at the Dbeginning of the item and finish
information 659 indicates, for example, script execution at
the end of the item. Condition information 660 indicates,
for example, whether or not there is a condition on the item
being delivered to the examinee. The information stored in
attributes storage 654 is stored as a stream of data or
other data storage format. Data storage 662 and data stream
664 store any information regarding the properties of the
item. For example, data storage 662 or data stream 664 can
store the correct answer of a multiple choice item. Data
storage 662 and data stream 664 stored the information as a

storage element and a stream of data respectively.

-84.

10

15

20

WO 2004/114093 PCT/US2004/019831

[0168] Any optional, customized information regarding the
item is stored in customs storage 666 as a stream of data or
other data storage format. Category storage 668 storeé, for
example, information relating to each category to which the
item belongs. The information stored in category storage 668
preferably and optionally is redundant, as.category branch
700 stores, for example, all the items within the specific
categories. The reason for the optional redundancy is so
that test driver 110 can quickly look up the category of any

item.

[0169] Category branch 700, as seen in FIG. 15, stores, for
example, the primary attributes, properties, and data that
govern the test categories. A test category provides a
grouping mechanism, which is independent of delivery of the
test, allowing for exotic reporting and scoring if
necessary. Category branch 700 is optional as denoted by the
broken border. Category branch 700 can store information for
various categories, as 1is denoted by the three, vertical
ellipses. A single category is identified by the data stored
in name attributes storage . 702. Again, the various
categories may each be identified by a different name, as
denoted by the solid border around name attributes storage

702. Attributes storage 704 stores, for example, complete

-85-

10

15

20

WO 2004/114093 PCT/US2004/019831

information 705, duplicates information 706, <contents
information 707, and optionally stores, for example,
description information 708. Complete information 705
indicates, for example, whether or not every item . in the
category must appear within the category or within its
subcategories. Duplicates information 706 indicates, for
example, whether the item can appear more than once within
the category or within the subcategories. Contents

information 707 determines what can exist within a category.

[0170] Description information 708 is wused within the
category to contain a description of the category's
contents. Category storage 710 stores, for example,
information relating to any subcategories under the category
identified in name attribute storage 702. Items storage 712
indicates, for example, any items that exist within the
category. 'Sections storage 714 contains information
indicating what any sections that exist within the category.
Scoring storage 716 contains information relating to the
scoring of the items within the category. Attributes storage
718 stores, for example, the name of the scoring plugin to
be used with the item. Data storage 720 and data stream 722

contain the information needed to initialize scoring plugin

164. Data storage 720 and data stream 722 store the

-86-

10

15

20

WO 2004/114093 PCT/US2004/019831

information as a storage element and a stream of data

respectively.

[0171] Templates branch 750, as seen in FIG. 16, stores, for
example, the primary attributes, properties, and data that
govern the templates used in the test. Template branch 750
can store information for wvarious main templates, as is
denoted by the three, vertical ellipées. A single main
template is identified by the data stored in name attributes
storage. 752. Again, the wvarious templates may each be
identified by a different name, as denoted by the solid
border around name attributes storage 752. Attributes
storage 754 stores, for example, split information 756,
order information 757, and optionally stores size
information 759. Split information 656 defines how a
specific area within the template 1is to be split or
separated, for example, either by rows or columns or other
shapes and/or sizes. Size information 759 indicates, for
example, possible values for describing the size of the
template, for example, pixels, percentages, or html syntax.
Template storage 760 stores,. for example, information
relating to any sub-templates to be used under the templates
specified by the information in name attributes storage 752.

Sub-templates are identified by the information in name

-87-

10

15

20

WO 2004/114093 PCT/US2004/019831

attributes storage 762. Many sub-templates 760 can exist as

denoted by the three vertical ellipses.

[0172] Areas storage 764 indicates, for example, information
relating to the areas used within the template denoted by
the information in name attributes storage 752. Many areas
may exist within a template as denoted by the three vertical
ellipses. Each area is identified by the information stored
in name attribute storage 766. Attribute storage 768 stores,
for example, visible plugin name information 760, size
information 770, and allow more information 771. Plugin name
information 760 indicates, for example, the name of the
visible plugin to be used with the area. Size information‘
770 dindicates, for example, the size of the area, as for
example a pixel value, a percentage value, or HTML syntax.
Plugiﬂ data 772 and plugin. Qata 774 store information
relating to the visible plugin to be used in the area. The
data stored in either plugin data storage 772 or plugin data
stream 774 1is executed by the wvisible plugin when the
template is loaded. Plugin data storage 772 and plugin data
stream 774 stores, for example, the information as either a
storage element or a stream of data, respectively. Other

information may optionally be stored.

-88 -

10

15

20

WO 2004/114093 PCT/US2004/019831

[0173] Section branch 800, as seen in FIG. 17, stores, for
example, the primary attributes, properties, and data that
govern test sections. Test sections dictate the navigation
and timing of groups of items as well as displays within the
test. Sections branch 800 can store information for various
sections, as is denoted by the three, vertical ellipses. A
single section is identified by the data stored in name
attribute storage 802. Again, the various sections may each
be identified by a different name, as noted by the solid
border around name attributes storage 802. Attributes
storage 804 stores, for example, group information 805 and
optionally stores title information 806, skip allowed
information 807, start information 808, finish information
809, and condition -information 810. Group information 805
indicates, for example, to which group of the test the
section belongs. Skip allowed information 807 indicates, for
example, whether or not the items within the section may be
skipped. Start information 808 indicates, for example,
script execution at the beginning of the section and finish
information 809 indicates, for example, script execution at
the end of the section. Condition information 810 indicates,
for example, any conditions that exist regarding the
section. Any optional, customized information regarding this

section is stored in custom property storage 812 as a stream

-89.

10

15

20

WO 2004/114093 PCT/US2004/019831

of data or other data storage format. Custom attributes will
be stored as a property set. The "key" for each attribute

will be a string or other acceptable format.

[0174] Timer storage 814 stores information regarding, for
example, the timing of the section. Attribute storage 816
stores, for example, information identifying timer plugin
158, which is to be used with a section. Plugin data storage

818 and plugin data storage 820 stores, for example, data

needed for timer plugin 158. Plugin data storage 818 and

plugin data storage 820 stores, for example, information as
a storage element and a string of data, or other acceptable
format, respectively. Navigation storage 822 stores, for
example, information relating to the delivery of
presentations and groups within the section. Attributes
storage 824 stores, for example, information indicating
which navigation plugin 162 is to be used with this section.
Plugin data storage 826 and plugin data stream 828 store
information needed for the navigation plugin 162. Plugin
data storage 826 and plugin data stream 828 store the
information as a storage element and a stream of data
respectively. Groups branch 850, as seen in FIG. 18, stores,
for example, the primary attributes, properties, and data

that govern the groups within the test. A group determines

- 90‘-

10

15

20

WO 2004/114093 PCT/US2004/019831

the order of events within the test. Groups branch 850 can
store information for various groups, as is denoted by the
three, vertical ellipses. A single group is identified by
the data store in name attributes storage 852. The various
groups may each be identified by a different name, as noted
by the solid border around name attributes storage 852.
Attributes storage 854 stores, for example, type information
855, event information 856, title dinformation 857, and
reviewed name information '858. Type information 855

indicates, for example, whether the group is either a "group

'holder" (group of presentations), or a "section holder"

(group of sub-sections). These are mutually exclusive.

[0175] Event information 856 indicates, for example, the
order of events within the test. Review name information 858
indicates, for example, whether or not a presentation within
the group is to be used as a review screen. Any optional,
customized information regarding the group is stored in
custom storage 860 as a stream of data or other data storage
format. Events storage 862 stores event information, for
example, as 1is described in further detail in FIG. 19.
Scoring storage 864 stores, for example, information
relating to the scoring of items within the group.

Attributes storage 866 stores, for example, information

-91 .

10

15

20

WO 2004/114093 PCT/US2004/019831

indicating which scoring plugin 164 is to be used with the
group. Selection storage 872 stores, for example,
information relating to the selection of items within the
group. Attributes storage 874 indicates, for example, which

selection plugin 160 is to be used with the group.

[0176] FIGS. 19A, 19B, 19C, and 19D illustrate the events
sub-branch of groups branch 850 in greater detail, in
accordance with one embodiment of the invention. In FIG.
19A, events sub-branch 862 can store information for various
events. For example, events sub-branch 862 1is storing
information in events n;me sub-branch 880, event name sub-
branch 890, and event name sub-branch 897. Attributes
storage 881, in FIG. 19B, under events name storage 880
stores, for example, type information 882, template
information 883, and optionally stores title information
884, counted information 885, start information 886, finish
information 887, and condition information 888. Type
information 882 indicates, for example, whether the event is
an item or a display. Template information 883 indicates,
for example, which template is being used with the event.
Counted information 885 indicates, for example, whether a

presentation should be included in the totals of

presentations presented to the examinee in a section.

-92.

10

15

20

WO 2004/114093 PCT/US2004/019831

Generally, presentations with items, or questions, are

counted and introductory presentations are not counted.

[0177] Start information 886, finish information 887, and
condition information 888 indicates, for example, start,
finish, and conditional scripts respectively. Any optional,
customized information regarding the event is stored in
custom storage 889. The "key" for each custom attribute will
be a étring. Referring again to FIG. 19A, event name storage
890 indicates, for example, a different event, which
contains different attributes. Additionally, area
information 891, in FIG. 19B, indicates, for example, which
area 1s rendering the 4presentations content and item
information 892 indicates, for example, the name of the
associated item 1if the event 1is of the item type.
Additionally, data storage 893, data stream 894, data
storage 895, and data storage 896 contain information used
in a nested presentation. The data off of a nested
presentation are the contents of the item or the
presentation. This data may be a stream, a storage, a link
to a stream, a link to a storage, or other format. In FIG.
19C, event name 897 indicates, for example, another event,

which includes a sub-event 898, in FIG. 19D.

-93.

10

15

20

WO 2004/114093 PCT/US2004/019831

[0178] Plugins brahch 900, as seen in FIG. 20, stores, for
example, the primary attributes, properties, and data that
govern any plugins 150 used for the test. Plugins branch 200 .
can store information for various plugins, as is denoted by
the three, vertical ellipses. A single plugin is identified
by the data stored in name attribute storage 902. A CLSID is
stamped with the name of the plugin 150. Attributes storage
904 stores, for example, information identifying the plugin
150 by a program ID. Data storage 906 and data storage 908
store initial data for the plugin as either a storage

element or a stream of data respectively.

[0179] Data branch 950, as indicated in FIG. 21, stores, for
example, any global data needed for the test. Data stored
optionally under data branch 950 may be stored as either a
storage element or a stream of data as indicated by data
storage 952 and data storage 954. Data stored under data
branéh 950 may be directly used by a plugin 150 or the data
may be resources (.gif, .jpeg, .wab, .mpeg, etc.) used

internally by a plugin 150.

[0180] FormGroups branch 1000, as seen in FIG. 22, stores,
for example, the primary attributes properties and data that

govern the formGroups of the test. FormGroups branch 1000

-94 .

10

15

20

WO 2004/114093 PCT/US2004/019831

can store information for various formGroups, as is denoted
by the three, vertical ellipses. A single formGroup is
identified by the data stored in name attributes storage
1002. The various formGroups may each be identified by a
different name, as denoted by the solid border arounhd name
attributes storage 1002. Attributes storage 1004 stores, for
example, information indicating which forms are to be used
within the formGroup. Selections storage 1006 stores, for
example, information relating to the selection of items
within the formGroup. Attributes storage 1008 indicates, for
example, which selection plugin 160 is to be used with the
formGroup. Plugin data ;torage 1010 and plugin data storage
1012 store any information needed for the selection plugin
160. Attributes storage branch 1050 stores, for example,
attribute information that 1s global to exam resource file
120. This includes the last execution state of XXL compiler
140 [sMode], the major [iXXLMajorVersion] and the minor

version [iXXLMinorVersion] of the XXL language.

[0181] Scripts branch 1100 stores, for example, information
relating to scripts used within the test. Attributes storage
1102 stores, for example, type information that specifies
which type of language the script is in, for example, VB

script of J script. Scripts storage 1104 stores, for

-95.

10

15

20

WO 2004/114093 PCT/US2004/019831

example, global scripts used within the test that may be
referenced by the test dri&er. MsgBox branch 1150 stores,
for example, information relating to the size and content of
any message boxes that may be delivered to the examinee
during the test. Message boxes may be triggered by plugins

150 during the exam.

[0182] D. POLESS Exam Instance File

[0183] FIGS. 26A, 26B, 26C, and 26D illustrate the POLESS
layout of exam instance file 170. Exam instance file 170
stores information regarding the current examinee's test.
Exam instance file 170 is created when a test starts for an
examinee. Exam instance file 170 is destroyed when the test
successfully completes. If the examinee must restart her
test due to some interruption, for example, a power failure,
the state of the test is restored from Exam instance file
170. In a preferred embodiment, the layout of exam instance
file 170 is in a hierarchical POLESS format. As seen in FIG.
26A, the top-level storage branches of exam instance file
170 from root 1200 are, for example: running branch 1202;
contents branch 1310; and history branch 1320. Root 1200
relates to POLESS cStorageRoot class 406 (FIG. 10), which

instantiates exam instance file 170.

-906 -

10

15

20

WO 2004/114093 PCT/US2004/019831

[0184] Running branch 1202 stores, for example, the state
information of all running objects in test driver 110 and
plugins 150. Plugins 150 use one of IPersistInstanceStream
interface 196a, IPersistInstanceSet interface 196b, or
IPersistInstanceStore interface 196c to store information to
exam instance file 170 as a stream of data, a set of data,
or a store of data, respectively. Any of plugins 150, except
display plugin 152, results plugin 166, report plugin 168,
and helm plugin 154, which do not contain examination state
information, store examination state information to exam
instance file 170. Test driver 110 determines the storage
location in exam instance file 170 that stores a particular

piece of examination state information.

[0185] Exam sub-branch 1204 contains examination state
information relating to the exam. Contents storage 1206
stores, for example, exam status information 1207 and
version information 1208. Exam status information 1207
indicates, for example, the status of the exam, for example,
initializing or terminating. Template storage branch 1210
stores, for example, examination state information relating
to templates running in the exam. Name attribute storage

1212 stores, for example, count information 1214 and

-97.

10

15

20

WO 2004/114093 PCT/US2004/019831

observed ever information 1215. Observed ever information
1215 indicates, for example, whether or not the template's

content has ever been fully seen by the examinee.

[0186] Form storage branch 1216 contains information
relating to the forms used within the exam. Contents storage
branch 1218 stores, for example, seconds information 1219,
date start information 1220, date finish information 1221,
current section information 1222, and version information
1223. Current section information 1222 indicates, for
example, the current section being delivered to the examinee

in the form. Version information 1223 indicates, for

example, the identification of the form.

[0187] Sections chosen storage branch 1224, as illustrated
in FIG. 26B, stores, for example, information relating to
sections in the form being delivered to the examinee.
Contents storage 1226 stores, for example, the names of the
sections that have been or will be delivered to the
examinee. Name attribute storage 1228 indicates, for
example, the name of a particular section. Contents storage
1230 stores, - for example, current child information 1231,
seconds information 1232, date start information 1233, and

date finish information 1234. Navigation storage 1236 and

-08 -

10

15

20

WO 2004/114093 PCT/US2004/019831

navigation storage 1237 store the state information of
navigation plugin 162. Navigation storage 1236 stores, for
example, the examination state information £from navigation
plugin 162 if navigation plugin 162 implements the
IPersistInterfaceSet 196b or IPersistInterfaceStore 196c.
Navigation storage 1237 stores, for example, the information

from navigation plugin 162 if navigation plugin 162

.implements IPersistInterfaceStream 196a. Timers storage 1238

and timers storage 1239 store information from timer plugin
158. Timer storage 1238 is used if timer plugin 158
impleﬁents IPersistInterfaceSet 196b or
IPersistInterfaceStore 196c. Timers storage 1239 is used if

timer plugin 158 uses IPersistInterfaceStream 196a.

[0188] Items chosen sub-branch storage 1240 stores, for
example, information relating to items that have been or
will be delivered to the examinee. Contents storage branch
1242 stores, for example, the names and order of all the
items that have been or will be delivered to the examinee.
Name attributes storage 1244 indicates, for example, the
identification of a particular item. Contents storage branch
1246 stores, for example, presented information 1244,
complete information 1248, skipped information 1249, seconds

information 1250, dehydrated information 1251, and observed

-99.

10

15

20

WO 2004/114093 PCT/US2004/019831

ever information 1252. Presented information 1247 indicates,
for example, whether the item has ever been delivered to the
examinee. Completed information 1248 indicates, for example,
whether or not the item has been completed. Skipped
information 1249 indicates, for example, whether the item
has been skipped. Item plugin storage 1254 and item plugin
storage 1255 stores, for example, examination state
information from item plugin 156. Item plugiﬂ storage 1254
is used if item plugin 156 uses IPersistInterfaceSet 196b or
IPersistInterfaceStore 196c. Item plugin storage 1255 is

used if item plugin 156 uses IPersistInterfaceStream 196a.

[0189] In FIG. 26C, item light storage 1256 exists only if
the item was dehydrated (to save memory or when a section
ends). The dehydrated item stores the data but actions on
the data are no longer available until the item is re-
hydrated. Item light storage 1256 stores, for example, score
candidate information 1257. Score minimum information 1258,
score nominal information 1259, score maximum information
1260, complete information 1261, skipped information 1262,
correct answer display 1263, response results 1264, and
correct answer results 1266. Timers storage 1268 and timers
storage 1269 store information from timer plugin 158. Timer

storage 1268, as seen in FIG. 26B, is used if timer plugin

- 100 -

10

15

20

WO 2004/114093 PCT/US2004/019831

158 implements IPersistInterfaceSet 196b or
IPersistInterfaceStore 196c. Timers storage 1269 is used if
timer plugin 158 uses IPersistInterfaceStream 196a. Score
storage 1270 and Score storage 1271 store information from
timer plugin 158. Timer storage 1270 is used if timer plugin
158 implements IPersistInterfaceSet 196b or
IPersistInterfaceStore 196c. Score storage 1271 is used if

timer plugin 158 uses IPersistInterfaceStream 196a.

[0190] In FIG. 26C, groups chosen sub-branch storage 1272
indicates, for example, which groups have been or will be
delivered to the examinéé. Contents storage 1274 stores, for
example, the names of the groups. Name attributes storage
1276 indicates, for example, the name of a particular group.
Contents storage 1278 stores, for example, names of groups
and the order of groups. Scoring storage 1280 and scoring
storage 1281 store examination state information from score
plugin 164. Scoring storage 1280 is used if score plugin 164
implements IPersistInterfaceSet 196b or
IPersistInterfaceStore 196c. Scoring storage information
1281 is used if score plugin 164 implements
IPersistInterfaceStream 196a. Selection storage 1282 and

selection storage 1283 store information from selection

plugin 160. Selection storage 1282 is used if selection

-101 -

10

15

20

WO 2004/114093 PCT/US2004/019831

plugin 160 impléments IPersistInterfaceSet 196b or
IPersistInterfaceStore 196c. Selection storage 1283 is used
if selection plugin 160 implements IPersistInterfaceStream
196a. Delivered storage 1284, in FIG. 26D, stores, for
example, an ordered list of groups chosen for delivery.
Delivered storage 1285 stores, for example, an ordered list
of the sub-classes of the form, for example: sections,

reports and results.

[0191] Presentations chosen storage sub-branch 1286
indicates, for example, any presentations that have been or
will be delivered to the examinee. Contents storage 1288
stores, for example, the names of the presentations. Names
storage sub-branch 1290 stores, for example, the name of the
presentation. Names storage 1290 also stores, for example,
comment information 1291, marked information 1292, count
information 1293, name information 1294, observed ever
information 1295, name information 1296, and observed ever
information 1297. Name information 1294 and observed
information 1295 relate to +the name of the first
presentation area stored under presentations chosen sub-
branch 1286 and whether or not the presentation has ever
been observed, and name information 1296 indicates, for

example, the last presentation area that was delivered to

-102 -

10

15

20

WO 2004/114093 PCT/US2004/019831

the examinee and whether or not the presentation was ever
observed. Contents storage 1298 stores, for example,
information leading to events. Contents storége 1298 stores,
for example, ready information 1299 ever checked information
1300, ever started information 1301, and ever finished
information 1302. Ready information 1299 indicates, for
example, whether the event is ready to be delivered to the
examinee. Ever checked information 1300 indicates, for
example, whether an event's conditional delivery script ever
been checked. Preferably, the conditional delivery script is
only checked once. Ever started information 1301 indicates,
for example, whether the event was ever started by the
examinee. Ever finished information 1302 indicates, for

example, whether the event was completed by the examinee.

[0192] Referring again to FIG. 26A, contents branch 1310
stores, for example, a property set containing information
to identify the examination instance and the examination
start count 1312. The identifying information used is the
examinee appointment identification 1311, the name 1313 of
exam resource file 120, and the name 1314 of the specified

form or group.

-103 -

10

15

20

WO 2004/114093 PCT/US2004/019831

[0193] History branch 1320 is a single stream of
chronological text messages that logs the history of the
test. These text messages are used by staff at system
headquarters to diagnose problems that occurred in the
field. Each text message is prefixed with the date, time,
and a level of severity, for example: information, warning,
or error. Test driver 110 will filter the text messages to a
level of diagnostics desired for test driver 110, such as
determining errors in test driver 110 or detail history

tracking, including general information.

[0194] V. Expansion of Test Driver Using Plugins

[0195] FIG. 27 4dllustrates the process for customizing test
based on specific requirement from the client using plugins
150, denoted generally by reference numeral 1400. First, the
client presents the new requirements, for example, a new
item type, to the test developer, step 1402. The test
developer then writes and XML schema to define the XXL test
specification, step 1404. The schema is subsequently used to

validate the XXL test specification.

[0196] A detailed description of the XXL schema is given in

U.S. ‘ Patent Publication No. 20030129573, entitled

-104 -

10

15

20

WO 2004/114093 PCT/US2004/019831

"EXTENSIBLE EXAM LANGUAGE (XXL) PROTOCOL FOR COMPUTER BASED

TESTING, " incorporated herein by reference.

[0197] The test developer next writes the appropriate plugin
150, in this example, item plugin 156. The test developer
also implements the TIPlugin interface 167 and IPlugin
interface and IItem interfaces 169. Additionally, the test
developer implements IPersistResource interface 192 (FIG. 3)
to enable persistence of compiled test information from item
plugin 156 to exam resource file 120. The test developer can
optionally implement IPersistInstance interface 196 (FIG.
3), step 1408, to enable persistence of examination state
information from item plugin 156 to exam instance file 170.
After the appropriate interfaces have been implemented, item
plugin 156 is wvalid and operating. Finally, after the test
is delivered to the examinee, the result processor
accumulates results from the examinee, 1410. The results
processor must be able to understand the new item type to
correctly process the results. Customization process 1400
only required the test developer to write one piece of

software, item plugin 156, to accommodate the client's

customizations rather than multiple pieces of software.

[0198] A. Test Production and Test Delivery

-105 -

10

15

20

WO 2004/114093 PCT/US2004/019831

[0199] FIG. 28 is a flow chart illustrating the overall
method of test production and test delivery, denoted
generally by reference numeral 1500. The test publisher
first authors the test specification and content, step 1502.
The test specification and content are then stored in exam
source files 130, step 1504. Exam source files 130, for
example the content of XXL files 134, are then compiled and
validated, step 1506. The compiled test specification and
content are stored in exam resource file 120, step 1508.
Finally, the compiled test specification and content are

delivered to the examinee, step 1510.

[0200] The validation of the test specification and content
is illustrated in greater detail in FIG. 29, by the method
denoted generally by reference numeral 1512. When the test
specification and content stored in exam source files 130
specifically references a plugin 150, that plugin 150 is
instantiéted, step 1514. Partial test specification and
content relating to that plugin 150 are loaded into the
plugin 150 from exam source files 130, step 1516. In an
alternative embodiment, the partial test specification and
content are loaded into a private memory in data

communication with the plugin 150. The plugin 150 validates

- 106 -

10

15

20

WO 2004/114093 PCT/US2004/019831

the partial test specification and content, step 1518. The
validated test specification and content are then unloaded
from the plugin 150 into a storage element within exam

resource file 120.

[0201] FIG. 30 illustrates the method of the test delivery
cycle in greater detail. When the previously validated test
specification and content stored in exam resource file 120
references a plugin 150, the plugin 150 is instantiated,
step 1525. The storage element in exam resource file 120
containing the validated test specification and content are
provided to the pluginq150, step 1527. The validated test
specification and content are loaded into the plugin 150
from the storage element within exam resource file 120, step
1529. Finally, the examination state information, which
includes, for example, the examinee's responses, 1is stored

into exam instance file 170, step 1533.

[0202] FIG. 31 illustrates the method of restarting .a test
after interruption in greater detail. In test restart method
1535, test driver 110 is started, step 1537. Test driver 110
determines whether the test has already started, step 1539.
If the test delivery has not already started, plugins 150

reload validated test specification and content from exam

- 107 -

10

15

20

WO 2004/114093 PCT/US2004/019831

resource file 120, step 1543. If the test has already
started, plugins retrieve examination information from exam
instance file 120, step 1541. Plugins 150 then reload the
validated test specification and content from exam resource
file 120, step 1543. Test driver 110 then delivers the exam

to the examinee, step 1545.
[0203] B. Plugin Life Cycle

[0204] FIG. 32 illustrates the life cycle of plugin 150 from
test production to test delivery, denoted generally by
reference numefal 1420. Dashed vertical 1line 1422 divides
the plugin life cycle 1420 into a test production cycle, to
the left of dashed vertical line 1422, and a test delivery
cycle; to the right of dashed wvertical line 1422. The test
production cycle occurs only occasionally when new plugins
150 are developed to satisfy the requirements of a client.
The test delivery cycle occurs whenever the test 1is

delivered to the examinee, for example, daily.

[0205] Exam source files 130, of which data files 132 and
XXIL files 134 are shown, contain every aspect of the test as
written by the test publisher. In step I, XXL compiler 140

reads from XXIL files 134 and interprets instructions that

- 108 -

10

15

20

WO 2004/114093 PCT/US2004/019831

call fof the use of a plugin 150. Plugin 150 is identified
in the XXL test definition language by both a name and a
program identification ("prog ID"). When XXL compiler
receives the prog ID from XXL files 134, XXL compiler knows
that a plugin 150 is required to complete the compilation of

exam source files 130.

[0206] Not all of the possible types of plugins 150 are
required to build any one test. Also, more than one plugin
150 is dimplemented for a specific type. In the above
example, two navigation plugins 162 and two item plugins 156
are defined. XXIL compiler 140 reads information from exam
source files 130 using IStream interface 340, 1iNode
interface 1424, which 1is the Microsoft interface used to
access a node of an XML document in the document object
model ("DOM"), and IStreamVB interface 348. XXL compiler 140
instantiates the requested plugin 150 using, for example,
the call CoCreatelInstance(). CoCreatelnstance() creates a
single, uninitialized object of the class associated with a
specified CLSID, using a prog ID that has been converted

into the CLSID.

[0207] If the data referring to plugin 150 has been

customized by the test developer, XXL compiler 140 may not

-109 -

10

15

20

WO 2004/114093 PCT/US2004/019831

recognize the new data. Therefore, XXL compiler 140 passes
the data directly to plugin 150 and plugin 150 loads the
data into a private memory (not shown). In one embodiment,
the private memory is internal to plugin 150, and in another
embodiment, the private memory is external to plugin 150.
Plugin 150 can then validate the data using the XXL schema.
If the data is invalid, plugin 150 reports the error. In an
alternative embodiment, plugin 150 can validate the data
using an XML document type definition ("DTD"). A DTD is a
formal description in XML Declaration Syntax of a particular
type of document. Similar to a schema, a DTD sets out what
names are to be used tg the different types of elements,
where they may occur, and how they all fit together.

However, the XXL schema is preferred for wvalidation since

schemas are easier to read than a DTD and are very flexible.

[0208] If plugin 150 declares that the data is wvalid, XXL
compiler 140 prepares a POLESS storage object 300 in exam
resource file 120 to which plugin 150 saves the data at a
command from XXL compiler 140, in step II. As described
previously, XXL compiler 140 determines where the data from
plugin 150 is to be saved in exam resource file 120 and
creates the appropriate storage location. The name, CLSID,

and data associated with plugin 150 is stored in plugins

-110 -

10

15

20

WO 2004/114093 PCT/US2004/019831

branch 900 in exam resource file 120 (FIG. 20). Plugin 150
implements IPersistResource interface 192 to store the data
to exam resource file 120. Data storage 906 stores, for
example, the data, for example, as either a stream, set of
data, or as a storage element 1if plugin 150 implements
either IPersistResourceStream 192a, IPersistResourceSet

interface 192b, or IPersistResourceStore interface 192c,

respectively. Data storage 908 stores, for example, the data

as a stream of data if plugin 150 implements
IPersistResoufceStream interface 192a. Plugin 150 can choose
the format used to store the data into exam resource file
120. Steps I and II are repeated until exam source files 130
are completely compiled and exam resource file 120 1is

completely populated with the compiled test information.

[0209] The compile sequence of a plugin 150, as shown in
steps I and II in FIG. 32, are illustrated in greater detail
in FIG. 33. Plugin compile sequence 1430 begins as XXL
compiler 140 asks plugin 150 to validate the information
from exam source files 130 that pertain to plugin 150 using
IPlugin::ValidateSource() call 1432, in step I. Plugin 150
validates whether or not the data received from exam source
files 140 is correctly formatted based on the XXL schema. If

the data is not wvalid, plugin throws a structured COM error.

111 -

10

15

20

WO 2004/114093 PCT/US2004/019831

Plugin 150 does not wvalidate that all required source
elements are present, but rather, that what is present is

correctly formatted.

[0210] Step II contains two steps, indicated as step IIa and
IIb. In step IIa, XXL compiler 140 creates the appropriate
storage element in exam resource file 120 using POLESS
object 3001 The storage element type is determined based on
the type of IPersistResource interface 192 that plugin 150
implements, for example: IPersistResourceStream interface
192a; IPersistResourceSet interface 192b; or
IPersistResourceStore interface 192c. XXL compiler 140 then
calls IPersistResource*: :Save () call 1434 for the
appropriate IPersistResource interface. Plugin 150 saves the
compiled information from exam source filles 130 to exam
resource file 120 through the POLESS object 300 passed by
XXL compiler 140. In step IIb, XXL compiler 140 instructs
plugin 150 to unload, or flush, its content using Unload()
call 1436. As stated previously, steps I, IIa, and IIb are

repeated until all of exam source files 130 is compiled.

[0211] Step VI, which is shown as steps VIa and VIb,
concerns amalgamation of exam resource file 120.

Amalgamation enables data for a specific plugin to exist

-112 -

10

15

20

WO 2004/114093 PCT/US2004/019831

virtually as one storage location even if the data appears
at different locations within the storage hierarchy.
Amalgamation can be performed on exam resource file 120 if
plugin 120 has implemented either TIPersistResourceSet
interface 192b or IPersistResourceStore interface 192c which
storing data to exam resource file 120. In step VIa, XXL
compiler 140 amalgamates one to three storage elements in
exam resource file 120 and passes the amalgamated POLESS
object to plugin 150 using
IPersistResource*::ValidateResource() call 1438. Plugin 150
determines whether or not the amalgamated POLESS object
creates a complete and valid set. Plugin 150 throws a
structured COM error if the amalgamated POLESS object does
not create a complete and valid set. In step VIb, XXL
compiler 140 instructs plugin 150 to unload, or flush, its
content using Unload() call 1440. Steps VIa and VIb are
interspersed among steps I, IIa, and IIb cycles and can also
occur multiple times during the compilation of éxam source
files 130. Amalgamation is described in greater detail, in
U.S. Patent Publication No. 20030129573, entitled
"EXTENSIBLE EXAM LANGUAGE (XXL) PROTOCOL FOR COMPUTER BASED

TESTING," incorporated herein by reference.

- 113 -

10

15

20

WO 2004/114093 PCT/US2004/019831

[0212] Referring again to FIG. 3é, during the test delivery
cycle, test driver 110 reads the test specifications stored
in exam resource file 120 through POLESS objects 300. Test
driver 110 reads information from exam resource file 120
through POLESS objects 300 in order to retrieve the
encrypted, compressed, and structured elements within exam
resource file 120. When the XXL test definition language
calls a plugin 150 by a prog ID, as described previously,
test driver 110 instantiates the plugin 150 that was called,
in step III. Test driver 110 provides the POLESS object 300
from exam resource file 120 and plugin 150 initializes
itself from the POLESS object 300, for example, data storage
906.or data storage 908 stored under name attribute storage
902, using the appropriate IPersistResource interface 192.
The information loaded into plugin 150 is the' same
information as was stored into exam resource file 120 by
plugin 150 during the test production cycle (step II). Since
plugin 150 chose the storage format used to store the
information into exam resource file 150, plugin 150 can
always read the information from exam resource file 150,
giving plugin 150 complete flexibility. Test driver 110 need
not be able to read the information that is used by plugin
150. Therefore, any customizations to the test facilitated

by plugin 150 does not require any changes to test driver

-114-

10

15

20

WO 2004/114093 PCT/US2004/019831

110. The test then progresses with plugin 150 enhancing the
functionality of test driver 110 based on the new

requirements from the client.

[0213] Periodically, based on a request either from test
driver 110 or from plugin 150, the state of all running
objects will save to exam instance file 170, which is a
unique file for each examinee, indicating the progress and
the status of the test for that examinee. Test driver 110
asks plugin 150 1if plugin 150 is "dirty," meaning that
plugin 150 is storing has some updated examination state
information. For example, when the examinee selects
distractor A on a multi-choice item, item plugin 156, in
this case, becomes dirty. If plugin 150 is dirty, test
driver 110 provides plugin 150 a POLESS object 300 in exam
instance file 170 and plugin saves the examination state
information to exam instance file 170 using IPersistInstance
interface 196, in step IV. For example, item plugin 156
saves the examinee's answer to item plugin storage 1254 or
to item plugin storage 1255 (FIG. 26). Item storage 1254
stores, for example, the data as either a set of data or as
a storage element if item plugin 156 implements either .
IPersistInstanceSet interface 196b or IPersistInstanceStore

interface 196c, respectively. Item storage 1255 stores, for

-115-

10

15

20

WO 2004/114093 PCT/US2004/019831

example, the data as a stream of data if item plugin 156

implements IPersistInstanceStream interface 196a.

[0214] Step V occurs if the test is interrupted, for
example, because of a power failure, and the test needs to
restart. When test driver 110 1s required to return to a
particular operation state, test driver 110 reads the
examination state information from exam instance file 170.
Plugin 150 is provided the storage object containing the
state of plugin 150 as saved in step IV using
IPersistInstance interface 196. Using the previous example,
item plugin 156 retrie?és its state information from item
plugin storage 1254 or for item plugin storage 1255. Plugin
150 is able to become operational from the retrieved state
information, enabling a restart of the test from the point

at which the test was interrupted.

[0215] The delivery sequence of a plugin 150, as shown in
steps II, IV, and V in FIG. 32, are illustrated in greater
detail in FIGS. 34A, 34B, 34C, and 34D. As seen in FIG. 34A,
delivery sequence 1520 particularly relates to visible
plugins 150, e.g., display plugin 152, helm plugin 154, and
item plugin 156. Step III contains sub-steps labeled IIlIa-

IIIb. Plugin delivery sequence 1520 begins, in step IlIa,

-116 -

10

15

20

WO 2004/114093 PCT/US2004/019831

when the current delivering presentation requests its
template to activate with cTemplate::Activate() call 1524.
Activate() call 1524 is activated when the examinee
navigates on the test wusing a helm navigation control
activated by helm plugin 154. IContainerNotifyHelm interface
206 allows helm plugin 154 to request navigation from test

driver 110. IContainerNotifyHelm interface 206 sends

Activate() call 1524 to cTemplate class 236 in test driver

110 (see FIG. 8).

[0216] In step IIIb, cTemplate class 236 in test driver 110
uses IPlugin::Load() call 1526 to set the core object
references from test driver 110 into the plugin 150 being
delivered. The core object references include
IContainerNotify interface 200, the cExam class (not shown),
and the IAppointment interface 176, which passes information

regarding the examinee and appointment to plugin 150.

[0217] Step V, which is interspersed with step III, occurs
only if the test is interrupted and plugin 150 loses state.
cTemplate class 236 in test driver 110 uses
IPersistInstance*::Reload() call 1528 to call on the reload
method of exam instance file 170. Exam instance file 170

reloads plugin 150, through IPersistInstance interface 192,

-117-

10

15

20

WO 2004/114093 PCT/US2004/019831

for example, TPersistInstanceSet 192b, with the state saved
to the appropriate storage location in exam resource file

170 (see FIG. 26).

[0218] Step IIIc is performed for both initial delivery of
plugin 150 and during restart of the test, in conjunction
with step V. cTemplate class 236 in test driver 110 uses
IPersistReSource*::Load() call 1530 to call on the load
method of exam resource file 120. Exam resource file 120
loads plugin 150, through IPersistResource interface 192,
for example IPersistResourceSet interface 192b, with the
test specification and content from the appropriate storage
location in exam resource file 120. Plugin 150 is loaded
with test specification and content from exam resource file
120 when being initially delivered to the examinee. Plugin
150 is also loaded with test specification and content from
exam resource file 120 and with examination state
information from exam instance file 170, as described above,
when the test has been interrupted and plugin 150 must

recover state.

[0219] After plugin 150 is properly loaded, cTemplate class
236 in test driver 110 uses, I*::PresentationStarting()

call 1532 (continued in FIG. 34B) to inform visible plugin

-118-

10

15

20

WO 2004/114093 PCT/US2004/019831

150 that the presentation is starting, in step 1IIId.
I*::PresentationStarting() call 1532 is made to any visible
plugin 150 being used in the presentation on the appropriate
interface, for example: IDisplay interface 169%a, IItem
interface 169c, or IHelm interface 169b. For example, an
ITtem::PresentationStarting() call is used for item plugin
156. cTemplate class 236 then instruct visible plugins 150
to display using IOleObject::DoVerb(Show, . . .) command
1534, step IIIe. IOleObject interface 1522 is the Active
Document interface used to implement the Active Document
presentation. IOleObject interface 1522 is the cémbination
of the Active Documentminterfaces described in conjunction
with FIG. 7. After instructing visible plugins 150 to
display, test driver 110 awaits notification from each
visible plugin 150 that the specific visible plugin 150 has
successfully shown. Visible plugins 150 call back to test
driver 110 using IContainerNotify::Activated() call 1536,
step IIIf (continued in FIG. 34B). Now, the presentation is
started and active such that the examinee can interact with

the presentation.

[0220] The deactivation of the presentation begins with a
request from the helm for navigation. For example, if the

examinee has finished a question and wishes to move on to

-119-

10

15

20

WO 2004/114093 PCT/US2004/019831

the next question on the next presentation, the examinee can
choose the "NEXT" button on the helm. The navigation request
is sent from TIHelm interface 169, which receives the
request from the examinee, to‘ test driver 110 using
IContainerNotifyHelm interface 206. As seen in FIG. 34D, the
request is made using IContainerNotifyHelm::Request- Move()
call 1538, step IIIg. Test driver 110 then asks each item
plugin 156 being used in the presentation template if the
examinee is allowed to leave the current presentation and to
proceed to the next presentation. The query is made using
Iltem: :bProceed() call 1540, step IITh. If all item plugins
156 respond in the affirmative, test driver 150 passes the
navigation request to navigation plugin 162, wﬁich is an
invisible plugin 150. Test driver 110 passes the request
using INavigate::RequestMove() «call 1542, step IIILl.
Navigation plugin 162 determines the resultant location of
the requested navigation. In FIG. 34, for example,
navigation plugin 162 determines the section of the test to
which the examinee will proceed using ISection::ChildNext()

call 1544, step IIIj.

[0221] The active presentation then instructs the template
to deactivate using cTemplate::Deactivate() call 1546, step

IITk (continued in FIG. 34C). Referring back to FIG. 34D,

- 120 -

10

15

20

WO 2004/114093 PCT/US2004/019831

template class 236 in test driver 110 requests that visible
plugins 150 hidel from the Active Document using
IO0leObject::DoVerb (Hide, . . .) call 1548, step IIIl.
cTemplate class 236 in test driver 110 informs visible
plugins 150 that the current presentation is ending using
I*::PresentationEnding() call 1550, step IIIm. For example,
cTemplate informs helm plugin 154 +that the current
presentation is ending using the IHelm::PresentationEnding(

) call.

[0222] Step IV, which contains sub-steps 1IVa-c, is the
process to save plugin state data to exam instance file 170.
Test driver 110 requests the "dirty" state of plugin 150 to
determine whether plugin 150 is ‘storing any state.

information that would be necessary if the test were to be

interrupted. Test driver 110 uses
IPersistInstance*::IsDirty() call 1552 to make the request,
step Iva. For example, test driver 110 uses

IPersistInstanceSet::IsDirty call 1552 if the state data is
a property set. If plugin 150 is storing state data that is
not already stored in . exam instance file 170,
IPersistInstance*::IsDirty() call 1552 returns true. If
plugin 150 is "dirty", test driver 110 instructs plugin 150

to save the state data to exam instance file 170 in the

-121 -

10

15

20

WO 2004/114093 PCT/US2004/019831

POLESS object provided (FIG. 26) using
TPersistInstance*::Save() call 1554, step IVb. Finally,
test driver 110 instructs plugins 150 to unload all objects

using IPlugin::Unload() call 1556, step IVc.

[0223] VI. Network Environment for a Computer-Based Testing

System

[0224] A description of a network environment for a
computer-based testing system according to the present
invention including a test driver that controls delivery of
a computer-based test "over a networked environment by
caching test components for delivery to a test candidate in
order to facilitate a uniform testing environment for at
least one or more concurrent test candidates is provided.
FIG. 35 is a block diagram illustrating an example of a

network environment for a computer-based test system

according to the present invention.

[0225] With reference to FIG. 35, the computer-based testing
system of the present invention includes a test management
system, including a Web certified proctor management site
3160 and secure ID server 3150, for identifying proctors of

the computer-based test; a test proctor certification

-122 -

10

15

20

WO 2004/114093 PCT/US2004/019831

system, including Web eligibility management site 3190 and
GEE server 3180, for certifying proctors for administering
the computer-based test; a test registration system to
enable candidates to request an appointment to take a test,
including Web registration site 3200 to allow appointments
to be reserved via the Internet, scheduling middleware 3170

to process the candidates request to take the test, schedule

interface service 3220 which provides the scheduled

appointment data to candidate workstation 3000 to identify
the candidate and to verify the candidate’s credentials, an
ecommerce system 3210 for registering test candidates for
the computer-based test and for collecting and/or processing
any payments associated with scheduling and delivering the
computer—based test; and a test analysis system, including
results collection server 3230 for aggregating results from
all delivered tests, a data warehouse 3240 for storing and
allowing access to such test results, and a results
psychometric system 3250 for monitoring candidate responses
to test items, maintaining the composition of the computer-
based tests, and to enable item response analysis and

reports to be generated and distributed.

[0226] The network environment as shown in FIG. 35 further

includes a computer-based test production system, including

-123 -

10

15

20

WO 2004/114093 PCT/US2004/019831

test publisher system 3010 for authoring a computer-based
test and producing exam source files (previously described)
which store test specification and content; test packaging
éystem. 3020 for retrieving, validating and compiling the
exam source files of the computer-based test into an exam
resource file (previously described); and source server 3030
for storing and managing versions of the compiled exam
resource file and any additional <corresponding test
components comprising the computer-based test. The network
environment also includes distribution servers for
facilitating computer-based testing, including application
depléyment servers 3040, item~cache servers 3050 and plugin
caqhe servers 3060, connected to source server 3030 via a
wide area network (i.e., an interconnected system of
networks), and connected to candidate workstation 3000 via a
local access network. The local access network can include
LAN, =xDSL access network, cable access network, or wireless
access network. - From source server 3030, the test
components are extracted from the exam resource file of the
computer-based test and deployed to the distribution
servers. Application deployment servers 3040 store the test
driver application and the exam resource file, containing
the core test specifications of the computer-based test, for

distribution to candidate workstation 3000. Item cache

-124 -

10

15

20

WO 2004/114093 PCT/US2004/019831

servers 3050 store test items extracted from the exam
resource file. Plugin cache servers 3060 store plugins
extracted from the exam resource file. The network
environment further includes any number of test candidate
workstations at a multiplicity of locations to which the
computer-based test i1s scheduled to be delivered. Thus, the
distribution servers may be clustered for parallel
processing, load balancing and fault tolerance to support a
varied volume of at least one or more concurrent test

candidates.

[0227] From applicationwdeployment servers 3040. the test
driver application for controlling de;ivery of thé computer-
based test may be downloaded for setup on candidate
workstation 3000. The test driver application 3070 may be
stored on a computer readable medium, such as a hard drive
or other magnetic medium, connected to candidate workstation
3030. However, test components of the computer-based test,
including the exam resource file, test items and plugins
(all of which were previously described), are stored in
random access memory (RAM) to prevent unauthorized copying
or manipulation of the computer-based test, thereby assuring

the integrity of the test.

-125 -

10

15

20

WO 2004/114093 PCT/US2004/019831

[0228] Test driver application 3070 includes session manager
3080 for managing the computer-based testing session, having
authentication layer 3090 for authenticating proctors of the
computer-based test, event locator candidate credential
interface 3100 for certifying test candidate eligibility to
use the computer-based test and Unified Test Driver (UTD)
core 3110 for controlling delivery of the computer-based
test to candidate workstation 3000. UTD core 3100 controls
item cache controller 3120, plugin cache controller 3130 and
browser presentation layer 3140. 1Item cache controller 3120
stores test items retrieved from item cache servers 3040 in
item cache 4360 (FIG. 36), encrypted memory mapped paged RAM
on candidate workstation 3000, for delivery to the test
candidate. Plugin cache controller 3130 stores plugins

retrieved from plugin cache servers 3160 in plugin cache

. 4390 (FIG. 36), memory mapped paged RAM on candidate

workstation 3000, for wuse by UTD core 3100. Browser
presentation layer 3140 serves the computer-based test on
candidate workstation 3000 1in accordance to the exam

resource file retrieved from application deployment servers

3040.

[0229] VII. Caching Architecture for the Computer-Based

Testing System

-126 -

10

15

20

WO 2004/114093 PCT/US2004/019831

[0230] In computer-based testing, a test may be delivered to
a candidate workstation wusing two delivery modes: a
disconnected mode (e.g., non-networked) or a connected mode
(e.g., networked). A disconnected mode 1s a traditional
delivery mode in which every element required to administer
the computer-based test is stored on the test candidate
workstation before the computer-based test is initiated.
Thus, there is no need to monitor the testing environment to
adjust delivery of the computer-based test over a network
environment and no need to implement a caching architecture
for a network environment. In contrast, a connected mode is
a non-traditional delivery mode in which core elements of
the computer-based test are stored on the test candidate
workstation and additional test components are retrieved
during computer-based testing from distribution servers over
a network environment. While wusing the connected mode
provides many advantages, such as, flexibility in
administering computer-based tests to test candidates
located in multiple locations, the network environment
introduces environment variables that are not controllable
by a test administrator without great cost. Thus, in order
to provide a uniform testing environment to a varied volume

of at least one or more concurrent test candidates located

-127 -

10

15

20

WO 2004/114093 PCT/US2004/019831

in multiple locations, a computer-based system must adjust
delivery of a computer-based test in order to compensate for

variance in the network environment.

[0231] A description of a caching architecture -for a
computer-based testing system of the present invention
including a test driver that controls delivery of a
computer-based test over a networked environment by caching
test components for delivery to a test candidate in order to
facilitate a uniform testing environment for at least one or
more concurrent test candidates is provided. FIG. 36 is a
block diagram of a cachi%g architecture for a computer-based

test system according to the present invention.

[0232] As shown in FIG. 436, test driver application 3070
includes Web service interface 4400, having authentication
module 4410. Web service interface 4400 facilitates network
communications between candidate workstation 3000 and the
distribution servers. Authentication module 4410
authenticates the test components retrieved from the
distribution servers. Web service interface 4400 further
logs the transmission details of each request and response
transmitted Dbetween candidate workstation 3000 and the

distribution servers, which includes, but is not limited to,

- 128 -

10

15

20

WO 2004/114093 PCT/US2004/019831

for example, the time at which candidate workstation 3000
sends a request to a diétribution server, the time at which
a distribution server receives the request, the time at
which a distribution server sends a response to candidate
workstation 3000 and the time at which candidate workstation
3000 receives the response. Such detailé further include,
for example, error messages issued by the network, error
messages issued by the distribution servers, the number of
retries by candidate workstation 3000 to send a request to
the distribution servers, the number of retries by candidate
workstation 3000 to obtain a response from the distribution
servers and the size of each message or test components

transmitted.

[0233] Test driver application 3070 further includes item
request interface 4340, plugin request interface 4370,
request processor 4310, decryption module 4320,
decompression module 4330, item request module 4350, plugin
request module 4380, cache controller 4400, item cache 4360
and plugin cache 4390. Test driver application 3070 sends
requests to retrieve test components via item request
interface 4340 and plugin request interface 4370. Request
processor 4310 processes requests for test components

initiated by test driver application 3070 and delivery of

129 -

10

15

20

WO 2004/114093 PCT/US2004/019831

test components retrieved from the distribution servers to
test driver application 3070. Item request module 4360
facilitates retrieval of test items from item cache servers
3040. Plugin request module 4380 facilitates retrieval of
plugins from the plugin cache servers 3060. Cache
controller 4400 manages the storing of test components in
item cache 4360 and plugin cache 4390. Item cache 4350
stores test items retrieved from item cache servers 3040.
Plugin cache 4390 stores test plugins retrieved from plugin
cache servers 3060. Decryption module 4320 decrypts test
components that have been encrypted for preserving the
integrity of the computer-based test. Decompression module
4330 decompresses test components that have been‘compressed

for transmitting over the network environment.

[0234] Descriptions of example caching operations of a
computer-based testing system of the present invention
including a test driver that controls delivery of a
computer-based test over a networked environment having the
caching architecture are provided. Because the computer-
based test comprises cacheable objects, it is possible to
download only selected test components from the distribution
servers to the candidate workstation for delivering a

current test section in accordance to the test

-130-

10

15

20

WO 2004/114093 PCT/US2004/019831

specifications. Thus, it is possible for a test candidate
to initiate a computer-based test prior to all test

components being downloaded to the candidate workstation.

[0235] FIG. 37A is a flow chart of a method of cachihg test
items with respect to the caching architecture according to
the present dinvention. With reference to FIG. 37A, when
test driver application 3070 requires a test item, test
driver application 3070 via item request interface 4340
instructs request processor 4310 to retrieve the test item
at steps S3710A and S3715A. Request processor 4310 verifies
whether the test item ié available in item cache 4360 at
step S3720A. If the requested test item is available locally
(e.g., hit), request processor 4310 retrieves the test item
from item cache 4360 at step S3755A. If necessary,
decompression module 4330 decompresses the test item at step
S3750A and decryption module 4320 decrypts the test item at
step S3765A. Request processor 4310 returns the test item
to test driver application 3070 at step S3770A. However, if
the test item 1s not available locally (e.g., miss), item
request module 4350 requests the test item from item cache
servers 3050 via Web service interface 4400 at steps S3725A
and S3730A. Web service interface 4400 requests the test

item from item cache server 3050 at step S3730A. Item cache

- 131 -

10

15

20

WO 2004/114093 PCT/US2004/019831

server 3050 or the source server 3030 returns the requested
test item at step S3735A. Authentication module 4410
authenticates the returned requested test item at step
S3740A. Item cache controller 3120 requests storage
instructions from cache controller 4400 at step 3745A and
accordingly stores the returned requested test item in item
cache 4360 at a step S3750A. Request processor 4310
retrieves the test item from item cache 4560 at step S3755A.
If necessary, decompression module 4330 decompresses the
test item at step S3760A and decryption module 4320 decrypts
the test item at step S3765A. Request processor 4310
delivers the test item to test driver application 3070 at

step S3770A.

[0236] A similar process occurs when test driver application
3070 requires a plugin. FIG. 37B is a flow. chart of a
method of caching plugins respect to the caching
architecture according to the present invention. With
reference to FIG. 37B, when test driver application 3070
requires a plugin, test driver application 3070 via plugin
request interface 4370 instructs request processor 4310 to
retrieve the plugin at steps S3710B and S3715B. Request
processor 4310 verifies whether the plugin is available in

plugin cache 4390 at step S3720B. If the requested plugin is

-132 -

10

15

20

WO 2004/114093 PCT/US2004/019831

available locally (e.g., hit), request processor 4310
retrieves the plugin from plugin cache 4390 at step S3755B.
If necessary, decompression module 4330 decompresses the
plugin at step S3760B and decryption module 4320 decrypts
the plugin at step S3765B. Request processor 4310 returns
the plugin to test driver application 3070 at step S3770B.
However, if the plugin is not available locally (e.g.,
miss), plugin request module 4370 requests the plugin from
plugin cache servers 3060 via Web service interface 4400 at
steps S3725B and S3730B. Web service interface 4400
requests the plugin from plugin cache server 3060 at step
S3730B. Plugin cache server 3060 or the source server 3030
returns the requested plugin at step S3735B. Authentication
module 4410 authenticates the returned requested plugin at
step S3740B. Plugin cache controllér 3130 requests storage
instructions from cache controller 4400 at step S3745A and
accordingly stores the returned requested plugin in plugin
cache 4390 at a step S3750B. Request processor 4310
retrieves the plugin from plugin cache 4390 at step S3755B.
If necessary, decompression module 4330 decompresses the
plugin at step S3760B and decryption module 4320 decrypts
the plugin at step S3765B. Request processor 4310 delivers
the plugin to test driver application 3070 at step S3770B.

Moreover, a cache cleaning algorithm may be employed to

-133 -

10

15

20

WO 2004/114093 PCT/US2004/019831

retire test items and/or plpgins when one or more
predetermined conditions are satisfied, e.g., when a
predetermined amount of time expires after the test item
and/or the plugin is added to item cache 4360 or plugin

cache 4390, respectively.

[0237] Caching of a computer-based test for delivery to
candidate workstation 3000 is facilitated in accordance to
the changing testing environment during computer-based
testing reflected by monitoring of candidate progress,
candidate performance, network bandwidth, network latency
and server response, aébng other environmental variables,
during computer-based testing. With reference to FIG. 36,
test driver application 3070 further includes stimuli
processor 4400, cache controller 4410, candidate performance
monitor 4420, candidate progress monitor 4430, network
laténcy' monitor 4440, network bandwidth monitor 4450 and
server response monitor 4460. In response to changes in the
testing environment, stimuli processor 4410 adjusts the
source for retrieving test components or the volume of test
components to store in cache memory on candidate workstation
3000 and instructs cache controller 4410 accordingly.

Environment monitoring means as shown in FIG. 36 include,

but are not limited to, for example, candidate progress

-134 -

10

15

20

WO 2004/114093 PCT/US2004/019831

monitor 4430, which measures the rate at which the test
candidate 1is answering test items; candidate performance
monitor 4420, whj;ch measures test candidate competency;
network bandwidth monitor 4450, which measures data transfer
speed between candidate workstation 3000 and distributions
servers; network latency monitor 4440, which measures delay

times between candidate workstation 3000 and distributions

servers caused by the network; and server response monitor

4460, which measures the delay times between candidate
workstation 3000 and distributions servers when delay is

caused by the server.

[0238] Descriptions of caching operations of a" computer-
based testing system according to the present invention is
provided. Generally, stimuli processor 4410 periodically
initiat;s an inquiry to candidate progress monitor 4430,
candidate performance monitor 4420, network bandwidth
monitor 4450, netwérk latency monitor 4440 and server
response monitor 4460 during computer-based testing. The
results of each monitor are returned to stimuli processor
4410. Based these results, stimuli processor 4410 adjusts
either the source of test components or the volume of test
components being cached for delivery of the computer-based

test and cache controller 4400 accordingly. Examples of the

-135-

10

15

20

WO 2004/114093 PCT/US2004/019831

operations of the testing environment monitors candidate
progress monitor 4430, candidate performance monitor 4420,
network bandwidth monitor 4450, network latency monitor 4440

and server response monitor 4460 are now described.

[0239] For example, candidate progress monitor 4430 measures
the test candidate’s rate of progress in answering test
items during computer-based testing fér maintaining
availability of test items. FIG. 39A shows a flow chart of
the operation of candidate progress monitor 4430. Stimuli
processor 4410 initiates an inquiry to candidate progress
monitor 4430 at step S3800A. Candidate progress monitor 4430
retrieves the number of test items allotted to the current
test section and the time allotted to each test item, which
are stored in the exam resource file (described previously)
on candidate workstation 3000 at step S3810A. Candidate
progress monitor 4430 retrieves the number of test items
answered by the test candidate and the answer time used by
the test candidate for answering each test item, which are
stored in the exam instance file (described previously) on
candidate workstation 3000 at step S3815A. Candidate
progress monitor 4430 then calculates the rate at which the
test candidate answers test items at step S3820A and returns

the number of test items allotted to the current test

-136 -

10

15

20

WO 2004/114093 PCT/US2004/019831

section, the number of test items answered by the test
candidate in the current test section and the answer rate to
stimuli processor 4410 at step S3825A for determining
whether a sufficient pool of test items are available to the
test candidate during computer-based testing. Based on
these results, stimuli processor 4410 calculates the number
of test items remaining in the current test section for
delivery to the test candidate at S3830A. Stimuli processor
4410 then retrieves the number of test items stored in item
cache 4360 at step S3835A and calculates the number of test
items remaining to be cached in the current test section for
delivery to the test canaidate at step S3840A. Based on the
answer rate and the number of test items remaining to be
cached, stimuli processor 4410 determines whether it has
become necessary to retrieve additional test items for
caching at step S3845A. When it has become necessary to
retrieve additional test items, stimuli processor 4410
instructs cache controller 4400 accordingly at step S3850A.

Otherwise, monitoring continues at step S3855A.

[0240] In another example, candidate performance monitor
4420 measures the test candidate’s competency in answering
test items during computer-based testing for maintaining

availability of suitable test items. FIG 39B shows a flow

-137-

10

15

20

WO 2004/114093 PCT/US2004/019831

chart of the operation ‘of candidate performance monitor
4420. Stimuli processor 4410 initiates an inquiry to
candidate performance monitor 4420 at step S3800B.
Candidate performance monitor 4420 retrieves the number of
test items answered in the current test section, the
competency level of each test item and the scoring of each
test item, which are stored in the exam instance file
(described previously) on the candidate workstation at step
S3810B. Candidate performance monitor 4420 then calculates
the competency level of the test candidate at step S3815B
and returns the candidate competency level to stimuli
processor 4410 at step S3820B for determining whether a
sufficient pool of suitable test items are available to the
tesf candidate during computer-based testing. Stimuli
processor 4410 then retrieves the number of test items of
the candidate competency level stored in item cache 4360 at
step S3825B and calculates the number of tést items of the
candidate competency level remaining to be cached in £he
current test section for delivery to the test candidate at
S3830B. Based on the candidate competency level and the
number of test items of the candidate competency level
remaining to be cached, stimuli processor 4410 determines
whether it has become necessary to retrieve additional test

items of the current competency level for caching at step

- 138 -

10

15

20

WO 2004/114093 PCT/US2004/019831

S3835B. When it has become necessary to retrieve additional
test i1tems of the candidate competency level, stimuli
processor 4410 instructs cache controller 4400 accordingly
at step S3840B. Otherwise, monitoring continues at step

S3845B.

[0241] A further example is network bandwidth monitor 4450
which measures the speed of data transfer between candidate
workstation 3000 and a distribution server for maintaining
timely availability of test items. FIG. 39C shows a flow
chart of the operation of network bandwidth monitor 4450.
Stimuli processor 4410 initiates an inquiry to network
bandwidth monitor 4450 at step S3800C. For each exchange
between candidate workstation 3000 and a distribution
server, network bandwidth monitor 4450 retrieves from logs
generated by Web service interface 4400 the time a request
is sent by candidate workstation 3000 to a distribution
server, the time the request is received by the distribution
server, the size of the request message, the time a response
is sent by the answering distribution server, the time the
response is received by candidate workstation 3000 and the
size of the response message at step S$3810C. Based on these
variables, network bandwidth monitor 4450 calculates the

data transfer speeds between candidate workstation 3000 and

-139 -

10

15

20

WO 2004/114093 PCT/US2004/019831

distribution servers at step S3015C and returns the data
transfer speeds to stimulil processor 4410 at step S3820C for
determining frequency of requests to retrieve test
components and size of test components being transferred.
Based on these results, stimuli processor 4410 calculates
whether network bandwidth is growing or deteriorating at
step S3825C and then stimuli processor 4410 instructs cache
controller 4400 accordingly at step S3830C. For example,
when network bandwidth 1is narrowing, frequency of data
transfer may be increased and size of test components to be
transferred may be decreased to compensate for loss of data
transfer speed at steﬁ S3835¢C. Otherwise, monitoring

continues at step S3840C.

[0242] An additional example, network latency monitor 4440
measures the delay in data transmission time between
candidate workstation 3000 and the distribution servers
caused by the network for re-establishing connectivity
during computer-based testing. FIG. 39D shows a flow chart

of the operation of network latency monitor 4440. Stimuli

‘processor 4410 initiates an inquiry to network latency

monitor 4440 -at step S3800D. For each exchange between
candidate workstation 3000 and a distribution server,

network latency monitor 4440 retrieves from logs generated

- 140 -

10

15

20

WO 2004/114093 PCT/US2004/019831

by Web service interface 4400 the time a request is sent by
candidate workstation 3000 to a distribution server, the
time the request is received by the distribution server, the
size of the request message, the time a response is sent by
the answering distribution server, the time the response is
received by candidate workstation 3000, the size of the
response message, the number of transmission retries and any
network error messages received at step S3810D. Based on
these wvariables, network latency monitor 4440 calculates
delay times between candidate workstation 3000 and
distribution servers caused by the network at step S3815D
and returns the delay times to stimuli processor 4410 at
step S3820D for determining the state of network
connectivity. Stimuli processor 4410 retrieves a
predetermined tolerance threshold from the exam resource
file (described previously) at step é3825D and determines
the rate delay times are approaching the tolerance threshold
at step S3830D. Delay times approaching within a
predetermined range of the tolerance threshold indicates
that network connectivity failure is imminent. Prior to
such failure, stimuli processor 4410 determines whether a
sufficient number of test components are cached for delivery
to the test candidate while the test driver reconnects to a

redundant network in the background at step S3835D and

-141 -

10

15

20

WO 2004/114093 PCT/US2004/019831

instructs cache controller 4400 accordingly at step S3840D.

Otherwise, monitoring continues at step S3845D.

[0243] In another example, server response monitor 4460
measures the delay in data transmission time between
candidate workstation 3000 and the distribution servers
caused by the distribution servers for maintaining
accessibility to a source for test components during
computer-based testing. FIG. 39E shows a flow diagram of
the operation of server response monitor 4460. Stimuli
processor 4410 initiates an inquiry to server response
monitor 4460 at step S3800E. For each exchange between
candidate workstation 3000 and a distribution server, server
resbonse monitor 4460 retrieves from logs generated by Web
service interface 4400 the time a request from candidate
workstation 3000 is received by a distribution server, time
a response is sent by the answering distribution server, the
number of retries and any server error messages received at
step S3810E. Based on these variables, server response
monitor 4460 calculates delay times between candidate
workstation 3000 and a distribution server caused by the
servers at step S3815E and returns the delay times to
stimuli processor 4410 at step S3820E for determining the

state of server accessibility. Stimuli processor 4410

-142 -

10

15

20

WO 2004/114093 PCT/US2004/019831

retrieves a predetermined tolerance threshold from the exam
resource file (described previously) at step S3825E and
determines the rate delay times are approaching the
tolerance threshold at step S3830E. Delay times approaching
within a predetermined range of the tolerance threshold
indicates that server accessibility is limited and stimuli
processor 4410 instructs cache controller 4400 accordingly
at step S3835E. Otherwise, monitoring continues at step

S3840E.

[0244] The ©present invention i1is not limited to the
embodiment described herein. For example, the test driver
application and cacheable test components may be stored on
the same distribution servers for delivery to test
candidates. In addition, the distribution servers, in
groups or singly, can be located in any number of remote
locations. Furthermore, the testing environment monitors
can include other monitors not specifically described
herein. Thus,. cacheable objects are used to expand
functionality of a test driver application that controls
delivery of a computer-based test to one or more test
candidates over a dynamic distributed network environment by
adapting delivery of the computer-based test in accordance

to monitoring of testing environment wvariables.

- 143 -

10

WO 2004/114093 PCT/US2004/019831

[0245] The many features and advantages of the invention are
apparent from the detailed specification, and thus, it 1is
intended by the appended claims to cover all such features
and advantages of the invention, which fall within the true
spirit and scope of the invention. Further, since numerous
modifications and variations will readily occur to those
skilled in the art, it is not desired to limit the invention
to the exact construction illustrated and described, and
accordingly, all suitable modifications and equivalence may

be resorted to, falling within the scope of the invention.

- 144 -

WO 2004/114093 PCT/US2004/019831

APPENDIX A-
UTD CLASSES AND INTERFACES

145

WO 2004/114093 PCT/US2004/019831

LOGICAL VIEW REPORT

TABLE OF CONTENTS
TABLE OF CONTENTS 2
LOGICAL VIEW REPORT 4
LOGICAL VIEW 4
CComControl 4
CWindowlmpl 4
DSADocs.DocDisplay 4
DSADocs.docltem...... - 4
DSADOCS.AOCREVIEWe..cneoceveieencriniiieitieiencsesessees s ens s nesanas 4
IAdviseSink 5
IDESPAICH o eoneeeeconieaceercereeaieneseressenrnicssssansssa s s sa s men s msen arn s ans ab st essas st s massasns s sasesun s es 5
10leClientSite... reesteseesaestenene e e e s n et st nenne 5
JO1EDOCUMENIIMPL........ooooeeoemeeerececreerecceitee e cceess e sbe e ss e e as et erssmsas s s s s s b st 5
10leDocumentSite.......... eeamreeeneareas 5
10leDocumentViewlmpl....... 5
10leInPlaceFrameceeenmeeeeieeeneiierercrceensensenes . 6
I0leInPlaceObjectWindowlessImplccoovvminonienecrneeenens eevesreeenerereneeresrens 6
JOleInPlaceSite eetereeeressesseseessesomseteseseetesseitresosant e e s e R s i e sesn s s ns 6
TOLeINPIACEUIWINAOW.......c.eooeeeeeerereeeseeceaessrerassssoressassmesaessessssesssnsnssmsssasesssassessessrsasasesasensessesssssreusesanee 7
10leObject 7
10leObjectimpl 8
I0LeWindowccueeeeeceeeeeeenreeeenee. eeetemeeesneseseset s et cs e e s see e e se e seannas 8
IPersistStoragelmpl " 8
UTD C.BIOWSET ceeeeeeeeeeeeerreerercssessssessnsnsessmssmssssasessatasssmsessessasssossssesissassnsesessssssesnsassassssnssssssnessersansnsnnren 8
UTDC.GraphScores.........uueuvecnersvncenennn 10
UTDC.TimeRemaining eeeeerrbememteseestesesasaseatetatae et ettt oraeneers 10
UTDComm.cCommentNavigation...................... .10
UTDCore.Collection : rererseesrenaneeeens 10
UTDCore.ICompilerServicesoveeeeeevuvrencuccnennnne. ... 10
UTDCore.cArea.............. ieeerseseeseesseeseesaesseseseasesstessesseateses taabeasSas i s st R b s b SRSt b Se s Rt ee s hems b s nen s beran 11
UTDCore.cAUHIIDULE.coeeeerivieeenccsscsncenensnnns 11
UTDCore.cAITIDULEScvrereeneeneeeeeienerneesienens eneheeteressesessiisaiasas e rere e astbansraen e s e s e s e nat et bn e 11
UTDC0re.cCategoriesueaeninnneersverrecnsseessssansans 11
UTDCore.cCategory........uuuuccrennn . 12
UTDCore.cEvents........... - 12
UTDCOTE.CEXAN....r..eeeeeeeeeeeereereeeereeceeecereesserasesmesseaesscssamsssnas rreeaereeeteae e et et b st e eee 12
UTD COTE.CFOIM.....uveneeeetreeeaereeeecmeaeseeencearasesassneareseamaasassansaen s s s b st s sessbaese e b s si b b s b o e s sassnnbessssasassnssass 14
UTDCOre.CGroupoueeeeeeveneeneeeinensnncne - 15
UTDCOTE.CGTOUPS oo sssssenssssassasss s s s s e st e s st ses s s samesbasesmassentrnes I6
UTDCOTCIIEM.cc.caeeeeeeraeeeeeeeremeeernseeseceesssses et sanasasscsessessessassasssbassnsrnssssassnsonsessasensnnsssmsnsen .16
UTDCOTE.CIIEIMNS c.cuenneeeeeeeeeeeeceerereecrsssessscesctneseesesrasassassesst o sb s et e st e bebassnsnsermsbases e ssesbbesbasbneasbenanss 16
UTDCOTe.CMSEBOX....cooeeceeceerecemseiensiererssssessecessncsssseensesssesassneas ettt e e aeanseras 17
UTDCOre.CPresSeRIQLION.eoeecvereeeereaeeseseeamessseesiasvaseeesemresseessessassesees feereannseseasanrassnenes 17
UTDCOTE.CPIESEIIALIONSeoreereeeeeeeeeereeeeeeeereenaeeesarasesesesssesasseest e esrsssassss st sasia s sases s sererserssssbenassae 18
UTDCOIE.CREGISITY.ceneeeeenaceretrentaseenerseriessssasesc et s stcs s s ns s s e b ser e masn s asamssamessrasr s e nsbabaanae s e eas 18

UTDCore.cReport

UTDCore.cResults

UTDCOTE.CSCIIPE eeeoeeeeeeeee e sess s esssssses s s es st s s s e s shss bt s s ns s e sas s st seso s sesaen

UT D COTC.CSECHIOMN c...eeeeeeeeeeeeecereeeeeeseeersesesseeseseessseescsmaearmsssmsssnsssssenesansenseenesassesasersnnasasnetsnnsaansnmaann 20
UT D COTC. CSOCHOMS c.eeeeeeeeeeceeeeeeeseemeereeeeeeeeeesemsesssssessnsnnsssnsssssensssemeeneneseenbrrnsesrmnseessssntrasasmnsaan 27
UT D COTE. €DIr@CHOMcaneeiaeeecereeeeeeseiesreesrnveseeessessnsessssseassssssssssesssssnssssassssmesssassseassssanssnesseesessssonmsans 21

WASHINGTON 149764V
146

WO 2004/114093 PCT/US2004/019831

LOGICAL VIEW REPORT

UTDCore.ePluginModes - etereseteeeearraeeneaseanessteteatetnsseatsassans 21
UTDCore.eScoreStatus eeeeeeoeeoeseesacoaanesessssseswesevesssteerEEeSaceaseesERSLSstesas s b rannaratensanenassres 21
UTDCore.eStates . resreresnnenans 21
UTDCOTe.iCOMIAIMETNOIILY c..cvneemeaeeeeecrsireeminesessssmesssasa s e cesessa e s s sa st e s e s e bt ne s 22
UTDCore.iContainerNotifyHelm 22
UTDCore.iDisplay . 22
UTDCore.iHelm 22
UTDCore.iltem. " 23
UTDCore.iNavigate 23
UTDCore.iPersistinstanceSet 24
UTDCore.iPersistinstanceStore.... 24
UTDCore.iPersistinstanceStream 24
UTDCore.iPersistResourceSet.... 25
UTDCore.iPersistResourceStore 25
UTDCore.iPersistResourceStream 25
UTDCore.iPlugin reeresassssesemesesnarmeaaees .25
UTDCOTCAREPOTE..c...cceecnrereumeanearnrissuesssissecasssss s s e s s s 26
UTDCore.iResults 26
UTDCore.iScore. : 26
UTDCore.iSelection. . 27
UTDCore.iUnitTimer evreeseresanennaeesesnsenasoeras 27
UTDP.SIANAATATIINEE «.c..eooneeeneeeceeeeereenireerscsssneasnsressnsssarsssesssassnse 28
UTDP.cBrowserDisplay....... . Heasssssrsasessesessossnsseeransnsens 28
UTDP.cLinearNavigate ereterernereeeeneneesaeraenes 28
UTDP.CMULIICROICEIIGIN «...cooveeeeeeeeeeeeeacaneracasesensssessrsssassssmsest st cessssatsssms s s s st s ntr s s s m s s s avamssmassas oo 28
UTDP.CNEXIPTEVIOUS -...neveeevecaraesoresovecesassssrssssnssasonssonssorscsssssons 29
UTDP.CSEGUENTIALEXRASIIVE «....eoveeveeeeercarersacnsssassisssssssisssesa s et b s bt 29
UTDP.cSummaryScore . - 29
UTDP.cUserSelection........... . reveereeneeseaesaeeenessarnanas 29
UTDPE.cChallenge.............. 29
UTDPE.CSLSDEIRESIILooeeeneareeeearmeesssssssemsrersssasssassssasasssssssstessessssssmsssssanesssmsnssrresssassons 29
UTDPE.cStandardReview eesesscsmmsesostesesteseereREetsSesSesas TS bR e n e s e RS ae b bR b s b s B b eSS 29
UTDPE.cStandardScoreReport........ . 29
UTDPE.cWTDResults........... 29
cActivePlugin 29
CCOMQINETETAMET eoeeeeeereevceeeerrevnesmacasesirasseness :29
CDOCUMENESIIET ..ooeeeeeemeeeeerecnenercarernens . 29
cEvent : 30
cFormGroup......... - - 30
CPUIGINT oo ere e insssenssssc st s s s s s s s 30
CPIUGIN ettt b s s s st e 30
S CTCONMITITIT o eeoeeeeeeeeeeeeneeseeresessansaasssenntassestosssassasebesn s n b e ana s she s sas b samesansnassassorasans 30
CTemplate.......oeoneomeccreincninrcnenns Eeeervemereseesessemseseteseactscrectesissisaebe R rastebessaasansyartneate 31
[APDOINIMENLc.c.oenreaerarrareincencacnnnssenses eeeeeeveesmesevsssesssessesetiesstesEiibseiseinsresasaaeraenaneasnaseraee 31
BEAQUIECH oo eeeeeeeeeeeessnsessessessanenassnessn s emmsessemssbransssnbaeassnstsaansessasssanens ; 31
FLAEUICHZ oo eessuensssasasas e saeseaesee e emea s e aea R R RS e RS s R s s e b e e s e s SR e s s s s R s e R et a bbb s sa b n s e e 37
iPrint.. eeeeeeeeeeeesseeaesesessemseseseessesraeerseerarnnesnasearsrrastessnsaereaaans .31
ETTANSIOT ..cocreenereeremreerescrsccrensaneasanenasmsts st s sna et sres e nasasass 31
TOTALS: 32
LOGICAL PACKAGE STRUCTURE 32

WASHINGTON 149764V
147

WO 2004/114093 PCT/US2004/019831

LOGICAL VIEW REPORT

LOGICAL VIEW REPORT

CComControl
Derived from CWindowImpl

Public Operations:

CComContrel) : CComControl

FireOnRequestEdit (dispID : DISPID) : HRESULT

FireOnChanged (dispID : DISPID) : HRESULT

CreateControlWindow (hWndParent : HWND, rcPos : RECT&) : HWND
ControlQuerylInterface (iid : const IID&, ppv : void**) : HRESULT

CWindowImpl ,
CWindowImpl allows you to create a new window or subclass an existing window
Public Attributes:
m_hWnd :

Public Operations:
Create (:
Creates a window
DefWindowProc Q
Provides default message processing

GetWndClassInfo (:
Returns a static instance of CWndClassInfo which manages the window class
information

SubclassWindow ()
Subclasses a window

UnsubclassWindow () :
Restores a previously subclassed window
WindowProc () :
Processes messages sent to the window
GetWindowProc Q :
Returns the current window procedure
GetCurrentMessage () :
Returns the current message
OnFinalMessage ()
Called after receiving the last message (typically WM_NCDESTROY)

DSADocs.DocDisplay
The DSA introduction and display screens. Modified to support the new interfaces.
DSADocs.docItem

The DSA multichoice item. Does graphic and text distracters. Handles voice-overs and
BSL. Modified to support the new interfaces.

DSADocs.docReview

The DSA review screen. Modified to support the new interfaces.

WASHINGTON 149764V1

148

WO 2004/114093 PCT/US2004/019831

LOGICAL VIEW REPORT

IAdviseSink

Public Operations:
OnViewChange (dwAspect : DWORD, lindex : LONG) : void

Advises that view of object has changed
OnRename (pmk : IMoniker *) : void

Adyvises that name of object has changed
OnSave () : veoid

Advises that object has been saved to disk
OnClose () : void)

Advises that object has been closed

Dispatch ‘ _
Base class for all UTDCore COM Interfaces.
IO0leClientSite . :

Public Operations: .
SaveObject () : HRESULT
Saves embedded object.
GetMoniker (dwAssign : DWORD, dwWhichMoniker : DWORD, ppmk : IMoniker **) : HRESULT
Requests object’s moniker
GetContainer (ppContainer : LPOLECONTAINER *) : HRESULT
Requests pointer to object’s container
ShowObject () : HRESULT
Asks container to display object
OnShowWindow (fShow : BOOL) : HRESULT
Notifies container when object becomes visible or invisible
RequestNewObjectLayout () : HRESULT
Asks container to resize display site.

I0leDocumentImpl
Public Operations:

CreateView (pIPSite : YOleInPlaceSite *, pstm : IStream *, dwReserved : DWORD, ppView :
I0OleDocnmentView **) ¢

EnumViews (ppEnum : IEnumOleDocumentViews**, ppView : I0leDocumentView **) :

GetDocMiscStatus (pdwStatus : DWORD *) :

IOleDocumentSite
Public Operations:

ActivateMe (pViewToActivate : I0leDocumentView *) : HRESULT
Activates an OLE Document Object

I0leDocumentViewImpl

Public Operations:

SetInPlaceSite (pIPSite : 10]leInPlaceSite *) :

GetlInPlaceSite (ppIPSite : I0leInPlaceSite **) :

GetDocument (ppunk : IUnknown #*) :

SetRect (prcView : LPRECT) :

GetRect (prcView : LPRECT) :

SetRectComplex (prcView : LPRECT, prcHScroll : LPRECT, preVSceroll : LPRECT, preSizeBox : LPRECT)

Show (fShow : BOOL) :

UlActivate (fUlActivate : BOOL) :

Open(:

CloseView (dwReserved : DWORD) :

SaveViewState (pstm : LPSTREAM) :

ApplyViewState (pstm : LPSTREAM) :

Clone (pIPSiteNew : IOleInPlaceSite*, ppViewNew : IOleDocumentView**) :
ActiveXDocActivate (iVerb : LONG) :

WASHINGTON 149764V
149

WO 2004/114093 PCT/US2004/019831

LOGICAL VIEW REPORT

I10leInPlaceFrame
Derived from IOleInPlaceUIWindow

Public Operations:

InsertMenus (hmenuShared : HMENU, lpMenuWidths : LPOLEMENUGROUPWIDTHS) : HRESULT
Allows container to insert menus

SetMenu (hmenuShared : HMENU, holemenu : HOLEMENU, hwndActiveObject : HWND) : HRESULT
Adds a composite menu to window frame

RemoveMenus (hmenuShared : HMENU) : HRESULT
Removes a container’s menu elements

SetStatusText (pszStatusText : LPCOLESTR) : HRESULT
Sets and displays status text about

EnableModeless (fEnable : BOOL) : HRESULT
Enables or disables modeless dialog boxes

TranslateAccelerator (Ipmsg : LPMSG, wiD : WORD) : HRESULT
Translates keystrokes

I0leInPlaceObjectWindowlessImpl
s
10leInPlaceObjectWindowlessImpl

Public Operations:

AddRef (: void) : ULONG :

Querylnterface (riid : const IID&, ppvObject : void**) : HRESULT

Release (: void) : ULONG

UlDeactivate (: void) : HRESULT

GetWindow (phwnd : HWND*) : HRESULT

ContextSensitiveHelp (: BOOL) : HRESULT

InPlaceDeactivate (: void) : HRESULT

SetObjectRects (prcPos : LPCRECT, prcClip : LPCRECT) : HRESULT

ReactivateAndUndo (: void) : HRESULT

OnWindowMessage (msg : UINT, wParam : WPARAM, IParam : LPARAM, piResult : LRESULT?*) :
HRESULT

GetDropTarget (: IDropTarget**) : HRESULT

I0leInPlaceSite -
Derived from IOleWindow

Public Operations:
CanlInPlaceActivate () : HRESULT

Determines if the container can activate the object in place.
OnInPlaceActivate (: HRESULT

Notifies the container that one of its objects is being activated in place.
OnUlActivate O : HRESULT ‘

Notifies the container that the object is about to be activated in place, and that the main

menu will be replaced by a composite menu
GetWindowContext (ppFrame : I0leInPlaceFrame **, ppDoc : I0leInPlaceUIWindow **, IprePosRect @
LPRECT, IprcClipRect : LPRECT, IpFramelnfo : LPOLEINPLACEFRAMEINFO) : HRESULT

Enables an in-place object to retrieve window interfaces that form at the window object
hierarchy, and the position in the parent window to locate the object’s in-place activation
window

Scroll (scrolExtent : SIZE) : HRESULT

, Specifies the number of pixels by which the container is to scroll the object
OnUlDeactivate (fUndoable : BOOL) : HRESULT

Notifies the container to reinstall its user interface and take focus.
OnlnPlaceDeactivate () : HRESULT

Notifies the container that the object is no longer active in place

WASHINGTON 149764V}

150

WO 2004/114093 PCT/US2004/019831

LOGICAL VIEW REPORT

DiscardUndoState () : HRESULT

Instructs the container to discard its undo state.
DeactivateAndUndo () : HRESULT

Deactivate the object and revert to undo state.
OnPosRectChange (IprcPosRect : LPCRECT) : HRESULT

Object’s extents have changed

I0lelnPlaceUI'Window
Derived from 10leWindow

Public Operations:

GetBorder (IprectBorder : LPRECT) : HRESULT
Specifies a RECT structure for toolbars and controls.

RequestBorderSpace (pborderwidths : LPCBORDERWIDTHS) : HRESULT
Determines if tools can be installed around object’s window frame.

SetBorderSpace (pborderwidths : LPCBORPERWIDTHS) : HRESULT
Allocates space for the border.

SetActiveObject (pActiveObject : I0lelnPlaceActiveObject *, pszObjName : LPCOLESTR) : HRESULT
Provides for direct communication between the object and each document and frame
window.

101eObject

Public Operations:

AddRef (: void) : ULONG

QueryInterface (riid : const IID&, ppvObject : void**) : HRESULT

Release (: void) : ULONG

SetExtent (dwDrawAspect : DWORD, psizel : SIZEL*) : HRESULT

GetExtent (dwDrawAspect : DWORD, psizel : SIZEL*) : HRESULT

SetClientSite (pClientSite : IQleClientSite*) : HRESULT

GetClientSite (ppClientSite : IQleClientSite**) : HRESULT

SetHostNames (: LPCOLESTR, : LPCOLESTR) : HRESULT

Close (dwSaveOption : DWORD) : HRESULT

SetMoniker (: DWORD, : IMoniker*) : HRESULT

GetMoniker (: DWORD, : DWORD, : IMeniker**) : HRESULT

InitFremData (: IDataObject*, : BOOL, : DWORD) : HRESULT

GetClipboardData (: DWORD, : IDataObject**) : HRESULT

DoVerb (iVerb : LONG, : LPMSG, :IOleClientSite*, : LONG, hwndParent : HWND, IprcPosRect :
LPCRECT) : HRESULT

EnumVerbs (ppEnumOleVerb : IEnumOLEVERB#*+) : HRESULT

Update (: void) : HRESULT

IsUpToDate (: void) : HRESULT

GetUserClassID (pClsid : CLSID*) : HRESULT

GetUserType (dwFormOfType : DWORD, pszUserType : LPOLESTR*) : HRESULT

Advise (pAdvSink : 1AdviseSink*, pdwConnection : DWORD*) : HRESUL'

Unadvise (dwConnection : DWORD) : HRESULT '

EnumAdvise (ppenumAdyvise : IEnumSTATDATA**) : HRESULT

GetMiscStatus (dwAspect : DWORD, pdwStatus : DWORD*) : HRESULT

SetColorScheme (: LOGPALETTE*) : HRESULT

WASHINGTON 149764V
151

WO 2004/114093 PCT/US2004/019831

LOGICAL VIEW REPORT

10leObjectImpl

Public Operations:

AddRef (: void) : ULONG
Querylnterface (riid : const IID&, ppvObject : void**) : HRESULT
Release (: void) : ULONG
SetExtent (dwDrawAspect : DWORD, psizel : SIZEL*) : HRESULT
GetExtent (dwDrawAspect : DWORD, psizel : SIZEL*) : HRESULT
SetClientSite (pClientSite : I0leClientSite*) : HRESULT
GetClientSite (ppClientSite : I0leClientSite**) : HRESULT
SetHostNames (: LPCOLESTR, : LPCOLESTR) : HRESULT
Close (dwSaveOption : DWORD) : HRESULT)
SetMoniker (: DWORD, : IMoniker*) : HRESULT
GetMoniker (: DWORD, : DWORD, : IMoniker+*) : HRESULT
InitFromData (: IDataObject*, : BOOL, : DWORD) : HRESULT
GetClipboardData (: DWORD, :IDataObject**) : HRESULT
DoVerbPrimary (prcPosRect : LPCRECT, hwndParent : HWND) : HRESULT
DoVerblInPlaceActivate (prcPosRect : LPCRECT, : HWND) : HRESULT
DoVerbShow (prcPosRect : LPCRECT, : HWND) : HRESULT

. DoVerbUIActivate (prcPosRect : LPCRECT, : HWND) : HRESULT
DoVerbHide (: LPCRECT, : HWND) : HRESULT
DoVerbOpen (: LPCRECT, : HWND) : HRESULT
DoVerbDiscardUndo (: LPCRECT, : HWND) : HRESULT
DoVerb (iVerb : LONG, : LPMSG, : IO0leClientSite*, : LONG, hwndParent : HWND, IprcPosRect :

LPCRECT) : HRESULT

EnumVerbs (ppEnumOleVerb : [EnumOLEVERB+*) : HRESULT
Update (: void) : HRESULT
IsUpToDate (: veid) : HRESULT
GetUserClassID (pClsid : CLSID*) : HRESULT
GetUserType (dwFormOfType : DWORD, pszUserType : LPOLESTR*) : HRESULT
Advise (pAdvSink : IAdviseSink*, pdwConnecction : DWORD*) : HRESULT
Unadvise (dwConnection : DWORD) : HRESULT
EnumAdyvise (ppenumAdyvise : IEnumSTATDATA**) : HRESULT
GetMiscStatus (dwAspect : DWORD, pdwStatus : DWORD*) : HRESULT
SetColorScheme (: LOGPALETTEY) : HRESULT

I0leWindow

Public Operations:

GetWindow (phwnd : HWND *) : HRESULT
Gets a window handle.

ContextSensitiveHelp (fEnterMode : BOOL) : HRESULT
Controls enabling of context-sensitive help.

IPersistStorageImpl

Public Operations:

AddRef (: void) : ULONG

Querylnterface (riid : const D&, ppvObject : void**) : HRESULT
Release (: void) : ULONG

GetClassID (pClassiD : CLSID*) : HRESULT

IsDirty (: void) : HRESULT

Load (pStorage : IStorage*) : HRESULT

Save (pStorage : IStorage*, fSameAsLoad : BOOL) : HRESULT
InitNew (: IStorage*) : HRESULT

SaveCompleted (: IStorage*) : HRESULT

HandsOffStorage (: void) : HRESULT

Private Operations:
IPSI_GetIPersistStreaminit () : IPersistStreamlnit*

UTDC.Browser

The UTD browser control is an Active X control that

WASHINGTON 149764V

152

WO 2004/114093

LOGICAL VIEW REPORT

PCT/US2004/019831

is a customized web browser control that is locked down for security reasons and
supports scripting objects from UTDCore

Public Attributes:

oRegistry : IRegistry *

Returns the single instance of the registry object. Read-only.

Public Operations:

get_AllowPOLESS () :

gets AllowPOLESS flag
put_AllowPOLESS O :

Sets the AllowPOLESS flag
get_AllowFile :

getsAllowFile flag
put_AllowFile 0 :

Sets the AllowFile flag

get_AllowURL () :
gets the AllowURL flag

put_AllowURL () :

Sets the AllowURL flag
get_RelativeFontSize () :

gets the relative font size
put_RelativeFontSize () :

sets the relaitive font size
LoadURL Q :

browses to a URL from a string
Load () :

loads the browser from a stream
get_oExam () :

gets the oExam object
put_oExam () :

sets the oexam object
get_oSection () :

gets the oSection object

put_oSection () :

sets the oSection object
get_oPresentation():

gets the opresentation object
put_oPresentation (:

sets the opresentation object
get_oltem () :

gets the oltem object
put_oltem () :

puts the oltem object
get_oForm () :

gets the oFrom object
put_oForm () :

sets the form object

" get_oAppointment () :
gets the oAppointment object

put_oAppeintment () :

sets the oAppointment object
get_ScroliBars () :

gets the Scrollbars flag

WASHINGTON 149764V

153

WO 2004/114093 PCT/US2004/019831

LOGICAL VIEW REPORT

put_ScroliBars () :

sets the scrol}bars
get_Document) : -~

Gets the document boject
Show () :

Makes the browser visible
Hide (Q:

Hides the browser control
Unload (=

Unloads the Browser control
RefreshQ :

Refresh the page in the browser control

UTDC.GraphScores

The UTD sections scores control. This conirol displays bar-graph of a score or scores.
This control will run if requested from HTML passed to the UTDC.Browser control.

These can be:
single score vs. passing,
Score by section,

or score per category.

Bruce

UTDC.TimeRemaining
This is a visible control showing the remaining time. It can be configured to show the
reamining time for the section or exam or the minimum of both. It can be configured to

flash or prompt with messages when time is expiring. The time points and the messages
are configurable.

It should be scriptable from HTML.
UTDComm.cCommentNavigation
The navigation puts the test driver into comment period mode and re-navigates the
sections also show any presentauon in the comment period section.
UTDCore.Collection '
Base UTD collection. All other collection classes follow this design.
Public Atributes:
Count : Long

Returns the number of members in a collection.
_NewEnum : IUnknown * *

Returns a Visual Basic enumerator object.

Public Operations:
Item (Index : Variant) : Variant
Returns a specific member of a Collection object either by position or key.

UTDCere.ICompilerServices
Provides nifty features to the plugin.
Public Attributes:
sResourceDirectory : BSTR

Get the directory of the resource file currently being compiled.
Read-only.

sSourceDirectory : BSTR
Get the directory of the source file currently being compiled.
Read-only.

WASHINGTON 149764V
154

WO 2004/114093 PCT/US2004/019831

LOGICAL VIEW REPORT

Public Operations:

ParseHTML (sSourceFile : BSTR) : BSTR
Loads the source file into mshtml, and removes everything in the
<body> except the specified labeled <div>.

CAEXAMMTEMBANK.HTM:
<div id="Schmackaroo">

... Some HTML here ...
<fdiv>

Parse("C:\EXAM\ITEMBANK HTMiiSchmackaroo”) returns "...Some HTML here..."

‘UTDCore.cArea
The area in the template for a plugin
There is no 1Area interface.

Derived from cDocumentSiteT, UTDCore.iContainerNotify

Public Attributes:
bContained : Boolean
If TRUE the plugin is contained in the area as an active document. If FALSE itis a
floating window. Usually full screen.
nTop : Integer
The top coordinate. Zero if not contained.
nkLeft : Integer
The left coordinate. Zero if not contained.
nWidth : Integer
The 'width if the contiainer. Zero if not contained.
oHeigth : Integer
The heigth if the contiainer. Zero if not contained.
oPluginClass : cPlugin
The plugin class for this window.
oPluginActive : UTDCore.iPlugin
If the plugin class is active, this is the iPlugin interface to it.
sSize : String
The size of the area on the split axis. Can be a percentage, pixel count or *.

UTDCore.cAttribute

Public Attributes:
sName : BSTR

Get the attribute name string.
value : VARIANT

Get the attribute value.

UTDCore.cAttributes
Collection of UTDCore.cAttribute

Derived from UTDCore.Collection

UTDCore.cCategories
Collection of UTDCore.cCategory

Derived from UTDCore.Collection

WASHINGTON 149764V
155

WO 2004/114093 PCT/US2004/019831

LOGICAL VIEW REPORT

UTDCore.cCategory
A category of sections or items. For example: "Reporting”, "Objectivies”, "Scoring"
Public Attributes:
sName : String
The name of the category.
bComplete : Boolean

If TRUE the category must contain all sections or items defined at a level.
bDuplicate : Boelean

If TRUE the category allows sections or items defined more than once at a level.
sDescription : String '

The description of the category.
colMembers : UTDCore.cEvents

The collection of sections or items that apply to this category .
colSubCategories : UTDCore.cCategories

Collection of UTDCore.cCategory. (AKA sub-categories).
eContents : eCategoryContents

Read-only. The allowable types of members in the colMembers.
enum {

eCategoryContent_Anything = 0,

eCategoryContent_Sections = 1,

eCategoryContent_ltems = 2,

eCategoryContent_Categories = 3,
} eCategoryContents;

Private Attributes:
oScore : UTDCore.iScore
The scoring plugin for the form.

UTDCore.cEvents

IEvents contains deliverable classes as IDispatch objects. T’hey must be queried
individually to determine their exact type.

IEvents can be:
cExam, cForm, cSection, cltem, cPresentation, cReport, cResults.
Derived from UTDCore.Collection

UTDCore.cExam
The exam instance. The root object of the driver exposed classes.
Derived from cContainerFrameT

1

Public Attributes:
sName : String

Read-only exam name.
sLanguage : String

The language of the exam content. Read-only.
sVersion : String

The version of the exam. Read-only.
oActiveForm : UTDCore.cForm

The current form. Only one form can be active for an exam.
eStatus : eExamStatus

The eExamStatus as follows:

eExam_Initializing
eExam_Starting
eExam_InProgress

WASHINGTON 149764V 1

156

WO 2004/114093 PCT/US2004/019831

LOGICAL VIEW REPORT

eExam_Ended
e¢Exam_Terminating

bShowResponseComment : Boolean

If TRUE the candidate should not see their response during the comment period.
colCustomAttributes : UTDCore.cAttributes
Collection of custom attributes. Read-only.
sTitle : String
Exam title. Redad-only
colCategories : UTDCore.cCategories
The collection of all categories.
oResourceRoot : Object
The read-only reference to the root storage of the POLESS resource file. Interfaces:
POLESS.cStorageRoot, iStorage, iRootStorage, iStorageVB.
olnstanceRoot : Object
The read-only reference to the root storage of the POLESS exam instance file.

Interfaces: POLESS.cStorageRoot, iStorage, iRootStorage, iStorageVB.
colTemplates : UTDCore.cTemplates

Coliection of all templates defined in the resource file.

Holds flat collection of all templates at Exam level
colltemsChesen : UTDCore.cltems

Return all items chosen by a selection plugin, at any level of the exam tree, in the order

that they were chosen. These are items that have been delivered or will be delivered.
colAllSections : UTDCore.cSections

Return all sections chosen by a selection plugin, at any level of the exam tree, in the order

that they were chosen. These are items that have been delivered or will be delivered.
oRegistry : UTDCore.cRegistry
Returns the single instance of the registry object. Read-only.

Private Attributes:
oFormGroup : cFermGroup
The form group to select from.

Public Operations:
.. Minimize (:

Minimumizes the main windows of UTD. Can be cailed be simulations to get UTD out
of the way.

Restore 0 2 |)
Restore the main windows of UTD. Can be called be simulations to restore UTDto the
screen.

GetScript O : UTDCore.cScript
Returns a script object to be used by a plug-in.

Savelnstance) :
Save the state of the test driver to the instance file. All active objects are asked to
serialize themselves to the instance file.

Any one with a reference to this object can initiate this process. It could be an item
plugin that wants to save user interaction and state information.

The driver will save between each presentation.
GetTransfer () : ¥Transfer
Returns a UAS Transfer object to transfer results or other files to the data center.
The cExam object does not keep a reference to this object.
GetPrint (: TUASPrint
Returns a UAS print object to save for reprint score and other reports.
The cExam object does not keep a reference to this object.
FatalError (INumber : Long, sSource : String, sDescription : String) :
Reports an error in a plugin to the test driver.

WASHINGTON 149764V
157

WO 2004/114093 PCT/US2004/019831

LOGICAL VIEW REPORT

Normally errors will be reported back to the test driver via an HRESULT and supportting
IErrorInfo. If the error was generated from something other than test driver initiated call,
the plugin should report the error via this method.

An example usage could be the user clicks a button on your plugin item. The resulting
‘actions generate an error.

Trace (INumber : Long, sSource : String, sDescription : String) :
Reports an event in a plugin to the test driver.

Warn O :
Writes a 'Warning’ level trace messate to the instance file.
Info(:
Writes a Information’ level trace messate to the instance file.
Start Q : .
Tells the exam that the candidate has accept the exam and started. Normally called by
the Navigation plugin in response to the eDirection_Start.

The administration system is informed that the exam has started and the candidate has
accepted it.

Quit 0:
Tells the exam that the candidate is quitting the exam. Normaily called by the Navigation
plugin in response to the eDirection_Quit. The navigation plugin should confirm this
decision with the candidate.

This causes the test driver to stop delivery and shutdown execution cleanly. The

administration system is informed that the candidate quit the exam.
GetMsgBox () : UTDCore.cMsgBox

Returns a message box object.

UTDCore.cForm -
A exam form.
Derived from UTDCore.iContainerNotifyHelm

Public Attributes:
oCurSection : UTDCore.cSection)
. The current active section in the exam. Read-only.
colChildren : UFDCore.cEvents
The collection of all top level sections of the exam. Read-only.
colCustomA ttributes : UTDCore.cAttributes
Collection of custom attributes. Read-only.
sName : String
Read-only form name.
sTitle : String
Form title. Read-only
colltemsChosen : UTDCore.cltems
The collection of all items chosen (that is, returned by a selection plugin) in the exam.
This is regardless of their section.
colAliSections : UTDCore.cSections
The collection of all sections of the exam regardless of their level.
datStart : Date
The form start date and time.
datFinish : Date
The form finish date and time.
oTimer : UTDCore.iTimer
The timer for the form.
oScore : UTDCore.iScore
The scoring plugin for the form.

WASHINGTON 149764V1

158

WO 2004/114093 PCT/US2004/019831

LOGICAL VIEW REPORT

fTimerFactor : Single
The multiple for test timer based on ADA conditions.
sVersion : String
The version of the form.
colDelivered : UTDCore.cEvents
The collection of all delivered top level sections of the form. Read-only.
nCurChild : Long =0
Index of last delivered event in colDelivered. Read-only.
eStatus : eScoreStatus ’ '
Returns the value of oForm.oScore.eStatus.
colAllPresentations : UTDCore.cPresentations
The collection of all presentations of the exam regardless ‘of their level.
colPresentationsChosen : UTDCore.cPresentations
The collection of all presentations chosen (that is, returned by a selection plugin) in the
exam. This is regardless of their section or group.
colSectionsChosen :
The collection of all sections chosen (that is, returned by a selection plugin) in the exam.
This is regardless of their level.
colAllktems :
The collection of all items of the exam regardless of their level.
colAllGreups :

The collection of all groups of the exam regardless of their level.
colGroupsChesen :

The collection of all groups chosen (that is, the selection plugin for this group has been
Reset()) in the exam. This is regardless of their level.

Public Operations:

SectionNext () :
Requests that the driver proceeds to the next section or score report or result writing or
the comment period.

SectionPrevious () :
Requests that the driver proceeds to the previous section or score report or result writing
or the comment period. This is often illegal and will not be allowed by the defined
navigation plugin.

SectionGoto (vSection : Variant) :
Requests that the driver proceeds to a named or numbered section or score report or result
writing or the comment period.

datMinRemaining Q :
Minimum time remaining for this exam.

UTDCore.éGroup

Public Attributes:
sName : String
Read-only group name.
sTitle : String
Read-only group title.
colCustomAttributes : UTDCore.cAttributes

Collection of custom attributes. Read-only.
colChildren : UTDCore.cEvents

The collection of presentations, sub-sections, or sub-groups for this group.
oScoring : UTDCore.iScore

The scoring plugin for the section.
colDelivered :

Collection of presentations or sub-sections containing all delivered events within this

group. This will not contain sub-groups.
oSelection : UTDCore.iSelection

Pointer to the current selection plugin of this group.
oSection : UTDCore.cSection

The section housing this group.

WASHINGTON 149764V 1
159

WO 2004/114093 PCT/US2004/019831

LOGICAL VIEW REPORT

UTDCore.cGroups
Collection of UTDCore.cGroup

Derived from UTDCore.Collection

UTDCore.cltem
The item’s general information. Stuff that is not plugin specific.
This class implements IcItem and Htem interface. |

Derived from UTDCore.iltem

Public Attributes:
bPresented : Boolean = False
True if item has been presented to the candidate. Set by item component.
sName : String
Read-only item name.
sTitle : String
Presentation title. Read-only
oScriptStart : UTDCore.cScript
The script to execute before this object executes.
oScriptFinish : UTDCore.cScript
The script to execute after this object executes.
oScriptConditional : UTDCore.cScript
This expression script is evaluated. If TRUE this object is deliveried.
fWeight : Double = 1
The item weigthing relative to other items. Normally 1. If multiple weigths per item are
required they can be attached in the custom attributes. The weigth can be negative.
colCustomAttributes : UTDCore.cAttributes

Collection of custom attributes. Read-only.
1Seconds : Long :

The seconds spent on the item.
bScored : Boolean = TRUE

Read-only. TRUE if the item is to be scored.
If false fWeight and fScoreCanidateWeighted will all be 0.
bSkipAllowed : Boolean
Read-only property. If TRUE the item can be skipped. If TRUE the bProceed() method

on iltem interface will not be called.
fScoreCanidateWeighted : Double

The weigthed value of the canidate for the item. The judged value for the item will by

multiplied by the weight for this value.
sPluginName : String

Read-only plugin name. The prog ID of the plugin.
oSection : UTDCore.cSection

Read-only property of the section the item was deliveried in.

oPresentation : UTDCore.cPresentation
Read-only property of the presentation the item was deliveried in.

datElapsed : DATE
The time spent on the item. Same as 1Seconds, but a different COM type.

UTDCore.cltems
Collection of UTDCore.cltem
Derived from UTDCore.Collection

WASHINGTON 149764V1
160

WO 2004/114093 PCT/US2004/019831

LOGICAL VIEW REPORT

UTDCore.cMsgBox
This class displays a message box with a candidate prompt. This class is returned from
IExam::GetMsgBox(). The message in the box is supplied by the called. The title can
optionally be supplied. The buttons are supplied by the caller, but the button labels are
defined at the exam level in the resource file.

The parent of the message box is the main exam window. The message box can be set to
time out after a duration. -

Public Attributes:

sTitle : String = UTDCore
The title the message box will use. Read/Write.
1Timeout : Long =120 '
The timeout value on the message box in seconds. Read/Write.

The Display will return eMsgBoxResult_Timeout.
nParentWnd : Integer

The parent window handle Read/Write
Default is the main UTDCore window.

Public Operations:

Display (sPrompt : String, eStyle : eMsgBoxStyles) : eMsgBoxResult
Display the message box. Displays the buttons requested and the message supplied.

The return value is

enum {
eMsgBoxResult OK =1,
eMsgBoxResult_Cancel = 2,
eMsgBoxResult_Abort = 3,
eMsgBoxResult_Retry =4,
eMsgBoxResult_Ignore = 5,
eMsgBoxResult_Yes =6,
eMsgBoxResult No =7,
eMsgBoxResult_Timeout = 8

} eMsgBoxResults;

The style of message box.

enum {
eMsgBoxStyle_ OKOnly = 0,
eMsgBoxStyle_OKCancel = 1,
eMsgBoxStyle_AbortRetrylgnore = 2,
eMsgBoxStyle_YesNoCancel = 3,
eMsgBoxStyle_YesNo = 4,
eMsgBoxStyle_RetryCancel = 5,
eMsgBoxStyle_Critical = 16,
eMsgBoxStyle_Question = 32,
eMsgBoxStyle_Exclamation = 48,
eMsgBoxStyle_Information = 64,
eMsgBoxStyle_ApplicationModal = 0,
eMsgBoxStyle_SystemModal = 4096,

} eMsgBoxStyles;

UTDCore.cPresentation

The data and current state of the presentation. Could be a item or a display.

WASHINGTON 149764V1
161

WO 2004/114093 PCT/US2004/019831

_OGICAL VIEW REPORT

Derived from cEvent, UTDCore.iContainerNotifyHelm

Public Attributes:
bCountPresentation : Boolean
If TRUE the presentation should count for the total X or Y for the section. "the item
count"
colCustomAttributes : UTDCore.cAttributes
Collection of custom atiributes. Read-only.
sName : String
Read-only presentation name.
sTitle : String
Presentation title. Read-only
oScriptStart : UTDCere.cScript
The script to execute before this object executes.
oScriptFinish : UTDCore.cScript
The script to execute after this object executes.
oScriptConditional : UTDCore.cScript

This expression script is evaluated. If TRUE this object is deliveried.
sComment : String

The user entered comment for this presentation.
bMarked : Boolean

TRUE if the item has been mark for later review. 'Set by the helm.
colChildren : UTDCore.cEvents

The items in this presentation.
The collection maybe empty.
bSelected : Boolean
True if the presentation or any of its items have been selected for delivery by a selection
plugin. '
Read-only.

Public Operations:
Findlcltem (plltem : Iitem *) : Icltem *
Find the Icltem interface for the given Iltem.
Returns failure if the Iltem is not in this presentation.

UTDCore.cPresentations,
Collection of UTDCore.cPresentation
Derived from UTDCore.Collection

UTDCore.cRegistry

Alows registry look up for translating strihgs
For examples:

<base href="%REG:DSAGRAPGHICS">
into

<base href="V:\DSA\">

Looks at
[HKEY_LOCAL_MACHINE\SOFTWARE\Prometric\UTD\Keywords]

WASHINGTON 149764V}
162

WO 2004/114093 PCT/US2004/019831

LOGICAL VIEW REPORT

Public Operations:
Leokup (sKey : String) : String

Retrieves the string by finding the key in the registry and returning the value.
Translate (sInString : String) : String

Translates each occurance of %REG:x% into the equivilent of "x" in the registry.

UTDCore.cReport
A score report "section”.
Derived from cEvent

Public Attributes:
oScoreReport : UTDCore.iScore
The score report plugin.

UTDCore.cResults
The results writing “section”
Denved from cEvent

Public Attributes:
oResuits : UTDCore.iResults
The plugin that writes the results.

UTDCore.cScript -+ . : et ;
A script written in VBscript or IScnpt To be executed or evaluated by the ActiveX
Scripting Engine. This object will expose UTD objects to the script code. These objects
will be based on the scope of the "Parent” object provided to this object.

Al scripts can see oExam, oForm, and oCandidate.
If the parent object is a section object, then the script will also see oCurSection.

If the parent object is a presentation object, then the script will also see oCurSection and
oCurPresentation.

If the parent object is an item then the-script will also see oCurSection, oCurPresentation,
and oCurltem. ‘

Public Attributes:

oParent : Object
The parent UTD object. It could be a form, a section or a presentation.

Public Operations:
Execute (sScript : BSTR) :

Executes the script code passed in the sScript parameter.
EvaluateBool (sScript : BSTR) : Boolean

Evaluates the expression parsed as the sScript parameter. Returns TRUE or FALSE.

Raises an error if the code is not an expression returning a boolean.
EvaluateVar (sScript : BSTR) : Variant

Evaluates the expression passed in the sScript parametert. Retums a variant depending

on the return type of the script. Raises an error if the code is not an expression.
SetScope (oSection : ISection ¥, oPresentation : IPresentation *, oltem : Item *) :

Set the parent section, presentation, and item. The script will have access to these as the
oCurSection, oCurPresentation, and oCurltem objects. Any/All may be passed as NULL
parameters indicating that the script does not have access to that particular object.

WASHINGTON 149764V 1
163

WO 2004/114093 PCT/US2004/019831

|
LOGICAL VIEW REPORT

- AddObject (sName : BSTR, pObject : IDispatch *) : HRESULT
Add an object into the global script scope.

Protected Operations:

LoadGlobalScript (oStream : POLESS.IcStorage) :
Called by the test driver to initialize the global script that is common to all later scripts.
This will be shared by all instances of cScript.
The oStorage parameter is a storage containing an attribute set and a stream containing
the global script.

UTDCore.cSection .
Represents one exam sections or sub-section. May contain items or sections.
Derived from cEvent

3

Public Attributes:
oNavigation : UTDCore.iNavigate

The navigation plugin for this section.
colCustomAttributes : UTDCore.cAttributes

Collection of custom attributes. Read-only.
sName : String

Read-only section name.
sTitle : String

Section title. Read-only.
oScoring : UTDCore.iScore

The scoring plugin for the section.
oScriptStart : UTDCore.cScript

The script to execute before this object executes.
oScriptFinish : UTPCore.cScript

The script to execute after this object executes.
oScriptConditional : UTDCore.cScript

This expression script is evaluated. If TRUE this object is deliveried.
oReview : UTDCore.cPresentation

The review presentation for the section. It can be nothing if the section does not have a

‘review defined for it.
oCurChild : Object

The current child being deliveried. This can be a cSection or a cPresentation.
datStart : Date

The section start date and time.
datFinish : Date
The section finish date and time.
colChildren : UTDCore.cEvents ‘

The collection of presentations or sub-sections for the section.
oSelection : UTDCore.iSelection

The selection plugin for this section.
oTemplate : UTDCore.cTemplate

The tmeplate for the section.
oTimer : UTPCore.iTimer

The timer plugin for the section.
dtTimeRemaining : DATE

Returns the time remaining in the section. It get the seconds remaining from the iTimer

plugin. It then converts it to a variant DATE type (aka VT_DATE).
colDelivered : UTDCore.cEvents

The collection of presentations or sub-sections for the section that have been presented.

They are ordered by the order they appeared in.
bComment : Boolean = FALSE

The commenting mode of the section. Normally set by the Navigation.
bltemsReadOnly : Boolean = FALSE

The read-only mode of the items in the section. Normally set by the Navigation. Read
only items cannot have their responses changed.

f
WASHINGTON 149764V1
164

WO 2004/114093 PCT/US2004/019831

LOGICAL VIEW REPORT

nCurChild : long = 0
Index of last delivered event in colDelivered. Read-only.

Public Operations:
ChildNext () :
Requests that the driver proceeds to the next presentation or child section.
ChildPrevieus (=
Requests that the driver proceeds to the previous presentation or child secnon
ChildGoto (vPresentation : Variant) :
Requests that the driver proceeds to a named or numbered presentation or child section..

UTDCore.cSections
Collection of UTDCore.cSection
Derived from UTDCore.Collection

UTDCore.eDirection
Enumeration of the possible dlrecnons to proceed from a presentation.
Values:
eéDirection_Next
eDirection_Previous
eDirection_Timeoutimmedidate (now do not wait)
eDirection_TimeoutAfter (after current presentation)
eDirection_Review (Goto the review presentation)
eDirection_Jump (Goto a specific presentation)
eDirection_Flag
eDirection_Help
eDirection_FirstIncomplete
eDirection_FirstSkipped
eDirection_FirstPresentation

UTDCore.ePlugmModes
Enumeration of the possible modes that an active document can behave.
Values:
ePluginMode_Author (Not supportted)
ePluginMode_Compile
ePluginMode_Delivery
ePluginMode_Rescore (Not suportted)
ePluginMode_ProcessResults (Not suportted)

UTDCore.eScoreStatus

The scoring status for a form/section/group/category, determined by the scoring plugin.

eScore_Incomplete
eScore_Complete
eScore_Failure
eScore_Pass
eScore_Taken

UTDCore.eStates

The states of the test driver.

eStateStart -- Initializing the test driver & reading the resource file.
eStateSectionDelivery -- Delivering a section.
eStateSectionComment -- Commenting all sections.

WASHINGTON 149764V1
165

WO 2004/114093 PCT/US2004/019831

LOGICAL VIEW REPORT

eStateSectionFeedBack -- Feedback on all sections.
eStateScoreReporting -- Rendering and printing a score report.
eStateResults -- Writing results.
eStateFinish -- Closing down the test driver.
UTDCore.iContainerNotify

All plugins receive a reference to this interface. It allow them to report events to the
contdiner.

Public Operations:

Activated () : !

Call to indicate the plugin has received the presentation change and it fully ready for
operations.

This includes: processing its data and if visible displaying.

UTDCore.iContainerNotifyHelm
This interface consumed by plugins to inform the container to navigate.
Public Operations: !
RequestMove (eDirect : UTDCore.eDirection, sPresentation : String) :

Requests that the driver proceed in the direction specified. The driver next requests this
movement from the navigation plugin.

The second parameter optional specifies the presentation. This is only used for the
JUMP.

UTDCore.lDlsplay

Interface supportted by plugms thata handle title bars displays, non-answered items and
summaries.

Public Attributes:

oSection : UTDCore.cSection
The section we are in.

Public Operations:

PresentationStarting (oPrcsemanon UTDCore.cPresentation, oContainerNotify :
UTDCore.iContainerNotify) :

Called by the test driver to inform the plugin that a new presentation is starting. Also
who to notify when active.
PresentationEnding) :

Called by the test driver to inform the plugin thae presentation is ending.

UTDCore.iHelm
Interface supportted by plugins that a handle navigation control or review. Like Next,
Previous or Incomplete. Only User interface. Talks to the iNavigate plug in to perform
the actual navigation.
Public Attributes:
oSection : UTDCore.cSection
The section we are in.

Public Operations:

PresentationStarting (oPresentation : UTDCore.cPresentation, oContainerNetifyHelm :
UTDCore.iContainerNotifyHelm, oContainerNotify : UTDCore.iContainerNotify, bComment : Boolean)

Called by the test driver to inform the plugin that a new presentation is starting. It also

provides a way to notify the test driver of movement.
PresentationEnding () :

Called by the test driver to inform the plugin thae presentation is ending.

WASHINGTON 149764V1
166

WO 2004/114093 PCT/US2004/019831

LOGICAL VIEW REPORT

UTDCore.iltem
Interface supportted by plugins that a handle items and simulators.
Public Atiributes: }
oSection : UTDCore.cSection
The section we are in.
fScoreMinimum : Double =0
The lowest possible score. Must be less than or equal to the nominal score. It can be
negative.
fScoreNominal : Double =0
The score if the candidate takes no actions. Must be less than or equal to the maximum
score. Must be greater or equal to the minimum score. Normally zero.
fScoreMaximum : Double =1
The highest possible score. Must be greater than or equal to the nominal score.
fScoreCandidate : Double =0
The score received by the candidate. Requests that the plugin judges the item.
bComplete : Boolean = False
True if Item is complete.
bSkipped : Boolean = Faise
True if item was skipped by the candidate.

Public Operations: . '
bProceed (eDirect : UTDCore.eDirection) : Boolean
Test Driver will call this method to see if it is OK to move off the current presentation.
The parameter indicates the direction.
GetCorrectAnswerDisplay (: String

Returns the correct answer in a form to be displayed on the screen.
GetCorrectAnswerResults () : Byte()

Returns the correct answer in a form to be written to the results file. The correct answer
is in the form of a safe array of bytes.
GetResponseDisplay (: String
Returns the candidate response in a form to be displayed on the screen.
GetResponseResults () : Byte(
Returns the candidate response in a form to be written to the results file. The response is
in the form of a safe array of bytes.

PresentationStarting (oPresentation : UTDCore.cPresentation, oContainerNotify :
UTDCore.iContainerNotify, bReadOnly : Boolean) :

Called by the test driver to inform the plugin that a new presentation is starting.
PresentationEnding () :

Called by the test driver to inform the plugin thae presentation is ending.

UTDCore.iNavigate

Interface supportted by plugins that a handle section navigation.

Implementer of iNavigate must also implement a iContainerNotifyHelm
Derived from UTDCore.iContainerNotifyHelm

Public Attributes:

nPresentations : Integer
The number of counted presented to be presented within the scope of the navigation.
Each item in a compound items count as a one.

bltemsDetermined : Boolean
TRUE if the number of items to present within the scope of the navigation can be
determined. Adaptive items or sections can prevent this.

WASHINGTON 149764V 1 .
167

WO 2004/114093 PCT/US2004/019831

) LOGICAL VIEW REPORT

Public Operations:

bNavigateAllowed (eDirect : UTDCore.eDirection) : Boolean
Returns TRUE if navigation in the direction supplied sis allowed. It is the helm’s job to
query this before every presentation.

This is a combination of the resource file plugin data and the current state of the section.

Example implementation:
The test designer is allowed to configure if the prévisous button appears. But if we are on

the first presentation of a section it will not appear even if configured.
Starting (oSection : UTDCore.cSection) :

The section is starting.
Ending) :

The section is-ending.

UTDCore:.iPersistInstanceSet. . A
Interface for a plugin that wants to be persistant in the instance file as a property set.
Public Attributes:
IsDirty : Boolean
Returns TRUE if the object needs to save state to the instance file.

Public Operations:
Save (oPropSet : POLESS.IPropertyStorageVB)

Called by the test driver to save the plugin data to the instance file.
Reload (oPropSet : POLESS. IPropertyStorageVB) :

Called by the test driver to reload the plugin data from the instance file. The
IPersistResource*::Load will be called next.

UTDCore.iPersistinstanceStore. .
Interface for a plugin that wants to be persistant in the instance file as a storage.
Public Attributes:
IsDirty : Boolean)
Returns TRUE if the object needs to save state to the instance file.

Public Operations:
Save (oStorage : POLESS.iStorageVB) :

Called by the test driver to save the plugin data to the instance file.
Reload (oStorage : POLESS.iStorageVB) :

Called by the test driver to reload the plugin data from the instance file. The
IPersistResource*::Load will be called next.

UTDCore.iPersistInstanceStream
Interface for a plugin that wants to be persistant in the instance file as a property stream.
Public Attributes:
IsDirty : Boolean
Returns TRUE if the object needs to save state to the instance file.

Public Operations:
Save (oStream : POLESS.1StreamVB) :

Called by the test driver to save the plugin data to the instance file.
Reload (oStream : POLESS.IStreamVB) :

Called by the test driver to reload the plugin data from the instance file. The
IPersistResource*::Load will be called next.

[NP VY

WASHINGTON 149764V 1

168

WO 2004/114093 PCT/US2004/019831

LOGICAL VIEW REPORT

UTDCore.iPersistResourceSet
Interface for a plugin that wants to be persistant in the resource file as a property set.
Public Operations:
Save (oPropSet : POLESS YPropertyStorageVB) :

Called by the compiler to save the plugin data to the resource file.
Load (oPropSet : POLESS IPropertyStorageVB) :
Called by the test driver to load the plugin data from the resource file.

ValidateResource (oPropSet : POLESS.IPropertyStorageVB, oCompllerSemm :
UTDCore.ICompilerServices) :

Validates the compiled resource for the plugin. The plugin must raxse an automation
error that describes any problems with the source.

The combination of the amalogmated storage for the XXL and the referenced files should
resolve all references. For example all HREFs to HTML and JPEGs should resolve.

UTDCore.iPersistResourceStore
Interface for a plugin that wants to be persistant in the resource file as a storage.
Public Operations:
Save (oStorage : POLESS.iStorageVB) :
Called by the compiler to save the plugin data to the resource file.
Load (oStorage : POLESS.IStorageVB) =
Called by the test driver to load the plugin data from the resource file.
ValidateResource (oStorage : POLESS.iStorageVB, oCompilerServices : UTDCore.ICompilerServices) :
Validates the compiled resource for the plugin. The plugin must raise an automation
error that describes any problems with the source.

The combination of the amalogmated storage for the XXI. and the referenced files should
resolve all references. For example all HREFs to HTML and JPEGs should resolve.

UTDCore.iPersistResourceStreamn ‘ .
Interface for a plugin that wants to be persistant in the resource file as a stream.
Public Operations:
Save (oStream : POLESS.IStreamVB) :

Called by the compiler to save the plugin data to the resource file.
Load (oStream : POLESS.IStreamVB) :

Called by the test driver to load the plugin data from the resource file.

UTDCore.lPlugm
This Interface will be supportted by all UTD plugins.

All plugins must implement the following interfaces:
iPlugin

All plugin must implement one of the following to persist into the resource file at
compile time:
IPersistResourceSet, IPersistResourceStore or IPersistResourceStream

All plugin may implement one of the following to persist into the instance file during
delivery time:

IPersistInstanceSet, IPersistInstanceStore or IPersistInstanceStream

- if you are visible one of these: iHelm, iltem or iDisplay. It can be an iHelm and an iltem.
If you wish to be contained as an active document you must support the following:
iDataObject, IoleInPlaceObject, IoleInPlace ActiveObject , IoleDocument,
10leDocumentView and IoleCommandTarget.

WASHINGTON 149764V
169

WO 2004/114093 PCT/US2004/019831

LOGICAL VIEW REPORT

or one of these if you are invisible:
iScore, iReport, iResults, iNavigate, iTimer.

iNavigate must also implement a iContainerNotifyHelm
Public Ataibutes:
eMode : ePluginModes

The mode the plugin should operate in.

Set by the consumer of the plugin (the driver or compiler).

Public Operations:)

ValidateSource (0Source : POLESS IStreamVB, oCompilerServices : UTDCore.lCompilerServices) :
Validates the source XXL for the plugin. The plugin must raise an automation error that
describes any problems with the source. The source is not required to be complete only
the portions provided should be verified.

If the contents of the stream is Unicode it will be marked with the BOM (byte order
mark) as defined be unicode standard (www.unicode.org). The BOM is normally FFFE.

If the stream contains ASCII or UTF-8, no BOM will be included.

The oCompilerServices interface is provided to offer additional features and information
to the plugins.
Unload () :
Unload data and references to UTD objects.
Load (oExam : UTDCore.cExam, oCandidate : iAttendance) :
Load with references to UTD objects. Only called during exam delivery.

UTDCore.iReport:
Interface supported by plugins that handle printing of the score reports and other other
material like stylus ("hand-outs").
- Public Operations:
PrintReport () :
Prints the score repoit

UTDCore.iResults ,
Interface supported by plugins that handles writing of the candidate results.

Public Operations:
WriteResuits Q =
Write the exam results.

UTDCore.iScore :
Interface supportted by plugins that a handle scoring of sections or exams.
Public Attributes:
eStatus : UTDCore.eScoreStatus

The eScoreStatus as follows.

fReportedScoreCut : Double = -1
The cut score to report to the candidate and results. Usually scaled. If this does not apply
to the plugin return -1.

fReportedScoreMax : Double = -1
The maximum score to report to the candidate and results. Usually scaled. If this does
not apply to the plugin return -1.

fReportedScoreCandidate : Double = -1
The achivied score to report to the candidate. Usually scaled. If this does not apply to
the plugin return -1.

WASHINGTON 149764V
170

WO 2004/114093 PCT/US2004/019831

; LOGICAL VIEW REPORT

oEvents : IEvents *
Tthe collection of children to score. If the plugin is on a section, then this collection can
include 1Section and IPresentation objects. If the plugin is on a category, then this
collection can include ISection, and Iltem objects.

Public Operations:

bStop () : Boolean
Test Driver will call this method to see if delivery should be stopped from current
delivery unit (section or form).

.

For example an adaptive exam may return false when it is clear if the candidate has
master or not mastered the material.

GetScoreDisplay () : String
Returns the score in a form to be displayed on the screen.

GetScoreResults () : Byte()
Returns the score in a form to be writien to the results file. The score is in the form of a
safe array of bytes.

UTDCore.iSelection ‘
Selects items, sections or forms from a category.

Public Attributes:
" bMore : Boolean

Returns TRUE if there are more objects to get. Read-only.
nCountTotal : Integer

Returns the total count of objects (items, sections or forms) that it has in its pool to select

from. It will return -1 if this is not quantifiable.
nCountSelected : Integer

Returns the selected count of objects (items, sections or forms) that it will return from the

pool. It will return -1 if this is not quantifiable. Like items in an adaptive section.
oGroup : UTDCore.cSection

Read-write.

The group that contains this selection plugin.’ This is not set for a form selection plugin.
oEvents : UTDCore.IEvents :

Read-write.
The events collection to select from.

Public Operations:

Reset 0 : .
This gives the selection plug a chance to prepare the data for the first selection. Some
selection plugins like "random/exshastive” make pre-determine all the items for selection

a store them in its internal memory and the instance file.
GetNext : Object

Gets the next item, section or form. If there are no more, them NULL AKA Nothing is
returned.

UTDCore.iUnitTimer
A plugin to perform timing across testing units.

Public Attributes:
ISecondsElasped : Long

The seconds elasped.
ISecondsRemaining : Long

The seconds remaining. If the unit is not timed, this will return -1.
ISecondsTotal : Long

The total seconds available for the unit.
datElasped : DATE

The time elasped. Same as ISecondsElasped.

WASHINGTON 149764V
171

WO 2004/114093 PCT/US2004/019831

LOGICAL VIEW REPORT

datRemaining : DATE
The time remaining. If the unit is not timed, this will return -1. Same as

ISecondsRemaining
datTotal : DATE

The total time available for the unit. Same as 1SecondsTotal.

Public Operations:

PresentationActive (oPresentation : UTDCore.cPresentation) = ‘
This is called by the test driver to inform the timer that the presentation is completely

active. All plugins have loaded their data, displayéd and are operational.
PresentationInactive () :

This is called by the test driver to inform the timer that the presentation is about to
become inactive. The user has selected a direction to go from the item. The Item and the
navigation has cleared it for movement.

After this call the plugins will be hidden and unloaded.

AddTime (nMinutes : Integer) :

Adds time to the current form or section. Time is specified in minutes.

Starting (6Children : UTDCore.cEvents, oContainerNotifyHelm : UTDCore.iContainerNotifyHelm) :
Informs the plugin that the section or form is starting. If the plugin is defined at the form
level then this is called when the form starts. If the plugin is defined at the section level
then this is called when the section starts.

It gives it the collection of children to time across. This collection can include cSection
objects and cPresentation objects.

Ending(:
Informs the plugin that the section or form is ending. If the plugin is defined at the form
level then this is called when the form ends. If the plugin is defined at the section level
then this is called when the section ends.

Pause () :
Pauses the timer
Resume () :

Rgsumes the timer. (After a Pause())

UTDP.StandardTimer

Standard timing pluggin works in three basic modes:

Non-timing, the unit’s time does not contribute
Timed, the unit is timed and will timeout
Contributing, the unit time is contributed to the parent unit.

In the case of timeout it will be handled mroe than one ways:
Immediate end of unit,
End after current presentation,
Warnings.
UTDP.cBrowserDisplay
This display plugin renders HTML to the full area of the active document. It also
interpets scripts in the HTML. The active object model of UTD is exposed to the script.

UTDP.cLinearNavigate

Performs linear navigation through a sections until the items or sections are exshasted.

UTDP.cMutliChoiceltem

The standard multichoice item. Uses HTML presentation layout.

WASHINGTON 149764V
172

WO 2004/114093 PCT/US2004/019831

LOGICAL VIEW REPORT

UTDP.cNextPrevious
Standard Next/Previous type "toolbar” helm.

UTDP.cSequentialExhastive

This plugin performs sequenial exahstive selections. All objects (sections or items) in the
order from the resource file.

UTDP.cSummaryScore

This plug performs scoring by summarizing items or section scores. The scores it
summarizes can be weighted. The overall score can be scaled.

UTDP.cUserSelection
Allows a user to select a sectlon from a list. The list is the sub-sections in the section.

UTDPE.cChallenge

This display is used to challenge the user to identify themselves. It is used to introduce
the exam and during a break.

UTDPE.cSLSDeliResult

This result.processor creates results for the SLSDC result process thal looks like an
SLSDeli result.

UTDPE.cStandardRevnew
This is the standard review screen. It displays all the items and their titles. It allows the
candidate to:
Jump to any item
Goto the first incomplete
Goto the first skipped
Goto the first flags
End the section.

UTDPE.cStandardScoreReport
. The standard score report. Will print an HTML page.
Public Operations:
get_AllowPOLESS) :

returns AllowPOLESS flag
putAllowPOLESS () :

UTDPE.cWTDResults
Writes a standard WTD/TASC results file.
cActivePlugin
Helper class for plugins.
cContainerFrameT
Template class for a container frame. (The main program window.)
Derived from IOleInPlaceFrame, CWindowImpl

Public Operations:

Create () :
Destroy () :

-cDocumentSiteT
Template class for a document site. (Child window of the main program window.)

WASHINGTON 149764V}
173

WO 2004/114093 PCT/US2004/019831

LOGICAL VIEW REPORT

Derived from 10leInPlaceSite, I0leDocumentSite, 1AdviseSink, 10leClientSite,
CWindowlImpl, IOlelnPlaceUIWindow

Public Operations:
Create () :
Destroy) :

cEvent - ‘
The base class is used for all events deliveried in the exam. Like: sections, reports,
results & presentations.
cFormGroup
The contain a from group. Used to select the form.
Public Attributes:
colForm : UTDCore.cEvents

Collection of UTDCore.cForm objects.
oForm : UTDCore.cForm

The selected form.

Private Attributes:
oSelection : UTDCore.iSelection
The selection plugin to use to select the form.

cPlugla™ - . -
Template class for a plug in. Gives active document functionality

Derived from 10leObjectImpl, I0leInPlaceObjectWindowlesslmpl, IPersistStoragelmpl,
CComControl, I0leDocumentimpl, IOleDocumentViewImpl

cPlugin e
This class holds the plugin information.
Public Attributes:
sName : String
Read-only name of the plugin XX1 name. (read-only)
sProglD : String
The ProglID of the plugin. (read-only)
guidCLSID : GUID

The class ID of the plugin (read-only).

Public Operations:

Create () : UTDCere.iPlugin
CoCreates an instance of the plugin and returns it to the caller. This class does not retain
any reference to this instance. The caller must release it.

cScreenMinimum
The minimum screen resolution

Public Attributes:
nWidth : Long = 800
The minimum screen width.
nHeigth : Long = 600
The minimum screen heigth.
nBitDepth : Integer =8
The minimum screen color bit depth. 4 = 16 colors, 8 = 256 colors, 16 = 65768 colors,
etc..

WASHINGTON 149764V1
174

WO 2004/114093 PCT/US2004/019831

)

t LOGICAL VIEW REPORT

bValid : Boolean
If TRUE then current video configuration meets the mimimum requirements.

cTemplate
A template that defines the presentation areas on the screen. Referenced by a
presentation.

Public Attributes:
sName : String

Read-only presentation template name.
colAreas : UTDCore.cAreas |

Collection of areas in the template.
colTemplates : UTDCore.cTemplates

Nested templates for THIS template.

Public Operations:

Activate () :
Active this template. All areas instanciate their plugins and contain them. Not available
outside the driver.

Deativate) :
Deactive this template. All areas destroy their plugins. Not available outside the driver.

iAppointment :
This interface is part of the Unified Administration System. It allows access to the
candidate information for the candidate taking this exam.

It is also emulated by the UTDTOETS component that emulates the UAS.
iLaunch ‘ S o
The interface to the DSA Administration system. It is how the admiinistration system
controls a component in the center.
iLaunch2
The interface to the Unified Administration system. It is how the admiinistration system
controls a component in the center.
iPrint " ‘
The administration system interface for save score reports for reprint. Also handles
initial printing.
iTransfer
Administration interface to transfer results and other files back to the data center. It
includes routing.

WASHINGTON 149764V}
175

WO 2004/114093

LOGICAL VIEW REPORT

PCT/US2004/019831

TOTALS:

2 Logical Packages
95 Classes

LOGICAL PACKAGE STRUCTURE

Logical View

WASHINGTON 149764Vt
176

WO 2004/114093 PCT/US2004/019831

HYSICAL VIEW REPORT

Table of Contents
{

SELECTED COMPONENT VIEW REPORT 4
COMPONENT VIEW 4
UTDCore 4
UTDCore.eMsgBoxResults (Interfaces) 5
UTDCore IPresentation (Interfaces) 6
UTDCore.lContainerNotify (Interfaces) 7
UTDCore.1Categories (Interfaces) . 8
UTDCore.IMsgBox (Interfaces) 8
UTDCore.IPersistResourceSet (Interfaces) 9
UTDCore.IGroup (Interfaces) 9
UTDCore.IScript (Interfaces) 10
UTDCore.IUnitTimer (Interfaces) 12
UTDCore.INavigate (Interfaces) 13
UTDCore.lltems (Intesfaces) . ’ 15
UTDCore ICategory (Interfaces) 15
UTDCore.PersistlnstanceStore (Interfaces) 16
UTDCore. IcResults (Interfaces) 16
UTDCore.Icltem (Interfaces) 17
UTDCore.1Score (Interfaces) 19
UTDCore.JExam (Interfaces) 20
UTDCore.IRegistry (Interfaces) 23
UTDCore.lAttribute (Interfaces) 24
UTDCore.lHelm (Interfaces) 24
UTDCore.IcReport (Interfaces) . 25
UTDCore.eDirection (Interfaces) ; 25
UTDCore.JPersistInstanceStream (Interfaces) 26
UTDCore.cPluginModes (Interfaces) 26
UTDCore.1PersistResourceStream (Interfaces) 27
UTDCore.ISelection (Interfaces) 27
UTDCore.IGroups (Interfaces) 28
UTDCore.Collection (Interfaces) 28
UTDCore.eScoreStatus (Interfaces) 29
UTDCore.eStates (Interfaces) .29
UTDCore.IPersistResourceStore (Interfaces) 29
UTDCore.cExamStatus (Interfaces) 30
UTDCore.lltem (Interfaces) 30
UTDCore.lPlugin (Interfaces) 32
UTDCore.IContainerNotifyHelm (Interfaces) 33
UTDCore.1Report (Interfaces) 34
UTDCore.lForm (Interfaces) 34
UTDCore.lAttributes (Interfaces) 37
UTDCore.IPresentations (Interfaces) 37
UTDCore.ISections (Interfaces) 37
UTDCore.IDisplay (Interfaces).... 37
UTDCOTE.JSECHON (IMETFACES} .. encuemeimeeerereeetresseesisiessaressssssssssesssstesesesessssesssessssasarssssassessmesnsesnsssenssn sememsss 38
UTDCore.IResults (Interfaces) 4]
UTDCore.eCategoryContent (Interfaces) 4]
UTDCore.lEvents (Interfaces) 4]
UTDCore.IPersistInstanceSet (Interfaces)... 42
AQMINISITAIION SYSIEMcveerrerereveereremreereesirseetsesisensesesesessosesssssssssssesssssssans erveeretnb et asaeres e rnsananaasnn 42
UAS ITransfer (Interfaces) 42
UAS.1Print (Interfaces) reerteimtesersesscetasetessatansesrebaeteeser e st a et are s s s ras e sesarensennesreseaeare e eneere 42
UAS.IAppointment (Interfaces)........cccoceeeeeernnnes reebenerette st s s n et seaanean .43
TOTALS: ; . 44
COMPONENT PACKAGE STRUCTURE 44

WASHINGTON 153548V1

177

WO 2004/114093 PCT/US2004/019831

PHYSICAL VIEW REPORT

WASHINGTON 153548V}

178

WO 2004/114093 PCT/US2004/019831

PHYSICAL VIEW REPORT

SELECTED COMPONENT VIEW REPORT

UTDCore.ICo }JTDCO'QHE :m" e O UTDCore.IDi
ore. n i
O ainemotity ugin UTDC"c:re.Ilte splay.
UTDCore.IRe
O nort utDCoredSc O
UTDCore.IRe UTDCore.lNa O
sults UTDCo daate
O—— e UTDCore.ISe
] lection
UTDCore.Col
O lection \ O
UTDCore.lUn
10leInPlaceFra it Timer
3 | 0
: UTDCore.IContai
IOlel?nF;I::: uw nerNotifyHelm
© 5 b
1AdviseSink O
O UAS.|Appointmi{lLaunch ILaunch2 NTDGorPessis O
ent tResoliceSiore :
I0leWindow \ U{Pngg:cfg;?
O O X
10telnPlaceSite Administrat UTDCore.|Persis
O 0\2 ioh System tinstance§tream
(OleClientSite UAS.IPrint (tzore.lgtersis
: O nstanceStore
iOleDocumentS Q/
ite O
UAS.Mransfer o IPersi
stResourceSet

O

UTDCore.IPersist
ResourceStream

UTDCore

179

WO 2004/114093

7
PHYSICAL VIEW REPORT

PCT/US2004/019831

O

UAS.ITransfey
7

A

1

O

UAS.IPiint
ILaunch2

<<Interface>>
UAS.1Appointment
(from Interfaces)

A

<<Interface>>
UTDCore.IP lugin
- (from " Interfacss)

UAS
interface
All plugins j

UTDCore.IFdMY
{from-Interiaces)

UTDCore.[cReSults
(from IntéHdtes) \

1
1
)
'
[}
t
i
t
1
!
i
[}
1
t
t
1
1
!
t
i
t
1
1
1
1
i
1
1
1
t
i
i
]
1
1
1
H
1
}
'
i
1
i
1
1
1
1
1
]
¥
1
]
'
)
4
i
1
i
4
1
1
i
[}
i
]
1
1
t
1

N

UTDCore.lcReport '
(from Interfaces)

1
'
] 7

g..n ,
vy P

Yin

\V.07

-
-

UTD"Core.IS ection
(from Interfaces)

7i 3

~
] v AY NS
v
v
v

\
[

UTDCore.IPigsentation
(from InterfaceS) . _

O

~

/’7
- ’

\ ~ NG ~S o - .
\UTDC\GFG\.ICOI’I{,afIleI'NOlIEy

\ ~ ~ ~ N 7
: zv\%?w‘{"\fewglgélsqn\tain

AT

UTDCore.IScript
{from Interfaces) |

-

1
! ’
i /! .7 ‘UTDCore.lRegistry
: % e O (from Interfaces)
: UTDCore.l[Exam f~--~""" - :
1 {from Interfaces) [- "~ -----~--~---_ | UTDCore.IMsgBox
! e ~ T T el (from Interfaces)
| e . AN \\\‘~~ 1.0 "T~-oTT oo
' I 4 ! AN 1 > cPlugin ~=> UTDCore.ICategory
i| cScreenMinidium | | e {from Interfaces)
i cForm Group S._ - LN
1 1. ~
0.\,) e L. ENEN
N N P, —_— - ~ 1 N ~
\ ’ 1 N
A o~ L_,,UTDCore.cAre'é' T

i
!
!
1
i
i
]
'
1
i
!

‘0.

\

n v
W

UTDCore.ISelection
{from Interfaces)

UTDCore.lcltem
(from Interfaces)

1
erNotifyHelm 7
’

,

7

/

plugins

{kom Inte

N
~

s

UTDCore.lResults
(fom Interfaces)

UTDCore.lUnitTimer

rfaces) (from

UTDCore.INavigate

Interfaces)

v , R « N ~.
R4 J el N 1N S Tfor?hterfaces) .
4 ! A - \ f v 1’ ~ N VS~ ’
’ ? L, e \) ’ \,\ 7/ N \ ~ \/:
/l 1’ -7 “ \ } . \\ ’ S 1 L/ =
< <<hterface>> .|t <<hterface>> | 1, <<Interface>>
\| UTDCore.IDisplay | UTDCore.lHelm | v UTDCore.litem
) (from Interfaces) v | (from Interfaces) |+ (from Interfaces)
[\ _ \ '
\ - 1
<<htedace>> <<Interface>> -<<Interface>>

<<Interface>>
UTDCore.lScore
(from Interfaces)

<<interface>>

UTD ver:

<<interface>>
UTDCore.IReport
(from Interfaces)

sion 2

UTDCore.eMsgBoxResults (Interfaces)

plugins

Enumeration of possible results from IMsgBox::Display

180

Visible

Invisible

WO 2004/114093 PCT/US2004/019831

'HYSICAL VIEW REPORT

eMsgBoxResult_Yes
eMsgBoxResult_No
eMsgBoxResult_Timeout
(Candidate clicked nothing, timeout occurred)

UTDCore.IPresentation (Interfaces) o

The data and current state of the presentation. Could be a item or a
display.

Derived from cEvent, UTDCore.IContainerNotifyHelm
Public Attributes:

bCountPresentation : Boolean

1f TRUE the presentation should count for the total X or Y for the section. "the item count”

colCustomAttributes : UTDCore.lAttributes

Collection of custom attributes. Read-only.

sName : String

Read-only presentation name.

sTitle : String

Presentation title. Read-only

oScriptStart : UTDCore.IScript

The script to execute before this object executes.

oScriptFinish : UTDCore.XScript

The script to execute after this object executes.

oScriptConditional : UTDCore.IScript

This expression script is evaluated. If TRUE this object is deliveried.

WASHINGTON 153548V]

181

WO 2004/114093 PCT/US2004/019831

PHYSICAL VIEW REPORT

sComment : String

The user entered comment for this presentation.

bMarked : Boolean

TRUE if the item has been mark for later review. Set by the helm.

colChildren : UTDCore.IEvents

The items in this presentation. The collection will be empty for a non-item presentation.

bSelected : Boolean

True if the presentation or any of its items have been selected for delivery by a selection plugin.

Read-only.

Public Operations:
Findlcltem (pIitem : Yltem *) : Icltem *

Find the Icltem interface for the given Iltem.
Returns failure if the Iltem is not in this presentation.

UTDCore.IContainerNotify (Interfaces)

All plugins receive a reference to this interface. It allow them to report
events to the container.

Public Operations:

Activated (:

Call to indicate the plugin has received the presentation change and it
fully ready for operations. This includes processing its data and
painting on the screen (if visible). This object is passed as a parameter
on the PresentationStarting method of visible plug-in types.

WASHINGTON 153548V1

182

WO 2004/114093

PCT/US2004/019831

'HYSICAL VIEW REPORT

Failure to call this method from a visible plug-in will cause the driver
to wait infinitely. The candidate will not be able to navigate or
respond. Do not call this method more than once for each time
PresentationStarting is called.

UTDCore.ICategories (Interfaces)

Collection of UTDCore. ICategory

Derived from UTDCore.Collection

UTDCore.IMsgBox (Interfaces)

Public Atiributes:

This class displays a message box with a candidate prompt. This class
is returned from IExam::GetMsgBox(). The message in the box is
supplied by the called. The title can optionally be supplied. The
buttons are supplied by the caller, but the button labels are defined at
the exam level in the resource file.

The parent of the message box is the main exam window. The message
box can be set to time out after a duration.

sTitle : String = UTDCore

The title the message box will use. Read/Write.

iTimeout : Long = 120

The timeout value on the message box in seconds. Read/Write.

-The Display will return eMsgBoxResult_Timeout.

nParentHWnd : Integer

The parent window handle Read/Write

Default is the main UTDCore window.

WASHINGTON 153548V

183

WO 2004/114093 PCT/US2004/019831

PHYSICAL VIEW REPORT

Public Operations:
Displayl (sPrompt : String, eStyle : UTDCore.eMsgBoxStyle) : UTDCore.eMsgBoxResults

Display the message box. Displays the buttons requested and the
message supplied.

UTDCore.IPersistResourceSet (Interfaces)

Interface for a plugin that wants to be persistant in the resource file as a
property set.

Public Operations:
Save (oF'repSet : POLESS.IPropértyStorageVB) :

Called by the compiler to save the plugin data to the resource file.

. Lead (oPropSet : POLESS.IPropertyStorageVB) :

Called by the test driver to load the plugin data from the resource file.

ValidateResource (oPropSet : POLESS.IPropertyStorageVB, oCompilerServices :
UTDCoreJCompilerServices) :

Validates the compiled resource for the plugin. The plugin must raise
an automation error that describes any problems with the source.

The combination of the amalogmated storage for the XXL and the

"referenced files should resolve all references. For example all HREFs
to HTML and JPEGs should resolve.

UTDCore.IGroup (Interfaces)

Groups are the holders for events in the section. A group may hold
presentations or sections.

Public Attributes:

sName : String

WASHINGTON 153548V}

184

WO 2004/114093 PCT/US2004/019831

'"HYSICAL VIEW REPOKY

Read-only group name.

sTitle : String

Read-only group title.

colCustomA ttributes : UTDCore.JAttributes

Collection of custom attributes. Read-only.

colChildren : UTDCore.lEvents

The collection of presentations, sub-sections, or sub-groups for this group.

oScoring : UTDCore.JScore

The scoring plugin for the section.

colDelivered :

Collection of presentations or sub-sections containing all delivered events within this group. This will not
contain sub-groups. '

oSelection : UTDCore.XSelection

Pointer to the current selection plugin of this group.

oSection : UTDCoreISection

The section housing this group.

UTDCore.IScript (Interfaces)

A script written in VBscript or JScript. To be executed or evaluated by
the ActiveX Scripting Engine. This object will expose UTD objects to
the script code. These objects will be based on the scope of the
"Parent" object provided to this object.

All scripts can see oExam, oForm, and oCandidate.

WASHINGTON 153548V

185

WO 2004/114093

Public Attributes:

oParent : Object

PCT/US2004/019831

PHYSICAL VIEW REPORT

If the parent object is a section object, then the script will also see
oCurSection.

If the parent object is a presentation object, then the script will also see
oCurSection and oCurPresentation.

If the parent object is an item then the script will also see oCurSection,
oCurPresentation, and oCurltem.

‘

The parent UTD object. It could be a form, a section or a presentation.

Public Operations:

Execute (sScript : BSTR) :

Executes the script code passed in the sScript parameter.

EvaluateBeol (sScript : BSTR) : Boolean

Evaluates the expression parsed as the sScript parameter. Returns
TRUE or FALSE. Raises an error if the code is not an expression
returning a boolean.

EvaluateVar (sScript : BSTR) : Variant

Evaluates the expression passed in the sScript parametert. Returns a
variant depending on the return type of the script. Raises an error if the

code is not an expression.
1

SetScope (oSection : ISection *, oPresentation : IPresentation *, oltem : Iltem *):

Set the parent section, presentation, and item. The script will have
access to these as the oCurSection, oCurPresentation, and oCurltem
objects. Any/All may be passed as NULL parameters indicating that
the script does not have access to that particular object.

AddObject (sName : BSTR, pObject : IDispatch *) : HRESULT

Protccted Operations:

Add an object into the global script scope.

WASHINGTON 153548V}

186

WO 2004/114093 PCT/US2004/019831

FHYSICAL VIEW REPORT

LoadGlobalScript (oStream : POLESS.IcStorage) :

Called by the test driver to initialize the global script that is common to
all later scripts. This will be shared by all instances of cScript.

The oStorage parameter is a storage containing an attribute set and a
stream containing the global script.

- UTDCore.IUnitTimer (Interfaces)

A plugin to perform timing across testing units.

Public Atiributes:
1SecondsElapsed : Long

The seconds elapsed.

ISecondsRemaining : Long

The seconds remaining. If the unit is not timed, this will return -1.

I1SecondsTotal : Long

The total seconds available for the unit.

datElapsed : DATE

The time elapsed. Same as 1SecondsElapsed.

datRemaining : DATE

The time remaining. If the unit is not timed, this will return -1. Same as ISecondsRemaining

datTotal : DATE

The total time available for the unit. Same as 1SecondsTotal.

Public Operations:

WASHINGTON 153548V1

187

WO 2004/114093

PCT/US2004/019831

PHYSICAL VIEW REPORT

PresentationActive (oPresentation : UTDCore.IPresentation) :

This is called by the test driver to inform the timer that the presentation
is completely active. All plugins have loaded their data, displayed and
are operational.

Presentationlnactive () &

This is called by the test driver to inform the timer that the presentation
is about to become inactive. The user has selected a direction to go
from the item. The Item and the navigation has cleared it for
movement.

After this call the plugins will be hidden and unloaded.

AddTime (nMinutes : Integer) :

Adds time to the current form or section. Time is specified in minutes.

Starting (oChildren : UTDCore.IEvents, oContainerNotifyHeln : UTDCore.IContainerNotifyHelm) :

Ending () ¢

Panse () :

Resume () :

Informs the plugin that the section or form is stérting. If the plugin is
defined at the form level then this is called when the form starts. If the
plugin is defined at the section level then this is called when the section
starts.

It gives it the collection of children to time across. This collection can
include cSection objects and cPreséntation objects.

Informs the plugin that the section or form is ending. If the plugin is
defined at the form level then this is called when the form ends. If the
plugin is defined at the section level then this is called when the section
ends.

Pauses the timer

Resumes the timer. (After a Pause())

UTDCore.INavigate (Interfaces)

WASHINGTON 153548V

188

WO 2004/114093 PCT/US2004/019831

PHYSICAL VIEW REPORT

Interface supportted by plugins that a handle section navigation.

Implementer of iNavigate must also implement a
iContainerNotifyHelm

Derived from UTDCore.IContainerNotifyHelm
Public Attributes:
nPresentations : Integer

The number of counted presented to be presented within the scope of the navigation. Each item in a
compound items count as a one.

bltemsDetermined : Boolean

TRUE if the number of items to present within the scope of the navigation can be determined. Adaptive
items or sections can prevent this.

Public Operations:
bNavigateAllowed (eDirect : UTDCore.eDirection) : Boolean

Returns TRUE if navigation in the direction supplied sis allowed. Itis
the helm’s job to query this before every presentation.

This is.a combination of the resource file plugin data and the current
state of the section.

Example implementation:,

The test designer is allowed to configure if the previsous button
appears. But if we are on the first presentation of a section it will not
appear even if configured.

Starting (oSection : UTDCore.ISection) :

The section is starting.

Ending () :

The section is ending.

WASHINGTON 153548V

189

WO 2004/114093 PCT/US2004/019831

PHYSICAL VIEW REPORT

UTDCore.lltems (Interfaces)

Collection of UTDCore.Icltem. Note this is not the UTDCore.lltem
interface implemented by an item plug-in.

Derived from UTDCore.Collection

UTDCore.ICategory (Interfaces)

A category of sections or items. For example: "Reporting”,
"Qbjectivies”, "Scoring"

Public Attributes:

sName : String

The name of the category.

bComplete : Boolean

If TRUE the category must contain all sections or items defined at a level.

bDuplicate : Boolean

If TRUE the category allows sections or items defined more than once at a level.
sDescription : String

The description of the category.

colMembers : UTDCore.lEvents

The collection of sections or items that apply to this category .

colSubCategories : UTDCore.ICategories

Collection of UTDCore.cCategory. (AKA sub-categories).

eContents : eCategoryContents

Read-only. The allowable types of members in the colMembers.

WASHINGTON 153548V

190

WO 2004/114093 PCT/US2004/019831

PHYSICAL VIEW REPORT

enum {
eCategoryContent_Anything = 0,
eCategoryContent_Sections = 1,
eCategoryContent_ltems = 2,
eCategoryContent_Categories = 3,

} eCategoryContents;

oScoring : UTDCore.IScore

The scoring plugin for the form.

UTDCore.IPersistInstancéStore (Interfaces)

Interface for a plugin that wants to be persistant in the instance file as a
storage.

Public Attributes:
IsDirty : Boolean

Returns TRUE if the object needs to save state to the instance file.

Public Operations:
Save (oStorage : POLESS.iStorageVB) :

Called by the test driver to save the plugin data to the instance file.

Reload (oStorage : POLESS.iStorageVB) :

Called by the test driver to reload the plugin data from the instance file.
The IPersistResource*::Load will be called next.

UTDCore.IcResults (Interfaces)

WASHINGTON 153548V

191

WO 2004/114093 PCT/US2004/019831

PHYSICAL VIEW REPORT

A collection of Events will contain an IcResults interface for every
result. It is a container for the IResults plug-in. This is not the IResults
interface that the plug-in implements.

Derived from cEvent
Public Attributes:
|

oResults : UTDCore.IResults

The plugin that writes the results.

UTDCore.Icltem (Interfaces)

A collection of Items or Events will contain an IcItem interface for
every item. This interface provides general item information including
attributes specified in the <item> tag of the XXL. This is not the
UTDCore.lltem interface that the plug-in implements.

It is possible to Querylnterface this Icltem for the IItem interface. This
allows a report, results, or scoring plug-in to call methods on the Iitem
interface.

Derived from UTDCore.lltemn
Public Attributes:
bPresented : Boolean = False

True if item has been presented to the candidate. Set by item component:

sName : String
Read-only item name.

sTitle : String
Presentation title. Read-only

fWeight : Double = 1

The item weigthing relative to other items. Normally 1. If multiple weigths per item are required they can
be attached in the custom attributes. The wei gth can be negative.

WASHINGTON 153548V

192

WO 2004/114093 PCT/US2004/019831

PHYSICAL VIEW REPORT

colCustomAttributes : UTDCore.JAttributes

Collection of custom attributes. Read-only.

1SecondsElapsed : Long

The seconds spent on the item.

bScored : Boolean = TRUE

Read-only. TRUE if the item is to be scored.
If false fWeight and fScoreCandidateWeighted will all be 0.

bSkipAllowed : Boolean

Read-only property. If TRUE the item can be skipped. If TRUE the bProceed() method on iltem interface
will not be called.

fScoreCandidateWeighted : Double

The weighted value of the candidate for the item. The judged value for the item will by multiplied by the
weight for this value.

sPluginName : String

Read-only plugin name. The prog ID of the plugin.

oSection : UTDCore.ISection

Read-only property of the section the item was deliveried in.

oPresentation : UTDCore.IPresentation

Read-only property of the presentation the item was deliveried in.

datElapsed : DATE

The time spent on the item. Same as I1SecondsElapsed, but sent as a COM DATE type.

WASHINGTON 153548V

193

WO 2004/114093 PCT/US2004/019831

PHYSICAL VIEW REPORT

UTDCore.IScore (Interfaces)

Interface supportted by piugins that a handle scoring of sections or
exams. J

Public Attributes:
eStatus : UTDCore.eScoreStatus

" The eScoreStatus as follows.

fReportedScoreCut : Double = -1

The cut score 1o report to the candidate and results. Usually scaled. If this does not apply to the plugin
return -1. '

fReportedScoreMax : Double = -1

The maximum score to report to the candidate and results. Usually scaled. If this does not apply to the
plugin return -1.

fReportedScoreCandidate : Double = -1

The achivied score to report to the candidate. Usually scaled. If this does not apply to the plugin return -1.

oEvents : IEvents *

Tthe collection of children to score. If the plugin is on a section, then this collection can include ISection
and IPresentation objects. If the plugin is on a category, then this collection can include ISection, and Iitem
objects.

Public Operations:

bStep O : Boolean

Test Driver will call this method to see if delivery should be stopped
from current delivery unit (section or form).

For example an adaptive exam may return false when it is clear if the
candidate has master or not mastered the material.

WASHINGTON 153548V}

194

WO 2004/114093 PCT/US2004/019831

HYSICAL VIEW REPORT

GetScoreDisplay () : String

Returns the score in a form to be displayed on the screen.

GetScoreResuits () : Byte()

Returns the score in a form to be written to the results file. The score is
in the form of a safe array of bytes.

.

UTDCore.IExam (Interfaces)

The exam instance. The root object of the driver exposed classes.

Derived from cContainerFrameT
Public Attributes:
sName : String

Read-only exam name.

sLanguage : String

The language of the exam content. Read-only.

(UTDCore 2.0.0.47 - This currently returns a blank string)

sVersion : String

The version of the exam. Read-only.

oActiveForm : UTDCore.lForm

The current form. Only one form can be active for an exam.

eStatus : UTDCore.eExamStatus

The eExamStatus as follows:
eExam_Initializing

eExam_Starting

eExam_InProgress

WASHINGTON 153548V

195

WO 2004/114093

i’HYSICAL VIEW REPORT

PCT/US2004/019831

eExam_Ended

eExam_Terminating

bShowResponseComment : Beolean

If TRUE the candidate should not see tpeir response during the comment period.

colCustemAttributes : UTDCore.JAttributes
Collection of custom attributes. Read-only.

sTitle : String
Exam title. Read-only

colCategories : UTDCore.ICategories

The collection of all categories.

oResourceRoot : Object

The read-only reference to the root storage of the POLESS resource file. Interfaces:
POLESS.cStorageRoot, iStorage, iRootStorage, iStorageVB.

olnstanceRoot : Object

The read-only reference to the root storage of the POLESS exam instance file. Interfaces:

POLESS.cStorageRoot, IStorage, IRootStorage, IStorageVB.

oRegistry : UTDCore.IRegistry

Returns the single instance of the registry object. Read-only.

Public Operations:

Minimize () :

Minimumizes the main windows of UTD. Can be called be simulations

to get UTD out of the way.

WASHINGTON 153548V1

196

WO 2004/114093 PCT/US2004/019831

'HYSICAL VIEW REPORT

Restore () :
Restore the main windows of UTD. Can be called be simulations to
restore UTDto the screen.

GetScript (: UTDCore.IScript
Returns a script object to be used by a plug-in.

Savelnstance O : !

Save the state of the test driver to the instance file. All active objects
are asked to serialize themselves to the instance file.

Any one with a reference to this object can initiate this process. It
could be an item plugin that wants to save user interaction and state
information.

The driver will save between each presentation. It may also save at
various other events or time intervals.

GetTransfer () : UAS.ITransfer

Returns a UAS Transfer object to transfer results or other files to the
data center. .
The IExam object does not keep a reference to this object.

GetPrint () : TUASPrint

Returns a UAS print object to save for reprint score and other reports.
The IExam object does not keep a reference to this object.

FatalError (Number : Long, sSource : String, sDescription : String) :

Reports an error in a plugin to the test driver.

Normally errors will be reported back to the test driver via an
HRESULT and supportting IErrorInfo. If the error was generated from
something other than test driver initiated call, the plugin should report
the error via this method.

An example usage could be the user clicks a button on your plugin
item. The resulting actions generate an error.

Warn () :

Writes a "'Warning’ level trace messate to the instance file.

Info () :

Writes a Taformation’ level trace messate to the instance file.

WASHINGTON 153548V

197

WO 2004/114093

Quit(:

PCT/US2004/019831

é?HYSlCAL VIEW REPORT

Tells the exam that the candidate is quitting the exam. Normally called
by the Navigation plugin in response to the eDirection_Quit. The
navigation plugin should confirm this decision with the candidate.

This causes the test driver to stop delivery and shutdown execution
cleanly. The administration system is informed that the candidate quit
the exam.

GetMsgBox () : UTDCoreIMsgBox

StartExam Q :

Returns a message box object. Any plug-ins that wish to display a
message box should use this object whenever possible. It provides
language independence, and a consistent look and feel.

Tells the exam that the candidate has accept the exam and started.
Normally called by the Navigation plugin in response to the
eDirection_Start.

The administration system is informed that the exam has started and the
candidate has accepted it.

UTDCore.IRegistry (Interfaces)

Public Operations:

Alows registry look up for translating strings
For examples:

<base bref="%REG:DSAGRAPGHICS">
into

<base href="V:\DSA\">
Looks at

[HKEY_LOCAL_MACHINE\SOFTWARE\Prometric\UTD\Keywords
]

WASHINGTON 153548V

198

WO 2004/114093 PCT/US2004/019831

JHYSICAL VIEW REPORT

Lookup (sKey : String) : String

Retrieves the string by finding the key in the registry and returning the
value.

Translate (sInString : String) : String

Translates each occurance of %REG:x% into the equivilent of "x" in
the registry.

UTDCore.JAttribute (Interfaces)

Public Attributes:

sName : BSTR

Get the attribute name string.

value : VAMANT

Get the attribute value.

UTDCore.IHelm (Interfaces)

Interface implemented by plug-ins that a handle navigation control or
review. Like Next, Previous or Incomplete. Only User interface.
Talks to the iNavigate plug in to perform the actual navigation.

Public Attributes:
oSection : UTDCore.ISection

The section this helm is in.

Public Operations:

WASHINGTON 153548V!

199

WO 2004/114093 PCT/US2004/019831

PHYSICAL VIEW REPORT

PresentationStarting (oPresentation : UTDCore.IPresentation, oContainerNotifyHelm :
UTDCore.lContainerNotifyHelmn, oContainerNotify : UTDCore.JContainerNotify, bComment : Boolean)

Called by the test driver to inform the plugin that a new presentation is
starting. The plug-in may hold the IPresentation, IContainerNotify, and
IContainerNotifyHelm objects until the PresentationEnding. See
IContainerNotify::Activate. The IContainerNotifyHelm interface as a
way to notify the test driver of movement.

PresentationEnding ::
Called by the test driver to inform the plug-in the presentation is
ending. After calling this method, the driver expects the plug-in will

release the IPresentation, IContainerNotify, and IContainerNotifyHelm
objects passed in PresentationStarting.

UTDCore.IcReport (Interfaces)

A collection of Events will contain an IcReport interface for every

report. It is a container for the IReport plug-in. This is not the IReport
interface that the plug-in implements.

Derived from cEvent
Public Attributes:
oScoreReport : UTDCore.IReport

The score report plugin.

UTDCore.eDirection (Interfaces)

Enumeration of the possible directions to proceed from a presentation.

eDirection_Next

eDirection_Previous
eDirection_Timeoutlmmedidate (now do not wait)
eDirection_TimeoutAfter (after current presentation)
eDirection_Review (Goto the review presentation)
eDirection_Jump (Goto a specific presentation)

WASHINGTON 153548V1

200

WO 2004/114093 PCT/US2004/019831

PHYSICAL VIEW REPORT

eDirection_Flag
eDirection_Help
eDirection_Firstincomplete
eDirection_FirstSkipped
eDirection_FirstPresentation
eDirection_FirstMarked
eDirection_ End
eDirection_Comment
eDirection_Start
eDirection_Quit

UTDCore.IPersistInstanceStream (Interfaces)

Interface for a plugin that wants to be persistant in the instance file as a
property stream.

Public Attributes:

IsDirty : Boolean

Returns TRUE if the object needs to save state to the instance file.

Public Operations:
Save (oStream : POLESS.IStreamVB) :

. Called by the test driver to save the plugin data to the instance file.

Reload (eStream : POLESS.IStreamVB) :

Called by the test driver to reload the plugin data from the instance file.
The IPersistResource*::Load will be called next.

UTDCore.ePluginModes (Interfaces)

Enumeration of the possible modes that an active document

ePluginMode_Author (Not supported)

WASHINGTON 153548V1

201

WO 2004/114093 PCT/US2004/019831

'"HYSICAL VIEW REPORT

ePluginMode_Compile
ePluginMode_Delivery
ePluginMode_Rescore (Not suporited)
ePluginMode_ProcessResults (Not suportted)

UTDCore.IPersistResourceStream (Interfaces)

Interface for a plugin that wants to be persistant in the resource file as a
stream.

Public Operations:
Save (oStream : POLESS. IStreamVB) :

Called by the compiler to save the plugin data to the resource file.

Load (oStream : POLESS.IStreamVB) :

Called by the test driver to load the plugin data from the resource file.

UTDCore.ISelection (Interfaces)

Selects items, sections or forms from a category.

Public Attributes:
bMore : Boolean

Returns TRUE if there are more objects to get. Read-only.

nCountTotal : Integer

Returns the total count of objects (items, sections or forms) that it has in its pool to select from. It will
return -1 if this is not quantifiable.

nCountSelected : Integer

‘Returns the selected count of objects (items, sections or forms) that it will return from the pool. It will
return -1 if this is not quantifiable. Like items in an adaptive section.

WASHINGTON 153548V1

202

WO 2004/114093 PCT/US2004/019831

FHYSICAL VIEW REPORT

oGroup : UTDCore.ISection

Read-write.

The group that contains this selection plugin. This is not set for a form selection plugin.

oEvents : UTDCore.IEvents

Read-write.

The events collection to select from.

Public Operations:

Reset () ¢

This gives the selection plug a chance to prepare the data for the first
selection. Some selection plugins like "random/exshastive” make pre-
determine all the items for selection a store them in its internal memory
and the instance file.

GetNext : Object

Gets the next item, section or form. If there are no more, them NULL
AKA Nothing is returned.

UTDCore.IGroups (Interfaces)

i

Collection of UTDCore.IGroup

Derived from UTDCore.Collection

UTDCore.Collection (Interfaces)

Base UTD collection. All other collection classes follow this design.

Public Attributes:

Count : Long

WASHINGTON 153548V

203

WO 2004/114093 PCT/US2004/019831

FHYSICAL VIEW REPORT

Returns the number of members in a collection.

_NewEnum : IUnknown * *

Returns a Visual Basic enumerator object.

Public Operations:
Item (Index : Variant) : Variant

Returns a specific member of a Collection object either by position or
key.

UTDCore.eScoreStatus (Interfaces)

The scoring status for a form/section/group/category, determined by the
scoring plugin.

eScore_NonGraded
eScore_Failure
eScore_Pass

UTDCore.eStates (Interfaces)

The states of the test driver.

eStateStart -- Initializing the test driver & reading the resource file.
eStateSectionDelivery -- Delivering a section. '
eStateSectionComment -- Commenting all sections.
eStateSectionFeedBack -- Feedback on all sections.
eStateScoreReporting -- Rendering and printing a score report.
eStateResults -- Writing results.

eStateFinish -- Closing down the test driver.

UTDCore.IPersistResourceStore (Interfaces)

WASHINGTON 153548V}

204

WO 2004/114093 PCT/US2004/019831
YSICAL VIEW REPORT

Interface for a plugin that wants to be persistant in the resource file as a
storage.

Public Operations:

Save (oStorage : POLESS.iStorageVB) :

Called by the compiler to save the plugin data to the resource file.

Load (oStorage : POLESS.IStorageVB) :

Called by the test driver to load the plugin data from the resource file.

ValidateResource (0Storage : POLESS.iStorageVB, oCompilerServices : UTDCore.ICompilerServices) :

Validates the compiled resource for the plugin. The plugin must raise
an automation error that describes any problems with the source.

The combination of the amalogmated storage for the XXL and the

referenced files should resolve all references. For example all HREFs
to HTML and JPEGs should resolve.

UTDCore.eExamStatus (Interfaces)

Enumeration of possible exam delivery states.

eExam_Initializing (loading resource file)

eExam_Starting (delivering, candidate not yet "started’)
eExam_InProgress (delivering, candidate officially "started")
eExam_Ended (delivering, candidate officially "ended")
eExam_Terminating (cleaning up from memory)

UTDCore.Iltem (Interfaces)

Interface supportted by plugins that a handle items and simulators.

Public Attributes:
oSection : UTDCore.ISection

The section we are in.

WASHINGTON 153548V1

205

WO 2004/114093 PCT/US2004/019831

PHYSICAL VIEW KEPFUKI1

fScoreMinimum : Double = 0

The lowest possible score. Must be less than or €qual to the nominal score. It can be negative.

fScoreNominal : Double =0

The score if the candidate takes no actions. Must be less than or equal to the maximum score. Must be
greater or equal to the minimum score. Normally zero.

fScoreMaximum : Double = 1

The highest possible score. Must be greater than or equal to the nominal score.

fScoreCandidate : Double = 0

The score received by the candidate. Requests that the plugin judges the item.

bComplete : Boolean = False

True if Item is complete.

bSkipped : Boolean = False

True if item was skipped by the candidate.

Public Operations:

bProceed (eDirect : UTDCore.eDirection) : Boolean

Test Driver will call this method to see if it is OK to move off the
current presentation. The parameter indicates the direction.

GetCorrectAnswerDisplay () : String

Returns the correct answer in a form to be displayed on the screen.

GetCorrectAnswerResults () : Byte(Q)

Returns the correct answer 1n a form to be written to the results file.
The correct answer is in the form of a safe array of bytes.

GetResponseDisplay () : String

Returns the candidate response in a form to be displayed on the screen.

WASHINGTON 153548V

206

WO 2004/114093 PCT/US2004/019831

FHYSICAL VIEW REPORT

GetResponseResults () : Byte()

Returns the candidate response in a form to be written to the results
file. The response is in the form of a safe array of bytes.

PresentationStarting (oPresentation : UTDCoreJPresentation, oContainerNotify :
UTDCore.IContainerNotify, bReadOnly : Boolean) :

Called by the test driver to inform the plugin that a new presentation is
starting.

PresentationEnding Q :

Called by the test driver to inform the plugin thae presentation is
ending.

UTDCore.IPlugin (Interfaces)

This Interface will be supportted by all UTD plugins.

All plugins must implement the following interfaces:
iPlugin

All plugin must implement one of the following to persist into the
resource file at compile time:
IPersistResourceSet, IPersistResourceStore or IPersistResourceStream

All plugin may implement one of the following to persist into the
instance file during delivery time:
IPersistInstanceSet, IPersistInstanceStore or IPersistInstanceStream

if you are visible one of these: iHelm, iltem or iDisplay. It can be an
iHelm and an iltem.

If you wish to be contained as an active document you must support the
following: iDataObject, IoleInPlaceObject, IolelnPlaceActiveObject ,
IoleDocument, IOleDocumentView and IoleCommandTarget.

or one of these if you are invisible:
iScore, iReport, iResults, iNavigate, iTimer.

iNavigate must also implement a iContainerNotifyHelm

Public Attributes:
eMede : ePluginModes

The mode the plugin should operate in.

WASHINGTON 153548V

207

WO 2004/114093 PCT/US2004/019831

PHYSICAL VIEW REPORT

Set by the consumer of the plugin (the driver or compiler).

Public Operations:
ValidateSource (¢Source : POLESS IStreamVB, oCompilerServices : UTDCore.lCompilerServices) :

Validates the source XXL for the plugin. The plugin must raise an
automation error that describes any problems with the source. The

source is not required to be complete only the portions provided should
be verified.

If the contents of the stream is Unicode it will be marked with the
BOM (byte order mark) as defined be unicode standard

- (www.unicode.org). The BOM is normally FFFE.
If the stream contains ASCII or UTF-8, no BOM-will be included.

The oCompilerServices interface is provided to offer additional
features and information to the plugins.

Unload O :

Unload data and references to UTD objects.

Load (oExam : UTDCore.IExam, oCandidate : iAttendance) :

Load with references to UTD objects. Only called during exam
delivery.

UTDCore.IContainerNotifyHelm (Interfaces)

This interface consumed by plugins to inform the container to navigate.

1

Public Operations:
RequestMove (eDirect : UTDCore.eDirection, sPresentation : String) :

Requests that the driver proceed in the direction specified. The driver
next requests this movement from the navigation plugin.

The second parameter optional specifies the presentation. This is only
used for the JUMP.

WASHINGTON 153548V1

208

WO 2004/114093 PCT/US2004/019831

_YHYSICAL VIEW REPORT

UTDCore.IReport (Interfaces)

Interface supported by plugins that handle printing of the score reporis
and other other material like stylus ("hand-outs").

Public Operations:
PrintReport () :

Prints the score report

UTDCore.IForm (Interfaces)

A exam form.

Derived from UTDCore.JCentainerNotifyHelm
Public Attributes:

colChildren : UTDCore.JEvents

The collection of all top level sections of the exam. Read-only.

colCustomAttributes : UTDCore.IA ttributes

“ Collection of custom attributes. Read-only.

sName : String

Read-only form name.

sTitle : String

Form title. Read-only

colltemsChosen : UTDCore.lltems

WASHINGTON 153548V

WO 2004/114093 PCT/US2004/019831

JHYSICAL VIEW REPORT

The collection of all items chosen (that is, returned by a selection plugin) in the exam. This is regardless of
their section.

colAllSections : UTDCore.JSections

The collection of all sections of the exam regardless of their level.

datStart : Date

The form start date and time.

datFinish : Date

The form finish date and time.

oTimer : UTDCore.IUnitTimer

The timer for the form.

oScoring : UTDCore.IScore

The scoring plugin for the form.

sVersion : String

The version of the form.

colDelivered : UTDCoreJEvents

The collection of all delivered top level sections of the form. Read-only.

nCurlndex : Long=0

Index of last delivered event in colDelivered. Read-only.

eStatus : UTDCore.eScoreStatus

Returns the value of oForm.oScore.eStatus.

colAllPresentations : UTDCore.IPresentations

The collection of all presentations of the exam regardless of their level.

WASHINGTON 153548V}

210

WO 2004/114093 PCT/US2004/019831

PHYSICAL VIEW REPORT

colPresentationsChesen : UTDCoreJPresentations

The collection of all presentations chosen (that is, returned by a selection plugin) in the exam. This is
regardless of their section or group.

colSectionsChosen : UTDCore.JSections

The collection of all sections chosen (that is, returned by a selection i)lugin) in the exam. This is regardless
of their level.

colAllitems : UTDCore.lltems

The collection of all items of the exam regardless of their level.

colAllGroups : UTDCore.IGroups

The collection of all groups of the exam regardless of their level.

colGroupsChesen : UTDCore.IGroups

The collection of all groups chosen (that is, the selection plugiﬁ for this group has been Reset()) in the
exam. This is regardless of their level.

Public Operations:
ChitdNext O :
Requests that the driver proceeds to the next event on the form. This
can be a section, a resuit, or a score report.
ChildPrevious () :

Requests that the driver proceeds to the previous event on the form.
This can be a section, a result, or a score report.

ChildGoete (vSection : Varijant) :

Requests that the driver proceeds to a named or numbered event on the
form. This can be a section, a result, or a score report.

datMinliemaining 0:

Minimum time remaining for this exam.

WASHINGTON 153548V}

211

WO 2004/114093 PCT/US2004/019831

ﬁHYSICAL VIEW REPORT

UTDCore.JAttributes (Interfaces)

Collection of UTDCore.IAttribute

Derived from UTDCore.Collection

UTDCore.IPresentations (Interfaces)

Collection of UTDCore.cPresentation

Derived from UTDCore.Collection

UTDCore.ISections (Interfaces)

Collection of UTDCore.cSection

Derived from UTDCore.Collection

UTDCore.IDisplay (Interfaces)

Interface supported by plugins that a handle title bars, displays, non-
answered items and summaries.

Public Attributes:
oSection : UTDCore.ISection

The section this display is in.

Public Operations:

WASHINGTON 153548V

212

WO 2004/114093 PCT/US2004/019831

FHYSICAL VIEW REPUKYT

PresentationStarting (oPresentation : UTDCore.JPresentation, oContainerNotify :
UTDCore.IContainerNotify) :

Called by the test driver to inform the plugin that a new presentation is
starting. The plug-in may hold the IPresentation and IContainerNotify
objects until the PresentationEnding. See IContainerNotify::Activate.

PresentationEnding () :
Called by the test driver to inform the plug-in the presentation is
ending. After calling this method, the driver expects the plug-in will

release the IPresentation and IContainerNotify objects passed in
PresentationStarting.

UTDCore.ISection (Interfaces)

Represents one exam sections or sub-section. May contain
presentations or sections.

Derived from cEvent
Public Attributes:
oNavigation : UTDCore.INavigate

The navigation plugin for this section.

colCustomA ttributes : UTDCore.lAttributes

Collection of custom attributes. Read-only.

sName : String

Read-only section name.

sTitle : String

Section title. Read-only.

oScoring : UTDCore.IScore

The scoring plugin for the section.

WASHINGTON 153548V

213

WO 2004/114093 PCT/US2004/019831

IWHYDILAL VIEW REPOKT

oScriptStart : UTDCore.1Script

The script to execute before this object executes.

oScriptFinish : UTDCore.IScript

The script to execute after this object execuites.

oScriptConditional : UTDCore.IScript

This expression script is evaluated. If TRUE this object is deliveried.

oReview : UTDCoreIPresentation

The review presentation for the section. It can be nothing if the section does not have a review defined for
it. . .

6CurChild : Object
The current child being deliveried. This can be a eSection or a cPresentation.

datStart : Date

The section start date and time.

datFinish : Date

The section finish date and time.

colChildren : UTDCore.JEvents

The collection of presentations or sub-sections for the section.

oSelection : UTDCore.1Selection

The selection plugin for this section.

oTemplate : UTDCore.cTemplate

The tmeplate for the section.

WASHINGTON 153548V

214

WO 2004/114093 PCT/US2004/019831
EPHYSICAL VIEW REPORT

oTimer : UTDCore.iTimer

The timer plugin for the section.

dtTimeRemaining : DATE

Returns the time remaining in the section. It get the seconds remaining from the iTimer plugin. It then
converts it to a variant DATE type (aka VT_DATE).

colDelivered : UTDCore.IEvents

The collection of presentations or sub-sections for the section that have been presented. They are ordered
by the order they appeared in.

bComment : Boolean = FALSE

The commenting mode of the section. Normally set by the Navigation.

bitemsReadOnly : Boolean = FALSE

The read-only mode of the items in the section. Normally set by the Navigation. Read only items cannot
have their responses changed.

nCurChild : long =0

Index of last delivered event.in colDelivered. Read-only.

Public Operations:
ChildNext (:
Requests that the driver proceeds to the next presentation or child
section.
ChildPrevious () :

Requests that the driver proceeds to the previous presentation or child
section.

ChildGoto (vPresentation : Variant) :

Requests that the driver proceeds to a named or numbered presentation
or child section..

WASHINGTON 153548V1

215

WO 2004/114093 PCT/US2004/019831

HYSICAL VIEW REPORT

UTDCore.IResults (Interfaces)

Interface supported by plugins that handles writing of the candidate
results.

Public Operations:
WriteResults) :

‘Write the exam results.

UTDCore.eCategoryContent (Interfaces)

Enumeration of possible values for ICategory::eContents

I/ These types of categories that correspond to the XXL
categorycontents

eCategoryContent_Anything
eCategoryContent_Sections

eCategoryContent_Items

eCategoryContent_Categories

UTDCore.IEvents (Interfaces)

1Events contains deliverable classes as IDispatch objects. They must
be queried individually to determine their exact type. Which types of
events are returned depends on where the collection comes from.

IEvents can contain:
IExam, IForm, ISection, Icitem, IPresentation, Icltem, IcReport, and
IcResults.

Derived from UTDCore.Collection

WASHINGTON 153548V1

216

WO 2004/114093 PCT/US2004/019831

%l’l‘l YDICAL VIEW REPUKY

UTDCore.IPersistInstanceSet (Interfaces)

Interface for a plugin that wants to be persistant in the instance file as a
property set.

Public Attributes:
IsDirty : Boolean

Returns TRUE if the object needs to save state to the instance file.
Public Operations:
Save (oPropSet : POLESS.¥PropertyStorageVB) :

Called by the test driver to save the plugin data to the instance file.

Reload (oPropSet : POLESS.IPropertyStorageVB) :

Called by the test driver to reload the plugin data from the instance file.
The IPersistResource*::Load will be called next.

Administration System |

This is one or more components that make up the administration system. This will vary by channel and
time.

UAS.ITransfer (Interfaces)

Administration interface to transfer results and other files back to the
data center. It includes routing.

It is also emulated by UTD2ETS and Launchtest components that
emulate the UAS.

UAS.IPrint (Interfaces)

WASHINGTON 153548V

217

WO 2004/114093 PCT/US2004/019831

HYSICAL VIEW REPORT

The administration system interface for save score reports for reprint.
Also handles initial printing.

It is also emulated by UTD2ETS and Launchtest components that
emulate the UAS.

UAS.IAppointment (Interfaces)

This interface is part of the Unified Administration System. It allows
access to the candidate information for the candidate taking this exam.

It is also emulated by UTD2ETS and Launchtest components that
emulate the UAS.

WASHINGTON 153548V}

218

WO 2004/114093 PCT/US2004/019831

APPENDIX B-
POLESS CLASSES AND INTERFACES

219

WO 2004/114093 PCT/US2004/019831

TABLE OF CONTENTS
TABLE OF CONTENTS 2
SELECTED LOGICAL VIEW REPORT 3
LOGICAL VIEW 3
CAlgorithm 3
CEnumAlgorithm : 3
CEnumProviders 3
CProvider. . 3
TALGOTUIRI ...ttt e e e e s e s tes s s senssssses s e se s nns s sassa st st s e s cresensnssaen 4
ICrypto ... 4
IEnumAlgorithms 5
IEnumProviders 5
TFTIEROOT ..ot ese sttt et st e s s st sess s e i e ettt et e rms s sems seoas 7
POLESS.IPropertyStorageAmalgamated 8
POLESS.IPropertyStorageVB 8
POLESS.IStorageAmalgamated . .9
POLESS.ISIOTAZEVBK.......oomaeeeeeeeeseeeasnsnesaesssssssasssssssseasensss s sens et mssemsssesrsssssessabasmmssemenseen 10
POLESS.1StreamVB et e aenan s 12
POLESS.IcStorage .13
POLESS.IcStorageRoot..... .13
POLESS.CCrYpto.....eueeeereeeaceeeecereeneenns ronees . .. 14
POLESS.cFileRoot....... 14
POLESS.cPropertyStorage 15
POLESS.cPropertyStorageAmalgamated v 15
POLESS.cStorage ... rteeeaesne e et e asasaaeenaas 15
POLESS.cStorageAmalgamated .. et at st e s et e et e e ae s s et s e s anesenane . I5
POLESS.cStorageRoot....... s tnee st e s e seeasene : 15
POLESS.cStream...... . 15
POLESS.iStorageVB..... renees S 15
POLESS.iStreamVB15
TOTALS: 16
LOGICAL PACKAGE STRUCTURE : 16

WASHINGTON 153554V

220

WO 2004/114093 PCT/US2004/019831

POLESS.cCrypto
N
[} \‘\
p— / N
derName() / A
defName() Ié"’ \ ‘
ssword() - CEnumAlgorithm
ssword() CEnumProviders
leType()] !
leType() ‘..\ }
jorithm() AN !
jorithm() !
roviders () \4
gorithms () O : ~ CAlgorithm @)
. CProvider
{EnumProvid] IEnumAlgorit
ers l hms
S | T
ERNexi() | EENext()
- t
E®Clone() O esa()
XcCione()
lAigorithm
IProvider
A B??get_id()
Bfiget_Type() et tength(
E%qet_Name() Elget_minLength()

f¥get_maxLength()
B¥get_numProtocols()
P¥get_name()
E¥get_tongName()
B¥get_class()

SELECTED LOGICAL VIEW REPORT

CAlgorithm

CEnumAlgorithm
CEnumProviders

‘ CProvider

WASHINGTON 153554V1

221

WO 2004/114093 PCT/US2004/019831

TAlgorithm

Public Operations:

get_id (pAlgld : LONG*) : HRESULT

get_length (pdwLength : LONG*) : HRESULT
get_minLength (dwMinLength : LONG*) : HRESULT
get_maxLength (dwMaxLength : LONG*) : HRESULT
get_numProtocels (dwNumProtecols : LONG*) : HRESULT
get_name (sName : BSTR*) : HRESULT

get_longName (sName : BSTR*) : HRESULT

get_class (peAlgClass : eAlgorithmClass) : HRESULT

ICrypto

Encryption/Decryption interface.

Public Operations:

get_ProviderName (psProviderName : BSTR*) : HRESULT

Returns the name of the Cyrto provider.

put_ProviderName (sProviderName : BSTR) : HRESULT

Sets the name of the Cyrto provider.

get_Password (sPassword : BSTR* = ") : HRESULT

Used for Sponsor resource files only.

put_Password (sPassword : BSTR) : HRESULT

" Used for Sponsor resource files only.

get_FileType (eFileType : eFILE_TYPE) : HRESULT

put_FileType (eFileType : eFILE_TYPE) : HRESULT

WASHINGTON 153554V

222

WO 2004/114093 PCT/US2004/019831

get_Algorithm (eAlgorithm : eALGORITHM) : HRESULT
put_Algorithm (eAlgorithm : eALGORITHM) : HRESULT
EnumProviders (eProvType : eProviderType, ppenum : IEnumProviders**) : HRESULT

EnumAlgorithms (sProvName : BSTR, eAlgClass : eAlgorithmClass, ppenum : IEnumAlgorithms**) :
HRESULT :

IEnumAlgorithms

Public Operations:

Next (ppProv : JAlgorithm**) : HRESULT

Returns the next algorithm interface, or NULL if there are no more algorithms.

Skip (celt : ULONG) : HRESULT

Skips over the next specified number of algorithms.

Reset O : HRESULT

Resets the enumerator to the beginning.

Clone (ppenum : IEnumAlgorithms) : HRESULT

Creates another enumerator that contains the same enumeration state as the current one.

IEnumProvﬁders

Public Operations:

Next (ppProv : IProvider**) : HRESULT

Returns the next provider interface, or NULL if there are no more providers.

Skip (celt : ULONG) : HRESULT

Skips over the next specified number of providers.

Reset () : HRESULT

Resets the enumerator to the beginning.

WASHINGTON 153554V

223

WO 2004/114093 PCT/US2004/019831

{ POLESS<Ciypto | O
___—-————'1 l/_ - -——-—__.____‘/ 4
< - < POLESScFileRool | FileRoot
— UV
- —
" N torageFileCreste(}
N o0 S~ torageFileOpen()
Name() O ' ~ S toGet() '
uName) i IPersisFile S % StorageFile()
word() IRoctStorage : T EMstorageAmalgamatedGet()
";;:8 {trom OLE2SS)™ : /}(mm OLE2sS) O .. . peryS th.I' n N om e on
) itchToFite b 3 Loureate
ype0 By 0 \ v/ _—" POLESS.IStorageVs \ ItaFileApply(
hm{ [POLESS.cStorageRoot / ¥ etObjectFromPath()
ithm(I3 1 v ateStreamFromFile(
riders) ! > v ! Cleas) : reateStreamFromBSTR()
rithms)) i } 3 { ommilve() N emoiyStreamFromStream
oo \ / aventvB(\ BXGeBindCixp
| B ! %, / PEsElementName() v
, [P H \ b Storage !
, Y A \ f oElement() :
/r ': ' o/ \ I R CreateStream(N
1 H 0 H
P t ! penSkeam() H
R : ' — POLEss.lclsmmgeRoo\\ | fCreatestorage() |
e’ 'l P AV E¥OpenStorage ‘l
tream i AN get_shame() !
[N e1_Compression()] Eget_oSlorage! [O
Vo el_Encryplion | §¥oet_nCount) !
N N ! e CRCO | \ ERGe!Compressiont) t POLESS.IStorag
\ [~ : EGelObiechmmPa}ﬂO BcstEncrptiond \ 4 eAmalgamated
N e Y ENGelCRC) | ;
!] : N / \ reateStreamLinked(y 1 torageAdd(
e |) S o \ reatePropentyStg0 . [Hfcieastonge
wea t } POLESS.cStorage penProperySigl) v
i L etClass{) \ i/
= | VARY <~ - __ %\, iSAegistertias) N v/
avegy |/ ~N -7 I TeeL T\~ < B¥pestoy) N/
i - - AN
VB, / PRa¥ | ~ ~
5"00 ll ’ A .7 > A I ~ POLESS.cS geA |
i i FA I S Al
S RIViE =0 -
Vameoo\ ’ / N ‘ \ \ ~o
itream /o ~<
TTa ‘i’ /o POLESS.IcStorage Q ~.
if y 3 N Slorage
O po! reatePropedyStg() IStorage
LN R enPropeitySig()
IOIelIf:mConl LSRN . ateStreamLinked() (Jrom OLE2SS)
ainer Ses gﬁegislemliaso
) N
~ :\\\\ reateStream()
m g penStream()
!l)LESS.chpenySlorag?! caleStoragel
€2ss) b — penStorage()
e — e pyTo{
N e E¥MoveElementTo()
izeQ @) O . mmit)
ToQ evert(
" . POLESS.IProp
IPropertyStora:
i PSRN eysengevs humtementd O
e —
igion(enameEiement() " POLESS IPropedyStor
legion(] E¥ReadMultiple() SetElementTime: .
.:: ! RwiiteMultiple(ﬁsumasso =0 ! ageAmalgamated
1ef) etStateBit:
{ - Plstat) =0 l E¥rropenyStosrageAdd)
'] mearsmmoeﬂ
ials \\ "
2SS) POLESS.cPropeityStorageAmal d
d(

E¥SetTimes()

Clone (ppenum : IEnumProvider**) : HRESULT

Creates another enumerator that contains the same enumeration state as the current one.

WASHINGTON 153554V}

224

WO 2004/114093 PCT/US2004/019831

IFileRoot

The root POLESS interface. This interface should only be used to open one file ata a
time, and should not be released until all other storage, stream and propertystorage
interfaces and released and the file is ready to be closed.

Public Operations:

StorageFileCreate (sFileName : String, eBlockSize : eBLOCK_SIZE, eAccessMode : eACCESS_MODE,
bCompression : Boolean, bEncrypt : Boolean, oCrypto : POLESS.cCrypto, bCRC : Boolean) : iStorage

Creates a new storage file. Returns the root storage interface. Marks the new structured
storage file as a POLESS file by storing the CLSID of this class in a stream in the root
storage.

SterageFileOpen (sFileName : String, eAccessMode : eACCESS_MODE) : iStorage

Open an existing storage file. Returns the root storage interface.

The CRC is checked if enabled and read access mode is selected. An error is returned if
the CRC fails to match.

CryptoGet () : POLESS.cCrypto

Gets a default configured crypto class. It should be set and used on the open or create of
of the storage file.

bStorageFile (sFileName : String) : Boolean

Return TRUE if the file provided is an OLE structured sotrage file and a POLELESS
storage file.

StorageAmalgamatedGet () : POLESS.cStorageAmalgamated

Gets an empty cStorageAmalgamted.

PropertyStorageAmalgamatedGet () : POLESS.cPropertyStorageAmalgamated

DeltaFileCreate (sFileNameOriginal : String, sFileNameUpdate : String, sFileNameDelta : String, bEncrypt :
Boolean, oCrypto : POLESS. ¢Crypto, bCRC : Boolean) :

Create a POLESS difference file. It compares the original poless file to the updated
poless file and create a delta poless file.

The delta file contains .
branch additions and branch deletions to the orginal poless tress to create the updated
poless tree.

it contains the CRC of the original file and

the CRC of the update file.

DeltaFileApply (sFileNameOriginal : String, sFileNameUpdate : String, sFileNameDelta : String) :

WASHINGTON 153554V1

225

WO 2004/114093 PCT/US2004/019831

Applies a POLESS delta file. 1t applies to the original poless file to the delta poless file
and create an updated poless file.

The CRC in the deha file for the original poless file in compared to the original file’s
calculated CRC.

If they match then the deltas are allied to create the update

poless file. The CRC of the update file is calculated and compared to the update file
CRC in the delta file.

GetObjectFromPath (sFullPath : BSTR, eAccessMode : cACCESS_MODE, ppDisp : IDispatch **) :
HRESULT

v

Uses monikers to retrieve the object named by the path. Returns a IDispatch pointer to
the object retrieved.

CreateStreamFromFile (sName : BSTR, ppDisp : IDispatch**) : HRESULT

Creates a structured storage stream and populates it with the contents of the file.

CreateStreamFremBSTR (sln : BSTR, ppDisp : IDispatch**) : HRESULT

Creates a structured storage stream and fills it with the specified BSTR.

MemoryStreamFromStream (pStreamlIn : IStream*, ppDisp : IDispatch**) : HRESULT

Used to copy a stream to a newly created memory stream object, seek pointers for both
streams are reset to beginning of stream after operation.

GetBindCtx (ppBindCix : IBindCtx**) : HRESULT

Returns the static bind context that is used for creating monikers.

POLESS.IPropertyStorageAmalgamated

Public Operations:

PropertyStorageAdd (oPropertySet : IDispatch*, bEnd : VARIANT_BOOL = TRUE) : HRESULT

Add a PropertySet to the collection of PropertySets.

ClearStorage () : HRESULT

Clears the collection of PropertySets.

POLESS.IPropertyStorageVB

Manages the persistent properties of a single property set.

WASHINGTON 153554V1

226

WO 2004/114093 PCT/US2004/019831

Public Operations:

ReadVB (sName : BSTR, ppvVal : VARIANT**) : HRESULT

Read the value of a specified property from the property set.

WriteVB (sName : BSTR, pvVal : VARIANT*) : HRESULT

Write a value for a specified property to the property set. If the property does not exist the
property/value pair will be created. If the property already exist the value will be updated
if open in eAccess_Write mode.

Delete (sName : BSTR) : HRESULT

Remove a property from the property set.

CommitVB (grfFlags : DWORD) : HRESULT
RevertVB () : HRESULT

SetClass (sProgld : BSTR) : HRESULT
get_nCount (nCount : short*) : HRESULT

Returns the count of properties in the property set.

CopyTe (pDest : IPropertyStorageVB *) : HRESULT

Copies the contents of the source property set to a destination property set.

GetName (nkndex : short, sName : BSTR*) : HRESULT

Returns the name of the specified property.

POLESS.IStorageAmalgamated

Public Operations:

StorageAdd (oStorage : IStorage, bEnd : VARIANT BOOL = TRUE) :

Adds a new storage to the collection of storages.

ClearStorage () :

Clears all the storage objects from the collection.

WASHINGTON 153554V}

227

WO 2004/114093 PCT/US2004/019831

POLESS.IStorageVB

Public Operations:

Clear Q:

Clears the storage of all elements: sub-storages and streams.

CommitVB () :
Ensures that any changes made to a storage object open in transacted mode are reflected
in the parent storage. For nonroot storage objects in direct mode, this method has no
effect. For a root storage, it reflects the changes in the actual device, for example, a file
on disk. For a root storage object opened in direct mode, always call the Commit method
prior to Releasing the object. Commit flushes all. memory buffers to the disk for a root
storage in direct mode and will return an error code upon failure. Although Releasing the
object also flushes memory buffers to disk, it has no capacity to-return any error codes

upon failure. Therefore, calling Releasing without first calling Commit causes
indeterminate results.

RevertVB () :

Discards all changes that have been made t6 the storage object since the last commit
operation.

i

sElementName (vElement : Variant) : String

Returns the name of the element.

bStorage (vElement : Variant) ;: Boolean

Returns TRUE if the element is a sub-storage

oElement (vElement : Variant) : Object

Returns either POLESS.iStreamVB or POLESS.iStorage VB for the selected element.

CreateStream (sName : String, eAccess : eACCESS_MODE, bCompression : Boolean) : POLESS.iStreamVB

Creates and opens a stream object with the specified name contained in this storage
object. All elements within a storage object — both streams and other storage objects —
are kept in the same name space.

Nothing is return if the stream cannot be created.

WASHINGTON 153554V

228

WO 2004/114093 PCT/US2004/019831

OpenStream (sName : String, eAccess : eACCESS_MODE) : POLESS.iStreamVB

Opens an existing stream object within this storage object in the, specified access mode.
1f the stream name is not found, we will look for a stream name prefixed with "03". This
is a linked stream. The contents of this stream is the file and storage where to find this
stream.

Nothing is return if the stream cannot be opened.

CreateStorage (sName : String, eAccess : eACCESS_MODE) : PbLESS.iStorageVB

Creates and opens a new storage object nested within this storage object.

Nothing is return if the storage cannot be created.

OpenStorage (sName : String, eAccess : eACCESS_MODE) : POLESS.iStorageVB

Opens an existing storage object with the specified name in the specified access mode.

Nothing is return if the storage cannot be opened.

get_sName (sName : BSTR*) : HRESULT

Returns the name of the storage.

get_oStorage (ppDisp : IDispatch**) : HRESULT

Returns the IDispatch interface.

get_nCount (pnCount : short*) : HRESULT

Returns the count of elements in the storage.

GetCompression () : Boolean

Determine if streams may be compressed in the file. If enabled streams may optionally be
compressed when created.

GetEncryption () : Boolean

Determine if encryption is enabled for the file. If enabled all streams will be encrypted.

GetCRC 0 : Boolean

Indicates whether a CRC check is to be performed on the file.

WASHINGTON 153554V

229

WO 2004/114093 PCT/US2004/019831

CreateStreamLinked (sName : BSTR, sLocation : BSTR, sFile : BSTR, eAccess : eACCESS_MODE,
ppStreamVB : IStreamVB**) : HRESULT

i

CreatePropertyStg (sName : BSTR, griFlags : DWORD, bCompress : VARIANT_BOOL, ppPropStg :
IPropertyStorageVB) : HRESULT

.Create a property storage.

OpenPropertyStg (sName : BSTR, griFlags : DWORD, dwReserved : DWORD, ppPropStg :
‘ TPropertyStorageVB) : HRESULT

SetClass (sProgld : BSTR) : HRESULT
RegisterAlias (sName : BSTR) : HRESULT
Destroy (sName : BSTR) : HRESULT

Déstroys the specified element.

POLESS.IStreamVB

Public Operations:

ReadVB (bytData : byte(), nBytes : Integer) : HRESULT

Read data from the stream.

WriteVB (bytData : byte()) : HRESULT

Write data to the stream. The entire byte array is written.

Clear () : HRESULT

Clears-the stream of all data.

Reset () : HRESULT

Reset the position in the stream to the begining.

get_sName (sName : BSTR*) : HRESULT

Returns the name of the stream.

gef_oStream (ppDisp : IDispatch**) : HRESULT

Returns the IDispatch interface.

CopyTo (pDest : IStreamVB*) : HRESULT

WASHINGTON 153554V 1

230

WO 2004/114093 PCT/US2004/019831

Copies the contents of a source stream to a destination stream.

POLESS.IcStorage

Derived from IStorage

Public Operations:) ‘

CreatePropertyStg (sName : BSTR, griFlags : DWORD, bCompress : Boolean, ppPropStg :
IPropertyStorage**) : HRESULT

Creates and opens a property set in a stream object.

OpenPropertyStg (sName : BSTR, griFlags : DWORD, dwRescrved : DWORD, ppPropStg : '
IPropertyStorage**) : HRESULT

Opens an existing property set in a specified stream object.

CreateStreamLinked (sName : BSTR, sLocation : BSTR, sFile : BSTR, eAccess : eAccess_MODE, ppStream :
IStream**) : HRESULT :

RegisterAlias (sName : BSTR) : HRESULT

POLESS.IcStorageéRoot

Derived from POLESS.IcStorage

Public Operations:

. get_Comptessioli (pbCompress : VARIANT_BOOL*) : HRESULT

Determine if streams may be compressed in the file. If enabled streams may optionally be
compressed when created.

get_Encryption (pbEncrypt : VARIANT_BOOL*) : HRESULT

Determine if encryption is enabled for the file. If enabled all streams will be encrypted.

get_CRC ().: HRESULT

Indicates whether a CRC check is to be performed on the file.

GetObjectFromPath (sltemPath : BSTR, eAccessMode : €ACCESS_MODE, refiid : REFIID, ppUnk :
IUnknown**) : HRESULT

WASHINGTON 153554V 1

231

WO 2004/114093 PCT/US2004/019831

POLESS.cCrypto

The class control the configuration of the encyrption/decryption of the structured storage.

Public Attributes:

sProviderName : String = MS_DEF_PROV

The name of the Cyrto provider.

eProviderType : ePROVIDER_TYPE = PROV_RSA_FULL

The type of crypto provider.

Cryptographic Provider Types

The field of cryptography is large and growing. There are many different standard data
formats and protocols. These are generally organized into groups or families, each of
which has its own set of data formats and way of doing things. Even if two families use
the same algorithm (for example, the RC2 block cipher), they will often use different
padding schemes, different key lengths, and different default modes. Microsoft®
CryptoAPI is designed so that a CSP provider type represents a particular family.

ePROV_RSA_FULL
ePROV_RSA_SIG
¢PROV_RSA_SCHANNEL
ePROV_DSS
ePROV_DSS_DH
¢PROV_DH_SCHANNEL
ePROV_FORTEZZA
ePROV_MS_EXCHANGE
¢PROV_SSL

sCentainerName : String

Key name. No default, must be provided by used.

sPassword : String

Optional password on the public/private key pair. Only for entery by a human. Can be
used for Review disks and their resource files.

POLESS.cFileRoot

The root POLESS class. Must be instanced to perform any POLESS functions. Handles
creating and opening POLESS files.

WASHINGTON 153554V1

232

WO 2004/114093 PCT/US2004/019831

POLESS.cPropertyStorage
POLESS.cPropertyStorageAmalgamated

POLESS.cStorage

POLESS implementation of iStorage. It handles anything POLESS specific and then
deligates work to OLE2 compound document Storage class.

POLESS.cStorageAmalgamated

POLESS implementation of iStorage. The class hold references to an order collection of
iStorage objects.

When a stream is opened it search the collection of storage objects in order to find the
first storage object that has the requested stream. It returns this stream.

It handles compund stream resolution and deligates all other work to POLESS.cStorage.
This storage is read-only. It will not aliow stream or storages to be created. It primaryly
for reading the exam resource file.

Note: This has nothing to do with compund documents.

POLESS.cStorageRoot

POLESS implementation of iStorage and iStorageRoot. It handles anything root
"POLESS specific and then deligates work to the standard POLESS Storage class.

" POLESS.cStream

POLESS implementation of iStream. It handles anything POLESS specific and then
deligates work to OLE2 compound document stream class. The specific work includes
compression/decompression and encryption/decryption of the stream.

POLESS.iStorageVB

A VB friendly storage interface

POLESS.iStreamVB

A VB friendly stream interface

WASHINGTON 153554V

233

WO 2004/114093 PCT/US2004/019831

TOTALS:

1 Logical Packages

26 Classes

LOGICAL PACKAGE STRUCTURE

Logical View
OLE2SS

WASHINGTON 153554V

234

10

15

20

WO 2004/114093 PCT/US2004/019831

What is claimed:

1. A system for computer-based testing comprising:
(a) delivery storage means for storing at least one
computer-based test and delivering over an electronic data

network said computer-based test to at least one test

" candidate;

(b) test driver means for controlling delivery of said
computer-based test from said delivery storage means; and

(c) cache storage means for caching said computer-
based test in response to monitoring of at least one testing

environment variable.

2. The computer-based testing system of claim 1,
wherein said delivery storage means comprises a plurality of

test distribution servers.

3. The computer-based testing system of claim 2,
wherein said plurality of test distribution servers
comprises:

(a) program deployment means for storing said test

driver means for delivery to sald test candidate;

235

10

15

20

WO 2004/114093 PCT/US2004/019831

(b) data object deployment means for storing cacheable
data objects of said computer-based test for delivery to
said test candidate; and

(c) application object deployment means for storing
cacheable application objects of said computer-based test

for delivery to said test candidate.

4. The computer-based testing system of claim 3,
wherein said cacheable data objects comprise text,

multimedia and template objects.
5. The computer—ﬁésed testing system of claim 3,
wherein said cacheable application objects comprise plugin

program objects.

6. The computer-based testing system of claim 1,

~wherein said cache storage means comprises first and second

storage means.

7. The computer-based testing system of claim 6,

wherein said first storage means comprises magnetic storage

medium.

236

10

15

20

WO 2004/114093 PCT/US2004/019831

8. The computer-based testing system of claim 6,
wherein said second storage means comprises random access

memory (RAM).

9. The computer-based testing system of claim 1,
wherein said test driver means cémprises:

(a) a session management component for administering
said computer-based test to sald test candidate;

(b) a proctor authentication component for identifying
at least one proctor of said computer-based test;

(c) a scheduling component for verifying test
candidate registration for said computer-based test;

(d) a test driver program for controlling delivery of
said computer-based test;

(e) a first cache controller for controlling storing
of cacheable data objects in encrypted RAM;

(f) a second cache controller for controlling storing
of cacheable application objects in RAM; and

(g) a browser presentation component for serving said

computer-based test to said test candidate.

10. The computer-based testing system of claim 9,

wherein said test driver program comprises:

237

10

15

20

WO 2004/114093 PCT/US2004/019831

(a) a first request interface for requesting cacheable

data objects;

(b) a second request interface for requesting
cacheable application objects;

(c) a request processor for processing requests of
said test driver program to retrieve cacheable data objects
and cacheable application objects;

(d) a decryption module for decrypting cacheable data
objects and cacheable application objects;

(e) a decompression module for decompressing cacheable
data objects and cacheable application objects;

(f) a first request module for retrieving cacheable
data objects;

(g) a second request module for retrieving cacheable
application objects;

(h) a first cache for storing retrieved cacheable data
objects;

(i) a second cache for storing retrieved cacheable
application objects;

() a stimuli processor for adapting delivery of said
computer-based test;

(k) a cache controller for controlling source of
retrieving cacheable data objects and cacheable application

objects and for controlling volume of cacheable data objects

238

10

15

20

WO 2004/114093 PCT/US2004/019831

and cacheable application objects stored in cache storage
means;

(1) a network interface for communicating with a
plurality of test distribution servers; and

(m) an authentication component for authenticating

cacheable data objects and cacheable application objects.

11. The computer-based testing system of claim 1,
wherein said test driver means comprises at least one
monitoring means for monitoring a testing environment

variable.

12. The computer-based testing system of claim 11,
wherein said monitoring means 1s a test candidate progress
monitor for measuring progress of said test candidate during

computéer-based testing.

13. The computer~based testing system of claim 11,
wherein said monitoring means 1is a test <candidate
performance monitor for measuring competency of said test

candidate during computer-based testing.

14. The computer-based testing system of claim 11,

wherein said monitoring means is a network bandwidth monitor

239

10

15

20

WO 2004/114093 PCT/US2004/019831

for determining a speed of a network connection through

which said computer-based test is being delivered.

15. The computer-based testing system of claim 11,
wherein said monitoring means is a network state monitor for
determining a state of a network connection through which

said computer-based test is being delivered.

16. The computer-based testing system of claim 11,
wherein said monitoring means is a server state monitor for
determining a state of a server from which said computer-

based test is being delivered.

17. The computer-based testing system of claim 1,

wherein said electronic data network is the Internet.

18. A method for computer-based testing comprising the
steps of:

(a) s£oring at least one computer-based test and
delivering over an electronic data network said computer-
pased test to at least one test candidate by delivery
storage means;

(b) controlling delivery of said computer-based test

from said delivery storage means by test driver means; and

240

10

15

20

WO 2004/114093 PCT/US2004/019831

(c) caching and storing said computer-based test in
cache storage means in response to monitoring of at least

one testing environment variable.

19. The method for computer-based testing of claim 18,
the method comprising the step of storing on a plurality of
test distribution servers said computer-based test for

delivery to a plurality of test candidates.

20. The method for computer-based testing of claim 19,
the method comprising the step of storing cacheable data

objects comprising text, multimedia and template objects.

21. The method for computer-based testing of claim-19,
the method comprising the step of storing cacheable

application objects comprising plugin program objects.

22. The method for computer-based testing of claim 19,
the method comprising the step of storing said test driver
means in first storage means comprising magnetic storage

medium.

23. The method for computer-based testing of claim 18,

the method comprising the step of storing said cacheable

241

10

15

20

WO 2004/114093 PCT/US2004/019831

data objects in second storage means comprising random

access memory (RAM).

24. The method for computer-based testing of claim 18,
the method comprising the step of storing said cacheable
application objects in second storage means comprising

random access memory (RAM).

25. The method for computer-based testing system of
claim 18, the method comprising the steps of:

(a) administering said computer-based test to said
test candidate using a session management component;

(b) identifying at least one proctor of said computer-
based test using a proctor authentication component;

(¢) verifying test candidate registration for said
computer-based test using a scheduling component;

(d) controlling delivery of said computer-based test
using a test driver program;

(e) controlling storing of cacheable data objects in
encrypted RAM using a first cache controller;

(f) controlling storing of cacheable application
objects in RAM using a second cache controller; and

(g) serving said computer-based test to said test

candidate using a browser presentation component.

242

10

15

20

WO 2004/114093 PCT/US2004/019831

26. The method of computer-based testing of claim 25,
the method comprising the steps of:

(a) requesting cacheable data objects using a first
request interface;

(b) requesting cacheable application objects a second
request interface;

(c) processing requests of said test driver program to
retrieve cacheable data objects and cacheable application
objects using a request processor;

(d) decrypting cacheable data objects and cacheable
application objects using a decryption module;

(e) decompressing cacheable data objects and cacheable
application objects using a decompression module;

(f) retrieving cacheable data objects using a first
request module;A

(g) retrieving cacheable application objects using a
second request module;

(h) storing retrieved cacheable data ébjects using a
first cache;

(i) storing retrieved cacheable application objects
using a second cache;

() adapting delivery of said computer-based test

using a stimuli processor;

243

10

15

20

WO 2004/114093 PCT/US2004/019831

(k) controlling source for retrieval of cacheable data
objects and cacheable application objects " and for
controlling volume of cacheable data objects and cacheable
application objects stored in cache storage means using a
cache controller;

(1) communicating with a plurality of test
distribution servers using a network interface; and

(m) authenticating cacheable data objects and
cacheable application objects wusing an authentication

component.

27. The method of computer-based testing of claim 18,
the method comprising the step of monitoring at least one

test environment variable.

28. The method of computer-based testing of claim 27,
the method comprising the step of monitoring test candidate
progress for measuring progress of said test candidate

during computer-based testing.

29. The method of computer-based testing of claim 27,
the method comprising the step of monitoring test candidate
performance for measuring competency of said test candidate

during computer-based testing.

244

10

15

20

WO 2004/114093 PCT/US2004/019831

30. The method of computer-based testing of claim 27,
the method comprising the step of monitoring network
bandwidth for determining a speed of a network connection

through which said computer-based test is being delivered.

31. The method of computer-based testing of claim 27,
the method comprising the step of monitoring network state
for determining a state of a network connection through
which said computer-based test is being delivered.

32. The method of ;omputer—based testing of claim 27,
the method comprising the step of monitoring server state

for determining a state of a server from which said

computer-based test is being delivered.

33. The method for computer-based testing of claim 18,
the method comprising the step of delivering over the

Internet said computer-based test.

34. A computer-readable storage medium for storing a
computer-based testing method, said computer-based testing
method comprising:

(a) storing at least one computer-based test on

245

10

15

20

WO 2004/114093 PCT/US2004/019831

delivery storage means and delivering over an electronic
data network said computer-based test to at least one test
candidate by said delivery storage means;
(b) Acontrolling delivery of said computer-based test
from said delivery storage means by test driver means; and
(c) caching and storing said computer-based test in
cache storage means in response to monitoring of at least

one testing environment variable.

35. The storage medium for storing a computer-based
testing method of claim 34, the method comprising the step
of storing on a plurality of test distribution servers said
computer-based test for delivery to a plurality of test

candidates.

36. The storage medium for storing a computer-based
testing method of claim 35, the method comprising the step
of storing cacheable data objects comprising text,

multimedia and template objects.

37. The storage medium for storing a computer-based
testing method of claim 35, the method comprising the step
of storing cacheable application objects comprising plugin

program objects.

246

10

15

20

WO 2004/114093 PCT/US2004/019831

38. The storage medium for storing a computer-based
testing method of claim 35, the method comprising the step
of storing said test driver means in first storage means

comprising magnetic storage medium.

39. The storage medium for storing a computer-based
testing method of claim 35, the method comprising the step
of storing said cacheable data objects in second storage

means comprising random access memory (RAM).

40. The storage medium for storing a computer-based
testing method of claim 35, the method comprising the step
of .storing said cacheable application objects in second

storage means comprising random access memory (RAM).

41. The storage medium for storing a computer-based
testing method of claim 34, the method comprising the steps
of:

(a) administering said computer-based test to said
test candidate using a session management component;

(b) identifying at least one proctor of said computer-

based test using a proctor authentication component;

247

10

15

20

WO 2004/114093 PCT/US2004/019831

(c) verifying test candidate registration for said
computer-based test using a scheduling coﬁponent;

(d) controlling delivery of said computer-based test
using a test driver program;

(e) controlling storing of cacheable data objects in
encrypted RAM using a first cache controller;

(f) controlling storing of cacheable application
objects in RAM using a second cache controller; and

(g) serving said computer-based test to said test

candidate using a browser presentation component.

42. The storage m;dium. for storing a computer-based
testing method of claim 41, the method comprising the steps
of:

(a) requesting cacheable data objects using a first
request interface;

" (b) requesting cacheable application objects a second
request interface;

(c) processing requests of said test driver program to
retrieve cacheable data objects and cacheable application
objects using a request processor;

(d) decrypting cacheable data objects and cacheable

application objects using a decryption module;

248

10

15

20

WO 2004/114093 PCT/US2004/019831

(e) decompressing cacheable data objects and cacheable
application objects using a decompression module;

(f) retrieving cacheable data objects using a first
request module;

(g) retrieving cacheable application objects wusing a
second request module;

(h) storing cacheable data objects using a first
cache;

(i) storing cacheable application objects using a
second cache;

(7) adapting delivery of said computer-based test
using a stimuli processor;

(k) controlling source for retrieval of cacheable data
objects and cacheable application objects and for
controlling volume of cacheable data objects and cacheable
application objects stored in cache storage means using a
cache controller;

(1) communicating with a plurality of test
distribution servers using a network interface; and

(m) authenticating cacheable data objects and
cacheable application objects using an authentication

component.

249

10

15

20

WO 2004/114093 PCT/US2004/019831

43. The storage medium for storing a computer-based
testing method of claim 34, the method comprising the step

of monitoring at least one test environment variable.

44, The storage medium for storing a computer-based
testing method of claim 43, the method comprising the step
of monitoring test candidate progress for measuring progress

of said test candidate during computer-based testing.

45. The storage medium for storing a computer-based
testing method of claim 43, the method comprising the step
of monitoring test candidate performance for measuring

competency of said test candidate during computer-based

testing.

46. The storage medium for storing a computer-based
testing method of claim 43, the method comprising the step
of monitoring network bandwidth for determining a speed of a
network connection through which said computer-based test is

being delivered.
47. The storage medium for storing a computer-based

testing method of claim 43, the method comprising the step

of monitoring network state for determining a state of a

250

10

WO 2004/114093 PCT/US2004/019831

network connection through which said computer-based test is

being delivered.

48. The storage medium for storing a computer-based
testing method of claim 43, the method comprising the step
of monitoring server state for determining a state of a
server from which said computer-based test is being

delivered.

49. The storage medium for storing a computer-based
testing method of claim 43, the method comprising the step

of delivering over the Internet said computer-based test.

251

WO 2004/114093

CLIENT'S
NEW ITEM
TYPE

22

TEST
PACKAGER

A4 y

SCORING
ENGINE

PCT/US2004/019831

14 : 16

TEST
"PRODUCTION

TOOLS

26

- RESULTS

~ | PROCESSOR

FIG. 1
(PRIOR ART)

1/56

WO 2004/114093 PCT/US2004/019831

FUNCTIONS, AREAS, AND SOFTWARE FOR TEST PREPARATION/ASSEMBLY

30

ASSEMBLE |
TEST
]
l 32 ’ | 45
IDTEST |~ TPSTEST |5
ASSEMBLY vl
. | J
I 36 | 4 | {
34 CAT T PAPER DESCRIP |~ [PRODUCTION | 44 CONTINUED ON
“~ SIvUL ATION IS OF TEST DATABASE :
COMPONENTS MANAGER
38] 20
-/ 48
SENSITIVITY] | OVERLAP D IgERECI;%IgES 4
KoY REVEW FOR CONTINUED ON
PACKAGE | AG.2B
66
SCRIPTS
|
68 | | 0
v_| SESSION TEST |
SCRIPTS SCRIPTS
FIG. 2A

(PRIOR ART)

2/56

PCT/US2004/019831

(INV J01dd)

3/56

WO 2004/114093

d¢ DI
9) 09 86 95
/ / / / ’
SIIND sngmos || snmmos | | oo SIHS SA0T
TVRIOLNL ADVSSAN SNOLLOMIIA 55 szgmmw o
| | | !)
VZ 'O t
asvaviva ANOLOMII SINANOJINOD WO¥d GHNIINGD
'A0¥d SdL MOMIAN |) mEnaisar
ve | NITIOLS NIENOIS | 3¢ o | HuvdENd
|] |
|
3008 T00L,
%7001 .
g V2 Ol
gy | GHdISAL WO GHANIINGD |
\
(GANNIINOD)

XTANASSY/NOLLYIVATEd ISAL 40 FIVMIA0S ANY ‘SYEMY ‘SNOLIONNA

PCT/US2004/019831

WO 2004/114093

SLINSHY
WVXH SIVAIANYD

YHINR

HIVDIAVN
NOLLOHHS

........ I HONVISNI VXA

I
281 “ YEANIVINOD
v [z~ INGWNDOAEALLDY —o
e NIDN1d TTESIA
96!
WEARIQ ISAL

HIVAIANYD T«

0L \M_\I/
m.w; _ﬂU

vLI ~1 WALSAS NINQY

A

CHONNVT!

QHLINO SV

JINTNINIOdd V1

] HOANESId

—— — o v o -——

e i e R L

nnnnn ~ . LT~
9L a0arg WOL
L~
SINTANOUIANA NIAQY
¢ ‘DI
L~ 0Pl
el %]
i
SHTHVIVA | !
1
]
1
" ™~

...................................... 001

SHTIH HDUNOS WYXH

4/56

PCT/US2004/019831

WO 2004/114093

91~ ONRIODS

85T~ WHWILLINO

091~ NOILLYODIAYN

¥ DI

891~ sIInsay

891~ INOdTY

091~ NOLLOATES

MHIATY

I~ xv1dsla

QHNIVINOD

411

HTEISIA-NON

SNIFDN'Td

HTdISIA

(

0¢T

5/56

WO 2004/114093

FRONTPAGE 2000 WEB

——

i~ 200

/ ‘

MEDIA
IMAGES.
212 %‘% JPG, .GIE,
: EIC
SOUND
a4 mp3, BINARY
au, ETC)

I~ 210

— =7 =

VISUAL PIECES
_ 216
ITEMS SCORE
REPORT
_Zﬁz | HIML HTML
— 218 PRESEN- CUSTOM
TATION LOOK
24 H HTML HTML

PCT/US2004/019831

V\

220 LOGIC PIECES
232~ TEST ITEM
SPEC BANK
_ 22f|_ XML XML
24—~ PLUGIN | |TEMPLATES
XML XML
L 228

i~ 230

H— 236

— 238

EXAM RESOURCE FILE

~ 120

FIG. 5

6/56

WO 2004/114093

PCT/US2004/019831

[CCOMPAE]L — — — — e e e e e —)

v cDATA e — — — — —}
HIERARCHY OF
00 | \\ CLASSESAS XXL hia? N T~
\ CONSTRUCTS RN ~
2002 \ GAREA]" ™

ICOMPILE \

(EROM N\ 7 \
CSYMBOLTABLEBASE) \ st N\
OCREATERESOURCE() : 1%5 \

OADDSOURCE() P\
< ADDDATA() \ T 5012
<& CLOSERESOURCE() \ e S
< ABOUTY() \ 220 A CITEM legemy
©LINKRESOURCE() \ | 2014
GOPENRESOURCE) 2012\ 2040
OGEICRYPTOOBIECT))" ™\
[CTOKEN}—|cSYMBOL
, 2044
_
TOKENCREATORNOREE T
| 2045 2052

[CTOKENCREATOR | —»-{cWRAPXML

2043

[CTOKENCREATORREF

2050

\
cTORENCREATORBASE

2054

cTOKENFACTORY

2058 2060

[cPLUGINSY MBOLTABLE] | cTEMPLATESYMB OLTABLE

I~ 2026

2062 \ 2064
[GSYMBOLTABLE| | cFFGSYMBOLIABLE

A —
ECOSTOMATIRBTES)

2066 | SWRAPPROPERIYSET

2020

__{_z_/ FIG. 6A | FIG. 68

cSYMBOLTABL EBASE

2068

FIG. 6A

7/56

FIG. 6

WO 2004/114093 PCT/US2004/019831

8/56

WO 2004/114093 PCT/US2004/019831

UTDCOREICONTAINERNOTIFY
200 ‘ -
UTDCOIPLUGIN UT‘;SZO'MORE
169

N 1 UTDCORE.IHELM UTDCORE.IITEM
16% 1696 169 UTDCORE.ISCORE
UIDCORE. ‘ | UTDCOREIDISPLAY ~J-16%

(O-1692_—UTDCORE.INAVIGATE

: 169F
%%CRE . UTDCORE.ISELECTION
IRESULTS -1 UTDCORE —(O~ 169

A . UTDCORE.JUNITITMER
RE.
200 S R%Hon // \ 206
IOLEINPLACEFRAME / \ UTDCOREJCONTAINER-
211 s \ NOTIFYHEIM
JOLEINPLACEUIWINDOW, \

0O s /O A umcoﬁé?‘s’r
212 , b/ UTDCOREIPERSIST\ 178 b NSTANCESET
TADVISESINK RESOURCESTREAM 17

UAS JAPPOINTMENT JLAUNCH2
ZIIBEWIQ ILAUNCH UTDCOJPEII?SZICST
. QNDOW 108 \ / / RESOURCESTORE,
214
JOLEINPLACESITE ADMINISTRATION
215 Q) UASIRINT) 1066
IOLECLIENTSITE UTDCOREIPRRSIST-
199 INSTANCESTORE
2160 UASITRANSFER
JOLEDOCUMENTSITE | (J~196a
UTDCORE.IPERSIST-
INSTANCESTREAM
O-192
UTDCOREIPERSIST-
RESOURCESET

FIG. 7

9/56

PCT/US2004/019831

WO 2004/114093

Ve D T

8 'DIH

48 "D

V8 "Dl

e AV AN /" T ehvmmmnow 1
“o w \ 0 /- / 1| HOEITI0DAIN / ||
_ ——
_ amu_aﬁﬁ%mﬁ%gow% “ SDVREININOED | | “
\ ! M | srnsmermiooain | |
\ e \\ ,_..o// A | |
~ ~
W\ \\ S« // AV :\ - p zwoam%_anpwp B
RIODAIVIIRIODALN L ” ”
| 1l WONINTANEERDS?
1~ SEOVIEIN HOED IURIN Ty 7\ o
XOADSATAN00AIN [~ —— __ ~o_ \ o
———~ a1 17 |1
~[Cevauan nowd