
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2011/0040771 A1

US 20110040771 A1

Gilyadov et al. (43) Pub. Date: Feb. 17, 2011

(54) DISTRIBUTED HARDWARE-BASED DATA Related U.S. Application Data
QUERYING (60) Provisional application No. 61/073,528, filed on Jun.

18, 2008, provisional application No. 61/165,873,
(75) Inventors: Camuel Gilyadov, Petach Tikva filed on Apr. 1, 2009.

(IL); Alexander Lazovsky, Petach Publication Classification
Tikva (IL)

(51) Int. Cl.
G06F 7/30 (2006.01)

Correspondence Address: (52) U.S. Cl. 707/754; 707/E17.059
D. Kligler I.P. Services LTD
P.O. Box 25 (57) ABSTRACT

Zippori 17910 (IL) A data storage apparatus (20,92, 116) includes a data pro
cessing unit (24) and multiple storage units (36. 60). Each
storage unit includes one or more memory devices (40. 64), (73) Assignee: PETASCAN LTD., Herzliya (IL) E. are operative to store a data GEORG is se E.
a data structure and assigned to the storage unit, and logic

(21) Appl. No.: 12/989,652 circuitry (44, 68, 72), which is configured to accept one or
more sub-queries addressed to the storage unit and to process

1-1. the respective data partition stored in the storage unit respon
(22) PCT Filed: Jun. 4, 2009 sively to the sub-queries, so as to produce filtered data. The

data processing unit is configured to transforman input query
(86). PCT No.: PCT/B09/52356 defined over the data structure into the sub-queries, to provide

the Sub-queries to the storage units, and to process the filtered
S371 (c)(1), data produced by the storage units, so as to generate and
(2), (4) Date: Oct. 26, 2010 output a result in response to the input query.

N

PCle

FILTERING
LOGIC

MEMORY

40

MEMORY

40

40

MEMORY

MEMORY

40

STORAGE UNIT

36

OUERIES

DAA PROCESSING UNI

44

FILTERING
LOGIC

40

MEMORY

40
MEMORY

40

40

OUERIABLE DATA CRUERIABLE DATA
STORAGE UNIT

36

RESULS

44

FILERING
LOGIC

40
MEMORY

40
MEMORY

40

40

QUERIABLE DATA
SORAGE UNIT

Patent Application Publication Feb. 17, 2011 Sheet 1 of 10 US 2011/0040771 A1

FIG. 1
20

DATA PROCESSING UNIT

PCle PCle PCle

44 44 4
FILTERING FILTERING FILTERING

LOGIC LOGIC

MEMORY MEMORY

LOGIC

40

-40
MEMORY

4

MEMORY

40
MEMORY

40 40 40

MEMORY MEMORY MEMORY

40 40 40
QUERIABLE DATA
STORAGE UNIT

OUERIABLE DATA CRUERABLE DATA
STORAGE UNIT STORAGE UNIT

36 36

Patent Application Publication Feb. 17, 2011 Sheet 2 of 10 US 2011/0040771 A1

DATA COLUMNS /
DATA
ROWS

3 || 2 || 3 || 3 || 1 || 4 || 2
| 1 || 4 || 4 || 2 || 4 || 1 || 4 |4
3 2 4 3 1 2 3

526, 12 || 1 || 3 || 4 || 4 || 1 ||
2 3 42 13 23

4.

Patent Application Publication Feb. 17, 2011 Sheet 3 of 10 US 2011/0040771 A1

6 4 6 4.
FLASH FLASH

6 4. 6 4
FLASH FLASH

FLASH FLASH

FLASH FLASH

FLASH FLASH

FLASH FLASH

FLASH FLASH

FLASH FLASH

PCle TODATA PROCESSING
UNIT

FIG. 4
QUERIES AND
RAW DATA

QUERY GATEWAY

DATA DATA
PROCESSOR PROCESSOR

DATA DATA
PROCESSOR PROCESSOR

PAGING LAYER

DATA OUT

88

TO OTHER
FPGA FPGA(S)
(68) 84 84

80

76

64

Patent Application Publication Feb. 17, 2011 Sheet 4 of 10 US 2011/0040771 A1

FIG. 5 92
QUERIES RESULTS /

NETWORK 96
SWITCH

36 36

QUERIABLE NC NC QUERIABLE
STORAGE UNIT STORAGE UNIT

36 104 36

QUERIABLE PCle PCle QUERIABLE
STORAGE UNIT SWITCH SWITCH STORAGE UNIT

108

QUERIABLE QUERIABLE
STORAGE UNIT SERVER SERVER STORAGE UNIT

112
36 36

N - N--
100 100

116
F.G. 6 QUERIES RESULTS /

NETWORK 96
SWITCH

36 36

QUERIABLE QUERIABLE
STORAGE UNIT NIC STORAGE UNIT

36 104 104 36

QUERABLE QUERIABLE
STORAGE UNIT NC STORAGE UNIT

104 104

QUERABLE QUERABLE
STORAGE UNIT NIC STORAGE UNIT

36 36

Patent Application Publication Feb. 17, 2011 Sheet 5 of 10 US 2011/0040771 A1

ACCEPT TABULAR DATA FOR STORAGE

DIVIDE TABULAR DATA INTO TILES

ALLOCATE TILES TO CRUERABLE 124
DATA STORAGE UNITS RANDOMLY

STORE TILES IN STORAGE UNITS

FIG. 7 132

120

128

ACCEPT ANALYTICAL OUERY FROM USER

PARSE AND PARALLELIZE CRUERY

144

SEND SUB-OUERIES TO OUERABLE DATA STORAGE UNITS

148

PRE-FILTER LOCALLY-STORED DATAAT DATA STORAGE
UNITS IN RESPONSE TO SUB-QUERIES

140

152
ACCUMULATE PRE-FILTERED DATA FROM

DATA STORAGE UNITS AT DATA PROCESSING UNIT

156

APPLY ADDITIONAL FILTERING TO PRE-FILTERED DATA,
TO PRODUCE RESULT

OUTPUT RESULT TO USER 160

164
FIG. 8

Patent Application Publication Feb. 17, 2011 Sheet 6 of 10 US 2011/0040771 A1

0x0000 COLUN
OXO1 OO

0x02001
OXO3OO

Ox0400
0x0500:

FIG. 9

rticle III
NMEAEI

0x0000
0x0800
OX1000
Ox1800
0x2000
Ox2800

as

168
STORAGE SYSTEM

OUERABLE
STORAGE UNIT

18O

SERVER CLUSTER
QUERABLE

STORAGE UNIT APPLICATION
LOGIC

NON-QUERABLE
STORAGE UNIT

176

NON-OUERABLE
172 STORAGE UNIT F.G. 1 O

Patent Application Publication Feb. 17, 2011 Sheet 7 of 10 US 2011/0040771 A1

Patent Application Publication Feb. 17, 2011 Sheet 8 of 10 US 2011/0040771 A1

FLASH

F.G. 13

Patent Application Publication Feb. 17, 2011 Sheet 9 of 10 US 2011/0040771 A1

Patent Application Publication Feb. 17, 2011 Sheet 10 of 10 US 2011/0040771 A1

US 2011/0040771 A1

DISTRIBUTED HARDWARE-BASED DATA
QUERYING

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application claims the benefit of U.S. Provi
sional Patent Application 61/073,528, filed Jun. 18, 2008, and
U.S. Provisional Patent Application 61/165,873, filed Apr. 1,
2009, whose disclosures are incorporated herein by refer
CCC.

FIELD OF THE INVENTION

0002 The present invention relates generally to data stor
age and retrieval, and particularly to methods and systems for
efficient processing of data queries.

BACKGROUND OF THE INVENTION

0003 Various methods and systems for efficient data stor
age and retrieval are known in the art. For example, U.S. Pat.
Nos. 5.794.229 and 5.918.225, whose disclosures are incor
porated herein by reference, describe database systems and
methods for performing database queries. The disclosed sys
tems implement methods for storing data vertically (i.e., by
column) instead of horizontally (i.e., by row). Each column
comprises a plurality of cells, which are arranged on a data
page in a contiguous fashion. By storing data in a column
Wise basis, a query can be processed by bringing in only data
columns that are of interest, instead of retrieving row-based
data pages consisting of information that is largely not of
interest to the query.
0004 U.S. Patent Application Publication 2004/0139214,
whose disclosure is incorporated herein by reference,
describes a pipeline processor for a data engine that can be
programmed to recognize record and field structures of
received data. The pipeline processor receives a field-delin
eated data stream and employs logical arithmetic methods to
compare fields with one another, or with values otherwise
Supplied by general purpose processors, to determine which
records are worth transferring to memory.
0005 U.S. Patent Application Publications 2004/0148420
and 2004/0205110, whose disclosures are incorporated
herein by reference, describe an asymmetric data processing
System having two or more groups of processors having
attributes that are optimized for their assigned functions. A
first processor group is responsible for interfacing with appli
cations and/or end users to obtain queries, and for planning
query execution. A second processor group consists of
streaming record-oriented processors, which carry out the
bulk of the data processing required to implement the logic of
a query.
0006 U.S. Pat. Nos. 7,315,849, whose disclosure is incor
porated herein by reference, describes an enterprise-wide
data-Warehouse comprising a database management system
(DBMS), which includes a relational data-store storing data
in tables. An aggregation module aggregates the data stored in
the tables of the relational data-store and stores the aggre
gated data in a non-relational data-store. A reference gener
ating mechanism generates a first reference to data stored in
the relational data-store, and a second reference to aggregated
data generated by the aggregation module and stored in the
non-relational data-store. A query processing mechanism
processes query statements, wherein, upon identifying that a
given query statement is on the second reference, the query

Feb. 17, 2011

processing mechanism communicates with the aggregation
module to retrieve portions of aggregated data identified by
the reference that are relevant to the given query statement.
0007. In some known schemes, data is stored in Flash
memory devices. For example, U.S. Patent Application Pub
lication 2008/0040531, whose disclosure is incorporated
herein by reference, describes a data storage device compris
ing at least two Flash devices and a controller that are inte
grated on a circuit board. The device further includes at least
one NOR Flash device in communication with the controller
through a hostbus, and at least one hostbus memory device in
communication with the controller and the NOR Flash device
through the hostbus. At least one interface is in communica
tion with the controller, and is adapted to physically and
electrically couple to a system, receive and store data from the
System, and retrieve and transmit data to the system.
0008 U.S. Patent Application Publication 2008/0052451,
whose disclosure is incorporated herein by reference,
describes a Flash storage chip in which a microcontroller, a
Flash memory and a Peripheral Component Interconnect
Express (PCI Express) connecting interface are integrated on
a single circuit board.

SUMMARY OF THE INVENTION

0009. An embodiment of the present invention provides a
data storage apparatus, including:
0010) multiple storage units, each storage unit including:

0011) one or more memory devices, which are operative
to store a data partition that is drawn from a data struc
ture and assigned to the storage unit; and

0012 logic circuitry, which is configured to accept one
or more sub-queries addressed to the storage unit and to
process the respective data partition stored in the storage
unit responsively to the sub-queries, so as to produce
filtered data; and

0013 a data processing unit, which is configured to trans
form an input query defined over the data structure into the
Sub-queries, to provide the sub-queries to the storage units,
and to process the filtered data produced by the storage units,
So as to generate and output a result in response to the input
query.
0014. In some embodiments, the data structure includes
data elements stored in multiple rows and columns, and the
data processing unit is configured to divide the data structure
into multiple tiles, each tile including the data elements that
are stored in an intersection of a respective first sub-range of
the rows and a respective second sub-range of the columns,
and to store the data structure by distributing the tiles among
the storage units. In an embodiment, the data processing unit
is configured to distribute the tiles among the memory devices
in accordance with a random pattern.
I0015. In another embodiment, the data processing unit is
configured to distribute a subset of the tiles that are associated
with a given sub-range of the rows substantially evenly
among the memory devices. In yet another embodiment, the
data processing unit is configured to distribute a first subset of
the tiles that are associated with a first sub-range of the rows
among the memory devices according to a first distribution,
and to distribute a second subset of the tiles that are associated
with a second sub-range of the rows, which succeeds the first
Sub-range, according to a second distribution that is different
from the first distribution.
I0016. In still another embodiment, the logic circuitry in a
given storage unit is configured to store a given tile in the

US 2011/0040771 A1

memory devices in a first orientation, and, in response to a
given Sub-query that addresses the given tile, to rotate the
given tile to a second orientation and to execute the given
Sub-query using the rotated tile. In a disclosed embodiment,
the data processing unit is configured to define a given Sub
query that addresses a given data partition stored in a given
storage unit, and to provide the given sub-query to the given
storage unit for processing. In an embodiment, the logic cir
cuitry in a given storage unit is configured to filter the data
partition stored in the given storage unit responsively to one
or more of the Sub-queries addressed to the storage unit.
0017. In some embodiments, the data processing unit is
configured to apply additional filtering to the filtered data
produced by the storage units. In a disclosed embodiment, the
logic circuitry in a given storage unit is configured to perform
a data aggregation operation on the data partition stored in the
given storage unit responsively to one or more of the Sub
queries addressed to the storage unit. In another embodiment,
the logic circuitry in a given storage unit is configured to
apply at least one of a logic operation and an arithmetic
operation to the data partition stored in the given storage unit.
In yet another embodiment, the logic circuitry includes pro
grammable logic, and the data processing unit is configured to
reconfigure the programmable logic responsively to a crite
rion defined over at least one of the data structure and the
input query. In still another embodiment, a given storage unit
includes at least one asymmetric interface for data storage and
retrieval in the memory devices of the given storage unit, the
asymmetric interface having a first bandwidth for the data
storage and a second bandwidth, higher than the first band
width, for the data retrieval.
0018. In some embodiments, the logic circuitry in a given
storage unit is configured to compress at least some of the data
partition assigned to the given storage unit prior to storing the
data partition in the memory devices. The logic circuitry in
the given storage unit may be configured to apply a given
Sub-query to the compressed data partition so as to produce
the filtered data, and to decompress only the filtered data. In
an embodiment, the data processing unit is configured to
encrypt data exchanged with the storage units and with end
users. In another embodiment, the logic circuitry in a given
storage unit is configured to encrypt data stored in the
memory devices.
0019. In some embodiments, the apparatus includes mul

tiple Network Interface Cards (NICs) coupled to the respec
tive storage units, and the storage units are configured to
exchange data over a network via the respective NICs. In an
embodiment, the storage units are configured to communi
cate with one another so as to exchange data for processing
the Sub-queries. In another embodiment, the data processing
unit is configured to identify input queries whose processing
accesses common data elements, and to cause the storage
units to access the common data elements jointly while pro
cessing the identified input queries. In yet another embodi
ment, the data processing unit is configured to convert the
data structure into a raw data format, so as to produce data
partitions having the raw data format for storage in the storage
units.

0020. In an embodiment, the data processing unit is con
figured to represent a given data partition, which is assigned
to a given storage unit and has a given data format, using code
that is executable by the given storage unit, and the logic
circuitry in the given storage unit is configured to access the
given data format by executing the code. In another embodi

Feb. 17, 2011

ment, the logic circuitry in a given storage unit is configured
to communicate using a communication protocol that is com
patible with another type of storage units, which do not have
query processing capabilities.
0021. In yet another embodiment, the data processing unit

is configured to allocate first and second separate sets of
hardware elements in the multiple storage units to respective
first and second user groups, and to prevent access of users in
the first group to the hardware elements in the second set. The
allocated hardware elements may include at least one element
type selected from a group of types consisting of ones of the
storage units, ones of the memory devices and parts of the
logic circuitry. In some embodiments, the data processing
unit is configured to measure an amount of a resource of the
apparatus that is used in processing the input query. In an
embodiment, the logic circuitry in a given storage unit is
configured to deactivate at least one hardware component of
the given storage unit so as to reduce power consumption of
the given storage unit. In a disclosed embodiment, the logic
circuitry in a given storage unit is configured to run one of a
Structured Query Language (SQL) query processor and a
SQL rule engine.
0022. There is additionally provided, in accordance with
an embodiment of the present invention, a data storage appa
ratus, including:
0023 a storage unit, which includes:

0024 one or more memory devices, which are operative
to store data; and

0025) circuitry, which is configured to apply a first fil
tering operation to the stored data in response to a query
defined over the data, so as to produce pre-filtered data;
and

0026 a data processing unit, which is configured to
receive the pre-filtered data from the storage unit and to apply
a second filtering operation to the pre-filtered data, so as to
produce a result of the query.
0027. There is also provided, in accordance with an
embodiment of the present invention, a data storage appara
tus, including:
0028

0029 one or more memory devices, which are operative
to store data; and

0030) circuitry, which is configured to apply a data
aggregation operation to the stored data in response to a
query defined over the data, so as to produce pre-pro
cessed data; and

0031 a data processing unit, which is configured to
receive the pre-processed data from the storage unit and to
process the pre-processed data, so as to produce a result of the
query.

0032. In some embodiments, the data aggregation opera
tion includes computation of a statistical property of at least
some of the stored data. Additionally or alternatively, the data
aggregation operation includes computation of a sum of at
least some of the stored data. Further additionally or alterna
tively, the data aggregation operation includes producing a
sample of at least some of the stored data.
0033. There is further provided, in accordance with an
embodiment of the present invention, a method for data stor
age, including:
0034 storing a plurality of data partitions drawn from a
data structure in a respective plurality of storage units:

a storage unit, which includes:

US 2011/0040771 A1

0035 transforming an input query defined over the data
structure into multiple Sub-queries and providing the Sub
queries to the storage units;
0.036 using logic circuitry in each storage unit, accepting
one or more of the Sub-queries addressed to the storage unit,
and processing a respective data partition stored in the storage
unit responsively to the accepted Sub-queries, so as to produce
filtered data; and
0037 processing the filtered data produced by the multiple
storage units, so as to generate and output a result in response
to the input query.
0038. There is additionally provided, in accordance with
an embodiment of the present invention, a method for data
storage, including:
0039 storing data in a storage unit that includes process
ing circuitry;
0040 using the processing circuitry in the storage unit,
applying a first filtering operation to the stored data in
response to a query defined over the data, so as to produce
pre-filtered data; and
0041 applying a second filtering operation to the pre
filtered data by a processor separate from the storage unit, so
as to produce a result of the query.
0042. There is also provided, in accordance with an
embodiment of the present invention, a method for data stor
age, including:
0.043 storing data in a storage unit that includes process
ing circuitry;
0044 using the processing circuitry in the storage unit,
applying a data aggregation operation to the stored data in
response to a query defined over the data, so as to produce
pre-processed data; and
0045 processing the pre-processed data by a processor
separate from the storage unit, so as to produce a result of the
query.
0046. The present invention will be more fully understood
from the following detailed description of the embodiments
thereof, taken together with the drawings in which:

BRIEF DESCRIPTION OF THE DRAWINGS

0047 FIG. 1 is a block diagram that schematically illus
trates a system for data storage and retrieval, in accordance
with an embodiment of the present invention;
0048 FIG. 2 is a diagram that schematically illustrates
partitioning of tabular data into tiles, in accordance with an
embodiment of the present invention;
0049 FIG. 3 is a block diagram that schematically illus

trates a queriable data storage unit, in accordance with an
embodiment of the present invention;
0050 FIG. 4 is a block diagram that schematically illus

trates filtering logic in a queriable data storage unit, in accor
dance with an embodiment of the present invention;
0051 FIGS. 5 and 6 are block diagrams that schematically
illustrate systems for data storage and retrieval, in accordance
with alternative embodiments of the present invention;
0052 FIG. 7 is a flow chart that schematically illustrates a
method for data storage, in accordance with an embodiment
of the present invention;
0053 FIG. 8 is a flow chart that schematically illustrates a
method for query processing, in accordance with an embodi
ment of the present invention;
0054 FIG. 9 is a diagram that schematically illustrates a
data rotation process, in accordance with an embodiment of
the present invention;

Feb. 17, 2011

0055 FIG. 10 is a block diagram that schematically illus
trates a system for data storage and retrieval, in accordance
with another embodiment of the present invention; and
0056 FIGS. 11-17 are block diagrams that schematically
illustrate example interconnection topologies in a queriable
data storage unit, in accordance with embodiments of the
present invention.

DETAILED DESCRIPTION OF EMBODIMENTS

Overview

0057 Embodiments of the present invention that are
described herein provide improved methods and systems for
data storage and for data retrieval in response to queries. In
Some embodiments, a storage system comprises a data pro
cessing unit, which stores data in multiple storage units. In
addition to memory devices that hold the data, each storage
unit comprises filtering logic, which is capable of applying
query processing operations to the data stored in the unit. The
storage units described herein are therefore referred to as
"queriable storage units.”
0058. In a typical flow, the data processing unit receives a
query that is defined over the stored data. The data processing
unit translates the query into a set of sub-queries, which are to
be executed concurrently by the storage units. Each storage
unit applies the Sub-queries that are addressed to it, thereby
pre-filtering its locally-stored data. The pre-filtered data pro
duced by the different storage units is collected and processed
by the data processing unit, so as to generate a result of the
original query.
0059. The above-described configuration is particularly
effective in processing analytical queries, i.e., queries that
scan a large number of data items rather than targeting a
specific data item. Since the stored data is pre-filtered locally
by the storage units, the volume of data transferred to the data
processing unit is reduced considerably. In addition, the pro
cessing load on the data processing unit is considerably
reduced, since most (and sometimes all) irrelevant data is
discarded by the storage units and does not reach the data
processing unit. Moreover, since the query processing task is
partitioned and carried out in parallel by multiple storage
units, query response time is reduced considerably.
0060. In some embodiments, the data processing unit par
titions the data for storage among the different storage units in
away that maximizes the concurrent processing of analytical
queries. In an example embodiment, the data processing unit
divides a body of tabular data (e.g., a database table) into
two-dimensional tiles, and distributes the tiles at random
among the different memory devices of the different storage
units. Since an analytical query typically involves scanning a
selected set of data columns over the entire data body, this sort
of partitioning distributes the query processing load approxi
mately evenly over the filtering logic of the different storage
units. As a result, parallelization of the query processing task
is maximized.
0061. Several example system configurations, as well as
several example configurations of queriable storage units, are
described herein. Additional aspects, such as compression
and encryption, multitenant operation, and compatibility
with legacy systems that use non-queriable storage units, are
also addressed.

System Description
0062 FIG. 1 is a block diagram that schematically illus
trates a system 20 for data storage and retrieval, in accordance

US 2011/0040771 A1

with an embodiment of the present invention. System 20
stores and processes a body of data, such as multiple records
of a database. Typically although not necessarily, the data has
a tabular structure, i.e., comprises data elements that are
arranged in multiple rows and columns. System 20 receives
queries related to the stored data, queries the data using meth
ods that are described hereinbelow, and produces query
results. In the example of FIG. 1, system 20 receives the
queries from a user 24 via a user terminal 28, and presents the
query results using the user terminal. Alternatively, however,
system 20 can exchange data, queries and results with any
other computerized system, e.g., over a network. Although
FIG. 1 shows only a single user, in a typical application
system 20 serves multiple users. The users may be connected
to unit 32 using a direct connection, over a network Such as the
Internet, or using any other suitable interconnection means.
0063 As will be explained in detail below, system 20
stores and processes the data in a distributed manner that is
particularly Suitable for processing analytical queries. Pro
cessing of analytical queries typically involves scanning and
analyzing a large number of data items (often the entire body
of data), rather than targeting a specific record or data item.
An analytical query may specify a certain logical condition,
and request retrieval of the data records that meet this condi
tion. Another kind of analytical query may request that a
certain calculation be applied to a large number of data
records.
0064. For example, in a database that stores records of
sales transactions, analytical queries may be used for retriev
ing all transactions whose sales price was higher than a cer
tain value, retrieving all transactions in which the profit was
higher than a certain value, or calculating the average delivery
time of a certain product. Analytical queries are commonly
used in a wide variety of applications, such as data mining,
business intelligence, telecom fraud detection, click-fraud
prevention, Web-commerce, financial applications, home
land security and law enforcement investigations, Web traffic
analysis, money laundering prevention applications and deci
sion Support systems. Although the configuration of system
20 is optimized for processing analytical queries, it is suitable
for processing other types of queries, such as transactional
queries, as well.
0065 System 20 comprises a central data processing unit
32, which is connected to multiple storage units 36. The
number of storage units per system may vary considerably,
but is usually in the range of several tens to several hundred
units. Generally, however, the system may comprise any
desired number of storage units. In the present example,
storage units 36 are connected to data processing unit 32
using a Peripheral Component Interconnect Express (PCIe)
interface. Alternatively, however, any other suitable interface
can also be used.

0066 Storage units 36 are referred to herein as “queriable
storage units. Since they perform query processing (e.g.,
filtering or data aggregation) functions on the data stored
therein. Each storage unit 36 comprises one or more memory
devices 40, which store selected portions of the data body, and
filtering logic 44, which performs filtering and other query
processing functions on the data stored in memory devices 40
of the data storage unit.
0067. In a typical flow, data processing unit 32 receives an
analytical query from user 24, and translates this query into a
set of lower-level sub-queries to be performed by queriable
data storage units 36. The Sub-queries are carried out in par

Feb. 17, 2011

allel by the storage units. Each storage unit 36 performs the
Sub-queries pertaining to its locally-stored data, so as to pro
duce filtered data. Each unit 36 sends its filtered data, i.e., the
results of its Sub-queries, back to data processing unit 32. Unit
32 combines the filtered data produced by units 36, and may
apply additional filtering. Unit 32 thus produces a query
result, which is provided to user 24 in response to the analyti
cal query.
0068. The configuration of system 20 is highly effective in
processing analytical queries for several reasons. Since the
stored data is pre-filtered locally by storage units 36, the
volume of data transferred from storage units 36 to data
processing unit 32 is reduced considerably. As a result, rela
tively low-cost interfaces such as PCIe can be used, even for
large databases. In addition, the processing load on unit 32 is
considerably reduced, since most (and sometimes all) irrel
evant data is discarded by storage units 36 and does not reach
unit 32. Moreover, since the query processing task is parti
tioned and carried out in parallel by multiple storage units 36,
query response time is reduced considerably. FIG. 2 below
illustrates a storage scheme, which partitions the data among
the storage units and memory devices in a way that maxi
mizes processing concurrency.
0069 Memory devices 40 in units 36 may comprise any
Suitable type of memory. In some embodiments, some or all
of devices 40 comprise non-volatile memory devices such as
Flash memory devices. Additionally or alternatively, some or
all of devices 40 may comprise volatile memory devices,
typically Random Access Memory (RAM) devices such as
Dynamic RAM (DRAM) or Static RAM (SRAM). Other
examples of memory devices that can be used to implement
devices 40 may comprise Ferroelectric RAM (FRAM), Mag
netic RAM (MRAM) or Zero-capacitor RAM (Z-RAM).
Although the embodiments described herein mainly address
storage in Solid-state memory devices, the methods and sys
tems described herein can also be used for data storage in
other types of storage media, such as Hard Disk Drives
(HDD).
0070 Devices 40 may comprise devices of any suitable
type, such as, for example, unpackaged semiconductor dies,
packaged memory devices, Multi-Chip Packages (MCPs), as
well as memory assemblies such as MicroSD, TransFlash or
Secure Digital High Capacity (SDHC) cards. Filtering logic
44 may comprise any Suitable type of logic circuitry, such as,
for example, one or more Field-Programmable Gate Arrays
(FPGAs) or other kinds of programmable logic devices,
Application-Specific Integrated Circuits (ASICs) or full-cus
tom devices. Logic 44 may comprise unpackaged dies, pack
aged devices, boards comprising multiple devices (e.g.,
FPGAs, static or dynamic RAM devices and/or ancillary
circuitry), and/or any other Suitable configuration.
0071. An example configuration of unit 36 may comprise
several tens and up to several hundreds of memory devices 40,
and up to several tens of FPGAs. Such a unit could be con
structed, for example, on a 100 mm-by-300 mm, six-layer
PCB. Alternatively, any other suitable configuration can also
be used. Several example interconnection schemes of
memory devices and filtering logic are described and
explained in FIGS. 3 and 11-17 below.
0072. In a typical implementation, units 36 use non-vola

tile memory devices (e.g., Flash devices) for long-term data
storage. Volatile memory devices are typically used as a
scratchpad memory, as a buffer for storing interim results
Such as query results, as a queue between FPGAs for carrying

US 2011/0040771 A1

out pipelined query processing, as a cache for temporary
storage of data retrieved from non-volatile memory (e.g.,
frequently-used data), for caching Sorted or indexed data
during query processing, or for any other Suitable purpose. In
Some embodiments, unit 36 uses Volatile memory as a pri
mary storage space for new incoming data, in order to expe
dite the storage process (e.g., update or insert transactions). In
these embodiments, redo records (redo logs), which enable
rollback of these transactions, are typically stored in non
volatile memory. Additionally or alternatively, data that is
stored in Volatile memory may be replicated in at least one
other Volatile memory location, and the memories are pro
tected against power failure (e.g., using an Uninterruptible
Power Supply UPS, batteries or capacitors). Two example
configurations of queriable storage units comprising both
Flash and RAM devices are shown in FIGS. 16 and 17 below.
0073 Data processing unit 32 may comprise one or more
servers, Single-Board Computers (SBCs) and/or any other
type of computing platform. In some embodiments, unit 32
comprises appropriate Software modules that enable it to
interact with conventional Database Management Systems
(DBMSs), such as Oracle(R) or DB2(R) systems. In some
embodiments, system 20 is integrated as a foreign engine into
a conventional DBMS (sometimes referred to in this context
as an “ecosystem'), typically via a gateway. Using this tech
nique, system 20 appears to the DBMS as a conventional
storage system, even though query processing performance is
improved by applying the methods and systems described
herein. Typically, data processing unit 32 comprises one or
more general-purpose computers, which are programmed in
software to carry out the functions described herein. The
software may be downloaded to the computers in electronic
form, over a network, for example, or it may, alternatively or
additionally, be provided and/or stored on tangible media,
Such as magnetic, optical, or electronic memory.
0074 The elements of system 20 may be fabricated, pack
aged and interconnected in any suitable way. For example,
each data storage unit 36 may be fabricated on a Printed
Circuit Board (PCB).The PCBs may be connected to unit 32
using a motherboard or backplane (e.g., PCIe-based back
plane), using board Stacking (e.g., PCIe-based board stack
ing), using inter-board cabling or using any other Suitable
technique. The interconnection scheme may use any Suitable,
standard or proprietary, communication protocol. In some
embodiments, units 36 can be hot-swapped, i.e., removed
from or inserted into System 20 during operation.
0075. In some embodiments, system 20 may comprise
hundreds or thousands of memory devices 40. The distributed
configuration of system 20 enables the memory devices to be
accessed individually and in parallel, in response to analytical
queries.
0076. In some embodiments, storage units 36 may com
municate with one another, either directly or via unit 32. This
sort of communication is advantageous for processing certain
types of queries, such as relation joining. Interconnection
among units 36 can be carried out, for example, using an
Infiniband network, or using any other Suitable means.

Data Partitioning for Efficient Parallel Processing

0077. In some embodiments, data processing unit 32 par
titions the data for storage among the different data storage
units and memory devices in a way that maximizes the con
current processing of analytical queries.

Feb. 17, 2011

0078 Consider, for example, a body of tabular data, such
as a database table that stores records of sales transactions.
This sort of data typically comprises multiple rows and col
umns. Each row represents a respective database entry, e.g., a
sales transaction. Each row comprises multiple fields, such as
client name, transaction date and time, sales price, profit
and/or any other relevant information. In this sort of structure,
each field is stored in a respective set of (one or more) col
umns. For example, a given set of columns may store the
client names in the different transactions, and another set of
columns may store the sales prices. (The examples given
herein refer mainly to databases that store sales transactions.
This choice, however, is made purely for the sake of concep
tual clarity. The methods and systems described herein can be
used with any other Suitable data structure and application.)
007.9 Typically, processing an analytical query involves
access to a relatively large number of rows (often all rows),
but on the other hand involves access to a relatively small
number of columns. For example, a query that requests
retrieval of all records whose sales price is higher than a
certain value involves access to all database records, but is
concerned only with the columns that store the transaction
sales prices.
0080. In some embodiments, data processing unit 32 par
titions the data, and assigns data partitions for storage in the
different storage units 36. In some embodiments, unit 32
partitions the data down to the individual memory device
level, i.e., determines which portion of the data is to be stored
in each individual memory device 40 within a given unit 36.
The partitioning attempts to maximize parallel processing of
analytical queries by distributing the rows and columns of the
tabular data approximately evenly among the memory
devices or storage units.
I0081 FIG. 2 is a diagram that schematically illustrates
partitioning of a data table 48, in accordance with an embodi
ment of the present invention. Data processing unit 32 divides
the data table, which comprises multiple rows and columns,
into two-dimensional blocks that are referred to hereinas tiles
52. A given tile contains the data elements residing in an
intersection of a certain Sub-range of the rows and a certain
Sub-range of the columns. A typical tile size is on the order of
4-by-4 to 100-by-100 data elements, although any other suit
able tile size can also be used.
I0082 Unit 32 allocates tiles 52 for storage in memory
devices 40 or storage units 36 in a way that distributes the row
and column content of table 48 approximately evenly among
the memory devices or storage units. For example, unit 32
may assign tiles 52 to memory devices 40 according to a
random pattern, a pseudo-random pattern, or a predefined
distribution pattern having random or pseudo-random prop
erties. All of these patterns are regarded herein as different
kinds of random patterns.
0083. As noted above, each tile contains the data elements
residing in an intersection of a certain Sub-range of the rows
and a certain Sub-range of the columns of table 48. As such,
each tile can be identified by the group of rows and the group
of columns to which its elements belong. A given query
involves access to a certain set of columns, which may com
prise a single column, a Subset of the columns or even all
columns of table 48.

I0084. In some embodiments, unit 32 assigns tiles to
memory devices in a manner that distributes the processing
load approximately evenly among the different memory
devices, for any set of columns that may be accessed by a

US 2011/0040771 A1

given query. For example, unit 32 may distribute the tiles to
the memory devices according to the following two rules:
0085. The tiles belonging to a certain row group should be
distributed as evenly as possible among the memory
devices.

I0086 For a given row group, the distribution among the
memory devices should differ (i.e., follow a different per
mutation) from the distribution of the previous row group
in the table. In other words, tiles belonging to the same
column group but to Successive row groups should be
assigned to different memory devices.

0087. When following these two rules, the utilization of
the memory devices remains approximately uniform (and
therefore the query processing load is well parallelized)
regardless of the column group to be accessed. The distribu
tion of tiles to memory devices may be implemented using
various kinds of functions, which are not necessarily random
or pseudo-random. For example, various kinds of hashing
functions or placement functions can be used. Such functions
may be defined, for example, on a set offive variables, namely
a column group identifier, a row group identifier, a memory
device identifier, a current row group identifier and a current
column group identifier. Alternatively, unit 32 may assign
tiles 52 to memory devices 40 according to any other suitable
allocation scheme.
I0088 FIG. 2, for example, shows a distribution of tiles 52
to four memory devices. Each tile in FIG. 2 is marked with a
digit in the range 1 . . . 4, which indicates the memory device
in which the tile is to be stored. The example of FIG. 2 refers
to four memory devices for the sake of clarify, although
typically the number of memory devices or storage units is
considerably higher. In a typical application, a large database
table may be divided into thousands or even millions of tiles.
0089. The description herein refers to a single table for the
sake of clarity. In practice, however, the data may comprise
multiple tables. In such cases, unit 32 divides each table into
tiles and assigns the tiles to memory devices 40. When assign
ing tiles 52 to memory devices 40, a given memory device
may store a single tile or multiple tiles. Generally, a given
memory device 40 may store tiles that belong to different
tables. In some cases, table 48 has a size that cannot be
divided into an integer number of tiles. In such cases, unit 32
may extend the number of rows and/or columns of the table,
e.g., by adding dummy data, in order to reach an integer
number of tiles. This operation is commonly known as data
padding, and an example of Such padding is shown by a
region 56 in table 48.
0090 When using the partitioning and tile assignment
schemes described herein, each storage unit 36 stores a group
of tiles, which are drawn from a diverse mix of row and
column ranges. As a result, processing of an analytical query
will typically involve access to data that is distributed
approximately evenly among the storage units and memory
devices. The Sub-query processing (e.g., filtering) tasks will
therefore distribute approximately evenly among the differ
ent storage units. In other words, processing of the analytical
query is parallelized efficiently among the queriable storage
units, thus minimizing response time and balancing the com
munication load across the different interfaces.

Queriable Data Storage Unit Configuration
0091 FIG. 3 is a block diagram that schematically illus

trates a queriable data storage unit 60, in accordance with an
embodiment of the present invention. The configuration of

Feb. 17, 2011

unit 60 can be used to implement units 36 in system 20 of FIG.
1. The filtering logic in unit 60 comprises a number of FPGAs
68, and additional control circuitry, e.g., an FPGA 72. Each
FPGA 68 controls a respective set of Flash memory devices
64. FPGA 72 communicates with FPGAs 68 and manages the
PCIe interface between storage unit 60 and data processing
unit 32. The interfaces in unit 60 that are used for communi
cating with the memory devices (e.g., the interfaces between
FPGA 72 and FPGAs 68) are often highly asymmetric, since
analytical queries typically involve a relatively high number
ofread operations and a relatively low number of write opera
tions. In a typical configuration, unit 60 comprises eight
FPGAs 68, each controlling eight Flash devices 64, so that the
total number of Flash memory devices per unit 60 is sixty
four. Alternatively, any other suitable number of FPGAs 68,
and/or Flash devices 64 per FPGA 68, can also be used.
0092 FIG. 4 is a block diagram that schematically illus
trates the internal structure of FPGA 68 in queriable data
storage unit 60, in accordance with an embodiment of the
present invention. FPGA 68 in the present example comprises
a Flash access layer 76, which functions as a physical inter
face to the Flash memory devices 64 that are associated with
this FPGA. A paging layer 80 performs page-level storage
and caching to Flash memory devices 64. Layer 80 forwards
requested pages retrieved from devices 64 to upper layers.
(0093 FPGA 68 further comprises multiple data proces
sors 84 operating in parallel, which carry out the data pre
filtering functions of the FPGA. The data processors operate
on pages or record sets that are retrieved from devices 64 and
provided by layer 80. Computation results are forwarded to
upper layers of the FPGA. Each data processor 84 typically
comprises a programmable pipelined processor core, which
is capable of performing logic operations (e.g., AND, OR or
XOR), arithmetic operations (e.g., addition, Subtraction,
comparison to a threshold, or finding of minimum or maxi
mum values), or any other Suitable type of operations. In
Some embodiments, processors 84 can communicate with
one another, so as to obtain pages or record sets from other
processors or to provide computation results to other proces
sors. Processors 84 may also communicate with processors in
other FPGAs 68 or in other units 60, so as to exchange data
and/or computation results.
0094. In some embodiments, the configuration of FPGA
68 is fixed and does not change during operation. In alterna
tive embodiments, FPGA 68 can be reconfigured by unit 32.
for example in order to match a certain query type, to match
a certain data type, per each specific table, for Supporting
custom problem-domain functions by processors 84, or
according to any other Suitable criterion.
(0095 Generally, the FPGA can be configured so as to
interpret and process the specific structure of the data in
question, or the specific type of query in question. In many
cases, FPGA resources (e.g., die space or gate count) are
limited and cannot Support dedicated interpretation and pro
cessing of multiple different types of data or queries. There
fore, the FPGA may be reconfigured to match a given task or
data type. A given FPGA can be reconfigured, for example, in
order to perform operations such as integer arithmetic, float
ing-point arithmetic, vectorarithmetic, Geographic Informa
tion System (GIS) Support, text search and regular expression
filtering, full-text index-based filtering, binary tree index
based filtering, bitmap index based filtering, or Voice and
video based filtering.

US 2011/0040771 A1

0096. A query gateway layer 88 compiles incoming sub
queries for processing by processors 84, and distributes the
Sub-queries to processors 84. In the opposite direction, layer
88 packages the sub-query results (filtered data), and for
wards the results to FPGA 72 or directly to unit 32. The
filtered data can be packaged using any suitable format, Such
as using Extensible Markup Language (XML) or JavaScript
Object Notation (JSON).
0097. The configuration of FPGA 68 shown in FIG. 4 is an
example configuration, which is shown purely for the sake of
conceptual clarity. In alternative embodiments, filtering logic
having any other Suitable configuration can also be used.
0098. In some embodiments, FPGA 68 compresses the
data before it is stored in Flash devices 64, in order to achieve
higher storage capacity. When data is read from Flash devices
64, the data is decompressed before it is provided to proces
sors 84 for further processing. Compression and decompres
sion are typically carried out by paging layer 80. Any Suitable
compression and decompression scheme. Such as run-length
schemes, bitmap schemes, differential Schemes ordictionary
based schemes, can be used for this purpose.
0099. In many practical cases, however, most of the data
that is decompressed during query processing is irrelevant to
the query. Decompression of all data is often extremely com
putationally-intensive, and may sometimes outweigh the ben
efit of compression in the first place. This effect is especially
significant, for example, in highly-analytical applications that
continually retrieve historic data.
0100. In order to prevent unnecessary decompression of
irrelevant data, in some embodiments FPGA 68 filters the
data in its compressed form, and then decompresses the fil
tering results. Consider, for example, a dictionary-based
compression scheme in which a certain column holds values
in the range 1000001 . . . 1000009. The column can be
compressed by omitting the 1000000 base value, and storing
only values in the range 1 . . . 9 in the memory devices.
Consider an example query, which requests retrieval of the
values 1000005 and 1000007 from this column.

0101 If the column were to be decompressed before fil
tering, a large number of irrelevant data (all the data elements
whose values are different from 1000005 and 1000007)
would be decompressed (converted from 1 . . . 9 values to
1000001 ... 1000009 values). In order to prevent this unnec
essary processing, unit 32 modifies the original query to
search for the compressed values in the compressed column,
i.e., to search for the values 5 and 7 in the 1...9 value range.
Then, decompression is applied only to the filtering results,
i.e., the retrieved 5 and 7 values are converted to 1000005 and
1000007 values. As can be appreciated, decompressing the
filtered results reduced the amount of processing consider
ably.
0102. In some embodiments, the stored data, as well as
data exchanged between different system elements, is
encrypted. In an example application, encryption is applied to
(1) data exchanged between different FPGAs, such as
between FPGA 68 and FPGA72, (2) data exchanged between
storage unit 36 and external elements, such as data processing
unit 32 or with end users, and (3) data stored in Flash devices
64. Encryption/decryption of the stored data is typically per
formed by paging layer 80. Encryption/decryption of data
exchanged between FPGAs, and of data exchanged between
unit 36 and external elements, may be performed by query

Feb. 17, 2011

gateway 88 and/or by processors 84. Any suitable encryption
scheme, such as Public Key Infrastructure (PKI), can be used
for this purpose.

Alternative System Configurations

0103 FIG. 5 is a block diagram that schematically illus
trates a system 92 for data storage and retrieval, in accordance
with an alternative embodiment of the present invention. Sys
tem 92 operates in a similar manner to system 20 of FIG. 1,
using a clustered, network-based structure. System 92 com
prises one or more storage sub-systems 100, which receive
queries and provide results via a network switch 96. Each
sub-system 100 comprises a Network Interface Card (NIC)
104 for communicating with switch96, a PCIe switch 108 for
communicating with a set of queriable storage units 36, and a
server 112 that carries out functions similar to data processing
unit 32. The configuration of FIG.5 uses a cluster of multiple
servers, which enables Scalability in processing power and
storage capacity.
0104 FIG. 6 is a block diagram that schematically illus
trates a system 116 for data storage and retrieval, in accor
dance with yet another embodiment of the present invention.
System 116 operates similarly to systems 20 and 92. In sys
tem 116, however, each queriable storage unit 36 communi
cates individually with switch 96 via a dedicated NIC 104.
Thus, each storage unit 32 is defined as an independent net
work node, and communicates with Switch 96, e.g., using
Ethernet protocols. In this configuration, the functionality of
server 112 (or unit 32) is embedded in queriable storage units
36. For example, the filtering logic in this configuration may
run applicative processes Such as predictive analytics or rule
engines.

Data Storage and Retrieval Methods

0105 FIG. 7 is a flow chart that schematically illustrates a
method for data storage, in accordance with an embodiment
of the present invention. The following description makes
reference to the configuration of FIG. 1 above. The disclosed
method, however, can also be used with any other suitable
system configuration, such as the configurations of FIGS. 5
and 6 above.

0106 The method begins with data processing unit 32 of
system 20 accepting tabular data for storage, at a data input
step 120. The data may comprise, for example, one or more
database tables. Unit 32 divides the input tabular data into
tiles, at a tile division step 124. Unit 32 allocates the tiles at
random to the different memory devices 40 in storage units
36, at a tile allocation step 128. Example tile division and
allocation schemes, which can be used for this purpose, were
discussed in detail in FIG. 2 above. In alternative embodi
ments, unit 32 may allocate tiles to storage units 36 without
specifying individual memory devices 40. In these embodi
ments, assignment of tiles to specific devices 40 is performed
internally to the storage unit. Unit 32 sends each storage unit
36 the tiles that were allocated thereto, and logic 44 in each
storage unit 36 stores the data in the appropriate memory
devices 40, at a storage step 132.
0107 FIG. 8 is a flow chart that schematically illustrates a
method for query processing, in accordance with an embodi
ment of the present invention. The method of FIG. 8 can be
used for processing analytical queries in data that was stored
using the method of FIG. 7 above. The following description

US 2011/0040771 A1

makes reference to the configurations of FIGS. 1 and 3 above,
however the method of FIG.8 can also be used with any other
Suitable system configuration.
0108. The method begins with data processing unit 32 of
system 20 accepting from user 24 an analytical query to be
applied to the data stored in units 36, at a query input step 140.
The analytical query may comprise, for example, a Structured
Query Language (SQL) or Multidimensional Expressions
(MDX) query, or it may alternatively conform to any other
Suitable format or language.
0109 Unit 32 parses and parallelizes the analytical query,
at a parallelization step 144. The output of this step is a set of
Sub-queries, which are to be executed in concurrently by
FPGAs 68 of queriable storage units 36 on different portions
of the stored data. Typically although not necessarily, each
Sub-query is addressed to the data of a given tile 52. As such,
the number of sub-queries into which a given analytical query
is parsed may reach the number of tiles, i.e., thousands or even
millions.
0110 Consider, for example, an analytical query that
requests retrieval of the transaction in which the unit price
multiplied by the number of units sold is highest. This query
can be expressed as “Select max(cquantity price) from sales'.
Unit 32 may parallelize this query by restructuring it into
“Select max(Sres0) from (select max(cquantity price) from
Ssales partition0) union (select max(cquantity price) from
Ssales partition1). The restructured query comprises three
Sub-queries, which can be executed in parallel, e.g., by dif
ferent data processors or different FPGAs. Typically, unit 32
assigns the execution of a given Sub-query to the FPGA,
which is associated with the memory device holding the data
accessed by that Sub-query.
0111 Unit 32 sends each sub-query to the appropriate
FPGA 68 in the appropriate storage unit 36, at a sub-query
sending step 148. As explained above, each FPGA is associ
ated with one or more memory devices, and is responsible for
carrying out Sub-queries on the tiles that are stored in these
memory devices. Upon receiving the sub-queries, each FPGA
pre-filters the data in the tiles stored in its associated memory
devices, according to the Sub-query, at a pre-filtering step 152.
Assuming the tiles were assigned to the memory devices
according to the schemes of FIG. 2 above, the sub-queries are
distributed approximately evenly among the FPGAs, so that
the overall query processing task is parallelized efficiently.
0112 The different storage units 36 send the filtered data,

i.e., the results of the Sub-queries, back to data processing unit
32. Unit 32 accumulates the filtered data from the different
units 36, at a result accumulation step 156. In some embodi
ments, unit 32 applies additional filtering to the filtered data,
So as to produce a result of the analytical query, at an addi
tional filtering step 160. In alternative embodiments, all fil
tering is performed in storage units 36 and there is no need to
apply additional filtering by unit 32. Unit 32 outputs the result
of the analytical query to user 24 via user terminal 28, at an
output step 164.
0113. As can be appreciated from the above description,
system 20 may apply two stages offiltering or query process
ing in response to the analytical query. Initial filtering is
carried out in parallel by queriable storage units 36. The
output of units 36 is further filtered by data processing unit 32.
The amount of pre-filtering applied by storage units 36 can be
traded with the amount of additional filtering applied by unit
32. At one extreme, all filtering related to the analytical query
is performed by units 36, and unit 32 merely merges the

Feb. 17, 2011

filtered data produced by the different units 36. At the other
extreme, units 36 perform only a marginal amount offiltering,
allowing a relatively large Volume of uncertain data to reach
unit 32.
0114. The trade-off may depend on various factors, such
as the computational capabilities of units 36 in comparison
with the computational capability of unit 32, constraints on
communication bandwidth between units 36 and unit 32,
latency constraints in units 36 or unit 32, the type of analytical
query and/or the type of data being queried.

Data Rotation During Query Processing
0.115. When storing a given tile 52 in a certain Flash device
64, the data can be stored in the Flash pages row by row (i.e.,
rows of the tile are laid along the Flash pages) or column by
column (i.e., columns of the tile are laid along the Flash
pages). Column-by-column storage lends itself to efficient
compression, since the data elements along a given page are
typically similar in characteristics. Query processing, on the
other hand, is often more efficient to carry out on data that is
laid row by row. In some embodiments, FPGA 68 stores each
tile in a column-by-column orientation, and rotates the tile to
a row-by-row orientation in order to process the Sub-query.
This technique enables both compact storage and efficient
processing.
0116 FIG. 9 is a diagram that schematically illustrates a
data rotation process carried out by FPGA 68, in accordance
with an embodiment of the present invention. In the example
of FIG. 9, six columns of a certain tile, which are denoted A
... F, are stored column-by-column in six pages of a certain
Flash device 64. The six pages are shown in the figure as
having addresses 0x0000,0x0100,...,0x0500. In response to
a certain Sub-query that requests access to columns A, C and
F, the FPGA reads the relevant columns from the Flash
device, and rotates them to a row-by-row orientation. The
rotated configuration is shown at the bottom of the figure. The
rotated columns are stored in this manner in a RAM device
that is part of the queriable storage unit, in the present
example in addresses 0x0000-0x2800. The FPGA filters the
data of the tile, according to the Sub-query, using the rotated
columns stored in RAM. Since the rotation is performed in
real time in response to a specific Sub-query, it is typically
sufficient to rotate only the columns addressed by the sub
query, and not the entire tile.

Cooperative Scanning Mechanism

0117. In some embodiments, system 20 reduces the over
head associated with tile handling by identifying multiple
queries that refer to the same tile. In these embodiments, unit
32 typically accumulates the incoming queries (e.g., in a
buffer) for a certain period of time. During this period, unit 32
attempts to identify queries that access the same tile 52. Once
identified, these queries are processed together, so that the tile
in question is read from memory, parsed, rotated, decom
pressed, decrypted and/or buffered only once. In some
embodiments, the identified queries are combined into a
single complex query. Alternatively, the queries can be
executed separately once the tile is ready for processing.

Data Aggregation by Storage Units

0118. The description above refers mainly to filtering
operations performed by queriable storage units 36 in
response to queries. In some embodiments, however, units 36

US 2011/0040771 A1

are capable of aggregating data and providing aggregated
results in response to queries. Unlike filtering, data aggrega
tion operations produce data that was not stored in memory
C-priori, but is computed in response to a query. Data aggre
gation operations reduce the communication Volume between
units 36 and unit 32, but retain at least some of the information
content of the raw data. For example, in response to a query,
filtering logic 44 in unit 36 may compute and return various
statistical properties of a given data column, such as mean,
variance, median value, maximum, minimum, histogram Val
ues or any other Suitable statistical property. As another
example, unit 36 may compute the Sum of a certain data
column. Another type of aggregation operation is sampling,
i.e., returning only a Subset of a certain data column according
to a predefined pattern, Such as every second element or every
third element. Further alternatively, units 36 may performany
other Suitable type of data aggregation operation on the stored
data in response to a query.

Data Format for Storage in Queriable Storage Units
0119 Typically, the data is stored in memory devices 40
(e.g., Flash devices 64) in a raw format that enables straight
forward access and processing by the filtering logic (e.g.,
FPGAs 68). For example, each tile 52 is typically stored in a
contiguous block of physical memory addresses, preferably
with little or no data hierarchy, complex data layers or data
structures, logical/physical address mapping or other com
plex formats. In some embodiments, unit 32 receives the data
for storage in a format that comprises one or more of the
above-mentioned features. In these embodiments, unit 32
typically converts the data into the raw format in which it will
be stored.
0120 In alternative embodiments, data having a complex
format is translated by unit 32 into a stream of software code
instructions. The data is embedded into the instruction stream
as immediate arguments of code instructions. The instruction
stream is stored in memory. One or more FPGAs 68 are
configured to run processor cores that are capable of execut
ing this instruction stream, once the stream is read from
memory. In order to apply a certain query to this sort of data
representation, the processor cores are invoked to execute the
instruction stream stored in memory.
0121 This technique enables logic 44 to process data hav
ing a complex format, which does not lend itself to straight
forward processing by hardware logic. In other words, data
having a complex format can be stored as executable code,
whose execution by the hardware logic accesses the data.

Compatibility with Non-Queriable Storage Units

0122. In some embodiments, one or more queriable stor
age units are deployed together with one or more conven
tional, non-queriable storage units in the same storage sys
tem. Such a configuration is advantageous, for example, for
maintaining compatibility with legacy system configurations.
0123 FIG. 10 is a block diagram that schematically illus

trates a system 168 for data storage and retrieval, in accor
dance with an embodiment of the present invention. System
168 comprises a storage sub-system 172, which comprises
both queriable storage units 36 and non-queriable storage
units 176. The queriable storage units are similar in function
ality to units 36 described in FIG. 1 above. The non-queriable
storage units, on the other hand, may comprise any Suitable
type of Storage unit known in the art. Typically, units 36 and

Feb. 17, 2011

136 used in sub-system 172 conform to a common mechani
cal and electrical interface, and can be inserted interchange
ably into generic slots in sub-system 172.
0.124. The data stored in sub-system 172 is accessed by a
server cluster 180. The server cluster comprises applications
184, which store and retrieve data, and a query proxy 188,
which interfaces with storage sub-system 172. Proxy 188
communicates with Sub-system 172 using a certain storage
protocol. Such as, for example, Small Computer System Inter
face (SCSI), Internet-SCSI (iSCSI), SCSI over Infiniband,
Serial-attached SCSI (SAS), Fibre-Channel (FC), Advanced
Technology Attachment (ATA), Parallel ATA (PATA) or
Serial ATA (SATA), or any other suitable protocol.
0.125. In some embodiments, the storage protocol used
between proxy 188 and sub-system 172 is extended to support
commands that enable proxy 188 to operate queriable storage
units 36 using the methods described above (e.g., the methods
of FIGS. 7 and 8). Proxy 188 is also designed to support the
extended protocol, and to carry out the functions of data
processing unit 32. The storage protocol is typically extended
in a non-intrusive, backward-compatible manner that does
not affect the operation of non-queriable storage units 176.
Typically, the commands that are unique to queriable storage
units 36 are forwarded to units 36 in a pass-through mode that
is transparent to the non-queriable storage units. In some
embodiments, units 36 can be operated in a backward-com
patible legacy mode, in which they function similarly to non
queriable units 176 and do not carry out filtering.

Multitenant Operation
0.126 System 20 may be operated so as to provide storage
and query processing services to multiple clients, which may
belong to different organizations. The users may connect to
the system, for example, over the Internet or other network.
Multitenant operation of this sort has several aspects, such as
data security and usage metering, which are addressed by the
system design.
I0127. In some embodiments, unit 32 separates (isolates)
the data belonging to different user groups (e.g., organiza
tions, also referred to as tenants) in order to prevent data
leakage or exposure from group to group. Typically, the iso
lation enforced by unit 32 is implemented at the hardware
level rather than at higher system levels. Typically, each ten
ant is assigned a separate memory region (e.g., separate Stor
age units or memory devices), whose size is measured accu
rately. The system hardware ensures that a given tenant
cannot access the memory region of another tenant. Other
hardware resources. Such as FPGAs, are also assigned to
different tenant at the hardware level.
I0128. Typically, the system continually ensures that each
tenant does not consume more than its pre-allocated Storage
or processing resources. Using this hardware-level multi
tenant Scheme, functions such as charging and billing (pre
paid or post-paid) and capacity control can be implemented in
a straightforward manner. In some embodiments, hardware
resources are pre-allocated to the different tenants so as to
prevent the service provider from experiencing overbooking.
I0129. In some embodiments, system 20 measures the sys
tem resources used by each tenant, for example in order to bill
for the service. Metered resources may comprise, for
example, memory space (data size), communication Volume,
query count, or any other suitable resource. In a typical appli
cation, the system meters the resources during the execution
of each query. In some embodiments, the resources allocated

US 2011/0040771 A1

to a certain tenant are limited to certain minimum or maxi
mum values, e.g., according to a pre-specified Service Level
Agreement (SLA).

Alternative Interconnection Topologies for Queriable
Data Storage Units

0130 FIGS. 11-17 are block diagrams that schematically
illustrate example interconnection topologies in a queriable
data storage unit, in accordance with embodiments of the
present invention. Each of these topologies can be used to
implement data storage units 36, as an alternative to the
topology of FIG.3 above.
0131 FIG. 11 shows a mesh interconnection scheme, in
which a given Flash device 64 can be controlled by multiple
FPGAs 68 and neighboring FPGAs can communicate with
one another. In the interconnection scheme of FIG. 12, the
Flash devices and FPGAs are divided into two groups, but
FPGAs may communicate with one another both inside and
outside the group. In FIG. 13, the Flash devices are arranged
in four-device clusters, and each Flash device is controlled by
a single FPGA. FIG. 14 has a similar structure that uses lager
clusters of six Flash devices. In FIG. 15, the Flash devices are
arranged in groups, and each group is controlled by two
adjacent FPGAs. In FIGS. 16 and 17, some of the memory
devices comprise RAM devices 192. In the interconnection
scheme of FIG. 16, the RAM devices are distributed across
the unit, such that each FPGA has direct access to both
FLASH and RAM devices. The interconnection scheme of
FIG. 17 comprises separate clusters of Flash and RAM
devices, such that a given FPGA is directly connected either
to Flash devices or to RAM devices.

Additional Embodiments and Variations

0.132. In any of the interconnection schemes described
herein, unit 36 may selectively deactivate parts of the memory
and the filtering logic (e.g., individual memory devices and/or
FPGAs) in order to reduce power consumption. For example,
unit 36 may deactivate components that are identified as idle.
Alternatively, unit 36 may activate parts of the memory and
processing logic progressively, as additional data is accepted
for storage.
0133. In some embodiments, filtering logic 44 in queriable
storage units 36 comprises an SQL query processor or rule
engine. When using a rule engine, rules are provided by data
processing unit 32 as part of the query, and data stored in
memory devices 40 is interpreted as facts.
0134. Although the embodiments described herein mainly
address processing of analytical queries in data storage sys
tems, the methods and systems described herein can also be
used in other applications, such as keyword searching in Voice
conversation archives, face searching in Surveillance camera
Video archives, DNA and protein sequence searching in bio
informatics databases, e.g., in drug discovery applications,
log processing for root-cause analysis of failures in telecom
systems or other electronic systems, and/or medical data
archive processing (e.g., text, numeric, tomography images
or ultrasound images) that search for correlations and reason
cause links for various diseases and drug effects.
0135) It will thus be appreciated that the embodiments
described above are cited by way of example, and that the
present invention is not limited to what has been particularly
shown and described hereinabove. Rather, the scope of the
present invention includes both combinations and Sub-com

Feb. 17, 2011

binations of the various features described hereinabove, as
well as variations and modifications thereof which would
occur to persons skilled in the art upon reading the foregoing
description and which are not disclosed in the prior art.

1. A data storage apparatus, comprising:
multiple storage units, each storage unit comprising:

one or more memory devices, which are operative to
store a data partition that is drawn from a data struc
ture and assigned to the storage unit; and

logic circuitry, which is configured to accept one or more
Sub-queries addressed to the storage unit and to pro
cess the respective data partition stored in the storage
unit responsively to the Sub-queries, so as to produce
filtered data; and

a data processing unit, which is configured to transforman
input query defined over the data structure into the sub
queries, to provide the Sub-queries to the storage units,
and to process the filtered data produced by the storage
units, so as to generate and output a result in response to
the input query.

2. The apparatus according to claim 1, wherein the data
structure comprises data elements stored in multiple rows and
columns, and wherein the data processing unit is configured
to divide the data structure into multiple tiles, each tile com
prising the data elements that are stored in an intersection of
a respective first Sub-range of the rows and a respective sec
ond Sub-range of the columns, and to store the data structure
by distributing the tiles among the storage units.

3. The apparatus according to claim 2, wherein the data
processing unit is configured to distribute the tiles among the
memory devices in accordance with a random pattern.

4. The apparatus according to claim 2, wherein the data
processing unit is configured to distribute a Subset of the tiles
that are associated with a given Sub-range of the rows Sub
stantially evenly among the memory devices.

5. The apparatus according to claim 2, wherein the data
processing unit is configured to distribute a first Subset of the
tiles that are associated with a first sub-range of the rows
among the memory devices according to a first distribution,
and to distribute a second subset of the tiles that areassociated
with a second sub-range of the rows, which succeeds the first
Sub-range, according to a second distribution that is different
from the first distribution.

6. The apparatus according to claim 2, wherein the logic
circuitry in a given storage unit is configured to store a given
tile in the memory devices in a first orientation, and, in
response to a given Sub-query that addresses the given tile, to
rotate the given tile to a second orientation and to execute the
given Sub-query using the rotated tile.

7. The apparatus according to claim 1, wherein the data
processing unit is configured to define a given Sub-query that
addresses a given data partition stored in a given storage unit,
and to provide the given Sub-query to the given storage unit
for processing.

8. The apparatus according to claim 1, wherein the logic
circuitry in a given storage unit is configured to filter the data
partition stored in the given storage unit responsively to one
or more of the Sub-queries addressed to the storage unit.

9. The apparatus according to claim 1, wherein the data
processing unit is configured to apply additional filtering to
the filtered data produced by the storage units.

10. The apparatus according to claim 1, wherein the logic
circuitry in a given storage unit is configured to perform a data

US 2011/0040771 A1

aggregation operation on the data partition stored in the given
storage unit responsively to one or more of the Sub-queries
addressed to the storage unit.

11. The apparatus according to claim 1, wherein the logic
circuitry in a given storage unit is configured to apply at least
one of a logic operation and an arithmetic operation to the
data partition stored in the given storage unit.

12. The apparatus according to claim 1, wherein the logic
circuitry comprises programmable logic, and wherein the
data processing unit is configured to reconfigure the program
mable logic responsively to a criterion defined over at least
one of the data structure and the input query.

13. The apparatus according to claim 1, wherein a given
storage unit comprises at least one asymmetric interface for
data storage and retrieval in the memory devices of the given
storage unit, the asymmetric interface having a first band
width for the data storage and a second bandwidth, higher
than the first bandwidth, for the data retrieval.

14. The apparatus according to claim 1, wherein the logic
circuitry in a given storage unit is configured to compress at
least Some of the data partition assigned to the given storage
unit prior to storing the data partition in the memory devices.

15. The apparatus according to claim 14, wherein the logic
circuitry in the given storage unit is configured to apply a
given Sub-query to the compressed data partition so as to
produce the filtered data, and to decompress only the filtered
data.

16. The apparatus according to claim 1, wherein the data
processing unit is configured to encrypt data exchanged with
the storage units and with end users.

17. The apparatus according to claim 1, wherein the logic
circuitry in a given storage unit is configured to encrypt data
stored in the memory devices.

18. The apparatus according to claim 1, and comprising
multiple Network Interface Cards (NICs) coupled to the
respective storage units, wherein the storage units are config
ured to exchange data over a network via the respective NICs.

19. The apparatus according to claim 1, wherein the storage
units are configured to communicate with one another so as to
exchange data for processing the Sub-queries.

20. The apparatus according to claim 1, wherein the data
processing unit is configured to identify input queries whose
processing accesses common data elements, and to cause the
storage units to access the common data elements jointly
while processing the identified input queries.

21. The apparatus according to claim 1, wherein the data
processing unit is configured to convert the data structure into
a raw data format, so as to produce data partitions having the
raw data format for storage in the storage units.

22. The apparatus according to claim 1, wherein the data
processing unit is configured to represent a given data parti
tion, which is assigned to a given storage unit and has a given
data format, using code that is executable by the given storage
unit, and wherein the logic circuitry in the given storage unit
is configured to access the given data format by executing the
code.

23. The apparatus according to claim 1, wherein the logic
circuitry in a given storage unit is configured to communicate
using a communication protocol that is compatible with
another type of storage units, which do not have query pro
cessing capabilities.

24. The apparatus according to claim 1, wherein the data
processing unit is configured to allocate first and second
separate sets of hardware elements in the multiple storage

Feb. 17, 2011

units to respective first and second user groups, and to prevent
access of users in the first group to the hardware elements in
the second set.

25. The apparatus according to claim 24, wherein the allo
cated hardware elements comprise at least one element type
selected from a group of types consisting of ones of the
storage units, ones of the memory devices and parts of the
logic circuitry.

26. The apparatus according to claim 1, wherein the data
processing unit is configured to measure an amount of a
resource of the apparatus that is used in processing the input
query.

27. The apparatus according to claim 1, wherein the logic
circuitry in a given storage unit is configured to deactivate at
least one hardware component of the given storage unit so as
to reduce power consumption of the given storage unit.

28. The apparatus according to claim 1, wherein the logic
circuitry in a given storage unit is configured to run one of a
Structured Query Language (SQL) query processor and a
SQL rule engine.

29. A data storage apparatus, comprising:
a storage unit, which comprises:

one or more memory devices, which are operative to
store data; and

circuitry, which is configured to apply a first filtering
operation to the stored data in response to a query
defined over the data, so as to produce pre-filtered
data; and

a data processing unit, which is configured to receive the
pre-filtered data from the storage unit and to apply a
second filtering operation to the pre-filtered data, so as to
produce a result of the query.

30. A data storage apparatus, comprising:
a storage unit, which comprises:

one or more memory devices, which are operative to
store data; and

circuitry, which is configured to apply a data aggregation
operation to the stored data in response to a query
defined over the data, so as to produce pre-processed
data; and

a data processing unit, which is configured to receive the
pre-processed data from the storage unit and to process
the pre-processed data, so as to produce a result of the
query.

31. The apparatus according to claim 30, wherein the data
aggregation operation comprises computation of a statistical
property of at least Some of the stored data.

32. The apparatus according to claim 30, wherein the data
aggregation operation comprises computation of a sum of at
least some of the stored data.

33. The apparatus according to claim 30, wherein the data
aggregation operation comprises producing a sample of at
least some of the stored data.

34. A method for data storage, comprising:
storing a plurality of data partitions drawn from a data

structure in a respective plurality of storage units:
transforming an input query defined over the data structure

into multiple Sub-queries and providing the Sub-queries
to the storage units:

using logic circuitry in each storage unit, accepting one or
more of the Sub-queries addressed to the storage unit,
and processing a respective data partition stored in the
storage unit responsively to the accepted Sub-queries, so
as to produce filtered data; and

US 2011/0040771 A1

processing the filtered data produced by the multiple stor
age units, so as to generate and output a result in
response to the input query.

35. The method according to claim 34, wherein the data
structure comprises data elements stored in multiple rows and
columns, and wherein storing the data partitions comprises
dividing the data structure into multiple tiles, each tile com
prising the data elements that are stored in an intersection of
a respective first Sub-range of the rows and a respective sec
ond Sub-range of the columns, and distributing the tiles
among the storage units.

36. The method according to claim35, wherein distributing
the tiles comprises distributing the tiles among the memory
devices in accordance with a random pattern.

37. The method according to claim35, wherein distributing
the tiles comprises distributing a subset of the tiles that are
associated with a given Sub-range of the rows Substantially
evenly among the memory devices.

38. The method according to claim35, wherein distributing
the tiles comprises distributing a first subset of the tiles that
are associated with a first Sub-range of the rows among the
memory devices according to a first distribution, and distrib
uting a second Subset of the tiles that are associated with a
second Sub-range of the rows, which Succeeds the first Sub
range, according to a second distribution that is different from
the first distribution.

39. The method according to claim 35, wherein processing
the data partition comprises storing a given tile in a first
orientation, and, in response to a given sub-query that
addresses the given tile, rotating the given tile to a second
orientation executing the given sub-query using the rotated
tile.

40. The method according to claim 34, wherein transform
ing the input query comprises defining a given Sub-query that
addresses a given data partition stored in a given storage unit,
and wherein providing the Sub-queries comprises providing
the given Sub-query to the given storage unit for processing.

41. The method according to claim 34, wherein processing
the data partition comprises filtering the data partition respon
sively to one or more of the sub-queries addressed to the
storage unit.

42. The method according to claim 34, wherein processing
the filtered data comprises applying additional filtering to the
filtered data produced by the storage units.

43. The method according to claim 34, wherein processing
the data partition comprises performing a data aggregation
operation on the data partition responsively to one or more of
the Sub-queries addressed to the storage unit.

44. The method according to claim 34, wherein processing
the data partition comprises applying at least one of a logic
operation and an arithmetic operation to the data partition.

45. The method according to claim 34, wherein the logic
circuitry includes programmable logic, and comprising
reconfiguring the programmable logic responsively to a cri
terion defined over at least one of the data structure and the
input query.

46. The method according to claim 34, wherein processing
the data partition comprises performing data storage and
retrieval using at least one asymmetric interface, the asym
metric interface having a first bandwidth for the data storage
and a second bandwidth, higher than the first bandwidth, for
the data retrieval.

Feb. 17, 2011

47. The method according to claim 34, wherein storing the
data partitions comprises compressing at least some of a data
partition assigned to a given storage unit prior to storing the
data partition.

48. The method according to claim 47, wherein processing
the data partition comprises applying a given Sub-query to the
compressed data partition so as to produce the filtered data,
and decompressing only the filtered data.

49. The method according to claim 34, and comprising
encrypting data exchanged with the storage units and with
end users.

50. The method according to claim 34, wherein storing the
data partitions comprises encrypting the data partitions stored
in the storage units.

51. The method according to claim 34, and comprising
exchanging data over a network with the storage units via
respective Network Interface Cards (NICs) coupled to the
storage units.

52. The method according to claim 34, wherein processing
a given data partition by a given storage unit comprises com
municating with another storage unit so as to exchange data
for processing the Sub-queries.

53. The method according to claim 34, and comprising
identifying input queries whose processing accesses common
data elements, and causing the storage units to access the
common data elements jointly while processing the identified
input queries.

54. The method according to claim 34, wherein storing the
data partitions comprises converting the data structure into a
raw data format, and storing the data partitions having the raw
data format in the storage units.

55. The method according to claim 34, wherein storing the
data partitions comprises representing a given data partition,
which is assigned to a given storage unit and has a given data
format, using code that is executable by the given storage unit,
and wherein processing the given data partition comprises
executing the code by the given storage unit so as to access the
given data format.

56. The method according to claim 34, and comprising
communicating with the storage units using a communication
protocol that is compatible with another type of storage units,
which do not have query processing capabilities.

57. The method according to claim 34, and comprising
allocating first and second separate sets of hardware elements
in the plurality of the storage units to respective first and
second user groups, and preventing access of users in the first
group to the hardware elements in the second set.

58. The apparatus according to claim 57, wherein the allo
cated hardware elements comprise at least one element type
selected from a group of types consisting of ones of the
storage units, ones of the memory devices and parts of the
logic circuitry.

59. The method according to claim 34, and comprising
measuring an amount of a resource that is used in processing
the input query.

60. The method according to claim 34, and comprising
deactivating at least one hardware component of a given
storage unit so as to reduce power consumption of the given
storage unit.

61. The method according to claim 34, wherein processing
the data partition comprises running one of a Structured
Query Language (SQL) query processor and a SQL rule
engine.

US 2011/0040771 A1

62. A method for data storage, comprising:
storing data in a storage unit that includes processing cir

cuitry;
using the processing circuitry in the storage unit, applying

a first filtering operation to the stored data in response to
a query defined over the data, so as to produce pre
filtered data; and

applying a second filtering operation to the pre-filtered data
by a processor separate from the storage unit, so as to
produce a result of the query.

63. A method for data storage, comprising:
storing data in a storage unit that includes processing cir

cuitry;
using the processing circuitry in the storage unit, applying

a data aggregation operation to the stored data in

13
Feb. 17, 2011

response to a query defined over the data, so as to pro
duce pre-processed data; and

processing the pre-processed data by a processor separate
from the storage unit, so as to produce a result of the
query.

64. The method according to claim 63, wherein the data
aggregation operation comprises computation of a statistical
property of at least Some of the stored data.

65. The method according to claim 63, wherein the data
aggregation operation comprises computation of a sum of at
least some of the stored data.

66. The method according to claim 63, wherein the data
aggregation operation comprises producing a sample of at
least some of the stored data.

c c c c c

