wo 2015/038690 A1 |1 NF 1 0V OO O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

19 March 2015 (19.03.2015)

WIPOIPCT

(10) International Publication Number

WO 2015/038690 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72

International Patent Classification:
HO4L 9/08 (2006.01) GO6F 21/57 (2013.01)

International Application Number:
PCT/US2014/055058

International Filing Date:
11 September 2014 (11.09.2014)

Filing Language: English
Publication Language: English
Priority Data:

61/877,789 13 September 2013 (13.09.2013) US
14/230,812 31 March 2014 (31.03.2014) US

Applicant: MICROSOFT CORPORATION [US/US];
One Microsoft Way, Redmond, Washington 98052-6399

(US).

Inventors: FERGUSON, Niels T.; c/o Microsoft Corpora-
tion, LCA - International Patents (8/1172), One Microsoft
Way, Redmond, Washington 98052-6399 (US). NYS-
TROM, Magnus Bo Gustaf; c¢/o Microsoft Corporation,
LCA - International Patents (8/1172), One Microsoft Way,
Redmond, Washington 98052-6399 (US). MCPHERSON,

(8D

(84)

Dave M.; c/o Microsott Corporation, LCA - International
Patents (8/1172), One Microsott Way, Redmond, Washing-
ton 98052-6399 (US). ENGLAND, Paul; c/o Microsoft
Corporation, LCA - International Patents (8/1172), One
Microsott Way, Redmond, Washington 98052-6399 (US).
NOVAK, Mark Fishel; c/o Microsoft Corporation, LCA -
International Patents (8/1172), One Microsoft Way, Red-
mond, Washington 98052-6399 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,

[Continued on next page]

(54) Title: KEYING INFRASTRUCTURE

ol

(57) Abstract: A keying infrastructure may generate and/or manage crypto-

J

/ PROCESSOR(S) 126

MEMORY 128

___\

SERVICE PROVIDER 108 N\

ATTESTATION MODULE
130
MODULE 132
N 132

graphic keys. The cryptographic keys may include identity keys, encryption
keys, and a variety of other types of keys. The cryptographic keys may be
derived or created with a key derivation function (KDF) or other one-way
function. The cryptographic keys may include keys that are accessible to a
boot loader, keys that are accessible to particular components of a Trusted
Execution Environment (TrEE), and so on. In some examples, a key may be
derived from a preceding key in a sequence of keys. The preceding key may

be deleted when the key is derived.

PROCESSOR(S)
/ 112

J MenMoRY 114

TREE 118

TREE LoADER 120
A TREE CoRe 122
\ TREE APP(S). 124

WO 2015/038690 A1 |IIIWAL 00TV VT 0 AN A AR

TJ, T™M), European (AL, AT, BE, BG, CH, CY, CZ, DE, __ o/ . annlicant’s entiflement to claim the priority of
DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, the earlier application (Rule 4.17(iii))

LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE,

SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, Published:

GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

— with international search report (Art. 21(3))
Declarations under Rule 4.17:

— as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

10

15

20

25

30

WO 2015/038690 PCT/US2014/055058

KEYING INFRASTRUCTURE

BACKGROUND

[0001] Cryptographic keys are often used by devices to protect confidential or sensitive
information, verify that a device has not been compromised, utilize a hardware element, or
to perform a variety of other operations. In some instances, an unauthorized party may gain
access to a key and disrupt operation of the device or gain access to protected or sensitive
information. As an increasing number of devices seek to protect information, verify
authenticity, and/or utilize hardware elements, there is an increasing need to guard
cryptographic keys from unauthorized access.
SUMMARY

[0002] This disclosure describes a keying infrastructure directed to generating and/or
managing cryptographic keys. The cryptographic keys may include identity keys used
during an attestation process in which a device communicates with another device to
identify the device and/or verify a particular application state (e.g., a safe state that is not
compromised). The cryptographic keys may include encryption keys used to protect
confidential and/or sensitive information. The cryptographic keys may also include other
keys.

[0003] In some embodiments, the keying infrastructure generates a key hierarchy of
identity, encryption, or other types of keys with a key derivation function (KDF) or other
one-way function. The key hierarchy may include keys that are accessible to a boot loader
of a device, keys that are accessible to particular components of a Trusted Execution
Environment (TrEE), and so on. Additionally, or alternatively, the key hierarchy may
include a sequence of keys, where each key in the sequence is derived with a KDF that is
based on a preceding key in the sequence. Once a key is derived, the preceding key may be
deleted to avoid unauthorized access to the key. In some instances, the key hierarchy may
include keys that are associated with an update to a security configuration of a component
of the TrEE. Further, the key hierarchy may include keys that are based on a type of platform
that is being implemented, a debug status of a device, and/or a variety of other information.
[0004] This Summary is provided to introduce a selection of concepts in a simplified form
that are further described below in the Detailed Description. This Summary is not intended
to identify essential features of the claimed subject matter, nor is it intended to be used to

limit the scope of the claimed subject matter.

10

15

20

25

30

WO 2015/038690 PCT/US2014/055058

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The detailed description is set forth with reference to the accompanying figures.
In the figures, the left-most digit(s) of a reference number identifies the figure in which the
reference number first appears. The use of the same reference numbers in different figures
indicates similar or identical items or features.

[0006] FIG. 1 illustrates an example environment in which techniques described herein
may be implemented.

[0007] FIG. 2 illustrates an example key hierarchy that includes a sequence of application
keys.

[0008] FIG. 3 illustrates an example key hierarchy that is based on a security
configuration of a device.

[0009] FIG. 4 illustrates an example process to generate a key hierarchy that includes a
sequence of application keys.

[0010] FIG. 5 illustrates an example process to generate an encryption key hierarchy.

DETAILED DESCRIPTION

[0011] This disclosure describes a keying infrastructure directed to generating and/or
managing cryptographic keys. The cryptographic keys may include identity keys,
encryption keys, and/or a variety of other types of keys. The cryptographic keys may be
derived or created with a key derivation function (KDF) or other one-way function. The
cryptographic keys may include keys that are accessible to a boot loader, keys that are
accessible to particular components of a Trusted Execution Environment (TrEE), and so on.
[0012] In various embodiments, the keying infrastructure may generate a key hierarchy
that is composed of a sequence of identity and/or encryption keys referred to collectively as
“application keys”. An application key may be derived with a KDF or other one-way
function each time a component, such as an application, is loaded and/or executed on a
device. The application key may be derived based on a preceding application key in the
sequence of application keys and the component that is loaded and/or executed. Once the
application key is derived, the preceding application key may be deleted to avoid
unauthorized access to the preceding application key. An application key that remains in the
sequence of application keys may be utilized to verify an application state of the device, to
encrypt data and/or to perform other operations.

[0013] In various embodiments, the keying infrastructure generates a key for an

encryption key hierarchy that is associated with an update to a security configuration of a

10

15

20

25

30

WO 2015/038690 PCT/US2014/055058

device. For example, when a security configuration of a TrEE loader is updated, a new
encryption key that is accessible to the TrEE loader may be derived based on a random value
that is associated with the updated security configuration of the TrEE loader. Further, when
a security configuration of a TrEE core is updated, a new encryption key that is accessible
to the TrEE core may be derived based on a security version number of the updated security
configuration of the TrEE core. Further, in various embodiments the keying infrastructure
may generate keys that are based on a type of platform that is being implemented on a
device, a debug status indicating whether or not debugging is enabled or disabled and/or a
number of times that debugging has been enabled or disabled, and/or a variety of other
information.

[0014] In many instances, the keying infrastructure described herein may increase the
protection of cryptographic keys from unauthorized access. In one example, by deriving
various identity and/or encryption keys with a KDF, the keys may be less susceptible to
unauthorized use. Further, in instances when a preceding key in a sequence of keys is
deleted, such as upon the derivation of a subsequent key in the sequence of keys, the
preceding key may be made inaccessible. Additionally, by providing different components
of a device with different keys, a device may further protect the keys from unauthorized
access and may avoid regenerating keys for each component anytime a single component is
compromised. Further, unauthorized access to keys may be avoided by including keys that
are associated with updates to security configurations of a TrEE loader and/or TrEE core.
[0015] This briefintroduction is provided for the reader’s convenience and is not intended
to limit the scope of the claims, nor the proceeding sections. Furthermore, the techniques
described in detail below may be implemented in a number of ways and in a number of
contexts. Example implementations and contexts are provided with reference to the
following figures, as described below in more detail. It is to be appreciated, however, that

the following implementations and contexts are only examples of many.

Example Environment

[0016] FIG. 1 illustrates an example environment 100 that is usable to implement the
system and/or processes associated with the keying infrastructure described herein. The
environment 100 includes a computing device 102 (hereinafter “the computing device 102”)

having a keying infrastructure 104 that generates and/or manages one or more cryptographic

10

15

20

25

30

WO 2015/038690 PCT/US2014/055058

keys 106 (hereinafter “the keys 106”). The environment 100 also includes a service provider
108 to provide one or more services to the computing device 102. The service provider 108
may assist in generating and/or managing the keys 106. For example, the service provider
108 may store one or more of the keys 106 to identify the computing device 102 and/or
verify a particular application state of the computing device 102. In various embodiments,
the computing device 102 may communicate with the service provider 108 via one or more
networks 110, such as the Internet, a Mobile Telephone Network (MTN), or other various
communication technologies.

[0017] The computing device 102 may include, but is not limited to, any one of a varicty
of computing devices, such as a smart phone, a mobile phone, a personal digital assistant
(PDA), an electronic book device, a laptop computer, a desktop computer, a tablet computer,
a portable computer, a gaming device, a personal media player device, a server computer or
any other electronic device.

[0018] The computing device 102 may include one or more processors 112 (hereinafter
“the processor 112”) and memory 114. The processor 112 may be a single processing unit
or a number of units, each of which could include multiple different processing units. The
processor 112 may include one or more microprocessors, microcomputers,
microcontrollers, digital signal processors, central processing units (CPUs), graphics
processing units (GPUs), security processors (e.g., secure cryptoprocessors), and/or other
processors. Alternatively, or in addition, some or all of the techniques described herein can
be performed, at least in part, by one or more hardware logic components. For example, and
without limitation, illustrative types of hardware logic components that can be used include
Field-programmable Gate Arrays (FPGAs), Application-specific Integrated Circuits
(ASICs), Application-specific Standard Products (ASSPs), state machines, Complex
Programmable Logic Devices (CPLDs), other logic circuitry, systems on chips (SoCs),
and/or any other devices that perform operations based on software and/or hardware coded
instructions. Among other capabilities, the processor 112 may be configured to fetch and/or
execute computer-readable instructions stored in the memory 114.

[0019] The memory 112 may include one or a combination of computer-readable media.
As used herein, “computer-readable media” includes computer storage media and
communication media.

[0020] Computer storage media includes volatile and non-volatile, removable and non-

removable media implemented in any method or technology for storage of information, such

10

15

20

25

30

WO 2015/038690 PCT/US2014/055058

as computer-readable instructions, data structures, program modules, or other data.
Computer storage media includes, but is not limited to, phase change memory (PRAM),
static random-access memory (SRAM), dynamic random-access memory (DRAM), other
types of random access memory (RAM), read only memory (ROM), electrically erasable
programmable ROM (EEPROM), flash memory or other memory technology, compact disk
ROM (CD-ROM), digital versatile disks (DVD) or other optical storage, magnetic cassettes,
magnetic tape, magnetic disk storage or other magnetic storage devices, or any other
medium that can be used to store information for access by a computing device.

[0021] In contrast, communication media includes computer-readable instructions, data
structures, program modules, or other data in a modulated data signal, such as a carrier wave.
As defined herein, computer storage media does not include communication media.

[0022] 1In some instances, the processor 112 and/or the memory 114 may include one or
more fuses to store information, such as one or more of the keys 106 or other information.
A fuse may generally include a hardware component that may store information in a
permanent non-volatile manner (e.g., once a value is stored, the value cannot be
overwritten). A fuse may comprise a wire that may be “burned-out” by causing a threshold
amount of electric current to flow through the wire. A fuse that is “burned-out” may be
associated with a broken conductive path. A single fuse may store one bit of information.
As such, multiple fuses may be used to store a single cryptographic key. In one example, a
fuse value is inaccessible for reading and/or writing outside a security processor, and may
only be used to “seed” a key derivation function of the security process at boot time (e.g.,
as input to the key derivation function).

[0023] The keying infrastructure 104 may include hardware and/or software components.
For example, the keying infrastructure 104 may be implemented by one or more modules
stored in the memory 114 and/or by one or more components of the processor 112. As such,
the keying infrastructure 104 is illustrated in FIG. 1 as overlapping the processor 112 and
the memory 114. As used herein, the term “module” is intended to represent example
divisions of software and/or firmware for purposes of discussion, and is not intended to
represent any type of requirement or required method, manner or organization. Accordingly,
while various “modules” are discussed, their functionality and/or similar functionality could
be arranged differently (e.g., combined into a fewer number of modules, broken into a larger
number of modules, etc.). Further, while certain functions are described herein as being

implemented as software modules configured for execution by a processor, in other

10

15

20

25

30

WO 2015/038690 PCT/US2014/055058

embodiments, any or all of the functions may be implemented (e.g., performed) in whole or
in part by hardware logic components, such as FPGAs, ASICs, ASSPs, state machines,
CPLDs, other logic circuitry, SoCs, and so on.

[0024] The keying infrastructure 104 may include one or more boot loaders 116
(hereinafter “the boot loader 116”) and a Trusted Execution Environment (TrEE) 118. The
boot loader 116 may include one or more stages of boot loaders, such as a primary boot
loader (PBL) that loads a secondary boot loader (SBL). The boot loader 116 may generally
be one of the initial components that is executed upon booting the computing device 102
and may load applications, an operating system, the TrEE 118, another run-time
environment, and so on. In one example, the boot loader 116 boots the computing device
102 according to one or more stages, where each stage loads a next stage. Each stage in the
boot process may be associated with loading and/or executing a component (e.g., an
application or other data) and perform other processing described herein. Meanwhile, the
TrEE 118 may provide an isolated environment to process, store, and otherwise protect
confidential and/or sensitive information. The TrEE 118 may reside in the processor 112
and/or as one or more modules in the memory 114 and may provide a higher level of
protection to attacks than, for example, a general purpose operating system. In one example,
the TrEE 118 may be implemented as the “trust zone” of ARM processor.

[0025] The TrEE 118 may include the TrEE loader 120 to load or boot a TrEE core 122
and perform other functionality. Upon loading or booting the TrEE core 122, the TrEE
loader 120 may return to a non-executed state. In some instances, the TrEE core 122 may
operate similar to a kernel of an operating system. The TrEE core 122 may generally
implement the TrEE 118 at run-time. The TrEE core 122 may load and/or execute one or
more TrEE applications 124 that execute within the TrEE 118. For illustrative purposes, and
without limitation, a TrEE application may include a banking application to carry out
banking transactions, a purchase application to purchase an item with a pay phrase, an
application to update an operating system, and so on. The TrEE core 122 may utilize the
keys 106 to encrypt/decrypt data and/or verify an application state of the computing device
102 for the one or more TrEE applications 124. That is, the TrEE core 122 may perform
various processes with the keys 106 without making the keys 106 available to the one or
more TrEE applications 124.

[0026] The boot loader 116 and/or TrEE 118 may generally generate and/or manage the
keys 106. The keys 106 may include identity keys, encryption keys, hardware keys, and/or

10

15

20

25

30

WO 2015/038690 PCT/US2014/055058

a variety of other types of keys that are derived via a key derivation function (KDF) or other
one-way function. A KDF may receive a key, random value, and/or other information and
output a key. The keys 106 may be arranged in a hierarchy with different levels of
accessibility to the components of the keying infrastructure 104. To illustrate, the keys 106
may include a key that is only accessible to the boot loader 116, the TrEE loader 120, and/or
the TrEE core 122. The keys 106 may be generated during provisioning of the computing
device 102 (e.g., during the manufacturing process or shortly thereafter), at boot time by the
boot loader 116 or TrEE loader 120, and/or at run-time by the TrEE core 122. Example key
hierarchies are discussed in further detail below in reference to FIGS. 2 and 3.

[0027] In various embodiments, a key of the keys 106 may be generated and/or stored
during provisioning of the computing device 102. Provisioning may generally include
configuring the computing device 102 for deployment to end-users and others and may
occur at the time of manufacturing or shortly thereafter. For example, at the time of
manufacturing, a root key may be generated for the computing device 102 and stored in
fuses in the computing device 102. This root key may be used to derive a root identity key,
which may be used to derive a platform key. The root identity key and/or platform key may
be provided to the service provider 108 and/or a data store along with a device identifier
that identifies the computing device 102. The service provider 108 and/or data store may
maintain these keys in order to perform an attestation process, as described in further detail
below.

[0028] The service provider 108 may include one or more computing devices, such as one
or more desktop computers, laptop computers, servers, and the like. The one or more
computing devices may be configured in a cluster, data center, cloud computing
environment, or a combination thereof. In one example, the one or more computing devices
provide cloud computing resources, including computational resources, storage resources,
and the like, that operate remotely from the computing device 102.

[0029] The one or more computing devices of the service provider 108 may include one
or more processors 126 and memory 128. The one or more processors 126 may comprise a
single processing unit or a number of units, each of which could include multiple different
processing units. The one or more processors 126 may include, for example, one or more
microprocessors, microcomputers, microcontrollers, digital signal processors, CPUs, GPUs,

security processors (e.g., secure cryptoprocessors), etc.

10

15

20

25

30

WO 2015/038690 PCT/US2014/055058

[0030] The memory 128 may include an attestation module 130 to perform an attestation
process in which the computing device 102 communicates with the service provider 108 to
identify the computing device 102 and/or verify a particular application state (e.g., a safe
state that is not compromised, tampered with, subjected to malware, etc.). To do so, the
attestation module 130 may utilize a root identity key and/or platform identity key that was
made available during provisioning of the computing device 102 and may utilize a log of
applications that have been loaded and/or executed on the computing device 102. The
attestation module 130 may perform substantially the same operations that are performed at
the computing device 102 to generate a key hierarchy from the root identity key and/or
platform identity key. The end-result of the key hierarchy that is generated at the computing
device 102 and/or other information that is derived from the key hierarchy may be provided
to the attestation module 130, where it is compared to information that is generated at the
attestation module 130. If the information matches, the computing device 102 may be
identified and/or verified that it is associated with a particular application state. The service
provider 108 may comprise and/or be associated with an attestation service. In some
instances, the service provider 108 is associated with an attestation service for a particular
type of platform (e.g., operating system).

[0031] The memory 128 may also include an encryption/decryption module 132 to
encrypt and/or decrypt data to securely communicate with the computing device 102. In one
example, the computing device 102 may encrypt data at the computing device 102 with an
encryption key of an encryption hierarchy described herein and the encryption/decryption
module 132 may decrypt the data. In another example, the encryption/decryption module
132 may encrypt data with an encryption key of an encryption hierarchy described herein
and the computing device 102 may decrypt the data.

[0032] Although the keys 106 are illustrated as being stored at the computing device 102,
in various embodiments any number of the keys 106 may be stored and/or managed by the
service provider 108. This may include a root identity/encryption key, platform key, and/or
any other type of key.

[0033] The environment 100 also includes one or more users 134 to employ the
computing device 102. The one or more users 134 may interact with the computing device
102 to perform a variety of operations.

Example Kev Hierarchies

10

15

20

25

30

WO 2015/038690 PCT/US2014/055058

[0034] FIG. 2 illustrates an example key hierarchy 200 that includes a sequence of
applications keys. In this example, the key hierarchy 200 is discussed in the context of
identity keys, however, in other examples the key hierarchy 200 may include encryption
keys or other types of keys. For ease of illustration, the key hierarchy 200 will be discussed
as being generated by the computing device 102 of the environment 100. In other instances,
the key hierarchy 200 may be generated by other devices. Although the key hierarchy 200
is discussed as being generated from specific operations and including specific keys, it
should be appreciated that any of these operations and/or keys may be omitted in some
instances. Further, any of the operations may be simplified.

[0035] 1In this example, the computing device 102 obtains a root key 202 (sometimes
referred to as “Kfuse”) from multiple fuses of the computing device 102. The root key 202
may have been formed in the fuses during provisioning of the computing device 102. The
root key 202 may comprise a unique value for the computing device 102. The root key 202
may be retrieved by the boot loader 116 during a boot process of the computing device 102
(e.g., while booting the computing device 102). In this example, the root key 202 is not
made available to other components of the computing device 102 besides the boot loader
116 (e.g., access is restricted to the boot loader 116).

[0036] The computing device 102 may utilize the root key 202 to derive or create a root
identity key 204 (sometimes referred to as “Kid_root”). The root identity key 204 may be
derived or created with a key derivation function (KDF), with inputs (e.g., inputs to the
KDF) including the root key 202 and/or an identity root identifier (sometimes referred to as
“KDF_ID_ROOT”). The identity root identifier may comprise a unique value that is utilized
for an identity key hierarchy. The root identity key 204 may generally be derived or created
by the boot loader 116 during a boot process of the computing device 102. In this example,
the root identity key 204 is made available to the boot loader 116. Although the root identity
key 204 is derived from the root key 202 in the example of FIG. 2, in other examples the
root identity key 204 may be retrieved from multiple fuses of the computing device 102.
[0037] The computing device 102 may utilize the root identity key 204 to derive or create
a platform identity key 206 (sometimes referred to as “Kid msTree” or “Kid_other”). The
platform identity key 206 may be derived or created with a KDF, with inputs including the
root identity key 204, a platform identifier (sometimes referred to as a global unique
identifier, “GUID”), and/or an identity TrEE identifier (sometimes referred to as

“KDF _Tree ID”). The platform identifier may comprise a unique value that is associated

10

15

20

25

30

WO 2015/038690 PCT/US2014/055058

with a platform (e.g., operating system, eco-system, etc.). The platform identifier may be
utilized to distinguish identity keys of one type of platform from identity keys of another
type of platform. A platform identifier that is associated with a platform of the computing
device 102 may be selected to derive or create the platform identity key 206. In one example,
the identity TrEE identifier may comprise a unique value that is associated with a TrEE.
[0038] The platform identity key 206 may be derived or created by the boot loader 116
during a boot process of the computing device 102. The platform identity key 206 may also
be derived or created during provisioning of the computing device 102 and provided to a
service provider, such as the service provider 108 of FIG. 1 (e.g., to be utilized in an
attestation process). In this example, the platform identity key 206 is made available to the
boot loader 116 and the service provider 108. Further, in some instances the platform
identity key 206 may be deleted before run-time, so that the key is not available to run-time
components of the computing device 102.

[0039] The platform identity key 206 may be used to create an initial application identity
key 208(1) (sometimes referred to as “Kid sbl[0]”) in a sequence of application identity
keys 208(1)-(m) (“Kid_sbl[0]-[m-1]"). That is, the initial application identity key 208(1)
may be set to the platform identity key 206. The initial application identity key 208(1) may
be set by the boot loader 116, for example.

[0040] After the initial application identity key 208(1) is created, a new application
identity key may be derived or created for the sequence of application identity keys 208
cach time a component, such as an application, is loaded and/or executed. Each application
identify key, after the initial application identity key 208(1), may be derived or created with
a KDF, with inputs including a preceding application identity key, a boot loader identifier
(e.g., which may be unique) (sometimes referred to as “KDF _ID SBL”), and/or a hash of
the component that is being loaded or executed (e.g., a hash of the application source code).
[0041] In the example of FIG. 2, an application identity key is derived for each stage of a
boot process of the computing device 102 (e.g., a process performed by the boot loader 116).
Each stage of the boot process may load and/or execute a component (e.g., an application
or other data), derive an application identify key for the sequence of application identity
keys 208, delete a preceding application identity key of the sequence of application identity
keys 208, and then launch a next stage of the boot process. This may continue any number
of times through all stages of the boot process. Since a preceding application identity key is

deleted before launching a next stage of the boot process, the preceding application identity

10

10

15

20

25

30

WO 2015/038690 PCT/US2014/055058

key may be inaccessible to the next stage of the boot process. As such, each stage of the
boot process may be associated with a different component that is loaded and/or executed.
[0042] To illustrate, assume that the computing device 102 has just created the application
identity key 208(2). When an application is loaded, the application identity key 208(3) may
be derived based on the directly preceding application identity key 208(2), a boot loader
identifier (e.g., randomly generated), and a hash of the application. That is, the preceding
application identity key 208(2), the boot loader identifier, and the hash of the application
may be input to the KDF to derive the application identity key 208(3). Thereafter, the
preceding application identity key 208(2) may be deleted (e.g., wiped) to avoid unauthorized
access of the application identity key 208(2). In this illustration, an immediately preceding
application identity key is deleted, however, in other illustrations any of the preceding
application identity keys may be deleted (e.g., when those preceding keys are still
maintained).

[0043] As noted above, application identity keys may be derived or created for the
sequence of application identity keys 208 until the stages of the boot process are complete.
That is, until the application identity key 208(m) is created. The application identity key
208(m) may be used to derive an image identity operation key 210 (sometimes referred to
as “Kid _tree”). The image identity operation key 210 may be derived with a KDF, with
inputs including the application identity key 208(m), a TrEE identity identifier (e.g., which
may be unique) (sometimes referred to as “KDF _ID TREE”), and/or a hash of a TrEE
image. The TrEE image may include boot-time and/or run-time TrEE executables, including
the TrEE boot code (e.g., the TrEE loader 120), the TrEE core 122, and/or one or more TrEE
applications (e.g., the TrEE applications 124). The image identity operation key 210 may
be derived during the boot process of the computing device 102 (e.g., by the boot loader
116). The application identity key 208(m) may be deleted (e.g., wiped) after the image
identity operation key 210 is created. The image identity operation key 210 may be made
available to the boot loader 116, the TrEE loader 120, the TrEE core 122, and/or the service
provider 108.

[0044] Thereafter, the TrEE loader 120 may be loaded (e.g., by the boot loader 116) and
given access to the image identity operation key 210. The TrEE loader 120 may load the
TrEE core 122, which implements the TrEE 118, including loading and/or executing the
one or more TrEE applications 124. The TrEE core 122 may maintain the image identity

operation key 210 and may continue to operate after the boot process is complete (e.g.,

11

10

15

20

25

30

WO 2015/038690 PCT/US2014/055058

including maintaining the image identity operation key 210). As such, in many instances the
image identity operation key 210 may remain and not be deleted during run-time of the
computing device 102.

[0045] The image identity operation key 210 may be used during an attestation process in
which the computing device 102 communicates with the service provider 108 to identify the
computing device 102 and/or verify a particular application state of the computing device
102 (e.g., a safe state that is not compromised). For instance, the computing device 102 may
seek to prove to the service provider 108 that it has a security configuration that satisfies
one or more criteria, such as having up-to-date software with the latest security updates (e.g.,
the most recent software updates) or having a security configuration that is associated with
a level of security above a threshold.

[0046] During an attestation process, a TrEE application, such as a TPM or other
application running in the TrEE 118, may desire to verify that the computing device 102 has
not been compromised in order to perform a particular task (e.g., open a secure
communication channel, use a password to login, etc.). To do so, the TrEE application may
send a request to the service provider 108 to verify the application state of the computing
device 102. The request may include a device identifier of the computing device 102 (e.g.,
a unique value identifying the computing device 102) and/or a log of applications that have
been loaded within the computing device 102. In some instances, the log may include a hash
of the applications that have been loaded, which may have been generated as the
applications were loaded within the computing device 102.

[0047] 1In response to the request, the service provider 108 may send a challenge to the
TrEE application to verify the application state of the computing device 102. The challenge
may include a random value. The computing device 102 may use the random value and an
identity key of the key hierarchy 200 to provide a response to the challenge. In sum, the
TrEE application may seek to provide a response that indicates that the computing device
102 is who the computing device 102 claims to be (e.g., the computing device 102 is running
the applications that have been listed in the log and/or has not been compromised). Since
the TrEE application may not have access to keys of the identity key hierarchy 200, the
TrEE application may send the challenge to the TrEE core 122 to generate a response to the
challenge.

[0048] The TrEE core 122 may generate a response by deriving an application identity
operation key 212 (sometimes referred to as “Kid_app”) with a KDF based on the image

12

10

15

20

25

30

WO 2015/038690 PCT/US2014/055058

identity operation key 210, a TrEE application identifier (sometimes referred to as
“KDF_ID_APP”), and/or a hash of the TrEE application. The TrEE core 122 may utilize
the application identity operation key 212 to derive a response 214 (sometime referred to as
“QuoteResponse™). The response 214 may be derived with a KDF based on the application
identity operation key 212, a response identifier (sometimes referred to as
“KDF_QUOTE”), and/or a hash of the challenge. The response 214 may then be provided
to the TrEE application and then sent to the service provider 108. As such, the response 214
may comprise a key that generally reflects the image (e.g., applications that are loaded on
the computing device 102).

[0049] The service provider 108 may utilize the response 214 to identify the computing
device 102 and/or verify a particular application state of the computing device 102. In
particular, the service provider 108 may retrieve the platform identity key 206 of the key
hierarchy 200 by referencing the device identifier of the computing device 102 that was
provided to the service provider 108 by the computing device 102. As noted above, the
platform identity key 206 may have been provided to the service provider 108, in association
with the device identifier, at the time of provisioning of the computing device 102. The
service provider 108 may utilize the platform identity key 206 with the log of applications
that are loaded within the computing device 102 to generate the application identity keys
208 and the image identity operation key 210 in a similar process that was performed by the
computing device 102. In sum, the service provider 108 may seck to replicate the process
that was performed at the computing device 102 to generate the key hierarchy 200. The
image identity operation key 210 that is generated at the service provider 108 may be used
to derive an application identity operation key and, thereafter, a response in a same manner
as that done at the computing device 102. The response generated at the service provider
108 may be compared to the response that was provided to the service provider 108 by the
computing device 102. When the responses match, the service provider 108 may determine
that the computing device 102 is identified and/or verified.

[0050] Additionally, or alternatively, in some instances the computing device 102 may be
identified and/or verified when the service provider 108 determines that the computing
device 102 has a security configuration that satisfies one or more criteria, such as having
up-to-date software with the latest security updates (e.g., the most recent software updates)
and/or having a security configuration that is associated with a level of security above a

threshold. To make such a determination, the service provider 108 may reference the log of

13

10

15

20

25

30

WO 2015/038690 PCT/US2014/055058

applications that are loaded within the computing device 102 and a list of the latest
application updates to determine if the computing device 102 has such a security
configuration.

[0051] In the above example of FIG. 2, the sequence of application identity keys 208 has
been described as being created during the boot process of the computing device 102.
However, in other instances the sequence of application identity keys 208 may include keys
that are created at other times. In some instances, initial keys in the sequence of application
identity keys 208 may be created during the boot process of the computing device 102. Here,
a preceding application identity key may be deleted when a new application identity key is
created, as discussed above. Thereafter, additional application identity keys may be created
for the sequence of application identity keys 208 during execution of the TrEE 118. Here,
an application identity key may be created each time a component is loaded within the TrEE
118. The additional application identity keys may be maintained by the TrEE core 122. As
such, in some instances an application identity key may be generated at run-time of the
computing device 102. In instances where an application identity key is created for a
component that is loaded within the TrEE 118, an attestation process may include providing
a log of that identifies that component to the service provider 108 to verify an application
state.

[0052] FIG. 3 illustrates an example key hierarchy 300 that is based on a security
configuration of a device (e.g., a version of security of a device). In this example, the key
hierarchy 300 is discussed in the context of encryption keys, however, in other examples
the key hierarchy 300 may include identity keys or other types of keys. For ease of
illustration, the key hierarchy 300 will be discussed as being generated by the computing
device 102 of the environment 100. In other instances, the key hierarchy 300 may be
generated by other devices. Although the key hierarchy 300 is discussed as being generated
from specific operations and including specific keys, it should be appreciated that any of
these operations and/or keys may be omitted in some instances. Further, any of the
operations may be simplified.

[0053] 1In this example, the computing device 102 obtains a root key 302 (sometimes
referred to as “Kfuse”) from multiple fuses of the computing device 102. The root key 302
may have been formed (e.g., stored) in the fuses during provisioning of the computing
device 102. The root key 302 may comprise a unique value for the computing device 102.

The root key 302 may generally be retrieved by the boot loader 116 during a boot process

14

10

15

20

25

30

WO 2015/038690 PCT/US2014/055058

of the computing device 102 (e.g., while booting the computing device 102). In this
example, the root key 302 is accessible to the boot loader 116 and is not made available to
other components of the computing device 102 (e.g., access is restricted to the boot loader
116).

[0054] The computing device 102 may utilize the root key 302 to derive or create a root
encryption key 304 (sometimes referred to as “Kenc”). The root encryption key 304 may be
derived or created with a KDF, with inputs including the root key 302, an encryption
identifier (sometimes referred to as “KDF _ENC”), and/or a debug status of the computing
device 102 (sometimes referred to as “DebugStatus”). The encryption identifier may
comprise a unique value that is utilized for generating an encryption key hierarchy. The root
encryption key 304 may generally be derived or created by the boot loader 116 during a
boot process of the computing device 102. In this example, the root encryption key 304 is
made available to the boot loader 116.

[0055] The debug status may indicate whether or not debugging is enabled or disabled for
the computing device 102 and/or a number of times that debugging has been enabled or
disabled. When debugging is enabled, an entity, such as a service provider or user, may
debug the computing device 102 and gain access to cryptographic keys (e.g., which may
facilitate debugging). Alternatively, when debugging is disabled, the entity may not debug
the computing device 102 and may be restricted from accessing cryptographic keys.
Debugging may generally include finding errors in the computing device 102 and/or
resolving those errors. The debug status may be stored in a fuse bank (e.g., a set of fuses) in
the computing device 102 and may be initially set to zero. Each time debugging is enabled
or disabled, the debug status may be incremented. That is, each time debugging is enabled
or disabled, a fuse in the fuse bank may be “burned-out”. In one example, if the number of
“burned-out” fuses is odd, then debugging is enabled. Whereas, if the number of “burned-
out” fuses is even, then debugging is disabled. However, in other examples other techniques
may be used to indicate whether or not debugging is enabled or disabled. In some instances,
the debug status may comprise a binary setting indicating whether or not a device can be
debugged. Further, in some instances the debug status may comprise a bitmask indicating
various ways in which a device may be debugged (e.g., through Joint Test Action Group
(JTAGQG), kernel debugging, etc.).

[0056] The computing device 102 may utilize the root encryption key 304 to derive or

create a platform encryption key 306 (sometimes referred to as “Kenc msTree” or

15

10

15

20

25

30

WO 2015/038690 PCT/US2014/055058

“Kenc_other”). The platform encryption key 306 may be derived or created with a KDF,
with inputs including the root encryption key 304, a platform identifier (sometimes referred
to as a global unique identifier, “GUID”), and/or an encryption TrEE identifier (sometimes
referred to as “KDF _ENC Tree”). As noted above, the platform identifier may comprise a
unique value that is associated with a platform (e.g., operating system, eco-system, etc.).
The platform identifier that is associated with a platform of the computing device 102 may
be selected to derive or create the platform encryption key 306. The platform encryption
key 306 may be derived or created by the boot loader 116 during a boot process of the
computing device 102. The platform encryption key 306 may be made available to the boot
loader 116. In some instances the platform encryption key 306 may be deleted before run-
time, so that the key is not available to run-time components of the computing device 102.

[0057] The platform encryption key 306 may be utilized to derive or create TrEE loader
encryption keys 308(1)-(n) (sometimes referred to as “Kenc_treeloader[0]-[n-1]"). Each of
the TrEE loader encryption keys 308 may be derived or created with a KDF, with inputs
including the platform encryption key 306, an encryption TrEE loader identifier (sometimes
referred to as “KDF_ENC TREELOADER”), and/or one of TrEE loader values(1)-(n)
(sometimes referred to as “TreeLoaderEncld[0]-[n-1]"). Each time a security configuration
of the TrEE loader 120 is updated, such as when information that is accessible to the TrEE
loader 120 is made available to an unauthorized party, a new TrEE loader value may be
generated at a service provider where the new TrEE loader is generated (e.g., where the new
security configuration is generated). A TrEE loader value may comprise a randomly
generated value and may be stored for later use. For example, a newly created TrEE loader
value may be stored in an array or list that is stored within an executable of the TrEE loader
120 (e.g., within the TrEE image). The array may include previously created TrEE loader
values, as well as the newly created TrEE loader value. The executable of the TrEE loader
120 may be provided to the computing device 102 to update the security configuration of
the TrEE loader 120. Accordingly, each time a security configuration of the TrEE loader
120 is updated, a new TrEE loader encryption key may be derived from the new TrEE loader
value that is included in the new executable of the TrEE loader 120. Since the new TrEE
loader value is generated when a new security configuration is updated, and is not previously
known, this may prevent unauthorized access to a key that is derived from the TrEE loader
value, namely the TrEE loader encryption keys 308. The TrEE loader encryption keys 308
may be derived or created by the boot loader 116 and may be made accessible to the boot

loader 116 and/or the TrEE loader 120.

16

10

15

20

25

30

WO 2015/038690 PCT/US2014/055058

[0058] The computing device 102 may utilize the TrEE loader encryption keys 308 to
derive or create TrEE encryption keys 310(1)-(p) (sometimes referred to as “Kenc_tree[0]-
[1-p]”). In this example, “p” represents the number of security configurations to which the
TrEE core 122 has been updated. Each of the TrEE encryption keys 310 may be derived or
created with a KDF, with inputs including an encryption TrEE identifier (sometimes
referred to as “KDF _ENC TREE”), a security version number (SVN) of a security
configuration of the TrEE core 122, and/or one of the TrEE loader encryption keys 308. The
TrEE encryption keys 310 may be derived or created by the TrEE loader 120 and may be
made available to the TrEE loader 120 and/or the TrEE core 122. Each time a security
configuration of the TrEE core 122 is updated (e.g., at a service provider where the new
security configuration is generated), a new SVN may be generated for the new security
configuration of the TrEE core 122. Thereafter, when the computing device 102 is booted,
a TrEE encryption key may be generated for each of the security configurations of the TrEE
core 122 (e.g., for cach of the SVNG).

[0059] In the example of FIG. 3, the TrEE encryption keys 310(1)-(p) may be created for
cach of the security configurations of the TrEE core 122. In particular, when the computing
device 102 is booted, a TrEE encryption key may be created for each of SVNs 1-p
corresponding to the security configurations of the TrEE core 122. As also shown in FIG.
3, a security configuration of the TrEE loader 120 has been updated “n” times, and a TrEE
loader encryption key has been generated for cach of the TrEE loader values 1-n
corresponding to the security configurations of the TrEE loader 120. Here, the security
configuration of the TrEE core 122 was updated twice before the security configuration of
the TrEE loader 120 was updated, as illustrated by the TrEE encryption keys 310(1) and
310(2) being derived from the TrEE loader encryption key 308(1).

[0060] As noted above, the different levels of the key hierarchy 300 are made accessible
to different components of the computing device 102. This may allow an authorized attack
to be isolated within a level and avoid replacing all keys within the key hierarchy 300. In
some instances, one or more of the keys at a particular level are stored for later use, such as
in an array, so that data that was encrypted with the key may be decrypted after a new
encryption key has been generated. For example, the TrEE encryption keys 310 may be
stored for later use.

[0061] 1In one example, the key hierarchy 300 may be utilized to encrypt and/or decrypt

data. For instance, assume that a TrEE application, such as one of the TrEE applications 124

17

10

15

20

25

30

WO 2015/038690 PCT/US2014/055058

that is running in the TrEE 118 is attempting to encrypt data, such as a binary large object
(Blob) or any other type of data. Here, the TrEE application may send the data to the TrEE
core 122 to encrypt the data. As noted above, the TrEE core 122 may maintain the TrEE
encryption keys 310 that are used to encrypt the data. In particular, the TrEE core 122 may
utilize a most recently derived TrEE encryption key of the TrEE encryption keys 310(1)-
(p), such as the TrEE encryption key 310(p), to encrypt the data. When the data needs to be
decrypted, a TrEE application may send a request to the TrEE core 122 to decrypt the data
with the same key that was used to encrypt the data. By storing the TrEE encryption keys
310, the TrEE core 122 may decrypt data even when a new TrEE encryption key has been
derived. The TrEE encryption keys 310 may be maintained by the TrEE core 122 in a more
protected environment than that of the TrEE applications.

[0062] Although the key hicrarchy 300 has been discussed as being created and used by
the computing device 102, in some instances the key hierarchy 300 may be created and/or
used by other devices, such as the service provider 108. In one example, data may be
encrypted at the computing device 102 and decrypted at the service provider 108. The
service provider 108 may have access to the root encryption key 304 and/or the platform
encryption key 306 and replicate the rest of the key hierarchy 300 (e.g., including the TrEE
encryption keys 310) in order to decrypt the data. In another example, the service provider
108 may not store encryption keys and may identify a computing device as being authorized
to communicate with the service provider 108 in a secure manner. Here, the computing
device and the service provider 108 may agree on an encryption key.

Example Processes

[0063] FIGS. 4 and 5 illustrate example processes 400 and 500 for employing the
techniques described herein. For ease of illustration the processes 400 and 500 are described
as being performed in the environment 100 of FIG. 1. For example, one or more of the
individual operations of the processes 400 and 500 may be performed by the computing
device 102 and/or the service provider 108. However, the processes 400 and 500 may be
performed in other environments. Moreover, the environment 100 may be used to perform
other processes.

[0064] The processes 400 and 500 (as well as cach process described herein) are
illustrated as a logical flow graph, each operation of which represents a sequence of
operations that can be implemented in hardware, software, or a combination thereof. In the

context of software, the operations represent computer-executable instructions stored on one

18

10

15

20

25

30

WO 2015/038690 PCT/US2014/055058

or more computer-readable media that, when executed by one or more processors, configure
the one or more processors to perform the recited operations. Generally, computer-
executable instructions include routines, programs, objects, components, data structures,
and the like that perform particular functions or implement particular abstract data types.
The order in which the operations are described is not intended to be construed as a
limitation, and any number of the described operations can be combined in any order and/or
in parallel to implement the process. Further, any of the individual operations may be
omitted.

[0065] FIG. 4 illustrates the example process 400 to generate a key hierarchy that includes
a sequence of application keys.

[0066] At402, the computing device 102 may obtain a root key for the key hierarchy from
multiple fuses of the computing device 102 or other entity. The root key may have been
formed in the fuses during provisioning of the computing device 102. The root key may
comprise a unique value for the computing device 102, for example.

[0067] At 404, the computing device 102 may obtain a root identity or encryption key
from multiple fuses or a key derivation function (KDF). For example, when the key
hierarchy is associated with identity keys a root identity key may be obtained, whereas when
the key hierarchy is associated with encryption a root encryption key may be obtained.
[0068] At 406, the computing device 102 may derive or create a platform key with the
KDF based on the root identity or encryption key and/or a platform identifier for a platform
that is implemented on the computing device 102.

[0069] At 408, the computing device 102 may set an initial application key in a sequence
of application keys of the hierarchy. The initial application key may be set to the platform
key.

[0070] At 410, the computing device 102 may load a next stage of a boot process. As
noted above, each stage of the boot process of the computing device 102 may be associated
with loading and/or executing a different component. As such, the next stage may be loaded
when a component is to be loaded and/or executed.

[0071] At 412, the computing device 102 may derive an application key for the sequence
of application keys with the KDF. The application key may be derived based on a preceding
application key that directly precedes the application key in the sequence of application keys
and/or a hash of the component (e.g., application) that is loaded or executed (e.g., during

the current stage of the boot process). In some instances, an application key may be derived

19

10

15

20

25

30

WO 2015/038690 PCT/US2014/055058

while the computing device 102 is booting. At 414, the computing device 102 may delete
the preceding application key upon deriving the application key.

[0072] At 416, the computing device 102 may determine whether or not to load a next
stage of the boot process. This may include determining whether or not there are other
components to load and/or execute during the boot process. When it is determined to load
the next stage of the boot process, the process 400 may return to operation 410 (e.g., the
YES branch). Alternatively, when it is determined to not load a next stage of the boot
process (e.g., there is no further stage to load), the process 400 may proceed to operation
418 (e.g., the NO branch).

[0073] At418, the computing device 102 may derive an image operation key (e.g., image
identity operation key) for an image of a Trusted Execution Environment (TrEE) with the
KDF. The image operation key may be derived based on the application key that remains in
the sequence of application keys (e.g., a last application key in a sequence of application
keys) and/or a hash of the image of the TrEE.

[0074] At 420, the computing device 102 may delete the application key that remains in
the sequence of application keys. This may prevent unauthorized access to the application
key.

[0075] At 422, the computing device 102 may provide the image operation key to the
TrEE, such as a TrEE loader and/or a TrEE core. For example, the TrEE loader may be
given authorization to access the image operation key.

[0076] At 424, the computing device 102 may utilize the image operation key to verify
an application state of the computing device 102 and/or to encrypt/decrypt data. In one
example of verifying an application state, the computing device 102 may send, to a service
provider, a device identifier of the computing device 102 and a log of applications that have
been loaded. The computing device 102 may receive a challenge from the service provider
to verify the application state of the computing device. The computing device 102 may then
derive, with the KDF, an application operation key (e.g., application identity operation key)
for an application that is running within the TrEE based on the image operation key and/or
a hash of the application that is running within the TrEE. The computing device 102 may
generate a response to the challenge based on the application operation key. The response
may be sent to the service provider to verify the application state of the computing device
102. Although shown in FIG. 4 as being performed before receiving the challenge, the

computing device 102 may send the device identifier and the log of applications that have

20

10

15

20

25

30

WO 2015/038690 PCT/US2014/055058

been loaded at any time (e.g., after receiving the challenge, after sending the response, or at
any other time).

[0077] FIG. 5 illustrates the example process 500 to generate an encryption key hierarchy.
The encryption key hierarchy may include a root key and encryption keys that are generated
with a KDF or other one-way function. Each encryption key of the encryption keys may be
generated based on the root key or an encryption key that is closer to the root key than the
encryption key.

[0078] At 502, the computing device 102 may obtain a root key for the encryption key
hierarchy from multiple fuses of the computing device 102 or another entity. The root key
may have been formed in the fuses during provisioning of the computing device 102. The
root key may comprise a unique value for the computing device 102.

[0079] At 504, the computing device 102 may derive a root encryption key for the
encryption key hierarchy with a KDF based on a debug status that may indicate whether or
not debugging is enabled or disabled and/or a number of times that debugging has been
enabled or disabled. In some instances at 504, the computing device 102 may determine the
number of times that debugging has been disabled or enabled based on a number of fuses
that have been “burned-out”.

[0080] At 506, the computing device 102 may derive a platform encryption key for the
encryption key hierarchy with the KDF based on the root encryption key and/or a platform
identifier for a platform that is implemented by the computing device 102.

[0081] At 508, the computing device 102 may derive a TrEE loader encryption key with
the KDF based on a TrEE loader value and/or the platform encryption key. The TrEE loader
value may include a random number and may be stored in information associated with the
TrEE, such as within an array of TrEE loader values that is stored in a TrEE loader
executable (e.g., TrEE image). As noted above, a new TrEE loader value may be generated
at a service provider (e.g., where the new security configuration of the TrEE loader is
generated) each time a security configuration of the TrEE loader is updated (e.g., a version
of security of the TrEE loader is updated). As such, a TrEE loader encryption key and/or
TrEE loader value may be associated with a security configuration of the TrEE loader (e.g.,
an update to the security configuration).

[0082] At 510, the computing device 102 may determine whether or not there is another
TrEE loader value. For example, the computing device 102 may reference the array of TrEE

loader values, or other information, to determine if another TrEE loader value exists. When

21

10

15

20

25

30

WO 2015/038690 PCT/US2014/055058

it is determined that there is another TrEE loader value, the process 500 may return to the
operation 508 (e.g., the YES branch) and derive another TrEE loader encryption key with
the other TrEE loader value. This may be repeated any number of times until a TrEE loader
encryption key is derived for each TrEE loader value. In one example, when the operation
508 is performed for the first time, it may begin with a first TrEE loader value in the array
(c.g., a TrEE loader value that is associated with an initial security configuration of the TrEE
loader). A next TrEE loader value in the array may then be used the next time the operation
508 is performed. Alternatively, when it is determined that there is not another TrEE loader
value, the process 500 may proceed to operation 512 (e.g., the NO branch).

[0083] At 512, the computing device 102 may derive a TrEE encryption key for the
encryption key hierarchy with the KDF based on a TrEE loader encryption key and/or a
security version number (SVN) of a security configuration of the TrEE core. The TrEE
encryption key may be associated with a security configuration of the TrEE core (e.g., an
update to the security configuration).

[0084] At 514, the computing device 102 may determine whether or not there is another
SVN for the security configuration of the TrEE core. Each time a security configuration of
the TrEE core is updated, a new SVN is generated for the updated security configuration.
Thus, the operation 514 may determine if there is another security configuration for the
TrEE core (e.g., a more current security configuration). When it is determined that there is
another SVN (e.g., the YES branch), the process 500 may return to the operation 512 and
derive a TrEE encryption key for the next SVN. The operation 512 may be repeated until a
TrEE encryption key is generated for each SVN (e.g., for each security configuration). To
illustrate, if the computing device 102 is booted into security configuration three for the
TrEE core (e.g., the TrEE core has been updated three times), then the operation 512 may
be performed three times (e.g., once for SVNs 1, 2, and 3). In this illustration, when the
operation 512 is performed for the first time, the SVN of the first security configuration of
the TrEE core may be used. A next SVN of the TrEE core may then be used the next time
the operation 512 is performed. Alternatively, when it is determined that there is not another
SVN, the process 500 may proceed to operation 516 (e.g., the NO branch).

[0085] At 516, the computing device 102 may utilize an encryption key of the encryption
key hierarchy to encrypt and/or decrypt data. For example, the computing device 102 may
utilize a TrEE encryption key that was most recently derived to encrypt data (e.g., an

encryption key that is furthest from the root key in the encryption key hierarchy).

22

10

15

20

25

30

WO 2015/038690 PCT/US2014/055058

[0086] In some instances, the different keys of the encryption key hierarchy may be
accessible to different components of the computing device 102. For instance, a platform
encryption key may be accessible to a boot loader that loads the TrEE loader, a TrEE loader
encryption key may be accessible to the TrEE loader, and/or a TrEE encryption key may be
accessible to the TrEE core.

Example Embodiments

[0087] Embodiment A, a method comprising: setting, by a computing device, an initial
application key in a sequence of application keys; determining that a component is loaded
or executed, and in response to the determining: (i) deriving an application key for the
sequence of application keys with a key derivation function, the application key being
derived based at least in part on a preceding application key that directly precedes the
application key in the sequence of application keys and based at least in part on a hash of
the component that is loaded or executed; and (ii) deleting the preceding application key
upon deriving the application key; utilizing, by the computing device, an application key
that remains in the sequence of application keys after the deletion to derive an image
operation key; and utilizing the image operation key to at least one of verify an application
state of the computing device or encrypt data.

[0088] Embodiment B, the method of embodiment A, wherein each of the application
keys in the sequence of application keys comprises an encryption key utilized to encrypt
data.

[0089] Embodiment C, the method of embodiment A, wherein each of the application
keys in the sequence of application keys comprises an identity key utilized to verify the
application state of the computing device.

[0090] Embodiment D, the method of embodiment A, further comprising: obtaining a root
identity key from at least one of multiple fuses of the computing device or the key derivation
function; and deriving a platform identity key with the key derivation function, the platform
identity key being derived based at least in part on the root identity key and a platform
identifier for a platform that is implemented on the computing device; wherein the setting
comprises setting the initial application key in the sequence of application keys to the
platform identity key.

[0091] Embodiment E, the method of embodiment A, wherein the image operation key is

derived with the key derivation function based at least in part on the application key that

23

10

15

20

25

30

WO 2015/038690 PCT/US2014/055058

remains in the sequence of application keys after the deletion and a hash of an image of a
Trusted Execution Environment (TrEE).

[0092] Embodiment F, the method of embodiment E, wherein the component that is
loaded or executed comprises an application and the image operation key is utilized to verify
an application state of the computing device by: sending, to a service provider, a device
identifier of the computing device and a log of applications that have been loaded; receiving
a challenge from the service provider to verify the application state of the computing device;
deriving an application identity operation key for an application that is running within the
TrEE, the application identity operation key being derived based at least in part on the image
operation key and a hash of the application that is running within the TrEE; generating a
response to the challenge based at least in part on the application identity operation key; and
sending the response to the service provider to verify the application state of the computing
device.

[0093] Embodiment G, the method of embodiment G, wherein at least one of the
application keys in the sequence of application keys is derived while the computing device
is being booted.

[0094] Embodiment H, one or more computer-readable media storing computer-
executable instructions, the computer-executable instructions upon execution, to instruct
one or more processors to perform the method of embodiment A.

[0095] Embodiment I, one or more computer-readable media storing computer-
executable instructions, the computer-executable instructions upon execution, to instruct
one or more processors to perform operations comprising: generating an encryption key
hierarchy with a key derivation function, the encryption key hierarchy including (i) a
Trusted Execution Environment (TrEE) loader encryption key that is associated with a
current security configuration of a TrEE loader and (ii) a TrEE encryption key that is
associated with a current security configuration of a TrEE core, the TrEE encryption key
being generated based at least in part on the TrEE loader encryption key; and utilizing the
TrEE encryption key to encrypt data.

[0096] Embodiment J, the one or more computer-readable media of embodiment I,
wherein the generating includes deriving a platform encryption key for the encryption key
hierarchy with the key derivation function based at least in part on a platform identifier for

a platform that is implemented by the one or more processors.

24

10

15

20

25

30

WO 2015/038690 PCT/US2014/055058

[0097] Embodiment K, the one or more computer-readable media of embodiment J,
wherein the generating includes deriving the TrEE loader encryption key for the encryption
key hierarchy with the key derivation function based at least in part on the platform
encryption key and a TrEE loader value, the TrEE loader value being associated with an
update of the TrEE loader from a previous security configuration to the current security
configuration.

[0098] Embodiment L, the one or more computer-readable media of embodiment I,
wherein the generating includes deriving the TrEE encryption key for the encryption key
hierarchy with the key derivation function based at least in part on a security version number
of the current security configuration of the TrEE core.

[0099] Embodiment M, the one or more computer-readable media of embodiment I,
wherein: the TrEE loader encryption key is accessible to the TrEE loader; and the TrEE
encryption key is accessible to the TrEE core.

[00100] Embodiment N, the one or more computer-readable media of embodiment I,
wherein the generating includes deriving a root encryption key for the encryption key
hierarchy with the key derivation function based at least in part on a debug status that
indicates whether or not debugging is enabled or disabled.

[00101] Embodiment O, the one or more computer-readable media of embodiment I,
wherein the generating includes deriving a root encryption key for the encryption key
hierarchy with the key derivation function based at least in part on a debug status that
indicates a number of times that debugging has been enabled or disabled.

[00102] Embodiment P, a method comprising: deriving, by a computing device and with a
key derivation function, a Trusted Execution Environment (TrEE) loader encryption key
that is associated with a security configuration of a TrEE loader, the TrEE loader being
configured to load a TrEE core that implements a TrEE; deriving, by the computing device
and with the key derivation function, a TrEE encryption key that is associated with a security
configuration of the TrEE core, the TrEE encryption key being derived based at least in part
on the TrEE loader encryption key; and utilizing the TrEE encryption key to at least one of
encrypt data or decrypt data.

[00103] Embodiment Q, the method of embodiment P, wherein the security configuration
of the TrEE loader comprises an updated security configuration and the TrEE loader

encryption key is derived based at least in part on a TrEE loader value that is associated

25

10

15

20

25

30

WO 2015/038690 PCT/US2014/055058

with an update of the TrEE loader from a previous security configuration to the updated
security configuration.

[00104] Embodiment R, the method of embodiment P, further comprising: deriving
another TrEE encryption key with the key derivation function based at least in part on the
TrEE loader encryption key and an updated security configuration of the TrEE core; and
utilizing the other TrEE encryption key to at least one of encrypt other data or decrypt other
data.

[00105] Embodiment S, the method of embodiment P, further comprising: deriving a root
encryption key with the key derivation function based on at least one of whether or not
debugging is enabled or disabled for the computing device or a number of times that
debugging has been enabled or disabled; and deriving a platform encryption key with the
key derivation function based at least in part on the root encryption key and a platform
identifier for a platform that is implemented by the computing device; wherein the TrEE
loader encryption key is derived based at least in part on the platform encryption key.
[00106] Embodiment T, the method of embodiment P, further comprising: determining
when an application is loaded or executed, and in response to the determining: (i) deriving
an application identity key for a sequence of application identity keys with the key
derivation function, the application identity key being derived based at least in part on a
preceding application identity key that directly precedes the application identity key in the
sequence of application identity keys and based at least in part on a hash of the application
that is loaded or executed; and (ii) deleting the preceding application identity key upon
deriving the application identity key; and verifying an application state of the computing
device based at least in part on an application identity key that remains in the sequence of
application identity keys.

Conclusion

Although embodiments have been described in language specific to structural features
and/or methodological acts, it is to be understood that the disclosure is not necessarily
limited to the specific features or acts described. Rather, the specific features and acts are

disclosed herein as illustrative forms of implementing the embodiments.

26

WO 2015/038690 PCT/US2014/055058

CLAIMS

1. A method comprising:

setting, by a computing device, an initial application key in a sequence of application
keys;

determining that a component is loaded or executed, and in response to the
determining:

deriving an application key for the sequence of application keys with a key
derivation function, the application key being derived based at least in part on a
preceding application key that directly precedes the application key in the sequence
of application keys and based at least in part on a hash of the component that is
loaded or executed; and
deleting the preceding application key upon deriving the application key;
utilizing, by the computing device, an application key that remains in the sequence
of application keys after the deletion to derive an image operation key; and

utilizing the image operation key to at least one of verify an application state of the
computing device or encrypt data.

2. The method of claim 1, further comprising:

obtaining a root identity key from at least one of multiple fuses of the computing
device or the key derivation function; and

deriving a platform identity key with the key derivation function, the platform
identity key being derived based at least in part on the root identity key and a platform
identifier for a platform that is implemented on the computing device;

wherein the setting comprises setting the initial application key in the sequence of
application keys to the platform identity key.

3. The method of any of claims 1-2, wherein the image operation key is derived
with the key derivation function based at least in part on the application key that remains in
the sequence of application keys after the deletion and a hash of an image of a Trusted
Execution Environment (TrEE).

4. The method of claim 3, wherein the component that is loaded or executed
comprises an application and the image operation key is utilized to verify an application
state of the computing device by:

sending, to a service provider, a device identifier of the computing device and a log

of applications that have been loaded;

27

WO 2015/038690 PCT/US2014/055058

receiving a challenge from the service provider to verify the application state of the
computing device;

deriving an application identity operation key for an application that is running
within the TrEE, the application identity operation key being derived based at least in part
on the image operation key and a hash of the application that is running within the TrEE;

generating a response to the challenge based at least in part on the application
identity operation key; and

sending the response to the service provider to verify the application state of the
computing device.

5. The method of any of claims 1-4, wherein at least one of the application keys
in the sequence of application keys is derived while the computing device is being booted.

6. One or more computer-readable media storing computer-executable
instructions, the computer-executable instructions upon execution, to instruct one or more
processors to perform operations comprising:

generating an encryption key hierarchy with a key derivation function, the
encryption key hierarchy including (i) a Trusted Execution Environment (TrEE) loader
encryption key that is associated with a current security configuration of a TrEE loader and
(i1) a TrEE encryption key that is associated with a current security configuration of a TrEE
core, the TrEE encryption key being generated based at least in part on the TrEE loader
encryption key; and

utilizing the TrEE encryption key to at least one of encrypt data or decrypt data.

7. The one or more computer-readable media of claim 6, wherein the generating
includes deriving a platform encryption key for the encryption key hierarchy with the key
derivation function based at least in part on a platform identifier for a platform that is
implemented by the one or more processors.

8. The one or more computer-readable media of claim 7, wherein the generating
includes deriving the TrEE loader encryption key for the encryption key hierarchy with the
key derivation function based at least in part on the platform encryption key and a TrEE
loader value, the TrEE loader value being associated with an update of the TrEE loader from
a previous security configuration to the current security configuration.

9. The one or more computer-readable media of any of claims 6-8, wherein the
generating includes deriving the TrEE encryption key for the encryption key hierarchy with
the key derivation function based at least in part on a security version number of the current

security configuration of the TrEE core.

28

WO 2015/038690 PCT/US2014/055058

10. The one or more computer-readable media of any of claims 6-9, wherein the
generating includes deriving a root encryption key for the encryption key hierarchy with the
key derivation function based at least in part on a debug status that indicates at least one of
(1) whether or not debugging is enabled or disabled or (i1) a number of times that debugging

has been enabled or disabled.

29

WO 2015/038690

1/5

100
X /

\

SERVICE PROVIDER

NETWORK(S)
110

PCT/US2014/055058

PROCESSOR(S) 126

MEMORY 128

ATTESTATION MODULE
130

|

ENCRYPTION/DECRYPTION
MODULE 132

\.

J

A

COMPUTING DEVICE(S) 102 '\

USER(S)
134

o — —— —— — —— — — — — — — — —

112

(

[Boor LoabER(s) 116

KEY(S) 106

r

TREE 118
[TREE LOADER 120 J

(TREECore122)

)

[TREE App(s). 124

WO 2015/038690

2/5

[ROOT KEY

202
(E.G., KFUSE)

—___L____

-
| KDF WITH IDENTITY
| ROOT IDENTIFER |

[ROOT IDENTITY KEY 204

(E.G., KID_ROOT)

r-—-———— ____1

| KDF WITH PLATFORM |
| IDENTIFIER |

PLAT. IDENTITY KEY 206
(E.G., KID_MSTREE,
KID OTHER)

208(2)

PCT/US2014/055058

200
/—

208(3) 208(m)

APPLICATION

IDENTITY KEY(1) IDENTITY KEY(2)

(E.G., KID_SBL[O])] [

[APPLICATION

APPLICATION
IDENTITY KEY(3)

APPLICATION
IDENTITY KEY(M)

|
\ A

208(1)
_——J———-I ___L___'
| KDF WITH | | KDFWITH |
: H(CURRENT | : H(CURRENT |
LAPPLICATION) || APPLICATION)
ATTESTATION
PROCESS

FIG. 2

]”{ W

| KDF wiTH HasH !
| OF TREE IMAGE |

____F_——I

IMAGE IDENTITY
OPERATION KEY
(E.G., KID_TREE)

| KDF wiTH HAsH !
OF TREE APP

I—_—_J___I

APPLICATION
IDENTITY
OPERATION KEY
(E.G., KID_APP)

L

| KDF WiTH HAsH !
| OF CHALLENGE |

210

212

(E.G.,

214\{
—

RESPONSE]

QUOTERES.)

PCT/US2014/055058

WO 2015/038690

.. ([0]334L oN3aY “9o3) M .UHrm—
d)ATY NOILJAHON d
T JAIN 333 L vaﬁx NOILdAYONT 33 L vaﬁx NOILdAYONT I3 L T:Gx NOILIAYONT J011
»l —(doie (goie— (2o = = (1oL
_N&llll - =" [———Y———— o --==" T ===
| \INAS @ﬂm@u_ | (EINAS HLIMm 4a) | | {2INAS Tm_;/m@u_ _buzm@\zm_@m@u_
(N)ATY NOLLJANONT (2)A33] NOLLAAYONT . ([o]93avo13ayL oNay
d3av0oT 4341 S H¥3avo S| (1)g0¢ '93) (1)A3) NOLLAXONS
— 13381 ¥3avo] 3341
(N)8OE A/| (z)80€
....... L S ad
| (N)INVA ¥3avoq | (2)anvA ¥3avo | | (L)3NTVA ¥3avoT]
| 330L Hum %m__/m.mmﬁm/fmﬁ M&EEEL_
w (¥3aHLO ON3Y
en

‘34 SN ONIY “9'3) ATY

0¢ NOILdAHONT WHO41V1d

| d3IILNId| _

| WHO41V1d HLIM 4aM |
.||||I.||||L

(ONTY “o3)
¥0¢ ATY NOILAAYONT LOOY

r—-— - |

| SNLVLS ©Nd3d HLIM 40

(3snay| “o3)
00¢€ A c0¢ I\ﬁ ATY LOOY

WO 2015/038690

4/5

4 '

OBTAIN ROOT KEY 402

\ 7

!

{)
OBTAIN ROOT IDENTITY/

[SET INITIAL

P[LOAD NEXT STAGE 410)

| ENCRYPTION KEY 404 |

'

DERIVE PLATFORM KEY]

406

'

APPLICATION KEY 408

e

7

'

[DERIVE NEW]

APPLICATION KEY 412

!

[DELETE PRECEDING]

APPLICATION KEY 414

YES

LOAD NEXT STAGE?
416

OPERATION KEY 418

[DERIVE IMAGE]

'

[DELETE APPLICATION

—

KEY 420

'

PROVIDE IMAGE
OPERATION KEY 422

|

FIG. 4 x

VERIFY APPLICATION
STATE AND/OR ENCRYPT
DATA 424

PCT/US2014/055058

— 400

VERIFICATION EXAMPLE:

SEND DEVICE IDENTIFIER
AND/OR LOG,

RECEIVE CHALLENGE,
DERIVE APPLICATION
OPERATION KEY,
GENERATE RESPONSE,
AND/OR

SEND RESPONSE

WO 2015/038690 PCT/US2014/055058

5/5

[OBTAIN ROOT KEY 502]

l

DERIVE ROOT ENCRYPTION KEY 504]

l

[DERIVE PLATFORM ENCRYPTION KEY 506]

4’[DERIVE TREE LOADER ENCRYPTION KEY ﬁ]

M

ANOTHER TREE
LOADER VALUE?
510

NO

4>[DERIVE TREE ENCRYPTION KEY 512]

YE

YES

ANOTHER SVN?
514

[UTILIZE ENCRYPTION KEY 516]

FIG. 5

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/055058

A. CLASSIFICATION OF SUBJECT MATTER

INV. HO4L9/08 GO6F21/57
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

HO4L GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X EIMEAR GALLERY ET AL: "Trusted Mobile 1,6
Platforms",
18 August 2007 (2007-08-18), FOUNDATIONS
OF SECURITY ANALYSIS AND DESIGN IV;
[LECTURE NOTES IN COMPUTER SCIENCE],
SPRINGER BERLIN HEIDELBERG, BERLIN,
HEIDELBERG, PAGE(S) 282 - 323,
XP019099702,
ISBN: 978-3-540-74809-0
Y section 4, 5, 6; 2-5,7-10
pages 7-17
Y WO 20117130211 Al (INTERDIGITAL PATENT 2-5,7-10
HOLDINGS [US]; CHA INHYOK [US]; SHAH
YOGENDRA C [U)
20 October 2011 (2011-10-20)
paragraphs [0117], [0120], [0124];
figures 13a-c,16
_/ -

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

26 November 2014

Date of mailing of the international search report

11/12/2014

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Horbach, Christian

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/055058
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2006/143446 Al (FRANK ALEXANDER [US] ET 1-10
AL) 29 June 2006 (2006-06-29)
paragraph [0036]
A US 2013/159726 Al (MCKEEN FRANCIS X [US] 1-10

ET AL) 20 June 2013 (2013-06-20)
paragraphs [0166], [0566]

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2014/055058
Patent document Publication Patent family Publication

cited in search report date member(s) date

WO 2011130211 Al 20-10-2011 CA 2796331 Al 20-10-2011
CN 102844764 A 26-12-2012
EP 2558972 Al 20-02-2013
JP 2013524385 A 17-06-2013
KR 20120130793 A 03-12-2012
KR 20130020734 A 27-02-2013
SG 184853 Al 29-11-2012
TW 201202999 A 16-01-2012
US 2011302638 Al 08-12-2011
WO 2011130211 Al 20-10-2011

US 2006143446 Al 29-06-2006 BR PI0519080 A2 23-12-2008
CN 101116070 A 30-01-2008
EP 1829274 A2 05-09-2007
JP 4945454 B2 06-06-2012
JP 2008525892 A 17-07-2008
KR 20070097031 A 02-10-2007
RU 2007123617 A 27-12-2008
US 2006143446 Al 29-06-2006
WO 2006071630 A2 06-07-2006

US 2013159726 Al 20-06-2013 US 2013159726 Al 20-06-2013
US 2013198853 Al 01-08-2013

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - wo-search-report
	Page 38 - wo-search-report
	Page 39 - wo-search-report

