PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION

International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6

G09B 7/00

(11) International Publication Number:

Al

(43) International Publication Date:

WO 98/25251

11 June 1998 (11.06.98)

(21) International Application Number:

PCT/US97/21774

(81) Designated States: CN, JP, European patent (AT, BE, CH, DE,

DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(22) International Filing Date: 1 December 1997 (01.12.97)
Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(30) Priority Data:

08/758,896 2 December 1996 (02.12.96) US

(71)(72) Applicants and Inventors: HO, Chi, Fai [US/US]; 4816
Cabello Court, Union City, CA 94587 (US). TONG, Peter,
P. [US/US]; 1807 Limetree Lane, Mountain View, CA
94040 (US).

(74) Common Representative: TONG, Peter, P.; 1807 Limetree
Lane, Mountain View, CA 94040 (US).

(54) Title: A LEARNING METHOD AND SYSTEM BASED ON QUESTIONING

J %0
. 52
| Study-materials . Study
Generator Materials
108 60
N~ J‘ ~
a . Question
Database Comparator
¥ lj /
Input Accass Answer
Device) Gate —» Question —»; Generator ~——— Answer —»| Presenter
56 62 100 120 -
Rules
64

(57) Abstract

A computer system and method for teaching a subject based the user’s questions. The computer system allows the user to control his
learning process, and helps to fill in gaps of misunderstanding in the subject. The computer system, including a database (106), presents
study materials (120) of the subject to the user. After working on the presented materials, the user enters his question (56) into the computer
system, which generates an answer (100) to the question, and preserits it to the user. Then the system compares the questions (120) with
one or more questions previously entered by the user to determine fils understanding level of the subject. Based on the determination,
the computer system presents to the user appropriate study materials. The user typically asks more than one question, and the process of
answering the user’s question by the computer repeats.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CcG
CH
CI
CcM
CN
Ccu
CZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania ES Spain LS Lesotho SI Slovenia
Armenia FI Finland LT Lithuania SK Slovakia
Austria FR France LU Luxembourg SN Senegal
Australia GA Gabon LV Latvia Sz Swaziland
Azerbaijan GB United Kingdom MC Monaco TD Chad

Bosnia and Herzegovina GE Georgia MD Republic of Moldova TG Togo
Barbados GH Ghana MG Madagascar TJ Tajikistan
Belgium GN Guinea MK The former Yugoslav ™ Turkmenistan
Burkina Faso GR Greece Republic of Macedonia TR Turkey
Bulgaria HU Hungary ML Mati TT Trinidad and Tobago
Benin IE Ireland MN Mongolia UA Ukraine
Brazil IL Israel MR Mauritania UG Uganda
Belarus IS Iceland MW Malawi us United States of America
Canada IT Ttaly MX Mexico UZ Uzbekistan
Central African Republic JP Japan NE Niger VN Viet Nam
Congo KE Kenya NL Netherlands YU Yugoslavia
Switzerland KG Kyrgyzstan NO Norway VAL Zimbabwe
Cate d'Ivoire KP Democratic People’s NZ New Zealand

Cameroon Republic of Korea PL Poland

China KR Republic of Korea PT Portugal

Cuba KZ Kazakstan RO Romania

Czech Republic LC Saint Lucia RU Russian Federation

Germany LI Liechtenstein SD Sudan

Denmark LK Sri Lanka SE Sweden

Estonia LR Liberia SG Singapore

10

15

20

25

30

WO 98/25251 PCT/US97/21774

A LEARNING METHOD AND SYSTEM BASED ON QUESTIONING
BACKGROUND

This invention relates generally to education and, more particularly, to computer learning
based on question asking,

Question asking is an important aspect in learning because we have a better
understanding in a subject if we can ask questions. As opposed to passive learning where we
just absorb like a sponge, active learning based on asking questions enhances understanding and
helps us remember. However, if a person is learning from a computer system, he does not have
the luxury of having a question-and-answer dialog with the computer.

Asking questions not only focuses our attention on the subject, it also fills gaps in our
understanding. When we are learning from an instructor, typically we cannot comprehend
everything. As our misunderstanding grows, very soon we begin to lose track of the subject, and
our interest in the subject wanes. Similarly, we lose interest in reading a book with many
individuals if we confuse their names. During those instances, asking questions to fill our gaps of
misunderstanding might rekindle our interest in the subject or the book.

A user’s questions on a subject also indicate how much he understands the subject. If
the user repeatedly asks questions in a certain area, he is weak in that area.

In view of the importance of question asking, many instructors include them in teaching,
One of the most famous teachers--Socrates--even used questions as his main tool to stimulate
thinking and to teach. However, when a computer teaches, the users cannot question the
computer the same way he can question his instructor.

Learning through a computer has its benefits. Computer allows a user to learn at his
own pace. For a class of thirty, typically the instructor will not hold up the class just to
clarify issues for one student. If students' levels of understanding are not the same, the
instructor has to leave some of them behind. This problematic situation is prevalent in a
classroom with students having different cultural backgrounds and non-uniform
understanding levels. Computers can ameliorate such problems. If each student is taught
by his computer, he can control the computer so as to learn at his own pace.

However, learning from a computer has its handicap. When the student needs an

answer for a question, problem arises because the computer cannot understand his question.

10

15

WO 98/25251 PCT/US97/21774

There are computers responding to questions. One is the system to locate books used in
many libraries. Users can enter search-requests for books into the system. But such systems are
primitive as compared to those where a user can learn a subject by asking questions.

Another system responding to questions is called Elisa. It responds to questions,
and tries to emulate a psychiatrist. A user enters a question into Elisa, which changes the
entered question around to respond to the user. For example, the user enters, “I feel bad.”
Elisa might respond, “Why do you feel bad?” The system gets the user to talk, and
presumably, the user feels better afterwards. The goal of the system is not to understand
the user, but to encourage the user to communicate his problem.

There are also systems that respond to questions written in computer languages. In such
systems, the user re-formulates his question into a program to access and to process information
from a database. Someone not familiar with programming languages cannot get an answer from
those systems.

It should have been obvious that there is a need for a method and a system that can teach

a subject through responding to a user’s questions.

10

15

20

25

WO 98/25251 PCT/US97/21774

SUMMARY

This invention is on a method and a system that can teach a subject based on a user’s
questions. It is different from the user learning a subject through passively absorbing the
materials. In this invention, he sets the learning pace, controls the learning process, and can learn
by asking questions,

In one embodiment, the system generates study materials that introduce the subject
to the user. After studying the presented materials, he can begin asking questions. The
system generates an answer to each question, and presents it to him. The system also
compares the question with one or more questions previously entered by him. The
comparison determines his understanding level in the subject. If the comparison indicates
that he is weak in a certain area, the system can present detailed study materials covering
those areas. The system also stores the question he just asked, so as to compare to
questions he might ask in the future.

Typically the user does not ask one question and stop. He may ask a series of
questions to understand the subject. After the system has responded to his questions, based
on his understanding level, the system may present to him additional study materials. The
process may repeat with him asking additional questions until he understands the subject.

In another embodiment, the user can use the system to fill gaps of misunderstanding
in a subject. As he works on the subject through the computer, he encounters areas that he
does not understand or he has forgotten. This embodiment allows him to get answers on
questions in those areas.

Other aspects and advantages of this invention will become apparent from the
following detailed description, which, when taken in conjunction with the accompanying

drawings, illustrates by way of example the principles of the invention.

10

15

20

25

30

WO 98/25251 PCT/US97/21774

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows one embodiment of the present invention.

FIG. 2 shows one embodiment of the answer generator in the present invention.

FIGS. 3A-B show physical elements implementing one embodiment of the present
invention.

FIG. 4 illustrates a part of an hierarchy for the line-items under fractions in the
present invention.

FIG. 5 shows one embodiment implementing the present invention.

FIG. 6 shows a set of steps to be used by the embodiment shown in FIG. 2.

FIG. 7 shows a pre-defined context-free grammatical structure in the present
invention.

FIGS. 8A-B show examples of semantic rules applied to nouns in the present
invention,

FIG. 9 shows an example of semantic rules applied to a non-auxiliary verb in the
present invention.

FIG. 10 shows examples of semantic rules applied to adjectives in the present
invention.

FIG. 11 shows different approaches to resolve ambiguous question in the present
invention,

FIG. 12 shows another embodiment of the answer generator in the present
invention.

FIG. 13 shows a set of steps to be used by the embodiment shown in FIG. 12.

FIG. 14 shows a set of steps to fill gaps of misunderstanding in the present
invention.

Same numerals in FIGS. 1-14 are assigned to similar elements in all the figures.
Embodiments of the invention are discussed below with reference to FIGS. 1-14. However,
those skilled in the art will readily appreciate that the detailed description given herein with
respect to these figures is for explanatory purposes as the invention extends beyond these

limited embodiments.

10

15

20

25

30

WO 98/25251 PCT/US97/21774

DETAILED DESCRIPTION

FIG. 1 shows one embodiment of a system 50 in this invention. When a user starts
working on a subject, a study-materials generator 52 generates introductory study materials
using information from a database 106. A presenter 120 presents those materials. After
studying the presented materials, the user might need to ask a question. He enters the
question into the system 50 through an input device 56. An answer generator 100 retrieves
the question and generates an answer based on information from the database 106 and a set
of rules 64. The presenter 120 then presents the answer to him. A question comparator 60
also can compare the question with one or more questions he previously asked. Those
questions were stored in the database 106. The comparison determines his understanding
level in the subject. If the comparison indicates he is weak in a certain area, the study-
materials generator 52 will retrieve study materials from the database 106 covering that
area. The database 106 also stores the question just asked for future comparison.

FIG. 2 shows one embodiment of the answer generator 100 for answering a natural-
language question, which is a question used in our everyday language. In the present invention,
a question is defined as an inquiry demanding an answer; and an answer is defined as a
statement satisfying the inquiry.

An input device, such as a keyboard, a mouse or a voice recognition system,
receives the natural-language question. Then a grammatical structure analyzer 102 analyzes
the grammatical structure of the question for parsing the question into its grammatical
components based on a pre-defined context-free grammatical structure. The analyzer 102
performs its tasks using a set of grammatical rules 104, and data from the database 106.
Then a programming-steps generator 108 automatically generates one or more instructions
based on the components. The generator 108 performs its tasks using a set of semantic
rules 110 and data from the database 106. The instructions flow to a programming-steps
executor 112, which executes the instructions. More than one set of instructions might be
generated and executed. In at least one set of instructions, when it is executed, it queries
and processes data from the database 106 for generating an answer to the question. The
presenter 120, which is an output device, such as a monitor, a printer or a voice synthesizer,

presents the answer to a user of the system.

10

15

20

25

30

WO 98/25251 PCT/US97/21774

FIG. 3A shows one physical embodiment 150 implementing one embodiment of the
invention, preferably in software and hardware. The embodiment 150 includes a server
computer 152 and a number of client computers, such as 154, which can be a personal
computer. Each client computer communicates to the server computer 152 through a
dedicated communication link, or a computer network 156.

FIG. 3B shows one embodiment of a client computer 154. It typically includes a
bus 159 connecting a number of components, such as a processing unit 160, a main memory
162, an I/O controller 164, a peripheral controller 166, a graphics adapter 168, a circuit
board 180 and a network interface adapter 170. The I/O controller 164 is connected to
components, such as a harddisk drive 172 and a floppy disk drive 174. The peripheral
controller 166 can be connected to one or more peripheral components, such as a keyboard
176 and a mouse 182. The graphics adapter 168 can be connected to a monitor 178. The
circuit board 180 can be coupled to audio signals 181; and the network interface adapter
170 can be connected to the network 120, which can be the Internet, an intranet, the Web
or other forms of networks. The processing unit 160 can be an application specific chip.

Different elements in the present invention may be in different physical components. For
example, the input device 56, the presenter 120, the grammatical structure analyzer 102 and the
grammatical rules may be in a client computer; and the study-materials generator 52,, the
question comparator 60, the database 106, the programming-steps generator 108 and the
program executor 112 may reside in a server computer. In another embodiment, the database is
in the server computer; and the input device 56, the study-materials generator 52, the question
comparator 60, the grammatical structure analyzer 102, the programming-steps generator 108,
the program executor 112 and the rules reside in a client computer. Yet in another embodiment,
the embodiment 50 is in a client computer.

In this invention, the subject can be broad or narrow. In one embodiment, the
subject can cover mathematics or history, or it can cover the JAVA programming language.
In another embodiment, the subject covers information in a car, such as a Toyota Camry,
and the user wants to understand this merchandise before buying it. In yet another
embodiment, the subject covers the real estate market in a certain geographical area, and

again the user wants to understand the market before buying a house.

10

15

20

25

30

35

40

WO 98/25251 PCT/US97/21774

As an example, the subject is American history. Historical facts and insights are
arranged in chronological order. It starts with an introduction of the British empire before
1776, and then other information is arranged sequentially in time. In one embodiment,
events happened within a certain time frame, such as one week, are grouped together as one
item. And items can form a hierarchy structure. There can be a day-item, week-item,
month-item and year-item. There can be long periods of time without significant events,
and this leads to a month-item or a year-item.

As another example, the subject is mathematics, which is separated into major-
topics, minor-topics and line-items:

Major Topics Under Mathematics
Calculus

Geometry

Trigonometry

High School Algebra
Minor Topics Under High School Algebra
Decimal Numbers
Polynomials
Linear Equations
Quadratic Equations

Integers
Line Items Under Integers
Addition & Subtraction (Int +/-)
Multiplication (Int *)
Division
Prime Numbers
Factorization
Common Divisor

Fractions

Line Items Under Fractions

Addition and Subtraction with Common Denominator
(Frt +/- w/Comm Denom)

Addition and Subtraction with Integers (Frt +/-, w/Int)

Addition and Subtraction without Common Denominator
(Frt +/- w/o Comm Denom)

Multiplication and Divisions with Integers
(Frt *,/ w/Int)

Multiplication and Division with fraction (Frt * /)

Compound Fractions

Fraction Reduction (Frt Reduction)

Ratios and Proportions

10

15

20

25

30

WO 98/25251 PCT/US97/21774

The major-topi;:g, minor-topics and line-items form a hierarchy tree, which shows their
relationships, and their relative difficulties. Each line-item also has a number of difficulty
levels ranging from 1 to 10. FIG. 4 illustrates a part of such an hierarchy for the line-items
under fractions. For every path in the figure, there is a number and an alphabet in
parenthesis. The number denotes the minimal difficulty level, and the alphabet denotes the
minimal grade that the user has to achieve before the user is qualified to work on the
subsequent line-item. For example, the user has to achieve at least a difficulty level of 8 and
a grade of B for the line-item of Int +/- before the user is qualified to work on the line-item
of Frt +/- w/Comm Denom. Generating study materials for each difficulty level of each
line-item should be obvious to those skilled in the art.

In one embodiment, the system 50 further includes an access gate 62. When the
user wants to learn a subject, he enters his name and may be his password with the title of
the subject he wants to learn through the input device 56 into the access gate 62. The
access gate 62 accesses the database to determine if he has used the system before, or if the
user has used the system to learn the subject before. If he has not used the system to learn
the subject before, the access gate 62 asks the study-materials generator 52 to retrieve
introductory study materials on the subject for the user. In another embodiment, the subject
does not have any introductory materials, and he starts the learning process by entering
questions.

In yet another embodiment, the database 106 stores the questions asked by a number
of prior users, and the question comparator 60 compares the questions asked by them to
determine questions that are commonly-asked. Comparison processes will be described
below. The term “commonly-asked” may be defined as being asked by more than 50% of
the prior users, or by other metrics. The study-materials generator 52 retrieves a set of
study materials answering the commonly-asked introductory question, and presents them to
him. Answer-generation processes will be described below.

For different parts of the subject, again there might be one or more questions
commonly asked by others. Answers to those questions can be presented to him when he
starts working on those areas of the subject.

After learning the introductory material, the user may start asking questions by

entering them into the system. Each question may be entered into the system 50 orally

8

10

15

20

25

30

WO 98/25251 PCT/US97/21774

through a voice recognition input device, or through a keyboard, or other types of input
device 56. FIG. 5 shows one embodiment 190 implementing the present invention. First,
the answer generator 100 retrieves (Step 192) the question entered, and generates (Step
194) an answer to the question. The presenter 120 then presents (Step 196) the answer to
the question, and the comparator 60 compares (Step 198) with one or more questions
previously entered by the user to determine his understanding level in the subject. The
sequence of the steps of comparing (198) and presenting (196) can be changed, or the two
steps can be simultaneously performed.

In one embodiment, the question just asked by the user is stored in the database 106
with his identity. In another embodiment, the database also stores a time-stamp indicating
the time when the user asks the question.

There are a number of ways to generate (Step 194) an answer to the question
entered. The following description starts with answering natural-language questions that
are grammatically context-free, and then extends to answering other types of questions.

A natural-language question can be in English or other languages, such as French.
Examples of natural-language questions are:

Who is the first President?

What are the Bills of Right?

Where is the capital of Texas?

What is the immediate cause to the Civil War?

Why did President Nixon resign?

Who is the third President?

Who is the President after John Kennedy?

When did President Lyndon Johnson die?

When was President Nixon born?

What is the derivative of sin(x+4) with respect to x?

Why is delta used in step 4 of the proof?

A statement that is not based on a natural language is a statement that is not commonly
used in our everyday language. Examples are:

For Key in Key-Of{ Table) do

Do while x>2

10

15

20

25

30

WO 98/25251 PCT/US97/21774

A grammatically-context-free question is a question whose grammar does not depend on
the context. Each word in the question has its own grammatical meaning, and does not need
other words to define its grammatical meaning. Hence, the grammatical structure of the
question does not depend on its context. Note that “a word” can include “a number of
contiguous words.” This is for situations where a term includes more than one word but has
only one grammatical meaning, such as the preposition “with respect to.”

The question includes one or more grammatical components. A grammatical
component is a component with one or more grammatical meanings, which are defined by a
set of grammatical rules to be explained below. For example, the word “president” is a
noun, which has a grammatical meaning. So the word “president” is a grammatical
component.

The present invention includes a database, which can be a relational database, an object
database or other forms of database. The database can reside in a storage medium in a client
computer, or a server computer, or with part of it in the client computer and another part in the
server computer.

In one embodiment, the database includes a number of tables. A table can be treated as a
set of information or data grouped together that have some common characteristics. The data in
each table can be further divided into different areas, and each area is represented by an attribute,
which is equivalent to an identifier for a group of data that are more narrowly focused than all
the data in a table. In the present invention, tables and attributes have similar function, except a
table may be considered to have a broader coverage, and an attribute a narrower focus. In some
examples, a table has two dimensions, as will be explained below.

Some values or data in the database may be unique. For example, if a value is a person’s
social security number, that value is unique. Such values are known as key values, and their
corresponding attributes are known as key attributes. Note that a table can have one or more
key attributes, and a key attribute may in turn be formed by more than one attribute.

One embodiment of the database 106 includes a grammatical table 114, one or more
topic-related tables 116, and two semantic tables, 118A and 118B. In a general sense, the
grammatical table 114 determines the grammatical meaning of each word in the question, such as
whether a word is a noun or a verb. Each topic-related table 116 groups data related to a topic

together in a specific format. Separated into a topic-dependent semantic table 118A and a topic-

10

10

15

20

25

30

WO 98/25251 PCT/US97/21774

independent semantic table 118B, the semantic tables define the semantic meaning of each word,
such as whether a word refers to an algorithm or data in a topic-related table.

The grammatical table 114 defines the grammatical meanings of words used in the
natural-language question. If questions entered into the system is limited to only one subject,
such as history, the grammatical table will include words in that subject, and words commonly-

used by a user of the system in asking questions. Each word in the table may be defined in the

following format:
CREATE TABLE Grammatical (
word Character string NOT NULL, //the word

grammatical-meaning Character string NOT NULL, //e.g. “Examiner”
// has “noun” as its grammatical meaning

)

Each topic-related table combines data related to a topic in a specific format. As an
example, one table includes all the data related to the Presidents of the United States, and
another includes all the data related to the First Ladies of the United States. The table may be
two-dimensional, and include a number of columns and rows. All the data in a column or a row
typically have one or more common characteristics. For example, one row includes data that
identify all the bills passed by the Presidents. For a two-dimensional table, data in a row can
have one characteristic, and data in a column can have another characteristic. For example, data
in one column identify the heights of the Presidents, and data in a row identify data related to one
specific President; the following describes an example of data along the row:

CREATE TABLE PRESIDENT AS (

/[Table of all U.S. Presidents & Vice Presidents

Name Character string KEY, // President Name--a key attribute
Position Character string, // President, Vice President
Start Year Integer, /[First Year of Presidency
End Year Integer, /[Last Year of Presidency
Bormn Date Date, //Date of Birth
Death Date Date, /[Date of death

11

10

15

20

25

30

WO 98/252:51 PCT/US97/21774

There is 1lso a table-structure dictionary, which defines how the topic-related tables arrange their
data. Tais dictionary is typically not considered as a part of the database. It does not contain
topic- elated data, but it contains structures of the topic-related tables in the database. Many
datat ase management systems automatically generate the table-structure dictionary based on the
pro sramming statements defining the topic-related tables, such as the CREATE clauses in SQL-
lik : languages. As an example, the table-structure dictionary defines the structure of the data in
t'«e above President table by indicating that the first entry represents the name of the president,
.he second the position, and so on. Thus, the dictionary can contain the name of the table (the
table name), the name of the table’s attributes (attribute names), and their corresponding data
types.

A word in the question may need one or both of the semantic tables. The topic-
independent semantic table 118B defines whether a word stands for an algorithm or data in a
topic-related table. Such a table may be defined as follows:

CREATE TABLE Topic_Independent_Semantic (

word NOT NULL, // the word

semantics, // Indicates if the word refers to datain a
/l topic-related table, an algorithm etc. If the
// word is mapped to an algorithm, that
/ algorithm will also be identified, as will be
// further explained below.

synonym, /I A word might have synonyms, as will be
// further explained below.

)

Words with similar meaning are grouped together and are represented by one of those words as
the synonym for that group of words. Ifa word does not have other words with similar
meaning, the synonym is the word itself

Many words do not point to an algorithm. They correspond to data in topic-related
tables. The topic-dependent semantic table 118A identifies the semantic meaning of those words
through matching them to data in topic-related tables. For example, the adjective “first” applying

to the President’s table may operate on the data under the inauguration date attribute; on the

12

10

15

20

25

30

WO 98/25251 PCT/US97/21774

other hand, the adjective “first” applying to the First Ladies’ table may operate on the data under
the date of death attribute. Such a topic-dependent table 118A may be defined as follows:
CREATE TABLE Topic_Dependent_Semantic (
Table Name NOT NULL, // For a table with the name Table Name:
Who_ Attribute, // The attribute associated with ‘who’
When_ Attribute, // The attribute name associated with ‘when’
{i-pronoun}_Attribute, // The attribute associated with the
/1 {i-pronoun}. The symbols {} denote the
// word it contains. Here, the word is

// an i-pronoun.

{Adj}_Attribute,
// The attribute associated with the adjective {adj}. In this
// example, the word is an adjective.

{Noun}_Attribute,
/1 Attribute name associated with the noun {noun}. Certain

// nouns may refer instead to an algorithm, such as “sum.”

In one embodiment, the grammatical analyzer 102, the grammatical rules 104 and the
grammatical table 114 are in a client computer. The programming-steps generator 108, the
semantic rules 110, the semantic tables 118 and the table-structure dictionary are in a middleware
apparatus, which can be a Web server. The programming-steps executor 112 with the topic-
related tables are in a back-end server, which can be a database server.

One embodiment includes a computer-readable medium that encodes with a data
structure including the semantic tables 118. Another embodiment includes a computer-readable
medium that encodes with a data structure including the semantic tables 118 and topic-related
tables 116. Yet another embodiment includes a computer-readable medium that encodes with a
data structure including the semantic tables 118 and the grammatical table 114. Yet a further
embodiment includes a computer-readable medium that encodes with a data structure including

the grammatical table 114, the topic-related tables 116 and the semantic tables 118.

13

10

15

20

25

30

WO 98/25251 PCT/US97/21774

FIG. 6 shows a set 200 of steps to implement one embodiment of the present invention.
A natural-language question is entered into the answer generator 100. The system analyzes
(Step 202) the grammatical structure of the question so as to parse it into its grammatical
components, based on a pre-defined context-free grammatical structure. This task uses a set of
grammatical rules 104 and the grammatical table 114. Then, the system transforms (Step 206) at
least one component into one or more instructions using a set of semantic rules 110 with one or
both of the semantic tables 118. Then, the one or more steps are executed (Step 208) to access
and process data from one or more topic-related tables so as to generate an answer to the
question.

In another embodiment, the programming-steps generator 108 transforms all the
grammatical components of the question into instructions using semantic rules 110 with one or
both of the semantic tables. Then the executor 112 executes all the steps to access and process

data from one or more topic-related tables for generating an answer to the question.

Grammatical Structure Analyzer

In one embodiment, the analyzer 102 scans the question to extract each word in the
question. Then the analyzer 102 maps each extracted word to the grammatical table 114 for
identifying its grammatical meaning. For example, the word “Clinton” is identified by the
grammatical table to be a proper noun; and the word “sum” is a noun. After establishing the
grammatical meaning of each word, the analyzer 102 uses a set of grammatical rules to establish
the grammatical components of the question based on the pre-defined context-free grammatical
structure.

For a number of words, their grammatical meanings depend on their adjacent words. In
one embodiment, the analyzer 102 combines each word with its contiguous words to determine
its grammatical component. For example, if the word is “with,” in analyzing its grammatical
meaning, the analyzer 102 identifies its contiguous words. If its contiguous words are “respect
to,” then the three words are combined together and are considered as one preposition. Thus, to
determine grammatical meaning of a word, the analyzer identifies that word, and then a number
of words following it, such as two words following it. The analyzer 102 analyzes the identified
words as a unit. If the analyzer 102 cannot identify the grammatical meaning of that sequence of

words, the analyzer 102 removes the last word from the sequence, and analyzes them again. The

14

WO 98/25251 PCT/US97/21774

process repeats until either a grammatical meaning is found, or there is no more word. Any time
when the analyzer 106 has identified a grammatical meaning, that word or sequence of words
would be considered as one unit.
In one embodiment, the pre-defined context-free grammatical structure is shown in FIG.
7 and is as follows:
<Question> = <i-pronoun> <aux-verb> <noun-phrase> [<verb-phrase>]
where: the symbols <> denote whatever inside is a meta-symbol, which has a
grammatical meaning; the meta-symbol is not in the grammatical table.
The symbols [] denote whatever inside the bracket is optional.
<I-pronoun> denotes an interrogative pronoun, which is a pronoun used in asking
questions, and can be one of the following: what, when, where, who, whom,
whose, which, and why.
<Aux-verb> denotes an auxiliary verb, and can be any form of the verb “to be,” or
“do.”
<Noun-phrase> is defined as <group-of-nouns> [<prepositional-noun-phrase>]
where: <group-of-nouns> is defined as:
[<modify-article>] <adjective>* <one-or-more-nouns>;
the symbol * denotes zero or more;
<modify-article> is defined as a modified article, including a,
an, the, this, these and those; and
<one-or-more-nouns™> denotes one or more nouns; and
<prepositional-noun-phrase> is defined as a
<preposition™> <noun-phrase>.
<Verb-phrase> denotes a non-aux-verb, and
is defined as <non-aux-verb> [< prepositional-noun-phrase>].
<Preposition> denotes a preposition defined in the grammatical table.
<Non-aux-verb> denotes a verb defined in the
grammatical table and is not an <aux-verb>.
<Noun> denotes a noun defined in the grammatical table.

<Adjective> denotes an adjective defined in the grammatical table.

15

10

15

20

25

30

WO 98/25251 PCT/US97/21774

The pre-defined structure is only one example to illustrate the present invention. Other
context-free grammatical structures are applicable also. Generating different context-free
grammatical structures should be obvious to those skilied in the art.

In the present invention, a word or a set of words that can fit into the structure of a
meta-symbol is a grammatical component. For example, the phrase “with respect to x” is a
grammatical component, whose grammatical meaning is a prepositional-noun-phrase.

In the present invention, grammatical rules and the pre-defined grammatical structures
are linked. Once the rules are set, the structures are determined. Similarly, once the structures
are determined, a set of rules can be found. For example, based on the pre-defined structures,
one grammatical rule is that “a group-of-nouns preceding a prepositional-noun-phrase is a noun-
phrase.”

The grammatical table defines the grammatical meaning of each word. In one
embodiment, the table is a part of the grammatical rules. In another embodiment, all the
grammatical rules that define the grammatical meaning of each word are separated from the rest
of the grammatical rules, and are grouped together to establish the grammatical table 114.

A number of examples on analyzing a question for parsing it into its grammatical

components based on the pre-defined grammatical structure are:

1. What is the derivative of sin(x+4) with respect to x?
Starting from the right hand side,
(x) is a noun
so (x) is a group-of-nouns
so (X) is a noun-phrase
so (with respect to x) is a prepositional-noun-phrase
(sin(x+4)) is a noun
so (sin(x+4)) is a group-of-nouns
so (sin(x+4) with respect to x) is a <group-of-nouns> <prepositional-noun-
phrase>
so (sin(x+4) with respect to x) is a noun-phrase
so (of sin(x+4) with respect to x) is a prepositional-noun-phrase

(derivative) is a noun

16

10

15

20

25

30

WO 98/25251

PCT/US97/21774

(the) is a modify-article
so (the derivative) is a group-of-nouns
so (the derivative of sin(x+4) with respect to x) is a
<group-of-nouns> <prepositional-noun-phrase>
(is) is an aux-verb
(what) is an i-pronoun
Thus, the question is of the structure
<i-pronoun> <aux-verb> <group-of-nouns> <prepositional-noun-

phrase>.

2. Why is delta used in step 4 of the proof?

Starting from the right:

(proof) is a noun

(the) is a modify-article

so (the proof) is a group-of-nouns

so (the proof) is a noun-phrase

so (of the proof) is a prepositional-noun-phrase

(4) is anoun

(step) is a noun

so (step 4) is a group-of-nouns

so (step 4 of the proof) is a <group-of-nouns> <prepositional-noun-phrase>
so (step 4 of the proof) is s noun-phrase

so (in step 4 of the proof) is a prepositional-noun-phrase
(used) is a verb as defined by the grammatical table

so (used in step 4 of the proof) is a verb-phrase

(delta) is a noun

so (delta) is a group-of-nouns

so (delta) is a noun-phrase

(is) is an aux-verb

(Why) is an i-pronoun

Thus, again the question is of the structure

17

10

15

20

25

30

WO 98/25251 PCT/US97/21774

<i-pronoun> <aux-verb> <noun-phrase> <verb-phrase>.

3. Why did President Nixon resign?
Starting from the right-hand side
(resign) is a verb
so (resign) is a verb-phrase
(Nixon) is a noun
(President) is a noun
(President Nixon) is a one-or-more-nouns
so (President Nixon) is a noun-phrase
(did) is an aux-verb
(Why) is an i-pronoun
Thus, the question is of the structure

<i-pronoun> <aux-verb> <noun-phrase> <verb-phrase>

Many questions cannot be parsed based on the pre-defined context-free grammatical
structure. In this disclosure, these questions are considered as ambiguous questions, and will be
analyzed through methods explained later in this disclosure. If there are more than one such pre-
defined context-free grammatical structure stored in the system, the question entered will be
parsed based on each structure individually. The question only has to be successfully parsed
based on one such structure. If the question cannot be parsed based on all the pre-defined

context-free grammatical structures, the question will be considered as an ambiguous question.

Programming-steps generator

The programming-steps generator 108 transforms at least one grammatical component
of the question using a set of semantic rules and one or both of the semantic table to generate a
set of instructions. The semantic rules and the semantic tables depend on the pre-defined
context-free grammatical structure, which the parsing process bases on. In one embodiment, the
semantic rules are also embedded in the semantic tables. In a general sense, the generator 108
directs different grammatical components in the question to algorithms or to data in the topic-

related tables.

18

10

15

20

25

WO 98/25251 PCT/US97/21774

To help explain the present invention, a number of functions are created as shown in the

following;

Keys-Of(Table)
This function extracts all the key attributes in the identified table.
Attributes-Of(Table)
This function extracts all the attribute names in the identified table.
Attribute-Names({adjective}, Table)
This function identifies one or more attributes when the {adjective} is applied to
the table.
Attribute-Names({noun}, Table)
This function identifies one or more attributes when the {noun} is applied to the
table.
Attribute-Name({i-pronoun}, Table)
This function identifies the attribute when the {i-pronoun} is applied to the table.
Tables-Of({ proper noun})
This function identifies one or more tables that contain the {proper noun} as a
key value. It can be derived by the following program:
T-Names = “”;
for Table in {all Tables} // {all Tables} is a list of topic-related tables
do

for Key in Keys-Of{ Table)

do

if any value of the attribute Key in the Table contains {proper noun}
then T-Names = T-Names + Table
endif

endfor
endfor
return T-Names

Synonym({word})

19

10

15

20

25

30

WO 98/25251 PCT/US97/21774

This function identifies the synonym corresponding to the word. The synonym
can be found in the topic-independent-semantic table.

Methods to create the above functions should be obvious to those skilled in the art of
programming,

Based on a number of semantic rules, the programming-steps generator 108 generates
instructions based on the grammatical components in the question. The following shows
examples of different instructions generated to illustrate the present inventions. The instructions
generated are either in a SQL-like, a LISP-like or a C-like language though other programming
languages are equally applicable.

A Proper Noun

A grammatical component in the question can be a proper noun, which implies that it has
a grammatical meaning of a proper noun. One set of semantic rules is that the programming-
steps generator 108 transforms the proper noun into instructions to select one or more topic-
related tables, and then transforms other grammatical components in the question into
instructions to select and to operate on data in the tables for answering the question.

Using the topic-dependent semantic table 118A, the programming-steps generator 108
first retrieves all tables where the proper noun is an attribute. Then, as shown in the topic-
dependent semantic table, all key attributes in those tables are identified, and each of them is
matched to the proper noun. The table of any key attribute that matches the proper noun is
selected for additional operation by the remaining grammatical components in the question.

A proper noun may consist of more than one word, such as the “Bills of Right.” A
proper noun can be a lower-case word, such as “moon.”

In one example, the corresponding instructions are as follows:

for Table in Table-Of{ { proper noun})

do
for Key in Keys-Of{ Table)
do
x = (SELECT ...
FROM Table

WHERE Key MATCH {proper noun})

20

10

15

20

25

30

WO 98/25251 PCT/US97/21774

// The above clause has the meaning of “where the key attribute
// in the table matches the proper noun.”
if x is valid then done
/1 if the SELECT function successfully identifies one or more attributes,
/! x is valid.
endfor

endfor.,

Common nouns

One grammatical component in the question can be a common noun. The programming-
steps generator 108 might transform the common noun into instructions to select a topic-related
table, an attribute name, a synonym of an attribute name, the data under an attribute, or an
algorithm.

As shown in FIG. 8A, if the noun is the name of a topic-related table as shown by the
topic-dependent semantic table 118A, then the programming-steps generator transforms the
noun into instructions to select (Step 252) that topic-related table, and transforms (Step 254)
other components in the question to identify data in the table and to operate on them, if
necessary.

If the noun denotes an attribute name or a synonym of an attribute name, again as shown
by the topic-dependent semantic table 118A, the programming-steps generator searches and
identifies the attribute based on the noun. The instruction generated can be, for example,
modifying a SELECT clause as follows:

for Attribute in Attribute-Names({noun}, Table)

do

SELECT Attribute from Table

endfor
After all of the relevant attributes have been identified, data in them are retrieved for further
processing by other parts of the question to generate an answer.

If the noun denotes the data under an attribute, the programming-steps generator

identifies the data, with its corresponding attribute and table. The instructions generated

21

10

15

20

25

30

WO 98/25251 PCT/US97/21774

can be, for example, (1) identifying each table in the function Tables-Of({noun}); (2) for
each table identified, the function Attribute-Names({noun}, Table) returns the
corresponding attributes containing the {noun} in that table; and (3) the remaining parts of
the question operate on information under each attribute to generate the answer to the question.
One set of instructions achieving such objectives is as follows:

for Table in Tables-Of{ {noun})

do
for Attribute in Attribute-Names({noun}, Table)
do
SELECT ...
FROM Table
WHERE Attribute = {noun}
endfor
endfor

As shown in FIG. 8B, the programming-steps generator might identify the algorithm
(Step 262) corresponding to the noun; the algorithm is then applied (Step 264) to data selected
by grammatical components in the question other than the common noun. For example the
noun “sum” indicates accumulating results; the noun “count” indicates computing the cardinality
of the results; and the noun “product” in mathematics indicates multiplying results. The topic-

independent semantic table 118B can point to locations to get the algorithm.

A Group of Nouns
If the question includes a group of nouns linked together, such as X1 X2 X3 ... Xn, then

X1 to Xn-1 can modify the final noun Xn, which is known as the primary noun. In other words,
the programming-steps generator operates on the primary noun as a common noun, or a proper
noun, whichever it may be, and the remaining nouns X1 to Xn-1 further operate on data/table(s)

selected by the primary noun.

22

10

15

20

25

30

WO 98/25251 PCT/US97/21774

Non-Auxiliary Verbs

One grammatical component can be a non-auxiliary verb. It relates to one or more
events or an action, which has a number of attributes; and it might have words with similar
meaning. One approach is to identify the verbs with similar meaning. Then other components in
the question identify data in the attributes of the identified verbs for answering the question.

A verb can be related to many different events. As an example, the verb is “nominate”:
one event can be President Bush being nominated to be the President, and another event can be
President Clinton being nominated to be the President.

However, an event is related to a verb. The attributes of the event can have a subject-
agent, which is the agent performing the event, such as the party nominating the president.
Typically, the preceding noun phrase before the verb identifies the subject-agent. The event can
have an object-agent if the verb is a transitive verb, which is the agent acted upon by the event,
such as the president being nominated.

Each event has a duration that is between a starting and an ending time. For example, if
the event is “walk,” its duration starts with the sole of a foot changing its position from touching
the ground to not touching the ground, and then ends with the sole back to touching the ground
again.

Non-auxiliary verbs are grouped together in an event table, which is a topic-related table,

with the topic being events. The following is an example of an event in the table:

CREATE TABLE EVENT (
Verb_word Character String NOT NULL,
// The verb that associates with the event
Subject_Agent Character String, // Agent name performing the event
Object_Agent Character String, // Agent name acted upon by the
/levent
Start_Time Time, // Starting time of event
End_Time Time, // Ending time of event
Description Character String, // Describes the event
Keyld Integer, // Unique number identifying the event
)

23

10

15

20

25

30

WO 98/25251 PCT/US97/21774

The subject-agent, object agent etc. are attributes related to the verb_word, which is
associated with an event.

There might be non-auxiliary verbs with similar meaning as the non-auxiliary verb in the
question. These verbs can be identified by the synonym in the topic-independent semantic table.
As an example, the verbs of breathe and inhale have similar meaning.

As shown in FIG. 9, the programming-steps generator 108 transforms the non-auxiliary
verb in the question into one or more instructions, which select (Step 300) one or more verbs
with their attributes in the event table. The one or more verbs have similar meaning as the non-
auxiliary verb. Then other components in the question identify data (Step 302) in the attributes
for answering the question. The selected verbs can be put into a temporary table or a view (a
database terminology) as follows:

CREATE VIEW Verb_View({verb}) As

// View is a logical table that is created only when it is needed.

// All events matching {verb} are grouped from the event table

// to form the view.

SELECT * FROM EVENT

// here * denotes all of the attributes

WHERE Synonym({verb}) = Verb_word,
The attributes of the selected verbs are also identified. Then, the programming-steps generator
108 generates additional instructions based on other components in the question to identify data
(Step 302) in the selected attributes for answering the question.

Events might be related. Two events may form a sequential relationship, where one
event follows another event, such as eat and drink. Two events may form a consequential
relationship, such as braking and stopping, with the braking event causing the stopping event.
Many small events may make up a big event, with the big event containing the small events; this
leads to containment relationships. Also, events may be related because they involve the same
subject-agent; and events may be related because they involve the same object-agent.

An event-relationship table describes relationships among events. It can have the
following format:

CREATE TABLE EVENT RELATIONSHIP (

Keyld1 Integer, // Keyld of an event

24

10

15

20

25

30

WO 98/25251 PCT/US97/21774

Keyld2 Integer, // Keyld of another event
Relationship ~ Character String,

//Relationship, such as sequential, consequential, containment etc.

Interrogative Pronouns

Based on the interrogative pronoun in the question, the programming-steps generator
108 generates one or more instructions to select one or more attributes in one or more tables.
Those tables have been selected by grammatical components in the question other than the
interrogative pronoun. The function Attribute-Name({i-pronoun}, Table) generates the attribute
name corresponding to the {i-pronoun}.

One way to generate a SQL-like instruction corresponding to the {i-pronoun} is to
modify a SELECT clause:

SELECT Attribute-Name({i-pronoun}, Table) FROM Table

Determiners
Examples of a set of semantic rules on determiners are:

If the determiner is “a” or “an,” select any result from the previous query.

If the determiner is “some,” select more than one result from the previous query.
If the previous query yields only one result, that result will be selected.

If the determiner is “all,” select all result from the previous query.

If the determiner is “the,” modify the following SELECT function with

DISTINCT, as will be shown by examples below.

Auxiliary Verbs

An auxiliary verb together with either its immediate noun phrase or a non-auxiliary verb

determine whether the answer should be singular or plural.

Adjectives

One grammatical component of the question can be an adjective. As shown in FIG. 10,

based on the adjective, the programming-steps generator either identifies the value of an

25

10

15

20

25

30

WO 98/25251 PCT/US97/21774

attribute, or identifies an algorithm. The grammatical components in the question other than the
adjective have already selected one or more topic-related tables.

As shown by the topic-independent semantic table, the adjective may identify (Step 350)
an attribute. The function Attribute-Names({adjective}, table) can retrieve the attribute in the
table previously selected. The corresponding instruction can be:

for Attribute in Attribute-Names({adjective}, Table)

do
SELECT ...
FROM Table
WHERE Attribute = {adjective}
// or “Where the attribute in the table is equal to the adjective.”
endfor

As an example, the noun phrase is “a red apple.” The noun “apple” can be associated
with a table known as FRUIT, and the Attribute-Names(red, FRUIT) yield the attribute “color.”
The adjective “red” is interpreted:

WHERE color = “red.”

If there is a sequence of such adjectives, all of them can apply to the same table. The
WHERE clause would be a conjunction of the adjectives, such as:

WHERE

for Attributel in Attribute-Names({adjectivel }, Table)

do
for Attribute2 in Attribute-Names({adjective2}, Table)
do
SELECT ...
FROM Table
WHERE Attribute]l = {adjectivel}
and Attribute2 = {adjective2}
endfor
endfor

26

10

15

20

25

30

WO 98/25251 PCT/US97/21774

An adjective can refer to an algorithm, as identified by the topic-independent semantic
table. Grammatical components in the question other than the component that is the adjective
have selected one or more topic-related tables. As shown in the topic-independent semantic
table, the adjective identifies (Step 352) one or more attributes in those tables. Then the
algorithm operates (Step 354) on one or more data in those attributes.

As an example, the adjective is “first.” The topic-independent semantic table indicates
that the adjective is an algorithm sorting a list of data in ascending order; the table also identifies
the data in one or more attributes in one or more topic-related tables. For each attribute
identified, after sorting its data, the first value will be the result. For example, the question is
“Who is the first President?” The table identified is the President table. The attribute whose data
are to be sorted is the “date” attribute, which identifies the time each President was elected. The
instruction corresponding to the adjective “first” can be as follows:

for Attribute in Attribute-Names(first, Table)

do
SELECT ...
FROM Table
ORDER BY Attribute ASC
endfor

The symbol ASC denotes ascending.
Similarly, if the adjective is “last,” then the attribute whose data are ordered is the same,
but the data are sorted in a descending manner. The corresponding instruction can be as follows:

for Attribute in Attribute-Names(last, Table)

do
SELECT ...
FROM Table
ORDER BY Attribute DESC
endfor

The symbol DESC denotes descending,

27

10

15

20

25

30

WO 98/25251 PCT/US97/21774

Another example on adjective is the word, “immediate.” Its interpretation depends on
the word it modifies. In one example, if the word modified is “action,” the word “immediate”
has the same effect as the word, “first;” if the word modified is “cause,” the word “immediate”
has the same effect as the word “last.”

There can be a sequence of adjectives. Then, the above analysis is applied in the same

order as the occurrence of the adjectives.

Preposition

One grammatical component can be a preposition. A preposition can modify its
previous noun phrase or verb, such as by operating on them through an algorithm identified
in the topic-independent semantic table. Under some situations, with one or more tables
selected by at least one grammatical component in the question other than the component
that is the preposition, the algorithm identified operates on data or values in the one or more
selected tables.

Under some other situations, for example, due to the prepositions ‘of” and ‘in’, the
programming-steps generator processes the grammatical component succeeding the
preposition before the grammatical component preceding.

For another example, the preposition ‘before’ can modify the WHERE clause with a
comparison on time:

{time of preceding event} < {time of succeeding event}

Programming-Steps Executor

The executor 112 executes at least one set of instructions generated from one
grammatical component to at least access data from the database to generate an answer for the
question, if there is one.

In one embodiment, after the programming-steps generator 108 generates a set of
instructions, the programming-steps executor 112 executes them. The set may be generated
from one grammatical component. This process repeats until all sets are generated and
executed to answer the question. For at least one set of instructions, the executor 112
accesses data from one or more topic-related tables identified by the instructions. In

another embodiment, all the instructions are generated; then the program executor 112 runs

28

10

15

20

25

30

WO 98/25251 PCT/US97/21774

the instructions, which include accessing data from one or more topic-related tables
identified by the instructions, and processing those data for generating the answer to the
natural-language question.

In the appendix, there are a number of examples of instructions illustrating the present

invention. They generated to answer different types of grammatically-context-free questions.

Ambiguous Questions

In the present invention, the grammatical structure analyzer 102 may decide that the
natural-language question cannot be parsed into grammatical components based on the pre-
defined context-free grammatical structure. For example, the grammatical components of the
question cannot fit into the pre-defined structure. Then the question is considered ambiguous,
and an answer cannot be generated.

Ambiguity may be due to a number of reasons. For example, the question may contain
words with non-unique grammatical meaning, the question may contain words not in the
grammatical table, or the grammatical structure of the question is different from the pre-defined
grammatical structure. FIG. 11 shows different approaches to resolve the ambiguity.

The grammatical structure analyzer can decide that a word can be of more than one
grammatical meaning, such as it can be a noun and a verb. In one embodiment, the analyzer
produces (Step 402) an answer for each meaning and ignores those meaning with no answer. In
another embodiment, the analyzer asks (Step 400) the user to identify the correct grammatical
meaning.

For example, the question is: “When was the Persian Gulf war?” The word “war” can
be a noun or a verb. In one embodiment, the analyzer asks the user whether the word “war” isa
noun or a verb. Based on the user’s response, the question is analyzed. In another embodiment,
the analyzer generates answers to both the question that treats the word “war” as a verb, and the
question that treats the word “war” as a noun. Both answers, if available, are presented to the
user.

If the grammatical structure analyzer decides that the question contains one or more
words not in the grammatical table, in one embodiment, the analyzer removes (Step 404) the un-
recognized word and processes the remaining words in the question. In another embodiment,

the analyzer asks (Step 406) the user for a different word. The analyzer might assume that the

29

10

15

20

25

30

WO 98/25251 PCT/US97/21774

word is mis-spelled, and ask the user to correct it; the analyzer might replace (Step 408) the un-
recognized word with a word in the grammatical table most similar to or with minimum number
of different characters from the un-recognized word. The analyzer then presents (step 410) the
matched word to the user to ask if that is the right word. A list of matched words may be
presented for the user to select.

For example, the question is: “What exactly are the Bills of Right?” The word “exactly”
is an adverb and is not in the grammatical table. The word is dropped, and the question,
satisfying the grammatical structure, is analyzed. In another example, the question is: “What is
the Bill of Right?” Here, the “Bill of Right” should be the “Bills of Right.” The analyzer can ask
the user to spell the “Bill of Right” again; or the analyzer can find the term closest in spelling to
the un-recognized term, and identify the term to be the “Bills of Right”. The identified word is
presented to the user to ask if that is the right spelling.

In the present invention, the grammatical structure of the question entered may be
different from the one or more pre-defined context-free grammatical structures in the system.

In one embodiment, a non-essential grammatical component is missing from the
question. A grammatical component is non-essential if that grammatical component can be
removed from the question without changing the answer to the question. For example, an
auxiliary verb in certain condition can be non-essential. One approach to solve this problem is to
ignore (Step 412) the missing grammatical component in generating the answer to the question.
Another approach is to add the missing non-essential grammatical component back into the
question, and present to the user asking if that is correct. For example, the question is: “When
President Nixon resign?” An auxiliary verb is expected after the word “When”; such a word is
entered into the question, which is then submitted to the user for approval.

In another embodiment, the user is suggested to re-enter (Step 414) the question with
advice as to the appropriate question structure. One advice is to ask the user to re-enter the
question based on the pre-defined structure, such as using one of the i-pronouns in the pre-
defined grammatical structure. This can be done, for example, by citing a list of acceptable i-
pronouns, and a list of model questions using the i-pronouns as examples. Another advice is to
identify nouns and non-auxiliary verbs, if any, in the question, and to ask the user which of the
identified word or words he wants to know more about. Then it would be up to the user to

select the one he wants. In a further embodiment, the identified word or words are fit into

30

10

15

20

25

WO 98/25251 PCT/US97/21774

alternative grammatical structures, and the user is asked to select one structure out of the list of
suggested structures. |

As an example, the question is: “Do you know when President Nixon resign?” Assume
that such a question does not fit the pre-defined grammatical structure. The user is suggested to
re-enter the question using one of the following i-pronouns: What, when, where, why and who.
In another embodiment, the noun and the auxiliary verb are identified, and they are “President
Nixon resign.” The user is asked, “You want to know about ‘President Nixon resign?”” In yet
another embodiment, the identified words are fit into the following question formats, and it
would be up the user to select one, for example:

What does President Nixon resign?

When does President Nixon resign?

Where does President Nixon resign?

Why does President Nixon resign?

Who does President Nixon resign?

As another example, the question is: “Is there a reason why President Clinton sent troops
to Bosnia?” Assume that the question does not fit the pre-defined grammatical structure. In one
embodiment, the user is suggested to re-enter the question using one of the i-pronouns in the
pre-defined grammatical structure. In another embodiment, the nouns and the non-auxiliary

7

verbs, “President Clinton”, “troops” “send” and “Bosnia” are identified. Then the user is asked
to select one or more of the following questions:

Do you want to know about President Clinton?

Do you want to know about troops?

Do you want to know about Bosnia?
Also, the answer generator 100 can present suggestions to the user on ways to rephrase the
original question based on the noun and the non-auxiliary verbs. It would then be up to the user
to select the one he wants.

In certain situation, the present invention does not have any answer. As an

example, the grammatical table does not have some essential terms X in the

question. Then, the present invention can return the following message:

31

10

15

20

25

30

WO 98/25251 PCT/US97/21774

Sorry, I do not know anything about X. You may want to check with your
instructor. If you wish, I will inform your instructor your question. {Click
here to inform your teacher}
If the user clicks at the designated area, his last question will be automatically sent as an
electronic mail to an instructor who can answer the user directly. This instructor may be

previously selected by the user, or the guardian of the user.

Questions Matching Engine

The embodiment shown in FIG. 2 can answer an infinite number of questions. FIG.
12 illustrates another embodiment 500 of the answer generator, which provides answers to
a finite number of questions, but requires fewer steps to generate answers as compared to
the embodiment shown in FIG. 2. Also, the answer generator 500 can answer non-natural-
language questions, and grammatically-context-dependent questions. In this embodiment,
the database 106 includes a questions table, which contains many questions, each with its
corresponding answer. A question matching engine 529 compares the question entered
with questions in the database. An answer retriever 539 retrieves the answer to the
question in the database that matches the entered question.

FIG. 13 shows one set of steps 550 for the present embodiment. The question
matching engine 529 compares (Step 552) the entered question with questions in the
database 106. If there is a match with any one of them, the answer retriever 639 retrieves
(Step 54) the answer corresponding to the matched question. If no question in the table
matches the input question, the answer generator 500 might use one of the approaches
discussed in the ambiguous questions section to answer the question.

In another embodiment, the question entered is a natural-language question. The
matching engine 529 compares the grammatical components of the natural language
question with components of the questions in the database 106.

A further embodiment includes an essential-components extractor, which extracts

essential components from the natural-language question entered. Only essential

components are compared with the pre-stored questions, which have essential components.
If there is a match, the answer to the corresponding matched question is retrieved and is

presented to the student. As an example, an auxiliary verb is a non-essential components.

32

10

15

20

25

30

WO 98/25251 PCT/US97/21774

The extractor strips off the auxiliary verb from the question to allow the matching engine
529 to compare the rest of the components.

In yet another embodiment, the question entered is a grammatically context-free
question.

The answer generator 100 shown in FIG. 2 can be combined with the answer generator
500 shown in FIG. 12. The question entered is first analyzed by the answer generator 100
shown in FIG. 2. If the question cannot be parsed into its grammatical components based on the
pre-defined structure, then the question is passed to the answer generator 500 shown in FIG. 12.
If that answer generator also cannot find a match in the questions table, the question will be
considered as an ambiguous question to be resolved by approaches discussed in the ambiguous

questions section.

Question Comparator

In one embodiment, the comparator 60 compares the question just entered with one
or more questions previously entered by the user to determine his understanding level in the
subject. This can be done for example by the comparator 60 comparing the grammatical
components of the questions. In one embodiment, non-essential components are de-
emphasized. Two questions are considered identical if their essential components are
identical. Words are considered identical to its synonyms, as defined by the topic-
independent-semantic table in the database. If the user has asked the same question more
than once, his understanding level is low in the areas covered by the question. The more
times he asked the same question, the less he understands the area covered by the question.

In another embodiment, the comparator 60 counts the total number of occurrence of
every interrogative pronoun, every noun and every non-auxiliary verb in the question just
asked based on all the questions he previously asked. If the questions are:

Just entered: What is the derivative of sin(x+4) with respect to x?

Previously asked: What is the derivative of cos(2*x)*sin(x+4) with respect to x?
the comparator 60 has the following word counts:

what: twice,

derivative: twice,

sin: twice,

33

10

15

20

25

30

WO 98/25251 PCT/US97/21774

X: 4 times.
The noun x is known as an indeterminant, which is a non-essential word; it is not essential
to determine his understanding level. In one embodiment, they are ignored in word counts.
If the questions are:
Just asked: When did President Clinton become president?
Previously asked: How many terms have President Clinton served?
the comparator 60 has the following word counts:
When: once,
President Clinton: twice,
president: once,
become: once.
There is also a question count for the question just asked. That count sums the word
counts of the words in the question, and divides that sum by the number of essential words
in the question:
Question count = Sum (Word counts)/(# of essential words in the question)
The division normalizes the question count.
Based on the above metrics, the user’s understanding level in the area covered by
the question is low if the question has a high question count.
In another embodiment, the word count and the question count also consider time as
a factor. The user might have asked a question similar to one he just asked long time ago.
In order for the word count and the question count to reflect his degree of forgetfulness, the
system uses an effective word count, an effective question count, and time-stamps. The
effective word count adjusts the word count by a time factor. One equation for the
effective word count of a word is:
Effective word count = 1 + (word count)*c/exp(Current-time-stamp - Last-time-stamp),
where:
c is a positive constant between 0 and 1;
exp is the exponential function;
time-stamps are measured in units of time,
such as every ten minutes is one unit,

but with the units removed in the equation;

34

10

15

20

25

30

WO 98/25251 PCT/US97/21774

current-time-stamp denotes the time
when the user just asked the question with the word; and
last-time-stamp denotes the time
when the user asked a question with the word immediately before the
current-time-stamp.
The effective question count sums the effective word counts of the essential words in the
question, and divides that sum by the number of essential words in the question.

Effective question count =

Sum (Effective word counts)/(# of essential words in the question)
The division normalizes the effective question count.

Again, based on the above metrics, the user’s understanding level in the area
covered by the question is low if the question has a high effective question count.

In a further embodiment, the comparator 60 also includes a word-significance table,
which indicates the significance of words used in a question. Every word in the subject has
a significance factor ranging from 0 to 1. For example, the non-essential components, just
like the indeterminants in mathematics, have a significance factor of 0; and the interrogative
pronoun “why” has a higher significance factor relative to the interrogative pronoun “what.”
In one embodiment, before the comparator 60 sums the word counts to generate the
question counts, each word count is multiplied by its corresponding significance factor.

In another embodiment, based on the magnitude of the question count, the
comparator 60 may test the user. The test results further indicate the user’s understanding
level in areas covered by the question. Generating a test in a certain area should be obvious
to those skilled in the art and will not be further described.

In yet another embodiment, based on the user’s understanding level, the comparator
60 sends a message to the study-materials generator 52 to retrieve study materials for him.
In one approach, the less he understands a certain area, the more detailed is the study
materials to be presented to him. In another approach, the less he understands a certain
area, the lower the level of difficulty is the study materials to be presented to him. For
example, if the user is very weak in fractions, then the presenter 120 presents study

materials on level 1 of fractions to him. Generating and retrieving study materials with

35

10

15

20

25

30

WO 98/25251 PCT/US97/21774

different degrees of difficulties and different amount of detail should be obvious to those
skilled in the art, and will not be further described.

If the user still asks the same question after the system has presented to him detailed
study materials, the answer generator 100 may ask him to consult an instructor. In one
embodiment, the database 106 contains a list of instructors for different areas of the subject.
With permission from the user, the answer generator 100 may contact one or more
instructors through electronic mail or other means, with the question sent to the instructor.
The instructor can contact the user directly.

After reading the answer to his question, the user might ask another question, and

the process of answering question repeats.

Filling Gaps of Misunderstanding

This invention is also applicable to filling gaps of misunderstanding when the user is
working on a subject. FIG. 14 shows one such embodiment 600. First, the system 50
generates (Step 602) study materials on a subject, and presents (Step 604) the study
materials to him. The subject can be a novel he wants to read on the system. The novel
may have many individuals. He gets confused on their names, and begins to lose interest in
the novel. Clarifying the identities might revive his interest in the novel. Similarly, the
subject can be finance, and he forgets the meaning of a term, such as capital asset pricing
model. He can ask the system a question. The system 50 retrieves (Step 606) the question
entered, and generates (Step 608) an answer to the question. The presenter 120 presents
(Step 610) the answer to him. Filling gaps of misunderstanding is very important in
learning. Typically, the user gets confused and loses interest in the study materials as
misunderstanding increases. After the system has answered his question, the process
repeats with the system 50 generating study materials for the user. In one embodiment, the
process continues until the user has mastered the entire subject.

In one embodiment, after working on the subject for some time, the user stops. The
database stores the time he stops, with his identity, and the location where he terminates
learning the subject. Next time, when the users enters the answer generator 100 to learn the
same subject again, the answer generator 100 re-starts the process from where he ended last

time. In another embodiment, the answer generator 100 asks him if he wants to re-start

36

WO 98/25251 PCT/US97/21774

from where he ended or to re-start from another part of the subject. It would be up to him
to decide.

Other embodiments of the invention will be apparent to those skilled in the art from a
consideration of this specification or practice of the invention disclosed herein. It is intended that
the specification and examples be considered as exemplary only, with the true scope and spirit of

the invention being indicated by the following claims.

37

10

15

20

25

30

WO 98/25251 PCT/US97/21774

Appendix

The following shows examples of instructions automatically generated to answer

different types of grammatically-context-free questions using the embodiment shown in FIG. 2.

1. Who is the first President?
for Table in each Tables-Of(President)
do
for Attributel in Attribute-Names(President, Table)
do
for Attribute2 in Attribute-Names(first, Table)
do
res = (SELECT DISTINCT Attribute-Name(who, Table)
FROM Table
WHERE Attributel = “President”
ORDER BY Attribute2 ASC)
if (res is not empty) return {first element of results}
end for
end for
end for

return {error, no solution found}

2. What are the Bills of Right?
answer =~
for Table in each Tables-Of(“Bills of Right™)
do

for Key in Keys-Of(Table)

do

x = (SELECT Attribute-Name(what, Table) FROM Table
WHERE Key LIKE ‘Bills of Right’);

answer = answer + x

38

10

15

20

25

30

WO 98/25251 PCT/US97/21774

endfor
endfor

if answer is not empty, return answer, otherwise return error.

3. Where is the capital of Texas?

There are two nouns in this question: capital and Texas. In one embodiment, each noun
is associated with a topic-related table. The preposition “of” indicates that the table associated
with Texas should take precedence over the capital table.

This question can have two different answers. The answer can be the geographic
location as shown on a map, or the answer can be the city Austin. One embodiment generates

the following instructions, with x denoting Austin, and y denoting geographic location:

for Table in each Tables-Of(Texas)

do
for Key in Keys-Of(Table)
do
for Attribute in Attribute-Names(capital, Table)
do
x = (SELECT DISTINCT Attribute
FROM Table
WHERE Key LIKE Texas)
if (x is valid) then goto found
end for
end for
end for

if {x is not valid) or (x has more than one value) then return error
found :
for Table in Tables-Of(x)
do
for Key in Keys-Of(Table)
do

39

10

15

20

25

30

WO 98/25251 PCT/US97/21774

y = (SELECT DISTINCT Attribute-Name(where, Table)
FROM Table
WHERE Key LIKE x)
if (x is valid) then goto found
end for
end for

return {error, no solution found}

4. What is the immediate cause of the Civil War?
In this example, the word “immediate” when linked with the noun “cause” is equivalent
in meaning to the word “last.”

for Table in each Tables-Of(“Civil War”)

do
for key in Keys-Of(Table)
do
for Attributel in Attribute-Names(cause, Table)
do
for Attribute2 in Attribute-Names(last, Table)
do
x = (SELECT Attribute] FROM Table
WHERE Key LIKE “Civil War”
ORDER BY Attribute2 DESC)
if (x is valid) then return {first element in x}
end for
end for
end for
end for

5. Why did President Nixon resign?
Events about “President Nixon resign” are extracted into a local table T. Then the

causes of all such events are identified.

CREATE LOCAL TABLE T AS

40

10

15

20

25

30

WO 98/25251 PCT/US97/21774

(SELECT * FROM Verb_View(resign)
WHERE subject-agent = “President Nixon™);
SELECT A .description
FROM EVENT A, T, EVENT-RELATIONSHIP R
WHERE R Keyld1 = A Keyld
AND R Keyld2 = T Keyld

AND R relationship = “consequence”;

The following examples 6-9 depend on tables, such as the President tables, generated
above.
6. Who is the third President?
names = (SELECT DISTINCT Name FROM PRESIDENT
ORDER BY Start_Year ASC)
return the 3rd name.
These instructions assume Tables-Of(President) contains only one table, and

Attribute-Names(‘third’, PRESIDENT) yields only a single attribute.

7. Who is the President after John Kennedy?
SELECT DISTINCT Name FROM PRESIDENT
WHERE Start_Year > (SELECT Start_Year FROM
PRESIDENT WHERE Name LIKE “John Kennedy”)
ORDER BY Start_Year DESC;

select the first result.
8. When did President Lyndon Johnson die?

SELECT Death_Date FROM PRESIDENT WHERE Name LIKE “Lyndon

Johnson”;

9, When was President Nixon born?

SELECT Birth_Date FROM PRESIDENT WHERE Name LIKE “Nixon”

41

10

15

20

25

30

WO 98/25251 PCT/US97/21774

A number of mathematical examples are shown in the following using the programming
language Lisp. Some examples might use mathematical softiware packages.

For mathematics problems, there can be an additional topic-related table, known as the
mathematics table. The mathematics table might include high-level attributes, such as fraction,
ratio, derivative, theorem, complex-number, matrix etc. Each of these high-level attributes
can have a definition attribute describing the mathematical concept; a reference attribute
identifying the study material covering the concept; and an algorithm attribute, if there is
one. In another embodiment, the algorithm attribute references a mathematical software
package. A high-level attribute can be a theorem, such as the Mean Value Theorem. In its
corresponding definition attribute, there will be an explanation for that theorem. Note that,
in this example, the algorithm attribute is not in the topic-dependent semantic table.

Most mathematical questions are ‘what-is’ questions. If a question is of the form
‘What is X?’, where X is a mathematical term, the system generates the following
instruction;

SELECT definition FROM T mathematics table WHERE T.name = X;

If the question is ‘“What is X <prepositional-noun-phrase>?’, the <prepositional-noun-
phrase> modifies the term X. The system retrieves X and applies the operations to the

terms indicated by the prepositions.

10. What is the ratio between 7 and 8?

From the mathematics table, the attribute “ratio” is identified. Its algorithm attribute
operates on two terms, as specified in the prepositional-phrase “between 7 and 8.” For
example:

(ratio 7 8)

11. What is the derivative of sin(x"2 + 4) with respect to x?

Again, the question is of the structure: “What is X <prepositional-noun-phrase>?" X is
“the derivative,” and the noun-phrase is “sin(x+4) with respect to x.” The algorithm specified by
the “derivative attribute” in the mathematics table has two operants, u and v, with the first

operant, u, being the noun immediately after the preposition. In this example, u is equal to

42

10

15

20

25

30

WO 98/25251 PCT/US97/21774

sin(x"2+4), and the second operant is v. The system can invoke a mathematics software
package to solve the differentiation, d(sin(x+4))/dx. One LISP representation is as follows:

(derivative *x *(sin (+ (* x X) 4)))

12. What is the product of {matrix-1} and {matrix-2}?
The LISP representation is as follows:

(matrix-mul <matrix-1> <matrix-2>)

13. What is the sum of the product of 3 and 4, and the ratio of 7 and 8?
The LISP representation is as follows:

(+ (* 3 4) (ratio 7 8))

Not all mathematics questions are ‘What-is’ questions. The user may not
understand certain steps in a derivation he is studying on the screen. Such questions are
typically ‘“Why-is” questions. In one embodiment, the system identifies the study material,
as in the current screen or the last screen he has been focusing on. Nouns used in the
question are mostly from those study material. By associating the question with the study
material and accessing a database of explanation terms in the study material, the system can

generate an answer to the question.

14. Why is delta used in step 4 of the proof?

The structure of the question is: Why is <noun phrase> <verb phrase>. The system

(2) Identify the verb in the verb phrase to be the word “used.”

(b) Identify one or more sets of events algorithm corresponding to the word “used” in
the mathematics table. The sets of algorithm are applicable to the structures of X using
Y.

(c) Identify X to be (delta).

(d) Identify Y to be (in step 4 of the proof).

(e) Identify the i-pronoun and the aux-verb as “Why is.”

() Select the set of algorithm for explaining the relationship between X and Y. In this

case, the set selected explains why X used Y.

43

WO 98/25251 PCT/US97/21774

(g) The algorithm searches for delta in step 4 of the proof in the materials just presented
to the user. After identifying the proof, step 4 and delta, the system explains the step 4

of the proof with special focus on delta.

44

10
11

1
2
3

WO 98/25251 PCT/US97/21774

CLAIMS

L. A method of teaching a user a subject depending on the user asking a computer
system (50) questions, the method comprising the steps of:

retrieving study materials on the subject;

presenting the study materials to the user;

retrieving a question entered by the user afier the study materials have been
presented;

generating an answer to the question; and

presenting the answer to the user so as to teach the user the subject.

2. A method as recited in Claim 1 further comprising the step of comparing the
question with one or more questions previously entered by the user to determine the user’s

understanding level in the subject.

3. A method as recited in Claims 1 or 2 wherein:

the system (50) includes a database (106);
the question is a natural-language question; and
the step of generating an answer to the question includes the steps of:

analyzing, by the system (50), the grammatical structure of the natural-
language question for parsing the question into its grammatical components based
on a pre-defined context-free grammatical structure, using the database and one or
more grammatical rules; and

transforming, by the system (50), at least one component into one or more
instructions, using one or more semantic rules and the database, for generating the

answer to the natural-language question.
4. A method as recited in Claim 1 or 2 wherein after the steps as recited have been

performed, the method further comprises the step of repeating from the step of retrieving

study materials on the subject.

45

10

WO 98/25251 PCT/US97/21774

5. A method as recited in Claim 3 wherein the step of analyzing includes the steps of:
scanning the question to extract each word in the question; and
parsing the question by applying the grammatical rules and the database on each of
the extracted word to identify its grammatical meaning and to match the question with the

pre-defined grammatical structure.

6. A method as recited in Claim 2 wherein the step of comparing includes the step of
considering the time each question was entered to take into account the user’s degree of

forgetfulness.

7. An apparatus (50) for teaching a user a subject based on the user asking questions,
the apparatus (50) comprising:
a study-materials generator (52) for retrieving study-materials on the subject;
an answer generator (100) for
retrieving a question entered by the user after study materials have been
presented, and
generating an answer to the question; and
a presenter (120) coupled to the study-materials generator (52) and the answer
generator (100) to present study-materials and the answer to the user to teach the user the

subject.

8. An apparatus (50) as recited in Claim 7 further comprising a comparator (60) for
comparing the question with one or more questions previously entered by the user to

determine the user’s understanding level in the subject.

9. An apparatus (50)as recited in Claim 7 or 8 wherein:
the question is a natural-language question;
the apparatur (50) further comprises a database (106); and

the answer generator (100) includes:

46

10
11
12
13

14

WO 98/25251 PCT/US97/21774

a grammatical structure analyzer (102) for analyzing the natural-language
question to parse the question into its grammatical components based on a pre-defined
context-free grammatical structure, using the database (106) and one or more grammatical
rules;

a programming-steps generator (108) for transforming at least one
component of the question into one or more instructions, using one or more semantic rules
and the database (106); and

a programming-steps executor (112) for executing the instructions to at
least access data from the database (106) for generating an answer to the natural-language

question.
10. An apparatus (50) as recited in Claim 8 wherein the comparator (60) is configured

for considering the time each question was entered to take into account the user’s degree

of forgetfulness.

47

PCT/US97/21774

WO 98/25251

} ainbiy

29

¥9
0ct 00t
JOJUBSBld |€— JOMSUY «— | TOIEsRUD
1emsuy

N

9g

N

<4—— uonsanp) <«—|

ajen
$S900Y

I R

Jojeredwo)
LonsaND <« ©esegeleq

<

s|euale lojelausy)
Apnig ¢ sjeusjew-Apnjs

T,

<

—~

¢s

0§

a%Ine(g
nduy

1/16

WO 98/25251

106 \

Database:

Grammatical

147 Table

Topic-
116 "\ Related

Tables

118 ™\, Semantic
Table:

Topic-
Dependent

Topic-
Independent

118A
™~/

LN

118B

100\

PCT/US97/21774

102

/

Grammatical Structure
Analyzer

l 108

/

Programming-steps
Generator

112 l

Programming-steps
Executor

AN
104
/

Grammatical
Rules

Semantic
Rules

\

110

Figure 2

2/16

WO 98/25251 PCT/US97/21774

5150

1562

Figure 3A

3/16

PCT/US97/21774

WO 98/25251

0ct R

181

651

ge ainbi4
I 8sno
mm._,\q W 9.1 = pleoghey
Ja)depy
aoealU| 18jj0]ju0y L Aowapy
SUOMISN resayduad h urep
V\ b\‘ c9l
08} Vol J/
pieog - Jeldepy " 19]j051U0D
oo | oo ST soudess o/l [By |
1023U0D)
sjeubig — nv
olpny | _
JONUOW .
SALI Xsid SALIQ %510 M
— Addo |
8L} By - PRHT o
174} cll

4/16

WO 98/25251 PCT/US97/21774

Int *
Int +/-
| (7.0) | (9.4) (9., B)
(8. B) (9. B)
Frt +/- w/Comm Denom Frt +/-, w/Int
6.0 |
(7, B) l l 6.0
Frt +/- w/o Comm Denom Frt * /. w/Int
(7. C) (8, B)
\ 4
Int Common
i/ Divisor
‘ (6. 1) | (6. B)

Frt Reduction

Figure 4

5/16

WO 98/25251 PCT/US97/21774

190
S

Retrieve the
Question Entered ~ 192

l

Generate an Answer
to the Question

l

Present the Answer ~~ 196

l

Compare the Question
with Other Questions

~ 194

~ 198

Figure 5

6/16

WO 98/25251

Analyze Grammatical
Structure

l

Transform at Least
One Component into
an Instruction

l

Execute the Instruction
for Generating an Answer

Figure 6

7/16

PCT/US97/21774

200
Vs

~ 202

~ 206

~ 208

PCT/US97/21774

WO 98/25251

/ 2inbiy

Sunou alow 10 auo

*

<oseiyd-unou> <uonisodaid> <SUNOU-8J0W-10-8U0> , <aANdB[pe> [<a|oiue-Ajipow>]

.
/

[<eseayd-unou-jfeuonisodaid>] <sunou-jo-dnoib>

[<eseiyd-unou-feuonisodaid>] <qiaa-xne-uou>

[<aseiyd-qien>] <eseiyd-unou> <qiaa-xne> <unouold-I> = <uonssny>

8/16

WO 98/25251 PCT/US97/21774

250
S

Transform Noun
to Select One
Topic-related Table

l

Transform Other
Components to Identify ~ 254
Data in the Table

~ 252

Figure 8A

9/16

WO 98/25251 PCT/US97/21774

260
Vs

Identify the Algorithm
Corresponding to the Noun ™~ 262

l

Applies the Algorithm
to Data Selected by ~ 264
Other Components

Figure 8B

10/16

WO 98/25251 PCT/US97/21774

Transform the Non-aux
Verb to Select Verbs ~~ 300
Having Similar Meaning

l

Transform Other
Components to |dentify
Data in the Attributes

~ 302

Figure 9

11/16

PCT/US97/21774

WO 98/25251

yse ~v

¢qg ~v

0} ainbi4

selnquy asoy| ul ejeq uo
sejeled wyiobjy uy

a|qe] pejosles ul
sainqupy Apusp)

0S€ . giqe] paosjes
ut eyeq Apuap

aAloslpy 104

12/16

PCT/US97/21774

WO 98/25251

I} 8inbi4

eroiddy O

103 J8sn —
[48% v
1454
V M °10] 4
suofsebbng Jusuodwo) w Y0P
Yim jedjewwels) PIOM PIOM w
uonseny [eIuSsSe-UoN 1S9S0|) WaseyIq PIOM
Jelus-ay BuissIpy YIM PIOM ® 10} ay}
01)sV a10ubj soeidey JoSMYSY enowiey
~
H H 80V
_
aInpnis _

[eseWwiWRIL) JuBIBIQ Aseuono1q-18sn ul 10N PO

| 7

48] 4
0

Buiuesy
yoe3 o}
lamsuy ue
8onpoid

!

10,0)7
{

2UQ 108l0D

ay}
Amuep| 0}
19sN sy

1

!

Buiuesyy jeonewWIWEIL)
auQ uey] 2I0N

uoisand snonbiquuy

13/16

WO 98/25251 PCT/US97/21774

500 \

Question
Matching Engine

106 \

M~ 529
Database:

Questions

/'
Table \ l

Answer Retriever 1~ 539

Figure 12

14/16

WO 98/25251 PCT/US97/21774

550
e

Compare Question with
Questions in the Database

l

Retrieve Answer
Corresponding to the ~~ 5b4
Matched Question

~ 552

Figure 13

15/16

WO 98/25251

———» Retrieve Study Materials

l

Present to User

l

Retrieve the Question Asked

l

Generate an Answer

l

—— Present the Answer

Figure 14

16/16

PCT/US97/21774

~ 602

~ 604

~ 606

~ 608

~ 610

r:

600

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US97/217T74

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :GO9B 7/00
US CL :434/362
According to International Patent Classification (IPC) or to both

national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : Please Sce Extra Sheet.

Documentation scarched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, scarch terms used)

APS

scarch terms:Natural language#, question#, answer#, databasc, semantic, pars?, scan?

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 5,259,766 A (SACK ET AL) 09 November 1993, see Figs. 1-5b. | 1-20

Y US 5,519,608 A (KUPIEC) 21 May 1996, see Figs. 1-6. 1-20

Y US 4,867,685 A (BRUSH ET AL) 19 September 1989, see Figs.| 1-20

4A-4H.

Y US 4,787,035 A (BOURNE) 22 November 1988, see Figs. 1A-51.| 1-20

Y US 4,798,543 A (SPIECE) 17 January 1989, see Figs. 1-12. 1-20

Y ;178 4,914,500 A (LOATMAN ET AL) 03 April 1990, see Figs. 1-| 1-20

Further documents are listed in the continuation of Box C.

D See patent family annex.

L]

Special categories of cited documents:

d the g
to be of particular relevance

eatlier document published on or sfter the internationat filing date
document which may throw doubts on priority ellun(l) or which is

A" t defink 1 state of the art which is not considered

‘B*
e

cited to blish the publi date of or other
special reason (as specified)
o document referring to an oral disclosure, use, exhibition or other

document published prior to the international filing date but later than
the priority date claimed

*pe

T later d blished aftor the inter | filing date or priority
date and not in conflict with the application but cited to understand

the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step

when the document is taken alone

document of particular reievance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such d , such combi

being obvious to a person skilled in the art

&t document member of the same patent family

Date of the actual completion of the international search

11 APRIL 1998

Date of mailing of the international search report

0.5 MAY 1998

y s
Name and mailing address of the ISA/US Authorized officer FLuts.
Commissioner of Patents and Trademarks By ‘Vmgy
Box PCT [™ JOE H. CHENG S

Washington, D.C. 20231
Facsimile No. (703) 305-3230

(703) 308-2667 Technology

Telephone No.

Form PCT/ISA/210 (second sheet)(July 1992)%

m37q0

INTERNATIONAL SEARCH REPORT International application No.

PCT/US97/21774

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

1-27.

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 5,239,617 A (GARDNER ET AL) 24 August 1993, see Figs.1- |1-20
5.
Y US 5,306,154 A (UNTA ET AL) 26 April 1994, see Figs.1-20. 1-20
Y US 5,386,556 A (HEDIN ET AL) 31 January 1995, see Figs. 1-4. 1-20
Y US 5,495,604 A (HARDING ET AL) 27 February 1996, see Figs. |1-20

Form PCT/ISA/210 (continuation of second sheet)(July 1992)

INTERNATIONAL SEARCH REPORT International application No.
PCT/US97/21774

B. FIELDS SEARCHED
Minimum documentation searched
Classification System: U.S.

434/118, 156, 169, 185, 219, 307R, 308, 322, 323, 327, 335, 362, 365; 704/3, 8, 9, 102, 207; 707/1-4, 102, 532;
345/326, 927; 395/82, 707.

Form PCT/ISA/210 (extra sheet)(July 1992)%

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS
	SEARCH_REPORT

