wo 20137122758 A1 I} 00O 0 O A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/122758 Al

22 August 2013 (22.08.2013) WIPOIPCT

(51) International Patent Classification: Redmond, Washington 98052-6399 (US). LUCCO,
GO6F 9/06 (2006.01) GO6F 9/44 (2006.01) Steven Edward; c¢/o Microsoft Corporation, LCA - Inter-
GO6F 9/30 (2006.01) national Patents, One Microsott Way, Redmond, Washing-
(21) International Application Number: ton 98052_6399. (US). MCGATH.A’ Jesse D.; c/o M.l_
PCT/US2013/024559 crosoft Corporation, LCA - mtematlonal Patents, One Mi-
crosoft Way, Redmond, Washington 98052-6399 (US).
(22) International Filing Date: MIADOWICYZ, Jedrzej Z.; c/o Microsoft Corporation,
4 February 2013 (04.02.2013) LCA - International Patents, One Microsoft Way, Red-
- . mond, Washington 98052-6399 (US). STEINER, Steven
(25) Filing Language: English J.; c/o Microsoft Corporation, LCA - International Patents,
(26) Publication Language: English One Microsoft Way, Redmond, Washington 98052-6399

(30) Priority Data: U9
13/371,479 13 February 2012 (13.02.2012) Us (81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
(71) Applicant (for all designated States except US): MI- AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
CROSOFT CORPORATION [US/US]; One Microsoft BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
Way, Redmond, Washington 98052-6399 (US). DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(72) Inventors: FISHER, Jomo; c/o Microsott Corporation, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,

LCA - International Patents, One Microsoft Way, Red-
mond, Washington 98052-6399 (US). JACKSON, Mi-
chael Wayne; c¢/o Microsott Corporation, LCA - Interna-
tional Patents, One Microsott Way, Redmond, Washington
98052-6399 (US). KILIC, Yunus; c¢/o Microsoft Corpora-
tion, LCA - International Patents, One Microsoft Way,

KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
T™M, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

[Continued on next page]

(54) Title: GENERATING AND CACHING SOFTWARE CODE

(BEGIN }\/\505

RECEIVE PACKAGE 510
INSTALL PACKAGE 515
QUEUE COMPILATION TASK kA 520
535
EXECUTION
REQUEST RECEIVED PERFORM COMPILATION A 525
PERSISTENTLY STORE BYTECODE [\ 530

OTHER
ACTIONS 540

FIG. 5

(57) Abstract: Aspects of the subject matter described herein relate to gen-
erating and caching software code. In aspects, a target device may receive
software to install. The software may include source code that has not been
compiled. The target device may install the software and indicate the source
code of the package is to be compiled into intermediate or executable code
that is persistently stored. If the target device receives a request to execute
the software prior to it being compiled, the target device may compile and
execute the software without delay. If the target device receives a request to
execute the software after it is compiled, the target device may obtain and
execute the compiled code. The behavior above may also be applied to
scripting code obtained from a server remote to the target device.

WO 20137122758 A1 WK 00N A0 A 0O A O

(84) Designated States (unless otherwise indicated, for every Declarations under Rule 4.17:
kind of regional protection available): ARIPO (BW, GH, __ . , .
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, Zsp ;Ote‘,’f;p(%‘l’:;s I%Zjemem to apply for and be granted
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, ’
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, — as to the applicant’s entitlement to claim the priority of
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, the earlier application (Rule 4.17(iii))
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Published:
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, ’
GW, ML, MR, NE, SN, TD, TG). — with international search report (Art. 21(3))

10

15

20

25

30

WO 2013/122758 PCT/US2013/024559

GENERATING AND CACHING SOFTWARE CODE
BACKGROUND

[0001] Scripting languages may be found in various environments. For example,
many Internet browsers have a scripting language that allows a Web page to customize its
behavior based on user input or other data. Scripting languages may also be found in
environments outside of Internet browsers. One issue with scripting languages is that they
can be slow--especially on startup and possibly with each execution--compared to
conventional programs that have been compiled.
[0002] The subject matter claimed herein is not limited to embodiments that solve
any disadvantages or that operate only in environments such as those described above.
Rather, this background is only provided to illustrate one exemplary technology area
where some embodiments described herein may be practiced.

SUMMARY
[0003] Briefly, aspects of the subject matter described herein relate to generating
and caching software code. In aspects, a target device may receive software to install.
The software may include source code that has not been compiled. The target device may
install the software and indicate the source code of the package is to be compiled into
intermediate or executable code that is persistently stored. If the target device receives a
request to execute the software prior to it being compiled, the target device may compile
and execute the software without delay. If the target device receives a request to execute
the software after it is compiled, the target device may obtain and execute the compiled
code. The behavior above may also be applied to scripting code obtained from a server
remote to the target device.
[0004] This Summary is provided to briefly identify some aspects of the subject
matter that is further described below in the Detailed Description. This Summary is not
intended to identify key or essential features of the claimed subject matter, nor is it
intended to be used to limit the scope of the claimed subject matter.
[0005] The phrase “subject matter described herein” refers to subject matter
described in the Detailed Description unless the context clearly indicates otherwise. The
term “aspects” should be read as “at least one aspect.” Identifying aspects of the subject
matter described in the Detailed Description is not intended to identify key or essential

features of the claimed subject matter.

10

15

20

25

30

WO 2013/122758 PCT/US2013/024559

[0006] The aspects described above and other aspects of the subject matter
described herein are illustrated by way of example and not limited in the accompanying
figures in which like reference numerals indicate similar elements and in which:

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] FIGURE 1 is a block diagram representing an exemplary general-purpose
computing environment into which aspects of the subject matter described herein may be
incorporated;

[0008] FIG. 2 is a block diagram representing an exemplary arrangement of
components of a system in which aspects of the subject matter described herein may
operate;

[0009] FIG. 3 illustrates an exemplary data structure that may be used in
accordance with aspects of the subject matter described herein;

[0010] FIG. 4 is a block diagram representing an exemplary arrangement of
components of an environment in which aspects of the subject matter described herein
may operate; and

[0011] FIGS. 5-6 are flow diagrams that generally represent exemplary actions that
may occur in accordance with aspects of the subject matter described herein.

DETAILED DESCRIPTION

DEFINITIONS

[0012] As used herein, the term “includes” and its variants are to be read as open-
ended terms that mean “includes, but is not limited to.” The term “or” is to be read as
“and/or” unless the context clearly dictates otherwise. The term “based on” is to be read
as “based at least in part on.” The terms “one embodiment” and “an embodiment” are to
be read as “at least one embodiment.” The term “another embodiment” is to be read as “at
least one other embodiment.”

G, 9 66
a.

[0013] As used herein, terms such as an,” and “the” are inclusive of one or
more of the indicated item or action. In particular, in the claims a reference to an item
generally means at least one such item is present and a reference to an action means at
least one instance of the action is performed.

[0014] Sometimes herein the terms “first”, “second”, “third” and so forth may be
used. Without additional context, the use of these terms in the claims is not intended to
imply an ordering but is rather used for identification purposes. For example, the phrases

“first version” and “second version” do not necessarily mean that the first version is the

very first version or was created before the second version or even that the first version is

10

15

20

25

30

WO 2013/122758 PCT/US2013/024559

requested or operated on before the second version. Rather, these phrases are used to
identify different versions.

[0015] Headings are for convenience only; information on a given topic may be
found outside the section whose heading indicates that topic.

[0016] Other definitions, explicit and implicit, may be included below.
EXEMPLARY OPERATING ENVIRONMENT

[0017] Figure 1 illustrates an example of a suitable computing system environment
100 on which aspects of the subject matter described herein may be implemented. The
computing system environment 100 is only one example of a suitable computing
environment and is not intended to suggest any limitation as to the scope of use or
functionality of aspects of the subject matter described herein. Neither should the
computing environment 100 be interpreted as having any dependency or requirement
relating to any one or combination of components illustrated in the exemplary operating
environment 100.

[0018] Aspects of the subject matter described herein are operational with
numerous other general purpose or special purpose computing system environments or
configurations. Examples of well-known computing systems, environments, or
configurations that may be suitable for use with aspects of the subject matter described
herein comprise personal computers, server computers, hand-held or laptop devices,
multiprocessor systems, microcontroller-based systems, set-top boxes, programmable
consumer eclectronics, network PCs, minicomputers, mainframe computers, personal
digital assistants (PDAs), gaming devices, printers, appliances including set-top, media
center, or other appliances, automobile-embedded or attached computing devices, other
mobile devices, distributed computing environments that include any of the above systems
or devices, and the like.

[0019] Aspects of the subject matter described herein may be described in the
general context of computer-executable instructions, such as program modules, being
executed by a computer. Generally, program modules include routines, programs, objects,
components, data structures, and so forth, which perform particular tasks or implement
particular abstract data types. Aspects of the subject matter described herein may also be
practiced in distributed computing environments where tasks are performed by remote
processing devices that are linked through a communications network. In a distributed
computing environment, program modules may be located in both local and remote

computer storage media including memory storage devices.

10

15

20

25

30

WO 2013/122758 PCT/US2013/024559

[0020] With reference to Figure 1, an exemplary system for implementing aspects
of the subject matter described herein includes a general-purpose computing device in the
form of a computer 110. A computer may include any electronic device that is capable of
executing an instruction. Components of the computer 110 may include a processing unit
120, a system memory 130, and a system bus 121 that couples various system components
including the system memory to the processing unit 120. The system bus 121 may be any
of several types of bus structures including a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of bus architectures. By way of
example, and not limitation, such architectures include Industry Standard Architecture
(ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, Peripheral Component Interconnect
(PCI) bus also known as Mezzanine bus, Peripheral Component Interconnect Extended
(PCI-X) bus, Advanced Graphics Port (AGP), and PCI express (PCle).

[0021] The processing unit 120 may be connected to a hardware security device
122. The security device 122 may store and be able to generate cryptographic keys that
may be used to secure various aspects of the computer 110. In one embodiment, the
security device 122 may comprise a Trusted Platform Module (TPM) chip, TPM Security
Device, or the like.

[0022] The computer 110 typically includes a variety of computer-readable media.
Computer-readable media can be any available media that can be accessed by the
computer 110 and includes both volatile and nonvolatile media, and removable and non-
removable media. By way of example, and not limitation, computer-readable media may
comprise computer storage media and communication media.

[0023] Computer storage media includes both volatile and nonvolatile, removable
and non-removable media implemented in any method or technology for storage of
information such as computer-readable instructions, data structures, program modules, or
other data. Computer storage media includes RAM, ROM, EEPROM, solid state storage,
flash memory or other memory technology, CD-ROM, digital versatile discs (DVDs) or
other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or
other magnetic storage devices, or any other medium which can be used to store the
desired information and which can be accessed by the computer 110.

[0024] Communication media typically embodies computer-readable instructions,
data structures, program modules, or other data in a modulated data signal such as a carrier

wave or other transport mechanism and includes any information delivery media. The

10

15

20

25

30

WO 2013/122758 PCT/US2013/024559

term “modulated data signal” means a signal that has one or more of its characteristics set
or changed in such a manner as to encode information in the signal. By way of example,
and not limitation, communication media includes wired media such as a wired network or
direct wired connection, and wircless media such as acoustic, RF, infrared and other
wireless media. Combinations of any of the above should also be included within the
scope of computer-readable media.

[0025] The system memory 130 includes computer storage media in the form of
volatile and/or nonvolatile memory such as read only memory (ROM) 131 and random
access memory (RAM) 132. A basic input/output system 133 (BIOS), containing the
basic routines that help to transfer information between elements within computer 110,
such as during start-up, is typically stored in ROM 131. RAM 132 typically contains data
and/or program modules that are immediately accessible to and/or presently being
operated on by processing unit 120. By way of example, and not limitation, Figure 1
illustrates operating system 134, application programs 135, other program modules 136,
and program data 137.

[0026] The computer 110 may also include other removable/non-removable,
volatile/nonvolatile computer storage media. By way of example only, Figure 1 illustrates
a hard disk drive 141 that reads from or writes to non-removable, nonvolatile magnetic
media, a magnetic disk drive 151 that reads from or writes to a removable, nonvolatile
magnetic disk 152, and an optical disc drive 155 that reads from or writes to a removable,
nonvolatile optical disc 156 such as a CD ROM or other optical media. Other
removable/non-removable, volatile/nonvolatile computer storage media that can be used in
the exemplary operating environment include magnetic tape cassettes, flash memory cards
and other solid state storage devices, digital versatile discs, other optical discs, digital
video tape, solid state RAM, solid state ROM, and the like. The hard disk drive 141 may
be connected to the system bus 121 through the interface 140, and magnetic disk drive 151
and optical disc drive 155 may be connected to the system bus 121 by an interface for
removable nonvolatile memory such as the interface 150.

[0027] The drives and their associated computer storage media, discussed above
and illustrated in Figure 1, provide storage of computer-readable instructions, data
structures, program modules, and other data for the computer 110. In Figure 1, for
example, hard disk drive 141 is illustrated as storing operating system 144, application
programs 145, other program modules 146, and program data 147. Note that these

components can either be the same as or different from operating system 134, application

10

15

20

25

30

WO 2013/122758 PCT/US2013/024559

programs 135, other program modules 136, and program data 137. Operating system 144,
application programs 145, other program modules 146, and program data 147 are given
different numbers herein to illustrate that, at a minimum, they are different copies.

[0028] A user may enter commands and information into the computer 110
through input devices such as a keyboard 162 and pointing device 161, commonly referred
to as a mouse, trackball, or touch pad. Other input devices (not shown) may include a
microphone, joystick, game pad, satellite dish, scanner, a touch-sensitive screen, a writing
tablet, a gesture capturing device, or the like. These and other input devices are often
connected to the processing unit 120 through a user input interface 160 that is coupled to
the system bus, but may be connected by other interface and bus structures, such as a
parallel port, game port or a universal serial bus (USB).

[0029] A monitor 191 or other type of display device is also connected to the
system bus 121 via an interface, such as a video interface 190. In addition to the monitor,
computers may also include other peripheral output devices such as speakers 197 and
printer 196, which may be connected through an output peripheral interface 195.

[0030] The computer 110 may operate in a networked environment using logical
connections to one or more remote computers, such as a remote computer 180. The
remote computer 180 may be a personal computer, a server, a router, a network PC, a peer
device or other common network node, and typically includes many or all of the elements
described above relative to the computer 110, although only a memory storage device 181
has been illustrated in Figure 1. The logical connections depicted in Figure 1 include a
local area network (LAN) 171 and a wide area network (WAN) 173, but may also include
other networks. Such networking environments are commonplace in offices, enterprise-
wide computer networks, intranets, and the Internet.

[0031] When used in a LAN networking environment, the computer 110 is
connected to the LAN 171 through a network interface or adapter 170. When used in a
WAN networking environment, the computer 110 may include a modem 172 or other
means for establishing communications over the WAN 173, such as the Internet. The
modem 172, which may be internal or external, may be connected to the system bus 121
via the user input interface 160 or other appropriate mechanism. In a networked
environment, program modules depicted relative to the computer 110, or portions thereof,
may be stored in the remote memory storage device. By way of example, and not

limitation, Figure 1 illustrates remote application programs 185 as residing on memory

10

15

20

25

30

WO 2013/122758 PCT/US2013/024559

device 181. It will be appreciated that the network connections shown are exemplary and
other means of establishing a communications link between the computers may be used.

Generating and Caching Code

[0032] As mentioned previously, compared to a conventional program that has
been compiled, a scripting language may appear to be slow to a user, especially on initial
startup.

[0033] FIG. 2 is a block diagram representing an exemplary arrangement of
components of a system in which aspects of the subject matter described herein may
operate. The components illustrated in FIG. 2 are exemplary and are not meant to be all-
inclusive of components that may be needed or included. In other embodiments, the
components and/or functions described in conjunction with FIG. 2 may be included in
other components (shown or not shown) or placed in subcomponents without departing
from the spirit or scope of aspects of the subject matter described herein. In some
embodiments, the components and/or functions described in conjunction with FIG. 2 may
be distributed across multiple devices.

[0034] Turning to FIG. 2, the system 205 may include scripting components 210, a
store 220, a communications mechanism 225, and other components (not shown). The
system 205 may comprise one or more computing devices. Such devices may include, for
example, personal computers, server computers, hand-held or laptop devices,
multiprocessor systems, microcontroller-based systems, set-top boxes, programmable
consumer eclectronics, network PCs, minicomputers, mainframe computers, cell phones,
personal digital assistants (PDAs), gaming devices, printers, appliances including set-top,
media center, or other appliances, automobile-embedded or attached computing devices,
other mobile devices, distributed computing environments that include any of the above
systems or devices, and the like.

[0035] Where the system 205 comprises a single device, an exemplary device that
may be configured to act as the system 205 comprises the computer 110 of FIG. 1. Where
the system 205 comprises multiple devices, each of the multiple devices may comprise a
similarly or differently configured computer 110 of FIG. 1.

[0036] The scripting components 210 may include an installer 215, a code
generator 216, a cache manager 217, an execution manager 218, and other components
(not shown). As used herein, the term component is to be read to include all or a portion

of a device, a collection of one or more software modules or portions thereof, some

10

15

20

25

30

WO 2013/122758 PCT/US2013/024559

combination of one or more software modules or portions thereof and one or more devices
or portions thereof, and the like.

[0037] The communications mechanism 225 allows the system 205 to
communicate with other entities. For example, the communications mechanism 225 may
allow the system 205 to communicate with other entities to obtain packages and/or
scripting code that may be cached on the system 205. The communications mechanism
255 may be a network interface or adapter 170, modem 172, or any other mechanism for
establishing communications as described in conjunction with FIG. 1.

[0038] The store 220 is any storage media capable of providing access to data.
Access as used herein may include reading data, writing data, deleting data, updating data,
a combination including two or more of the above, and the like. The store may include
volatile memory (e.g., RAM, an in-memory cache, or the like) and non-volatile memory
(e.g., a persistent storage).

[0039] The term data is to be read broadly to include anything that may be
represented by one or more computer storage elements. Logically, data may be
represented as a series of 1’s and 0’s in volatile or non-volatile memory. In computers that
have a non-binary storage medium, data may be represented according to the capabilities
of the storage medium. Data may be organized into different types of data structures
including simple data types such as numbers, letters, and the like, hierarchical, linked, or
other related data types, data structures that include multiple other data structures or
simple data types, and the like. Some examples of data include information, program
code, program state, program data, other data, and the like.

[0040] The store 220 may comprise hard disk storage, other non-volatile storage,
volatile memory such as RAM, other storage, some combination of the above, and the like
and may be distributed across multiple devices. The store 220 may be external, internal,
or include components that are both internal and external to the system 205.

[0041] To decrease startup and execution times, reduce memory footprint, to
enable protection against tampering, and for other reasons, the code generator 216 may
compile source code into bytecode or some other intermediate code or executable code.
Code includes instructions that indicate actions a computer is to take. Code may also
include data, resources, variables, definitions, relationships, associations, and the like that
include information other than actions the computer is to take. For example, the code may
include images, Web pages, HTML, XML, other content, and the like. In an embodiment,

the code may be included in a software project. Software may include or reference one or

10

15

20

25

30

WO 2013/122758 PCT/US2013/024559

more code portions, data, resources, variables, definitions, relationships, associations, and
the like that include information other than actions the computer is to take , configuration
information, and the like.

[0042] Actions indicated by code may be encoded in a source code language
including scripting and non-scripting languages, intermediate language, assembly
language, binary code, other language, some combination of the above, and the like.
[0043] The installer 215 may install packages on the system 205. A package may
include one or more software applications. The installer 215 may include a deployment
extension handler that allows for custom actions to be performed based on the package
installed, the target machine upon which the package is installed, whether the package
includes scripting code, or other criteria.

[0044] In one implementation, when the installer 215 encounters a package with
scripting code therein, the installer 215 may add elements corresponding to the
components of the package to a queue or other data structure for precompiling the code of
the package.

[0045] The code generator 216 may take elements from the data structure and may
generate bytecode, executable code, or some other code from the code corresponding to
cach of the elements. An element may include a file that includes script, a portion of a file
(e.g, script embedded within an HTML page), compiled code, or the like. For simplicity,
the term bytecode is often used herein to denote the code that the code generator 216
generates. It is to be understood, however, that the code generator 216 is not limited to
generating and caching bytecode and may, in other implementations, generate and cache
other types of code including those types of code that have been mentioned previously.
[0046] In one implementation, the code generator 216 may wait until a package
has been completely installed and elements corresponding to the package placed in the
data structure for compilation before generating bytecode. In another implementation, the
code generator 216 may begin generating bytecode as soon as an element is available in
the data structure or as soon as a source code module is installed. In this other
implementation, in one example, the code generator 216 may dispose of the generated
bytecode if the package installation fails. In another example, the code generator 216 may
resume the generation from the point it left off (e.g., after power is restored and the
machine is rebooted.) In one implementation, the code generator 216 may be
implemented as a process to perform when the system 205 is idle (e.g., not installing

packages or performing other tasks that consume the processing bandwidth of the system

10

15

20

25

30

WO 2013/122758 PCT/US2013/024559

205), when the system 205 is operating on line power (e.g., instead of battery power), at
defined or configurable times of the day, or the like.

[0047] The term “process” and its variants as used herein may include one or more
traditional processes, threads, components, libraries, objects that perform tasks, and the
like. A process may be implemented in hardware, software, or a combination of hardware
and software. In an embodiment, a process is any mechanism, however called, capable of
or used in performing an action. A process may be distributed over multiple devices or a
single device.

[0048] In one implementation, the code generator 216 may also be used to
generate code on the fly (e.g., as the code is encountered). For example, if a user installs
software and wants to run the software before the bytecode for the entire package that
includes the software is generated, the code generator 216 may be employed to generate
code for the software as needed. In other words, the user is not required to wait for the
code generator 216 to generate bytecode for the entire package before the user is allowed
to execute software of the package. In addition, there may be other situations in which the
source code for a component has changed and where the code generator 216 may be
employed to generate bytecode for the component on an expedited basis.

[0049] Furthermore, the code generator 216 may be employed on-demand to
compile code and cache code. For example, in an Internet browser application, links to
new code may be discovered dynamically. For example, a Web document may include
links to other code that is to be downloaded and executed. The code generator 216 may be
employed to compile the code referred to by these links and cache the compiled code to
speed subsequent executions of the code.

[0050] The code generator 216 may be implemented in or use a “sand box” to
generate code. A sand box is an environment that has limited rights with respect to data it
can access. In one implementation, the code generator 216 may be implemented as a
process with restricted rights. The process may be passed a handle to a bytecode file that
the process can read from and write to and may be given read-only access to the source
code. For security purposes, the process may not have access to other resources than those
mentioned above.

[0051] In one implementation, the code generator 216 may be hosted in a virtual
environment. A virtual environment is an environment that is simulated or emulated by a
computer. The virtual environment may simulate or emulate a physical machine,

operating system, set of one or more interfaces, portions of the above, combinations of the

10

10

15

20

25

30

WO 2013/122758 PCT/US2013/024559

above, or the like. When a machine is simulated or emulated, the machine is sometimes
called a virtual machine. A virtual machine is a machine that, to software executing on the
virtual machine, appears to be a physical machine. The software may save files in a
virtual storage device such as virtual hard drive, virtual floppy disk, and the like, may read
files from a virtual CD, may communicate via a virtual network adapter, and so forth.
[0052] A virtual environment may have restricted or no access to data or other
resources outside of the virtual environment. As such, a virtual environment may provide
a suitable environment for compiling untrusted code without worrying about whether the
code will infect the host of the virtual environment.

[0053] After writing the bytecode to a file, the process may electronically sign or
otherwise “seal” the file so that any modifications to the file are detectable. Sealing the
file may take many cryptographic and/or file system forms that will be understood by
those skilled in the art. For example, in one implementation, a file system may set an
extended attribute on a file upon sealing. If the file is modified thereafter, the extended
attribute may be changed to indicate that the file is no longer sealed.

[0054] Writing the bytecode to the store 220 is sometimes referred to herein as
caching the bytecode. The cache manager 217 may operate to store the bytecode on the
store 220 and provide access to the bytecode upon demand. The cache manager 217 may
ensure that the bytecode is persistently stored on the store 220 such that the bytecode is
available after a restart of the system 205. The cache manager 217 may also store a copy
of the bytecode in main memory, high speed cache memory, video memory, other memory
including volatile and nonvolatile memory, or the like, if desired, to speed access to the
bytecode.

[0055] Furthermore, although the term file is sometimes used herein, it is to be
understood that in other implementations the bytecode may be writen to volatile and/or
non-volatile memory, a database or portion thereof (e.g., a record), or some other store
without departing from the spirit or scope of aspects of the subject matter described herein.
[0056] If more than one user installs a package, an implementation may cache
multiple copies or only one copy of the bytecode for the package in the store 220. Where
a package targets more than one processor architecture (e.g., 32 bit and 64 bit), the code
generator 216 may generate and cache targeted bytecode for each processor architecture.
[0057] In some implementations, there may be several triggers for regenerating the
bytecode of a package. For example, if the seal of a file that includes the bytecode has

been broken (e.g. tampering is detected), storage media has become corrupted, or other

11

10

15

20

25

30

WO 2013/122758 PCT/US2013/024559

data indicates that the cache may be invalid or not intact, this may serve as a trigger that
the bytecode of the package is to be regenerated. In this case, if the execution manager
218 determines that the seal has been broken, the execution manager 218 may instruct the
code generator 216 to regenerate the bytecode for the package. The code generator 216
may regenerate the bytecode in a manner similar to how the code generator 216 first
generated the bytecode (e.g., by placing elements corresponding to the components of a
package in a queue or other data structure indicating a need for generating the bytecode).
[0058] As another example, if the environment using the bytecode has been
upgraded to a new version, this may trigger regenerating the bytecode. For example, if an
Internet browser or another execution environment has been updated to a new version that
has a different bytecode grammar or syntax, this may trigger regenerating bytecode
suitable for the new version. In this example, the trigger may occur when a user attempts
to execute the software associated with the bytecode. This may cause the bytecode to be
regenerated upon use and may avoid regenerating bytecode for all installed packages at
once.

[0059] As another example, if a periodic maintenance task detects that the
execution environment has been updated to a new eversion that has a different bytecode
grammar or syntax, this may trigger regenerating bytecode suitable for the new version.
[0060] As another example, if a new version of the package is to be installed, this
may serve as a trigger for regenerating the bytecode.

[0061] As another example, if the bytecode is deleted for some reason, this may
serve as a trigger for regenerating the bytecode.

[0062] In the store 220, the source code and corresponding bytecode may be
stored, in one example, as illustrated in FIG. 3. FIG. 3 illustrates an exemplary data
structure that may be used in accordance with aspects of the subject matter described
herein. In one implementation, the data structure illustrated in FIG. 3 may have a table
that indicates the source code files and bytecode representations that are available in the
data structure. The table may also include data that indicates where the source code files
and the bytecode representations are located in the data structure. The data structure may
be stored in or represented as a file, in a database, or in another store without departing
from the spirit or scope of aspects of the subject matter described herein.

[0063] Turning to FIG. 3, the data structure 305 may have source code and
corresponding bytecode collocated. If the store 220 is implemented as a file system, the

data structure 305 may improve efficiency of obtaining data as it may reduce the number

12

10

15

20

25

30

WO 2013/122758 PCT/US2013/024559

of file handles or the like needed to access the bytecode. Where the source code resides in
a package as opposed to one or more Web pages or the like, collocating the source code
and the corresponding bytecode may be the default behavior. This default behavior may
be overridden, if desired.

[0064] In another implementation, where the store 220 is implemented as a file
system, there may be a separate bytecode file for each of one or more components of a
package. Although this may be less efficient in some scenarios, it may have other
advantages and uses. This implementation may be used, for example, when the source
code may reside externally to a package (e.g., at one or more Web sites) and/or when the
source code may be generated dynamically.

[0065] As another example, this may be used where there are naturally isolated
experiences where the host or user may want to purge all information associated with a
single website.

[0066] As another example, this may be used in scenarios in which a browser is
pre-informed of the resources on a given website. In this example, a browser may pre-
fetch the resources of the website so that the website may be used even when there is no
network connection. In this example, bytecode may be generated even for pages deeper in
the website despite not having encountered an explicit reference to script files for the
pages in the HTML markup.

[0067] Determining whether to look for the source code and corresponding
bytecode in a single file or to look for a separate file for each source code/bytecode pair,
may be based on the environment which is executing the package. If the environment is a
Web browser, the cache manager may look for a separate file for bytecode corresponding
to each source code component. If the environment is an application framework or
another environment (e.g., the pre-informed website example described above) where all
the source code components are known in advance because they come from a package, the
cache manager may look for the bytecode for the entire package to be collocated in a
single file.

[0068] Not every source code component of a package may have corresponding
bytecode in the data structure 305. For example, for various reasons it may be desirable
not to create bytecode for one or more components of a package. In such cases, the source
code and bytecode for the component(s) may be omitted from the data structure 305.
[0069] In addition, the data structure 305 may be memory mapped for sharing

between two or more packages. For example, in some cases, different packages may have

13

10

15

20

25

30

WO 2013/122758 PCT/US2013/024559

one or more identical source components. In these cases, memory mapping may be
utilized to share the bytecode for the identical source components so that there is no need
for multiple copies of the bytecode in memory. Furthermore, the bytecode in the data
structure 305 may be read-only so that it will not change when memory-mapped for
sharing.

[0070] Referring to FIGS. 2 and 3, in executing code, the execution manager 218
may find a reference (e.g., an HTTP or other reference) that refers to source code in a
document (e.g., an HTML, XML, word processing, or other document) the execution
manager 218 is parsing. The execution manager 218 may first check to see if the current
version of the bytecode corresponding to the reference resides in the cache by consulting
the data structure 305. If the bytecode resides in the cache, the execution manager 218
may obtain the bytecode for execution. If the bytecode does not reside in the cache, the
execution manager 218 may obtain the source code from the source code location and may
cause the source code to be compiled and executed without delay (e.g., without waiting for
the code generator 216 to complete any outstanding compilation requests found in a
queue).

[0071] In one implementation, the bytecode for source code may reside in a
parallel directory to the source code. For example, if the source code resides in
C:\PackageName\SourceCode\sourcecodename.scriptfile, the bytecode, if it exists, may
reside in C:\PackageName\SomeName\bytecodename.bytecodefile.

[0072] In another implementation, the source code may reside on a remote device.
[0073] FIG. 4 is a block diagram representing an exemplary arrangement of
components of an environment in which aspects of the subject matter described herein
may operate. The components illustrated in FIG. 4 are exemplary and are not meant to be
all-inclusive of components that may be needed or included. In other embodiments, the
components and/or functions described in conjunction with FIG. 4 may be included in
other components (shown or not shown) or placed in subcomponents without departing
from the spirit or scope of aspects of the subject matter described herein. In some
embodiments, the components and/or functions described in conjunction with FIG. 4 may
be distributed across multiple devices.

[0074] Turning to FIG. 4, the environment 405 may include a target device 410, a
network 415, a code server 417, and other components (not shown). The target device 410
and the code server 417 may comprise one or more computing devices. Such devices may

include, for example, personal computers, server computers, hand-held or laptop devices,

14

10

15

20

25

30

WO 2013/122758 PCT/US2013/024559

multiprocessor systems, microcontroller-based systems, set-top boxes, televisions,
programmable consumer electronics, network PCs, minicomputers, mainframe computers,
cell phones, personal digital assistants (PDAs), gaming devices, printers, appliances
including set-top, media center, or other appliances, automobile-embedded or attached
computing devices, other mobile devices, distributed computing environments that include
any of the above systems or devices, and the like. An exemplary device that may be
configured to act as the target device 410 or the code server 417 comprises the computer
110 of FIG. 1.

[0075] In an embodiment, the network 415 may comprise the Internet. In an
embodiment, the network 415 may comprise one or more local area networks, wide area
networks, direct connections, virtual connections, private networks, virtual private
networks, some combination of the above, and the like.

[0076] The code server 417 may provide code to the target device 410. In one
embodiment, the code server 417 may be a Web server. In another embodiment, the code
server 417 may be a machine internal to an organization’s private network that includes
code thereon. In other embodiments, the code server 417 may include any device capable
of providing source code to the target device 410.

[0077] The target device 410 is a device upon which the code may execute. The
target device 410 may include a compilation environment 420, and execution environment
425, an installer 430, and a store 435. The installer 430 may be implemented and act
similarly to the installer 215 of FIG. 2 while the store 435 may be implemented and act
similarly to the store 220 of FIG. 2.

[0078] The compilation environment 420 may comprise a restricted-rights
environment in which source code may be compiled into bytecode. In one embodiment,
the compilation environment 420 may comprise a virtual environment as described above.
In another embodiment, the compilation environment 420 may comprise a different
restricted-rights environment as has been described previously.

[0079] The execution environment 425 may comprise an environment in which
software of a package is executed. In one implementation the execution environment 425
may comprise an Internet browser. In another implementation, the execution environment
425 may comprise a host process that is capable of executing software of a package that
may include source code.

[0080] FIGS. 5-6 are flow diagrams that generally represent exemplary actions that

may occur in accordance with aspects of the subject matter described herein. For

15

10

15

20

25

30

WO 2013/122758 PCT/US2013/024559

simplicity of explanation, the methodology described in conjunction with FIGS. 5-6 is
depicted and described as a series of acts. It is to be understood and appreciated that
aspects of the subject matter described herein are not limited by the acts illustrated and/or
by the order of acts. In one embodiment, the acts occur in an order as described below. In
other embodiments, however, the acts may occur in parallel, in another order, and/or with
other acts not presented and described herein. Furthermore, not all illustrated acts may be
required to implement the methodology in accordance with aspects of the subject matter
described herein. In addition, those skilled in the art will understand and appreciate that
the methodology could alternatively be represented as a series of interrelated states via a
state diagram or as events.

[0081] Turning to FIG. 5, at block 503, the actions begin.

[0082] At block 510, a package is received that includes source code of software to
install on a target device. For example, referring to FIG. 4, the target device 410 may
obtain a package from the code server 417. As another example, the installer 430 may be
instructed to install a package that exists on the store 435.

[0083] At block 515, the package is installed on the target device. For example,
referring to FI1G. 2, the installer 215 may install the package on the store 220.

[0084] At block 520, an indicator is placed in a data structure such as a queue or
the like. The data indicator indicates that the source code of the package is to be compiled
into bytecode. There may be a separate indicator placed in the data structure for each file
of source code in the package. For example, referring to FIG. 2, the installer 215 may
place one or more flags in a data structure stored in the store 220.

[0085] At block 525, actions to initially compile the source code are performed
unless a request to execute the software of the package is received before starting or
completing the actions. These actions to compile the source code may include, for
example:

[0086] 1. Iterating through the data structure and finding indicator(s) that
indicate that compilation is needed;

[0087] 2. Compiling each applicable source code element found in step 1
above into bytecode or some other code;

[0088] For example, referring to FIG. 2, the code generator 216 may iterate
through the data structure and compile source code files for flags found within the data

structure. As another example, the code generator 216 may iterate through a list of files

16

10

15

20

25

30

WO 2013/122758 PCT/US2013/024559

and compile any file that has a given extension (e.g., “.js” or another extension indicating
a source file).

[0089] At block 530, the compiled code may then be persisted in nonvolatile
memory. For example, referring to FIG. 2, the cache manager 217 may store the code
generated by the code generator 216 in the store 220. The code may also be stored in
volatile memory such as an in-memory cache or RAM to provide for quick loading and
execution.

[0090] Block 535 is placed at the side of the actions 520-530 to indicate that a
request to execute the software of the package may occur before, during, or after those
actions. If such a request is received, other actions may be performed prior to starting or
completing the actions of 520-530. For example, if such a request is received prior to
starting or completing the actions of blocks 520-530, the source code may be compiled
and executed on an expedited basis. Other actions describing what may occur if such a
request is received are described in conjunction with FIG. 6.

[0091] At block 540, other actions, if any, may be performed. For example, a
regeneration triggering event may be received. In response, the actions of block 520-530
may be re-performed potentially with different source code (if the source code has
changed) and different second code compiled from the different source code.

[0092] Turning to FIG. 6, at block 603, the actions begin.

[0093] At block 610, a request to execute software that includes source code is
received. For example, referring to FIG. 2, the execution manager 218 receives a request
to execute software of a package installed on the store 220.

[0094] At block 615, a determination is made as to whether the code has already
been compiled and stored on nonvolatile storage. If so, the actions continue at block 640;
otherwise the actions continue at block 620. For example, referring to FIG. 2, the
execution manager 218 utilizes the cache manager 217 to determine whether the package
has already been compiled and stored on the store 220.

[0095] Determining whether the source code has already been compiled may
include checking for the compiled code in known location of the nonvolatile storage. The
known location may correspond to a name or other identifier of a package. For example, a
known location may be a directory named after the package or a descendant directory of
the directory. As another example, a known location may be a location referred to in a
data structure that indicates where compiled code, if it exists, is located for the code. As

another example, a known location may be a location derived from a reference that

17

10

15

20

25

30

WO 2013/122758 PCT/US2013/024559

identifies a source location (e.g., a code server) of the source code where the source
location is reachable over a network. As yet another example, determining whether the
source code has already been compiled may involve checking a data structure stored in a
file that collocates bytecode for the package with source code for the package. The data
structure may indicate whether the second code has already been generated and is stored in
file.

[0096] At block 620, the source code is obtained. For example, referring to FIG.
2, the code generator 216 obtains the source code from the store 220.

[0097] At block 625, the bytecode (or other code) is generated from the source
code. For example, referring to FIG. 2, the code generator 216 creates bytecode, machine-
exccutable code, or some other intermediate code from the source code obtained above.
[0098] At block 630, the code (or code derived therefrom such as executable code
or other intermediate code) is executed. For example, referring to FIG. 2, the execution
manager 218 executes the code generated above.

[0099] At block 635, the code is persisted to nonvolatile storage. The actions
represented by block 635 may occur in conjunction with the actions above or be
performed at a later period. For example, referring to FIGS. 2 and 3, the code generator
216 may utilize the cache manager 217 to collocate code for a package in the data
structure 305 and store that data structure 305 on the store 220 for use in subsequent
execution of the software. As another example, at a later time, the code generator 216
may re-obtain the source code and re-generate compiled code and store that compiled code
on the store 220.

[00100] At block 640, if the code has already been compiled, the compiled code is
obtained. For example, referring to FIG. 2, the execution manager 218 may obtain
bytecode from the cache manager 217.

[00101] At block 645, the obtained code (or code derived therefrom such as binary
code) is executed. For example, referring to FIG. 4, the code may be executed in the
execution environment 425.

[00102] At block 650, other actions, if any, may be performed. For example, a file
that includes the bytecode may be memory mapped and shared, via the memory mapping,
with a plurality of processes.

[00103] As another example, other actions may include checking whether the
compiled code was modified after being generated and if so re-obtaining the source code

(which may be different than the original source code), re-compiling the source code, and

18

10

WO 2013/122758 PCT/US2013/024559

storing the compiled code in the nonvolatile storage for use in subsequent execution of the
software.

[00104] As can be seen from the foregoing detailed description, aspects have been
described related to generating and caching software code. While aspects of the subject
matter described herein are susceptible to various modifications and alternative
constructions, certain illustrated embodiments thereof are shown in the drawings and have
been described above in detail. It should be understood, however, that there is no
intention to limit aspects of the claimed subject matter to the specific forms disclosed, but
on the contrary, the intention is to cover all modifications, alternative constructions, and
equivalents falling within the spirit and scope of various aspects of the subject matter

described herein.

19

10

15

20

25

30

WO 2013/122758 PCT/US2013/024559

WHAT IS CLAIMED I8S:

1. A method implemented at least in part by a computer, the method
comprising:

receiving a package that includes source code of software to install on a target
device;

installing the package on the target device; and

performing a first set of actions to initially compile the source code prior to
executing the software unless a request to execute the software is received before starting
or completing the first set of actions, the first set of actions including:

compiling the source code into the second code, and

persisting the second code in nonvolatile memory.

2. The method of claim 1, further comprising if a request to execute the
software is received prior to starting or completing the first set of actions, performing a
second set of actions before completing the first set of actions, the second set of actions
including:

on the target device, executing the source code or executable code derived
therefrom.

3, The method of claim 1, wherein the first set of actions further includes
memory mapping the second code in nonvolatile memory for sharing the second code for
processes executing two or more packages.

4. The method of claim 1, further comprising placing an indicator in a data
structure that the source code is to be compiled into a second code for the target device
and finding the indicator within the data structure, and wherein the compiling the source
code into the second code is performed in response to finding the indicator in the data
structure.

5. The method of claim 1, further comprising receiving indication of a
regeneration triggering event and in response re-performing the first set of actions,
potentially with different source code and different second code compiled from the
different source code.

6. A computer storage medium having computer-executable instructions,
which when executed perform actions, comprising:

receiving a request to execute software that includes source code;

in response to the request, determining whether second code has already been

generated from the source code and stored in nonvolatile storage;

20

10

15

20

25

30

WO 2013/122758 PCT/US2013/024559

if the second code has already been generated prior to receiving the request,
performing a first set of actions, comprising:

obtaining the second code, and

executing the second code or code derived therefrom; and

if the second code has not already been generated prior to receiving the request,
performing a second set of actions, comprising:

obtaining the source code,

generating the second code from the source code,

executing the second code or code derived therefrom, and

if the second code has not already been generated prior to receiving the request,
performing a third set of actions, comprising:

storing the second code in the nonvolatile storage for use in subsequent execution
of the software.

7. The computer storage medium of claim 6, wherein performing the third set
of actions further comprises:

re-obtaining the source code; and

re-generating the second code from the source code.

8. The computer storage medium of claim 6, further comprising checking
whether the second code was modified after being generated and if so, performing actions,
comprising:

re-obtaining the source code;

re-generating the second code from the source code; and

storing the second code in the nonvolatile storage for use in subsequent execution
of the software.

9. In a computing environment, a system, comprising:

a store operable to store data of a package, the package including source code of
software;

an installer operable to install the package on the store, the installer further
operable to update a data structure to indicate that the source code is to be compiled into a
second code;

a code generator operable to examine the data structure to identify the source code
and to compile the source code into the second code;

a cache manager operable to persistently store the second code on the store and to

provide access to the second code on the store;

21

WO 2013/122758 PCT/US2013/024559

an execution manager operable to receive a request to execute the software and to
determine whether the code generator has already compiled the source code into the
second code and, if so, to perform actions, comprising:

obtaining the second code, and

5 executing the second code or code derived therefrom; and

if not, to perform actions, comprising:

obtaining the source code,

causing the source code to be compiled into the second code, and

executing the source code or code derived therefrom.

10 10. The system of claim 9, wherein the execution manager is further operable

to cause the second code to be generated without delay if the code generator has not

already compiled the source code into the second code before the request is received.

22

PCT/US2013/024559

WO 2013/122758

1/6

181 | S8I dvyd mw:os_.\\ccv
> 9L 5T S31NAON SPL —
- 9l L] yA 4"
/ — QuvosAI) viva| wyuooug snvaooug |77 WALSAS
“ @ ------------ _>_<mwomm .VF mm_l_n_.o Zo_n_.<o_l_&&< wz_n_.<mmmo
_ mNF E CIrIrrrrrrro) P
9 761 -
SY3LNdNOD) N P
J10ONTY WNIAON [AN _ 7~
S N\ -
\ MHOMIIN vy 3aipy ¢l) Sl gL > N vl P
Ny aom_ 2| R R iy e I
081 — - i “
I 0Ll oSl —
\ A covuJ YVY)mo_q"_mm;z_ i “
LLL 3ovauayn | | 3PV AMOWI JOVAHALN| Igr viva
| A siyomLaN ndNj *10A-NON AYOW3N "TOA-NON WV¥90ud _
MHYOMLAN _ 43sN 379VAONITY 379VAONIY-NON _
vy o0 | _
9¢] SIINAOW _
SUINVIAS " ‘ NVY¥90dd ¥IHLO |
\ I | sng W3LSAS o SWvEo0ud “
| NOILVYOITddY
/o 61| NG |
| NNF./ pep W3LSAS |
JOV4¥3LN ONILVY3d
i A|_|._<~_m__._n__mm__n_ aovauaw [[9S s Z<t AM<~_V “
_ 1nd1nQ (oE[a[V,N /V \ \ IIIIIIIII _
LINN DNISS300Y —
" 61 oeL 0z n dlocy | [T sog “
HOLINOW _ o A Als_mm_vl il
| b AMOWI WALSAS _

161 L

l "Old

WO 2013/122758 PCT/US2013/024559
205 SYSTEM
CoDE
INSTALLER
GENERATOR 216

CACHE EXECUTION

MANAGER 217 MANAGER 21
225
STORE | COMMUNICATIONS
MECHANISM

FIG. 2

PCT/US2013/024559

WO 2013/122758

3/6

€ 'Old

N 2a09
31Ag

N 2a09
304N0S

g 3009
31Ag

g 3009
304N0S

Vv 330D
31Ag

Vv 300D
304N0S

Go¢e .\A

PCT/US2013/024559

WO 2013/122758

4/6

Y¥3AY3S 300D

AHJOMLAN

11274

¥ "Old

Gov .\A

34018

>

Gey

d3TIVLSN|

osy

INIJNWNOAHIANS
NOILNO3IXS

INIJNWNOAHIANS
NOILVIIdNOD

szy —

ozy —

WO 2013/122758 PCT/US2013/024559

5/6

RECEIVE PACKAGE N 510
INSTALL PACKAGE N 515

l

QUEUE COMPILATION TASK N 520

535 l

EXECUTION
REQUEST RECEIVED

PERFORM COMPILATION S 525

l

PERSISTENTLY STORE BYTECODE [/ 530

OTHER
ACTIONS

540

FIG. 5

WO 2013/122758

6/6

PCT/US2013/024559

RECEIVE EXECUTION REQUEST (N 610

|

COMPILED ALREADY?

615

N
620 l

OBTAIN SOURCE CODE

Y
l 640

f625 v

OBTAIN COMPILED CODE

CompILE CODE

Vs 645

630 l

ExecuTeE CoMPILED CODE

ExXecUTE CODE

~ 635 l

PERSIST CODE

OTHER
ACTIONS 650

FIG. 6

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US2013/024559

A. CLASSIFICATION OF SUBJECT MATTER

GOGF 9/06(20006.01)i, GOGF 9/30(2006.01)i, GOOF 9/44(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GOG6F 9/06; GO6F 15/16; GO6F 15/173; GO6F 9/44; GO6F 17/30; GO6F 12/00

Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: generating, caching, software code, source code;

C. DOCUMENTS CONSIDERED TO BE RELEVANT

See paragraphs [0031]-[0034]; claim 1, and figure 2.

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2010-0030891 Al (KIM JONG HYUN et al.) 04 February 2010 1-10
See paragraphs [0038]-[0050]; claims 1, 9, and figure 3.
A US 2008-0010594 Al (JOBST HOERENTIRUP et al.) 10 January 2008 1-10
See paragraphs [0029]-[0032]; claim 1, and figure 1.
A US 7596554 B2 (DA PALMA WILLIAM V. et al.) 29 September 2009 1-10
See column 3, line 55 — column 5, line 35; claim 1, and figure 2.
A US 2005-0240732 A1l (DARL CRICK et al.) 27 October 2005 1-10

|:| Further documents are listed in the continuation of Box C.

& See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later
than the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents,such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

23 April 2013 (23.04.2013)

Date of mailing of the international search report

25 April 2013 (25.04.2013)

Name and mailing address of the ISA/KR

Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan
City, 302-701, Republic of Korea

Facsimile No. 82-42-472-7140

Authorized officer

BOK, Jin Yo

Telephone No. 82-42-481-5113

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2013/024559

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2010-0030891 A1 04.02.2010 JP 05001976 B2 25.05.2012
JP 2010-033539 A 12.02.2010
KR 10-0960111 B1 27.05.2010
KR 10-2010-0013177 A 09.02.2010
US 8341721 B2 25.12.2012

US 2008-0010594 A1 10.01.2008 CN 101073052 AO 14.11.2007
CN 101073052 B 20.10.2010
CN 101916188 A 15.12.2010
CN 101930364 A 29.12.2010
EP 1669855 A1 14.06.2006
EP 1836563 A1l 26.09.2007
JP 2008-522302 A 26.06.2008
JP 2008-522302 T 26.06.2008
JP 2012-123901 A 28.06.2012
WO 2006-058837 A1 08.06.2006

US 7596554 B2 29.09.2009 US 2005-0125372 A1 09.06.2005

US 2005-0240732 A1 27.10.2005 CA 2465155 A1 21.10.2005
CA 2465155 C 09.12.2008
US 2008-0147981 A1 19.06.2008
US 7389386 B2 17.06.2008

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - wo-search-report
	Page 32 - wo-search-report

