发明名称
全反射透镜

摘要
本发明提供一种全反射透镜，其为呈上宽下窄锥形透光体，其沿中轴旋转设有贯穿孔，该贯穿孔上端连接外扩锥形孔，前述贯穿孔可作为入光镜面，而该外扩锥形孔则可作为出光镜面，而且可在外扩锥形孔处设置一个或多个以上多余的，以提供当光源设置在全反射透镜的贯穿孔处时，该光源除了位于中央最集中的强光可无遮蔽地自贯穿孔及外扩锥形孔处扩散并分布角度外，光源周围环侧散光可借由入光镜面及全反射透镜的外锥面的折射，将光线再引导至外扩锥形孔投射而出，以达到增加光照区域的聚光效果、发散强度及均匀度相当高的射线光；且全反射透镜更提供光线可自该剖面处投射而出，使其兼具有引导光线侧照的功能。
1. 一种全反射透镜，其特征在于，其为呈上宽下窄的锥形透光体，在其中心轴向设有贯穿孔，该贯穿孔上端连接外扩锥孔。

2. 如权利要求1所述的全反射透镜，其特征在于，所述全反射透镜在外扩锥孔处设有一个或一个以上剖沟。

3. 如权利要求2所述的全反射透镜，其特征在于，所述剖沟为开口向上的框形剖沟。

4. 如权利要求2所述的全反射透镜，其特征在于，所述剖沟为U形剖沟。

5. 如权利要求2所述的全反射透镜，其特征在于，所述剖沟为圆凹槽。

6. 如权利要求2所述的全反射透镜，其特征在于，所述剖沟延伸至贯穿孔处。

7. 如权利要求1所述的全反射透镜，其特征在于，所述外扩锥孔为凹弧环孔。

8. 如权利要求1所述的全反射透镜，其特征在于，所述外扩锥孔为凸弧环孔。
全反射透镜

技术领域

本发明涉及一种透镜，尤其涉及一种全反射透镜。

背景技术

现有技术中相关公知结构，如中国台湾专利公告第 M275418 号 "具有光均匀化效果之透镜体"： "包括一入光镜面以及一出光镜面，该入光镜面与该出光镜面分别设于该透镜体之相对两端，其中该入光镜面为一凸透镜面，而该出光镜面上则分布有复数个配光镜，该些配光镜排列形成一镜面群；光源的光线由该入光镜面入射后，可藉由该出光镜面上所设该些配光镜之配光与混光，而投射出光度与色度均匀光线"。

上述透镜体为实体透镜，主要是在相对外侧端面设置不同曲弧度的镜面，使光源的光线经实体透镜的折射后，能产生集光后再扩光的效果。

但是，该案结构虽可提供光源投射产生均匀光线的效果；但因其透镜体为实心体，虽然是提供搭配在体积小、产热性低的发光二极管（LED）光源上组合，若长时间的使用，仍然有阻碍光源散热，而严重影响到光源使用寿命，使其使用期限缩短的主要缺点。

发明内容

本发明的主要目的在于提供一种全反射透镜，该全反射透镜主要在其中心轴向设有贯穿孔，可作为光源（发光二极管）与外部相通的空气流道，使光源（发光二极管）能达到快速散热作用，有效延长其使用期限。

为达上述目的，本发明提供一种全反射透镜，其为上宽下窄的锥形透光体，在其中心轴向设有贯穿孔，该贯穿孔上端连接外扩锥孔。

再者，该全反射透镜在外扩锥孔处设置一个或一个以上剖沟，进以提供光
源的部部分光线也可自该剖沟处投射而出，以产生侧照效果。供进行多数个全反射透镜可作为聚集组装，以有效大加发散光照的显示范围，和实现高发光效率的目标。

据此，本发明所提供的全反射透镜，在其底部位于贯穿孔处装设光源（发光二极管）后，该光源（发光二极管）可经由贯穿孔直接与外部相通，以提供光源（发光二极管）是快速散热，有效延长其使用期限的特征；此外，该全反射透镜更具有可辅助光源（发光二极管）的照明光线能完全发散出来的，并且加以集中再发射到外部，达到充分激发光源照明效能，大幅度提升照明效率和亮度，以及获得匀称度相当高的射线光照明。再者，本发明的全反射透镜，具有可将照明光线引导自侧边投射而出的功能，当多数个全反射透镜集中组装在一个区域时，可借由调整多数个全反射透镜的侧边光照呈相对应状态，即可将多数个全反射透镜的照明予以串联成一体，形成另一种有效扩大多发光组件、加大光分布角度和显示范围、亮度高均匀化不产生光晕现象等多重实质效能的增进。

附图说明

图 1 为本发明全反射透镜较佳实施例一的立体图；
图 2 为本发明全反射透镜较佳实施例一的剖面图；
图 2-1 为本发明全反射透镜较佳实施例一衍生的剖面图；
图 2-2 为本发明全反射透镜较佳实施例一衍生的剖面图；
图 3 为本发明全反射透镜较佳实施例一的使用状态参考图；
图 4 为本发明全反射透镜较佳实施例二的立体图；
图 5 为本发明全反射透镜较佳实施例二的剖面图；
图 6 为本发明全反射透镜较佳实施例三的立体图；
图 7 为本发明全反射透镜较佳实施例三的剖面图；
图 8 为本发明全反射透镜较佳实施例四的立体图；
图 9 为本发明全反射透镜较佳实施例四的剖面图；
图 10 为本发明全反射透镜较佳实施例五的立体图；
图 11 为本发明全反射透镜较佳实施例五的截面图；
图 12 为本发明全反射透镜较佳实施例六的立体图；
图 13 为本发明全反射透镜较佳实施例六的截面图；
图 14 为本发明全反射透镜较佳实施例七的立体图；
图 15 为本发明全反射透镜较佳实施例七的截面图；
图 16 为本发明全反射透镜较佳实施例八的立体图；
图 17 为本发明全反射透镜较佳实施例八的截面图；
图 18 为本发明全反射透镜较佳实施例九的立体图；
图 19 为本发明全反射透镜较佳实施例九的截面图。

附图标记说明

锥形透光体 10 贯穿孔 11
外扩锥孔 12 剖沟 121
外锥面 13 凹弧环孔 14
凸弧环孔 15 光源 20
光线 21

具体实施方式

现再配合本发明较佳实施例的附图进一步说明如后，以期能使熟悉本发明相关技术人员，能依本说明书的说明进行实施。

首先，请配合参阅图 1 至图 3 所示，为本发明较佳实施例一的全反射透镜，其为呈上宽下窄的锥形透光体 10，在其中心轴向设有贯穿孔 11，贯穿孔 11 上端连接外扩锥孔 12，且贯穿孔 11 用以作为入光镜面，而该外扩锥孔 12 则可作为出光镜面，据此，构成本发明全反射透镜的技术特征。其中，前述该贯穿孔 11 与外扩锥孔 12 的夹角，约设定在 130 度左右为最佳；而且，如图 2-1 所示，该外扩锥孔 12 还可改设计为凹弧环孔 14；或如图 2-2 所示，该外扩锥孔 12 可改设计为凸弧环孔 15。

当全反射透镜在其贯穿孔 11 处设置光源 20（可为一种 LED 灯）后，光源
20 位在中央的光束可完全无遮蔽的自贯穿孔 11 和外扩锥孔 12 处呈发散角度
激射而出，具有扩大光分布角度的功能，以及在光源 20 周围的环侧光更可借由
入光镜面和全反射透镜的外锥面 13 的折射或连续折射，将光线 21 再度引导至
外扩锥孔 12 投射而出，以达到光的充分利用，和增加光照显示范围的聚光效果，
发光强度及匀称度相当高的射线光等效果。

再者，如图 4 至图 11 所示，为本发明全反射透镜结构的等效技术衍生实施
例，其可在锥形透光体 10 的外扩锥孔 12 处设有对称的剖沟 121，据此，位于
全反射透镜的贯穿孔 11 处的光源 20，可实现一部分光线经由该剖沟 121 处散
射而出，达到提供局部集中侧照的亮度输入功能。如图 4、图 5 所示，为本发
明较佳实施例二的全反射透镜，其中，前述该剖沟 121 的式样形态可为一种开
口向上剖沟；如图 6、图 7 所示，为本发明较佳实施例三的全反射透镜，其中，
该开口向上剖沟的高度可延伸至贯穿孔 11 处；同时，如图 8、图 9 所示，为本
发明较佳实施例四的全反射透镜，其中，该剖沟 121 可为一种 U 形剖沟；如图
10、图 11 所示，为本发明较佳实施例五的全反射透镜，其中，该 U 形剖沟的高
度可延伸至贯穿孔 11 处。

另外，如图 12、图 13 所示，为本发明较佳实施例六的全反射透镜，该设
于全反射透镜的外扩锥孔 12 的剖沟 121，可采用等间距或非等间距形态设置一
个或一个以上，其中，该剖沟 121 的相对内侧壁呈平行状态设置；如图 14、图
15 所示，为本发明较佳实施例七的全反射透镜，其主要说明该设于反射透镜的
外扩锥孔 12 的剖沟 121，可采用等间距或非等间距形态设置一个或一个以上，
其中，该剖沟 121 的相对内侧壁自外部向贯穿孔 11 端呈渐缩曲弧状状态设置；前
述本发明较佳实施例六、七，为配合说明的需要，在外扩锥孔 12 处等距间隔设
置四个剖沟 121，此并非用来限制所设置的剖沟 121 的数目，只要在外扩锥孔
12 处设置剖沟 121 就应当涵盖在本发明的技术范畴内。

同时，如图 16、图 17 所示，为本发明较佳实施例八的全反射透镜，该设
于全反射透镜的外扩锥孔 12 的剖沟 121，该剖沟可为两个对称的圆凹槽，以达
到增加发光散射的多样形态。
如图 18、图 19 所示，为本发明较佳实施例九的全反射透镜，该设于全反射透镜的外扩锥孔 12 的剖沟 121，该剖沟为四个等间距设置的圆凹槽，以达到增加发光散射的多样形态。

综上所述，仅为本发明的较佳实施例而已，并非用来限定本发明实施的范围。即只要按照本发明权利要求书所作的均等变化与修饰，均为本发明专利范围所涵盖。
图 3