

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
2 April 2015 (02.04.2015)

(10) International Publication Number
WO 2015/044815 A1

(51) International Patent Classification:

G02B 6/02 (2006.01) A61B 19/00 (2006.01)

(21) International Application Number:

PCT/IB2014/064367

(22) International Filing Date:

10 September 2014 (10.09.2014)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

61/884,157 30 September 2013 (30.09.2013) US

(71) Applicant: KONINKLIJKE PHILIPS N.V. [NL/NL];
High Tech Campus 5, NL-5656 AE Eindhoven (NL).

(72) Inventors: NOONAN, David Paul; c/o High Tech Campus, Building 5, NL-5656 AE Eindhoven (NL). RAMACHANDRAN, Bharat; c/o High Tech Campus, Building 5, NL-5656 AE Eindhoven (NL). CHAN, Raymond; c/o High Tech Campus, Building 5, NL-5656 AE Eindhoven (NL). FLEXMAN, Molly Lara; c/o High Tech Campus, Building 5, NL-5656 AE Eindhoven (NL).

(74) Agents: STEFFEN, Thomas et al.; High Tech Campus Building 5, NL-5656 AE Eindhoven (NL).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))

Published:

- with international search report (Art. 21(3))

(54) Title: SYSTEM AND METHOD FOR MINIMIZING FIBER TWIST IN OPTICAL SHAPE SENSING ENABLED DEVICES

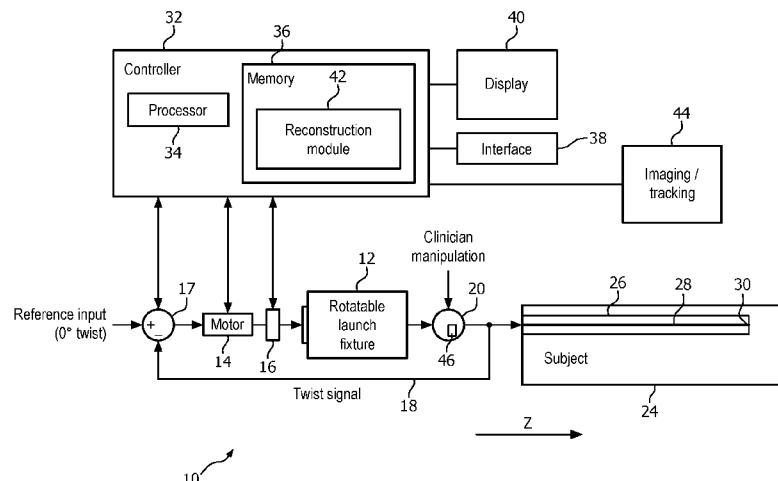


FIG. 1

(57) Abstract: A fiber twist reduction system for optical shape sensing enabled instruments includes a rotatable launch fixture (12) configured to hold an optical fiber (28). An optical shape sensing enabled device (26) includes the optical fiber disposed therein. A rotation mechanism (14) is configured to rotate the fiber in response to a twist of the fiber to reduce accumulated twist along its length.

WO 2015/044815 A1

**SYSTEM AND METHOD FOR MINIMIZING FIBER TWIST IN OPTICAL SHAPE
SENSING ENABLED DEVICES**

5 **BACKGROUND:**

Technical Field

This disclosure relates to medical instruments and more particularly for reducing twist in shape sensing optical fibers in medical applications.

10 **Description of the Related Art**

Shape sensing based on fiber optics exploits the inherent backscatter in a conventional optical fiber. The principle used is distributed strain measurement in the optical fiber with characteristic Rayleigh scatter patterns, for example, in standard single-mode communications fiber. Rayleigh scatter occurs as a result of random fluctuations of the index of refraction in the fiber core. These random fluctuations can be modeled with a random variation of amplitude and phase along the length. Fiber Bragg gratings may also be employed. By using these effects in 3 or more cores running within a single length of multicore fiber, three-dimensional (3D) shape and dynamics of a surface of interest can be reconstructed.

With a 4 or more core fiber system where one core is located in the center of the cross-section, one is able to separate strain due to bending and temperature effects as long as no axial strain (tension) is applied, or if the tension is known and controllable (or can be calibrated out). Reference files store values (also called wobble) of a rate of windings of the outer cores around the central core, but when there is excessive twist, it becomes more difficult to distinguish this effect since the rate of change of the wobble increases at a non-linear rate. This often leads to inaccuracy beyond 2π torsion and instability beyond 6π torsion about the fibers longitudinal axis.

Integrating a fiber into a fixed tip Optical Shape Sensing (OSS) enabled device involves fixing a launch region of the fiber within a launch fixture, and the tip of the fiber within a distal tip of an instrument. Assuming that the launch fixture is attached rigidly to an operating table or other structure, these two fixation points will result in an accumulation of 5 twist along the length of the fiber as the instrument is torqued during an intervention.

Knowledge of this twist value is used to measure the roll degree of freedom of the instrument. However, the OSS fiber can only produce accurate shape reconstruction until approximately 2π twist about its axis in either direction, losing stability close to 6π of cumulative twist.

Twist can be introduced by the operator rotating the instrument during manipulation 10 or, by friction between the fiber and the instrument lumen (stick-slip) as the instrument is moved. During clinical use, specifically in vascular procedures, physicians often rotate (or 'torque') a guidewire/instrument through multiple π turns. Such torqueing leads to a build-up 15 of twist in fixed-tip devices, which although necessary to measure the orientation of the device, causes shape sensing to lose accuracy, then stability and finally causing breakdown of shape reconstruction. This limitation severely impacts the clinical usability of fixed tip OSS devices as it imposes restrictions on the clinician. Hence, it is essential to minimize the amount of 20 twist which is imparted on the fiber by the clinician, while ensuring that the orientation of the instrument is still known and the instrument can still be operated and torqued in the usual manner.

20

SUMMARY

In accordance with the present principles, a fiber twist reduction system for optical 25 shape sensing enabled instruments includes a rotatable launch fixture configured to hold an optical fiber. An optical shape sensing enabled device includes the optical fiber disposed

therein. A rotation mechanism is configured to rotate the fiber in response to a twist of the fiber to reduce accumulated twist along its length.

A fiber twist reduction system for optical shape sensing enabled instruments includes an optical shape sensing enabled device having at least one optical fiber disposed therein. A 5 rotatable launch fixture is configured to hold the at least one optical fiber, and a rotation mechanism is configured to rotate a launch region of the at least one optical fiber. A controller is coupled to the rotation mechanism and configured to enable the rotation mechanism in response to a twist of the at least one optical fiber to at least reduce accumulated twist within the at least one optical fiber.

10 A method for reducing accumulated twist in an optical fiber for a shape sensing enabled device includes providing a rotatable fiber launch fixture being configured to hold at least one optical fiber, an optical shape sensing enabled device including the at least one optical fiber disposed therein, and a rotation mechanism configured to rotate the optical fiber disposed in the rotatable fiber launch fixture; measuring a twist in the at least one optical fiber 15 disposed within the optical shape sensing enabled device; and, in response to the twist, rotating the fiber launch fixture using the rotation mechanism to at least reduce accumulated twist within the at least one optical fiber.

These and other objects, features and advantages of the present disclosure will become apparent from the following detailed description of illustrative embodiments thereof, which is 20 to be read in connection with the accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS

This disclosure will present in detail the following description of preferred embodiments with reference to the following figures wherein:

25 FIG. 1 is a block/flow diagram showing a shape sensing system having a rotatable

launch fixture and controls in accordance with illustrative embodiments;

FIG. 2 is a perspective view of a default position of the rotatable launch fixture in accordance with an illustrative embodiment;

FIG. 3 is a graph showing cumulative twist by plotting twist (radians) versus index

5 count for an optical shape sensing device with a fixed tip;

FIG. 4 is a graph showing cumulative twist by plotting twist (radians) versus index count for an optical shape sensing device with a fixed tip having twist compensation in accordance with the present principles;

FIG. 5 is a perspective view of the rotatable launch fixture showing a twist

10 compensated for in a first direction in accordance with an illustrative embodiment;

FIG. 6 is a perspective view of the rotatable launch fixture showing a twist compensated for in a second direction in accordance with an illustrative embodiment; and

FIG. 7 is a flow diagram showing a method for accumulated twist reduction in an optical shape-sensing fiber in accordance with an illustrative embodiment.

15

DETAILED DESCRIPTION OF EMBODIMENTS

In accordance with the present principles, an apparatus and method are provided for measuring and accounting for twist in an optical shape sensing (OSS) device using, e.g., a single degree of freedom actuated launch fixture. The fixture manipulates a launch region of an OSS fiber to minimize accumulated twist along the length of the fiber. In one embodiment, the apparatus includes a motor, an encoder, a motor controller and a mechanism suitable for rotating the launch region along the axis of the fiber. Twist is minimized by closing a motor control loop with the twist signal from the fiber, such that as an accumulation of twist is observed in the fiber, the motor will rotate the launch region to drive the twist value to zero.

25 Since this rotation will effectively also change the coordinate system of the fiber

reconstruction (e.g., it will cause a rotation about the z-axis of the fiber, i.e., along its longitudinal axis), an encoder is needed to measure the absolute angular displacement which the launch region undergoes so that the fiber's shape and orientation can be accurately reconstructed within the correct frame of reference. A single degree of freedom (1-DoF) 5 mechanism is actuated to minimize twist accumulation in fixed tip devices, while also allowing for the roll degree of freedom of the device to be measured. Robotic or mechatronic mechanisms may be employed that move a launch/proximal segment of the fiber in a twist minimizing manner as described.

Hence, the present principles minimize the amount of twist imposed on the fiber by the 10 clinician, while ensuring that the orientation of the instrument is still known. The instrument can still be operated and torqued in the usual manner by a clinician. Various embodiments may include robotic/mechatronic mechanisms that move the launch/proximal segment of the fiber in a twist minimizing manner.

It also should be understood that the present invention will be described in terms of 15 medical instruments; however, the teachings of the present invention are much broader and are applicable to any fiber optic instruments. In some embodiments, the present principles are employed in tracking or analyzing complex biological or mechanical systems. In particular, the present principles are applicable to internal tracking procedures of biological systems, procedures in all areas of the body such as the lungs, gastro-intestinal tract, excretory organs, 20 blood vessels, etc. The elements depicted in the FIGS. may be implemented in various combinations of hardware and software and provide functions which may be combined in a single element or multiple elements.

The functions of the various elements shown in the FIGS. can be provided through the 25 use of dedicated hardware as well as hardware capable of executing software in association with appropriate software. When provided by a processor, the functions can be provided by a

single dedicated processor, by a single shared processor, or by a plurality of individual processors, some of which can be shared. Moreover, explicit use of the term “processor” or “controller” should not be construed to refer exclusively to hardware capable of executing software, and can implicitly include, without limitation, digital signal processor (“DSP”) hardware, read-only memory (“ROM”) for storing software, random access memory (“RAM”), non-volatile storage, etc.

5 Moreover, all statements herein reciting principles, aspects, and embodiments of the invention, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both 10 currently known equivalents as well as equivalents developed in the future (i.e., any elements developed that perform the same function, regardless of structure). Thus, for example, it will be appreciated by those skilled in the art that the block diagrams presented herein represent conceptual views of illustrative system components and/or circuitry embodying the principles 15 of the invention. Similarly, it will be appreciated that any flow charts, flow diagrams and the like represent various processes which may be substantially represented in computer readable storage media and so executed by a computer or processor, whether or not such computer or processor is explicitly shown.

Furthermore, embodiments of the present invention can take the form of a computer 20 program product accessible from a computer-readable or computer-readable storage medium providing program code for use by or in connection with a computer or any instruction execution system. For the purposes of this description, a computer-readable or computer readable storage medium can be any apparatus that may include, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device. The medium can be an electronic, magnetic, optical, 25 electromagnetic, infrared, or semiconductor system (or apparatus or device) or a propagation

medium. Examples of a computer-readable medium include a semiconductor or solid state memory, magnetic tape, a removable computer diskette, a random access memory (RAM), a read-only memory (ROM), a rigid magnetic disk and an optical disk. Current examples of optical disks include compact disk – read only memory (CD-ROM), compact disk –

5 read/write (CD-R/W), Blu-Ray™ and DVD.

Referring now to the drawings in which like numerals represent the same or similar elements and initially to FIG. 1, an optical shape sensing launch system 10 is illustratively shown in accordance with one embodiment. The system 10 includes a rotatable launch fixture 12. The rotatable launch fixture 12 includes a single degree of freedom actuated component 10 which can be rigidly attached or mounted to an operating table or other structure and is employed to hold an optical fiber 28 and/or an instrument 26 including the optical fiber 28 in place. Launch fixtures typically do not have any rotating components. However, in accordance with the present principles, the rotatable launch fixture 12 has a launch region of the OSS fiber bonded or otherwise affixed thereto. The rotatable launch fixture 12 rotates 15 with respect to the remainder of the launch system 10 to minimize twist in an OSS instrument or device 26.

The launch region include a longitudinal distance along (e.g., approximately 20mm) the fiber 28 from which the reconstruction starts. This defines the (0,0,0) position of the fiber 28. The launch region is provided such that a reconstruction module or algorithm 42 has a 20 20mm length with linear strain in order to initialize the reconstruction. Since the reconstruction starts from the launch region, the position and orientation of the launch region needs to be known throughout a procedure so that any pre-operative registrations performed remain valid.

The fixture 12 manipulates the launch region of the fiber or fibers 28 on the OSS 25 enabled device or instrument 26 to minimize the accumulated twist along the length of the

fiber 28. The system 10 may include a motor 14 or similar device, a sensing device, such as, an encoder 16, and a motor controller 32. An error minimization component 17 may be included to reference a zero twist position for the controller 32, and a mechanism or handle 20 may be provided suitable for rotating the launch region of the fiber 28.

5 The rotating launch fixture 12 includes a groove or other mechanism for fixing the launch region of the optical fiber 28 in place. Since the launch region of the fiber 28 is the location along the fiber from which the shape reconstruction starts and defines the initial position and orientation of any reconstructed shape (i.e., the (0,0,0) position of the fiber), it is preferable that the entire launch region be secured in the launch fixture 12.

10 Twist is minimized by closing the motor control loop with a twist signal 18 from the fiber 28 or other source (e.g., imaging and/or tracking systems 44) such that as an accumulation of twist is observed in the fiber 28, the motor 14 will rotate the rotatable launch fixture 12, and hence the launch region of the fiber to drive the twist value to zero. In one embodiment, the entire launch system 10 may be made to rotate, not just a rotatable element
15 within the launch fixture 12.

Since the rotation will effectively also change the coordinate system of the fiber reconstruction (i.e., it will cause a rotation about the z-axis of the fiber), an encoder 16 is employed to measure the absolute angular displacement which the fiber launch region undergoes so that the fiber's shape and orientation can be accurately reconstructed within the correct frame of reference. The twist signal 18 from the OSS fiber 28 is input to the motor controller 32. The controller 32 employs the twist signal as feedback to rotate the fiber launch region to minimize the twist experienced by the fiber 28. Measurement of this rotation can then be used as an input to the fiber reconstruction algorithm or module 42 stored in memory 36. An encoder signal from the encoder 16 is provided to the motor controller 32
20 and can be interfaced with the fiber reconstruction algorithm 42 to ensure the coordinate
25

system is updated for collecting future data in accordance with any movement of the fixture 12 and fiber 28.

It should be understood that the motor controller 32 may include a separate or stand-alone controller or may be part of a computer system or OSS console, which provides other 5 functions such as fiber shape reconstruction, user enabled programming, user interfacing, etc. For example, the controller 32, system 10 and other features may be part of a workstation or console from which a procedure is supervised and/or managed.

The controller 32 may include one or more processors 34 and memory 36 for storing programs and applications. Memory 36 may store the fiber reconstruction algorithm or 10 module 42, which is configured to interpret optical feedback signals from the OSS enabled device 26. Module 42 is configured to use the optical signal feedback to reconstruct deformations, deflections and other changes associated with the OSS enabled device, which may include a medical device or instrument. Twist is minimized by closing the motor control loop with the twist signal 18 from the fiber 28, such that as an accumulation of twist is 15 observed in the fiber 28, the motor 14 will rotate the launch region to drive the twist value to zero. The twist signal 18 may be processed from the OSS console or controller 32 or can be interfaced with the actuated rotatable launch fixture 12 using standard methods such as a TCP/IP communication channel or an EEPROM which is overwritten every time the motor 14 reads from it, etc. Other signals representing generated twist in the fiber 28 may also be 20 employed for these or other devices or modules.

In another embodiment, the rotation of the fiber launch region may be achieved by passive rather than actuated means. In such an embodiment, the rotation of the instrument 26 induced by the operator is mechanically coupled to the rotatable launch fixture 12. The rotatable launch fixture 12 may be rotated along with the handle 20 to prevent twist 25 accumulation. In another embodiment, the mechanism to rotate the fiber 28 may not be

located within the launch fixture 12, but rather may be located at some point along the length of the instrument 26. In such an embodiment, the mechanism could be located within the handle 20 or hub along the length of the instrument 26.

The OSS enabled device 26 may include a catheter, a guidewire, a probe, an 5 endoscope, a robot, an electrode, a filter device, a balloon device, or other medical component, etc. The OSS enabled device 26 may include one or more optical fibers 28 which are coupled to the device 26 in a set pattern or patterns. The optical fibers 28 connect to the rotating launch fixture 12. OSS enabled device 26 may have its shape and/or position determined using, e.g., fiber optic Bragg grating sensors, Rayleigh scattering or other scattering.

10 A shape image or other output may be viewed on a display 40. The display 40 may be configured for viewing internal images of a subject (patient) or volume 24 and may include the image as an overlay or other rendering of the sensing device 26. Display 40 may also permit a user to interact with the controller 32 and its components and functions, or any other element within the system. This is further facilitated by an interface 38 which may include a keyboard, 15 mouse, a joystick, a haptic device, or any other peripheral or control.

In accordance with the present principles, accumulated twist is minimized in a fixed-tip OSS enabled instrument 26 by rotating the launch region of the fiber 28 to keep the twist signal at or close to zero. In another embodiment, the launch region may be rotated based on a measurement of a change in twist over time (instead of the overall time). In this way, 20 rotation corrections can be made more gradual and/or controlled.

Other methods or mechanisms to rotate the launch region may be employed and may include different OSS enabled devices, actuated mechanisms including rotational motor(s), encoder(s), bearing(s), transmission element(s), linear actuator(s), motor controller(s), etc. In one embodiment, an EEPROM can be used to store the OSS fiber parameters and motor 25 angular and linear displacements.

In other embodiments, different inputs may be used to close the control loop when an OSS or twist signal 18 is not available or useable. Replacement signals for the OSS twist data may include the use of an imaging system (camera, x-ray, etc.) and/or tracking system (infrared (IR)/optical/electromagnetic (EM)) 44 which tracks the instrument or clinician's hand as they manipulate the device 26. In another embodiment, a separate rotational encoder 46 may be included within the handle 20 (or hub, torque or launch fixture) which measures the torque or twist applied to the instrument by the operator. In yet another embodiment, a twist calculation based on changes in orientation of the known shape of the instrument may be employed. This shape information could be obtained from OSS or other imaging modalities (x-ray, for example). In these alternate scenarios, the proximal rotation by the operator is correlated with the accumulated twist at a distal tip 30. This may include an instrument specific calibration to identify the effectiveness of the torque transmission of the instrument. Thus, by measuring the rotation at the proximal end, the rotation at the distal tip 30 can be approximated, the accumulated twist calculated and the fiber rotated appropriately to compensate.

While the present principles are applicable for use during interventional procedures (e.g., in all endovascular and endoluminal applications), the present embodiments may be employed for other uses as well. For example, the system 10 may be employed during integration of the fiber 28 (within the device 26) at an end of a device manufacturing line to ensure the device 26 is shipped in a minimum twist configuration. Another use includes calibration of twist in the device 26 after integration and/or before clinical use. In this way, a low twist state can be achieved prior to the procedure or prior to fixation of the tip 30 of the fiber 28 during integration. This will also permit the setting of the twist thresholds specific to the device 26 employed during a procedure, for example, to indicate to the operator that the twist limit of the fiber is approaching.

Referring to FIG. 2, an example configuration of an actuated launch fixture 102 is shown in accordance with one embodiment. A motor 114 and an absolute encoder 116 are coupled to the launch fixture 102 via two capstans 118, 120 and a belt 122 or other torque transfer mechanism (element) (e.g., gears, wheels, etc.). The launch fixture 102 includes a 5 fiber 128 or fibers for an OSS enabled device. A launch region 105 of the fiber or fibers is rigidly attached to the launch fixture 102. When the motor 114 rotates, the launch fixture 102 and consequently the fiber 128 rotate. In practice, as the clinician torques the OSS enabled device or instrument, the OSS system (e.g., module 42, FIG. 1) (through the fiber 128) would register an increase in twist. This twist would be minimized by rotating the launch region 105 10 in the same direction as the twist to ensure a “zero” net twist along the length of the fiber 128.

The absolute encoder 116 is employed to update an orientation of the OSS enabled device within the reconstruction algorithm or module 42. In the example of FIG. 2, the rotating launch fixture 102 is turned using the belt 122, which is caused to rotate by the motor 114. The encoder 116 is used to identify the absolute angular displacement of the launch region 15 105 so that the fiber shape can be reconstructed accurately in the correct frame of reference.

Actuation by the motor 114 can be achieved using a brushed DC, a brushless DC, pneumatic, ultrasonic, piezoelectric or similar motors or servos. An angular velocity achievable by the rotation of the launch fixture 102 should be greater than the maximum rate of rotation expected during clinical rotation. The absolute encoder 116 or other sensing mechanism may include absolute or incremental optical, magnetic, potentiometric or similar 20 encoding schemes. In some embodiments, a differential twist signal from the fiber 128 can be used to identify the absolute angular displacement of the launch region 102 from the zero position over time.

In another embodiment, robotic actuation may be employed to include translations in

25 the X, Y and Z directions. In particular, translation along the Z axis of the fiber 128 could be

used to address stick-slip of the fiber 128 within its lumen. This stick slip feature is identified by jumps in the twist signal as measured from the fiber.

Clinicians are typically unable to manipulate fixed tip OSS-enabled devices through multiple turns without causing twist accumulation. This accumulation in twist leads to 5 reconstruction inaccuracies and ultimately a complete loss of shape. The present embodiments minimize the accumulated twist within fixed tip OSS enabled devices, and permit for accurate shape reconstruction without the need for manipulation restrictions to be imposed on an operating clinician.

Referring to FIG. 3, a graph illustrates twist accumulation in an OSS fiber when the 10 distal tip of a fiber is rotated through both 4π (4pi) and 8π (8pi) while the launch region remains fixed. An unrotated trace (0pi) is also shown. The graph clearly shows that the maximum twist value increases from 4 radians to 18 radians as the tip is rotated.

Referring to FIG. 4, a graph illustrates twist accumulation in an OSS fiber when both the distal tip and the launch region are rotated through 4π (4pi) and 8π (8pi) rotations in the 15 same direction. An unrotated trace (0pi) is also shown. In this case, the level of accumulated twist does not change (remains constant), thus clearly demonstrating that the overall twist value can be managed by rotating the launch region to match the rotation experienced by the tip.

Referring to FIGS. 5 and 6 with continued reference to FIG. 2, FIG. 2 shows a default 20 position for the launch fixture 102. When the motor 114 rotates clockwise (arrow A) so too does the launch fixture 102 and fiber 128, thus changing the orientation of the fiber (FIG. 5). FIG. 5 shows rotation of the launch fixture 102 through $+30^\circ$ to account for a $+30^\circ$ rotation of the instrument (and hence the fiber 128) by a clinician. When the motor 114 rotates 25 counter-clockwise (arrow B, FIG. 6) so too does the launch fixture 102 and fiber 128. This also changes the orientation of the fiber 128. FIG. 6 shows a rotation of the launch fixture

102 through -90° to account for a -90° rotation of the instrument (and hence the fiber 128) by the clinician.

In practice, as the clinician torques the instrument, the OSS system (controller 32) registers an increase in twist. This twist would be minimized by rotating the launch region in 5 the same direction as the twist to ensure zero net twist along the length of the fiber 128. The absolute encoder 116 would be used to update the orientation of the device within the reconstruction algorithm (42, FIG. 1). Note that this rotation of the fiber 128 would occur without causing a rotation of the instrument in which the fiber 128 is stowed.

The belt 122 causes rotation of the launch fixture 102 and consequently the fiber 10 launch region (105, FIG. 5). The encoder 116 is employed to identify the absolute angular displacement of the launch region 105 so that the fiber shape can be reconstructed accurately in the correct frame of reference.

Referring to FIG. 7, a method for reducing accumulated twist in an optical fiber is shown. In block 302, a launch fixture is configured to rotate a fiber launch region. The 15 fixture is configured to hold at least one optical fiber. An optical shape sensing enabled device includes the at least one optical fiber, which is disposed therein. A rotation mechanism, such as a motor is configured to rotate the launch fixture and therefore the launch region. In block 304, a twist is measured in the at least one optical fiber disposed within the optical shape sensing enabled device. In block 306, in response to the twist, the launch region is rotated in 20 the fixture using the rotation mechanism to at least reduce accumulated twist within the at least one optical fiber. The rotation mechanism may include a motor configured to be responsive to the twist in the at least one optical fiber. The rotation mechanism may be responsive to optical shape sensing signals indicating the twist in the at least one optical fiber, and/or may be responsive to an imaging system and/or a tracking system. The imaging and/or 25 tracking system is independent from shape sensing system of the optical shape sensing enabled

device. The imaging system and/or the tracking system may be employed to indicate the twist in the at least one optical fiber.

In block 308, rotation of the launch fixture is sensed. In block 310, a coordinate reference of the optical shape sensing enabled device is updated based on the rotation.

5 In interpreting the appended claims, it should be understood that:

- a) the word "comprising" does not exclude the presence of other elements or acts than those listed in a given claim;
- b) the word "a" or "an" preceding an element does not exclude the presence of a plurality of such elements;
- c) any reference signs in the claims do not limit their scope;
- d) several "means" may be represented by the same item or hardware or software implemented structure or function; and
- e) no specific sequence of acts is intended to be required unless specifically indicated.

15 Having described preferred embodiments for systems and methods for minimizing fiber twist in optical shape sensing enabled devices (which are intended to be illustrative and not limiting), it is noted that modifications and variations can be made by persons skilled in the art in light of the above teachings. It is therefore to be understood that changes may be made in the particular embodiments of the disclosure disclosed which are within the scope of the 20 embodiments disclosed herein as outlined by the appended claims. Having thus described the details and particularity required by the patent laws, what is claimed and desired protected by Letters Patent is set forth in the appended claims.

CLAIMS:

1. A fiber twist reduction system for optical shape sensing enabled instruments, comprising:

a rotatable launch fixture (12) configured to hold at least one optical fiber (28);

5 an optical shape sensing enabled device (26) including the at least one optical fiber disposed therein; and

a rotation mechanism (14) configured to rotate the at least one optical fiber in response to a twist in the at least one optical fiber to reduce accumulated twist along a length of the at least one optical fiber.

10

2. The system as recited in claim 1, wherein the rotation mechanism (14) includes a motor configured to be responsive to the twist in the at least one optical fiber.

15 3. The system as recited in claim 2, wherein the motor (14) is configured to be responsive to optical shape sensing signals indicating the twist in the at least one optical fiber.

4. The system as recited in claim 2, wherein the motor (14) is configured to be responsive to an imaging system (44), which indicates the twist in the at least one optical fiber.

20 5. The system as recited in claim 2, wherein the motor (14) is configured to be responsive to a tracking system (44), which is independent from shape sensing using the optical shape sensing enabled device, the tracking system being employed to indicate the twist in the at least one optical fiber.

25 6. The system as recited in claim 1, wherein the rotation mechanism includes a

motor configured to drive a transfer element (122) to rotate the launch fixture.

7. The system as recited in claim 6, wherein the transfer element (122) includes one of a belt, a wheel and a gear.

5

8. The system as recited in claim 1, further comprising a sensing device (16) configured to measure rotation of the launch fixture.

9. A fiber twist reduction system for optical shape sensing enabled instruments, 10 comprising:

an optical shape sensing enabled device (26) including at least one optical fiber (28) disposed therein;

a rotatable launch fixture (12) configured to hold the at least one optical fiber and support at least a portion of a launch region;

15 a rotation mechanism (14) configured to rotate the launch region of the optical fiber; and

a controller (32) coupled to the rotation mechanism and configured to enable the rotation mechanism in response to a twist of the at least one optical fiber to at least reduce accumulated twist within the at least one optical fiber.

20

10. The system as recited in claim 9, wherein the rotation mechanism (14) includes a motor enabled in accordance with a twist in the at least one optical fiber.

11. The system as recited in claim 9, wherein the rotation mechanism (14) includes 25 a motor configured to drive a transfer element to rotate the launch fixture.

12. The system as recited in claim 11, wherein the transfer element (122) includes one of a belt, a wheel and a gear.

5 13. The system as recited in claim 9, further comprising a sensing device (16) configured to measure rotation of the launch fixture to update a coordinate system of the optical shape sensing enabled device.

10 14. The system as recited in claim 9, wherein the controller (32) includes a shape reconstruction module (42) configured to interpret shapes of the optical shape sensing enabled device and provide feedback on twist to the controller to enable the rotation mechanism.

15. The system as recited in claim 9, further comprising an independent mechanism (44) configured to measure twist and provide feedback on twist to the controller to enable the 15 rotation mechanism.

16. A method for reducing accumulated twist in an optical fiber for a shape sensing enabled device, comprising:

20 providing (302) a rotatable fiber launch fixture being configured to hold at least one optical fiber, an optical shape sensing enabled device including the at least one optical fiber disposed therein and a rotation mechanism configured to rotate the optical fiber disposed in the rotatable fiber launch fixture;

measuring (304) a twist in the at least one optical fiber disposed within the optical shape sensing enabled device; and

25 in response to the twist, rotating (306) the fiber launch fixture using the rotation

mechanism to at least reduce accumulated twist within the at least one optical fiber.

17. The method as recited in claim 16, wherein the rotation mechanism (14)

includes a motor configured to be responsive to the twist in the at least one optical fiber.

5

18. The method as recited in claim 16, further comprising:

sensing (308) rotation of the launch fixture; and

updating (310) a coordinate reference of the optical shape sensing enabled device

based on the rotation.

10

19. The method as recited in claim 16, wherein the rotation mechanism (14) is

responsive to optical shape sensing signals indicating the twist in the at least one optical fiber.

20. The method as recited in claim 16, wherein the rotation mechanism is

15 configured to be responsive to one of an imaging system (44) and a tracking system (44),

which is independent from shape sensing using the optical shape sensing enabled device, the

imaging system and/or the tracking system being employed to indicate the twist in the at least

one optical fiber.

1/4

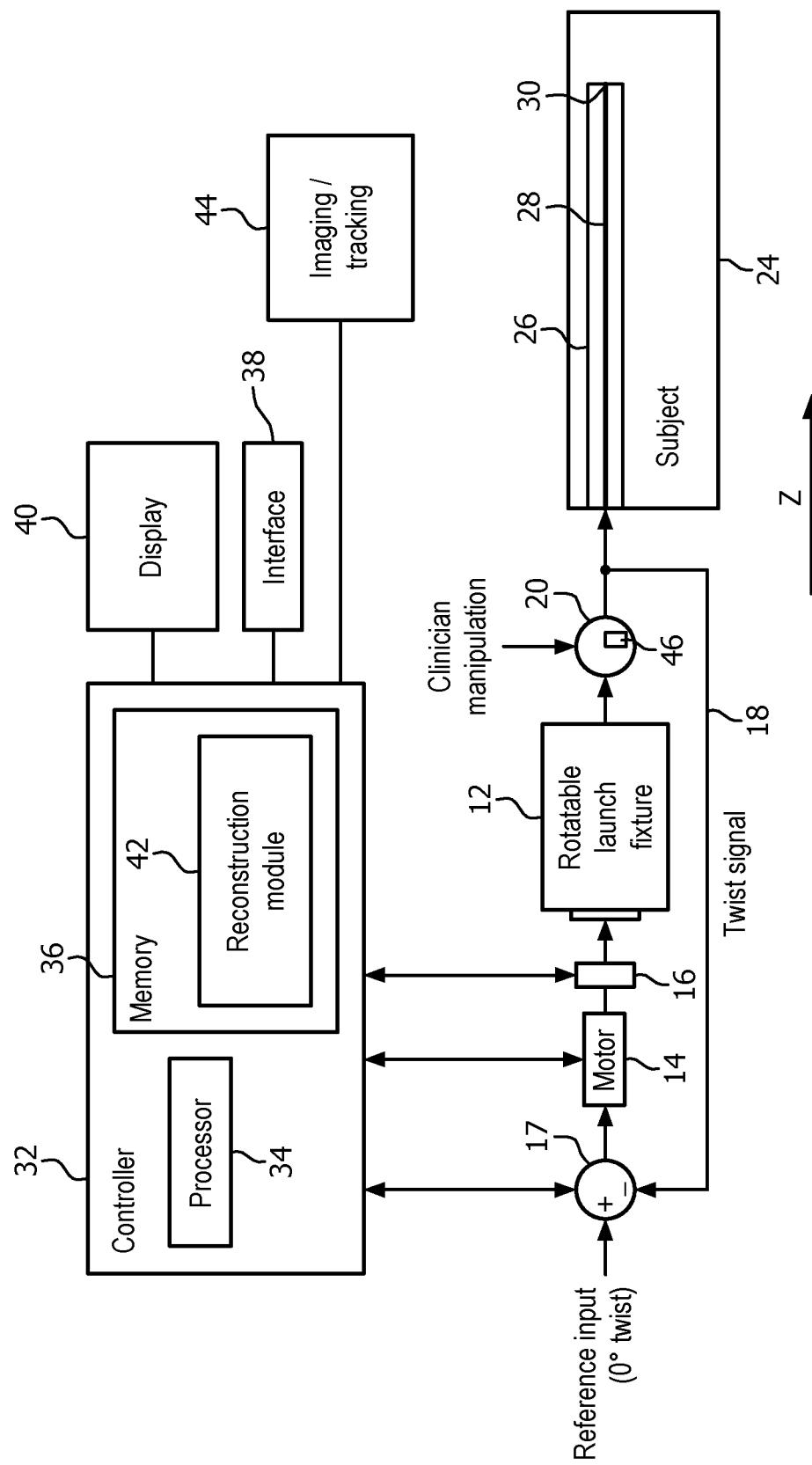


FIG. 1

2/4

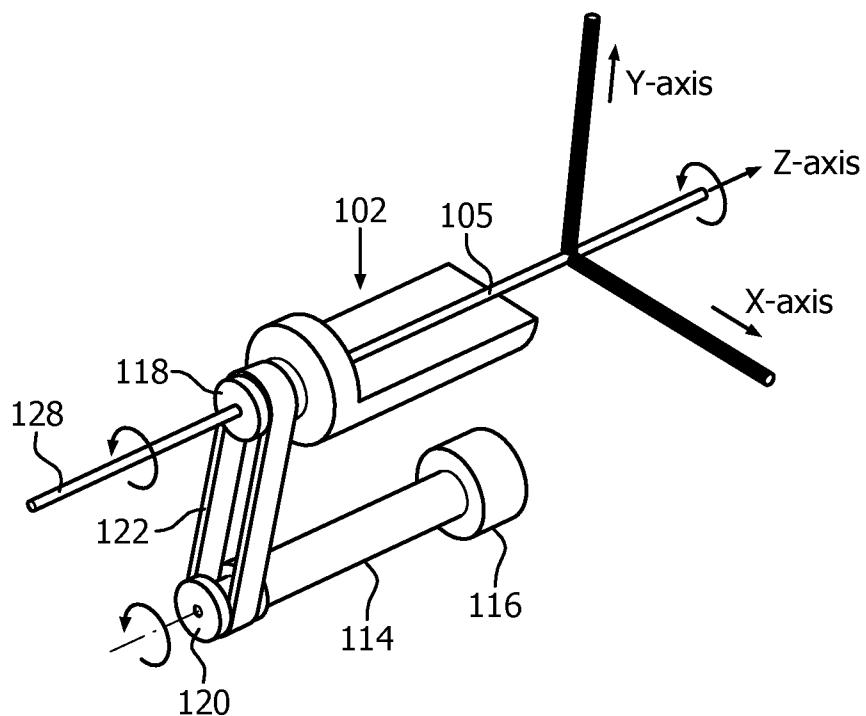


FIG. 2

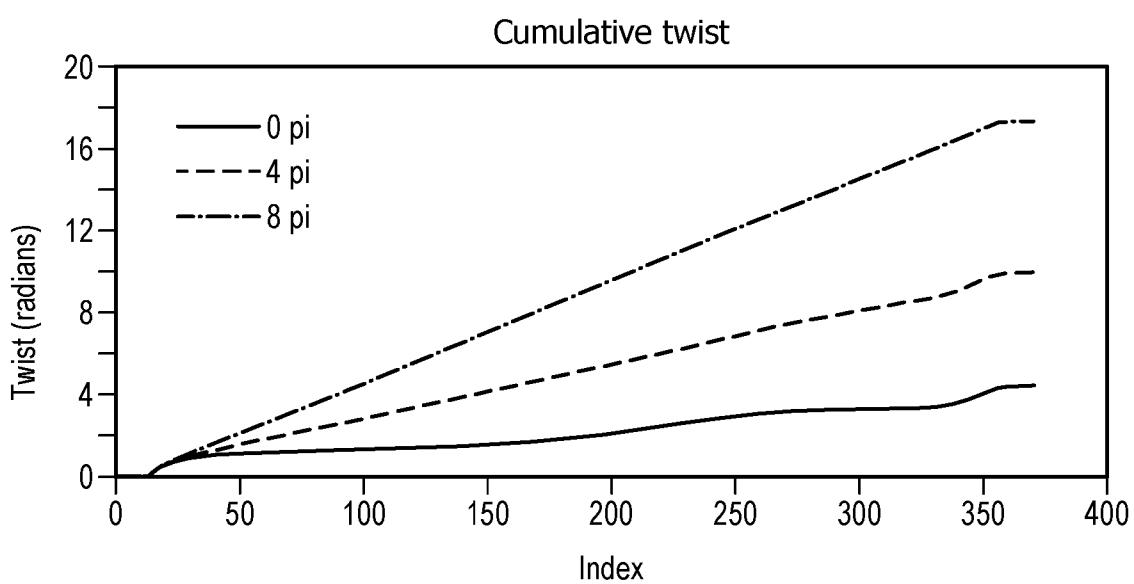


FIG. 3

3/4

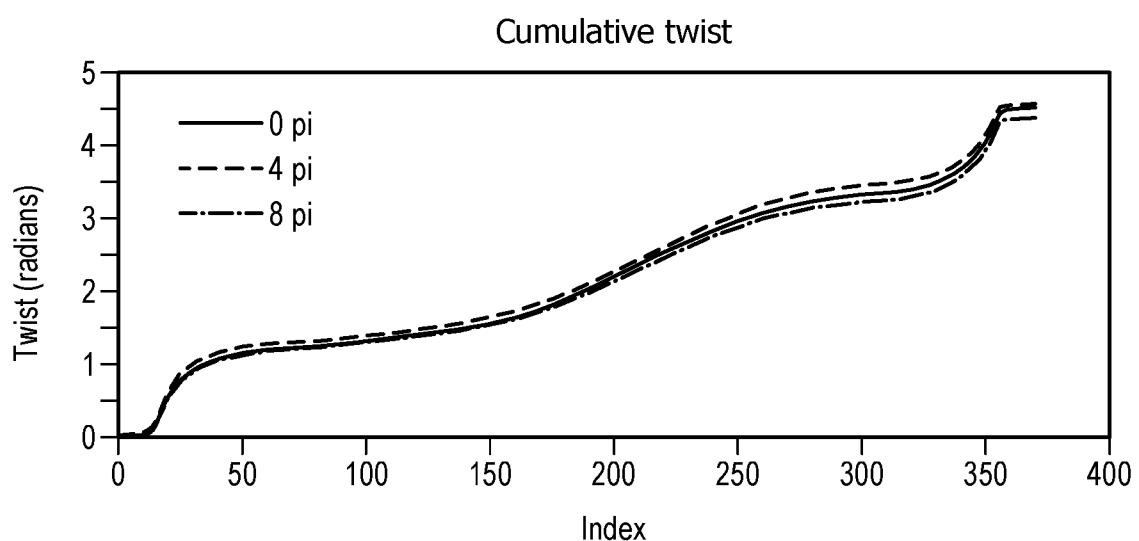


FIG. 4

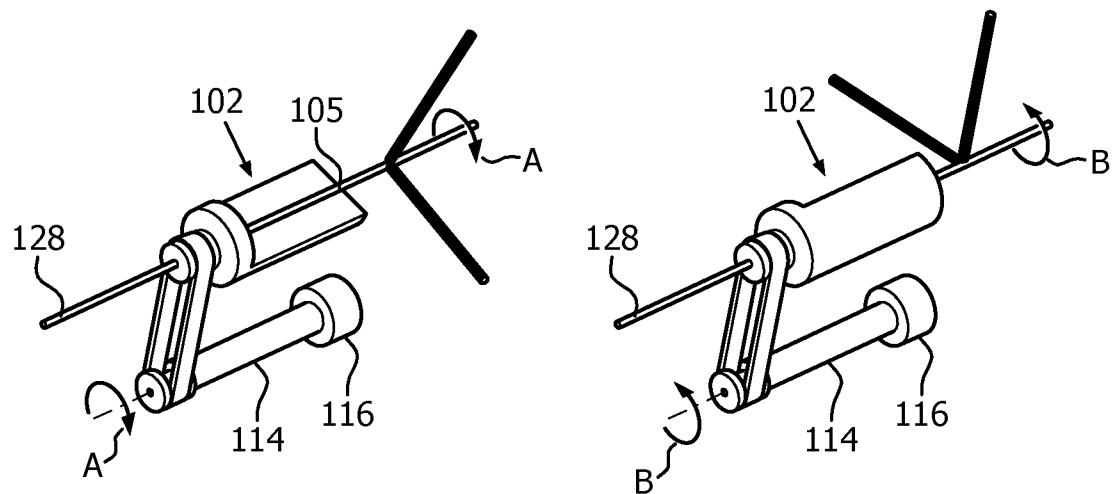


FIG. 5

FIG. 6

4/4

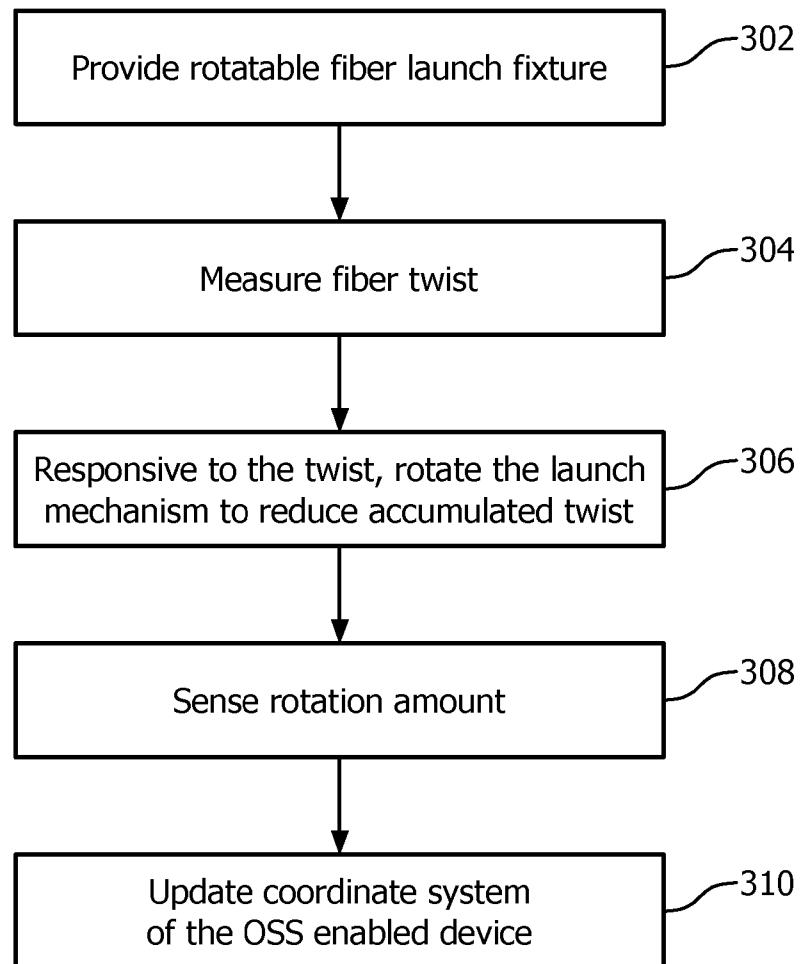


FIG. 7

INTERNATIONAL SEARCH REPORT

International application No
PCT/IB2014/064367

A. CLASSIFICATION OF SUBJECT MATTER
INV. G02B6/02
ADD. A61B19/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61B C03B G02B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 01/33184 A1 (PIRELLI CAVI E SISTEMI SPA [IT]; COCCHINI FRANCO [IT]; RICCO ARTURO [I) 10 May 2001 (2001-05-10) page 13, line 3 - page 16, line 2 page 18, line 7 - page 25, line 24 figures 1-3 ----- US 2004/062514 A1 (WEEKS GENE KENT [US] ET AL) 1 April 2004 (2004-04-01) paragraphs [0006] - [0013], [0035] - [0040]; figures 6-8 ----- US 2007/156019 A1 (LARKIN DAVID Q [US] ET AL) 5 July 2007 (2007-07-05) paragraphs [0042] - [0054], [0081] - [0085]; figures 1-3 -----	1-20 1-3,6-13 1-20

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
13 November 2014	21/11/2014

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Maier, Christian

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No PCT/IB2014/064367

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 0133184	A1 10-05-2001	AT 287528 T AU 7788800 A DE 60017579 D1 DE 60017579 T2 EP 1226415 A1 ES 2235956 T3 JP 2003513267 A US 2002178758 A1 WO 0133184 A1		15-02-2005 14-05-2001 24-02-2005 23-03-2006 31-07-2002 16-07-2005 08-04-2003 05-12-2002 10-05-2001
<hr/>				
US 2004062514	A1 01-04-2004	NONE		
<hr/>				
US 2007156019	A1 05-07-2007	CN 101325920 A US 2007156019 A1 US 2011224684 A1 US 2011224685 A1 US 2011224686 A1 US 2011224687 A1 US 2011224688 A1 US 2011224689 A1 US 2011224825 A1		17-12-2008 05-07-2007 15-09-2011 15-09-2011 15-09-2011 15-09-2011 15-09-2011 15-09-2011 15-09-2011
<hr/>				