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(57) Abstract

Constructing and simulating artificial neural networks and
components thereof within a spreadsheet environment results in user
friendly neural networks which do not require algorithmic based
software in order 10 train or operate. Such neural neiworks can be
easily cascaded to form complex neural networks and neural network
systems, including neural networks capable of self-organizing so
as to self-train within a spreadsheet, neural networks which train
simultancously within a2 spreadsheet, and neural networks capable
of autcnomously moving, monitoring, analyzing, and altering data
within a spreadsheet. Neural networks can also be cascaded together
in self-training neural network form to achieve a device prototyping
system.
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NON-ALGORITHMICALLY IMPLEMENTED ARTIFICIAL NEURAL
NETWORKS AND COMPONENTS THEREQF

Field of the Invention
Thig invention relates generally to artificial neural networks and more
particularly, to artificial neural networks implemented in a non-algorithmic fashion
in a data space, such as a spreadsheet, 50 as to facilitate cascading of such artificial
neural networks and so as to facilitate artificial neural networks capable of
operating within the data space, including networks which move through the data
space and self-train on data therewithin.
Background of the Invention

This application is related to applicant's co-pending application Serial No.
08/323,238 filed October 13, 1994, entitled Device For The Autonomous
Generation Of Useful Information, in which the "creativity machine" paradigm was
introduced. The creativity machine paradigm involves progressively purturbing a
first neural network having a predetermined knowledge domain such that the
perturbed network continuously outputs a stream of concepts, and monitoring the
outputs or stream of concepts with a second neural network which is trained to
identify only useful concepts. The perturbations may be achieved by different
means, including the introduction of noise to the network, or degradation of the
network. Importantly, the present application provides an excellent system for
constructing such é.reativity machines, and further builds upon the creativity
machine invention to achieve self training neural networks.

The current explosion of information has made it necessary to develop new
techniques for handling and analyzing such information. In this regard, it would be
helpful to be able to effectively discover regularities and trends within data and to
be able to effectively sort and/or organize data. Currently, various algorithmic
techniques and systems may be utilized to analyze data, however, such techniques

and systems generally fail to display the creativity needed to enable them to
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organize the data and exhaust sets of data of all potential discoveries. The use of
neural networks for such tasks would be advantageous.

Further, the advantages of new artificial neural networks (ANNs) are ever
increasing. Currently, such artificial neural networks are often trained and
implemented algorithmically. These techniques require the skills of a neural
network specialist who may spend many hours developing the training and/or
implementation software for such algorithms. Further, when using algorithms to
train artificial neural networks, once new training data is obtained, the new training
data must be manually appended to the preexisting set of training data and network

training must be reinitiated, requiring additional man hours. Disadvantageously, if

_the newly acquired training data does not fit the pattern of preexisting training

data, the generalization capacity of the network may be lowered.

An additional drawback to traditional algorithm implemented training and
operation of artificial neural networks is that within such schemes, individual
activation levels are only momentarily visible and accessible, as when the govemning
algorithm evaluates the sigmoidal excitation of any given node or neuron. Except
for this fleeting appearance during program execution, a neuron's excitation, or
activation level, is quickly obscured by redistribution among downstream
processing elements.

Accordingly, it is desirable and advantageous to provide a simpler method of
training, implementing, and simulating artificial neural networks. It is further
desirable to provide artificial neural networks which can be easily cascaded
together to facilitate the construction of mere complex artificial neural network
systems. It also is desirable and advantageous to provide neural networks which
can be configured to perform a variety of tasks, including self training artificial
neura] networks, as well as networks capable of analyzing, sorting, and organizing
data,

A principal object of the present inventien is to provide a user friendly system
of implementing or simulating neural networks in which movement of such

networks and cascading of such networks is facilitated.




10

15

20

25

30

WO 9727525 PCT/USY7/00886

-3-

Another object of the present invention is to provide self training artificial
neural networks.

A further object of the present invention is to provide artificial neural networks
capable of analyzing data within a data space.

Yet another object of the present invention is to provide artificial neural
networks which are mobile within & data space.

Still another object of the present invention is to provide artificial neural
networks which can be easily duplicated within a data space and which can be
easily interconnected to facilitate the construction of more complex artificial neural
network systems,

Summary of the Invention

These and other objects of the invention are attained by artificial neural
networks which are implemented in a data space, such as a spreadsheet within
some spreadsheet application such as Microsoft Excel which is operable with most
IBM compatible personal computers having a model 386 or higher level
microprocessor and sufficient memory associated therewith, such computers
typically including a monitor or other display device. Of course, the faster the
computer speed, the better the results obtained. As used herein the term neural
network object (NNO) includes artificial neural networks or combinations of
artificial neural networks implemented within such a data space and having an
associated set of properties and methods. These praperties and methods may be
incorporated within a knowledge domain of each artificial neural network and may
aiso be incorporated in programs associated with the artificial neural networks.
The data space or spreadsheet includes a plurality of cells and the spreadsheet
application aliows for association or interrelating of such cells through relative cell
referencing. While use of the spreadsheet application Microsoft Excel is suggested
herein, it 1s understood that other spreadsheet applications could be utilized, and it
if further understood that new applications could be engineered for the purpose of
creating a data space suitable for construction and operation of neural network
objects as described herein. Moreover, while the various neural network objects

described below may refer to programs being associated therewith, it is understood
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that in a data space where self referencing is permissible, such programs could be
eliminated.

Exploiting the many analogies between biological neurons and cells within a
spreadshest, the state of any given neuron may be evaluated by relative cell
referencing and resident spreadsheet functions. Unlike traditional algorithmic
network simulation, all neuron activations are simultaneously visible and randomly
accessible within the data space simulation. More like a network of virtual, analog
devices, this simulation may be considered quasi-parallel, with all neurons updated
with each wave of data space calculation or renewal, where spreadsheet rencwal is
asynchronous with the feed férward algorithm.

Neural network objects are mobile within the data space as provided by the
spreadsheet application which typically includes resident commands for cutting and
pasting groups of cells. Accordingly, movement of neural network objects is
achieved by simultaneously cutting the information within the cell group or cell
array comprising the neural network object from one location withip the data space
and pasting the same information to another location within the data space. Such
movement may be accomplished manually or through programs associated with the
neural network objects. Alternatively, neural network objects can be replicated
using a copy command and moved elsewhere within the data space.

Such neural network objects are advantagecusly implemented without
requiring any underlying software based algorithm and are therefore extremely
versatile and user friendly. Moreover, neural network objects are eastly portable
such as by saving or storing, on a computer readable storage medium such as a
floppy disk, information operable to effect such neural network objects. Further,
by relatively referencing the outputs of one neural network object to the inputs of
another, neurat network objects can be easily cascaded such that the outputs from
one neural network object are applied as inputs to another neural network object.
The compound or cascaded neural networks which result are transparent in
operation and easily accessible for modification and repair. Accordingly,

recurrences and all manner of neural network paradigms, including JAC,




WO 97/27525 PCT/USYT/00886

10

15

20

25

30

-5-

Boltzmann Machine, Harmonium, Hopfield nets, and self-organizing maps, may be
readily implemented.

Importantly, the ease with which neural network objects can be cascaded
provides a system where multiple neural network objects may be combined so as to
simulate interconnected processes or hardware devices, wherein each neural
network object is trained within a knowledge domain of a particular process or
hardWare device. In addition, this specification provides several examples of other
neural network objects in order to demonstrate both their versatility and utility.

One advantageous neural network object provides for the training of an

artificial neural network. This self training artificial neural network object

_(STANNO) is a simple alternative to Adaptive Resonance Technology, disclosed in

Carpenter et al U.S. Patent No. 5,214,715, wherein complex algorithms are
utilized to allow neural networks to flexibly adapt to new, emerging information.
Advantageously, the STANNO requires no such compiex algorithms.

In general, training an artificial neural network requires a set of training data,
including multiple input vectors and associated output vectors, and includes
various techniques such as backpropagation, involving repetitive application of
input vectors to an input layer of the artificial neural network. With each
application of an input vector, the actual output of the artificial neural network,
obtained at the output layer, can be evaluated in light of the desired output so that
the connection weights and/or biases of the artificial neural network can be
adjusted.

The self training artificial neural network object or STANNO may include
imaging cells which allow the STANNO to observe or input data located within
the data space utilizing the aforementioned relative cell referencing scheme. The
artificial neural network which is to be trained is itself part of the STANNO, and at
least some of the imaging cells may be representative of the input layer of the
artificial neural network. The remaining imaging cells can be used by the
STANNO to compare the actual output of the artificial neural network with the

desired output associated with each particular input vector.
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In this regard, the STANNO also includes a training network which is
configured 1o adjust the weights of the artificial neural network as determined by
comparing the actual output of the artificial neural network with the desired
output. In backpropagation, the training network may include four associated
modules to implement the backpropagation training regime. The first module is
configured to determine what the activation level of each artificial neural network
neuron would be if the inputs thereto are increased by some infinitesimal amount.
The second module determines the derivatives of neuron activations with respect
to net input thereto. The third module determines error terms and the fourth
module determines correction values from which the weights and biases of the
artificial neural network can be adjusted. These four modules can be implemented
distinctly within the data space or they can be integrated with each other and with
the artificial neural network.

The STANNO may be operable to move within the data space such that with
each movement thereof the artificial neural network is trained on an input vector
and corresponding output vector within the data space. Thus, the STANNO may
continuously move through and thereby continuously train the artificial neural
network within the data space. Advantageously, the STANNO may also remain
stationary while training the artificial neural network on data which is fed directly
into the data space, such as data from known systems which may include known
devices or processcs. Such a data feed may take the form of a dynamic data
exchange. Essentially, the STANNO is a network training a network with neither
represented in algorithmic code. Advantageously, at any point during training, the
artificial neural network may be copied from or moved from the STANNO and
placed at another location within the data space or placed in an entirely different
data space for operation.

By taking advantage of the unique training ability of the STANNO and the
ability to combine neural network objects to simulate interconnected devices, a
device prototyping system is achievable. In this device prototyping system, a
prototyping neural network is constructed, wherein at least some of the neurons of

the prototyping neural network are represented by component neural networks,
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each trained within a knowledge domain of a component which will be used to
construct the device being prototyped. By training the prototyping neural network
on predetermined inputs and associated desired cutputs, the finalized weighting
values associated therewith can be used to determine how to interconnect the
components in order to construct the prototyped device.

A second neural network object acts as a data filtering artificial neural network
object (DFANNO) whereby data within 2 data space can be moenitored, analyzed,
and manipulated in order to either locate novel data or to locate suspect data
within the data space. The underlying theory is based on the use of an
autoassociative neural network which is a network having a knowledge domain
wherein input data vectors within the knowledge domain are mapped to
themselves. Thus, if an input vector to the autoassociative neural network falls
within the knowledge domain thereof, the result is an output vector therefrom
which closely matches the input vector.

When associated with the STANNO the DFANNO is operable to determine
whether or not the STANNO has already trained the artificial neural network on a
given set of data, or data similar thereto. Ifthe STANNO has already trained the
artificial neural network on the set of data, the artificial neural network is not
trained on the given set of data, thereby reducing time wasted by retraining on
redundant data. Conversely, if the DFANNO determines that the STANNO has
not trained the artificial neural network on the data, the STANNO is permitted to
train the artificiat neural network on such data.

The DFANNO may also operate as a separate entity within a data space. As
such, the DFANNO is operable to analyze data within the data space to determine
if any of the data does not follow an overall pattern associated with the data, such
as data which Ms been affected by noise or some other disturbance which may
have occurred in the data gathering process, When the DFANNO finds such data
it is operable to either remove, delete, or relocate the data from the data space or
to in some way tag the data as being suspect. Accordingly, the DFANNO is also
an effective device for efiminating or calling attention to suspect data within a

given data space.
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A third neural network object acts as a data scanning artificial neural network
object (DSANNO) whereby various groupings of data within the data space are
examined in attempt to find a set of data values having a predetermined
relationship. The DSANNO may be stationary within the data space vet able to
focus its attention to various groups of cells within the data space by taking
advantage of relative cell referencing. The DSANNQ includes a field positioning
neural network which is operable to determine the position of the group of cells
within the data space which will be analyzed by the DSANNO. Through relative
cell referencing, a set of imaging cells associated with the DSANNO is used to

develop a working image of the group of celis which will be analyzed. A searching

_metwork is then utilized to view the working image from some perspective which is

in turn analyzed by a detection network which determines if the set of data values
making up the perspective meets the predetermined or desired relationship. Any
set meeting the relationship can be tagged or possibly copied to another part of the
data space. The DSANNO is thus useful as a tool for examining large databases
for data strings having some desired relationship. ‘

The herein described techniques and neural network objects, or components
thereof, may advantageously be combined in a variety of ways to develop more
complex and advanced neural network systems.

Brief Description of the Drawings

Fig. 1 is an illustration of a traditional neural network neuron and the
corresponding data space simulation thereof:

Fig 1A is a partial biock diagram of a computer;

Fig. 2 illustrates a plurality of neural network objects in a system for simulating
interconnected processes or hardware devices;

Fig. 3 is a block diagram illustration of a neural network object operable within
a data space;

Fig. 4 is 2 high level flow chart for movement of the neural network object
illustrated in Fig. 3;

Fig. 5 is a high level flow chart providing the neural network object of Fig. 3
with the ability to act upon the data space;
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Fig 6 is a block diagram illustration of a self training artificial neural network
object which includes an artificial neural network and a training network;

Fig. 7 is a flow chart illustration of traditional backpropagation neural network
training;

Fig 8 1s a continuation of the flow chart of Fig. 7

Fig, 9 is a nodal illustration of an exemplary artificial neural network which
forms part of the self training artificial neural network object of Fig. 6,

Fig. 10 is a data space simulation or implementation of the artificial neural
network illustrated in Fig, 8;

Fig. 11 illustrates a first module of the training network associated with Fig. 6,
the first module operable to determine activation levels when inputs are increased
by some small amount;

Fig. 12 illustrates a second module of the training network associated with Fig,
6, the second module operable to determine the derivative of neuron activations
with respect to net inputs thereto;

Fig. 13 illustrates a third module of the training network associated with Fig, 6,
the third module operable to determine error terms;

Fig. 14 illustrates a fourth module of the training network associated with Fig.
6, the fourth module operable to determine weight update terms for the artificial
neural network illustrated in Fig. 10;

Fig. 15 illustrates the self training artificial neural network of Fig. 6 as it moves
through and trains within the data space;

Fig. 16 is a Visual Basic program associated with the self training artificial
neuvral network illustrated in Figs. 10-15;

Fig. 17 iliustrates a plurality of sets of training data;

Figs. 18-21 illustrate various portions of an integrated self training artificial
neural network object, wherein the training network is integrated with the artificial
neural network being trained;

Fig. 22 illustrates a subroutine associated with the integrated self training

artificial neural network of Figs. 18-21;




WO 97127525 PCT/US97/00886

-10-

Fig, 23 illustrates a plurality of self training artificial neural network objects
training simultaneously within a date space; .

Fig. 24 illustrates a subroutine flow chart for implementing dynamic pruning in
association with self training artificial neural network objects;

5 Fig 25 illustrates a subroutine flow chart for implementing dynamic addition of
neurons in association with self training artificial neural network objects;

Fig, 26 illustrates an exemplary untrained device prototyping neural network;

Fig. 27 illustrates the device prototyping neural network of Fig. 26 after
training, including finalized weight vaiues;

10 Fig. 28 illustrates a data filtering artificial neural network object;

Fig. 29 is a Visual Basic program associated with the data filtering artificial
neural network object of Fig. 28,;

Fig. 30 is a block diagram illustration of a data filtening artificial neural network
object associated with a self training attificial neural network object, both objects

15  moving together through a data space;

Fig. 31 is a block diagram illustration of a data scanning artificial neural
network object, including a search network, a detection network, and a field
positioning network;

Fig. 32 is a nodal illustration of an autoassociative neural network which forms

20 the field positioning network of Fig. 31;

Fig. 33 illustrates an exemplary viewing field of the data scanning artificial
neural network object of Fig, 31;

Fig. 34 is a nodal illustration of an autoassociative neural network which forms
the search network of Fig. 31; and

25 Fig. 35 is a nodal illustration of an exemplary detection network for the data
scanning artificial neural network object of Fig, 31.
Detailed Description of the Drawings

Referring to the drawings more particularty by reference numbers, number 10

in Fig 1 refers to a classical representation of a neural network neuron and number
30 12 refers to the implementation of the neuron 10 in a data space 14. The lustrated

data space 14 includes a plurality of columns 16 and a plurality of rows 18, each
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column 16 beiﬁg identifiable by a letter at the top thereof and each row 18 being
identifiable by a number located at the left hand side thereof The column and row
combination results in a plurality of cells 20, each of which may be identified by a
corresponding letter and number designation. This data space 14 configuration is
typical of spreadsheets within a spreadsheet application.

The data space implementation 12 of neuron 10 is the building block of neural
network objects described herein, but deviations may be used which do not deviate
from the spirt of the present invention. The data space implementation 12 includes
a first plurality of cells 22, in this case five (5) cells, each having an associated
predetermined numeric value, w,, w,, w,, w,, and  respectively. The number of
cells 22 will vary depending on the number of inputs to the neural network neuron
10. Inthis case, a second plurality of cells 24 contain input values x,, x,, x,, and x,,
Accardingly, the plurality of cells 22 include four (4} corresponding weight values
W, W,, W;, and w,, and one bias value 0 . As used herein, the terms weight or
weighting value include bias values which are presumed to be associated with
constant neuron inputs of one (1). In an untrained neural network the numeric
value associated with each cell 22 may be randomly assigned while in a trained
neural network the numeric values are determined by training the neural network
of which the neuron is a part,

An activation cell 26 contains a transfer function 28 which references each of
the cells 22 and each of the cells 24, the transfer function 28 acting to apply the
appropriate weights to the appropriate input values in determining an activation
level associated with the neuron 10. Accordingly, the numeric value associated
with the activation cell 26 is dependent upon the numeric values associated with
each of cells 22 and 24 as well as the form of the transfer function 28, which in this
case is a sigmoid function, although other known transfer functions could be
utilized. During normal operation of neural network objects the transfer function
28 is hidden and the numeric value associated with the activation cell 26 is
displayed on a computer screen or other display device 27, see Fig. 1A. Thus, the

displayed numeric value represents the activation level of the activation cell 26 and
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accordingly the neural network neuron 10. As shown in Fig. 1A, a computer such
as an IBM compatible personal computer including microprocessor 29, RAM 31,
and ROM 33 may be utilized in association with the present invention.

A plurality of data space implemented neurons 12 may be used to constryct
artificial neural networks in accordance with the present invention. Such networks
typically include both hidden layer and output layer neurons, Accordingly, in such
networks, input values for a given neuron may be values associated with activation
cells of another neuron within the neural network. Utilizing such data space
implemented neurons 12 advantageously facilitates construction of artificial neural
networks without requiring any specialized algorithm implementing software.

Once a given artificial neural network is constructed or implemented in a
spreadsheet or data space 14, advantage may be taken of resident spreadsheet
capabilities such as the ability to copy and paste a group of cells or to cut and paste
a group of cells. Accordingly, artificial neural networks constructed in accordance
with the present invention may be easily interconnected to construct increasingly
complex artificial neural networks. One advantageous use for such artificial neural
networks is in providing a system for simulating interconnected processes or
interconnected devices such as electronic or mechanical devices,

Such a system is illustrated in Fig. 2 wherein two data spaces 30 and 32, which
may be distinct but associated spreadsheets, such as spreadsheets associated in
workbook form, are shown. Located in data space 30 are various neural network
objects 34, 36, 38, and 40, in which the cross-hatched regions represent cells
associated with the operation of each. By way of example, each neural network
object 34, 36, 38, and 40 may be trained within the knowledge domain of some
electrical component such as a resistor, capacitor, inductor, or transistor. Of
course, the knowledge domain of any electrical component could be incorporated
into a neural network object within the data space 30. Such 2 system would be
particularly useful when there is no existing mathematicat model for the
component's behavior,

Having established a plurality of operable, neural network objects such as 34,

36, 38, and 40, various electronic circuit configurations can then be simulated by
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copying the neural network objects to the data space 32, as indicated by arrow 42
with respect to neural network object 40, so as to interconnect, through relative
cell referencing, the neural network objects in the configuration of the electronic
circuit to be simulated. Accordingly, providing a spreadsheet, or plurality of
spreadsheets in workbook form, with multiple neural network objects, each trained
to emulate a particular electronic device, results in a system for simulating
electronic circuits of numerous configurations. Moreover, such a system is
advantageously user friendly due to the graphical representation of each neural
network object which allows a user to easily manipulate such objects as required
for a particular application.

In addition to providing a system for simulating known devices, neural network
objects can be configured for numerous purposes. Some important aspects of such
neural network objects is their ability to autonomously move within the data space,
to operate on or alter data or other objects within the data space, and to self
organize.

Fig. 3 illustrates the block diagram configuration of a neural network object 44
which may be operable to move within the data space 14, alter or otherwise
operate on data or other objects within the data space 14, and/or self organize.
The neural network object 44 includes a first data space implemented artificial
neural network 46 and also includes one or more imaging cells 48 which, through
relative cell referencing, form a working image of a portion S0 of the data space
14, Thus, the imaging cells 48 are tantamount to a visual or receptive field in
neurobiology The image developed by the imaging cells 48 is then input to the
artificial neural netwark 46, again through relative cell referencing. This first
artificial neural network 46 may be trained within a known knowledge domain so
as to process the input data and result in some desired output. For example, the
artificial neural network 46 could be trained to simulate the output of a known
system, such as a materials manufacturing process or some hardware device, in
response to a multi variable vector input thereto. Alternatively, the artificial neural
network 46 may be an untrained network which is to be trained on the data

referenced by the imaging cells 48. Of course, the neural network object 44 may
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also include other associated networks 51. The neural network object 44 may be
operable, via a program associated therewith, to perform some task. Exemplary
programming routines are illustrated in the high level flow charts of Figs. 4 and §.
The routine 52 of Fig. 4 could be utilized to cause the neural network object 44 to
move, wherein the movement is dependent upon some information produced by the
neural network object 44. Staring at 54, such information would be obtained
therefrom at step 56 and the movement would then be carried out by step 58, with
the routine ending at 60. Similarly, the routine 62 of Fig. 5 could be utilized to
delete or otherwise alter the data located in the portion 50 of the data space 14, or

to self organize such as by modifying the artificial neural network 46. The

_intended action of the neural network object 44 would be determined, starting at

64, from information obtained therefrom at step 66. The action would then be
carried out at step 68, with the program ending at 70.

Autonomy of the neural network object 44 is ensured by partitioning its
internal function from any governing algorithm in a technique resembling
encapsulation within object-oﬁented programming wherein class objects or
different portions of 2 computer code conceal data and algorithms from each other,
passing only restricted information between each other. The encapsulation feature
allows for the portability of the class objects. In the present invention, the concept
of encapsulation is extended to artificial neural networks wherein the activity
between an algorithm and a neural network is segregated. Therefore, the neural
network object 44, such as shown in Fig. 3, autonomously makes decisions based
upon the imaged portion 50 of the data space 14 and the algorithm, 52 or 62, then
effects those decisions.

SELF TRAINING

Various neural network objects can be constructed in accordance with the
present invention to perform various functions or simulate known systems. For
example, the block diagram configuration of a self training artificial neural network
object or STANNO 72 which is operable to train an artificial neural network 74 is
illustrated in Fig. 6. The STANNO 72 includes a plurality of imaging cells 76, the

artificial neural network 74 which is to be trained, and a training network 78. The
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traming network 78 includes four modules, 80, 82, 84, and 86 which are
configured to implement backpropagation training of the artificial neural network
74.

The steps involved in traditional backpropagation training are illustrated in the
flow chart 88 of Figs. 7 and 8, and are summarized below. In this regard, x is
defined as a mult! variable vector whose components represent the individual
inputs to the artificial neural network being trained; p is used as an index to signify
the pth data vector presented to the neural network being trained. Accordingly a
given input vector is designated x,. Beginning at 90 in flow chart 88,
backpropagation training includes generating a table of random numbers
corresponding to a starting set of weights at step 92. An input vector, x,, is then
input to the randomly set neurat network at step 94. The net input values to the
hidden layer nodes or neurons are then calculated, wherein netpj", the total input to
the jth hidden (h) layer neuron is the sum of the products of all inputs, x,, and
weights wjlh plus the bias term Bj" as demonstrated by the equation of step 96. The
outputs from the hidden layer are then calculated as demonstrated by the equation
of step 98 where i ; represents the activation level of the jth hidden layer neuron as
a function of its net input and f represents some functional relation such as a
sigmoid, linear threshold function, or hyperbolic tangent. The net input values to
each unit of the output layer are then calculated as demonstrated by the equation at
step 100, wherein the superscript o refers to the output layer quantities. The
outputs of the output layer nodes or neurons are then calculated as demonstrated
by the equation at step 102. The flow chart 88 then continues at 104 in Fig. 8.
The error terms for each of the output units and each of the hidden layer units are
then calculated according to the equations of steps 106 and 108, Next, the weights
on the output layer are updated according to the equation of step 110, and the
weights an the hidden layer are then updated according to the equation of step
112, wherein 7 represents the learning parameter, An error term Ep is then
calculated according to the equation at step 114. A new input vector is then

selected and training returns to step 94, as indicated by 116, with training
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continuing until the error Ep reaches some minimal value, as determined at step
118. The flow chart 88 ends at 120.

Rather than performing all of the steps of fiow chart 88 in sequence, the
STANNO 72 of Fig. 6 utilizes the training network 78 to perform these operations
in parallel fashion. The training network 78 includes first module 80 which is
identical to the artificial neural network 74 except that it determines what the
activation: levels are when each of the inputs is increased
by some infinitesimal amount, which may be represented by a value A of
0.01. It is understood that other values of A could also be utilized without
departing from the scope of the present invention. The second module 82
determines the derivatives of cell activations with respect to net input to those
cells. The third module 84 utilizes the derivatives to determine the error terms
corresponding to steps 106 and 108 of flow chart 88. The fourth module 86
determines weight updates, and the weights of the artificial neural network 74 and
the first module 80 are then adjusted, as indicated by arrow 122, using the updates
produced by the training network 78, Thus, training of the artificial neural
network 74 is net carried out with algorithmic code, but rather by a network
training 2 network.

Figs. 9 through 14 illustrate in greater detail the different portions of the
STANNO 72 of Fig. 6. A traditional representation 124 of the artificial neural
network 74 is illustrated in Fig. 9. A two input neuron, 126 and 128, one output
neuron 130 feed forward neural network is depicted, including a hidden layer 132
having three neurons 134, 136, and 138. However, it is understood that numerous
artificial neural network configurations, including more complex artificial neural
networks, could be trained as described herein.

Fig. 10 illustrates a corresponding data space implementation of the artificial
neural network 74. Also shown in Fig. 10 are the imaging cells 76. In relation to
Fig. 9, the imaging cells D1 and E1 of Fig. 10 correspond to the imput neurons 126
and 128 respectively, and activation cells F3, F4, and F5 relate to hidden layer

neurons 134, 136 and 138 respectively. Ceils D3 and E3 contain the weighting
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values and cell D4 contains the bias value for neuron 134, Similarly, cells D5, ES,
and D6 contain the weight and bias values for neuron 136, while cells D7, E7, and
D8 contain the weight and bias values for neuron 138. The value associated with
each activation cell F3, F4, and F5 represents the activation level of respective
neuron 134, 136, and 138, and is determined by a transfer function which
references, either directly or indirectly, the corresponding weight and bias value
containing cells as well as the imaging cells D! and E1. Activation cell H3 of Fig.
10 corresponds to the output neuron 130 of Fig. 9 and cells G3, G4, GS, and G6
contain the weight and bias values for the neuron 130. The transfer function of

activation cefl H3 references, either directly or indirectly, each of the hidden layer

_ activation cells F3, F4, and F5 as well as cach of the weight and bias containing

cells G3, G4, G5, and G6.

Although shown in Fig. 10, cells F6, 7, F8, and H4 are not necessary for
simulating operation of the artificial neural network 74. Rather, cells F6, F7, F8
and H4 are used to determine the net input to each of the neurons 134, 136, 138,
and 130, respectively, in accordance with steps 96 and 100 of flow chart 88, see
Fig. 7. These determined values are then utilized by the training network 73, see
Fig. 6, as indicated below. Alternatively, the SUMPRODUCT functions within
cells F6, F7, F8, and H4 could be directly incorporated in the respective transfer
functions of cells F3, F4, F5, and H3.

The first module 80 of the training network 78 is illustrated in Fig. 11. Itis
evident that, similar to Fig. 10, the first module 80 contains the data space
implementation of the artificial neural network 74 illustrated in Fig. 9. However,
during training, the inputs to the first module 80 are increased by some infinitesimal
amount A, as indicated by cells D9 and E9, in order to determine the effect on the
activation level of, as well as the net input to, each of the hidden layer neurons 134,
136, and 138 and the output neuron 130 of the artificial neural network 74. The
values determined in the first module 80 are then utilized by the second module 82
which is illustrated in Fig. 12 and is operable to determine the derivative of cell
activations, which represent neuron activations, with respect to net inputs thereto.

The derivatives are approximated according to the equations in celis F18, F20,
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F22, and H18, which represent the difference in activation value over the difference
innet input. For example, cell F18 approximates the derivative of the hidden layer
neuron 134, Fig. 9, with respect to the net input thereto by dividing the difference
between the numeric value associated with cell F11 and the numeric value
associated with cell F3 by the difference between the numeric value associated with
cell F14 and the numeric value associated with cell F6. Similar derivatives for the
remaining hidden layer neurons 136 and 138 as well as the output neuron 130 are
determined at cells F20, F22, and 18 respectively.

Fig. 13 illustrates the third module 84 of the training network 78 wherein the
error terms corresponding to steps 106 and 108 of flow chart 88 are determined,

In cell H26 the error term §,,°, is determined by multiplying the value associated
with cell 11 by the value associated with cell H18, the value associated with cell I1
being the difference between the actual output of the artificial neural network 74
and the desired output and the value associated with cell H18 being the derivative
value determined in the second module 82. The 8,° term of cell H26 is then
backpropagated to determine the error terms for the hidden layer nevrons 134,
136, and 138 in each of cells F26, F28 and F30. For example, in cell F26 the value
of cells F18, G3 and H26 are multiplied together, the value associated with cell
F18 being the derivative value determined in the second module 82 and the value
associated with cell G3 being the weight term from hidden layer neuron 134 to
output neuron 130. Similarly, in cells F28 and F30, the error terms for respective
hidden layer neurons 136 and 138 are determined.

In the fourth module 86, shown in Fig. 14, weight update terms are
determined. With respect to the output neuran 130, the weight update terms
correspond to the (m3,°i; ) portion of the equation shown in step 110 of flow chart
88, where the learning parameter 1 has a value of one (1). For example, in cell
(34 the weight update term for the weight value associated with cell G3 of Fig. 10
is determined by multiplying the numeric value associated with cell H26 by the
numeric value associated with cell F3, the value associated with cell H26 being the

8, term and the value associated with cell F3 representing the i, term which is the
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input to cutput neuron 130 coming from the hidden layer neuron 134. Similarly,
the respective weight update terms for the weight values associated with cells G4
and G5 of Fig, 10 are determined in cells G35 and G36. In celt G37, the weight
update term for the bias value is determined, the i, term being designated as one
(1) as explicitly shown.

The weight update terms for the hidden layer weights and biases are also
determined in the fourth module 86. These weight update terms correspond to the
(n8,x) portion of the equation shown in step 112 of flow chart 88, where 7, the
learning parameter, is again given a value of one (1). For example, cell D34

determines the weight update term for cell D3 of Fig, 10 by multiplying the

. numeric vajue associated with cell F26 by the numeric value associated with cell

D1, the value associated with cell F26 being the Spjh term determined in the third
medule 84 and the value associated with cell D1 being the input value to the
hidden layer neuron 134, Similarly, cells E34, D35, D36, E36, D37, D38, E38 and
D39 determine the weight update terms for each of the values in respective cells
E3, D4, D5, ES, D6, D7, E7, and D8, of Fig. 10, Importantly, the training
network 78 determines all weight updates from observed errors, utilizing a parallel
computation scheme built upon the backpropagation paradigm. There are no -
algorithmic sequences of steps constituting the partial derivatives, error terms, and
updates.

The weight update terms determined in the fourth module 86 must then be
added to their corresponding weight terms in the artificial neural network 74 and
the first module 80. After updating the weight terms, the STANNO 72 is operable
to move to another location in order to train on another set of data within the data
space 14. The operation of the STANNO 72 is best shown in Fig. 15 where the
STANNO 72 is shown in block diagram form. Multiple sets of training data may
be located in columns A, B, and L of the data space, with columns A and B
containing the inputs and column L containing the corresponding desired output.
After training on a set or row of data, the STANNO 72 is operable to move down
one row and train on another set of data. Thus, the STANNO 72 moves through
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and therefore trains on the training data, with the error or difference between
actual output of the artificial neural network 74 and the desired cutput in column L
decreasing accordingly, and displayed at cell 140,

Movement of the STANNO 72 and updating of the weight values of the
artificial neural network 74 are achieved via software such as the Visual Basic
program 142 shown in Fig. 16. The program may be located in a separate
spreadsheet, not shown, which is associated with the spreadsheet or data space 14
of the STANNO 72. In program portion 144, the last training data point, lasti, and
the Epoach value are recovered from the spreadsheet. The program portion 146
randomly assigns initial weights between -8 and 8 to the weight cells of the
artificial neural network 74. 1In each of the terms "Cells(x, y)" the x value
corresponds to a row within the data space and the y value corresponds to a
column with the data space. Alternatively, weights may be initialized by placing
the spreadsheet fumction rand() within the appropriate cell and calling a calculate
command.

In program portion 148 artificial neural network training takes place, with the
Epoch value representing the number of times the STANNO 72 will be permitted
to train on the training data, and the i value representing the number of rows or
sets of data the STANNO 72 will be permitted to train on. The calculate term 150
triggers all calculations within the data space 14. Then update lines 152 update the
weight cells by adding to them the weight update values determined in the fourth
module 86 of the training network 78. After the weight values have been updated,
program portion 154 determines if the STANNO 72 has reached the end of the
training data, as indicated by zero (0) values in the training input columns. Program
portion 156 causes the STANNO 72 to move down one row within the data space
14. After moving to the bottom of the i sets of data program portion 158 operates
to move the STANNO 72 back up to the top of the training data. The movement
of the STANNO 72 is accomplished by the copy and paste commands, which leave
behind a diagnostic trail of network inputs and outputs. Cutting and pasting would
erase this trail. Training will be completed when the STANNO 72 has moved

through the training data a predetermined number of times, which in this case is the
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upper limit of the Epoch value, or 1000. Alternatively, training could continue
until the RMS error associated with the artificial neural network falis below some
predetermined value.

It should be understood that the STANNO 72, illustrated in Figs. 6 and 10-15
along with associated program 142 is merely one configuration among many
possibilities for self training neural network objects. The important aspect of the
invention being a network which trains a network.

In this regard, Figs. 17 through 21 illustrate an alternative configuration for an
integrated self training artificial neural network where the artificial neural network

being trained and the associated training network are integrated with each other in

. the data space. Figs. 17 through 21 ali refer to different portions of the same data

space 14, and Fig. 17 particularly illustrates columns A through § of the data space
14. Columns B through $ contain muliiple sets of training data, one set per row,
where the sets include nine (9) inputs 160, designated xpl through xp9, and nine
(9) associated outputs 160, designated yp1 through yp9. Although only nine rows
or sets of training data are shown, the number of sets of training data is limited
only by the maximum number of rows allowable in the data space 14. Further, in
the case of a dynamic data exchange as described below, the humber of sets of
training data is unlimited.

With regard to the integrated self training artificial neural network, Figs. 18
through 21 illustrate portions thereof. It is assumed that the artificial neural
network being trained is a 9-9-9 network, having nine inputs, nine hidden layer
neurons, and nine output layer neurons. Fig, 18 illustrates columns AK through
BB of the data space 14, which columns are utilized to determine the maximum
and minimum numeric values contained within each column of the training data
illustrated in Fig. 17, as shown in rows one (1) and two (2). In row three (3), the
difference between the maximum and minimum values is determined.

In Figs. 19 through 21, the configuration for two levels of neurons is
illustrated, rows three (3) through twelve (12) representing the first level 164 and
rows thirteen (13) through twenty-two (22) representing the second level 166.
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Seven more levels of neurons are included in a complete configuration, but, for
ease of understanding, are not shown.

With reference to column U of Fig. 19, it is seen that the values determined in
Fig. 18 are utilized to normalize the iraining inputs. Within column U, cells 13
through U1 determine the normalization of each input, thus the cell combination
U3 through U11 represents the input vector. Cells U13 through U21 similarly
represent the same input vector for the second level. In column V, the delta value,
0.01 or -0.01, is added to the normalized inputs of column U, In this regard,
because the transfer function being utilized, a sigmoid, has a linear region around
the value 0.3, it is desirous when adding the delta value to the normalized input to
adjust the input towards the linear region. Thus, in cell V3, the function
=IF(U3<0.5, U3+0.01, U3-0,01), causes the positive deita value to be added to
normalized inputs which are less than 0.5 and causes the negative delta value to be
added to normalized inputs which are greater than 0.5. Again, for the second
neuron level 166, similar values are used as indicated by the relative references of
cells V13 through V21. The cells of column W contain the hidden layer weight
values wiji, where j represents the neuron level and i represents the input associated
therewith, with biases given the designation q as shown in cells W12 and W22.
The training based updated hidden layer weight values are determined in the cells
of column X.

Referring to Fig. 20, in column Y the activation levels and derivatives of
activation level with respect to net input thereto are determined for each hidden
layer neuron level. With respect to the first level 164, the activation level and net
input for the normalized inputs of column U are determined in cell Y3 and Y4,
respectively, the activation level and net input for the delta adjusted inputs of
column V are determined in cells Y5 and Y§, respectively, and the derivative value
is determined in cell Y7. Corresponding values for the second level 166 are
determined in cells Y13 through Y17. Following this pattern, each of cells Y3,
Y13, Y23, Y33, Y43, Y53, Y63, Y73, Y82 will contain the activation level of a
hidden layer neuron. Thus, in column Z, all activation levels, act j(xp), are

relatively referenced such that, for example, the values associated with cells Z3
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through Z11 represent an input vector to be applied to the output layer neurons.
Accordingly, in column AA, the delta value is added to the activation ievels of
column Z. Column AB contains the output layer weight values wkj and the
training based updated output layer weight values are determined in column AC.

Referring to Fig. 21, the activation levels and derivatives of activation level
with respect to net input thereto are determined in column AD for each output
layer neuron. The actual activation levels, which represent output values, are then
relatively referenced in column AE, cells AE3 through AE 11. In column AG,
these actual output values are compared with the desired output vaiues which are
associated with column AF and which, although not shown, are normalized as were
the inputs. Accordingly, in cell AG12 an rms error value is determined. In column
AH the " terms are determined and in column Al a 5,° vector term is
developed, as represented by cells AI3 through AIt1. With reference to column
AC of Fig. 20, it is seen that the 5,° terms determined in column Al are utilized to
determine the output layer weight update terms, wkj. Similarly, with reference to
column X Fig. 19, it is seen that §,,° terms are also backpropagated to determine
the hidden layer weight update terms, wji.

Thus, with each calculate command initiated within the data space, all
necessary calculations for backpropagation training take place. After each
calculation, the weight values m columns W and AB must be replaced with theiwr
corresponding updated weight values assoctated with columns X and AC,
respectively. Fig, 22 illustrates a subroutine 168 which accomplishes this task. In
the subroutine 168, with regard to the hidden layer weights, the first line selects the
cells of column X associated with the integrated self training artificial neural
network and the second line copies those cells. The third line selects the
destination column for the copied material and the fourth and fifth lines operate to
paste only the numeric values associated with the copied cells into the destination
column. Similarly, the sixth through eleventh fines of subroutine 168 operate to
replace the output layer weight values of column AB with the updated weight

vatues of column AC. As compared to the update method illustrated in portion
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152 of Fig. 16, the subroutine 168 is abie to complete the weight updating much
more quickly, advantageously increasing training speed.

Utilizing a dynamic data exchange provided by a product such as National
Instruments Measure for Windows, which is operable with Microsoft Excel, the
integrated self training artificial neural network illustrated in Figs. 18 through 21, is
capable of training in real time as training data flows through the data space 14. In
such a case, the data would flow through predetermined rows or colurns and the
integrated self training artificial neural network would remain stationary in the data
space 14 while the training data moves relative thereto. Of course, the STANNO
72 illustrated in Figs 10 through 14 could also be utilized with such a dynamic data

. exchange.

Another advantage of self training artificial neural networks is that multiple
networks may be trained simultaneously, in paralle! fashion, on the same, or
different, sets of training data. Referring to Fig. 23, for example, in the case of a
dynamic data exchange, multiple self training artificial neural network objects such
as 170, 172, and 174, may be positioned within the data space 14 so as to train on
the data flowing through the columns as indicated at 175. Each self trainer 170,
172, and 174, may also be configured to train on only some of the columns of data
in order to result in trained networks having difTerent knowledge domains.
Further, each self trainer could train on completely different sets of data, such as
where STANNO 170 trains on the data flowing through the columns to the left and
STANNO 172 trains on the data flowing through the columns to the right, or
where multiple self training neural network objects train on distinct data within
separate spreadsheets altogether. Such a parallel training scheme would be
extremely difficult to implement using traditional algorithm based training,
Further, training multiple networks stmultaneously results in substantial savings in
training time.

Still other advanced features can be incorporated into the training schemes of
self training artificial neural network objects. Two such features are dynamic
pruning of networks during training and dynamic addition of neurons during

training.
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With regard to dynamic pruning, for each neuron of the artificial neural
network associated with the self training artificial neural network object, a
subroutine 178 such as illustrated in Fig. 24 may be provided, such as by
embedding the subroutine 178 within the spreadsheet or data space. Within this
subroutine 178, the variable N may be a count of the number of sets of training
data which have been operated upon and which is set to zero (0) at the beginning
of training, T1 may be a predetermined value which is chosen to represent a change
in magnitude associated with the activation level of the neuron, and T2 may be a
predetermined number which is chosen to represent a number of activation level

changes of magpitude greater than T1. The subroutine 178 is run in association

. with each wave of spreadsheet calculation. The subroutine starts at 180 and at

step 182 the change in activation level, A, , of the neuron is determined. At step
184, if the change in activation is greater than T1, the variable TRANSITIONS is
increased by one. Moving to step 186, the N count, or count of number of sets of
training data, is increased by one and at step 188 the N count is evaluated to see if
it has reached a PREDETERMINED NUMBER. If N has not reached the
PREDETERMINED NUMBER, the subroutine ends at 190. However, if the N
count has reached the PREDETERMINED NUMBER, step 192 is reached and the
N count is again set to zero. At step 192 the TRANSITIONS variable is evaluated
to see if it is less than the number T2, if not, the subroutine 178 ends at 190.
However, if TRANSITIONS is less than T2, the activation function of the neuron
is set to zero (0) at step 196, effectively eliminating the neuron from having any
further effect. Thus, T1 and T2 can be chosen to reflect the fact that the neuron is
not significantly involved in the training regime and can therefore be pruned out of
the artificial neural network, while the PREDETERMINED NUMBER of step 188
can be chosen to reflect how ofien the neuron should be evaluated to see if it
should be eliminated.

With regard to dynamic addition of a neuron or neurons, a subroutine 198,
illustrated in Fig. 25, may be associated with the operation of a self training neural
network object. The subroutine 198 begins at 200 and at step 202, the RMS

ERROR between actual outputs and desired or training outputs, determined after
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each set of training data is operated upon, is evatuated to determine if it exceeds a
desired THRESHOLD ERROR, which is predetermined so as to be indicative of
successful incorporation of the desired knowledge domain within the artificial
neural network. If the RMS ERROR has fallen below the THRESHOLD ERROR,
the subroutine 198 ends at step 204. Conversely, if the RMS ERROR exceeds the
THRESHOLD ERROR, step 206 is reached where N, the count of sets of training
data, is evaluated to determine if it exceeds a THRESHOLD N number. IfN does
not exceed the THRESHOLD N number, the subroutine 198 ends at step 204.
However, if N exceeds the THRESHOLD N number, step 208 is reached. The
THRESHOLD N number should be chosen so as to indicate that the training

. operation has continued long enough to determine that the artificial neural network

being trained is not large enough, and that in order to train the artificial neural
network to be able to achieve the desired THRESHOLD ERROR, the artificial
neural network must be enjarged. Thus, at step 208, a prototypical neuron with
randomized weights is copied and added to the hidden layer. Similarly, at step
210, all cells necessary to perform the required operations associated with the new
neuron are also copied and added to the network. The N value is then reset to
zero (0) at step 212 and the subroutine 198 ends at 204. After the addition of the
neuron as provided by steps 208 and 210, the training operation will continue
except that the artificial neural network being trained will include one additional
hidden layer neuron which should enable further recuction in the RMS error. For
example, in the case of the 9-9-9 network associated with the integrated self
training artificial neural network of Figs. 18-21, steps 208 and 210 of the
subroutine will result in a 9-10-9 network.

Thus, as described above, both dynamic pruning and dynamic growth may be
achieved in combination with self training artificial neural networks. It is
understood that the routines described herein are merely exemplary of
implementations of dynamic pruning and dynamic neuron addition, and that such

features may be incorporated in alternative ways.
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DEVICE PROTOTYPING

A system for device prototyping is advantageously provided in light of the ease
of cascadability and the self training capability described above. An exemplary
case of device prototyping is illustrated in Figs. 26 and 27 In Fig 26, a known
input 8(t), which is a sinusoid 214 is shown. The desired output of the prototyped
device, in response to the known input sinusoid 214, is a cyclic square puise and
the prototyped device is to be constructed from seven harmonic generating
devices, Of course, such a problem may be approached through Fourier analysis,
but it can also be solved through use of a prototyping neural network 216. The
prototyping neural network 216 includes seven (7) hidden layer neurons 218, 220,

.222, 224, 226, 228, and 230 respectively. Each hidden layer neuron is represented

by a component neural network which is trained within a knowledge domain of one
of the harmonic generating devices which will be used as components from which
to construct the prototyped device. When the weights associated with the
prototyping neurai network are randomly assigned, the output F(8) may appear as
232. Utilizing the techniques described above with reference to self training
artificial neural network objects, the prototyping neura! network can be trained
within the desired knowledge domain of the prototyped device, which is reflected
in a conversion of the sinusoid 214 10 a cyclic square pulse.

Fig. 27 illustrates the resulting prototyping neural network 216 after training,
including weight values. As seen, all hidden layer weights approach one. With
regard to the output layer weights, the weights for neurons 218, 222, 226, and 230
approach zero, and thus no connection to the output is shown. However, the
illustrated weights for neurons 220, 224, and 228 approach (2/%), (2/3n), and
(2/5m) respectively, along with a bias value of (1/2). With these weight values, the
resulting output of the prototyping neural network is F(B) as shown in the equation
234 and the graph 236, The weights which result from training the device
prototyping neural network can then be correlated to how the components should
be mterconnected in order to construct the prototyped device. In this exemplary

case, it is evident that odd harmonic generating devices would be directly
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connected to the input B(t) and that the outputs therefrom would be multiplied by
the respective weights and summed in order to construct the prototyped device.

This prototyping system can be utilized in conjunction with many types of
components. The important aspect of the system is that if a neural network model
for each component can be constructed, a prototyping neural network can be
trained without requiring explicit knowledge of the functional relation between
inputs and outputs of the components because the self training scheme is able to
determine derivative values without knowing the functional relation. On the
contrary, traditional backpropagation algerithms require foreknowledge of the
functional relation and its derivative. Thus, combining the cascadabifity of neural
networks impiemented in spreadsheets with the self training artificial neural
network facilitates the aforementioned device prototyping system.

DATA FILTERING/MONITORING

Another neural network object which may be constructed is a data filtering
neural network object or DFANNO 238 such as shown in Fig, 28. The underlying
theory of the DFANNOQ 238 is that of an autoassociative neural network 240, The
autoassociative nenral network 240 is an artificial neural network which is trained
to map inputs to themselves. Accordingly, an input vector within the knowledge
domain of the autoassociative neural network 240 results in an output vector
therefrom which closely matches the input vector. By way of example, if a vector
v is applied at the input 242 of the autoassociative neural network 240, the
network 240 will produce at its output 244 another vector v' representative of the
closest vector seen in the training data or generalized from the training data. Using
matrix notation, Av = 1v', where A represents the autoassociative neural network
240 and 1 is the unitary matrix with diagonal elements of 1. Thus, the equation
may be rearranged into a general eigenvalue form (A-1)v = 8, where & represents
the error or vector difference between input and output vectors of the
autoassociative neural network 240. For a given input vector, if & is 0, or close to
0, then the input vector fits the pattern of the training data the autoassociative

neural network 240 was trained upon. On the other hand, as § is progressively
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different from the zero vector, there is a greater likelihood that the associated input
veetor does not fall within the pattern of the training data, and therefore a greater
likelihood that the input vector is either novel or the result of systematic error or
random noise. Prior to operation, the autoassociative neural network 240 should
be trained on a phurality of sets of control data. Each set of control data should be
carefislly selected so as to reflect the desired knowledge domain and so as to
ensure that each set of control data has not been affected by systematic error or
random noise.

Thus, as the DFANNO 238 moves through a data space 14 encountering

different rows of data, such as 246, each representing an input vector thereto, an

. RMS error between each input vector and each output vector is determined as

indicated at 248. If, for a given input vector, the error exceeds a predetermined
level, the DFANNO 238 is then operable to perform some operation on the row
246 of data making up the input vector. For example, the row 246 of data may be
deleted from the data space 14 entirely, relocated, or tagged as suspect. Thus, the
DFANNO 238 is effective for moving through the data space 14, as indicated by
arrow 250, and examining the data therein to find data which may have been
caused by some systematic error or random noise introduced to the data or which
occurred when the data was originally gathered.

A Visual Basic program 252 which achieves these operations is illustrated in
Fig. 29. The calculate line 254 triggers all calculations within the data space 14.
The For-Next Loop 256 is provided to determine if the DFANNO 238 has reached
a point in the data space 14 where there is no more data, as indicated by all cells of
a particular row being zero. If there is no more data the operation of DFANNO
238 is halted. Line 258 and portion 260 determine the operation the DFANNO
238 will take with respect to a particular row of data. In each of these lines cell
(1,10) of the data space 14 represents a flag. If the flag is zero (0) the DFANNO
238 is in the data tag mode but if the flag is set to one (1) the DFANNO 238 is in
the data destroy mode. With respect to line 258, if the RMS error at 248, between
inputs and outputs of the autoassociative neural network 240, is greater than thirty

{30) and if the flag is zero (0} then the cell immediately to the ght of the datz row
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is tagged with an asterisk, *. With respect to the program portion 260, if the RMS
error is greater than thirty (30) and if the flag is set to one (1), the data values in
the row are cleared from the data space 14. The final portion 262 of the program
252 causes the DFANNO 238 to move on to another row of data. Of course, this
program is merely representative of software which could be utilized in association
with data filtering artificial neural network objects.

Aliernatively, the DFANNO 238 could be stationary within the data space 14
while data from some system or device to be monitored by the DEANNO 238 is
fed into predetermined locations within the data space 14 through a dynamic data

exchange, such that the DFANNO 238 operates on the data as it is fed through the

. data space 14. When suspect data is fed into the data space 14 and operated on by

the DEANNO 238 the DFANNO 238 could be operable to shut down the system
or device. Accordingly the DFANNO 238, either alone or in combination with
other networks, provides an effective system monitor.

Data filtering artificial neural networks can also advantageously be used in
association with self training artificial neural networks. Such an association is
illustrated in Fig. 30 wherein a DFANNO 238 has been appended to an STANNO
72 such that the two neural network objects move with each other through the data
space 14 as shown by arrow 264. As the two objects move through the data space
14 the DFANNO 238 is operable to determine if the data at any given location is
novel to the training of the STANNO 72. Thus, if the error determined by the
DFANNO 238 exceeds a predetermined level, the data is considered novel and the
STANNO 72 trains on such data. However, if the error is below the
predetermined level the data at such location is considered old to the training of the
STANNO 72, in which case the DFANNO 238 would be operable to cause the
two associated neural network objects to move on to another set of data without
allowing the STANNO 72 to train on the data, thereby reducing time wasted by
retraining on redundant data.

Thus, as described above data filtering neural network objects of various
configurations have a variety of useful applications, particularly in the areas of data

monitoring for the purpose of finding novel data or data which may be suspect.
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DATA SCANNING

Fig. 31 ithustrates a block diagram configuration of a data scanning artificial
neural network object or DSANNQ 266. The DSANNO 266 is stationary within
the data space 14 but capable of directing its view to various groups of cells within
the data space 14 utilizing relative cell referencing. The DSANNQ 266 includes a
search network 268, a detection network 270, and a field posiitoning network 272.
The field positioning network 272 autonomously moves the viewing field 274 of
the DSANNO 266 about the data. The graphical antenna 276 may be utilized as a
guide to the human viewer as to where the DSANNO 266 is focusing its attention,
however, the antenna 276 is not required for operation of the DSANNO 266.

. Viewing field 274 positioning is achieved utilizing an autoassociative neural

network 278 in which the weights and biases are subjected 1o noise sources, as
shown by arrow 280 in Fig. 32, so that the autoassociative neural network 278
imagines various possibilities within its training domain. In this case, the noise
source may be random numbers applied to the weights and biases of the
autoassociative neural network 278. The autoassociative neurai network 278 used
1s trained on a table of (x, y) values having integer values associated with the cells
containing the data. Therefore, as the autoassociative neural network 278 is
subjected to noise, it generates outputs reflecting the constraints within the training
database, namely that it generate only integer values corresponding to data
containing cells. In essence, the perturbed autoassociative neural network 278 is a
random integer generator. However, by recirculating the networks 278 outputs
back to the inputs, see line 282 of Fig. 31 and lines 284 and 286 of Fig. 32, a
relatively smooth trajectory of viewing field 274 positions is generated because x
and y coordinates are only gradually altered with each feedthrough cycle of this
recurrent net. The net effect is this configuration is to produce continuous random
movement of the viewing field 274 of the DSANNO 266, and is similar to the
population-polling process used te govern human eye movement.

A group of imaging cells 288, see Fig. 31, utilize relative cell referencing to
develop a working image of the viewing field 274. The working image may then

be communicated to the search network 268 as indicated by arrow 290. By way of
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example, in Fig. 33 the imaging cells 288 of the DSANNO 266 are illustrated and
nclude a 4x4 array of cells. The search network 268, illustrated in Fig. 34 is
utilized to view the imaging cells 288 from a perspective such as that illustrated by
the bold cells 292 of Fig. 33. The development of such a perspective is achieved

utilizing an autoassociative neural network 254 which has been trained on

- numerous examples of data string configurations within the imaging cells 288.

Noise 296 is then introduced to the network 294 such that the network 294
produces an imagined data string configuration at its output 298 which will be
examined by the detection network 270 of Fig. 31. In this regard, an exemplary
detection network 270 is illustrated in Fig. 35. This detection network 270 is
trained to output a one at 300 if the inputs applied at input layer 302 obey the
search criterta. The training domain can be chosen as required for a particular
application. For example, the training domain may output a one when the inputs
thereto have some predetermined relationship. The output of a one then acts to
enable the DSANNO 266 to perform some operation such as tagging the data
string, copying the data string to another portion of the data space 14, or enabling
a wave file 304, see Fig. 31, which notifies a user that an appropriate data string
was found. An appropriate program would be provided as required for a particular
application.

Of courge other data scanning neural network objects could include different
viewing field configurations and could develop different data strings to be viewed
by appropriate detection networks and DSANNO 266 is merely exemplary of the
overall configuration. Accordingly, data scanning artificial neural network objects
are useful for examining large databases for data strings having some
predetermined, desired relationship, and then in some way identifying such data
strings.

CREATIVITY MACHINES

As mentioned previously, the creativity machine paradigm involves
progressively purturbing a first neural network, or imagination engine (IE),
having a predetermined knowledge domain such that the perturbed network

continuously outputs a stream of concepts, and monitoring the outputs or stream
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of concepts with a second neural network, or alert associative cenier (AAC), which
is trained to identify onty useful concepts. The perturbations may be achieved by
different means, inchuding the introduction of noise to the network, or degradation
of the network. Such machines can be simulated within a data space in accordance
with the present invention and also trained in as part of self training artificial neural
network objects in accordance with the present invention. In a spreadsheet, the
resident rand() function may be utilized to alter the weights of the-IE in order to
achieve perturbation. Moreover, relative cell referencing facilitates feeding the
outputs of the IE to the inputs of the AAC.

With respect to training, the simultaneous training capability illustrated in Fig.

_ 23 is particularly applicable to training of the IE and the AAC of creativity

machines because both the IE and the AAC will typically have at least some
training data in common. At times it may be desirable to change the knowledge
domain of the IE and/or the AAC. For example, if a creativity machine is trained
in coffee mug desigr, the IE is initially trained on known, produced coffee mug
shapes and the AAC is trained to recognize a good coffee mug shape from a bad
coffee mug shape. Over time, the range of known, produced coffee mug shapes
may increase, or, the public's perception of what a good coffee mug shape is may
change. Thus, in order to keep the creativity machine up to date, both the IE and
the AAC may need to be trained on new data. Utilizing the hereinbefore described
training technique, both networks can be trained on new data without having to
completely retrain either network on the data it had been trained on previously.
Further, because the techniques described herein allow multiple neural network to
run simultaneously, a creativity machine, including an IE and an AAC could run
while replica IE and AAC networks train, with the replica IE and AAC networks
being periodically copied and pasted into the IE and AAC networks of the creativty
machine, thus continuously updatating the training of the creativity machine.
Accordingly, many of the inventive features described herein are advantageously
applicable to creativity machines. ‘

From the preceding detailed description, it is evident that the objects of the

invention are attained. In particular, a user friendly system of simulating neural
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networks has been provided. Further, various neural network object
configurations have been described which provide self training artificial neural
networks, data filtering, or data scanning, and a device prototyping system has also
been described. Although these neural network objects and systems have been
described and illustrated in detail, it is to be clearly understood that the same is
intended by way of illustration and example only andg is not to be taken by way of
fimitation.

For example, with reference to Fig, 1, it is understood that the data space cells
utilized in simulating the neuron 10 need not be arranged as shown, but could be
located in various portions of the data space. With respect to self training artificial
neural networks, it is understood that there are numerous configurations for
achieving the underlying invention which is a network training another network.
Further, numerous programs could be associated with the self training artificial
neural networks, as well as the data filtering and data scanning neural networks.
Moreover, while such programs are described as located in separate but associated
spreadsheets or data spaces, the various routines could be included within
individual cells of the same spreadsheet or data space in which the neural networks
are constructed. Accordingly, the spirit and scope of the invention are to be

limited only by the terms of the appended claims.
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The claims defining the present invention are as follows:
1. A computer based neural network training system, including:
a computer including a spreadsheet application program operable therewith for
electronically generating a spreadsheet including a plurality of spreadsheet cells arranged in
5 a column and row format such that each spreadsheet cell is identifiable by a column and row
designation, said computer and spreadsheet application program operable to enable
interrelating of said plurality of spreadsheet cells through relative cell referencing;
a first functicnal neural network constructed within said spreadsheet and including a
plurality of imaging cells for relatively referencing a set of training inputs to said first neural
10 network, said first neural network further including at least one hidden layer including a first
plurality of neurons and an output layer including a second plurality of neurons, wherein each
neuron of said hidden layer and said output layer is formed by a first plurality of cells each
containing a numeric weight value of said neuron and an activation cell containing an
activation function which activation function relatively references each of said first plurality
15 of cells such that when a calculate function of said spreadsheet is performed a numeric value
which is representative of an activation level of said neuron is determined, said hidden layer

and output layer neurons interrelated through relative cell referencing to form said first neural

network;

a training network constructed within said spreadsheet, said training network including
.. 20 a second functional neural metwork constructed within said spreadsheet and having
substantially the same configuration as the first neural network; and

wherein, when a calculate function of said spreadsheet is performed, a given set of

training inputs is applied to said first neural network and each training input of the given set

of training inputs is adjusted by a predetermined incremental amount before being applied to

25 said second neural network.

[ 2. A computer based neural network training systern in accordance with claim 1 wherein
at least a portion of said training network is integrated with said first neural network within

said spreadsheet.
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3. A computer based neural network training system in accordance with claim 1 wherein
said training network further includes a derivative module constructed within said spreadsheet
such that when the calculate function of said spreadsheet is performed said derivative module

is operable to determine, for each of said hidden layer neurons and each of said output layer

5 neurons, a partial derivative of the activation Jevel thereof with respect to a net input thereto

based at least in part on a difference in the activation levels of corresponding activation cells

of said first neural network and said second neural network.

4 A computer based neural network training system in accordance with claim 3 wherein

10 said training network further includes an error module constructed within said spreadsheet

such that when the calculated function of the spreadsheet is performed said error module is
operable to determine an error vector associated with said given set of training inputs applied

to said first neural network.

15 5. A computer based neural network training system in accordance with claim 4 further

including a program associated with said training network and said first neural network, at
least a portion of said program operable to effect alteration of said numeric weight values of

said first neural network based upon weight update terms calculated by said training network.

20 6. A computer based neural network training system in accordance with claim 5 wherein

sets of training inputs are stored as numeric values associated with cells of said spreadsheet
and at least a portion of said program is operable to effect movement of both said first neural
network and said training network to a new location within said spreadsheet such that for a

given movement of said neural petwork and said training network to a given new location a

25 calculate function of said spreadsheet is performed and at least some of said numeric weight

values of each neuron of said first neural neiwork are altered to incorporate a knowledge
domain represented by a given set of training inputs associated with said given new location

within said spreadsheet.

A computer based neural network training system in accordance with claim 1, further
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including means for providing a dynamic data exchange between said spreadéheet and an
external system so that sets of training inputs are input into predetermined cells within said
spreadsheet, and, as said sets of training inputs flow through said spreadsheet a calculate

function of said spreadsheet is repeatediy performed.

8. A computer based neural network training system in accordance with claim 1, further
including means for dynamically pruning at least one of said hidden layer neurons from said

first neural network in an automatic manoner during training.

9. A computer based neural network training system in accordance with claim 8§ wherein
said means for dynamically pruning at least one hidden layer neuron from said first neural
network includes a program associated with said first neural network, said program effecting
determination of whether said at least one hidden layer neuron is significantly involved in
training, and, if said at least one hidden layer neuron is not significantly involved in training,

to set the activation function associated with said at least one hidden layer neuron to zero {0).

10. A computer based neural network training system in accordance with claim 1, further
including means for adding a new hidden layer neuron to said first neural network in an

automatic manner during training.

11. A computer based neural network training system in accordance with claim 10
wherein said means for adding a new hidden layer neuron to said first neural network
includes a program associated with said first neural metwork, said program effecting

determination of whether an error value associated therewith exceeds a predetermined thresh-

25 old.

12. A computer based nenral network training system in accordance with claim 11
wherein said program further effects, at predetermined intervals during a training operation,

addition of a new hidden layer neuron to said first neural network if said error value exceeds
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13. A self training neural network object implemented wtilising a computer including
processing means opetable to run a spreadsheet application, including:
a first functional neural network constructed in a spreadsheet of the spreadsheet
application, said first neural network including a plurality of neurons each formed of a
5 plurality of spreadsheet cells including a first plurality of cells each with an associated
numeric weighting value of such neuron entered therein and an activation cell having an
activation function of such neuron entered therein which activation function makes relative
reference to each of said first plurality of cells, wherein said neurons are interrelated through
relative cell referencing to form said first neural network;

10 a training network constructed in the spreadsheet, said training network including a
second functional neural network having the same configuration as said first aeural network,
said training network further including at least one other module constructed within the
spreadsheet for calculating weight update terms,

a program associated with said training network and said first neural network, said

15 training network operable in conjunction with said program during a training operation to
alter said numeric weighting value associated with at least some of said first plurality of cells
of each neuron of said neural network based upon the weight update terms calculated by said
training network,

wherein a given set of training inputs is applied to said self training neural network

20 object by initiating a calculate function of said spreadsheet and said numeric weighting value

associated with at least some of said plurality of cells of each neuron is altered to incorporate

into said neural network a knowledge domain represented by said given set of applied training

inputs.

25 14. A self training neural network object in accordance with claim 13 wherein, for said
given set of applied training inputs said program is cperabie to effect addition of one of said
weight update terms to said numeric weighting value associated with each cell of said first

plurality of cells of each neuron of said first neural network.

A self training neural network object in accordance with claim 13 wherein, for said
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given set of applied training inputs said program is operable to effect replacement of said
numeric weighting value associated with each cell of said first plurality of cells of each

neuron of said first neural network with one of said calculated weight update terms.

5 16. A method of training a neural network, utilising a computer including a processing
means and an associated spreadsheet application operable therewith, said method including
the steps of:

(a) constructing a first neural network to be (rained within a spreadsheet of the

spreadsheet application by interrelating cells of the spreadsheet through relative cell

10 referencing, wherein each hidden layer neuron and each output layer neuron of the
constructed first neural network is formed by a plurality of cells each having a respective

weight value of such neuron associated therewith and an activation cell containing an activa-

tion function of such neuron, such that for a given calculate operation of the spreadsheet the

first neural network functions to produce outputs in accordance with its then current structure;

15 (b)  constructing a training network within the spreadsheet of the spreadsheet application,

the training network including a second newral network constructed within the spreadsheet

: and having the same configuration as the first neural network, the training network further
e including a plurality of interrelated cells containing equations for calculating weight update

terms for the first neural network being trained, such that for a given calculate operation of

:, 20 the spreadsheet during a training operation the training network functions to produce such
.t weight update terms;
e, (¢}  applying a set of training inputs to the first neural network being trained.
,-Ec (d)  adjusting each training input of the plurality of training inputs by an incremental
:::’.E amount and applying each of the adjusted training inputs to the second neural network;
.;.-.é 25 () establishing weight update terms within the training network based at least in part
sgened upon a difference in activation levels between corresponding activation cells of the first and
é"':: second neural networks;

() altering the weight values associated with each neuron of the first neural network
being trained based upon the weight update terms established by the training network 10

% 30 reflect a knowledge domain represented by the set of training inputs.

7 ’

4
7

Ly




PAWPDOCS\AMINSPECI692533. THA - 30/12/9%

- 40 -

17. A method of training a neural network in accordance with claim 16 wherein step H
includes adding each weight update term to one of the weight values of the neural network

being trained.

5 18. A method of training a neural network in accordance with claim 16 wherein step ()
includes replacing each weight value of the neural network being trained with one of the

weight update terms.

19. A method of training a neural network in accordance with claim 16 wherein the
10 training network includes a derivative module constructed in the spreadsheet and in step (e)

the derivative module calculates, for each of the activation cells, a derivative of activation

level with respect to net input.

20. A method of training a neural network according to claim 16 wherein the training
15 network inctudes an error modute constructed within the spreadsheet and in step (¢) the error
module calculates an error representative of a difference between a set of outputs produced

by the first neural network being trained and a set of training outputs corresponding to the

::".g set of training inputs applied thereto.
¢! 20 21. A method of training a neural network in accordance with claim 20, further including
G the step of:

e (g) repeating steps (c), (), (e) and (f) until said error falls below a predetermined value.
.::: . 22. A method of training a neural network in accordance with claim 16 wherein step (c)
:...3 25 includes providing relative movement within the spreadsheet between the first neural network
cosnnt and a plurality of sets of training data located within the spreadsheet.

23. A method of training a neural network in accordance with claim 16 further including

the step of scanning the spreadsheet for a set of training data prior to initiating the calculate

- 2=30=dunction.

o &
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24. A method of simultaneously training at least two neural networks, utilising a computer
including processing means and an associated spreadsheet application operable therewith, said
method including the steps of:

(a) constructing a first functional neural network to be trained within a spreadsheet
produced by the spreadsheet application by interrelating cells of the spreadsheet through
relative cell referencing, wherein each hidden layer neuron and each ouiput layer neuron of
the first neural network is formed by plurality of cells each having a respective weight value
of such neuron associated therewith and an activation cell containing an activation function
of such neuron.

(b)  constructing a first training network within the spreadsheet of the spreadshect
application for use in training the first neural network, the first training network including
a pluratity of interrelated cells containing equations for calculating weight update terms for
the first neural network,

(c) constructing a second functional neural network to be trained within the spreadsheet
produced by the spreadsheet application by interrelating cells of the spreadsheet through
relative cell referencing, wherein each hidden layer neuron and each output layer neuron of
the second neural network is formed by plurality of cells each having a respective weight
value of such neuron associated therewith and an activation cell containing am activation
function of such neuron.

(d)  constructing a second iraining network within the spreadsheet of the spreadsheet
application for use in training the second neural network, the second training network
including a plurality of interrelated cells dontairling equations for calculating weight update
terms for the second neural network,

(e) simultaneously applying (raining data located within the spreadsheet to both the first
neural network and the second neural metwork by initiating a calculate function of the
spreadsheet,

0] altering at least a portion of the first neural network in accordance with weight update
terms produced by the first training network, and

(g)  altering at least a portion of the second neural network in accordance with weight
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25. A method of simultaneously training at least two neural networks in accordance with
claim 24 wherein step (¢) includes applying a first set of training data to the first nevral
network and simultaneously applying a second set of training data to the second neural
network, said first set of training data and said second set of training data having at least one

variable in common.

26. A method of simultanecusly training at least two neural networks in accordance with
claim 24 wherein step (€) includes applying a first set of training data to the first neural
network and simultaneously applying a second set of training data to the second neural
network said first set of training data and said second set of training data made vp of distinct

variables.

27. A computer based neural network training system, including:

processing means operable to electronically generate a data space including a plurality
of cells;

means associated with said data space and said processing means for maintaining a
numeric value associated with each cell,

means associated with said data space and said processing means for interrelating said
cells through relative cell referencing,

a neural network constructed within said data space, said neural network including a
plurality of imaging cells for relatively referencing a plurality of training inputs to said neural
network, at least one hidden layer including a plurality of neurons, and an output layer
including a pluraiity of neurons, each ncuron of said hidden layer and said output layer
formed by a plurality of cells including a first plurality of cells each for containing a numeric
weight value of said neuron and an activation cell containing an activation function which
makes relative reference to each of said first plurality of cells to establish a numeric value
which is dependent upon said numeric weight values and is Tepresentative of an activation
level of said neuron,

means associated with said neural network for altering said numeric weight values of

\
!

f,(”pfgg/ ‘ N .
& ’%glﬁ neurons during training of said neural network,
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whereby, for a given set of training inputs and corresponding training outputs on
which said neural network is being trained, at least some of said mimeric weight values of
each neuron are altered to incorporate into said neural network a knowledge domain
represented by said given set; and

a data filtering neural network including an autoassociative neural network constructed
in said data space, said autoassociative neural network having been trained on a plurality of
control sets of inputs thereto, whereby, for a given set of inputs within a knowledge domain
represented by said plurality of control sefs of inputs, said autoassociative neural network is

operable to map said given set of inputs to themselves.

28. A computer based neural network training system in accordance with claim 27, further
including a program associated with said data filtering neural network, said neural network
and said training network, at least a portion of said data filtering neural network operablle to
determine an error between a given set of inputs and a resulting set of outputs of said
autoassociative neural network, at least a portion of said program operable to determine if
said error exceeds a predetermined value, and, only if said error exceeds said predetermined
value, to alter at least some of said numeric weight values of each neuron of said neural
network, so that said neural network is trained on only novel sets of training inputs and

corresponding training outputs.

29. A self training meural network object implemented utilising a computer including
processing means operable to run a spreadsheet application, including:

a neural network constructed in a spreadsheet of the spreadsheet application, said
neural network including a plurality of neurons each formed of a plurality of cells including
a first plurality of cells each with an associated numeric weighting value entered therein and
an activation cell having a function entered therein which makes relative reference to each of
said first plurality of cells,

a training network constructed in the spreadsheet,
a program associated with said raining network and said neural network, said training

twork operable in conjunction with said program during a training operation to alter said
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numeric weighting value associated with at least some of said first plurality of cells of each
neuron of said neural network, 7

whereby, for a given set of training inputs and corresponding training outputs applied
to said self training neural network object, said numeric weighting value associated with at
least some of said plurality of cefls of each neuron is alterable to incorporate into said neural
network a knowledge domain represented by said given set of applied training inputs and
corresponding training outputs; and

an autoassociative neural network constructed in said spreadsheet, a plurality of the
variables making up said given set of training inputs and corresponding training outputs being
applied as inputs to said autoassociative neural network, saic autoassociative neural network
operable during training to determine, for a given set of inputs thereto, an error value, said
error value representing a difference between said given set of inputs thereto and a resulting
set of outputs therefrom, wherein said program is operable to effect determination of whether
said error exceeds a predetermined value and, if said error is less than said predetermined
value, to prevent alteration of said numeric weighting value associated with each cell of said

plurality of cells of each neuron of said neural network.

30. A computer based neural network training system, substantially as herein described

with reference to the accompanying drawings.
31. A self training neural network object implemented utilising a computer including
processing means operable to run a spreadsheet application, substantially as herein described

with reference to the accompanying drawings.

32. A method of training a neural network, substantially as herein described.
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33, A method of simultaneously training at least two neural networks, substantially as

herein described.
DATED this 30th day of December, 1999
STEPHEN L THALER

By His Patent Attorneys
DAVIES COLLISON CAVE
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Dim tlocate, des Pratd

Sub Move()
Fori=1 To 1000
Calculate =—%¢
zcount =90
Forj=1To9
256 If cells(i + 2, j) = 0 Then zcount = zcount + 1
Next |
If zcount = 9 Then Exit For
296~ f Cells(i+2, 25) > 30 And Cells(1, 10) = 0 Then
Cells(i+2, 10)="*"
If Cells(i + 2, 25) > 30 And Cells(1, 10) = 1 Then
260 Range (Cells(i + 2, 1), Cells(i + 2, 9)).Select
Selection.Clear
End If

Range (Cells(i + 2, 11), Cells(1 + 77, 35)).Select

Selection.Copy

Range (Cells(i + 3, 11), Cells(i + 78, 35)).Select

26z { ActiveSheet.Paste

Range (Cells(i + 2, 11), Cells(i + 2, 35)).Select

Selection.Copy

Selection.PasteSpecial Paste: =x1Values, Gperation:
=xINone, _

SkipBlanks: =False, Transpose: =False

Next i
ilocate = 1
End Sub
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