

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2016/127091 A1

(43) International Publication Date

11 August 2016 (11.08.2016)

WIPO | PCT

(51) International Patent Classification:

A61B 17/32 (2006.01) A61B 17/32 (2006.01)
A61B 17/00 (2006.01) A61B 17/3209 (2006.01)

(72) Inventor; and

(71) Applicant : KNOWLTON, Edward [US/US]; 2850 W. Horizon Ridge Parkway, Suite 200, Henderson, NV 89052 (US).

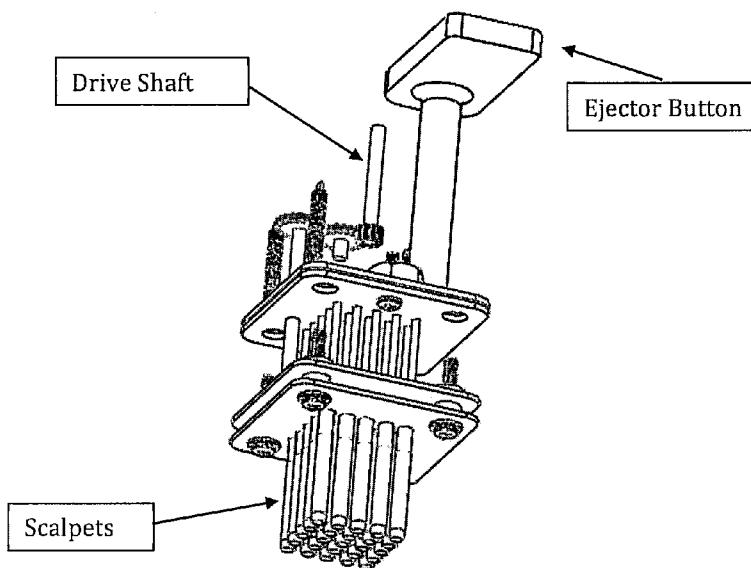
(21) International Application Number:

PCT/US2016/016834

(74) Agent: GREGORY, Richard, L.; IPR Law Group, PC, 5338 Cornish Street, Houston, TX 77007 (US).

(22) International Filing Date:

5 February 2016 (05.02.2016)


(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(71) Applicant: SRGI HOLDINGS, LLC [US/US]; 2850 W. Horizon Ridge Parkway, Suite 200, Henderson, NV 89052 (US).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,

[Continued on next page]

(54) Title: PIXEL ARRAY MEDICAL SYSTEMS, DEVICES AND METHODS

(57) Abstract: Systems, instruments, and methods are described in which a scalpel device comprises a housing configured to include a scalpel assembly. The scalpel assembly includes a scalpel array and one or more guide plates. The scalpel array includes a set of scalpels, and in embodiments the set of scalpels include multiple scalpels. The guide plate maintains a configuration of the set of scalpels. The set of scalpels is configured to be deployed from and retracted into the housing, and is configured to generate incised skin pixels at a target site when deployed. The incised skin pixels are harvested.

FIGURE 46

DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, Published:
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, — with international search report (Art. 21(3))
SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

PIXEL ARRAY MEDICAL SYSTEMS, DEVICES AND METHODS

5 RELATED APPLICATIONS

This application claims the benefit of United States (US) Patent Application Number 62/112,350, filed February 5, 2015.

This application claims the benefit of US Patent Application Number 62/139,180, filed March 27, 2015.

10 This application is a continuation in part of US Patent Application Number 14/840,274, filed August 31, 2015.

This application is a continuation in part of US Patent Application Number 14/840,284, filed August 31, 2015.

15 This application is a continuation in part of US Patent Application Number 14/840,267, filed August 31, 2015.

This application is a continuation in part of US Patent Application Number 14/840,290, filed August 31, 2015.

This application is a continuation in part of US Patent Application Number 14/840,307, filed August 31, 2015.

20 This application is a continuation in part of US Patent Application Number 14/505,090, filed October 2, 2014.

This application is a continuation in part of US Patent Application Number 14/505,183, filed October 2, 2014.

25 This application is a continuation in part of US Patent Application Number 14/099,380, filed December 6, 2013.

This application is a continuation in part of US Patent Application Number 14/556,648, filed December 1, 2014, which is a continuation of US Patent Application Number 12/972,013, filed December 17, 2010, now US Patent Number 8,900,181.

TECHNICAL FIELD

The embodiments herein relate to medical systems, instruments or devices, and methods and, more particularly, to medical instrumentation and methods applied to the surgical management of burns, skin defects, and hair transplantation.

5

BACKGROUND

The aging process is most visibly depicted by the development of dependent skin laxity. This life long process may become evident as early as the third decade of life and will progressively worsen over subsequent decades. Histological research has shown that

10 dependant stretching or age related laxity of the skin is due in part to progressive dermal atrophy associated with a reduction of skin tensile strength. When combined with the downward force of gravity, age related dermal atrophy will result in the two dimensional expansion of the skin envelope. The clinical manifestation of this physical-histological process is redundant skin laxity. The most affected areas are the head and neck, upper
15 arms, thighs, breasts, lower abdomen and knee regions. The most visible of all areas are the head and neck. In this region, prominent “turkey gobbler” laxity of neck and “jowls” of the lower face are due to an unaesthetic dependency of skin in these areas.

Plastic surgery procedures have been developed to resect the redundant lax skin. These procedures must employ long incisions that are typically hidden around anatomical
20 boundaries such as the ear and scalp for a facelift and the inframammary fold for a breast uplift (mastopexy). However, some areas of skin laxity resection are a poor tradeoff between the aesthetic enhancement of tighter skin and the visibility of the surgical incision. For this reason, skin redundancies of the upper arm, suprapatellar knees, thighs and buttocks are not routinely resected due to the visibility of the surgical scar.

25 The frequency and negative societal impact of this aesthetic deformity has prompted the development of the “Face Lift” surgical procedure. Other related plastic surgical procedures in different regions are the Abdominoplasty (Abdomen), the Mastopexy (Breasts), and the Brachioplasty (Upper Arms). Inherent adverse features of these surgical procedures are post-operative pain, scarring and the risk of surgical

complications. Even though the aesthetic enhancement of these procedures is an acceptable tradeoff to the significant surgical incisions required, extensive permanent scarring is always an incumbent part of these procedures. For this reason, plastic surgeons design these procedures to hide the extensive scarring around anatomical 5 borders such as the hairline (Facelift), the inframmary fold (Mastopexy), and the inguinal crease (Abdominoplasty). However, many of these incisions are hidden distant to the region of skin laxity, thereby limiting their effectiveness. Other skin laxity regions such as the Suprapatellar (upper-front) knee are not amendable to plastic surgical resections due to the poor tradeoff with a more visible surgical scar.

10 More recently, electromagnetic medical devices that create a reverse thermal gradient (i.e., Thermage) have attempted with variable success to tighten skin without surgery. At this time, these electromagnetic devices are best deployed in patients with a moderate amount of skin laxity. Because of the limitations of electromagnetic devices and potential side effects of surgery, a minimally invasive technology is needed to 15 circumvent surgically related scarring and the clinical variability of electromagnetic heating of the skin. For many patients who have age related skin laxity (neck and face, arms, axillas, thighs, knees, buttocks, abdomen, bra line, ptosis of the breast), fractional resection of excess skin could augment a significant segment of traditional plastic surgery.

20 Even more significant than aesthetic modification of the skin envelope is the surgical management of burns and other trauma related skin defects. Significant burns are classified by the total body surface burned and by the depth of thermal destruction. First-degree and second-degree burns are generally managed in a non-surgical fashion with the application of topical creams and burn dressings. Deeper third-degree burns 25 involve the full thickness thermal destruction of the skin. The surgical management of these serious injuries involves the debridement of the burn eschar and the application of split thickness grafts.

Any full thickness skin defect, most frequently created from burning, trauma, or the resection of a skin malignancy, can be closed with either skin flap transfers or skin

grafts using current commercial instrumentation. Both surgical approaches require harvesting from a donor site. The use of a skin flap is further limited by the need of to include a pedicle blood supply and in most cases by the need to directly close the donor site.

5 The split thickness skin graft procedure, due to immunological constraints, requires the harvesting of autologous skin grafts, that is, from the same patient. Typically, the donor site on the burn patient is chosen in a non-burned area and a partial thickness sheet of skin is harvested from that area. Incumbent upon this procedure is the creation of a partial thickness skin defect at the donor site. This donor site defect is itself
10 similar to a deep second-degree burn. Healing by re-epithelialization of this site is often painful and may be prolonged for several days. In addition, a visible donor site deformity is created that is permanently thinner and more de-pigmented than the surrounding skin. For patients who have burns over a significant surface area, the extensive harvesting of skin grafts may also be limited by the availability of non-burned areas.

15 For these reasons, there is a need in the rapidly expanding aesthetic market for instrumentation and procedures for aesthetic surgical skin tightening. There is also a need for systems, instruments or devices, and procedures that enable the repeated harvesting of skin grafts from the same donor site while eliminating donor site deformity.

20 INCORPORATION BY REFERENCE

Each patent, patent application, and/or publication mentioned in this specification is herein incorporated by reference in its entirety to the same extent as if each individual patent, patent application, and/or publication was specifically and individually indicated to be incorporated by reference.

25

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows the PAD Kit placed at a target site, under an embodiment.

Figure 2 is a cross-section of a scalpel punch or device including a scalpel array, under an embodiment.

Figure 3 is a partial cross-section of a scalpet punch or device including a scalpet array, under an embodiment.

Figure 4 shows the adhesive membrane with backing (adherent substrate) included in a PAD Kit, under an embodiment.

5 **Figure 5** shows the adhesive membrane (adherent substrate) when used with the PAD Kit frame and blade assembly, under an embodiment.

Figure 6 shows the removal of skin pixels, under an embodiment.

Figure 7 is a side view of blade transection and removal of incised skin pixels with the PAD Kit, under an embodiment.

10 **Figure 8** is an isometric view of blade/pixel interaction during a procedure using the PAD Kit, under an embodiment.

Figure 9 is another view during a procedure using the PAD Kit (blade removed for clarity) showing both harvested skin pixels or plugs transected and captured and non-transected skin pixels or plugs prior to transection, under an embodiment.

15 **Figure 10A** is a side view of a portion of the pixel array showing scalpets secured onto an investing plate, under an embodiment.

Figure 10B is a side view of a portion of the pixel array showing scalpets secured onto an investing plate, under an alternative embodiment.

Figure 10C is a top view of the scalpet plate, under an embodiment.

20 **Figure 10D** is a close view of a portion of the scalpet plate, under an embodiment.

Figure 11A shows an example of rolling pixel drum, under an embodiment.

Figure 11B shows an example of a rolling pixel drum assembled on a handle, under an embodiment.

25 **Figure 11C** depicts a drum dermatome for use with the scalpet plate, under an embodiment.

Figure 12A shows the drum dermatome positioned over the scalpet plate, under an embodiment.

Figure 12B is an alternative view of the drum dermatome positioned over the scalpet plate, under an embodiment.

Figure 13A is an isometric view of application of the drum dermatome (e.g., Padgett dermatome) over the scalpet plate, where the adhesive membrane is applied to 5 the drum of the dermatome before rolling it over the investing plate, under an embodiment.

Figure 13B is a side view of a portion of the drum dermatome showing a blade position relative to the scalpet plate, under an embodiment.

10 **Figure 13C** is a side view of the portion of the drum dermatome showing a different blade position relative to the scalpet plate, under an embodiment.

Figure 13D is a side view of the drum dermatome with another blade position relative to the scalpet plate, under an embodiment.

Figure 13E is a side view of the drum dermatome with the transection blade clip showing transection of skin pixels by the blade clip, under an embodiment.

15 **Figure 13F** is a bottom view of the drum dermatome along with the scalpet plate, under an embodiment.

Figure 13G is a front view of the drum dermatome along with the scalpet plate, under an embodiment.

20 **Figure 13H** is a back view of the drum dermatome along with the scalpet plate, under an embodiment.

Figure 14A shows an assembled view of the dermatome with the Pixel Onlay Sleeve (POS), under an embodiment.

Figure 14B is an exploded view of the dermatome with the Pixel Onlay Sleeve (POS), under an embodiment.

25 **Figure 14C** shows a portion of the dermatome with the Pixel Onlay Sleeve (POS), under an embodiment.

Figure 15A shows the Slip-On PAD being slid onto a Padgett Drum Dermatome, under an embodiment.

Figure 15B shows an assembled view of the Slip-On PAD installed over the Padgett Drum Dermatome, under an embodiment.

Figure 16A shows the Slip-On PAD installed over a Padgett Drum Dermatome and used with a perforated template or guide plate, under an embodiment.

5 **Figure 16B** shows skin pixel harvesting with a Padgett Drum Dermatome and installed Slip-On PAD, under an embodiment.

Figure 17A shows an example of a Pixel Drum Dermatome being applied to a target site of the skin surface, under an embodiment.

10 **Figure 17B** shows an alternative view of a portion of the Pixel Drum Dermatome being applied to a target site of the skin surface, under an embodiment.

Figure 18 shows a side perspective view of the PAD assembly, under an embodiment.

Figure 19A shows a top perspective view of the scalpet device for use with the PAD assembly, under an embodiment.

15 **Figure 19B** shows a bottom perspective view of the scalpet device for use with the PAD assembly, under an embodiment.

Figure 20 shows a side view of the punch impact device including a vacuum component, under an embodiment.

20 **Figure 21A** shows a top view of an oscillating flat scalpet array and blade device, under an embodiment.

Figure 21B shows a bottom view of an oscillating flat scalpet array and blade device, under an embodiment.

25 **Figure 21C** is a close-up view of the flat array when the array of scalpets, blades, adherent membrane and the adhesive backer are assembled together, under an embodiment.

Figure 21D is a close-up view of the flat array of scalpets with a feeder component, under an embodiment.

Figure 22 shows a cadaver dermal matrix cylindrically transected similar in size to the harvested skin pixel grafts, under an embodiment.

Figure 23 is a drum array drug delivery device, under an embodiment.

Figure 24A is a side view of a needle array drug delivery device, under an embodiment.

Figure 24B is an upper isometric view of a needle array drug delivery device,

5 under an embodiment.

Figure 24C is a lower isometric view of a needle array drug delivery device, under an embodiment.

Figure 25 shows the composition of human skin.

Figure 26 shows the physiological cycles of hair growth.

10 **Figure 27** shows harvesting of donor follicles, under an embodiment.

Figure 28 shows preparation of the recipient site, under an embodiment.

Figure 29 shows placement of the harvested hair plugs at the recipient site, under an embodiment.

Figure 30 shows placement of the perforated plate on the occipital scalp donor site, under an embodiment.

Figure 31 shows scalpel penetration depth through skin when the scalpel is configured to penetrate to the subcutaneous fat layer to capture the hair follicle, under an embodiment.

20 **Figure 32** shows hair plug harvesting using the perforated plate at the occipital donor site, under an embodiment.

Figure 33 shows creation of the visible hairline, under an embodiment.

Figure 34 shows preparation of the donor site using the patterned perforated plate and spring-loaded pixilation device to create identical skin defects at the recipient site, under an embodiment.

25 **Figure 35** shows transplantation of harvested plugs by inserting harvested plugs into a corresponding skin defect created at the recipient site, under an embodiment.

Figure 36 shows a clinical end point using the pixel dermatome instrumentation and procedure, under an embodiment.

Figure 37 is an image of the skin tattooed at the corners and midpoints of the area

to be resected, under an embodiment.

Figure 38 is an image of the post-operative skin resection field, under an embodiment.

Figure 39 is an image at 11 days following the procedure showing resections 5 healed per primam, with measured margins, under an embodiment.

Figure 40 is an image at 29 days following the procedure showing resections healed per primam and maturation of the resection field continuing per primam, with measured margins, under an embodiment.

Figure 41 is an image at 29 days following the procedure showing resections 10 healed per primam and maturation of the resection field continuing per primam, with measured lateral dimensions, under an embodiment.

Figure 42 is an image at 90 days post-operative showing resections healed per primam and maturation of the resection field continuing per primam, with measured lateral dimensions, under an embodiment.

Figure 43 is a scalpet showing the applied rotational and/or impact forces, under 15 an embodiment.

Figure 44 shows a geared scalpet and an array including geared scalpets, under an embodiment.

Figure 45 is a bottom perspective view of a resection device including the scalpet 20 assembly with geared scalpet array, under an embodiment.

Figure 46 is a bottom perspective view of the scalpet assembly with geared scalpet array (housing not shown), under an embodiment.

Figure 47 is a detailed view of the geared scalpet array, under an embodiment.

Figure 48 shows an array including scalpets in a frictional drive configuration, 25 under an embodiment.

Figure 49 shows a helical scalpet (external) and an array including helical scalpets (external), under an embodiment.

Figure 50 shows side perspective views of a scalpel assembly including a helical scalpel array (left), and the resection device including the scalpel assembly with helical scalpel array (right) (housing shown), under an embodiment.

Figure 51 is a side view of a resection device including the scalpel assembly with 5 helical scalpel array assembly (housing depicted as transparent for clarity of details), under an embodiment.

Figure 52 is a bottom perspective view of a resection device including the scalpel assembly with helical scalpel array assembly (housing depicted as transparent for clarity of details), under an embodiment.

10 **Figure 53** is a top perspective view of a resection device including the scalpel assembly with helical scalpel array assembly (housing depicted as transparent for clarity of details), under an embodiment.

Figure 54 is a push plate of the helical scalpel array, under an embodiment.

15 **Figure 55** shows the helical scalpel array with the push plate, under an embodiment.

Figure 56 shows an inner helical scalpel and an array including inner helical scalpets, under an embodiment.

Figure 57 shows the helical scalpel array with the drive plate, under an embodiment.

20 **Figure 58** shows a slotted scalpel and an array including slotted scalpets, under an embodiment.

Figure 59 shows a portion of a slotted scalpel array (e.g., four (4) scalpets) with the drive rod, under an embodiment.

25 **Figure 60** shows an example slotted scalpel array (e.g., 25 scalpets) with the drive rod, under an embodiment.

Figure 61 shows an oscillating pin drive assembly with a scalpel, under an embodiment.

Figure 62 shows variable scalpel exposure control with the scalpel guide plates, under an embodiment.

Figure 63 shows a scalpel assembly including a scalpel array (e.g., helical) configured to be manually driven by an operator, under an embodiment.

Figure 64 shows forces exerted on a scalpel via application to the skin.

Figure 65 depicts steady axial force compression using a scalpel, under an 5 embodiment.

Figure 66 depicts steady single axial force compression plus kinetic impact force using a scalpel, under an embodiment.

Figure 67 depicts moving of the scalpel at a velocity to impact and pierce the skin, under an embodiment.

10 **Figure 68** depicts a multi-needle tip, under an embodiment.

Figure 69 shows a square scalpel without teeth (left), and a square scalpel with multiple teeth (right), under an embodiment.

Figure 70 shows multiple side, front (or back), and side perspective views of a round scalpel with an oblique tip, under an embodiment.

15 **Figure 71** shows a round scalpel with a serrated edge, under an embodiment.

Figure 72 shows a side view of the resection device including the scalpel assembly with scalpel array and extrusion pins (housing depicted as transparent for clarity of details), under an embodiment.

20 **Figure 73** shows a top perspective cutaway view of the resection device including the scalpel assembly with scalpel array and extrusion pins (housing depicted as transparent for clarity of details), under an embodiment.

Figure 74 shows side and top perspective views of the scalpel assembly including the scalpel array and extrusion pins, under an embodiment.

25 **Figure 75** is a side view of a resection device including the scalpel assembly with scalpel array assembly coupled to a vibration source, under an embodiment.

Figure 76 shows a scalpel array driven by an electromechanical source or scalpel array generator, under an embodiment.

Figure 77 is a diagram of the resection device including a vacuum system, under an embodiment.

Figure 78 shows a vacuum manifold applied to a target skin surface to evacuate/harvest excised skin/hair plugs, under an embodiment.

Figure 79 shows a vacuum manifold with an integrated wire mesh applied to a target skin surface to evacuate/harvest excised skin/hair plugs, under an embodiment.

5 **Figure 80** shows a vacuum manifold with an integrated wire mesh configured to vacuum subdermal fat, under an embodiment.

Figure 81 depicts a collapsible docking station and an inserted skin pixel, under an embodiment. The docking station is formed from elastomeric material but is not so limited.

10 **Figure 82** is a top view of a docking station (e.g., elastomeric) in stretched (left) and un-stretched (right) configuration, under an embodiment, under an embodiment.

DETAILED DESCRIPTION

Systems, instruments, and methods are described in which a scalpet device
15 comprises a housing configured to include a scalpet assembly. The scalpet assembly includes a scalpet array and one or more guide plates. The scalpet array includes a set of scalpets, and in embodiments the set of scalpets include multiple scalpets. The guide plate maintains a configuration of the set of scalpets. The set of scalpets is configured to be deployed from and retracted into the housing, and is configured to generate incised
20 skin pixels at a target site when deployed. The incised skin pixels are harvested.

The scalpet device described herein satisfies the expanding aesthetic market for instrumentation and procedures for aesthetic surgical skin tightening. Additionally, the embodiments enable the repeated harvesting of skin grafts from the same donor site while eliminating donor site deformity. The embodiments described herein are configured to
25 resect redundant lax skin without visible scarring so that all areas of redundant skin laxity can be resected by the pixel array dermatome and procedures may be performed in areas that were previously off limits due to the visibility of the surgical incision. The technical effects realized through the embodiments described herein include smooth, tightened skin without visible scarring or long scars along anatomical borders.

Embodiments described in detail herein, which include pixel skin grafting instrumentation and methods, are configured to provide the capability to repeatedly harvest split thickness skin grafts without visible scarring of the donor site. During the procedure, a Pixel Array Dermatome (PAD) is used to harvest the skin graft from the 5 chosen donor site. During the harvesting procedure, a pixilated skin graft is deposited onto a flexible, semi-porous, adherent membrane. The harvested skin graft/membrane composite is then applied directly to the recipient skin defect site. The fractionally resected donor site is closed with the application of an adherent sheeting or bandage (e.g., Flexzan® sheeting, etc.) that functions for a period of time (e.g., one week, etc.) as a 10 large butterfly bandage. The intradermal skin defects generated by the PAD are closed to promote a primary healing process in which the normal epidermal-dermal architecture is realigned in an anatomical fashion to minimize scarring. Also occurring postoperatively, the adherent membrane is desquamated (shed) with the stratum corneum of the graft; the membrane can then be removed without disruption of the graft from the recipient bed.

15 Numerous effects realized by the pixel skin grafting procedure deserve explanation. Because the skin graft is pixelated it provides interstices for drainage between skin plug components, which enhances the percentage of “takes,” compared to sheet skin grafts. During the first post-operative week, the skin graft “takes” at the recipient site by a process of neovascularization in which new vessels from the recipient 20 bed of the skin defect grow into the new skin graft. The semiporous membrane conducts the exudate into the dressing.

The flexible membrane is configured with an elastic recoil property that promotes apposition of component skin plugs within the graft/membrane composite; promoting primary adjacent healing of the skin graft plugs and converting the pixilated appearance 25 of the skin graft into a more uniform sheet morphology. Furthermore, the membrane aligns the micro-architectural components skin plugs, so epidermis aligns with epidermis and dermis aligns with dermis, promoting a primary healing process that reduces scarring.

There are numerous major clinical applications for the dermatomes described in detail herein, including fractional skin resection for skin tightening, fractional hair grafting for alopecia, and fractional skin harvesting for skin grafting. Fractional skin resection of an embodiment comprises harvesting skin plugs using an adherent membrane, however the fractionally incised skin plugs can be evacuated without harvesting. The paradigm of incising, evacuating and closing is most descriptive of the clinical application of skin tightening. The embodiments described herein are configured to facilitate incising and evacuating and, in order to provide for a larger scalpet array with a greater number of scalpets, the embodiments include a novel means of incising the skin surface.

Pixel array medical systems, instruments or devices, and methods are described for skin grafting and skin resection procedures, and hair transplantation procedures. In the following description, numerous specific details are introduced to provide a thorough understanding of, and enabling description for, embodiments herein. One skilled in the relevant art, however, will recognize that these embodiments can be practiced without one or more of the specific details, or with other components, systems, etc. In other instances, well-known structures or operations are not shown, or are not described in detail, to avoid obscuring aspects of the disclosed embodiments.

The following terms are intended to have the following general meaning as they may be used herein. The terms are not however limited to the meanings stated herein as the meanings of any term can include other meanings as understood or applied by one skilled in the art.

“First degree burn” as used herein includes a superficial thermal injury in which there is no disruption of the epidermis from the dermis. A first-degree burn is visualized as erythema (redness) of the skin.

“Second degree burn” as used herein includes a relatively deeper burn in which there is disruption of the epidermis from the dermis and where a variable thickness of the dermis is also denatured. Most second-degree burns are associated with blister

formation. Deep second-degree burns may convert to full thickness third degree burns, usually by oxidation or infection.

“Third degree burn” as used herein includes a burn associated with the full thickness thermal destruction of the skin including the epidermis and the dermis. A third degree burn may also be associated with thermal destruction of deeper, underlying tissues (subcutaneous and muscle layers).

“Ablation” as used herein includes the removal of tissue by destruction of the tissue e.g., thermal ablation of a skin lesion by a laser.

“Autograft” as used herein includes a graft taken from the same patient.

“Backed Adherent Membrane” as used herein includes the elastic adherent membrane that captures the transected skin plugs. The Backed Adherent Membrane of an embodiment is backed on the outer surface to retain alignment of the skin plugs during harvest. After harvesting of the skin plugs, the backing is removed from the adherent membrane with harvested skin plugs. The membrane of an embodiment is porous to allow for drainage when placed at the recipient site. The membrane of an embodiment also possesses an elastic recoil property, so that when the backing is removed, it brings the sides of the skin plugs closer to each other to promote healing at the recipient site as a sheet graft.

“Burn Scar Contraction” as used herein includes the tightening of scar tissue that occurs during the wound healing process. This process is more likely to occur with an untreated third degree burn.

“Burn Scar Contracture” as used herein includes a band of scar tissue that either limits the range of motion of a joint or band of scar tissue that distorts the appearance of the patient i.e., a burn scar contracture of the face.

“Dermatome” as used herein includes an instrument that “cuts skin” or harvests a sheet split thickness skin graft. Examples of drum dermatomes include the Padgett and Reese dermatomes. Electrically powered dermatomes are the Zimmer dermatome and one electric version of the Padgett dermatome.

“Dermis” as used herein includes the deep layer of skin that is the main structural support and primarily comprises non-cellular collagen fibers. Fibroblasts are cells in the dermis that produce the collagen protein fibers.

“Donor Site” as used herein includes the anatomical site from which a skin graft
5 is harvested.

“Epidermis” as used herein includes the outer layer of skin comprising viable epidermal cells and nonviable stratum corneum that acts as a biological barrier.

“Excise” as used herein includes the surgical removal of tissue.

“Excisional Skin Defect” as used herein includes a partial thickness or, more
10 typically, a full thickness defect that results from the surgical removal
(excision/resection) of skin (lesion).

“FTSG” as used herein includes a Full Thickness Skin Graft in which the entire thickness of the skin is harvested. With the exception of an instrument as described herein, the donor site is closed as a surgical incision. For this reason, FTSG is limited in
15 the surface area that can be harvested.

“Granulation Tissue” as used herein includes highly vascularized tissue that grows in response to the absence of skin in a full-thickness skin defect. Granulation Tissue is the ideal base for a skin graft recipient site.

“Healing by primary intention” as used herein includes the wound healing process
20 in which normal anatomical structures are realigned with a minimum of scar tissue formation. Morphologically the scar is less likely to be visible.

“Healing by secondary intention” as used herein includes a less organized wound healing process wherein healing occurs with less alignment of normal anatomical structures and with an increased deposition of scar collagen. Morphologically, the scar is
25 more likely to be visible.

“Homograft” as used herein includes a graft taken from a different human and applied as a temporary biological dressing to a recipient site on a patient. Most homografts are harvested as cadaver skin. A temporary “take” of a homograft can be

partially achieved with immunosuppression but homografts are eventually replaced by autografts if the patient survives.

“Incise” as used herein includes the making of a surgical incision without removal of tissue.

5 “Mesh Split Thickness Skin Graft” as used herein includes a split thickness skin graft that is expanded in its surface area by repetitiously incising the harvested skin graft with an instrument called a “mesher”. A meshed split thickness skin graft has a higher percentage of “take” than a sheet graft because it allows drainage through the graft and conforms better to the contour irregularities of the recipient site. However, it does result
10 in an unsightly reticulated appearance of the graft at the recipient site.

“PAD” as used herein includes a Pixel Array Dermatome, the class of instruments for fractional skin resection.

15 “PAD Kit” as used herein includes the disposable single use procedure kit comprising the perforated guide plate, scalpel stamper, the guide plate frame, the backed adherent membrane and the transection blade.

“Perforated Guide Plate” as used herein includes a perforated plate comprising the entire graft harvest area in which the holes of the guide plate are aligned with the scalpels of the handled stamper or the Slip-on PAD. The plate will also function as a guard to prevent inadvertent laceration of the adjacent skin. The perforations of the Guide Plate
20 can be different geometries such as, but not limited to, round, oval, square, rectangular, and/or triangular.

“Pixelated Full Thickness Skin Graft” as used herein includes a Full Thickness Skin Graft that has been harvested with an instrument as described herein without reduced visibly apparent scarring at the donor site. The graft will also possess an
25 enhanced appearance at the recipient site similar to a sheet FTSG but will conform better to recipient site and will have a higher percentage of ‘take’ due to drainage interstices between skin plugs. Another significant advantage of the pixelated FTSG in comparison to a sheet FTSG is the ability to graft larger surface areas that would otherwise require a

STSG. This advantage is due to the capability to harvest from multiple donor sites with reduced visible scarring.

“Pixelated Graft Harvest” as used herein includes the skin graft harvesting from a donor site by an instrument as described in detail herein.

5 “Pixelated Spilt Thickness Skin Graft” as used herein includes a partial thickness skin graft that has been harvested with an SRG instrument. The skin graft shares the advantages of a meshed skin graft without unsightly donor and recipient sites.

“Recipient Site” as used herein includes the skin defect site where a skin graft is applied.

10 “Resect” as used herein includes excising.

“Scalpel” as used herein includes the single-edged knife that incises skin and soft tissue.

“Scalpet” as used herein includes the term that describes the small geometrically-shaped (e.g., circle, ellipse, rectangle, square, etc.) scalpel that incises a plug of skin.

15 “Scalpet Array” as used herein includes the arrangement or array of multiple scalpets secured to a substrate (e.g., a base plate, stamper, handled stamper, tip, disposable tip, etc.).

“Scalpet Stamper” as used herein includes a handled scalpet array instrument component of the PAD Kit that incises skin plugs through the perforated guide plate.

20 “Scar” as used herein includes the histological deposition of disorganized collagen following wounding, or the morphological deformity that is visually apparent from the histological deposition of disorganized collagen following wounding.

25 “Sheet Full Thickness Skin Graft” as used herein includes reference to application of the FTSG at the recipient site as continuous sheet. The appearance of an FTSG is superior to the appearance of a STSG and for this reason it is primarily used for skin grafting in visually apparent areas such as the face.

“Sheet Split Thickness Skin Graft” as used herein includes a partial thickness skin graft that is a continuous sheet and is associated with the typical donor site deformity.

“Skin Defect” as used herein includes the absence of the full thickness of skin that may also include the subcutaneous fat layer and deeper structures such as muscle. Skin defects can occur from a variety of causes i.e., burns, trauma, surgical excision of malignancies and the correction of congenital deformities.

5 “Skin Pixel” as used herein includes a piece of skin comprising epidermis and a partial or full thickness of the dermis that is cut by the scalpel; the skin pixel may include skin adnexa such as a hair follicle with or without a cuff of subcutaneous fat; also includes Skin Plug.

10 “Skin Plug” as used herein includes a circular (or other geometric shaped) piece of skin comprising epidermis and a partial or full thickness of the dermis that is incised by the scalpel, transected by the transection blade and captured by the adherent-backed membrane.

“STSG” as used herein includes the Partial Thickness Skin Graft in which the epidermis and a portion of the dermis is harvested with the graft.

15 “Subcutaneous Fat Layer” as used herein includes the layer that is immediately below the skin and is principally comprised of fat cells referred to as lipocytes. This layer functions as principle insulation layer from the environment.

20 “Transection Blade” as used herein includes a horizontally-aligned single edged blade that can be either slotted to the frame of the perforated plate or attached to the outrigger arm of the drum dermatome as described in detail herein. The transection blade transects the base of the incised skin plugs.

“Wound Healing” as used herein includes the obligate biological process that occurs from any type of wounding whether it be one or more of thermal, kinetic and surgical.

25 “Xenograft” as used herein includes a graft taken from a different species and applied as a temporary biological dressing to a recipient site on a patient.

Multiple embodiments of pixel array medical systems, instruments or devices, and methods for use are described in detail herein. The systems, instruments or devices, and methods described herein comprise minimally invasive surgical approaches for skin

grafting and for skin resection that tightens lax skin without visible scarring via a device used in various surgical procedures such as plastic surgery procedures, and additionally for hair transplantation. In some embodiments, the device is a single use disposable instrument. The embodiments herein circumvent surgically related scarring and the 5 clinical variability of electromagnetic heating of the skin and perform small multiple pixilated resections of skin as a minimally invasive alternative to large plastic surgical resections of skin. The embodiments herein can also be employed in hair transplantation, and in areas of the body that may be off limits to plastic surgery due to the visibility of the surgical scar. In addition, the approach can perform a skin grafting operation by 10 harvesting the transected incisions of skin from a tissue site of a donor onto a skin defect site of a recipient with reduced scarring of the patient's donor site.

For many patients who have age related skin laxity (for non-limiting examples, neck and face, arms, axillas, thighs, knees, buttocks, abdomen, bra line, ptosis of the breast, etc.), the minimally invasive pixel array medical devices and methods herein 15 perform pixilated transection/resection of excess skin, replacing plastic surgery with its incumbent scarring. Generally, the procedures described herein are performed in an office setting under a local anesthetic with minimal perioperative discomfort, but are not so limited. In comparison to a prolonged healing phase from plastic surgery, only a short recovery period is required, preferably applying a dressing and a support garment worn 20 over the treatment area for a pre-specified period of time (e.g., 5 days, 7 days, etc.).

There will be minimal or no pain associated with the procedure.

The relatively small (e.g., in a range of approximately 0.5 mm to 4.0 mm) skin 25 defects generated by the instrumentation described herein are closed with the application of an adherent Flexan® sheet. Functioning as a large butterfly bandage, the Flexan® sheet can be pulled in a direction ("vector") that maximizes the aesthetic contouring of the treatment area. A compressive elastic garment is applied over the dressing to further assist aesthetic contouring. After completion of the initial healing phase, the multiplicity of small linear scars within the treatment area will have reduced visibility in comparison to larger plastic surgical incisions on the same area. Additional skin tightening is likely

to occur over several months due to the delayed wound healing response. Other potential applications of the embodiments described herein include hair transplantation as well as the treatment of Alopecia, Snoring/Sleep apnea, Orthopedics/Physiatry, Vaginal Tightening, Female Urinary incontinence, and tightening of gastrointestinal sphincters.

5 Significant burns are classified by the total body surface burned and by the depth of thermal destruction, and the methods used to manage these burns depend largely on the classification. First-degree and second-degree burns are usually managed in a non-surgical fashion with the application of topical creams and burn dressings. Deeper third-degree burns involve the full thickness thermal destruction of the skin, creating a full
10 thickness skin defect. The surgical management of this serious injury usually involves the debridement of the burn eschar and the application of split thickness grafts.

A full thickness skin defect, most frequently created from burning, trauma, or the resection of a skin malignancy, can be closed with either skin flap transfers or skin grafts using conventional commercial instrumentation. Both surgical approaches require
15 harvesting from a donor site. The use of a skin flap is further limited by the need of to include a pedicle blood supply and in most cases by the need to directly close the donor site.

The split thickness skin graft procedure, due to immunological constraints, requires the harvesting of autologous skin grafts from the same patient. Typically, the
20 donor site on the burn patient is chosen in a non-burned area and a partial thickness sheet of skin is harvested from that area. Incumbent upon this procedure is the creation of a partial thickness skin defect at the donor site. This donor site defect itself is similar to a deep second-degree burn. Healing by re-epithelialization of this site is often painful and may be prolonged for several days. In addition, a visible donor site deformity is typically
25 created that is permanently thinner and more de-pigmented than the surrounding skin. For patients who have burns over a significant surface area, the extensive harvesting of skin grafts may also be limited by the availability of non-burned areas.

Both conventional surgical approaches to close skin defects (flap transfer and skin grafting) are not only associated with significant scarring of the skin defect recipient site

but also with the donor site from which the graft is harvested. In contrast to the conventional procedures, embodiments described herein comprise Pixel Skin Grafting Procedures, also referred to as a pixel array procedures, that eliminate this donor site deformity and provide a method to re-harvest skin grafts from any pre-existing donor site 5 including either sheet or pixelated donor sites. This ability to re-harvest skin grafts from pre-existing donor sites will reduce the surface area requirement for donor site skin and provide additional skin grafting capability in severely burned patients who have limited surface area of unburned donor skin.

The Pixel Skin Grafting Procedure of an embodiment is used as a full thickness 10 skin graft. Many clinical applications such as facial skin grafting, hand surgery, and the repair of congenital deformities are best performed with full thickness skin grafts. The texture, pigmentation and overall morphology of a full thickness skin graft more closely resembles the skin adjacent to a defect than a split thickness skin graft. For this reason, full thickness skin grafting in visibly apparent areas is superior in appearance than split 15 thickness skin grafts. The main drawback to full thickness skin grafts under conventional procedures is the extensive linear scarring created from the surgical closure of the full thickness donor site defect; this scarring limits the size and utility of full thickness skin grafting.

In comparison, the full thickness skin grafting of the Pixel Skin Grafting 20 Procedure described herein is less limited by size and utility as the linear donor site scar is eliminated. Thus, many skin defects routinely covered with split thickness skin grafts will instead be treated using pixelated full thickness skin grafts.

The Pixel Skin Grafting Procedure provides the capability to harvest split thickness and full thickness skin grafts with minimal visible scarring of the donor site. 25 During the procedure, a Pixel Array Dermatome (PAD) device is used to harvest the skin graft from a chosen donor site. During the harvesting procedure, the pixelated skin graft is deposited onto an adherent membrane. The adherent membrane of an embodiment includes a flexible, semi-porous, adherent membrane, but the embodiment is not so limited. The harvested skin graft/membrane composite is then applied directly to the

recipient skin defect site. The fractionally resected donor site is closed with the application of an adherent Flexan® sheeting that functions for one week as a large butterfly bandage. The relatively small (e.g., 1.5 mm) intradermal circular skin defects are closed to promote a primary healing process in which the normal epidermal-dermal 5 architecture is realigned in an anatomical fashion to minimize scarring. Also occurring approximately one week postoperatively, the adherent membrane is desquamated (shed) with the stratum corneum of the graft; the membrane can then be removed without disruption of the graft from the recipient bed. Thus, healing of the donor site occurs rapidly with minimal discomfort and scarring.

10 Because the skin graft at the recipient defect site using the Pixel Skin Grafting Procedure is pixelated it provides interstices for drainage between skin pixel components, which enhances the percentage of “takes,” compared to sheet skin grafts. During the first post-operative week (approximate), the skin graft will “take” at the recipient site by a process of neovascularization in which new vessels from the recipient bed of the skin 15 defect grow into the new skin graft. The semi-porous membrane will conduct the transudate (fluid) into the dressing. Furthermore, the flexible membrane is designed with an elastic recoil property that promotes apposition of component skin pixels within the graft/membrane composite and promotes primary adjacent healing of the skin graft pixels, converting the pixilated appearance of the skin graft to a uniform sheet 20 morphology. Additionally, the membrane aligns the micro-architectural component skin pixels, so epidermis aligns with epidermis and dermis aligns with dermis, promoting a primary healing process that reduces scarring. Moreover, pixelated skin grafts more easily conform to an irregular recipient site.

25 Embodiments described herein also include a Pixel Skin Resection Procedure, also referred to herein as the Pixel Procedure. For many patients who have age related skin laxity (neck and face, arms, axillas, thighs, knees, buttocks, abdomen, bra line, ptosis of the breast, etc.), fractional resection of excess skin could replace a significant segment of plastic surgery with its incumbent scarring. Generally, the Pixel Procedure will be performed in an office setting under a local anesthetic. The post procedure recovery

period includes wearing of a support garment over the treatment area for a pre-specified number (e.g., five, seven, etc.) of days (e.g., five days, seven days, etc.). Relatively little or no pain is anticipated to be associated with the procedure. The small (e.g., 1.5 mm) circular skin defects will be closed with the application of an adherent Flexan® sheet.

5 Functioning as a large butterfly bandage, the Flexan® sheet is pulled in a direction (“vector”) that maximizes the aesthetic contouring of the treatment area. A compressive elastic garment is then applied over the dressing to further assist aesthetic contouring. After completion of the initial healing phase, the multiplicity of small linear scars within the treatment area will not be visibly apparent. Furthermore, additional skin tightening 10 will subsequently occur over several months due to the delayed wound healing response. Consequently, the Pixel Procedure is a minimally invasive alternative to the extensive scarring of Plastic Surgery.

The pixel array medical devices of an embodiment include a PAD Kit. **Figure 1** shows the PAD Kit placed at a target site, under an embodiment. The PAD Kit 15 comprises a flat perforated guide plate (guide plate), a scalpel punch or device that includes a scalpel array (**Figures 1-3**), a backed adhesive membrane or adherent substrate (**Figure 4**), and a skin pixel transection blade (**Figure 5**), but is not so limited. The scalpel punch of an embodiment is a handheld device but is not so limited. The guide plate is optional in an alternative embodiment, as described in detail herein.

20 **Figure 2** is a cross-section of a PAD Kit scalpel punch including a scalpel array, under an embodiment. The scalpel array includes one or more scalpels. **Figure 3** is a partial cross-section of a PAD Kit scalpel punch including a scalpel array, under an embodiment. The partial cross-section shows the total length of the scalpels of the scalpel array is determined by the thickness of the perforated guide plate and the 25 incisional depth into the skin, but the embodiment is not so limited.

Figure 4 shows the adhesive membrane with backing (adherent substrate) included in a PAD Kit, under an embodiment. The undersurface of the adhesive membrane is applied to the incised skin at the target site.

5 **Figure 5** shows the adhesive membrane (adherent substrate) when used with the PAD Kit frame and blade assembly, under an embodiment. The top surface of the adhesive membrane is oriented with the adhesive side down inside the frame and then pressed over the perforated plate to capture the extruded skin pixels, also referred to herein as plugs or skin plugs.

With reference to Figure 1, the perforated guide plate is applied to the skin resection/donor site during a procedure using the PAD Kit. The scalpet punch is applied through at least a set of perforations of the perforated guide plate to incise the skin pixels. The scalpet punch is applied numerous times to a number of sets of perforations when the 10 scalpet array of the punch includes fewer scalpets than the total number of perforations of the guide plate. Following one or more serial applications with the scalpet punch, the incised skin pixels or plugs are captured onto the adherent substrate. The adherent substrate is then applied in a manner so the adhesive captures the extruded skin pixels or plugs. As an example, the top surface of the adherent substrate of an embodiment is 15 oriented with the adhesive side down inside the frame (when the frame is used) and then pressed over the perforated plate to capture the extruded skin pixels or plugs. As the membrane is pulled up, the captured skin pixels are transected at their base by the transection blade.

20 **Figure 6** shows the removal of skin pixels, under an embodiment. The adherent substrate is pulled up and back (away) from the target site, and this act lifts or pulls the incised skin pixels or plugs. As the adherent substrate is being pulled up, the transection blade is used to transect the bases of the incised skin pixels. **Figure 7** is a side view of 25 blade transection and removal of incised skin pixels with the PAD Kit, under an embodiment. Pixel harvesting is completed with the transection of the base of the skin pixels or plugs. **Figure 8** is an isometric view of blade/pixel interaction during a procedure using the PAD Kit, under an embodiment. **Figure 9** is another view during a procedure using the PAD Kit (blade removed for clarity) showing both harvested skin pixels or plugs transected and captured and non-transected skin pixels or plugs prior to

transection, under an embodiment. At the donor site, the pixelated skin resection sites are closed with the application of Flexan® sheeting.

The guide plate and scalpet device are also used to generate skin defects at the recipient site. The skin defects are configured to receive the skin pixels harvested or 5 captured at the donor site. The guide plate used at the recipient site can be the same guide plate used at the donor site, or can be different with a different pattern or configuration of perforations.

The skin pixels or plugs deposited onto the adherent substrate during the transection can next be transferred to the skin defect site (recipient site) where they are 10 applied as a pixelated skin graft at a recipient skin defect site. The adherent substrate has an elastic recoil property that enables closer alignment of the skin pixels or plugs within the skin graft. The incised skin pixels can be applied from the adherent substrate directly to the skin defects at the recipient site. Application of the incised skin pixels at the recipient site includes aligning the incised skin pixels with the skin defects, and inserting 15 the incised skin pixels into corresponding skin defects at the recipient site.

The pixel array medical devices of an embodiment include a Pixel Array Dermatome (PAD). The PAD comprises a flat array of relatively small circular scalpets that are secured onto a substrate (e.g., investing plate), and the scalpets in combination with the substrate are referred to herein as a scalpet array, pixel array, or scalpet plate. 20 **Figure 10A** is a side view of a portion of the pixel array showing scalpets secured onto an investing plate, under an embodiment. **Figure 10B** is a side view of a portion of the pixel array showing scalpets secured onto an investing plate, under an alternative embodiment. **Figure 10C** is a top view of the scalpet plate, under an embodiment. **Figure 10D** is a close view of a portion of the scalpet plate, under an embodiment. The 25 scalpet plate is applied directly to the skin surface. One or more scalpets of the scalpet array include one or more of a pointed surface, a needle, and a needle including multiple points.

Embodiments of the pixel array medical devices and methods include use of a harvest pattern instead of the guide plate. The harvest pattern comprises indicators or

markers on a skin surface on at least one of the donor site and the recipient site, but is not so limited. The markers include any compound that may be applied directly to the skin to mark an area of the skin. The harvest pattern is positioned at a donor site, and the scalpel array of the device is aligned with or according to the harvest pattern at the donor site.

5 The skin pixels are incised at the donor site with the scalpel array as described herein. The recipient site is prepared by positioning the harvest pattern at the recipient site. The harvest pattern used at the recipient site can be the same harvest pattern used at the donor site, or can be different with a different pattern or configuration of markers. The skin defects are generated, and the incised skin pixels are applied at the recipient site as
10 described herein. Alternatively, the guide plate of an embodiment is used in applying the harvest pattern, but the embodiment is not so limited.

To leverage established surgical instrumentation, the array of an embodiment is used in conjunction with or as a modification to a drum dermatome, for example a Padget dermatome or a Reese dermatome, but is not so limited. The Padget drum dermatome
15 referenced herein was originally developed by Dr. Earl Padget in the 1930s, and continues to be widely utilized for skin grafting by plastic surgeons throughout the world. The Reese modification of the Padget dermatome was subsequently developed to better calibrate the thickness of the harvested skin graft. The drum dermatome of an embodiment is a single use (per procedure) disposable, but is not so limited.

20 Generally, **Figure 11A** shows an example of a rolling pixel drum 100, under an embodiment. **Figure 11B** shows an example of a rolling pixel drum 100 assembled on a handle, under an embodiment. More specifically, **Figure 11C** depicts a drum dermatome for use with the scalpel plate, under an embodiment.

Generally, as with all pixel devices described herein, the geometry of the pixel
25 drum 100 can be a variety of shapes without limitation e.g., circular, semicircular, elliptical, square, flat, or rectangular. In some embodiments, the pixel drum 100 is supported by an axel/handle assembly 102 and rotated around a drum rotational component 104 powered by, e.g., an electric motor. In some embodiments, the pixel drum 100 can be placed on stand (not shown) when not in use, wherein the stand can also

function as a battery recharger for the powered rotational component of the drum or the powered component of the syringe plunger. In some embodiments, a vacuum (not shown) can be applied to the skin surface of the pixel drum 100 and outriggers (not shown) can be deployed for tracking and stability of the pixel drum 100.

5 In some embodiments, the pixel drum 100 incorporates an array of scalpets 106 on the surface of the drum 100 to create small multiple (e.g., 0.5-1.5 mm) circular incisions referred to herein as skin plugs. In some embodiments, the border geometry of the scalpets can be designed to reduce pin cushioning ("trap door") while creating the skin plugs. The perimeter of each skin plug can also be lengthened by the scalpets to, for
10 a non-limiting example, a, semicircular, elliptical, or square-shaped skin plug instead of a circular-shaped skin plug. In some embodiments, the length of the scalpets 106 may vary depending upon the thickness of the skin area selected by the surgeon for skin grafting purposes, i.e., partial thickness or full thickness.

When the drum 100 is applied to a skin surface, a blade 108 placed internal of the
15 drum 100 transects the base of each skin plug created by the array of scalpets, wherein the internal blade 108 is connected to the central drum axel/handle assembly 102 and/or connected to outriggers attached to the central axel assembly 102. In some alternative embodiments, the internal blade 108 is not connected to the drum axel assembly 102 where the base of the incisions of skin is transected. In some embodiments, the internal
20 blade 108 of the pixel drum 100 may oscillate either manually or be powered by an electric motor. Depending upon the density of the circular scalpets on the drum, a variable percentage of skin (e.g., 20%, 30%, 40%, etc.) can be transected within an area of excessive skin laxity.

In some embodiments, an added pixel drum harvester 112 is placed inside the
25 drum 100 to perform a skin grafting operation by harvesting and aligning the transected/pixelated skin incisions/plugs (pixel graft) from tissue of a pixel donor onto an adherent membrane 110 lined in the interior of the pixel drum 100. A narrow space is created between the array of scalpets 106 and the adherent membrane 110 for the internal blade 108.

In an embodiment, the blade 108 is placed external to the drum 100 and the scalpet array 106 where the base of the incised circular skin plugs is transected. In another embodiment, the external blade 108 is connected to the drum axel assembly 102 when the base of the incisions of skin is transected. In an alternative embodiment, the 5 external blade 108 is not connected to the drum axel assembly 102 when the base of the incisions of skin is transected. The adherent membrane 110 that extracts and aligns the transected skin segments is subsequently placed over a skin defect site of a patient. The blade 108 (either internal or external) can be a fenestrated layer of blade aligned to the scalpet array 106, but is not so limited.

10 The conformable adherent membrane 110 of an embodiment can be semi-porous to allow for drainage at a recipient skin defect when the membrane with the aligned transected skin segments is extracted from the drum and applied as a skin graft. The adherent semi-porous drum membrane 110 can also have an elastic recoil property to bring the transected/pixilated skin plugs together for grafting onto the skin defect site of 15 the recipient, i.e., the margins of each skin plug can be brought closer together as a more uniform sheet after the adherent membrane with pixilated grafts extracted from the drum 100. Alternatively, the adherent semi-porous drum membrane 110 can be expandable to cover a large surface area of the skin defect site of the recipient. In some embodiments, a sheet of adhesive backer 111 can be applied between the adherent membrane 110 and the 20 drum harvester 112. The drum array of scalpets 106, blade 108, and adherent membrane 110 can be assembled together as a sleeve onto a preexisting drum 100, as described in detail herein.

25 The internal drum harvester 112 of the pixel drum 110 of an embodiment is disposable and replaceable. Limit and/or control the use of the disposable components can be accomplished by means that includes but is not limited to electronic, EPROM, mechanical, durability. The electronic and/or mechanical records and/or limits of number of drum rotations for the disposable drum as well as the time of use for the disposable drum can be recorded, controlled and/or limited either electronically or mechanically.

During the harvesting portion of the procedure with a drum dermatome, the PAD scalpet array is applied directly to the skin surface. To circumferentially incise the skin pixels, the drum dermatome is positioned over the scalpet array to apply a load onto the subjacent skin surface. With a continuing load, the incised skin pixels are extruded 5 through the holes of the scalpet array and captured onto an adherent membrane on the drum dermatome. The cutting outrigger blade of the dermatome (positioned over the scalpet array) transects the base of extruded skin pixels. The membrane and the pixelated skin composite are then removed from the dermatome drum, to be directly applied to the recipient skin defect as a skin graft.

10 With reference to Figure 11C, an embodiment includes a drum dermatome for use with the scalpet plate, as described herein. More particularly, **Figure 12A** shows the drum dermatome positioned over the scalpet plate, under an embodiment. **Figure 12B** is an alternative view of the drum dermatome positioned over the scalpet plate, under an embodiment. The cutting outrigger blade of the drum dermatome is positioned on top of 15 the scalpet array where the extruded skin plugs will be transected at their base.

Figure 13A is an isometric view of application of the drum dermatome (e.g., Padgett dermatome) over the scalpet plate, where the adhesive membrane is applied to the drum of the dermatome before rolling it over the investing plate, under an embodiment. **Figure 13B** is a side view of a portion of the drum dermatome showing a 20 blade position relative to the scalpet plate, under an embodiment. **Figure 13C** is a side view of the portion of the drum dermatome showing a different blade position relative to the scalpet plate, under an embodiment. **Figure 13D** is a side view of the drum dermatome with another blade position relative to the scalpet plate, under an embodiment. **Figure 13E** is a side view of the drum dermatome with the transection 25 blade clip showing transection of skin pixels by the blade clip, under an embodiment. **Figure 13F** is a bottom view of the drum dermatome along with the scalpet plate, under an embodiment. **Figure 13G** is a front view of the drum dermatome along with the scalpet plate, under an embodiment. **Figure 13H** is a back view of the drum dermatome along with the scalpet plate, under an embodiment.

Depending upon the clinical application, the disposable adherent membrane of the drum dermatome can be used to deposit/dispose of resected lax skin or harvest/align a pixilated skin graft.

Embodiments described herein also include a Pixel Onlay Sleeve (POS) for use 5 with the dermatomes, for example the Padget dermatomes and Reese dermatomes.

Figure 14A shows an assembled view of the dermatome with the Pixel Onlay Sleeve (POS), under an embodiment. The POS comprises the dermatome and blade incorporated with an adhesive backer, adhesive, and a scalpet array. The adhesive backer, adhesive, and scalpet array are integral to the device, but are not so limited.

10 **Figure 14B** is an exploded view of the dermatome with the Pixel Onlay Sleeve (POS), under an embodiment. **Figure 14C** shows a portion of the dermatome with the Pixel Onlay Sleeve (POS), under an embodiment.

The POS, also referred to herein as the “sleeve,” provides a disposable drum dermatome onlay for the fractional resection of redundant lax skin and the fractional skin 15 grafting of skin defects. The onlay sleeve is used in conjunction with either the Padget and Reese dermatomes as a single use disposable component. The POS of an embodiment is a three-sided slip-on disposable sleeve that slips onto a drum dermatome. The device comprises an adherent membrane and a scalpet drum array with an internal transection blade. The transection blade of an embodiment includes a single-sided 20 cutting surface that sweeps across the internal surface of the scalpet drum array.

In an alternative blade embodiment, a fenestrated cutting layer covers the internal surface of the scalpet array. Each fenestration with its cutting surface is aligned with each individual scalpet. Instead of sweeping motion to transect the base of the skin plugs, the fenestrated cutting layer oscillates over the scalpet drum array. A narrow space 25 between the adherent membrane and the scalpet array is created for excursion of the blade. For multiple harvesting during a skin grafting procedure, an insertion slot for additional adherent membranes is provided. The protective layer over the adherent membrane is peeled away insitu with an elongated extraction tab that is pulled from an extraction slot on the opposite side of the sleeve assembly. As with other pixel device

embodiments, the adherent membrane is semi-porous for drainage at the recipient skin defect site. To morph the pixilated skin graft into a more continuous sheet, the membrane may also have an elastic recoil property to provide closer alignment of the skin plugs within the skin graft.

5 Embodiments described herein include a Slip-On PAD that is configured as a single-use disposable device with either the Padgett or Reese dermatomes. **Figure 15A** shows the Slip-On PAD being slid onto a Padgett Drum Dermatome, under an embodiment. **Figure 15B** shows an assembled view of the Slip-On PAD installed over the Padgett Drum Dermatome, under an embodiment.

10 The Slip-on PAD of an embodiment is used (optionally) in combination with a perforated guide plate. **Figure 16A** shows the Slip-On PAD installed over a Padgett Drum Dermatome and used with a perforated template or guide plate, under an embodiment. The perforated guide plate is placed over the target skin site and held in place with adhesive on the bottom surface of the apron to maintain orientation. The 15 Padgett Dermatome with Slip-On PAD is rolled over the perforated guide plate on the skin.

Figure 16B shows skin pixel harvesting with a Padgett Drum Dermatome and installed Slip-On PAD, under an embodiment. For skin pixel harvesting, the Slip-On PAD is removed, adhesive tape is applied over the drum of the Padgett dermatome, and 20 the clip-on blade is installed on the outrigger arm of the dermatome, which then is used to transect the base of the skin pixels. The Slip-on PAD of an embodiment is also used (optionally) with standard surgical instrumentation such as a ribbon retractor to protect the adjacent skin of the donor site.

25 Embodiments of the pixel instruments described herein include a Pixel Drum Dermatome (PD2) that is a single use disposable instrument or device. The PD2 comprises a cylinder or rolling/rotating drum coupled to a handle, and the cylinder includes a Scalpet Drum Array. An internal blade is interlocked to the drum axle/handle assembly and/or interlocked to outriggers attached to the central axle. As with the PAD and the POS described herein, small multiple pixilated resections of skin are performed

directly in the region of skin laxity, thereby enhancing skin tightening with minimal visible scarring.

Figure 17A shows an example of a Pixel Drum Dermatome being applied to a target site of the skin surface, under an embodiment. Figure 17B shows an alternative 5 view of a portion of the Pixel Drum Dermatome being applied to a target site of the skin surface, under an embodiment.

The PD2 device applies a full rolling/rotating drum to the skin surface where multiple small (e.g., 1.5 mm) circular incisions are created at the target site with a “Scalpet Drum Array”. The base of each skin plug is then transected with an internal 10 blade that is interlocked to the central drum axel/handle assembly and/or interlocked to outriggers attached to the central axel. Depending upon the density of the circular scalpets on the drum, a variable percentage of skin can be resected. The PD2 enables portions (e.g., 20%, 30%, 40%, etc.) of the skin’s surface area to be resected without visible scarring in an area of excessive skin laxity, but the embodiment is not so limited.

15 Another alternative embodiment of the pixel instruments presented herein is the Pixel Drum Harvester (PDH). Similar to the Pixel Drum Dermatome, an added internal drum harvests and aligns the pixilated resections of skin onto an adherent membrane that is then placed over a recipient skin defect site of the patient. The conformable adherent membrane is semi-porous to allow for drainage at a recipient skin defect when the 20 membrane with the aligned resected skin segments is extracted from the drum and applied as a skin graft. An elastic recoil property of the membrane allows closer approximation of the pixilated skin segments, partially converting the pixilated skin graft to a sheet graft at the recipient site.

25 The pixel array medical systems, instruments or devices, and methods described herein evoke or enable cellular and/or extracellular responses that are obligatory to the clinical outcomes achieved. For the pixel dermatomes, a physical reduction of the skin surface area occurs due to the pixilated resection of skin, i.e., creation of the skin plugs. In addition, a subsequent tightening of the skin results due to the delayed wound healing

response. Each pixilated resection initiates an obligate wound healing sequence in multiple phases as described in detail herein.

The first phase of this sequence is the inflammatory phase in which degranulation of mast cells release histamine into the "wound". Histamine release may evoke dilatation 5 of the capillary bed and increase vessel permeability into the extracellular space. This initial wound healing response occurs within the first day and will be evident as erythema on the skin's surface.

The second phase (of Fibroplasia) commences within three to four days of "wounding". During this phase, there is migration and mitotic multiplication of 10 fibroblasts. Fibroplasia of the wound includes the deposition of neocollagen and the myofibroblastic contraction of the wound.

Histologically, the deposition of neocollagen can be identified microscopically as compaction and thickening of the dermis. Although this is a static process, the tensile strength of the wound significantly increases. The other feature of Fibroplasia is a 15 dynamic physical process that results in a multi-dimensional contraction of the wound. This component feature of Fibroplasia is due to the active cellular contraction of myofibroblasts. Morphologically, myoblastic contraction of the wound will be visualized as a two dimensional tightening of the skin surface. Overall, the effect of Fibroplasia is dermal contraction along with the deposition of a static supporting scaffolding of 20 neocollagen with a tightened framework. The clinical effect is seen as a delayed tightening of skin with smoothing of skin texture over several months. The clinical endpoint is generally a more youthful appearing skin envelope of the treatment area.

A third and final phase of the delayed wound healing response is maturation. During this phase there is a strengthening and remodeling of the treatment area due to an 25 increased cross-linkage of the collagen fibril matrix (of the dermis). This final stage commences within six to twelve months after "wounding" and may extend for at least one to two years. Small pixilated resections of skin should preserve the normal dermal architecture during this delayed wound healing process without the creation of an evident scar that typically occurs with a larger surgical resection of skin. Lastly, there is a related

stimulation and rejuvenation of the epidermis from the release of epidermal growth hormone. The delayed wound healing response can be evoked, with scar collagen deposition, within tissues (such as muscle or fat) with minimal pre-existing collagen matrix.

5 Other than tightening skin for aesthetic purposes, the pixel array medical systems, instruments or devices, and methods described herein may have additional medically related applications. In some embodiments, the pixel array devices can transect a variable portion of any soft tissue structure without resorting to a standard surgical resection. More specifically, the reduction of an actinic damaged area of skin via the
10 pixel array devices should reduce the incidence of skin cancer. For the treatment of sleep apnea and snoring, a pixilated mucosal reduction (soft palate, base of the tongue and lateral pharyngeal walls) via the pixel array devices would reduce the significant morbidity associated with more standard surgical procedures. For birth injuries of the vaginal vault, pixilated skin and vaginal mucosal resection via the pixel array devices
15 would reestablish normal pre-partum geometry and function without resorting to an A&P resection. Related female stress incontinence could also be corrected in a similar fashion.

The pixel array dermatome (PAD) of an embodiment, also referred to herein as a scalpet device assembly, includes a system or kit comprising a control device, also referred to as a punch impact hand-piece, and a scalpet device, also referred to as a tip device. The scalpet device, which is removeably coupled to the control device, includes
20 an array of scalpets positioned within the scalpet device. The removeable scalpet device of an embodiment is disposable and consequently configured for use during a single procedure, but the embodiment is not so limited.

The PAD includes an apparatus comprising a housing configured to include a scalpet device. The scalpet device includes a substrate and a scalpet array, and the scalpet array includes a plurality of scalpets arranged in a configuration on the substrate. The substrate and the plurality of scalpets are configured to be deployed from the housing and retracted into the housing, and the plurality of scalpets is configured to generate a plurality of incised skin pixels at a target site when deployed. The proximal end of the

control device is configured to be hand-held. The housing is configured to be removeably coupled to a receiver that is a component of a control device. The control device includes a proximal end that includes an actuator mechanism, and a distal end that includes the receiver. The control device is configured to be disposable, but alternatively 5 the control device is configured to be at least one of cleaned, disinfected, and sterilized.

The scalpet array is configured to be deployed in response to activation of the actuator mechanism. The scalpet device of an embodiment is configured so the scalpet array is deployed from the scalpet device and retracted back into the scalpet device in response to activation of the actuator mechanism. The scalpet device of an alternative 10 embodiment is configured so the scalpet array is deployed from the scalpet device in response to activation of the actuator mechanism, and retracted back into the scalpet device in response to release of the actuator mechanism.

Figure 18 shows a side perspective view of the PAD assembly, under an embodiment. The PAD assembly of this embodiment includes a control device 15 configured to be hand-held, with an actuator or trigger and the scalpet device comprising the scalpet array. The control device is reusable, but alternative embodiments include a disposable control device. The scalpet array of an embodiment is configured to create or generate an array of incisions (e.g., 1.5 mm, 2 mm, 3 mm, etc.) as described in detail herein. The scalpet device of an embodiment includes a spring-loaded array of scalpets 20 configured to incise the skin as described in detail herein, but the embodiments are not so limited.

Figure 19A shows a top perspective view of the scalpet device for use with the PAD assembly, under an embodiment. **Figure 19B** shows a bottom perspective view of the scalpet device for use with the PAD assembly, under an embodiment. The scalpet 25 device comprises a housing configured to house a substrate that is coupled to or includes a plunger. The housing is configured so that a proximal end of the plunger protrudes through a top surface of the housing. The housing is configured to be removeably coupled to the control device, and a length of the plunger is configured to protrude a

distance through the top surface to contact the control device and actuator when the scalpet device is coupled to the control device.

The substrate of the scalpet device is configured to retain numerous scalpets that form the scalpet array. The scalpet array comprises a pre-specified number of scalpets as appropriate to the procedure in which the scalpet device assembly is used. The scalpet device includes at least one spring mechanism configured to provide a downward, or impact or punching, force in response to activation of the scalpet array device, and this force assists generation of incisions (pixelated skin resection sites) by the scalpet array. Alternatively, the spring mechanism can be configured to provide an upward, or retracting, force to assist in retraction of the scalpet array.

One or more of the scalpet device and the control device of an embodiment includes an encryption system (e.g., EPROM, etc.). The encryption system is configured to prevent illicit use and pirating of the scalpet devices and/or control devices, but is not so limited.

During a procedure, the scalpet device assembly is applied one time to a target area or, alternative, applied serially within a designated target treatment area of skin laxity. The pixelated skin resection sites within the treatment area are then closed with the application of Flexan sheeting, as described in detail herein, and directed closure of these pixelated resections is performed in a direction that provides the greatest aesthetic correction of the treatment site.

The PAD device of an alternative embodiment includes a vacuum component or system for removing incised skin pixels. **Figure 20** shows a side view of the punch impact device including a vacuum component, under an embodiment. The PAD of this example includes a vacuum system or component within the control device to suction evacuate the incised skin pixels, but is not so limited. The vacuum component is removeably coupled to the PAD device, and its use is optional. The vacuum component is coupled to and configured to generate a low-pressure zone within or adjacent to one or more of the housing, the scalpet device, the scalpet array, and the control device. The low-pressure zone is configured to evacuate the incised skin pixels.

The PAD device of another alternative embodiment includes a radio frequency (RF) component or system for generating skin pixels. The RF component is coupled to and configured to provide or couple energy within or adjacent to one or more of the housing, the scalpel device, the scalpel array, and the control device. The RF component 5 is removeably coupled to the PAD device, and its use is optional. The energy provided by the RF component includes one or more of thermal energy, vibrational energy, rotational energy, and acoustic energy, to name a few.

The PAD device of yet another alternative embodiment includes a vacuum component or system and an RF component or system. The PAD of this embodiment 10 includes a vacuum system or component within the handpiece to suction evacuate the incised skin pixels. The vacuum component is removeably coupled to the PAD device, and its use is optional. The vacuum component is coupled to and configured to generate a low-pressure zone within or adjacent to one or more of the housing, the scalpel device, the scalpel array, and the control device. The low-pressure zone is configured to 15 evacuate the incised skin pixels. Additionally, the PAD device includes an RF component coupled to and configured to provide or couple energy within or adjacent to one or more of the housing, the scalpel device, the scalpel array, and the control device. The RF component is removeably coupled to the PAD device, and its use is optional. The energy provided by the RF component includes one or more of thermal energy, 20 vibrational energy, rotational energy, and acoustic energy, to name a few.

As one particular example, the PAD of an embodiment includes an electrosurgical generator configured to more effectively incise donor skin or skin plugs with minimal thermo-conductive damage to the adjacent skin. For this reason, the RF generator operates using relatively high power levels with relatively short duty cycles, for example. 25 The RF generator is configured to supply one or more of a powered impactor component configured to provide additional compressive force for cutting, cycling impactors, vibratory impactors, and an ultrasonic transducer.

The PAD with RF of this example also includes a vacuum component, as described herein. The vacuum component of this embodiment is configured to apply a

vacuum that pulls the skin up towards the scalpets (e.g., into the lumen of the scalpets, etc.) to stabilize and promote the RF mediated incision of the skin within the fractional resection field, but is not so limited. One or more of the RF generator and the vacuum appliance is coupled to be under the control of a processor running a software application. Additionally, the PAD of this embodiment can be used with the guide plate as described in detail herein, but is not so limited.

In addition to fractional incision at a donor site, fractional skin grafting includes the harvesting and deposition of skin plugs (e.g., onto an adherent membrane, etc.) for transfer to a recipient site. As with fractional skin resection, the use of a duty-driven RF cutting edge on an array of scalpets facilitates incising donor skin plugs. The base of the incised scalpets is then transected and harvested as described in detail herein.

The timing of the vacuum assisted component is processor controlled to provide a prescribed sequence with the RF duty cycle. With software control, different variations are possible to provide the optimal sequence of combined RF cutting with vacuum assistance. Without limitation, these include an initial period of vacuum prior to the RF duty cycle. Subsequent to the RF duty cycle, a period during the sequence of an embodiment includes suction evacuation of the incised skin plugs.

Other potential control sequences of the PAD include without limitation simultaneous duty cycles of RF and vacuum assistance. Alternatively, a control sequence of an embodiment includes pulsing or cycling of the RF duty cycle within the sequence and/or with variations of RF power or the use of generators at different RF frequencies.

Another alternative control sequence includes a designated RF cycle occurring at the depth of the fractional incision. A lower power longer duration RF duty cycle with insulated shaft with an insulated shaft an active cutting tip could generate a thermal-conductive lesion in the deep dermal/subcutaneous tissue interface. The deep thermal lesion would evoke a delayed wound healing sequence that would secondarily tighten the skin without burning of the skin surface.

With software control, different variations are possible to provide the optimal sequence of combined RF cutting and powered mechanical cutting with vacuum

assistance. Examples include but are not limited to combinations of powered mechanical cutting with vacuum assistance, RF cutting with powered mechanical cutting and vacuum assistance, RF cutting with vacuum assistance, and RF cutting with vacuum assistance.

Examples of combined software controlled duty cycles include but are not limited to

5 precutting vacuum skin stabilization period, RF cutting duty cycle with vacuum skin stabilization period, RF cutting duty cycle with vacuum skin stabilization and powered mechanical cutting period, powered mechanical cutting with vacuum skin stabilization period, post cutting RF duty cycle for thermal conductive heating of the deeper dermal and/or subdermal tissue layer to evoke a wound healing response for skin tightening, and

10 a post cutting vacuum evacuation period for skin tightening.

Another embodiment of pixel array medical devices described herein includes a device comprising an oscillating flat array of scalpets and blade either powered electrically or deployed manually (unpowered) and used for skin tightening as an alternative to the drum/cylinder described herein. **Figure 21A** shows a top view of an

15 oscillating flat scalpet array and blade device, under an embodiment. **Figure 21B** shows a bottom view of an oscillating flat scalpet array and blade device, under an embodiment.

Blade 108 can be a fenestrated layer of blade aligned to the scalpet array 106. The instrument handle 102 is separated from the blade handle 103 and the adherent membrane 110 can be peeled away from the adhesive backer 111. **Figure 21C** is a close-up view of the flat array when the array of scalpets 106, blades 108, adherent membrane 110 and the adhesive backer 111 are assembled together, under an embodiment. As assembled, the flat array of scalpets can be metered to provide a uniform harvest or a uniform resection.

In some embodiments, the flat array of scalpets may further include a feeder component 115 for the adherent harvesting membrane 110 and adhesive backer 111. **Figure 21D** is a 20 close-up view of the flat array of scalpets with a feeder component 115, under an embodiment.

In another skin grafting embodiment, the pixel graft is placed onto an irradiated cadaver dermal matrix (not shown). When cultured onto the dermal matrix, a graft of full thickness skin is created for the patient that is immunologically identical to the pixel

donor. In embodiments, the cadaver dermal matrix can also be cylindrical transected similar in size to the harvested skin pixel grafts to provide histological alignment of the pixilated graft into the cadaver dermal framework. **Figure 22** shows a cadaver dermal matrix cylindrically transected similar in size to the harvested skin pixel grafts, under an 5 embodiment. In some embodiments, the percentage of harvest of the donor site can be determined in part by the induction of a normal dermal histology at the skin defect site of the recipient, i.e., a normal (smoother) surface topology of the skin graft is facilitated. With either the adherent membrane or the dermal matrix embodiment, the pixel drum harvester includes the ability to harvest a large surface area for grafting with visible 10 scarring of the patient's donor site significantly reduced or eliminated.

In addition to the pixel array medical devices described herein, embodiments include drug delivery devices. For the most part, the parenteral delivery of drugs is still accomplished from an injection with a syringe and needle. To circumvent the negative features of the needle and syringe system, the topical absorption of medication 15 transcutaneously through an occlusive patch was developed. However, both of these drug delivery systems have significant drawbacks. The human aversion to a needle injection has not abated during the nearly two centuries of its use. The variable systemic absorption of either a subcutaneous or intramuscular drug injection reduces drug efficacy and may increase the incidence of adverse patient responses. Depending upon the lipid 20 or aqueous carrier fluid of the drug, the topically applied occlusive patch is plagued with variable absorption across an epidermal barrier. For patients who require local anesthesia over a large surface area of skin, neither the syringe/needle injections nor topical anesthetics are ideal. The syringe/needle "field" injections are often painful and may instill excessive amounts of the local anesthetic that may cause systemic toxicity. 25 Topical anesthetics rarely provide the level of anesthesia required for skin related procedures.

Figure 23 is a drum array drug delivery device 200, under an embodiment. The drug delivery device 200 successfully addresses the limitations and drawbacks of other drug delivery systems. The device comprises a drum/cylinder 202 supported by an

axel/handle assembly 204 and rotated around a drum rotation component 206. The handle assembly 204 of an embodiment further includes a reservoir 208 of drugs to be delivered and a syringe plunger 210. The surface of the drum 202 is covered by an array of needles 212 of uniform length, which provide a uniform intradermal (or subdermal) 5 injection depth with a more controlled volume of the drug injected into the skin of the patient. During operation, the syringe plunger 210 pushes the drug out of the reservoir 208 to be injected into a sealed injection chamber 214 inside the drum 202 via connecting tube 216. The drug is eventually delivered into the patient's skin at a uniform depth when the array of needles 212 is pushed into a patient's skin until the surface of the drum 202 10 hits the skin. Non-anesthetized skip area is avoided and a more uniform pattern of cutaneous anesthesia is created. The rolling drum application of the drug delivery device 200 also instills the local anesthetic faster with less discomfort to the patient.

Figure 24A is a side view of a needle array drug delivery device 300, under an embodiment. Figure 24B is an upper isometric view of a needle array drug delivery 15 device 300, under an embodiment. Figure 24C is a lower isometric view of a needle array drug delivery device 300, under an embodiment. The drug delivery device 300 comprises a flat array of fine needles 312 of uniform length positioned on manifold 310 can be utilized for drug delivery. In this example embodiment, syringe 302 in which drug for injection is contained can be plugged into a disposable adaptor 306 with handles, 20 and a seal 308 can be utilized to ensure that the syringe 302 and the disposable adaptor 306 are securely coupled to each other. When the syringe plunger 304 is pushed, drug contained in syringe 302 is delivered from syringe 302 into the disposable adaptor 306. The drug is further delivered into the patient's skin through the flat array of fine needles 312 at a uniform depth when the array of needles 312 is pushed into a patient's skin until 25 manifold 310 hits the skin.

The use of the drug delivery device 200 may have as many clinical applications as the number of pharmacological agents that require transcutaneous injection or absorption. For non-limiting examples, a few of the potential applications are the injection of local

anesthetics, the injection of neuromodulators such as Botulinum toxin (Botox), the injection of insulin and the injection of replacement estrogens and corticosteroids.

In some embodiments, the syringe plunger 210 of the drug delivery device 200 can be powered by, for a non-limiting example, an electric motor. In some embodiments, 5 a fluid pump (not shown) attached to an IV bag and tubing can be connected to the injection chamber 214 and/or the reservoir 208 for continuous injection. In some embodiments, the volume of the syringe plunger 210 in the drug delivery device 200 is calibrated and programmable.

Another application of pixel skin graft harvesting with the PAD (Pixel Array 10 Dermatome) device as described in detail herein is Alopecia. Alopecia is a common aesthetic malady, and it occurs most frequently in the middle-aged male population, but is also observed in the aging baby boomer female population. The most common form of alopecia is Male Pattern Baldness (MPB) that occurs in the frontal-parietal region of the scalp. Male pattern baldness is a sex-linked trait that is transferred by the X chromosome 15 from the mother to male offspring. For men, only one gene is needed to express this phenotype. As the gene is recessive, female pattern baldness requires the transfer of both X linked genes from both mother and father. Phenotypic penetrance can vary from patient to patient and is most frequently expressed in the age of onset and the amount of frontal/partial/occipital alopecia. The patient variability in the phenotypic expression of 20 MPB is due to the variable genotypic translation of this sex-linked trait. Based upon the genotypic occurrence of MPB, the need for hair transplantation is vast. Other non-genetic related etiologies are seen in a more limited segment of the population. These non-genetic etiologies include trauma, fungal infections, lupus erythematosus, radiation and chemotherapy.

25 A large variety of treatment options have been proposed to the public. These include FDA approved topical medications such as Minoxidil and Finasteride which have had limited success as these agents require the conversion of dormant hair follicles into an anagen growth phase. Other remedies include hairpieces and hair weaving. The standard of practice remains surgical hair transplantation, which involves the transfer of

hair plugs, strips and flaps from the hair-bearing scalp into the non hair-bearing scalp. For the most part, conventional hair transplantation involves the transfer of multiple single hair micrographs from the hair-bearing scalp to the non hair-bearing scalp of the same patient. Alternately, the donor plugs are initially harvested as hair strips and then 5 secondarily sectioned into micrographs for transfer to the recipient scalp. Regardless, this multi-staged procedure is both tedious and expensive, involving several hours of surgery for the average patient.

The conventional hair transplantation market has been encumbered by lengthy hair grafting procedures that are performed in several stages. A typical hair grafting 10 procedure involves the transfer of hair plugs from a donor site in the occipital scalp to a recipient site in the balding frontal-parietal scalp. For most procedures, each hair plug is transferred individually to the recipient scalp. Several hundred plugs may be transplanted during a procedure that may require several hours to perform. Post procedure “take” or viability of the transplanted hair plugs is variable due to factors that limit 15 neovascularization at the recipient site. Bleeding and mechanical disruption due to motion are key factors that reduce neovascularization and “take” of hair grafts. Embodiments described herein include surgical instrumentation configured to transfer several hair grafts at once that are secured and aligned en masse at a recipient site on the scalp. The procedures described herein using the PAD of an embodiment reduce the 20 tedium and time required with conventional instrumentation.

Figure 25 shows the composition of human skin. Skin comprises two horizontally stratified layers, referred to as the epidermis and the dermis, acting as a biological barrier to the external environment. The epidermis is the enveloping layer and comprises a viable layer of epidermal cells that migrate upward and “mature” into a non- 25 viable layer called the stratum corneum. The stratum corneum is a lipid-keratin composite that serves as a primary biological barrier, and this layer is continually shed and reconstituted in a process called desquamation. The dermis is the subjacent layer that is the main structural support of the skin, and is predominately extracellular and is comprised of collagen fibers.

In addition to the horizontally stratified epidermis and dermis, the skin includes vertically-aligned elements or cellular appendages including the pilosebaceous units, comprising the hair folical and sebacious gland. Pilosebaceous units each include a sebaceous oil gland and a hair follicle. The sebaceous gland is the most superficial and 5 discharges sebum (oil) into the shaft of the hair follicle. The base of the hair follicle is called the bulb and the base of the bulb has a deep generative component called the dermal papilla. The hair follicles are typically aligned at an oblique angle to the skin surface. Hair follicles in a given region of the scalp are aligned parallel to each other. Although pilosebaceous units are common throughout the entire integument, the density 10 and activity of these units within a region of the scalp is a key determinate as to the overall appearance of hair.

In additional to pilosebaceous units, sweat glands also course vertically through the skin. They provide a water-based transudate that assists in thermoregulation. Apocrine sweat glands in the axilla and groin express a more pungent sweat that is 15 responsible for body odor. For the rest of the body, eccrine sweat glands excrete a less pungent sweat for thermoregulation.

Hair follicles proceed through different physiological cycles of hair growth. **Figure 26** shows the physiological cycles of hair growth. The presence of testosterone in a genetically-prone man will produce alopecia to a variable degree in the frontal-parietal 20 scalp. Essentially, the follicle becomes dormant by entering the telogen phase without return to the anagen phase. Male Pattern Baldness occurs when the hair fails to return from the telogen phase to the anagen phase.

The PAD of an embodiment is configured for en-masse harvesting of hair-bearing plugs with en-masse transplantation of hair bearing plugs into non hair-bearing scalp, 25 which truncates conventional surgical procedures of hair transplantation. Generally, the devices, systems and/or methods of an embodiment are used to harvest and align a large multiplicity of small hair bearing plugs in a single surgical step or process, and the same instrumentation is used to prepare the recipient site by performing a multiple pixelated resection of non hair-bearing scalp. The multiple hair-plug graft is transferred and

transplanted en-masse to the prepared recipient site. Consequently, through use of an abbreviated procedure, hundreds of hair bearing plugs can be transferred from a donor site to a recipient site. Hair transplantation using the embodiments described herein therefore provides a solution that is a single surgical procedure having ease, simplicity 5 and significant time reduction over the tedious and multiple staged conventional process.

Hair transplantation using the pixel dermatome of an embodiment facilitates improvements in the conventional standard follicular unit extraction (FUT) hair transplant approach. Generally, under the procedure of an embodiment hair follicles to be harvested are taken from the Occipital scalp of the donor. In so doing, the donor site 10 hair is partially shaved, and the perforated plate of an embodiment is located on the scalp and oriented to provide a maximum harvest. **Figure 27** shows harvesting of donor follicles, under an embodiment. The scalpets in the scalpet array are configured to penetrate down to the subcutaneous fat later to capture the hair follicle. Once the hair plugs are incised, they are harvested onto an adhesive membrane by transecting the base 15 of the hair plug with the transection blade, as described in detail herein. Original alignment of the hair plugs with respect to each other at the donor site is maintained by applying the adherent membrane before transecting the base. The aligned matrix of hair plugs on the adherent membrane will then be grafted en masse to a recipient site on the frontal-parietal scalp of the recipient.

20 **Figure 28** shows preparation of the recipient site, under an embodiment. The recipient site is prepared by resection of non-hair bearing skin plugs in a topographically identical pattern as the harvested occipital scalp donor site. The recipient site is prepared for the mass transplant of the hair plugs using the same instrumentation that was used at the donor site under an embodiment and, in so doing, scalp defects are created at the 25 recipient site. The scalp defects created at the recipient site have the same geometry as the harvested plugs on the adherent membrane.

The adherent membrane laden with the harvested hair plugs is applied over the same pattern of scalp defects at the recipient site. Row-by-row, each hair-bearing plug is inserted into its mirror image recipient defect. **Figure 29** shows placement of the

harvested hair plugs at the recipient site, under an embodiment. Plug-to-plug alignment is maintained, so the hair that grows from the transplanted hair plugs lays as naturally as it did at the donor site. More uniform alignment between the native scalp and the transplanted hair will also occur.

5 More particularly, the donor site hair is partially shaved to prepare for location or placement of the perforated plate on the scalp. The perforated plate is positioned on the occipital scalp donor site to provide a maximum harvest. **Figure 30** shows placement of the perforated plate on the occipital scalp donor site, under an embodiment. Mass harvesting of hair plugs is achieved using the spring-loaded pixilation device comprising
10 the impact punch hand-piece with a scalpet disposable tip. An embodiment is configured for harvesting of individual hair plugs using off-the-shelf FUE extraction devices or biopsy punches; the holes in the perforated plates supplied are sized to accommodate off-the-shelf technology.

15 The scalpets comprising the scalpet array disposable tip are configured to penetrate down to the subcutaneous fat later to capture the hair follicle. **Figure 31** shows scalpet penetration depth through skin when the scalpet is configured to penetrate to the subcutaneous fat layer to capture the hair follicle, under an embodiment. Once the hair plugs are incised, they are harvested onto an adhesive membrane by transecting the base
20 of the hair plug with the transection blade, but are not so limited. **Figure 32** shows hair plug harvesting using the perforated plate at the occipital donor site, under an embodiment. The original alignment of the hair plugs with respect to each other is maintained by applying an adherent membrane of an embodiment. The adherent membrane is applied before transecting the base of the resected pixels, the embodiments are not so limited. The aligned matrix of hair plugs on the adherent membrane is
25 subsequently grafted en masse to a recipient site on the frontal-parietal scalp.

Additional single hair plugs may be harvested through the perforated plate, to be used to create the visible hairline, for example. **Figure 33** shows creation of the visible hairline, under an embodiment. The visible hairline is determined and developed with a manual FUT technique. The visible hairline and the mass transplant of the vertex may be

performed concurrently or as separate stages. If the visible hairline and mass transplant are performed concurrently, the recipient site is developed starting with the visible hairline.

Transplantation of harvested hair plugs comprises preparing the recipient site is 5 prepared by resecting non-hair bearing skin plugs in a topographically identical pattern as the pattern of the harvested occipital scalp donor site. **Figure 34** shows preparation of the donor site using the patterned perforated plate and spring-loaded pixilation device to create identical skin defects at the recipient site, under an embodiment. The recipient site of an embodiment is prepared for the mass transplant of the hair plugs using the same 10 perforated plate and spring-loaded pixilation device that was used at the donor site. Scalp defects are created at the recipient site. These scalp defects have the same geometry as the harvested plugs on the adherent membrane.

The adherent membrane carrying the harvested hair plugs is applied over the same pattern of scalp defects at recipient site. Row-by-row each follicle-bearing or hair- 15 bearing skin plug is inserted into its mirror image recipient defect. **Figure 35** shows transplantation of harvested plugs by inserting harvested plugs into a corresponding skin defect created at the recipient site, under an embodiment. Plug-to-plug alignment is maintained, so the hair that grows from the transplanted hair plugs lays as naturally as it did at the donor site. More uniform alignment between the native scalp and the 20 transplanted hair will also occur.

Clinical endpoints vary from patient to patient, but it is predicted that a higher percentage of hair plugs will “take” as a result of improved neovascularization. **Figure 36** shows a clinical end point using the pixel dermatome instrumentation and procedure, under an embodiment. The combination of better “takes”, shorter procedure times, and a 25 more natural-looking result, enable the pixel dermatome instrumentation and procedure of an embodiment to overcome the deficiencies in conventional hair transplant approaches.

Embodiments of pixelated skin grafting for skin defects and pixelated skin resection for skin laxity are described in detail herein. These embodiments remove a

field of skin pixels in an area of lax skin where skin tightening is desired. The skin defects created by this procedure (e.g., in a range of approximately 1.5-3 mm-diameter) are small enough to heal per primam without visible scarring; the wound closure of the multiple skin defects is performed directionally to produce a desired contouring effect.

5 Live animal testing of the pixel resection procedure has produced excellent results.

The pixel procedure of an embodiment is performed in an office setting under a local anesthetic but is not so limited. The surgeon uses the instrumentation of an embodiment to rapidly resect an array of skin pixels (e.g., circular, elliptical, square, etc.). Relatively little pain is associated with the procedure. The intradermal skin defects

10 generated during the procedure are closed with the application of an adherent Flexan (3M) sheet, but embodiments are not so limited. Functioning as a large butterfly

bandage, the Flexan sheet is pulled in a direction that maximizes the aesthetic contouring of the treatment area. A compressive elastic garment is then applied over the dressing to assist aesthetic contouring. During recovery, the patient wears a support garment over

15 the treatment area for a period of time (e.g., 5 days, etc.). After initial healing, the multiplicity of small linear scars within the treatment area is not visibly apparent.

Additional skin tightening will occur subsequently over several months from the delayed wound healing response. Consequently, the pixel procedure is a minimally invasive alternative for skin tightening in areas where the extensive scarring of traditional

20 aesthetic plastic surgery is to be avoided.

The pixel procedure evokes cellular and extracellular responses that are obligatory to the clinical outcomes achieved. A physical reduction of the skin surface area occurs due to the fractional resection of skin, which physically removes a portion of skin directly in the area of laxity. In addition, a subsequent tightening of the skin is realized from the 25 delayed wound healing response. Each pixilated resection initiates an obligate wound healing sequence. The healing response effected in an embodiment comprises three phases, as previously described in detail herein.

The first phase of this sequence is the inflammatory phase in which degranulation of mast cells releases histamine into the “wound”. Histamine release evokes dilatation of

the capillary bed and increases vessel permeability into the extracellular space. This initial wound healing response occurs within the first day and will be evident as erythema on the skin's surface.

Within days of "wounding", the second phase of healing, fibroplasia, commences.

5 During fibroplasia, there is migration and mitotic multiplication of fibroblasts. Fibroplasia has two key features: the deposition of neocollagen and the myofibroblastic contraction of the wound. Histologically, the deposition of neocollagen is identified microscopically as compaction and thickening of the dermis. Although this is a static process, the tensile strength of the skin significantly increases. Myofibroblastic 10 contraction is a dynamic physical process that results in two-dimensional tightening of the skin surface. This process is due to the active cellular contraction of myofibroblasts and the deposition of contractile proteins within the extracellular matrix. Overall, the effect of fibroplasia will be dermal contraction and the deposition of a static supporting scaffolding of neocollagen with a tightened framework. The clinical effect is realized as 15 a delayed tightening of skin with smoothing of skin texture over some number of months. The clinical endpoint is a more youthful appearing skin envelope of the treatment area.

A third and final phase of the delayed wound healing response is maturation.

During maturation, there is a strengthening and remodeling of the treatment area due to increased cross-linkage of the collagen fibril matrix (of the dermis). This final stage 20 commences within 6 to 12 months after "wounding" and may extend for at least 1-2 years. Small pixilated resections of skin should preserve the normal dermal architecture during maturation, but without the creation of a visually evident scar that typically occurs with a larger surgical resection of skin. Lastly, there is a related stimulation and rejuvenation of the epidermis from the release of epidermal growth hormone.

25 Figures 37-42 show images resulting from a pixel procedure conducted on a live animal, under an embodiment. Embodiments described herein were used in this proof-of-concept study in an animal model that verified the pixel procedure produces aesthetic skin tightening without visible scarring. The study used a live porcine model, anesthetized for the procedure. **Figure 37** is an image of the skin tattooed at the corners

and midpoints of the area to be resected, under an embodiment. The field margins of resection were demarcated with a tattoo for post-operative assessment, but embodiments are not so limited. The procedure was performed using a perforated plate (e.g., 10x10 pixel array) to designate the area for fractional resection. The fractional resection was 5 performed using biopsy punches (e.g., 1.5 mm diameter). **Figure 38** is an image of the post-operative skin resection field, under an embodiment. Following the pixel resection, the pixelated resection defects were closed (horizontally) with Flexan membrane.

Eleven days following the procedure, all resections had healed per primam in the area designated by the tattoo, and photographic and dimensional measurements were 10 made. **Figure 39** is an image at 11 days following the procedure showing resections healed per primam, with measured margins, under an embodiment. Photographic and dimensional measurements were subsequently made 29 days following the procedure. **Figure 40** is an image at 29 days following the procedure showing resections healed per primam and maturation of the resection field continuing per primam, with measured 15 margins, under an embodiment. **Figure 41** is an image at 29 days following the procedure showing resections healed per primam and maturation of the resection field continuing per primam, with measured lateral dimensions, under an embodiment. Photographic and dimensional measurements were repeated 90 days post-operative, and the test area skin was completely smooth to touch. **Figure 42** is an image at 90 days 20 post-operative showing resections healed per primam and maturation of the resection field continuing per primam, with measured lateral dimensions, under an embodiment.

Fractional resection as described herein is performed intradermally or through the entire thickness of the dermis. The ability to incise skin with a scalpel (e.g., round, square, elliptical, etc.) is enhanced with the addition of additional force(s). The 25 additional force includes force applied to the scalpel or scalpel array, for example, where the force comprises one or more of rotational force, kinetic impact force, and vibrational force, all of which are described in detail herein for skin fractional resection.

The scalpel device of an embodiment generally includes a scalpel assembly and a housing. The scalpel assembly includes a scalpel array, which comprises a number of

scalpets, and force or drive components. The scalpel assembly includes one or more alignment plates configured to retain and position the scalpets precisely according to the configuration of the scalpel array, and to transmit force (e.g., z-axis) from the operator to the subject tissue targeted for resection. The scalpel assembly includes spacers
5 configured to retain alignment plates at a fixed distance apart and coaxial with the scalpel array, but is not so limited.

A shell is configured to retain the spacers and the alignment plates, and includes attachment point(s) for the housing and drive shaft. The alignment plates and/or the spacers are attached or connected (e.g., snapped, welded (e.g., ultrasonic, laser, etc.),
10 heat-staked, etc.) into position in the shell, thereby providing a rigid assembly and discourages tampering or re-purposing of the scalpel array. Additionally, the shell protects the drive mechanism or gearing and scalpets from contamination during use and allows lubrication (if required) to be applied to the gearing to reduce the torque requirement and increase the life of the gears.

15 As an example of the application of force using the embodiments herein, the ability to incise skin with a circular scalpel is enhanced with the addition of a rotational torque. The downward axial force used to incise the skin is significantly reduced when applied in combination with a rotational force. This enhanced capability is similar to a surgeon incising skin with a standard scalpel where the surgeon uses a combination of
20 movement across the skin (kinetic energy) with the simultaneous application of compression (axial force) to more effectively cut the skin surface.

For piercing the skin, the amount of surface compression required is significantly reduced if a vertical kinetic force is employed simultaneously. For example, the use of a dart throwing technique for injections has been employed by healthcare providers for
25 several decades. An “impactor” action imparted on skin by a circular scalpel of an embodiment enhances this modality’s cutting capability by simultaneously employing axial compressive and axial kinetic forces. The axial compressive force used to incise the skin surface is significantly reduced if applied in combination with kinetic force.

Conventional biopsy punches are intended for a single use application in the removal of tissue, which is generally achieved by pushing the punch directly into the tissue along its central axis. Similarly, the fractional resection of an embodiment uses scalpets comprising a circular configuration. While the scalpets of an embodiment can be 5 used in a stand-alone configuration, alternative embodiments include scalpet arrays in which scalpets are bundled together in arrays of various sizes configured to remove sections of skin, but are not so limited. The force used to pierce the skin using the fractional resection scalpet is a function of the number of scalpets in the array, so that as the array size increases the force used to pierce the skin increases.

10 The ability to incise skin with a circular scalpet is significantly enhanced with a reduction in the force needed to pierce the skin introduced through the addition of a rotational motion around its central axis and/or an impact force along its central axis. **Figure 43** is a scalpet showing the applied rotational and/or impact forces, under an embodiment. This enhanced rotational configuration has an affect similar to a surgeon 15 incising skin with a standard scalpel where the surgeon uses a combination of movement across the skin (kinetic energy) with the simultaneous application of compression (axial force) to more effectively cut the skin surface. The impact force is similar to the use of a staple gun or by quickly moving a hypodermic needle prior to impacting the skin.

A consideration in the configuration of the scalpet rotation is the amount of torque 20 used to drive multiple scalpets at a preferred speed, because the physical size and power of the system used to drive the scalpet array increases as the required torque increases. To reduce the incisional force required in a scalpet array, rows or columns or segments of the array may be individually driven or sequentially driven during an array application. Approaches for rotating the scalpets include but are not limited to geared, helical, slotted, 25 inner helical, pin driven, and frictional (elastomeric).

The scalpet array configured for fractional resection using combined rotation and axial incision uses one or more device configurations for rotation. For example, the scalpet array of the device is configured to rotate using one or more of geared, external helical, inner helical, slotted, and pin drive rotating or oscillating mechanisms, but is not

so limited. Each of the rotation mechanisms used in various embodiments is described in detail herein.

Figure 44 shows a geared scalpel and an array including geared scalpets, under an embodiment. **Figure 45** is a bottom perspective view of a resection device including the scalpel assembly with geared scalpel array, under an embodiment. The device comprises a housing (depicted as transparent for clarity of details) configured to include the geared scalpel array for the application of rotational torque for scalpel rotation. **Figure 46** is a bottom perspective view of the scalpel assembly with geared scalpel array (housing not shown), under an embodiment. **Figure 47** is a detailed view of the geared scalpel array, under an embodiment.

The geared scalpel array includes a number of scalpets as appropriate to a resection procedure in which the array is used, and a gear is coupled or connected to each scalpel. For example, the gear is fitted over or around a scalpel, but the embodiment is not so limited. The geared scalpets are configured as a unit or array so that each scalpel rotates in unison with adjacent scalpets. For example, once fit, the geared scalpets are installed together in alignment plates so that each scalpel engages and rotates in unison with its adjacent four scalpets and is thereby retained in precise alignment. The geared scalpel array is driven by at least one rotating external shaft carrying a gear at the distal end, but is not so limited. The rotational shaft(s) is configured to provide or transmit the axial force, which compresses the scalpets of the array into the skin during incision.

Alternatively, axial force may be applied to the plates retaining the scalpets.

In an alternative embodiment, a frictional drive is used to drive or rotate the scalpets of the arrays. **Figure 48** shows an array including scalpets in a frictional drive configuration, under an embodiment. The frictional drive configuration includes an elastomeric ring around each scalpel, similar to gear placement in the geared embodiment, and frictional forces between the rings of adjacent scalpets in compression results in rotation of the scalpets similar to the geared array.

The resection devices comprise helical scalpel arrays, including but not limited to external and internal helical scalpel arrays. **Figure 49** shows a helical scalpel (external)

and an array including helical scalpets (external), under an embodiment. **Figure 50** shows side perspective views of a scalpet assembly including a helical scalpet array (left), and the resection device including the scalpet assembly with helical scalpet array (right) (housing shown), under an embodiment. **Figure 51** is a side view of a resection device 5 including the scalpet assembly with helical scalpet array assembly (housing depicted as transparent for clarity of details), under an embodiment. **Figure 52** is a bottom perspective view of a resection device including the scalpet assembly with helical scalpet array assembly (housing depicted as transparent for clarity of details), under an embodiment. **Figure 53** is a top perspective view of a resection device including the scalpet assembly with helical scalpet array assembly (housing depicted as transparent for clarity of details), under an embodiment. 10

10 scalpet assembly with helical scalpet array assembly (housing depicted as transparent for clarity of details), under an embodiment.

The helical scalpet configuration comprises a sleeve configured to fit over an end region of the scalpet, and an external region of the sleeve includes one or more helical threads. Once each scalpet is fitted with a sleeve, the sleeved scalpets are configured as a 15 unit or array so that each scalpet rotates in unison with the adjacent scalpets.

Alternatively, the helical thread is formed on or as a component of each scalpet.

The helical scalpet array is configured to be driven by a push plate that oscillates up and down along a region of the central axis of the scalpet array. **Figure 54** is a push plate of the helical scalpet array, under an embodiment. The push plate includes a 20 number of alignment holes corresponding to a number of scalpets in the array. Each alignment hole includes a notch configured to mate with the helical (external) thread on the scalpet sleeve. When the push plate is driven it causes rotation of each scalpet in the array. **Figure 55** shows the helical scalpet array with the push plate, under an embodiment.

25 The resection devices further comprise internal helical scalpet arrays. The device comprises a housing configured to include the helical scalpet array assembly for the application of rotational torque for scalpet rotation. **Figure 56** shows an inner helical scalpet and an array including inner helical scalpets, under an embodiment. The inner helical scalpet includes a twisted square rod (e.g., solid, hollow, etc.) or insert that is

fitted into an open end of the scalpet. Alternatively, the scalpet is configured to include a helical region. The twisted insert is held in place by bonding (e.g., crimping, bonding, brazing, welding, gluing, etc.) a portion of the scalpet around the insert. Alternative, the insert is held in place with an adhesive bond. Inner helical scalpets are then configured 5 as a unit or array so that each scalpet is configured to rotate in unison with the adjacent scalpets. The helical scalpet array is configured to be driven by a drive plate that moves or oscillates up and down along the helical region of each scalpet of the scalpet array. The drive plate includes a number of square alignment holes corresponding to a number of scalpets in the array. When the drive plate is driven up and down it causes rotation of 10 each scalpet in the array. **Figure 57** shows the helical scalpet array with the drive plate, under an embodiment.

Figure 58 shows a slotted scalpet and an array including slotted scalpets, under an embodiment. The slotted scalpet configuration comprises a sleeve configured to fit over an end region of the scalpet, and the sleeve includes one or more spiral slots. 15 Alternatively, each scalpet includes the spiral slot(s) without use of the sleeve. The sleeved scalpets are configured as a unit or array so that the top region of the slots of each scalpet are aligned adjacent one another. An external drive rod is aligned and fitted horizontally along the top of the slots. When the drive rod is driven downward, the result is a rotation of the scalpet array. **Figure 59** shows a portion of a slotted scalpet array 20 (e.g., four (4) scalpets) with the drive rod, under an embodiment. **Figure 60** shows an example slotted scalpet array (e.g., 25 scalpets) with the drive rod, under an embodiment.

Figure 61 shows an oscillating pin drive assembly with a scalpet, under an embodiment. The assembly includes a lower plate and a middle plate coupled or connected to the scalpet(s) and configured to retain the scalpet(s). A top plate, or drive 25 plate, is positioned in an area above the scalpet and the middle plate, and includes a drive slot or slot. A pin is coupled or connected to a top portion of the scalpet, and a top region of the pin extends beyond a top of the scalpet. The slot is configured to receive and loosely retain the pin. The slot is positioned relative to the pin such that rotation or

oscillation of the top plate causes the scalpet to rotate or oscillate via tracking of the pin in the slot.

The scalpet assembly includes an adjustment for control of the amount of scalpet exposure from the housing. The variable length scalpet exposure is controlled through 5 adjustments of the scalpet guide plates but is not so limited. **Figure 62** shows variable scalpet exposure control with the scalpet guide plates, under an embodiment. Alternative embodiments control scalpet exposure from within the scalpet array handpiece, and/or under one or more of software, hardware, and mechanical control.

Embodiments include a mechanical scalpet array in which axial force and 10 rotational force are applied manually by the compressive force from the device operator. **Figure 63** shows a scalpet assembly including a scalpet array (e.g., helical) configured to be manually driven by an operator, under an embodiment.

Embodiments include and/or are coupled or connected to a source of rotation configured to provide optimal rotation (e.g., RPM) and rotational torque to incise skin in 15 combination with axial force. Optimal rotation of the scalpets is configured according to the best balance between rotational velocity and increased cutting efficiency versus increased frictional losses. Optimal rotation for each scalpet array configuration is based on one or more of array size (number of scalpets), scalpet cutting surface geometry, material selection of scalpets and alignment plates, gear materials and the use of 20 lubrication, and mechanical properties of the skin, to name a few.

Regarding forces to be considered in configuration of the scalpets and scalpet arrays described herein, **Figure 64** shows forces exerted on a scalpet via application to the skin. The parameters considered in determining applicable forces under an embodiment include the following:

25 Average Scalpet Radius: r

Scalpet Rotation Rate: ω

Scalpet Axial Force: F_n (scalpet applied normal to skin)

Skin Friction Coefficient: μ

Friction Force: F_f

Scalpet Torque: τ

Motor Power: P_{hp} .

Upon initial application, the torque used to rotate the scalpet is a function of the 5 axial force (applied normally to the surface of the skin) and the coefficient of friction between the scalpet and the skin. This friction force initially acts on the cutting surface of the scalpet. At initial application of scalpet to skin:

$$F_f = \mu \cdot F_n$$

$$\tau = F_f \cdot r$$

10 $P_{hp} = \tau \cdot \omega / 63025$

The initial force for the scalpet to penetrate the skin, is a function of the scalpet sharpness, the axial force, the tensile strength of the skin, the coefficient of friction between the skin and the scalpet. Following penetration of the scalpet into the skin, the 15 friction force increases as there are additional friction forces acting on the side walls of the scalpet.

Resection devices of embodiments include kinetic impaction incision devices and methods for non-rotational piercing of the skin. Approaches for direct compression of the scalpet into the skin include, but are not limited to, axial force compression, single 20 axial force compression plus kinetic impact force, and moving of the scalpet at a high velocity to impact and pierce the skin. **Figure 65** depicts steady axial force compression using a scalpet, under an embodiment. Steady axial force compression places the scalpet in direct contact with the skin. Once in place, a continuous and steady axial force is applied to the scalpet until it pierces the skin and proceeds through the dermis to the 25 subcutaneous fat layer.

Figure 66 depicts steady single axial force compression plus kinetic impact force using a scalpet, under an embodiment. Steady single axial force compression plus kinetic impact force places the scalpet in direct contact with the skin. An axial force is applied to maintain contact. The distal end of the scalpet is then struck by another object, imparting

additional kinetic energy along the central axis. These forces cause the scalpet to pierce the skin and proceed through the dermis to the subcutaneous fat layer.

5 **Figure 67** depicts moving of the scalpet at a velocity to impact and pierce the skin, under an embodiment. The scalpet is positioned a short distance away from a target area of the skin. A kinetic force is applied to the scalpet to achieve a desired velocity for piercing the skin. The kinetic force causes the scalpet to pierce the skin and proceed through the dermis to the subcutaneous fat layer.

10 Scalpets of an embodiment include numerous cutting surface or blade geometries as appropriate to an incision method of a procedure involving the scalpet. The scalpet blade geometries include, for example, straight edge (e.g., cylindrical), beveled, multiple-needle tip (e.g., sawtooth, etc.), and sinusoidal, but are not so limited. As but one example, **Figure 68** depicts a multi-needle tip, under an embodiment:

15 The scalpets include one or more types of square scalpets, for example. The square scalpets include but are not limited to, square scalpets without multiple sharpened points, and square scalpets with multiple sharpened points or teeth. **Figure 69** shows a square scalpet without teeth (left), and a square scalpet with multiple teeth (right), under an embodiment.

20 The fractional resection devices of an embodiment involve the use of a square scalpet assembled onto a scalpet array that has multiple sharpened points to facilitate skin incising through direct non-rotational kinetic impacting. The square geometry of the harvested skin plug provides side-to-side and point-to-point approximation of the assembled skin plugs onto the adherent membrane. Closer approximation of the skin plugs provides a more uniform appearance of the skin graft at the recipient site. In addition, each harvested component skin plug will have additional surface area (e.g., 20-25%).

25 Further, the scalpets include one or more types of elliptical or round scalpets. The round scalpets include but are not limited to, round scalpets with oblique tips, round scalpets without multiple sharpened points or teeth, and round scalpets with multiple sharpened points or teeth. **Figure 70** shows multiple side, front (or back), and side

perspective views of a round scalpel with an oblique tip, under an embodiment. **Figure 71** shows a round scalpel with a serrated edge, under an embodiment.

The resection device of an embodiment is configured to include extrusion pins corresponding to the scalpels. **Figure 72** shows a side view of the resection device 5 including the scalpel assembly with scalpel array and extrusion pins (housing depicted as transparent for clarity of details), under an embodiment. **Figure 73** shows a top perspective cutaway view of the resection device including the scalpel assembly with scalpel array and extrusion pins (housing depicted as transparent for clarity of details), under an embodiment. **Figure 74** shows side and top perspective views of the scalpel 10 assembly including the scalpel array and extrusion pins, under an embodiment.

The extrusion pins of an embodiment are configured to clear retained skin plugs, for example. The extrusion pins of an alternative embodiment are configured to inject into fractional defects at the recipient site. The extrusion pins of another alternative embodiment are configured to inject skin plugs into pixel canisters of a docking station 15 for fractional skin grafting.

Embodiments herein include the use of a vibration component or system to facilitate skin incising with rotation torque/axial force and to use vibration to facilitate skin incising with direct impaction without rotation. **Figure 75** is a side view of a resection device including the scalpel assembly with scalpel array assembly coupled to a 20 vibration source, under an embodiment.

Embodiments herein include an electro-mechanical scalpel array generator. **Figure 76** shows a scalpel array driven by an electromechanical source or scalpel array generator, under an embodiment. The function of the generator is powered but is not electronically controlled, but embodiments are not so limited. The platform of an 25 embodiment includes control software.

Embodiments include and/or are coupled or connected to a supplementary energy or force configured to reduce the axial force used to incise skin (or another tissue surface such as mucosa) by a scalpel in a scalpel array. Supplemental energies and forces include

one or more of rotational torque, rotational kinetic energy of rotation (RPM), vibration, ultrasound, and electromagnetic energy (e.g., RF, etc.), but are not so limited.

5 Embodiments herein include a scalpet array generator comprising and/or coupled to an electromagnetic radiation source. The electromagnetic radiation source includes, for example, one or more of a Radio Frequency (RF) source, a laser source, and an ultrasound source. The electromagnetic radiation is provided to assist cutting with the scalpets.

10 Embodiments include a scalpet mechanism configured as a “sewing machine” scalpet or scalpet array in which the scalpets are repeatedly retracted and deployed under one or more of manual, electromechanical, and electronic control. This embodiment includes a moving scalpet or scalpet array to resect a site row-by-row. The resection can, for example take the form of a stamping approach where the scalpet or scalpet array moves, or the array could be rolled over the surface to be treated and the scalpet array resection at given distances traveled to achieve the desired resection density.

15 The fractional resection devices described herein are configured for fractional resection and grafting in which the harvesting of fractionally incised skin plugs is performed with a vacuum that deposits the plugs within the lumen of each scalpet shaft. The skin plugs are then inserted into a separate docking station described herein by a proximal pin array that extrudes the skin plug from within the shaft of the scalpet.

20 **Figure 77** is a diagram of the resection device including a vacuum system, under an embodiment. The vacuum system comprises vacuum tubing and a vacuum port on/in the device housing, configured to generate a vacuum within the housing by drawing air out of the housing. The vacuum of an embodiment is configured to provide vacuum stenting/fixturing of the skin for scalpet incising, thereby providing improved depth 25 control and cutting efficiency.

The vacuum of an alternative embodiment is configured for vacuum evacuation or harvesting of skin plugs and/or hair plugs through one or more of a scalpet lumen and an array manifold housing. **Figure 78** shows a vacuum manifold applied to a target skin surface to evacuate/harvest excised skin/hair plugs, under an embodiment. The vacuum

manifold, which is configured for direct application onto a skin surface, is coupled or connected to a vacuum source. **Figure 79** shows a vacuum manifold with an integrated wire mesh applied to a target skin surface to evacuate/harvest excised skin/hair plugs, under an embodiment.

5 Additionally, an external vacuum manifold is used with a suction-assisted lipectomy machine to percutaneously evacuate superficial sub-dermal fat through fractionally resection skin defects in a fractionally created field for the treatment of cellulite. **Figure 80** shows a vacuum manifold with an integrated wire mesh configured to vacuum subdermal fat, under an embodiment.

10 The external vacuum manifold can also be configured to include and be deployed with an incorporated docking station (described herein) to harvest skin plugs for grafting. The docking station can be one or more of static, expandable, and/or collapsible.

15 The fractional resection devices described herein comprise a separate docking station configured as a platform to assemble the fractionally harvested skin plugs into a more uniform sheet of skin for skin grafting. The docking station includes a perforated grid matrix comprising the same pattern and density of perforations as the scalpet on the scalpet array. A holding canister positioned subjacent to each perforation is configured to retain and maintain alignment of the harvested skin plug. In an embodiment, the epidermal surface is upward at the level of the perforation. In an alternative embodiment, 20 the docking station is partially collapsible to bring docked skin plugs into closer approximation prior to capture onto an adherent membrane. The captured fractional skin graft on the adherent membrane is then defatted with either an incorporated or non-incorporated transection blade. In another alternative embodiment, the adherent membrane itself has an elastic recoil property that brings or positions the captured skin 25 plugs into closed alignment. Regardless of embodiment, the contracted fractional skin graft/adherent membrane composite is then directly applied to the recipient site defect.

 Embodiments include a collapsible docking station or tray configured to accept and maintain orientation of harvested skin and/or hair plugs once they have been removed or ejected from the scalpet via the extrusion pins. **Figure 81** depicts a

collapsible docking station and an inserted skin pixel, under an embodiment. The docking station is formed from elastomeric material but is not so limited. The docking station is configured for stretching from a first shape to a second shape that aligns the pixel receptacles with the scalpet array on the handpiece. **Figure 82** is a top view of a 5 docking station (e.g., elastomeric) in stretched (left) and un-stretched (right) configuration, under an embodiment, under an embodiment.

The pixels are ejected from the scalpet array into the docking station until it is full, and the docking station is then relaxed to its pre-stretched shape, which has the effect of bringing the pixels in closer proximity to each other. A flexible semi-permeable 10 membrane with adhesive on one side is then stretched and placed over the docking station (adhesive side down). Once the pixels are adhered to the membrane, it is lifted away from the docking station. The membrane then returns to its normal un-stretched state, which also has the effect of pulling the pixels closer to each other. The membrane is then placed over the recipient defect.

15 Resection devices described herein include delivery of therapeutic agents through resectioned defects generated with the resection devices described herein. As such, the resection sites are configured for use as topically applied infusion sites for delivery or application of therapeutic agents for the reduction of fat cells (lipolysis) during or after a resectioning procedure.

20 Embodiments herein are configured for hair transplantation that includes vacuum harvesting of hair plugs into the scalpet at the donor site, and direct mass injection (without a separate collection reservoir) of harvested hair plugs into the fractionally resected defects of the recipient site. Under this embodiment, the donor scalpet array deployed at the occipital scalp comprises scalpets having a relatively larger diameter than 25 the constituent scalpets of the scalpet array deployed to generate defects at the recipient site. Following harvesting of hair plugs at the donor site, the defects generated at the recipient site are plugged using the harvested hair plugs transferred in the scalpet array.

Due to the elastic retraction of the incised dermis, the elastically retracted diameter of the hair plug harvested at the occipital scalp will be similar to the elastically

retracted diameter of the fractionally resected defect of the recipient site at the frontal-parietal-occipital scalp. In an embodiment, hair plugs harvested within the donor scalpet array are extruded directly with proximal pins in the lumen of the scalpet into a same pattern of fractionally defects created by the recipient site scalpet array. The scalpets 5 (containing the donor hair plugs) of the scalpet array deployed at the donor site are aligned (e.g., visually) with the same pattern of fractionally resected field of defects at the recipient scalp site. Upon alignment, a proximal pin within the shaft of each scalpet is advanced down the shaft of the scalpet to extrude the hair plug into the fractionally resected defect of the recipient site, thereby effecting a simultaneous transplantation of 10 multiple hair plugs to the recipient site. This mass transplantation of hair plugs into a fractionally resected recipient site (e.g., of a balding scalp) is more likely to maintain the hair shaft alignment with other mass transplanted hair plugs of that recipient scalp site. Directed closure of the donor site field is performed in the most clinically effective vector, but is not so limited.

15 The fractional resection devices described herein are configured for tattoo removal. Many patients later in life desire removal of pigmented tattoos for a variety of reasons. Generally, removal of a tattoo involves the removal of the impregnated pigment within the dermis. Conventional tattoo removal approaches have been described from thermal ablation of the pigment to direct surgical excision. Thermal ablation by lasers 20 frequently results in depigmentation or area surface scarring. Surgical excision of a tattoo requires the requisite linear scarring of a surgical procedure. For many patients, the tradeoff between tattoo removal and the sequela of the procedure can be marginal.

The use of fractional resection to remove a tattoo allows for fractional removal of a significant proportion of the dermal pigment with minimal visible scarring. The 25 fractional resection extends beyond the border of the tattoo to blend the resection into the non-resected and non-tattooed skin. Most apparently, de-delineation of the pattern of the tattoo will occur even if all residual pigment is not or cannot be removed. In an embodiment, initial fractional resections are performed with a scalpet array, and any subsequent fractional resections are performed by singular scalpet resections for residual

dermal pigment. As with other applications described herein, directed closure is performed in the most clinically effective vector.

The fractional resection devices described herein are configured for treatment of cellulite. This aesthetic deformity has resisted effective treatment for several decades as the pathologic mechanism of action is multifactorial. Cellulite is a combination of age or weight loss skin laxity with growth and accentuation of the superficial fat loculations. The unsightly cobblestone appearance of the skin is commonly seen in the buttocks and lateral thighs. Effective treatment should address each contributing factor of the deformity.

10 The fractional resection devices described herein are configured for fractional resection of the skin in order to tighten the affected skin and to simultaneously reduce the prominent fat loculations that are contributing to the cobblestone surface morphology. Through the same fractionally resected defects created for skin tightening, topically applied vacuum is used to suction the superficial fat loculations percutaneously. In an 15 embodiment, a clear manifold suction cannula is applied directly to the fractionally resected skin surface. The appropriate vacuum pressure used with the suction-assisted lipectomy (SAL) unit is determined by visually gauging that the appropriate amount of sub-dermal fat being suction resected. The appropriate time period of manifold application is also a monitored factor in the procedure. When combined with fractional 20 skin tightening, only a relatively small amount of fat is suction resected to produce a smoother surface morphology. As with other applications described herein, the fractionally resected field will be closed with directed closure.

The fractional resection devices described herein are configured for revision of abdominal striae and scarring. Visually apparent scarring is a deformity that requires 25 clear delineation of the scar from the adjacent normal skin. Delineation of the scar is produced by changes in texture, in pigment and in contour. To make a scar less visibly apparent, these three components of scarring must be addressed for a scar revision to significantly reduce the visual impact. Severe scars called contractures across a joint may also limit the range of motion. For the most part, scar revisions are performed surgically

where the scar is elliptically excised and carefully closed by careful coaptation of excised margins of the non-scarred skin. However, any surgical revision reintroduces and replaces the pre-existing scar with an incumbent surgical scar that may be also be delineated or only partially de-delineated by a Z or W plasty.

5 Scarring is bifurcated diagnostically into hypertrophic and hypotrophic types. The hypertrophic scar typically has a raised contour, irregular texture and is more deeply pigmented. In contrast, the hypotrophic scar has a depressed contour below the level of the adjacent normal unscarred skin. In addition, the color is paler (depigmented) and the texture is smoother than the normal adjacent skin. Histologically, hypertrophic scars 10 possess an abundance of disorganized dermal scar collagen with hyperactive melanocytes. Hypotrophic scars have a paucity of dermal collagen with little or no melanocytic activity.

The fractional resection devices described herein are configured for fractional scar revision of a scar that does not reintroduce additional surgical scarring but instead 15 significantly de-delineates the visual impact of the deformity. Instead of a linear surgically induced scar, the fractional resection of the scar results in a net reduction of the pigmentary, textural and contour components. A fractional revision is performed along the linear dimension of the scar and also extends beyond the boundary of the scar into the normal skin. The fractional revision of a scar involves the direct fractional excision of 20 scar tissue with micro-interlacing of the normal non-scarred skin with the residual scar. Essentially, a micro W-plasty is performed along the entire extent of the scar. As with other applications, the fractionally resected field is closed with directed closure. An example of the use of fractional revision includes revising a hypotrophic post-partum abdominal stria. The micro-interlacing of the depressed scar epithelium and dermis of 25 the stria with the adjacent normal skin significantly reduces the depressed, linear and hypo-pigmented appearance of this deformity.

The fractional resection devices described herein are configured for vaginal repair for postpartum laxity and prolapse. The vaginal delivery of a full term fetus involves in part the massive stretching of the vaginal introitus and vaginal canal. During delivery,

elongation of the longitudinal aspect of the vaginal canal occurs along with cross-sectional dilatation of the labia, vaginal introitus and vaginal vault. For many patients, the birth trauma results in a permanent stretching of the vaginal canal along the longitudinal and cross-sectional aspects. Vaginal repair for prolapse is typically 5 performed as an anterior-posterior resection of vaginal mucosa with insertion of prosthetic mesh. For patients with severe prolapse, this procedure is required as addition support of the anterior and posterior vaginal wall is needed. However, many patients with post-partum vaginal laxity may be candidates for a less invasive procedure.

10 The fractional resection devices described herein are configured for fractional resection of the vaginal mucosa circumferentially to narrow the dilated vaginal canal at the labia and the introitus. The pattern for fractional resection can also be performed in a longitudinal dimension when the vaginal canal is elongated. Directed closure of the fractional field can be assisted with a vacuum tampon that will act as stent to shaped the fractionally resected vaginal canal into a pre-partum configuration.

15 The fractional resection devices described herein are configured for treatment of snoring and sleep apnea. There are few health implications of snoring but the disruptive auditory effect upon the relationship of sleeping partners can be severe. For the most part, snoring is due to the dysphonic vibration of intraoral and pharyngeal soft tissue structures within the oral, pharyngeal and nasal cavities during inspiration and expiration. 20 More specifically, the vibration of the soft palate, nasal turbinates, lateral pharyngeal walls and base of the tongue are the key anatomic structures causing snoring. Many surgical procedures and medical devices have had limited success in ameliorating the condition. Surgical reductions of the soft palate are frequently complicated with a prolonged and painful recovery due to bacterial contamination of the incision site.

25 The fractional resection devices described herein are configured for fractional resection of the oropharyngeal mucosa in order to reduce the age related mucosal redundancy (and laxity) of intraoral and pharyngeal soft tissue structures and not be complicated with prolonged bacterial contamination of the fractional resection sites. The reduction in size and laxity of these structures reduces vibration caused by the passage of

air. A perforated (to spray a topical local anesthetic onto the fractional resection field) intraoral dental retainer (that is secured to the teeth and wraps around the posterior aspect of the soft palate) is used to provide directed closure in the anterior-posterior dimension of the soft palate. A more severe condition called sleep apnea does have serious health 5 implications due to the hypoxia caused by upper airway obstruction during sleep. Although CPAP has become a standard for the treatment of sleep apnea, selective fractional resection of the base of the tongue and the lateral pharyngeal walls can significantly reduce sleep related upper airway obstruction.

The fractional resection devices described herein are configured for fractional 10 skin culturing/expansion, also referred to herein as “Culturespansion”. The ability to grow skin organotypically would be a major accomplishment for patients with large skin defects such as burns and trauma and major congenital skin malformations such port-wine stains and large ‘bathing trunk’ nevi. Conventional capability is limited to providing prolonged viability of harvested skin, although some reports have indicated 15 that wound healing has occurred with organotypic skin cultured specimens. It has been reported that enhanced cultured outcomes will occur with better substrates, cultured media and more effective filtration of metabolic byproducts. The use of gene expression proteinomics for growth hormone and wound healing stimulation is also promising. To date however, there is no report that skin has been grown organotypically.

20 The fractional harvesting of autologous donor skin for skin grafting under an embodiment provides an opportunity in the organotypic culture of skin that did not previously exist. The deposition of a fractionally harvested skin graft onto a collapsible docking station, as provided by the embodiments described herein, enables skin plugs to be brought into contact apposition with each other. The induction of a primary wound 25 healing process can convert a fractional skin graft into a solid sheet by known or soon to be developed organotypic culture methodology. Further, the use of mechanical skin expansion can also greatly increase the surface area of the organotypically preserved/grown skin. Invitro substrate device iterations include without limitation, an expandable docking station comprising fractionally harvested skin plugs and a separate substrate

(e.g., curved, flat, etc.) expander that is controllable to provide a gradual and continual expansion of the full thickness organotypically cultured skin. Additionally, the use of organotypic skin expansion may provide a continual and synergistic wound-healing stimulus for organotypic growth. A gradual and continual expansion is less likely to

5 delaminate (the basement membrane) the epidermis from the dermis. Additionally, organotypic skin expansion helps avoid the surgical risk and pain associated in-vivo skin expansion.

The fractional resection devices described herein enable methods for the organotypic expansion of skin. The methods comprise an autologous fractional harvest

10 of skin from a donor site of a patient. The use of a square scalpet array, for example, provides upon transfer side-to-side and tip-to-tip coaptation of fractionally harvested skin plugs. The method comprises transfer of the fractional skin plugs to a collapsible docking station that maintains orientation and provides apposition of skin plugs. The docked skin plugs are captured onto a porous adherent membrane that maintains

15 orientation and apposition. The semi-elastic recoil property of the adherent membrane provides additional contact and apposition of skin plugs. The method includes transfer of the adherent membrane/fractional graft composite to a culture bay comprising a substrate and a culture media that retains viability and promotes organotypic wound healing and growth. Following healing of skin plug margins, the entire substrate is placed into a

20 culture bath that has a mechanical expander substrate. Organotypic expansion is then initiated in a gradual and continuous fashion. The expanded full thickness skin is then autologously grafted to the patient's recipient site defect.

Organotypic skin expansion can be performed on non-fractional skin grafts or more generally, on any other tissue structure as organotypic expansion. The use of

25 mechanical stimulation to evoke a wound healing response for organotypic culture can also be an effective adjunct.

Embodiments described herein include a system comprising a housing configured to include a scalpet assembly. The scalpet assembly comprises a scalpet array and at least one guide plate. The scalpet array includes a plurality of scalpets. At least one

guide plate maintains a configuration of the plurality of scalpets. The scalpet array is configured to be deployed from and retracted into the housing. The scalpet array is configured to generate a plurality of incised skin pixels at a target site when deployed. A drive system coupled to the scalpet array and configured to couple a force to the scalpet array for the generation of the plurality of incised skin pixels.

5 Embodiments described herein include a system comprising a housing configured to include a scalpet assembly; the scalpet assembly comprising a scalpet array and at least one guide plate, wherein the scalpet array includes a plurality of scalpets, wherein the at least one guide plate maintains a configuration of the plurality of scalpets, wherein the scalpet array is configured to be deployed from and retracted into the housing, wherein the scalpet array is configured to generate a plurality of incised skin pixels at a target site when deployed; a drive system coupled to the scalpet array and configured to couple a force to the scalpet array for the generation of the plurality of incised skin pixels.

10 The drive system is configured to apply rotational force to the scalpet array, wherein the rotational force is configured to rotate at least a set of the plurality of scalpets.

15 The drive system comprises a geared drive system.

The geared drive system comprises a gear component configured to be driven to deliver a rotational force to the scalpet array.

20 The gear component includes a gear.

Each scalpet is coupled to the gear.

Each scalpet comprises the gear.

The drive system comprises a frictional drive system.

25 The frictional drive system is configured to generate frictional forces through a compressive component of at least a set of the plurality of scalpets, wherein the frictional forces are configured to rotate at least a set of the plurality of scalpets.

The compressive component includes an elastomeric ring.

Each scalpet is coupled to the elastomeric ring.

Each scalpet comprises the elastomeric ring.

The drive system comprises a helical drive system.

The helical drive system comprises a push plate configured for up and down movement relative to the scalpet array.

5 The push plate comprises a plurality of openings configured to align the plurality of scalpets, wherein at least one opening of the plurality of openings includes a notch configured to receive a helical component of at least one scalpet.

The helical component includes an external thread.

A scalpet is coupled to a sleeve comprising the helical component.

A scalpet comprises the helical component.

10 The drive system comprises a slotted drive system.

The slotted drive system comprises a drive rod configured to couple with a slotted component of the scalpet array, wherein the drive rod is configured for up and down movement relative to the scalpet array.

The slotted component includes a slot configured to receive the drive rod.

15 Each scalpet comprises the slot.

Each scalpet comprises a sleeve, and the sleeve comprises the slot.

The drive system comprises an inner helical drive system.

The inner helical drive system comprises a push plate configured for up and down movement relative to the scalpet array.

20 The push plate comprises a plurality of openings configured to align the plurality of scalpets, wherein at least one opening of the plurality of openings is configured to receive a helical component of at least one scalpet.

The helical component includes a threaded insert.

A scalpet is configured to receive the helical component.

25 A scalpet comprises the helical component.

The scalpet assembly is configured to transmit an axial force to the target site.

The axial force comprises a continuous axial force.

The axial force comprises a continuous axial force and an impact force.

The axial force comprises an impact force.

At least one scalpet of the scalpet array comprises a cylindrical scalpet including a cutting surface on a distal end of the scalpet.

The cutting surface includes a sharpened edge.

The cutting surface includes at least one sharpened point.

5 The cutting surface includes a serrated edge.

The cutting surface includes at least one radius of curvature.

At least one scalpet of the scalpet array comprises a rectangular scalpet including a cutting surface on a distal end of the scalpet.

The cutting surface includes a sharpened edge.

10 The cutting surface includes at least one sharpened point.

The cutting surface includes a serrated edge.

At least one scalpet of the scalpet array comprises a through orifice.

The system comprises an extrusion system configured to include a plurality of extrusion pins.

15 The plurality of extrusion pins corresponds to the plurality of scalpets.

Each extrusion pin is aligned with a corresponding scalpet of the plurality of scalpets.

The plurality of extrusion pins is configured to clear the plurality of incised skin plugs from an interior of the plurality of scalpets.

20 The plurality of extrusion pins is configured to inject the plurality of incised skin plugs into a fractional defect at a recipient site.

The plurality of extrusion pins is configured to inject the plurality of incised skin plugs into pixel canisters of a docking station.

25 The extrusion system includes an ejector component coupled to the plurality of extrusion pins, wherein the ejector component is configured to control movement of the plurality of extrusion pins into and out of an interior region of the plurality of scalpets.

The system comprises a docking station including a plurality of pixel receptacles, wherein the docking station is configured to receive the plurality of incised skin plugs removed from the target site.

The docking station is configured to maintain orientation of the plurality of incised skin plugs removed from the target site.

The docking station is configured to be reshaped between a first configuration and a second configuration, wherein the second configuration aligns the plurality of pixel receptacles with the plurality of scalpets of the scalpet array.

The first configuration places the plurality of pixel receptacles in relatively closer proximity than the second configuration.

The docking station comprises an elastomeric material.

The system comprises an adherent substrate configured to capture the plurality of incised skin pixels from the docking station.

The adherent substrate is configured to maintain relative positioning of the plurality of incised skin pixels during transfer to and application at a recipient site.

The adherent substrate is configured to apply the incised skin pixels to the skin defects at the recipient site.

The adherent substrate is configured to align the incised skin pixels with the skin defects at the recipient site.

The adherent substrate is configured to insert each incised skin pixel into a corresponding skin defect at the recipient site.

The system comprises a vibration system coupled to the scalpet array.

The vibration system is configured to couple vibratory force to the scalpet array.

The system comprises an electromagnetic system coupled to the scalpet array.

The electromagnetic system is configured to couple electromagnetic energy to the scalpet array, wherein the electromagnetic energy includes at least one of radio frequency (RF) energy, laser energy, and ultrasonic energy.

The at least one guide plate includes a plurality of guide plates.

The system comprises a plurality of spacers configured to control and maintain a distance between the plurality of guide plates.

At least one guide plate is configured to establish the configuration of the plurality of scalpets.

At least one guide plate is configured to transfer the force to the target site.

A position of the plurality of scalpets is configured to be adjustable, wherein the adjustable position controls a depth of insertion of the plurality of scalpets at the target site when the scalpel array is deployed.

5 At least one guide plate is configured for use in the adjustment of the position of the plurality of scalpets.

The system comprises a vacuum system coupled to the housing, wherein the vacuum system generates a vacuum at the target site, wherein the vacuum comprises pressure relatively lower than ambient air pressure.

10 The scalpel array is configured to maintain the vacuum at the target site.

The vacuum is configured to evacuate the incised skin pixels from the target site via the plurality of scalpets.

The housing is configured to maintain the vacuum at the target site.

15 The vacuum is configured to evacuate the incised skin pixels from the target site via the housing.

The system comprises a vacuum component.

The vacuum component is configured to evacuate the incised skin pixels from the target site.

20 The vacuum component is configured to evacuate subdermal fat via voids generated at the target site from the incised skin pixels.

The vacuum component includes a vacuum manifold coupled to a vacuum source.

The drive system comprises an oscillating drive system configured to oscillate at least one scalpel of the scalpel array.

25 The oscillating drive system comprises a drive plate configured to oscillate between two positions.

The oscillating drive system comprises a drive pin having a distal end configured to couple with the at least one scalpel.

The drive plate includes at least one of an orifice and a slot configured to receive a proximal end of the drive pin.

The system comprises an adherent substrate configured to capture the plurality of incised skin pixels.

The adherent substrate comprises at least one of a flexible substrate and a semi-porous membrane.

5 The target site includes a recipient site, wherein the incised skin pixels generate skin defects at the recipient site.

The skin defects are configured to evoke neovascularization in the incised skin pixels inserted at the recipient site.

10 The skin defects are configured to evoke a wound healing response in the incised skin pixels inserted at the recipient site.

The target site includes a donor site, wherein the plurality of incised skin pixels is harvested at the donor site.

The target site includes a recipient site, wherein the incised skin pixels generate skin defects at the recipient site.

15 The system comprises an adherent substrate configured to capture the plurality of incised skin pixels at the donor site and transfer the plurality of incised skin pixels to the recipient site.

The adherent substrate is configured to maintain relative positioning of the plurality of incised skin pixels during transfer to and application at the recipient site.

20 The adherent substrate is configured to apply the incised skin pixels to the skin defects at the recipient site.

The adherent substrate is configured to align the incised skin pixels with the skin defects at the recipient site.

25 The adherent substrate is configured to insert each incised skin pixel into a corresponding skin defect at the recipient site.

The system comprises at least one bandage configured for application at the target site.

The at least one bandage is configured to apply force to close the target site.

The at least one bandage is configured to apply directional force to control a direction of the closure at the target site.

The system comprises a cutting member configured to transect the incised skin pixels.

5 The system comprises an adherent substrate configured to capture the incised skin pixels.

The incised skin pixels include hair follicles.

Embodiments described herein include a system comprising a housing configured to include a scalpet assembly. The scalpet assembly comprises a scalpet array and a 10 guide plate. The scalpet array includes a set of scalpets. The guide plate maintains a configuration of the set of scalpets. The scalpet array is configured to be deployed from and retracted into the housing. The scalpet array is configured to generate incised skin pixels at a target site when deployed. The system includes a drive system coupled to the scalpet array and configured to couple a force to the scalpet array.

15 Embodiments described herein include a system comprising a housing configured to include a scalpet assembly; the scalpet assembly comprising a scalpet array and a guide plate, wherein the scalpet array includes a set of scalpets, wherein the guide plate maintains a configuration of the set of scalpets, wherein the scalpet array is configured to be deployed from and retracted into the housing, wherein the scalpet array is configured 20 to generate incised skin pixels at a target site when deployed; and a drive system coupled to the scalpet array and configured to couple a force to the scalpet array.

Embodiments described herein include a system comprising a housing configured 25 to include a scalpet assembly. The scalpet assembly comprises a scalpet array and an extrusion array. The scalpet array includes a plurality of scalpets and at least one guide plate configured to establish an alignment of the plurality of scalpets. The scalpet array is configured to be deployed from the housing to generate a plurality of incised skin pixels at a target site. The extrusion array includes a plurality of extrusion pins corresponding to and aligned relative to the plurality of scalpets. The plurality of extrusion pins is configured to be inserted into and clear an interior of the plurality of scalpets.

5 Embodiments described herein include a system comprising a housing configured to include a scalpet assembly; the scalpet assembly comprising a scalpet array and an extrusion array, wherein the scalpet array includes a plurality of scalpets and at least one guide plate configured to establish an alignment of the plurality of scalpets, wherein the scalpet array is configured to be deployed from the housing to generate a plurality of incised skin pixels at a target site, wherein the extrusion array includes a plurality of extrusion pins corresponding to and aligned relative to the plurality of scalpets, wherein the plurality of extrusion pins are configured to be inserted into and clear an interior of the plurality of scalpets.

10 Embodiments described herein include a system comprising a housing configured to include a scalpet assembly. The scalpet assembly comprises a scalpet array and an extrusion array. The scalpet array includes a plurality of scalpets and at least one guide plate configured to establish an alignment of the plurality of scalpets. The scalpet array is configured to be deployed from the housing to generate a plurality of incised skin pixels 15 at a target site. The extrusion array includes a plurality of extrusion pins corresponding to and aligned relative to the plurality of scalpets. The plurality of extrusion pins is configured to be inserted into and clear an interior of the plurality of scalpets. The system includes a drive system coupled to the scalpet array and configured to couple a force to the scalpet array for the generation of the plurality of incised skin pixels.

20 Embodiments described herein include a system comprising a housing configured to include a scalpet assembly. The scalpet assembly comprises a scalpet array and an extrusion array. The scalpet array includes a plurality of scalpets and at least one guide plate configured to establish an alignment of the plurality of scalpets. The scalpet array is configured to be deployed from the housing to generate a plurality of incised skin pixels 25 at a target site. The extrusion array includes a plurality of extrusion pins corresponding to and aligned relative to the plurality of scalpets. The plurality of extrusion pins is configured to be inserted into and clear an interior of the plurality of scalpets. The system includes a drive system coupled to the scalpet array and configured to couple a force to the scalpet array for the generation of the plurality of incised skin pixels.

Embodiments described herein include a system comprising a housing configured to include a scalpet assembly; the scalpet assembly comprising a scalpet array and an extrusion array, wherein the scalpet array includes a plurality of scalpets and at least one guide plate configured to establish an alignment of the plurality of scalpets, wherein the scalpet array is configured to be deployed from the housing to generate a plurality of incised skin pixels at a target site, wherein the extrusion array includes a plurality of extrusion pins corresponding to and aligned relative to the plurality of scalpets, wherein the plurality of extrusion pins are configured to be inserted into and clear an interior of the plurality of scalpets; a drive system coupled to the scalpet array and configured to couple a force to the scalpet array for the generation of the plurality of incised skin pixels.

Embodiments described herein include a system comprising a housing configured to include a scalpet assembly. The scalpet assembly comprises a scalpet array and a guide plate. The scalpet array includes a set of scalpets. The guide plate maintains a configuration of the set of scalpets. The scalpet array is configured to be deployed from and retracted into the housing at each target site of a plurality of target sites. The scalpet array is configured to generate incised skin pixels at each target site when deployed. The system includes a drive system coupled to the scalpet array. The drive system is configured to couple a force to the scalpet array for the generation of the incised skin pixels.

Embodiments described herein include a system comprising a housing configured to include a scalpet assembly; the scalpet assembly comprising a scalpet array and a guide plate, wherein the scalpet array includes a set of scalpets, wherein the guide plate maintains a configuration of the set of scalpets, wherein the scalpet array is configured to be deployed from and retracted into the housing at each target site of a plurality of target sites, wherein the scalpet array is configured to generate incised skin pixels at each target site when deployed; a drive system coupled to the scalpet array, wherein the drive system is configured to couple a force to the scalpet array for the generation of the incised skin pixels.

5 Embodiments described herein include a system comprising a housing configured to include a scalpel assembly. The scalpel assembly comprises a scalpel array and at least one guide plate. The scalpel array includes a plurality of scalpels. At least one guide plate maintains a configuration of the plurality of scalpels. Each scalpel of the scalpel array is configured to be separately deployed from and retracted into the housing in succession. Deployment of the plurality of scalpels is configured to generate a plurality of incised skin pixels at a target site. The system includes a drive system coupled to the scalpel array and configured to couple a force to the scalpel array for the generation of the plurality of incised skin pixels.

10 Embodiments described herein include a system comprising a housing configured to include a scalpel assembly; the scalpel assembly comprising a scalpel array and at least one guide plate, wherein the scalpel array includes a plurality of scalpels, wherein the at least one guide plate maintains a configuration of the plurality of scalpels, wherein each scalpel of the scalpel array is configured to be separately deployed from and retracted 15 into the housing in succession, wherein deployment of the plurality of scalpels is configured to generate a plurality of incised skin pixels at a target site; a drive system coupled to the scalpel array and configured to couple a force to the scalpel array for the generation of the plurality of incised skin pixels.

20 Embodiments described herein include a system comprising a housing configured to include a scalpel assembly. The scalpel assembly comprises a scalpel array and at least one guide plate. The scalpel array includes a set of scalpels. At least one guide plate maintains a configuration of the set of scalpels. Each scalpel of the scalpel array is configured to be separately deployed from and retracted into the housing in succession. Deployment of the plurality of scalpels is configured to generate a plurality of incised 25 skin pixels at a target site. The system includes a drive system coupled to the scalpel array and configured to couple a force to the scalpel array for the generation of the plurality of incised skin pixels.

Embodiments described herein include a system comprising a housing configured to include a scalpel assembly; the scalpel assembly comprising a scalpel array and at least

one guide plate, wherein the scalpet array includes a set of scalpets, wherein the at least one guide plate maintains a configuration of the set of scalpets, wherein each scalpet of the scalpet array is configured to be separately deployed from and retracted into the housing in succession, wherein deployment of the plurality of scalpets is configured to 5 generate a plurality of incised skin pixels at a target site; a drive system coupled to the scalpet array and configured to couple a force to the scalpet array for the generation of the plurality of incised skin pixels.

Embodiments described herein include a method comprising positioning at a target site a housing comprising a scalpet assembly. The scalpet assembly includes a 10 scalpet array and at least one guide plate. The scalpet array includes a plurality of scalpets. At least one guide plate maintains a configuration of the plurality of scalpets. The method includes deploying the scalpet array from the housing into tissue at the target site and generating a plurality of incised skin pixels at the target site when deployed. The deploying includes coupling a force of a drive system of the scalpet assembly to the 15 scalpet array. The method includes retracting the scalpet array into the housing from the target site.

Embodiments described herein include a method comprising positioning at a target site a housing comprising a scalpet assembly, wherein the scalpet assembly includes a scalpet array and at least one guide plate, wherein the scalpet array includes a 20 plurality of scalpets, wherein the at least one guide plate maintains a configuration of the plurality of scalpets; deploying the scalpet array from the housing into tissue at the target site and generating a plurality of incised skin pixels at the target site when deployed, wherein the deploying includes coupling a force of a drive system of the scalpet assembly to the scalpet array; retracting the scalpet array into the housing from the target site.

25 The drive system is configured to apply rotational force to the scalpet array, wherein the rotational force is configured to rotate at least a set of the plurality of scalpets.

The drive system comprises a geared drive system.

The geared drive system comprises a gear component driven to deliver a rotational force to the scalpet array.

The gear component includes a gear.

Each scalpet is coupled to the gear.

5 Each scalpet comprises the gear.

The drive system comprises a frictional drive system.

The frictional drive system generates frictional forces through a compressive component of at least a set of the plurality of scalpets, wherein the frictional forces rotate at least a set of the plurality of scalpets.

10 The compressive component includes an elastomeric ring.

Each scalpet is coupled to the elastomeric ring.

Each scalpet comprises the elastomeric ring.

The drive system comprises a helical drive system.

15 The helical drive system comprises a push plate moving up and down relative to the scalpet array.

The push plate comprises a plurality of openings aligning the plurality of scalpets, wherein at least one opening of the plurality of openings includes a notch receiving a helical component of at least one scalpet.

The helical component includes an external thread.

20 A scalpet is coupled to a sleeve comprising the helical component.

A scalpet comprises the helical component.

The drive system comprises a slotted drive system.

The slotted drive system comprises a drive rod coupling with a slotted component of the scalpet array and moving scalpet array up and down.

25 The slotted component includes a slot receiving the drive rod.

Each scalpet comprises the slot.

Each scalpet comprises a sleeve, and the sleeve comprises the slot.

The drive system comprises an inner helical drive system.

The inner helical drive system comprises a push plate moving up and down relative to the scalpet array.

The push plate comprises a plurality of openings aligning the plurality of scalpets, wherein at least one opening of the plurality of openings receives a helical component of 5 at least one scalpet.

The helical component includes a threaded insert.

A scalpet receives the helical component.

A scalpet comprises the helical component.

The scalpet assembly transmits an axial force to the target site.

10 The axial force comprises a continuous axial force.

The axial force comprises a continuous axial force and an impact force.

The axial force comprises an impact force.

At least one scalpet of the scalpet array comprises a cylindrical scalpet including a cutting surface on a distal end of the scalpet.

15 The cutting surface includes a sharpened edge.

The cutting surface includes at least one sharpened point.

The cutting surface includes a serrated edge.

The cutting surface includes at least one radius of curvature.

20 At least one scalpet of the scalpet array comprises a rectangular scalpet including a cutting surface on a distal end of the scalpet.

The cutting surface includes a sharpened edge.

The cutting surface includes at least one sharpened point.

The cutting surface includes a serrated edge.

At least one scalpet of the scalpet array comprises a through orifice.

25 The method comprises an extrusion system configured to include a plurality of extrusion pins.

The plurality of extrusion pins corresponds to the plurality of scalpets.

Each extrusion pin is aligned with a corresponding scalpet of the plurality of scalpets.

The plurality of extrusion pins clears the plurality of incised skin plugs from an interior of the plurality of scalpets.

The plurality of extrusion pins injects the plurality of incised skin plugs into a fractional defect at a recipient site.

5 The plurality of extrusion pins injects the plurality of incised skin plugs into pixel canisters of a docking station.

The extrusion system includes an ejector component coupled to the plurality of extrusion pins, wherein the ejector component controls movement of the plurality of extrusion pins into and out of an interior region of the plurality of scalpets.

10 The method comprises a docking station including a plurality of pixel receptacles, wherein the docking station receives the plurality of incised skin plugs removed from the target site.

The docking station maintains orientation of the plurality of incised skin plugs removed from the target site.

15 The docking station is reshaped between a first configuration and a second configuration, wherein the second configuration aligns the plurality of pixel receptacles with the plurality of scalpets of the scalpet array.

The first configuration places the plurality of pixel receptacles in relatively closer proximity than the second configuration.

20 The docking station comprises an elastomeric material.

An adherent substrate capturing the plurality of incised skin pixels from the docking station.

The adherent substrate maintains relative positioning of the plurality of incised skin pixels during transfer to and application at a recipient site.

25 The adherent substrate applies the incised skin pixels to the skin defects at the recipient site.

The adherent substrate aligns the incised skin pixels with the skin defects at the recipient site.

The adherent substrate inserts each incised skin pixel into a corresponding skin defect at the recipient site.

The method comprises a vibration system coupled to the scalpet array.

The vibration system couples vibratory force to the scalpet array.

5 The method comprises an electromagnetic system coupled to the scalpet array.

The electromagnetic system couples electromagnetic energy to the scalpet array, wherein the electromagnetic energy includes at least one of radio frequency (RF) energy, laser energy, and ultrasonic energy.

The at least one guide plate includes a plurality of guide plates.

10 The method comprises a plurality of spacers controlling and maintaining a distance between the plurality of guide plates.

The at least one guide plate establishes the configuration of the plurality of scalpets.

The at least one guide plate transfers the force to the target site.

15 The method comprises adjusting a position of the plurality of scalpets, wherein the adjustable position controls a depth of insertion of the plurality of scalpets at the target site when the scalpet array is deployed.

The method comprises using the at least one guide plate in the adjustment of the position of the plurality of scalpets.

20 The method comprises a vacuum system coupled to the housing, wherein the vacuum system generates a vacuum at the target site, wherein the vacuum comprises pressure relatively lower than ambient air pressure.

The scalpet array maintains the vacuum at the target site.

25 The vacuum evacuates the incised skin pixels from the target site via the plurality of scalpets.

The housing maintains the vacuum at the target site.

The vacuum evacuates the incised skin pixels from the target site via the housing.

The method comprises a vacuum component.

The vacuum component evacuates the incised skin pixels from the target site.

The vacuum component evacuates subdermal fat via voids generated at the target site from the incised skin pixels.

The vacuum component includes a vacuum manifold coupled to a vacuum source.

The drive system comprises an oscillating drive system oscillating at least one

5 scalpel of the scalpel array.

The oscillating drive system comprises a drive plate oscillating between two positions.

The oscillating drive system comprises a drive pin having a distal end coupling with the at least one scalpel.

10 The drive plate includes at least one of an orifice and a slot receiving a proximal end of the drive pin.

The method comprises an adherent substrate capturing the plurality of incised skin pixels.

15 The adherent substrate comprises at least one of a flexible substrate and a semi-porous membrane.

The target site includes a recipient site, wherein the incised skin pixels generate skin defects at the recipient site.

The skin defects evoke neovascularization in the incised skin pixels inserted at the recipient site.

20 The skin defects evoke a wound healing response in the incised skin pixels inserted at the recipient site.

The target site includes a donor site, wherein the plurality of incised skin pixels is harvested at the donor site.

25 The target site includes a recipient site, wherein the incised skin pixels generate skin defects at the recipient site.

The method comprises an adherent substrate capturing the plurality of incised skin pixels at the donor site and transferring the plurality of incised skin pixels to the recipient site.

The adherent substrate maintains relative positioning of the plurality of incised skin pixels during transfer to and application at the recipient site.

The adherent substrate applies the incised skin pixels to the skin defects at the recipient site.

5 The adherent substrate aligns the incised skin pixels with the skin defects at the recipient site.

The adherent substrate inserts each incised skin pixel into a corresponding skin defect at the recipient site.

The method comprises applying at least one bandage at the target site.

10 The at least one bandage applies force to close the target site.

The at least one bandage applies directional force to control a direction of the closure at the target site.

The method comprises a cutting member transecting the incised skin pixels.

The method comprises an adherent substrate capturing the incised skin pixels.

15 The incised skin pixels include hair follicles.

Embodiments described herein include a method comprising positioning at a target site a housing comprising a scalpet assembly. The scalpet assembly includes a scalpet array and a guide plate. The scalpet array includes a set of scalpets. The guide plate maintains a configuration of the set of scalpets. The method includes deploying the scalpet array from the housing into tissue at the target site and generating incised skin pixels at a target site when deployed. The deploying includes coupling a force of a drive system of the scalpet assembly to the scalpet array. The method includes retracting the scalpet array into the housing from the target site.

20 Embodiments described herein include a method comprising positioning at a target site a housing comprising a scalpet assembly, wherein the scalpet assembly includes a scalpet array and a guide plate, wherein the scalpet array includes a set of scalpets, wherein the guide plate maintains a configuration of the set of scalpets; deploying the scalpet array from the housing into tissue at the target site and generating incised skin pixels at a target site when deployed, wherein the deploying includes

coupling a force of a drive system of the scalpet assembly to the scalpet array; retracting the scalpet array into the housing from the target site.

Embodiments described herein include a method comprising positioning at a target site a housing comprising a scalpet assembly. The scalpet assembly includes a scalpet array and an extrusion array. The scalpet array includes a plurality of scalpets and at least one guide plate configured to establish an alignment of the plurality of scalpets. The extrusion array includes a plurality of extrusion pins corresponding to and aligned relative to the plurality of scalpets. The method includes deploying the scalpet array from the housing into tissue at the target site and generating a plurality of incised skin pixels at the target site when deployed. The method includes retracting the scalpet array into the housing from the target site. The method includes inserting the plurality of extrusion pins into and clearing an interior of the plurality of scalpets.

Embodiments described herein include a method comprising positioning at a target site a housing comprising a scalpet assembly, wherein the scalpet assembly includes a scalpet array and an extrusion array, wherein the scalpet array includes a plurality of scalpets and at least one guide plate configured to establish an alignment of the plurality of scalpets, wherein the extrusion array includes a plurality of extrusion pins corresponding to and aligned relative to the plurality of scalpets; deploying the scalpet array from the housing into tissue at the target site and generating a plurality of incised skin pixels at the target site when deployed; retracting the scalpet array into the housing from the target site; inserting the plurality of extrusion pins into and clearing an interior of the plurality of scalpets.

Embodiments described herein include a method comprising positioning at a target site a housing comprising a scalpet assembly. The scalpet assembly includes a scalpet array and an extrusion array. The scalpet array includes a plurality of scalpets and at least one guide plate configured to establish an alignment of the plurality of scalpets. The extrusion array includes a plurality of extrusion pins corresponding to and aligned relative to the plurality of scalpets. The method includes deploying the scalpet array from the housing into tissue at the target site and generating a plurality of incised skin

pixels at the target site when deployed. The deploying includes coupling a force of a drive system of the scalpel assembly to the scalpel array. The method includes retracting the scalpel array into the housing from the target site. The method includes inserting the plurality of extrusion pins into and clearing an interior of the plurality of scalpets.

5 Embodiments described herein include a method comprising positioning at a target site a housing comprising a scalpel assembly, wherein the scalpel assembly includes a scalpel array and an extrusion array, wherein the scalpel array includes a plurality of scalpets and at least one guide plate configured to establish an alignment of the plurality of scalpets, wherein the extrusion array includes a plurality of extrusion pins corresponding to and aligned relative to the plurality of scalpets; deploying the scalpel array from the housing into tissue at the target site and generating a plurality of incised skin pixels at the target site when deployed, wherein the deploying includes coupling a force of a drive system of the scalpel assembly to the scalpel array; retracting the scalpel array into the housing from the target site; inserting the plurality of extrusion pins into 10 and clearing an interior of the plurality of scalpets.

10

15

Embodiments described herein include a method comprising positioning at a target site a housing comprising a scalpel assembly. The scalpel assembly includes a scalpel array and a guide plate. The scalpel array includes a set of scalpets. The guide plate maintains a configuration of the set of scalpets. The method includes deploying the scalpel array from the housing at each target site of a plurality of target sites and generating incised skin pixels at each target site when deployed. The deploying includes coupling a force of a drive system of the scalpel assembly to the scalpel array. The method includes retracting the scalpel array into the housing from the target site.

20

25 Embodiments described herein include a method comprising positioning at a target site a housing comprising a scalpel assembly, wherein the scalpel assembly includes a scalpel array and a guide plate, wherein the scalpel array includes a set of scalpets, wherein the guide plate maintains a configuration of the set of scalpets; deploying the scalpel array from the housing at each target site of a plurality of target sites and generating incised skin pixels at each target site when deployed, wherein the

deploying includes coupling a force of a drive system of the scalpel assembly to the scalpel array; retracting the scalpel array into the housing from the target site.

Embodiments described herein include a method comprising positioning at a target site a housing comprising a scalpel assembly. The scalpel assembly includes a scalpel array and at least one guide plate. The scalpel array includes a plurality of scalpels. At least one guide plate maintains a configuration of the plurality of scalpels. The method includes deploying the scalpel array from the housing into tissue at the target site and generating incised skin pixels at a target site when deployed. The deploying comprises separately deploying each scalpel of the scalpel array from the housing in succession. The deploying includes coupling a force of a drive system of the scalpel assembly to the scalpel array. The method includes retracting the scalpel array into the housing from the target site.

Embodiments described herein include a method comprising positioning at a target site a housing comprising a scalpel assembly, wherein the scalpel assembly includes a scalpel array and at least one guide plate, wherein the scalpel array includes a plurality of scalpels, wherein the at least one guide plate maintains a configuration of the plurality of scalpels; deploying the scalpel array from the housing into tissue at the target site and generating incised skin pixels at a target site when deployed, wherein the deploying comprises separately deploying each scalpel of the scalpel array from the housing in succession, wherein the deploying includes coupling a force of a drive system of the scalpel assembly to the scalpel array; retracting the scalpel array into the housing from the target site.

Embodiments described herein include a method comprising positioning at a target site a housing comprising a scalpel assembly. The scalpel assembly includes a scalpel array and at least one guide plate. The scalpel array includes a set of scalpels. At least one guide plate maintains a configuration of the set of scalpels. The method includes deploying the scalpel array from the housing into tissue at the target site and generating incised skin pixels at a target site when deployed. The deploying comprises separately deploying each scalpel of the scalpel array from the housing in succession.

The deploying includes coupling a force of a drive system of the scalpel assembly to the scalpel array. The method includes retracting the scalpel array into the housing from the target site.

Embodiments described herein include a method comprising positioning at a target site a housing comprising a scalpel assembly, wherein the scalpel assembly includes a scalpel array and at least one guide plate, wherein the scalpel array includes a set of scalpels, wherein the at least one guide plate maintains a configuration of the set of scalpels; deploying the scalpel array from the housing into tissue at the target site and generating incised skin pixels at a target site when deployed, wherein the deploying comprises separately deploying each scalpel of the scalpel array from the housing in succession, wherein the deploying includes coupling a force of a drive system of the scalpel assembly to the scalpel array; retracting the scalpel array into the housing from the target site.

Unless the context clearly requires otherwise, throughout the description, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in a sense of “including, but not limited to.” Words using the singular or plural number also include the plural or singular number respectively. Additionally, the words “herein,” “hereunder,” “above,” “below,” and words of similar import, when used in this application, refer to this application as a whole and not to any particular portions of this application. When the word “or” is used in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list and any combination of the items in the list.

The above description of embodiments is not intended to be exhaustive or to limit the systems and methods to the precise forms disclosed. While specific embodiments of, and examples for, the medical devices and methods are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the systems and methods, as those skilled in the relevant art will recognize. The teachings of the

medical devices and methods provided herein can be applied to other systems and methods, not only for the systems and methods described above.

The elements and acts of the various embodiments described above can be combined to provide further embodiments. These and other changes can be made to the 5 medical devices and methods in light of the above detailed description.

In general, in the following claims, the terms used should not be construed to limit the medical devices and methods and corresponding systems and methods to the specific embodiments disclosed in the specification and the claims, but should be construed to include all systems that operate under the claims. Accordingly, the medical devices and 10 methods and corresponding systems and methods are not limited by the disclosure, but instead the scope is to be determined entirely by the claims.

While certain aspects of the medical devices and methods and corresponding systems and methods are presented below in certain claim forms, the inventors contemplate the various aspects of the medical devices and methods and corresponding 15 systems and methods in any number of claim forms. Accordingly, the inventors reserve the right to add additional claims after filing the application to pursue such additional claim forms for other aspects of the medical devices and methods and corresponding systems and methods.

CLAIMS

What is claimed is:

5 1. A system, comprising:
a housing configured to include a scalpet assembly;
the scalpet assembly comprising a scalpet array and at least one guide plate,
wherein the scalpet array includes a plurality of scalpets, wherein the at least one guide
plate maintains a configuration of the plurality of scalpets, wherein the scalpet array is
10 configured to be deployed from and retracted into the housing, wherein the scalpet array
is configured to generate a plurality of incised skin pixels at a target site when deployed;
a drive system coupled to the scalpet array and configured to couple a force to the
scalpet array for the generation of the plurality of incised skin pixels.

15 2. The system of claim 1, wherein the drive system is configured to apply rotational
force to the scalpet array, wherein the rotational force is configured to rotate at least a set
of the plurality of scalpets.

3. The system of claim 2, wherein the drive system comprises a geared drive system.

20 4. The system of claim 3, wherein the geared drive system comprises a gear
component configured to be driven to deliver a rotational force to the scalpet array.

5. The system of claim 4, wherein the gear component includes a gear.

25 6. The system of claim 5, wherein each scalpet is coupled to the gear.

7. The system of claim 5, wherein each scalpet comprises the gear.

8. The system of claim 2, wherein the drive system comprises a frictional drive system.

9. The system of claim 8, wherein the frictional drive system is configured to 5 generate frictional forces through a compressive component of at least a set of the plurality of scalpets, wherein the frictional forces are configured to rotate at least a set of the plurality of scalpets.

10. The system of claim 9, wherein the compressive component includes an 10 elastomeric ring.

11. The system of claim 10, wherein each scalpet is coupled to the elastomeric ring.

12. The system of claim 10, wherein each scalpet comprises the elastomeric ring.

15 13. The system of claim 2, wherein the drive system comprises a helical drive system.

14. The system of claim 13, wherein the helical drive system comprises a push plate 20 configured for up and down movement relative to the scalpet array.

15. The system of claim 14, wherein the push plate comprises a plurality of openings configured to align the plurality of scalpets, wherein at least one opening of the plurality of openings includes a notch configured to receive a helical component of at least one scalpet.

25 16. The system of claim 15, wherein the helical component includes an external thread.

17. The system of claim 16, wherein a scalpel is coupled to a sleeve comprising the helical component.

18. The system of claim 16, wherein a scalpel comprises the helical component.

5

19. The system of claim 2, wherein the drive system comprises a slotted drive system.

20. The system of claim 19, wherein the slotted drive system comprises a drive rod configured to couple with a slotted component of the scalpel array, wherein the drive rod 10 is configured for up and down movement relative to the scalpel array.

21. The system of claim 20, wherein the slotted component includes a slot configured to receive the drive rod.

15 22. The system of claim 21, wherein each scalpel comprises the slot.

23. The system of claim 21, wherein each scalpel comprises a sleeve, and the sleeve comprises the slot.

20 24. The system of claim 2, wherein the drive system comprises an inner helical drive system.

25. The system of claim 24, wherein the inner helical drive system comprises a push plate configured for up and down movement relative to the scalpel array.

25

26. The system of claim 25, wherein the push plate comprises a plurality of openings configured to align the plurality of scalpels, wherein at least one opening of the plurality of openings is configured to receive a helical component of at least one scalpel.

27. The system of claim 26, wherein the helical component includes a threaded insert.

28. The system of claim 27, wherein a scalpel is configured to receive the helical component.

5

29. The system of claim 27, wherein a scalpel comprises the helical component.

30. The system of claim 1, wherein the scalpel assembly is configured to transmit an axial force to the target site.

10

31. The system of claim 30, wherein the axial force comprises a continuous axial force.

15

32. The system of claim 30, wherein the axial force comprises a continuous axial force and an impact force.

33. The system of claim 30, wherein the axial force comprises an impact force.

20

34. The system of claim 1, wherein at least one scalpel of the scalpel array comprises a cylindrical scalpel including a cutting surface on a distal end of the scalpel.

35. The system of claim 34, wherein the cutting surface includes a sharpened edge.

25

36. The system of claim 34, wherein the cutting surface includes at least one sharpened point.

37. The system of claim 34, wherein the cutting surface includes a serrated edge.

38. The system of claim 34, wherein the cutting surface includes at least one radius of curvature.

39. The system of claim 1, wherein at least one scalpel of the scalpel array comprises
5 a rectangular scalpel including a cutting surface on a distal end of the scalpel.

40. The system of claim 39, wherein the cutting surface includes a sharpened edge.

41. The system of claim 39, wherein the cutting surface includes at least one
10 sharpened point.

42. The system of claim 39, wherein the cutting surface includes a serrated edge.

43. The system of claim 1, wherein at least one scalpel of the scalpel array comprises
15 a through orifice.

44. The system of claim 1, comprising an extrusion system configured to include a plurality of extrusion pins.

20 45. The system of claim 44, wherein the plurality of extrusion pins corresponds to the plurality of scalpets.

46. The system of claim 44, wherein each extrusion pin is aligned with a corresponding scalpel of the plurality of scalpets.

25 47. The system of claim 44, wherein the plurality of extrusion pins is configured to clear the plurality of incised skin plugs from an interior of the plurality of scalpets.

48. The system of claim 44, wherein the plurality of extrusion pins is configured to inject the plurality of incised skin plugs into a fractional defect at a recipient site.

49. The system of claim 44, wherein the plurality of extrusion pins is configured to 5 inject the plurality of incised skin plugs into pixel canisters of a docking station.

50. The system of claim 44, wherein the extrusion system includes an ejector component coupled to the plurality of extrusion pins, wherein the ejector component is configured to control movement of the plurality of extrusion pins into and out of an 10 interior region of the plurality of scalpets.

51. The system of claim 1, comprising a docking station including a plurality of pixel receptacles, wherein the docking station is configured to receive the plurality of incised skin plugs removed from the target site.

15 52. The system of claim 51, wherein the docking station is configured to maintain orientation of the plurality of incised skin plugs removed from the target site.

53. The system of claim 51, wherein the docking station is configured to be reshaped 20 between a first configuration and a second configuration, wherein the second configuration aligns the plurality of pixel receptacles with the plurality of scalpets of the scalpet array.

54. The system of claim 53, wherein the first configuration places the plurality of 25 pixel receptacles in relatively closer proximity than the second configuration.

55. The system of claim 51, wherein the docking station comprises an elastomeric material.

56. The system of claim 51, comprising an adherent substrate configured to capture the plurality of incised skin pixels from the docking station.

57. The system of claim 56, wherein the adherent substrate is configured to maintain relative positioning of the plurality of incised skin pixels during transfer to and application at a recipient site.

58. The system of claim 57, wherein the adherent substrate is configured to apply the incised skin pixels to the skin defects at the recipient site.

10

59. The system of claim 57, wherein the adherent substrate is configured to align the incised skin pixels with the skin defects at the recipient site.

15

60. The system of claim 59, wherein the adherent substrate is configured to insert each incised skin pixel into a corresponding skin defect at the recipient site.

20

61. The system of claim 1, comprising a vibration system coupled to the scalpel array.

25

62. The system of claim 61, wherein the vibration system is configured to couple vibratory force to the scalpel array.

63. The system of claim 1, comprising an electromagnetic system coupled to the scalpel array.

25

64. The system of claim 63, wherein the electromagnetic system is configured to couple electromagnetic energy to the scalpel array, wherein the electromagnetic energy includes at least one of radio frequency (RF) energy, laser energy, and ultrasonic energy.

65. The system of claim 1, wherein the at least one guide plate includes a plurality of guide plates.

66. The system of claim 65, comprising a plurality of spacers configured to control 5 and maintain a distance between the plurality of guide plates.

67. The system of claim 1, wherein the at least one guide plate is configured to establish the configuration of the plurality of scalpets.

10 68. The system of claim 1, wherein the at least one guide plate is configured to transfer the force to the target site.

15 69. The system of claim 1, wherein a position of the plurality of scalpets is configured to be adjustable, wherein the adjustable position controls a depth of insertion of the plurality of scalpets at the target site when the scalpet array is deployed.

70. The system of 69, wherein the at least one guide plate is configured for use in the adjustment of the position of the plurality of scalpets.

20 71. The system of claim 1, comprising a vacuum system coupled to the housing, wherein the vacuum system generates a vacuum at the target site, wherein the vacuum comprises pressure relatively lower than ambient air pressure.

25 72. The system of claim 71, wherein the scalpet array is configured to maintain the vacuum at the target site.

73. The system of claim 72, wherein the vacuum is configured to evacuate the incised skin pixels from the target site via the plurality of scalpets.

74. The system of claim 71, wherein the housing is configured to maintain the vacuum at the target site.

75. The system of claim 74, wherein the vacuum is configured to evacuate the incised skin pixels from the target site via the housing.

76. The system of claim 1, comprising a vacuum component.

77. The system of claim 76, wherein the vacuum component is configured to evacuate the incised skin pixels from the target site.

78. The system of claim 76, wherein the vacuum component is configured to evacuate subdermal fat via voids generated at the target site from the incised skin pixels.

79. The system of claim 76, wherein the vacuum component includes a vacuum manifold coupled to a vacuum source.

80. The system of claim 1, wherein the drive system comprises an oscillating drive system configured to oscillate at least one scalpel of the scalpel array.

81. The system of claim 80, wherein the oscillating drive system comprises a drive plate configured to oscillate between two positions.

82. The system of claim 81, wherein the oscillating drive system comprises a drive pin having a distal end configured to couple with the at least one scalpel.

83. The system of claim 82, wherein the drive plate includes at least one of an orifice and a slot configured to receive a proximal end of the drive pin.

84. The system of claim 1, comprising an adherent substrate configured to capture the plurality of incised skin pixels.

5 85. The system of claim 84, wherein the adherent substrate comprises at least one of a flexible substrate and a semi-porous membrane.

86. The system of claim 1, wherein the target site includes a recipient site, wherein the incised skin pixels generate skin defects at the recipient site.

10 87. The system of claim 86, wherein the skin defects are configured to evoke neovascularization in the incised skin pixels inserted at the recipient site.

88. The system of claim 86, wherein the skin defects are configured to evoke a wound healing response in the incised skin pixels inserted at the recipient site.

15 89. The system of claim 1, wherein the target site includes a donor site, wherein the plurality of incised skin pixels is harvested at the donor site.

90. The system of claim 89, wherein the target site includes a recipient site, wherein 20 the incised skin pixels generate skin defects at the recipient site.

91. The system of claim 90, comprising an adherent substrate configured to capture the plurality of incised skin pixels at the donor site and transfer the plurality of incised skin pixels to the recipient site.

25 92. The system of claim 91, wherein the adherent substrate is configured to maintain relative positioning of the plurality of incised skin pixels during transfer to and application at the recipient site.

93. The system of claim 91, wherein the adherent substrate is configured to apply the incised skin pixels to the skin defects at the recipient site.

94. The system of claim 91, wherein the adherent substrate is configured to align the 5 incised skin pixels with the skin defects at the recipient site.

95. The system of claim 94, wherein the adherent substrate is configured to insert each incised skin pixel into a corresponding skin defect at the recipient site.

10 96. The system of claim 90, comprising at least one bandage configured for application at the target site.

97. The system of claim 96, wherein the at least one bandage is configured to apply force to close the target site.

15 98. The system of claim 96, wherein the at least one bandage is configured to apply directional force to control a direction of the closure at the target site.

99. The system of claim 1, comprising a cutting member configured to transect the 20 incised skin pixels.

100. The system of claim 99, comprising an adherent substrate configured to capture the incised skin pixels.

25 101. The system of claim 1, wherein the incised skin pixels include hair follicles.

102. A system, comprising:

a housing configured to include a scalpet assembly;

the scalpet assembly comprising a scalpet array and a guide plate, wherein the scalpet array includes a set of scalpets, wherein the guide plate maintains a configuration of the set of scalpets, wherein the scalpet array is configured to be deployed from and retracted into the housing, wherein the scalpet array is configured to generate incised skin pixels at a target site when deployed; and

a drive system coupled to the scalpet array and configured to couple a force to the scalpet array.

10

103. A system, comprising:

a housing configured to include a scalpet assembly; and

the scalpet assembly comprising a scalpet array and an extulsion array, wherein the scalpet array includes a plurality of scalpets and at least one guide plate configured to establish an alignment of the plurality of scalpets, wherein the scalpet array is configured to be deployed from the housing to generate a plurality of incised skin pixels at a target site, wherein the extulsion array includes a plurality of extrusion pins corresponding to and aligned relative to the plurality of scalpets, wherein the plurality of extrusion pins are configured to be inserted into and clear an interior of the plurality of scalpets.

20

104. A system, comprising:

a housing configured to include a scalpet assembly;

the scalpet assembly comprising a scalpet array and an extulsion array, wherein the scalpet array includes a plurality of scalpets and at least one guide plate configured to establish an alignment of the plurality of scalpets, wherein the scalpet array is configured to be deployed from the housing to generate a plurality of incised skin pixels at a target site, wherein the extulsion array includes a plurality of extrusion pins corresponding to and aligned relative to the plurality of scalpets, wherein the plurality of extrusion pins are configured to be inserted into and clear an interior of the plurality of scalpets;

a drive system coupled to the scalpet array and configured to couple a force to the scalpet array for the generation of the plurality of incised skin pixels.

105. A system, comprising:

5 a housing configured to include a scalpet assembly;
 the scalpet assembly comprising a scalpet array and a guide plate, wherein the scalpet array includes a set of scalpets, wherein the guide plate maintains a configuration of the set of scalpets, wherein the scalpet array is configured to be deployed from and retracted into the housing at each target site of a plurality of target sites, wherein the 10 scalpet array is configured to generate incised skin pixels at each target site when deployed;
 a drive system coupled to the scalpet array, wherein the drive system is configured to couple a force to the scalpet array for the generation of the incised skin pixels.

15

106. A system, comprising:

 a housing configured to include a scalpet assembly;
 the scalpet assembly comprising a scalpet array and at least one guide plate, wherein the scalpet array includes a plurality of scalpets, wherein the at least one guide 20 plate maintains a configuration of the plurality of scalpets, wherein each scalpet of the scalpet array is configured to be separately deployed from and retracted into the housing in succession, wherein deployment of the plurality of scalpets is configured to generate a plurality of incised skin pixels at a target site;
 a drive system coupled to the scalpet array and configured to couple a force to the 25 scalpet array for the generation of the plurality of incised skin pixels.

107. A system, comprising:

 a housing configured to include a scalpet assembly;

the scalpel assembly comprising a scalpel array and at least one guide plate, wherein the scalpel array includes a set of scalpels, wherein the at least one guide plate maintains a configuration of the set of scalpels, wherein each scalpel of the scalpel array is configured to be separately deployed from and retracted into the housing in succession, 5 wherein deployment of the plurality of scalpels is configured to generate a plurality of incised skin pixels at a target site;

a drive system coupled to the scalpel array and configured to couple a force to the scalpel array for the generation of the plurality of incised skin pixels.

10 108. A method, comprising:

positioning at a target site a housing comprising a scalpel assembly, wherein the scalpel assembly includes a scalpel array and at least one guide plate, wherein the scalpel array includes a plurality of scalpels, wherein the at least one guide plate maintains a configuration of the plurality of scalpels;

15 deploying the scalpel array from the housing into tissue at the target site and generating a plurality of incised skin pixels at the target site when deployed, wherein the deploying includes coupling a force of a drive system of the scalpel assembly to the scalpel array;

retracting the scalpel array into the housing from the target site.

20

109. The method of claim 108, wherein the drive system is configured to apply rotational force to the scalpel array, wherein the rotational force is configured to rotate at least a set of the plurality of scalpels.

25 110. The method of claim 109, wherein the drive system comprises a geared drive system.

111. The method of claim 110, wherein the geared drive system comprises a gear component driven to deliver a rotational force to the scalpel array.

112. The method of claim 111, wherein the gear component includes a gear.

113. The method of claim 112, wherein each scalpel is coupled to the gear.

5

114. The method of claim 112, wherein each scalpel comprises the gear.

115. The method of claim 109, wherein the drive system comprises a frictional drive system.

10

116. The method of claim 115, wherein the frictional drive system generates frictional forces through a compressive component of at least a set of the plurality of scalpets, wherein the frictional forces rotate at least a set of the plurality of scalpets.

15

117. The method of claim 116, wherein the compressive component includes an elastomeric ring.

118. The method of claim 117, wherein each scalpel is coupled to the elastomeric ring.

20

119. The method of claim 117, wherein each scalpel comprises the elastomeric ring.

120. The method of claim 109, wherein the drive system comprises a helical drive system.

25

121. The method of claim 120, wherein the helical drive system comprises a push plate moving up and down relative to the scalpel array.

122. The method of claim 121, wherein the push plate comprises a plurality of openings aligning the plurality of scalpets, wherein at least one opening of the plurality of openings includes a notch receiving a helical component of at least one scalpet.

5 123. The method of claim 122, wherein the helical component includes an external thread.

124. The method of claim 123, wherein a scalpet is coupled to a sleeve comprising the helical component.

10

125. The method of claim 123, wherein a scalpet comprises the helical component.

126. The method of claim 109, wherein the drive system comprises a slotted drive system.

15

127. The method of claim 126, wherein the slotted drive system comprises a drive rod coupling with a slotted component of the scalpet array and moving scalpet array up and down.

20

128. The method of claim 127, wherein the slotted component includes a slot receiving the drive rod.

129. The method of claim 128, wherein each scalpet comprises the slot.

25

130. The method of claim 128, wherein each scalpet comprises a sleeve, and the sleeve comprises the slot.

131. The method of claim 109, wherein the drive system comprises an inner helical drive system.

132. The method of claim 131, wherein the inner helical drive system comprises a push plate moving up and down relative to the scalpet array.

5 133. The method of claim 132, wherein the push plate comprises a plurality of openings aligning the plurality of scalpets, wherein at least one opening of the plurality of openings receives a helical component of at least one scalpet.

10 134. The method of claim 133, wherein the helical component includes a threaded insert.

135. The method of claim 134, wherein a scalpet receives the helical component.

15 136. The method of claim 134, wherein a scalpet comprises the helical component.

137. The method of claim 108, wherein the scalpet assembly transmits an axial force to the target site.

20 138. The method of claim 137, wherein the axial force comprises a continuous axial force.

139. The method of claim 137, wherein the axial force comprises a continuous axial force and an impact force.

25 140. The method of claim 137, wherein the axial force comprises an impact force.

141. The method of claim 108, wherein at least one scalpet of the scalpet array comprises a cylindrical scalpet including a cutting surface on a distal end of the scalpet.

142. The method of claim 141, wherein the cutting surface includes a sharpened edge.

143. The method of claim 141, wherein the cutting surface includes at least one sharpened point.

5

144. The method of claim 141, wherein the cutting surface includes a serrated edge.

145. The method of claim 141, wherein the cutting surface includes at least one radius of curvature.

10

146. The method of claim 108, wherein at least one scalpel of the scalpel array comprises a rectangular scalpel including a cutting surface on a distal end of the scalpel.

147. The method of claim 146, wherein the cutting surface includes a sharpened edge.

15

148. The method of claim 146, wherein the cutting surface includes at least one sharpened point.

149. The method of claim 146, wherein the cutting surface includes a serrated edge.

20

150. The method of claim 108, wherein at least one scalpel of the scalpel array comprises a through orifice.

25

151. The method of claim 108, comprising an extrusion system configured to include a plurality of extrusion pins.

152. The method of claim 151, wherein the plurality of extrusion pins correspond to the plurality of scalpels.

153. The method of claim 151, wherein each extrusion pin is aligned with a corresponding scalpet of the plurality of scalpets.

154. The method of claim 151, wherein the plurality of extrusion pins clears the 5 plurality of incised skin plugs from an interior of the plurality of scalpets.

155. The method of claim 151, wherein the plurality of extrusion pins inject the plurality of incised skin plugs into a fractional defect at a recipient site.

10 156. The method of claim 151, wherein the plurality of extrusion pins inject the plurality of incised skin plugs into pixel canisters of a docking station.

157. The method of claim 151, wherein the extrusion system includes an ejector component coupled to the plurality of extrusion pins, wherein the ejector component 15 controls movement of the plurality of extrusion pins into and out of an interior region of the plurality of scalpets.

158. The method of claim 108, comprising a docking station including a plurality of pixel receptacles, wherein the docking station receives the plurality of incised skin plugs 20 removed from the target site.

159. The method of claim 158, wherein the docking station maintains orientation of the plurality of incised skin plugs removed from the target site.

25 160. The method of claim 158, wherein the docking station is reshaped between a first configuration and a second configuration, wherein the second configuration aligns the plurality of pixel receptacles with the plurality of scalpets of the scalpet array.

161. The method of claim 160, wherein the first configuration places the plurality of pixel receptacles in relatively closer proximity than the second configuration.

162. The method of claim 158, wherein the docking station comprises an elastomeric 5 material.

163. The method of claim 158, comprising an adherent substrate capturing the plurality of incised skin pixels from the docking station.

10 164. The method of claim 163, wherein the adherent substrate maintains relative positioning of the plurality of incised skin pixels during transfer to and application at a recipient site.

15 165. The method of claim 164, wherein the adherent substrate applies the incised skin pixels to the skin defects at the recipient site.

166. The method of claim 164, wherein the adherent substrate aligns the incised skin pixels with the skin defects at the recipient site.

20 167. The method of claim 166, wherein the adherent substrate inserts each incised skin pixel into a corresponding skin defect at the recipient site.

168. The method of claim 108, comprising a vibration system coupled to the scalpel array.

25 169. The method of claim 168, wherein the vibration system couples vibratory force to the scalpel array.

170. The method of claim 108, comprising an electromagnetic system coupled to the scalpet array.

171. The method of claim 170, wherein the electromagnetic system couples 5 electromagnetic energy to the scalpet array, wherein the electromagnetic energy includes at least one of radio frequency (RF) energy, laser energy, and ultrasonic energy.

172. The method of claim 108, wherein the at least one guide plate includes a plurality of guide plates.

10

173. The method of claim 172, comprising a plurality of spacers controlling and maintaining a distance between the plurality of guide plates.

15

174. The method of claim 108, wherein the at least one guide plate establishes the configuration of the plurality of scalpets.

175. The method of claim 108, wherein the at least one guide plate transfers the force to the target site.

20

176. The method of claim 108, comprising adjusting a position of the plurality of scalpets, wherein the adjustable position controls a depth of insertion of the plurality of scalpets at the target site when the scalpet array is deployed.

25

177. The method of claim 176, comprising using the at least one guide plate in the adjustment of the position of the plurality of scalpets.

178. The method of claim 108, comprising a vacuum system coupled to the housing, wherein the vacuum system generates a vacuum at the target site, wherein the vacuum comprises pressure relatively lower than ambient air pressure.

179. The method of claim 178, wherein the scalpet array maintains the vacuum at the target site.

5 180. The method of claim 179, wherein the vacuum evacuates the incised skin pixels from the target site via the plurality of scalpets.

181. The method of claim 178, wherein the housing maintains the vacuum at the target site.

10

182. The method of claim 181, wherein the vacuum evacuates the incised skin pixels from the target site via the housing.

183. The method of claim 108, comprising a vacuum component.

15

184. The method of claim 183, wherein the vacuum component evacuates the incised skin pixels from the target site.

20

185. The method of claim 183, wherein the vacuum component evacuates subdermal fat via voids generated at the target site from the incised skin pixels.

186. The method of claim 183, wherein the vacuum component includes a vacuum manifold coupled to a vacuum source.

25

187. The method of claim 108, wherein the drive system comprises an oscillating drive system oscillating at least one scalpet of the scalpet array.

188. The method of claim 187, wherein the oscillating drive system comprises a drive plate oscillating between two positions.

189. The method of claim 188, wherein the oscillating drive system comprises a drive pin having a distal end coupling with the at least one scalpel.

5 190. The method of claim 189, wherein the drive plate includes at least one of an orifice and a slot receiving a proximal end of the drive pin.

191. The method of claim 108, comprising an adherent substrate capturing the plurality of incised skin pixels.

10

192. The method of claim 191, wherein the adherent substrate comprises at least one of a flexible substrate and a semi-porous membrane.

15

193. The method of claim 108, wherein the target site includes a recipient site, wherein the incised skin pixels generate skin defects at the recipient site.

194. The method of claim 193, wherein the skin defects evoke neovascularization in the incised skin pixels inserted at the recipient site.

20

195. The method of claim 193, wherein the skin defects evoke a wound healing response in the incised skin pixels inserted at the recipient site.

196. The method of claim 108, wherein the target site includes a donor site, wherein the plurality of incised skin pixels is harvested at the donor site.

25

197. The method of claim 196, wherein the target site includes a recipient site, wherein the incised skin pixels generate skin defects at the recipient site.

198. The method of claim 197, comprising an adherent substrate capturing the plurality of incised skin pixels at the donor site and transferring the plurality of incised skin pixels to the recipient site.

5 199. The method of claim 198, wherein the adherent substrate maintains relative positioning of the plurality of incised skin pixels during transfer to and application at the recipient site.

10 200. The method of claim 198, wherein the adherent substrate applies the incised skin pixels to the skin defects at the recipient site.

201. The method of claim 198, wherein the adherent substrate aligns the incised skin pixels with the skin defects at the recipient site.

15 202. The method of claim 201, wherein the adherent substrate inserts each incised skin pixel into a corresponding skin defect at the recipient site.

203. The method of claim 197, comprising applying at least one bandage at the target site.

20 204. The method of claim 203, wherein the at least one bandage applies force to close the target site.

205. The method of claim 203, wherein the at least one bandage applies directional force to control a direction of the closure at the target site.

25 206. The method of claim 108, comprising a cutting member transecting the incised skin pixels.

207. The method of claim 206, comprising an adherent substrate capturing the incised skin pixels.

208. The method of claim 108, wherein the incised skin pixels include hair follicles.

5

209. A method, comprising:

positioning at a target site a housing comprising a scalpel assembly, wherein the scalpel assembly includes a scalpel array and a guide plate, wherein the scalpel array includes a set of scalpets, wherein the guide plate maintains a configuration of the set of scalpets;

deploying the scalpel array from the housing into tissue at the target site and generating incised skin pixels at a target site when deployed, wherein the deploying includes coupling a force of a drive system of the scalpel assembly to the scalpel array;

retracting the scalpel array into the housing from the target site.

15

210. A method, comprising:

positioning at a target site a housing comprising a scalpel assembly, wherein the scalpel assembly includes a scalpel array and an extrusion array, wherein the scalpel array includes a plurality of scalpets and at least one guide plate configured to establish an alignment of the plurality of scalpets, wherein the extrusion array includes a plurality of extrusion pins corresponding to and aligned relative to the plurality of scalpets;

deploying the scalpel array from the housing into tissue at the target site and generating a plurality of incised skin pixels at the target site when deployed;

retracting the scalpel array into the housing from the target site;

25

inserting the plurality of extrusion pins into and clearing an interior of the plurality of scalpets.

211. A method, comprising:

positioning at a target site a housing comprising a scalpel assembly, wherein the scalpel assembly includes a scalpel array and an extrusion array, wherein the scalpel array includes a plurality of scalpets and at least one guide plate configured to establish an alignment of the plurality of scalpets, wherein the extrusion array includes a plurality of extrusion pins corresponding to and aligned relative to the plurality of scalpets;

5 deploying the scalpel array from the housing into tissue at the target site and generating a plurality of incised skin pixels at the target site when deployed, wherein the deploying includes coupling a force of a drive system of the scalpel assembly to the scalpel array;

10 retracting the scalpel array into the housing from the target site;

 inserting the plurality of extrusion pins into and clearing an interior of the plurality of scalpets.

212. A method, comprising:

15 positioning at a target site a housing comprising a scalpel assembly, wherein the scalpel assembly includes a scalpel array and a guide plate, wherein the scalpel array includes a set of scalpets, wherein the guide plate maintains a configuration of the set of scalpets;

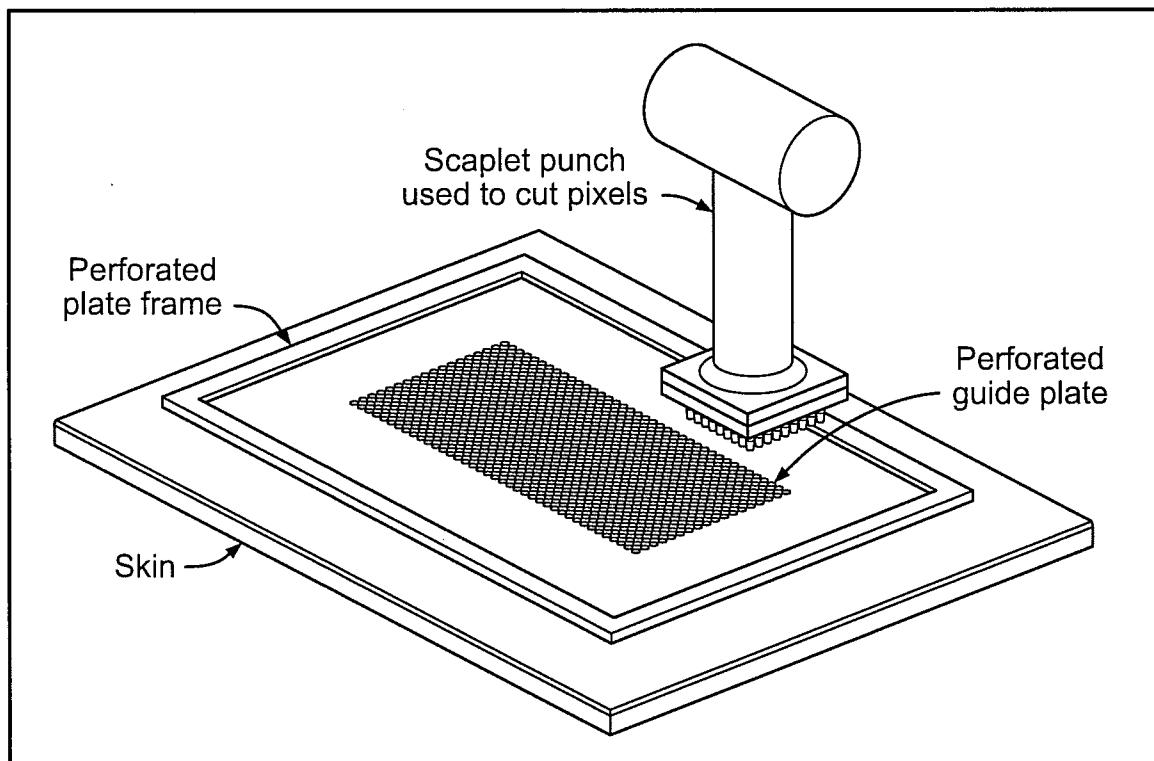
20 deploying the scalpel array from the housing at each target site of a plurality of target sites and generating incised skin pixels at each target site when deployed, wherein the deploying includes coupling a force of a drive system of the scalpel assembly to the scalpel array;

 retracting the scalpel array into the housing from the target site.

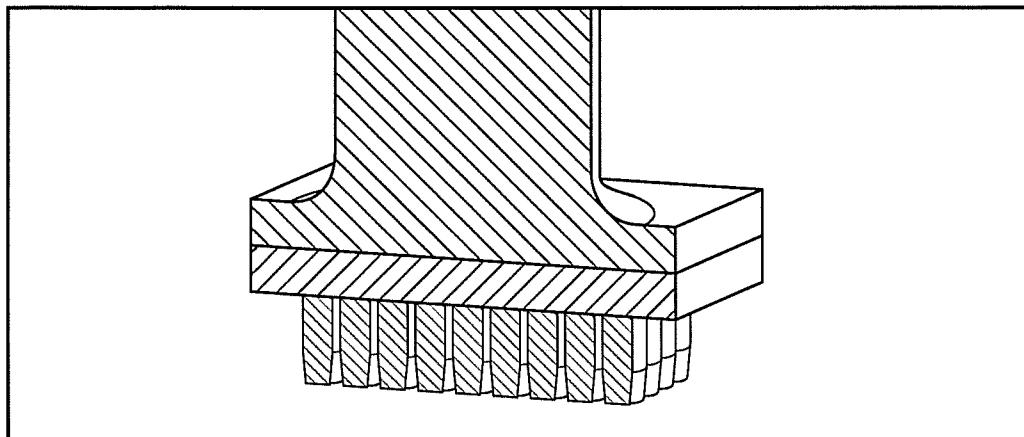
25 213. A method, comprising:

 positioning at a target site a housing comprising a scalpel assembly, wherein the scalpel assembly includes a scalpel array and at least one guide plate, wherein the scalpel array includes a plurality of scalpets, wherein the at least one guide plate maintains a configuration of the plurality of scalpets;

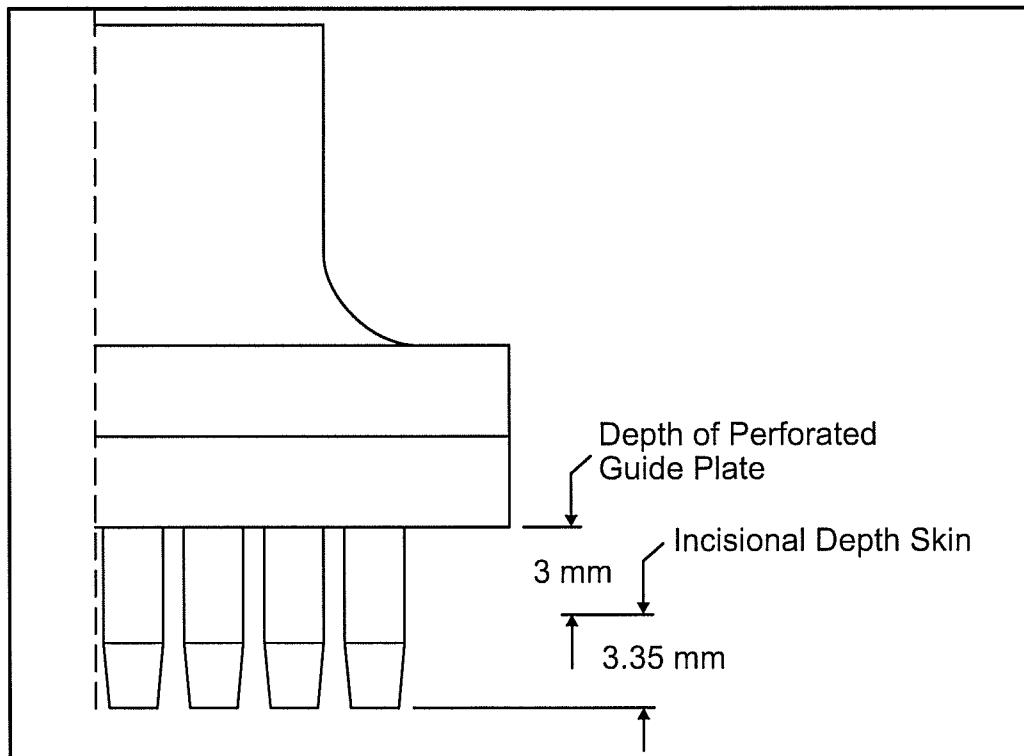
deploying the scalpel array from the housing into tissue at the target site and generating incised skin pixels at a target site when deployed, wherein the deploying comprises separately deploying each scalpel of the scalpel array from the housing in succession, wherein the deploying includes coupling a force of a drive system of the scalpel assembly to the scalpel array;

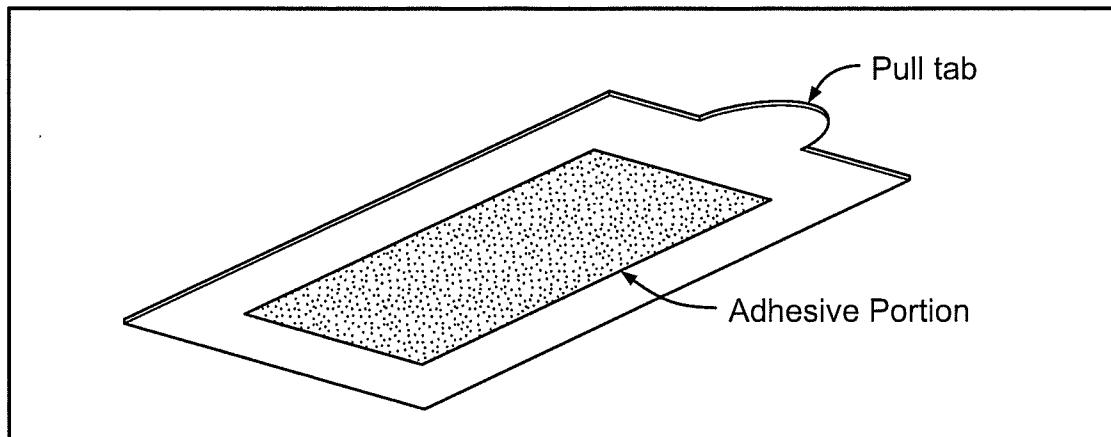

5 retracting the scalpel array into the housing from the target site.

214. A method, comprising:


positioning at a target site a housing comprising a scalpel assembly, wherein the scalpel assembly includes a scalpel array and at least one guide plate, wherein the scalpel array includes a set of scalpels, wherein the at least one guide plate maintains a configuration of the set of scalpels;

10 deploying the scalpel array from the housing into tissue at the target site and generating incised skin pixels at a target site when deployed, wherein the deploying comprises separately deploying each scalpel of the scalpel array from the housing in succession, wherein the deploying includes coupling a force of a drive system of the scalpel assembly to the scalpel array;


15 retracting the scalpel array into the housing from the target site.


FIG. 1

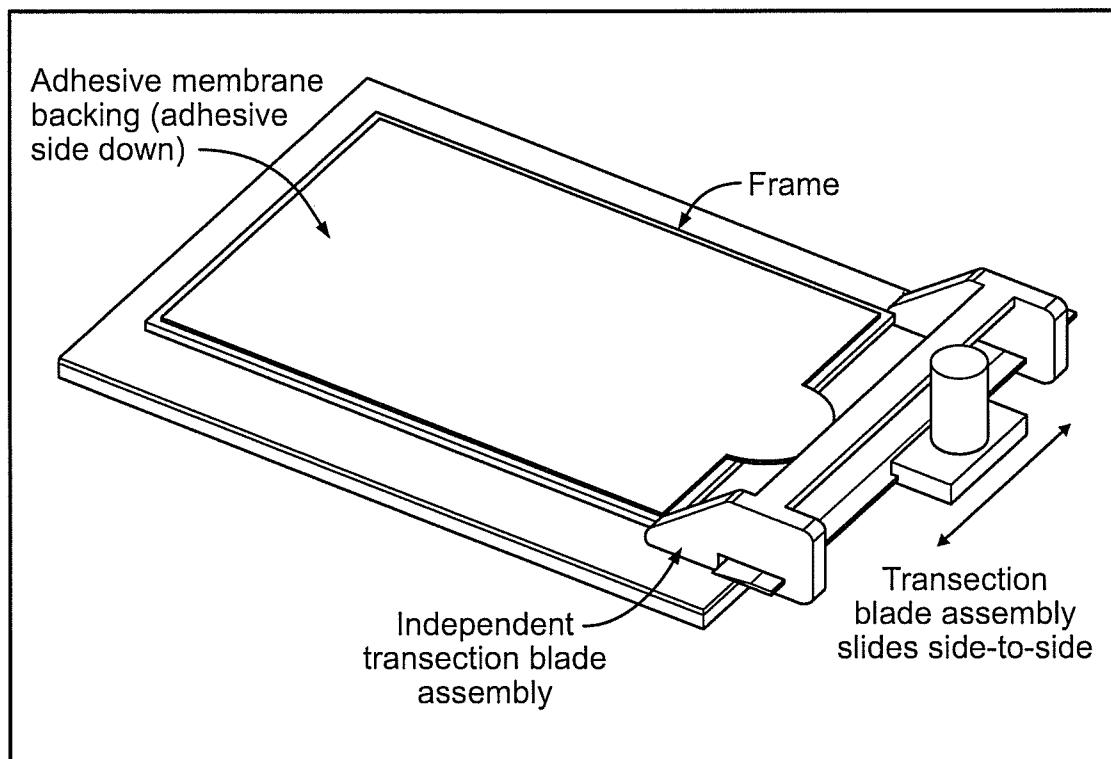

FIG. 2

FIG. 3

FIG. 4

FIG. 5

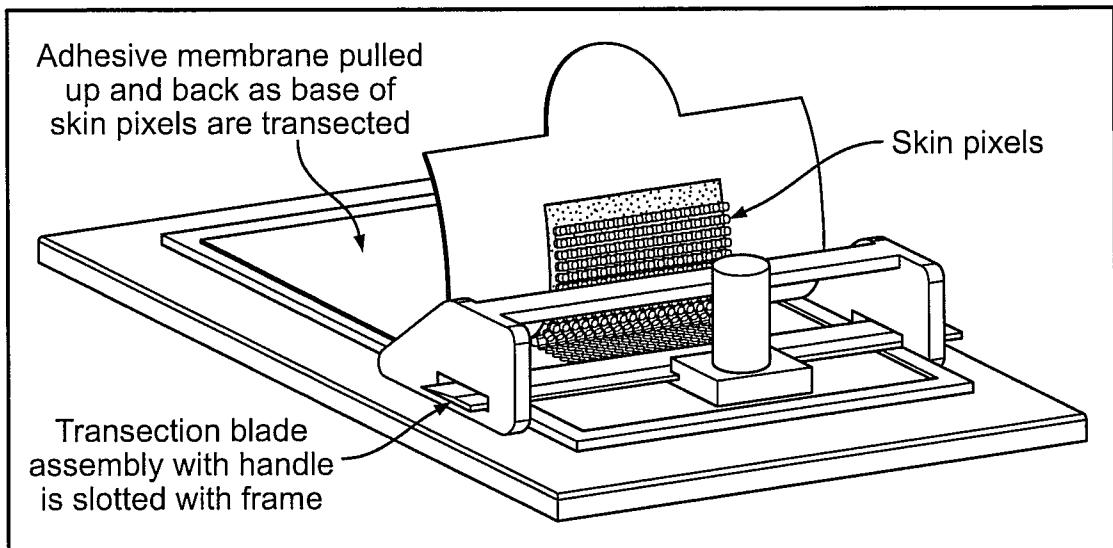
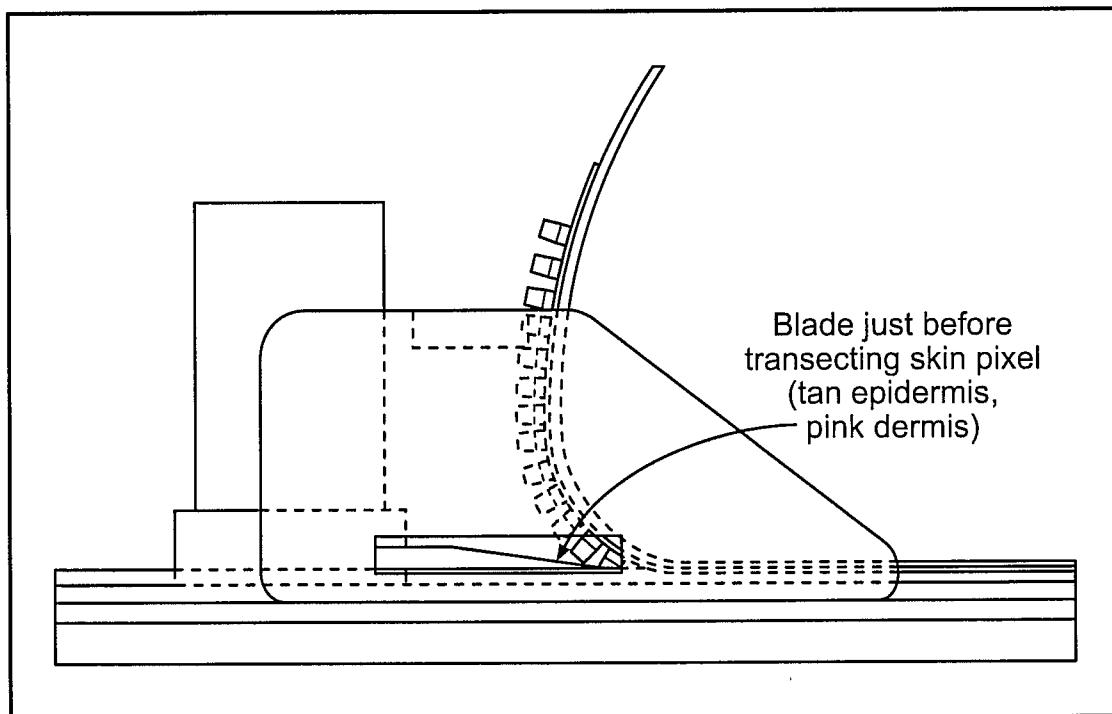
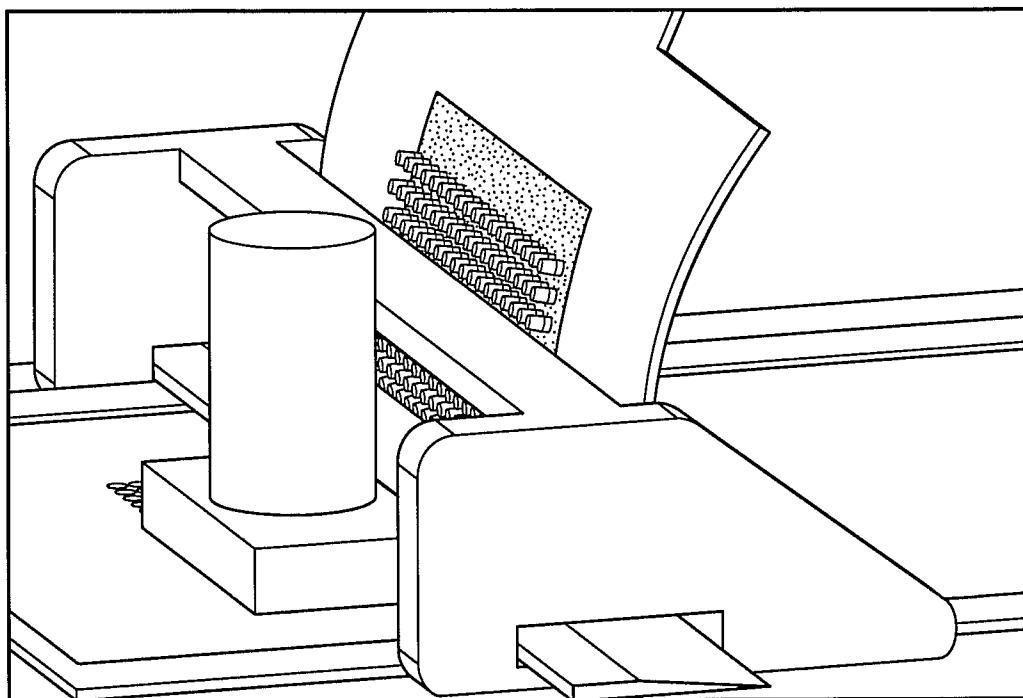
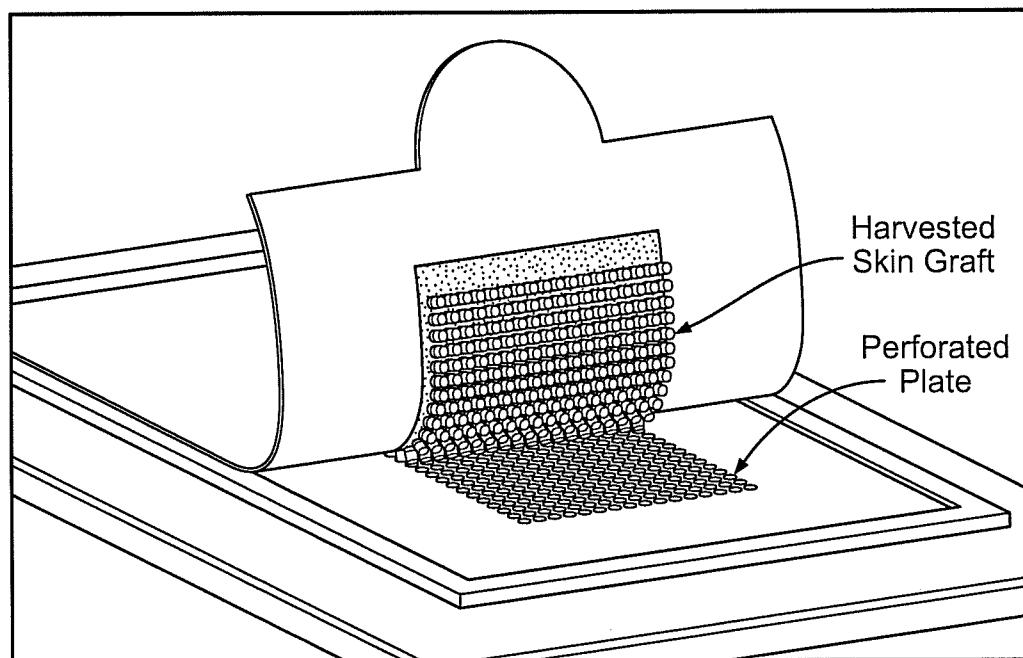
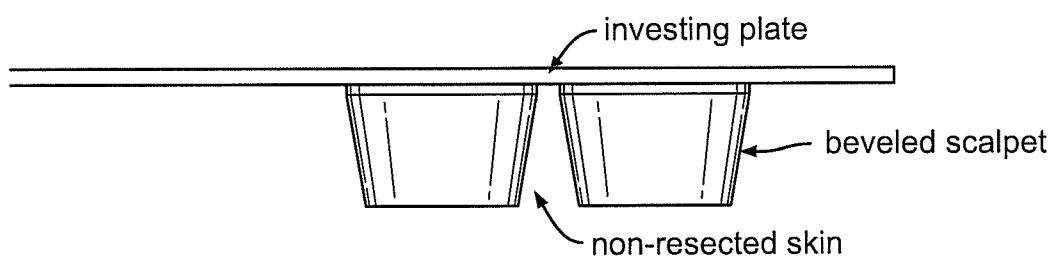
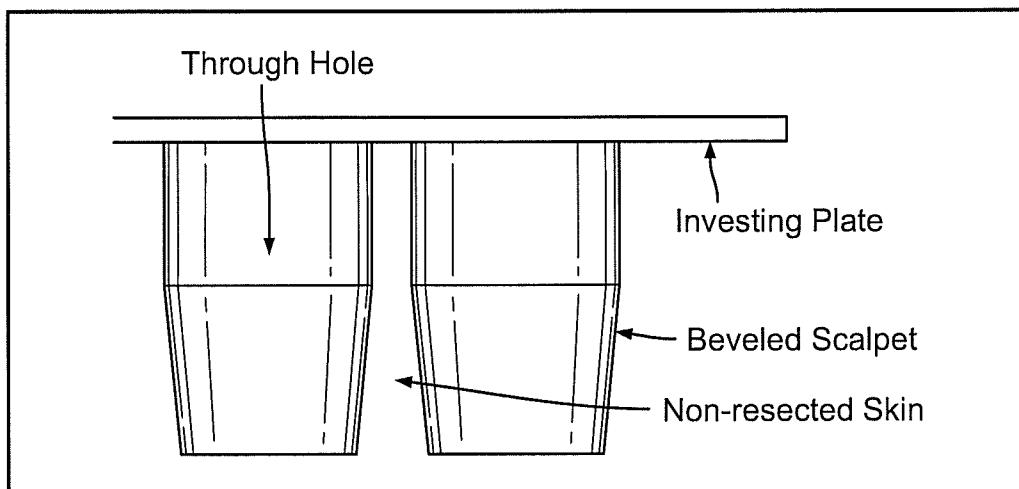
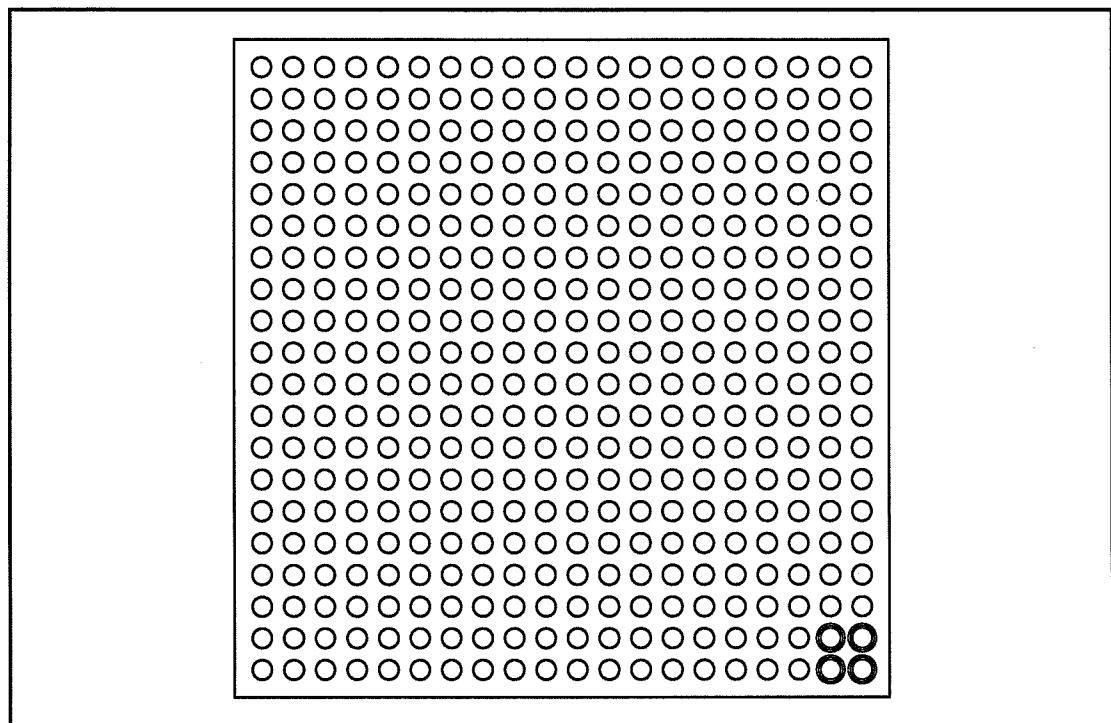


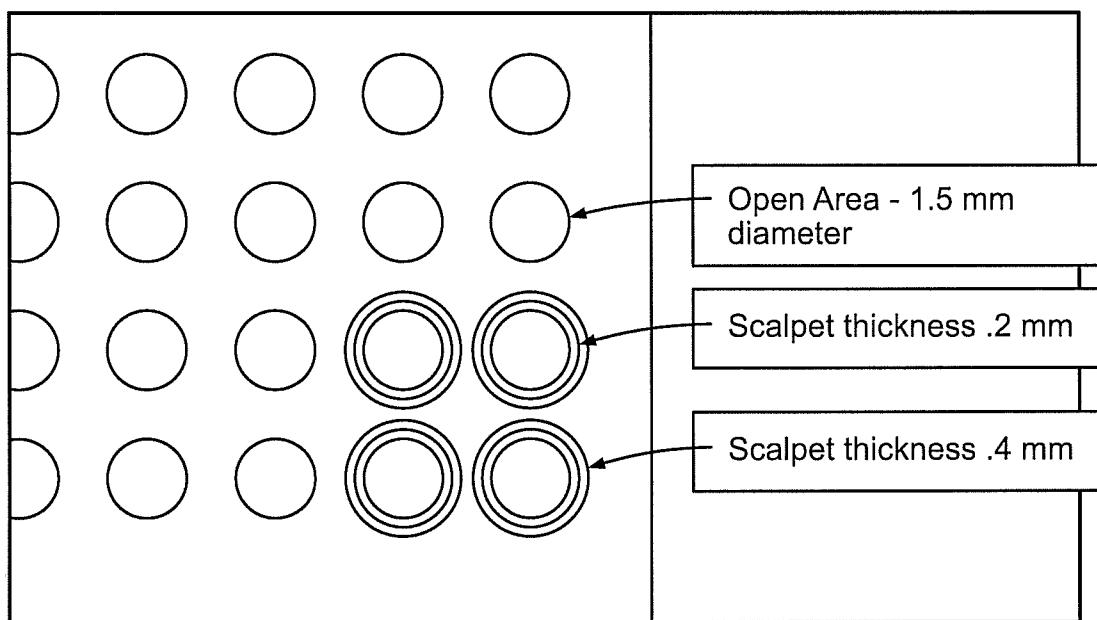
FIG. 6

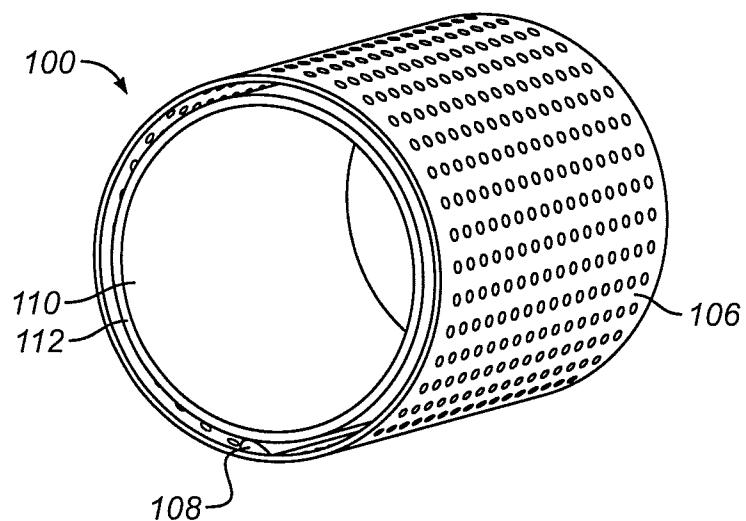




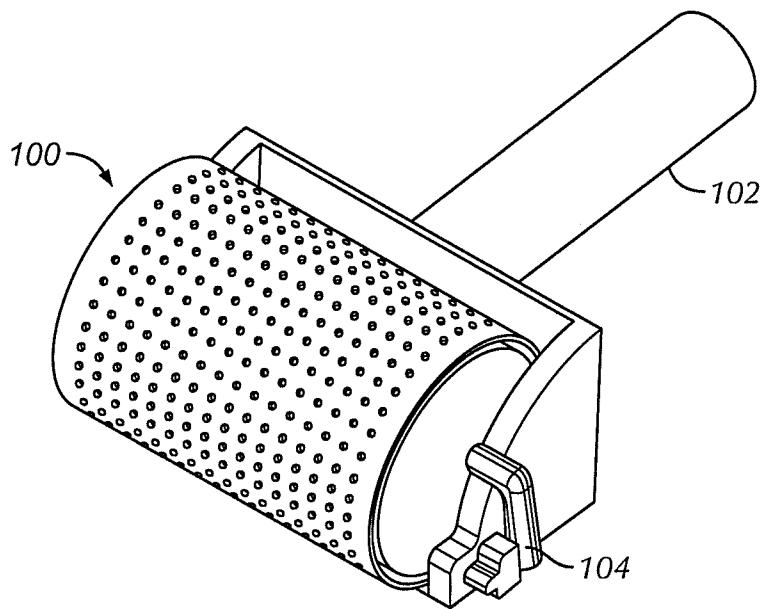

FIG. 7

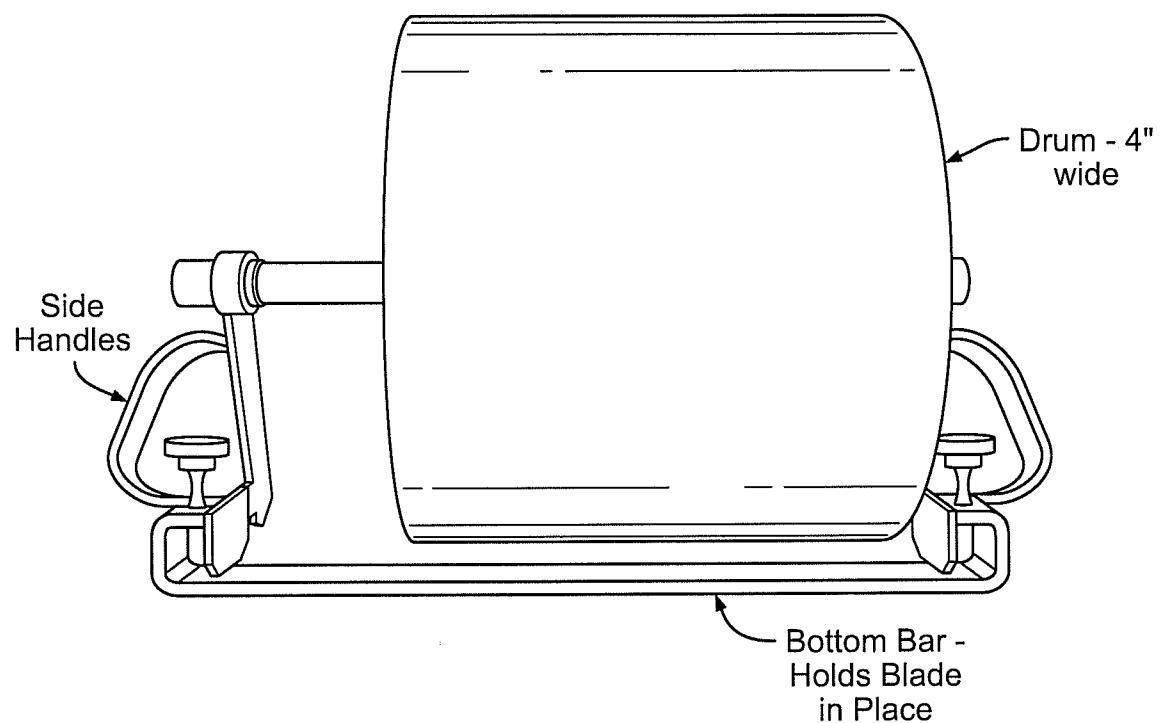

FIG. 8

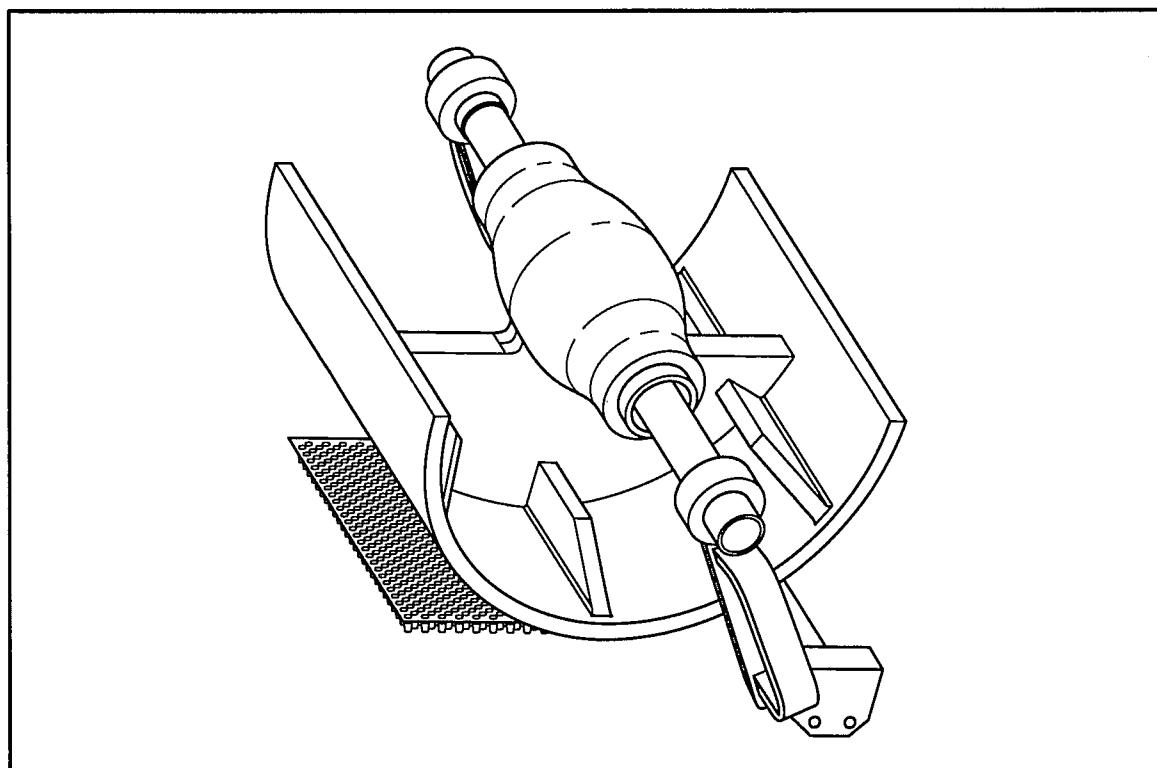

FIG. 9

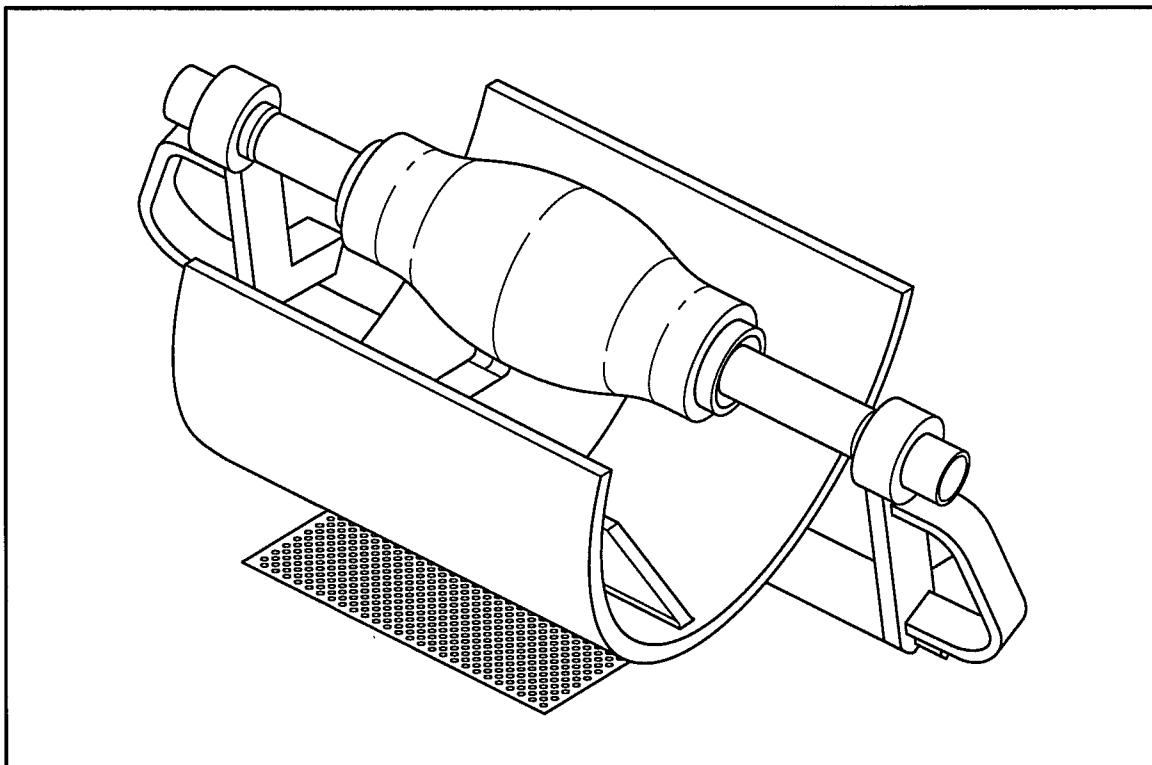

FIG. 10A

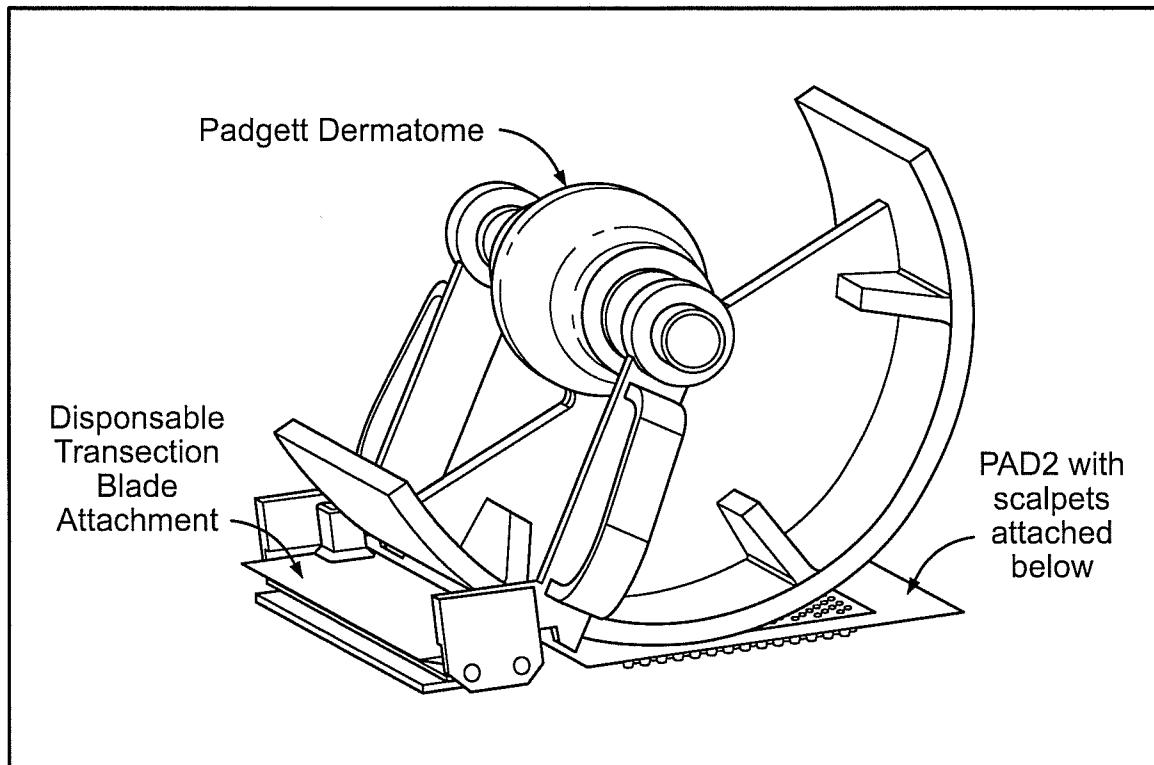

FIG. 10B

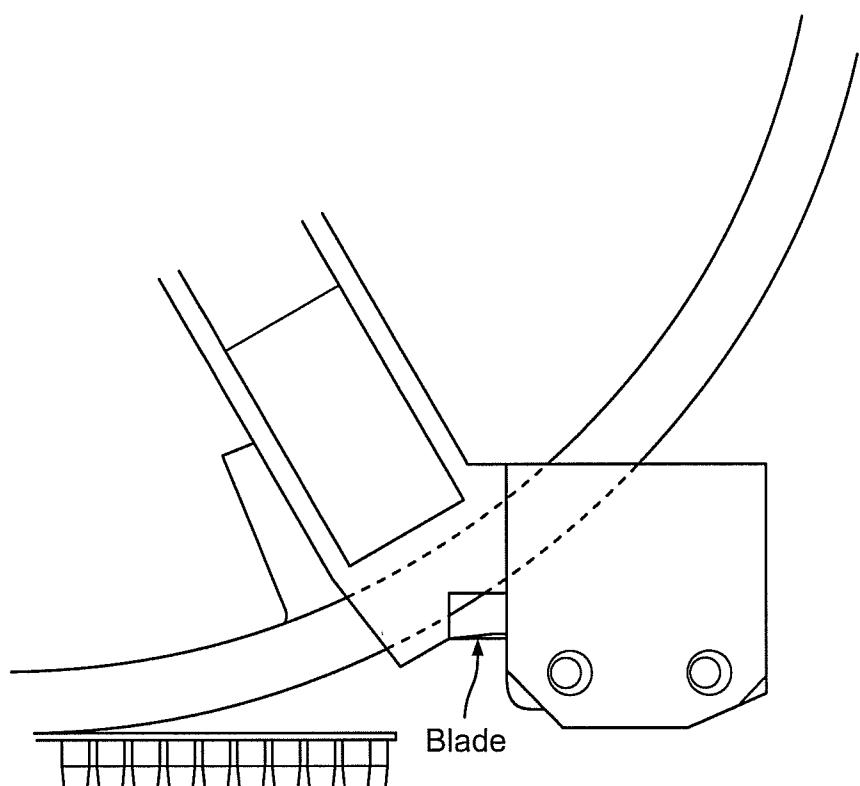

FIG. 10C


FIG. 10D


FIG. 11A


FIG. 11B


FIG. 11C


FIG. 12A

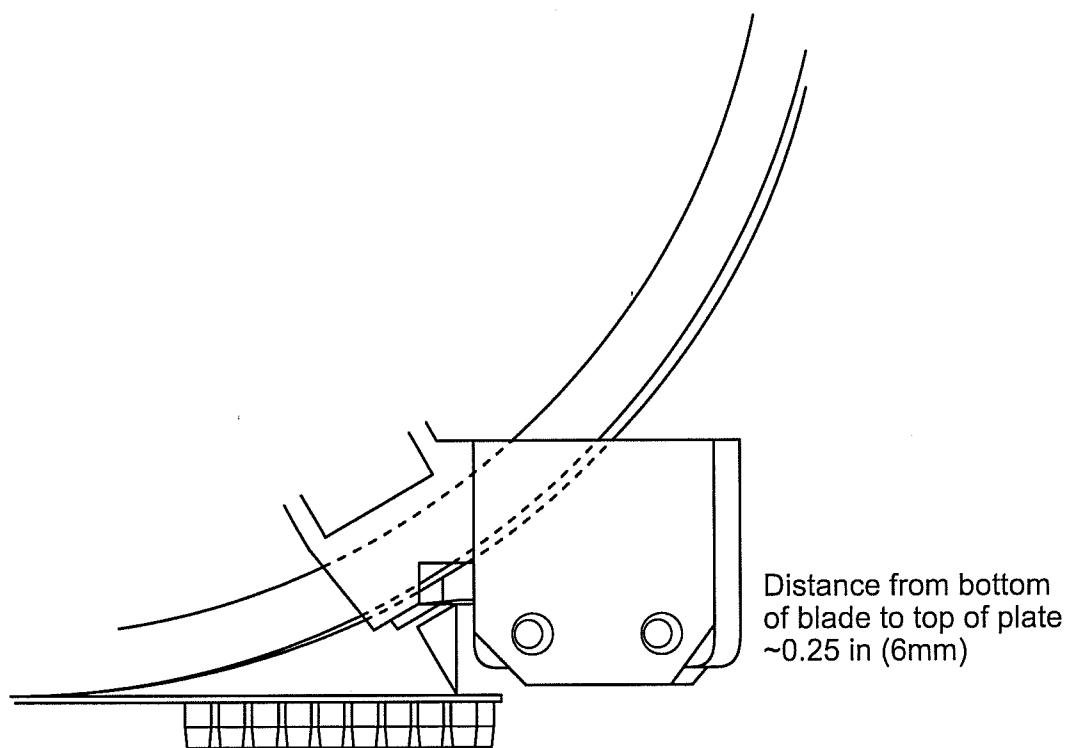


FIG. 12B

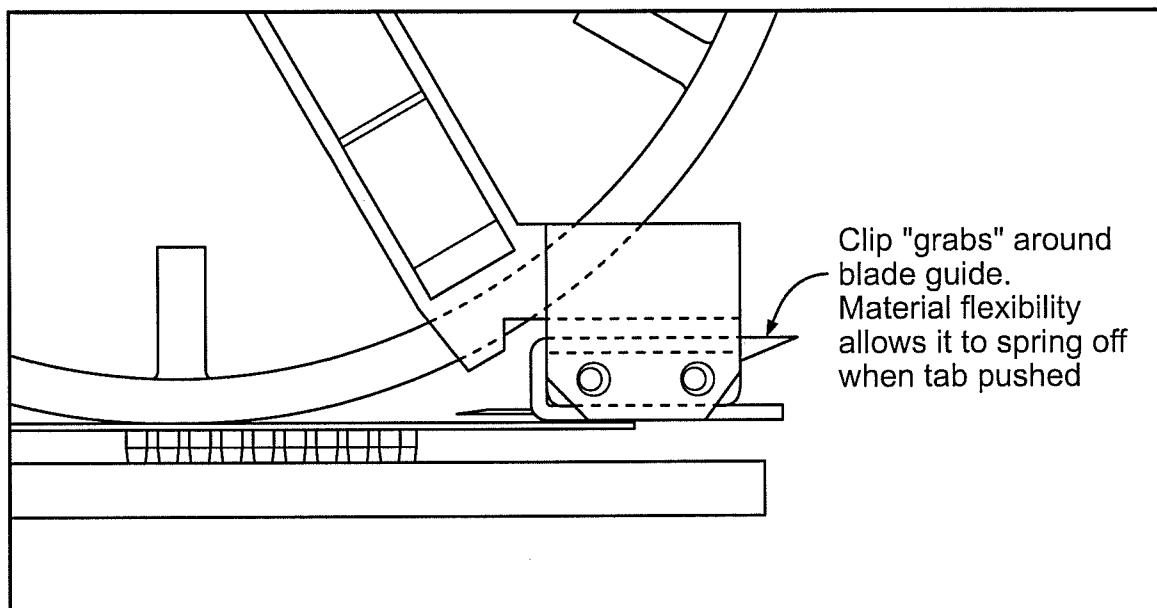
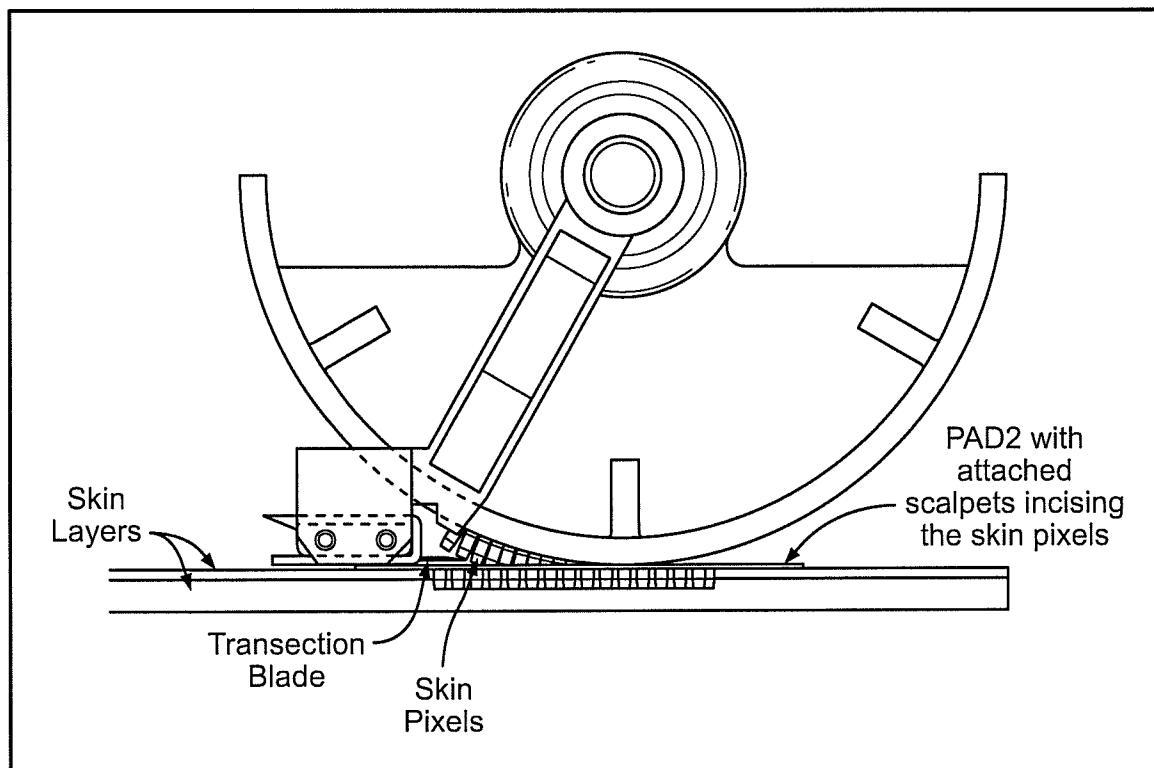
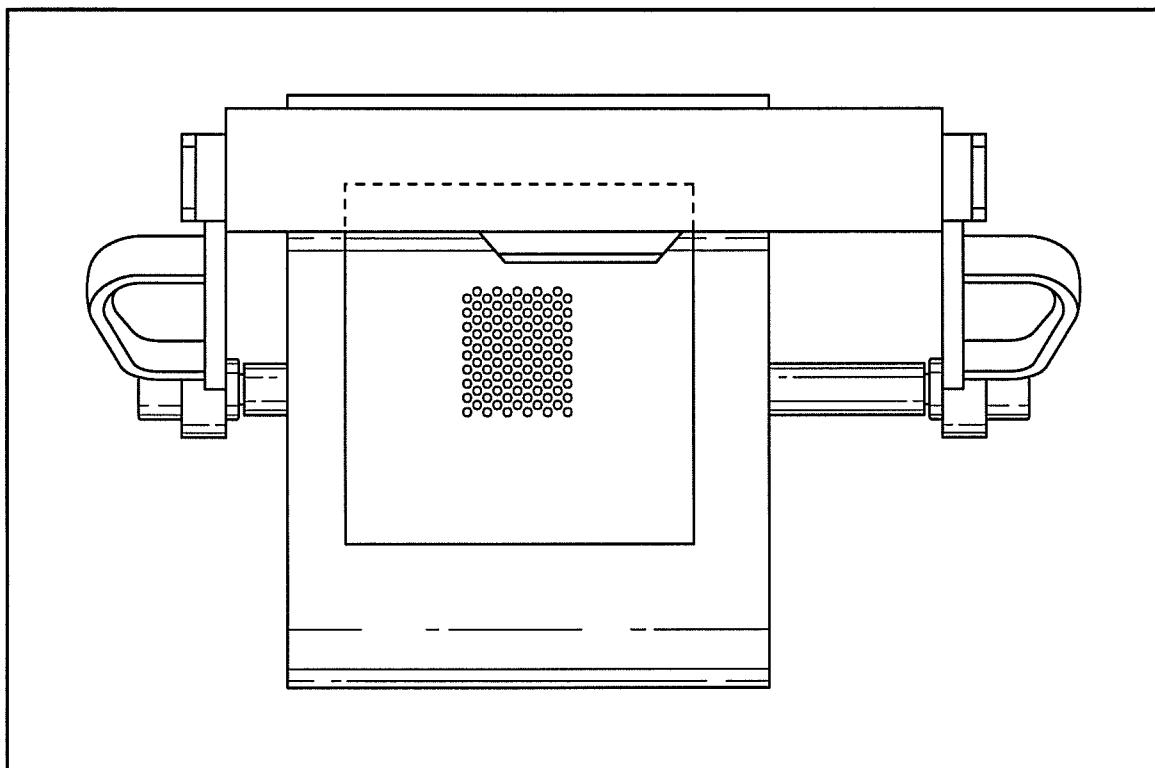
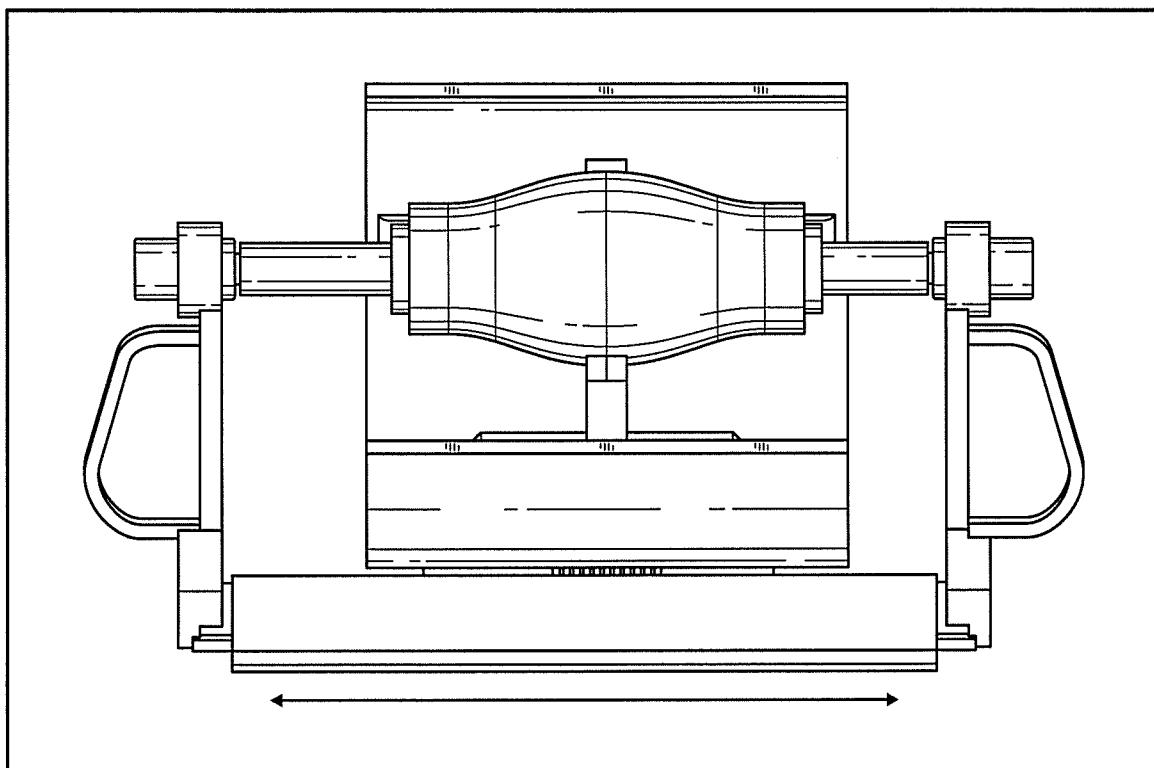
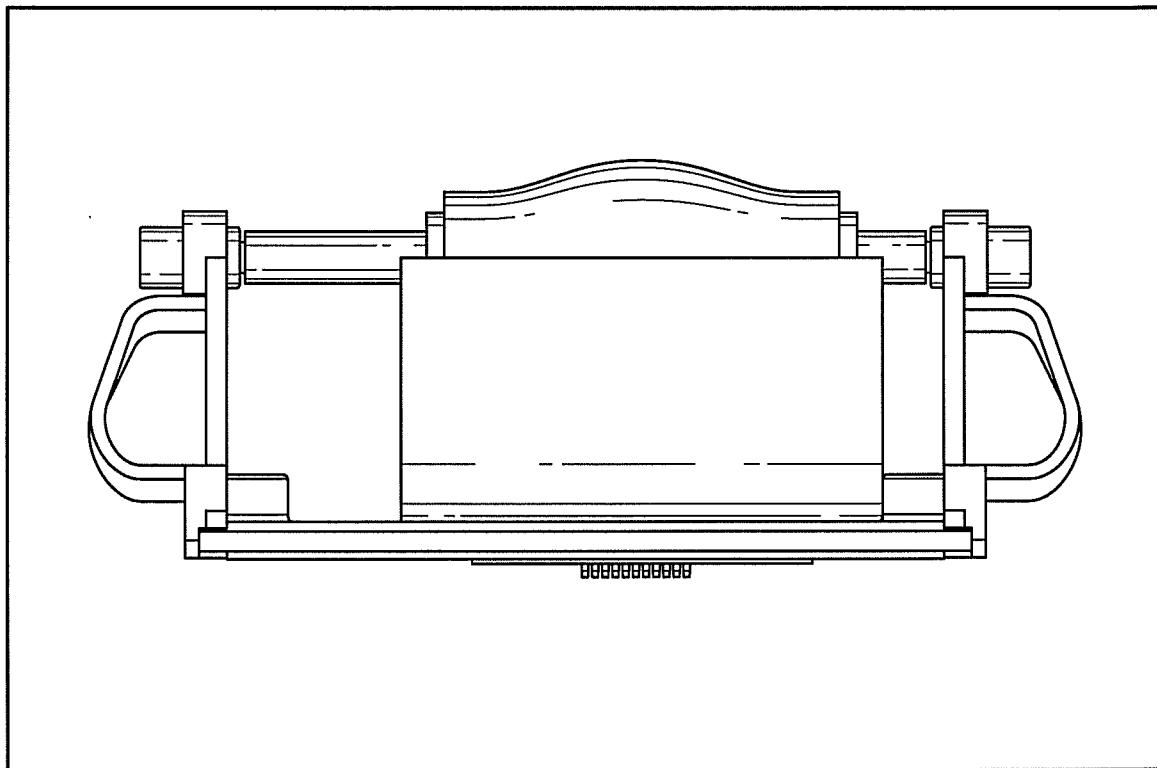


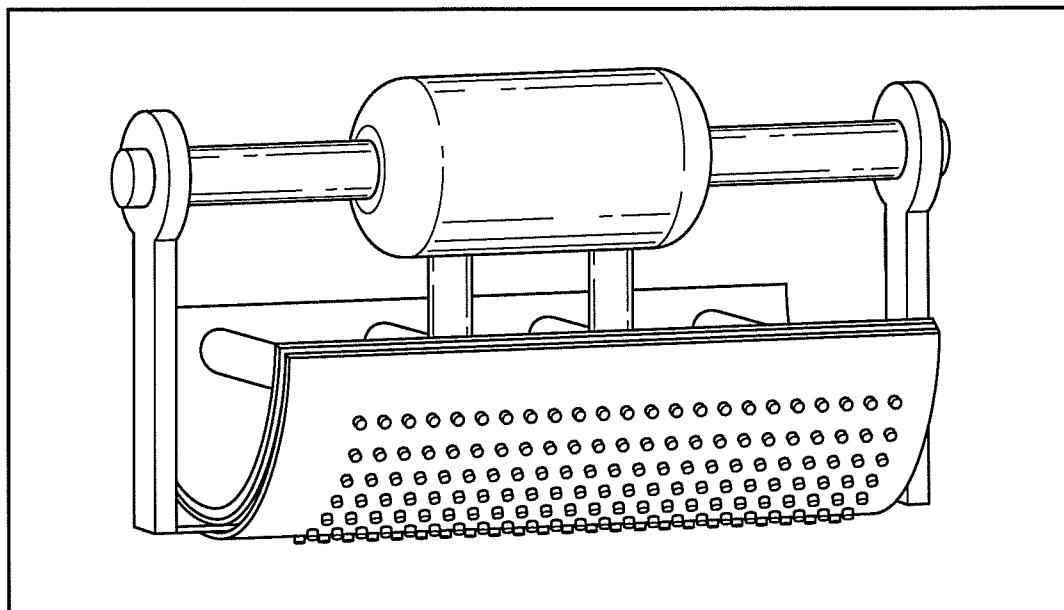
FIG. 13A


FIG. 13B


FIG. 13C


FIG. 13D




FIG. 13E

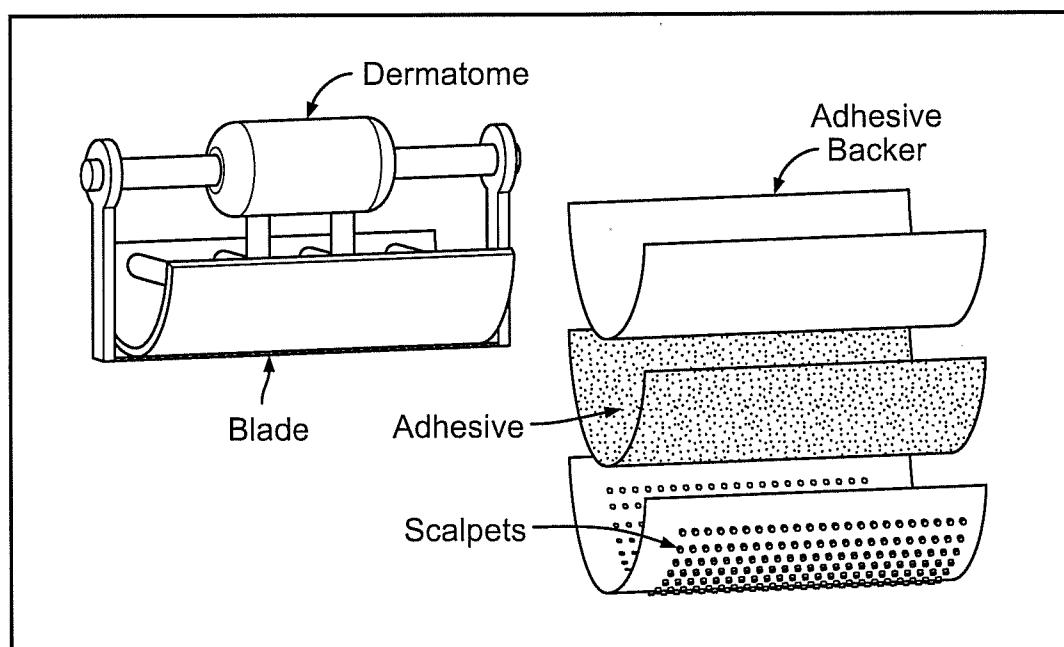
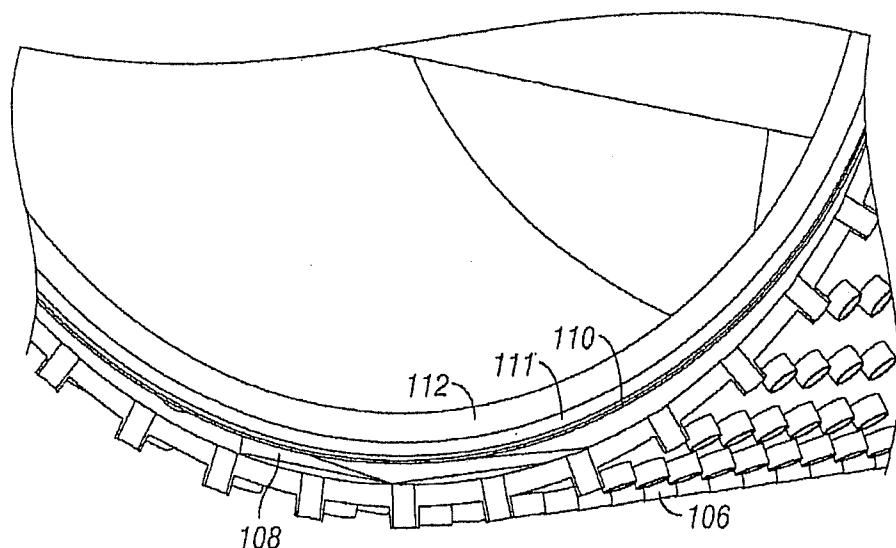
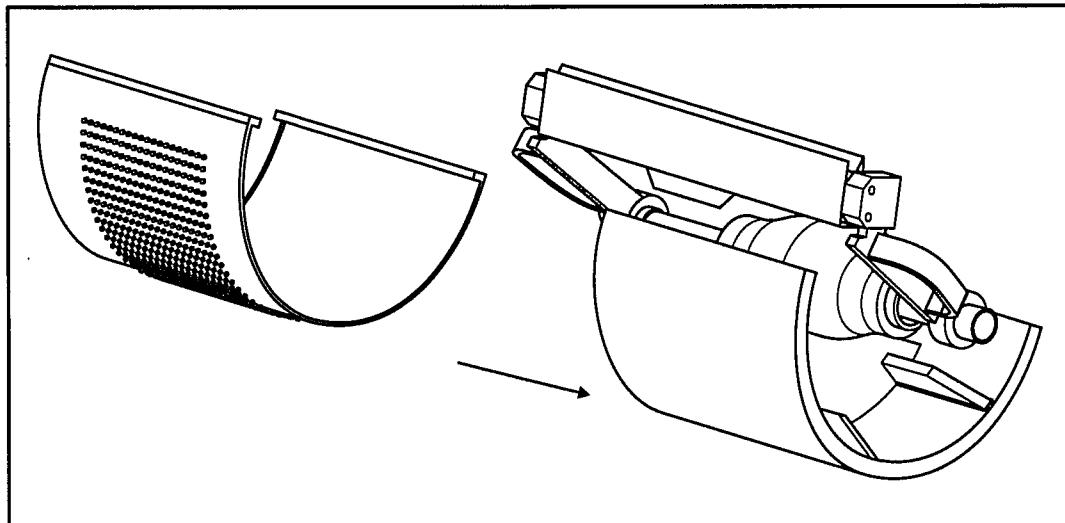
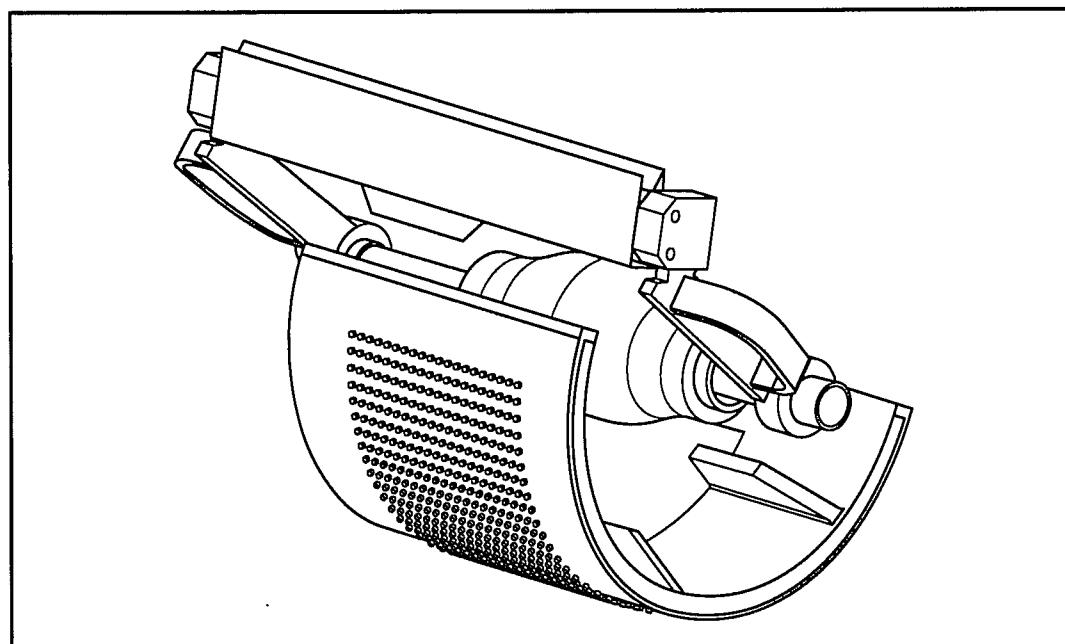
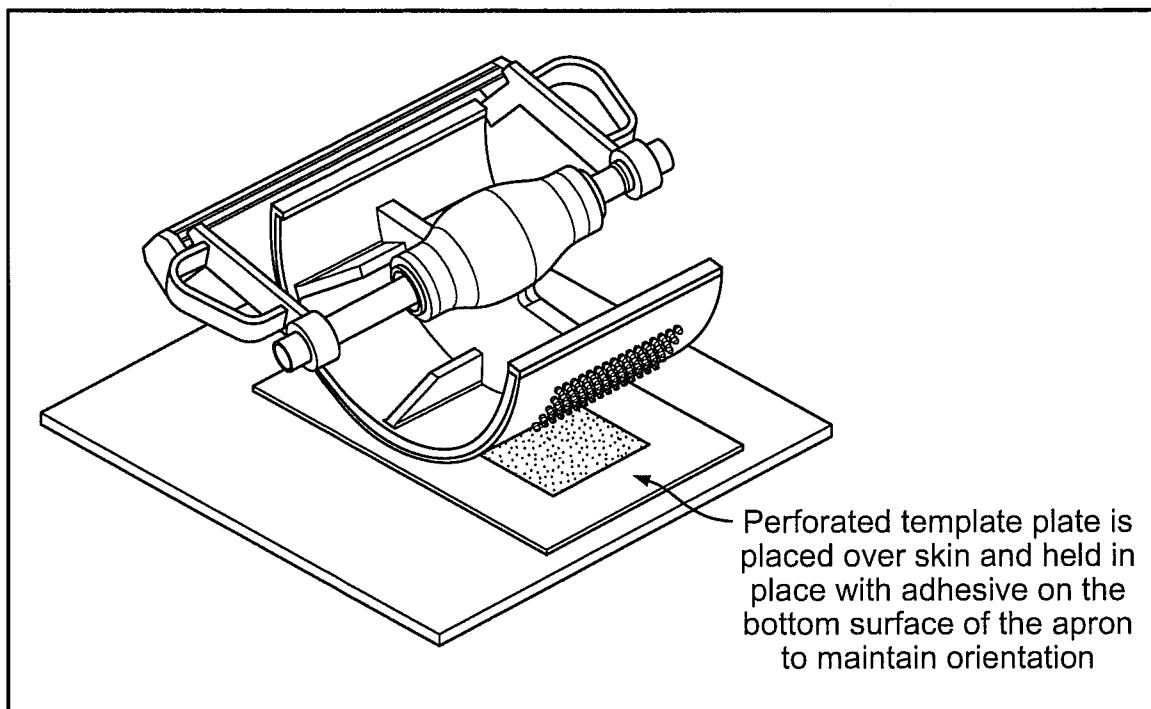

FIG. 13F

FIG. 13G


FIG. 13H


FIG. 14A


FIG. 14B


FIG. 14C

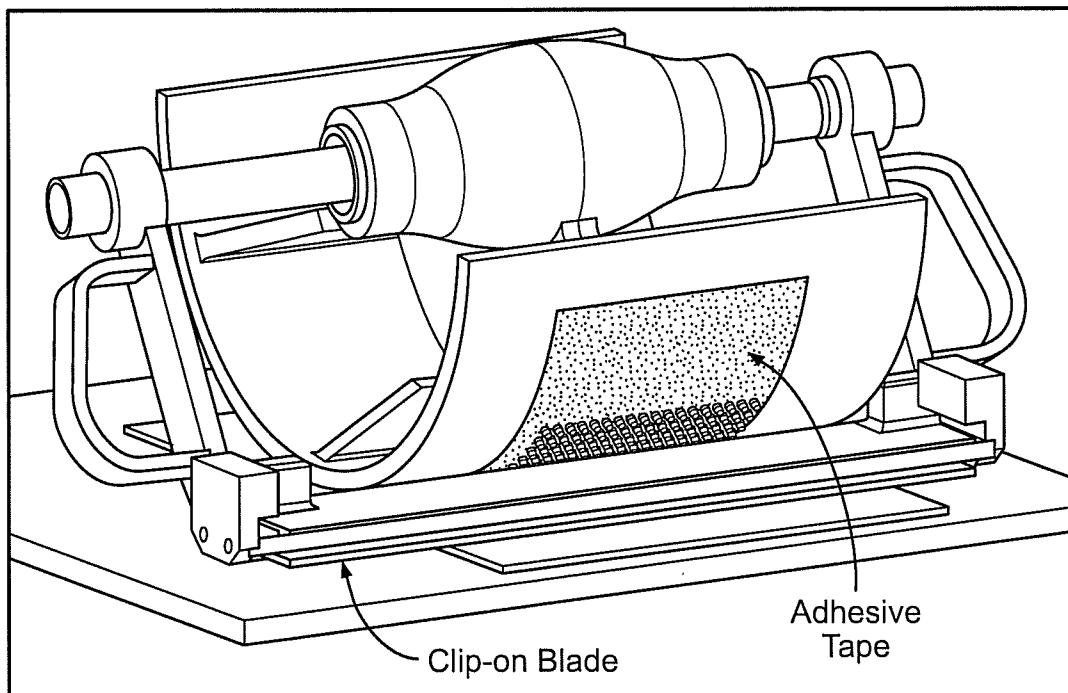
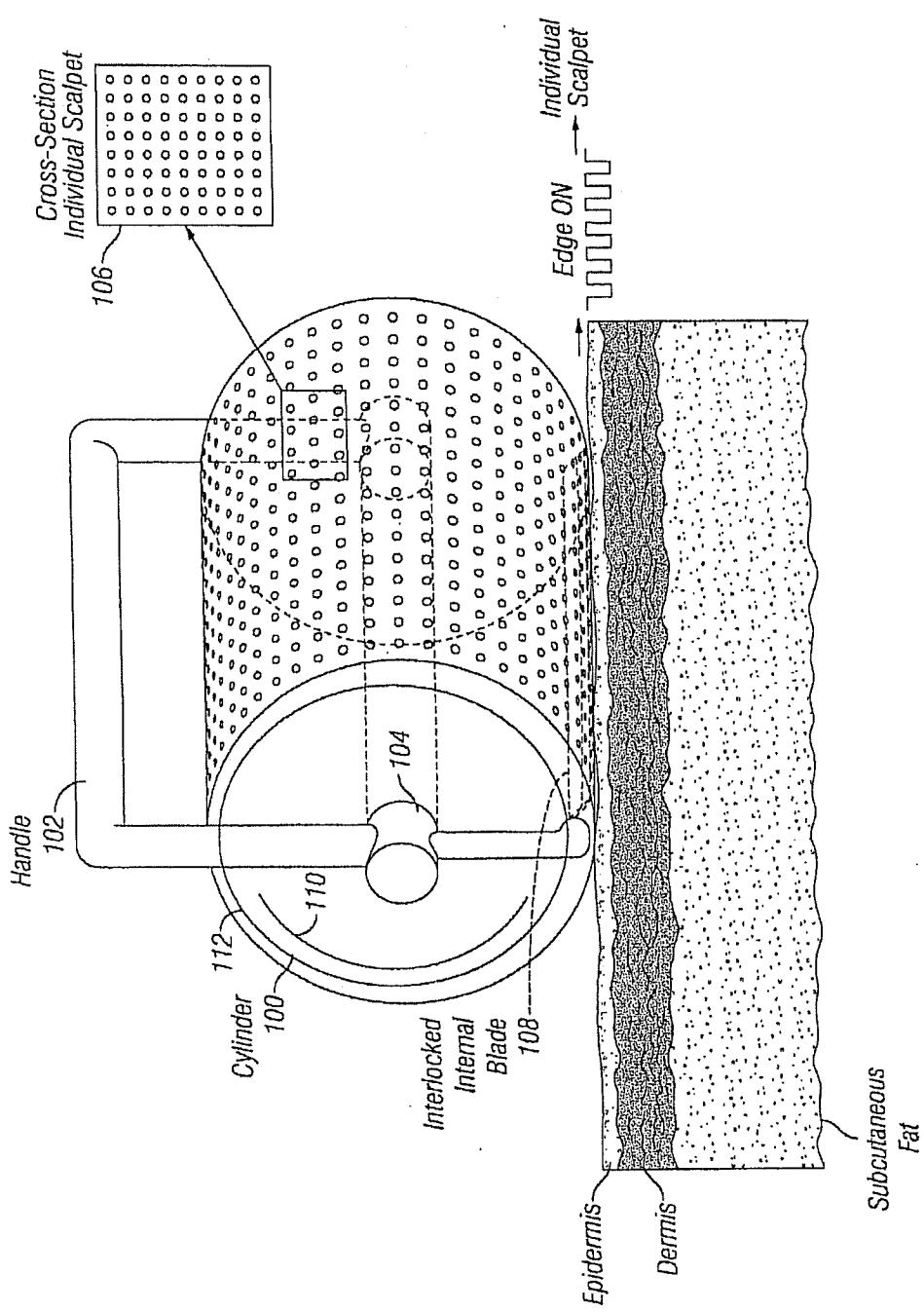
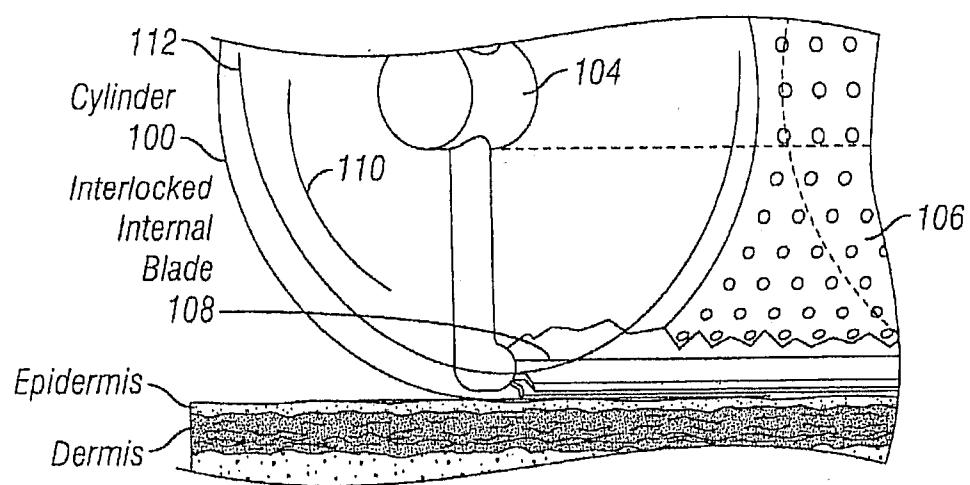
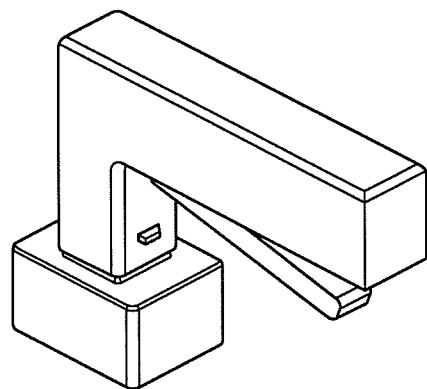
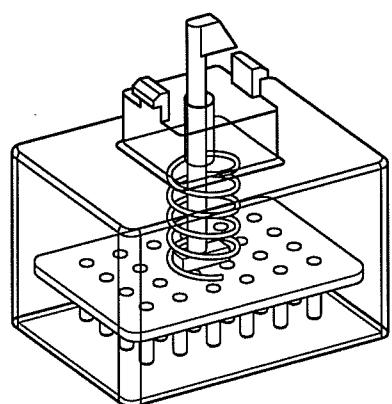

FIG. 15A

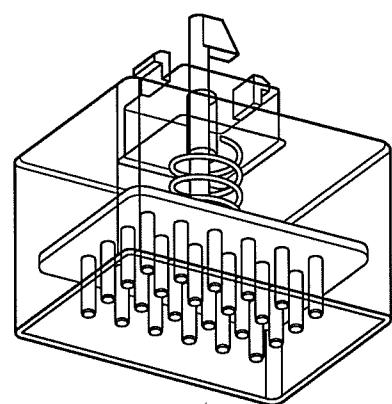
FIG. 15B

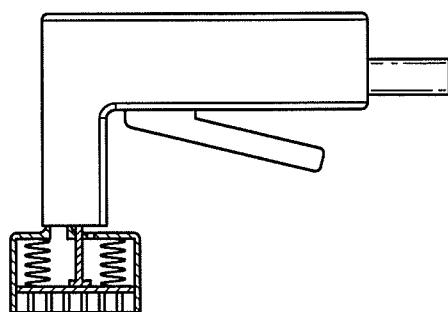
FIG. 16A

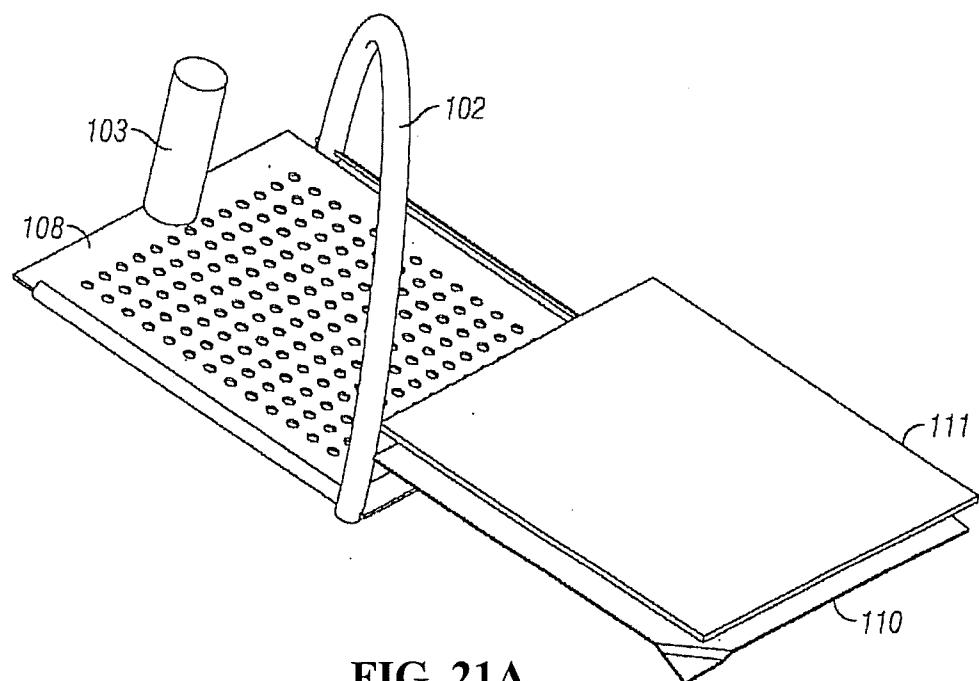
FIG. 16B


FIG. 17A


FIG. 17B


FIG. 18


FIG. 19A

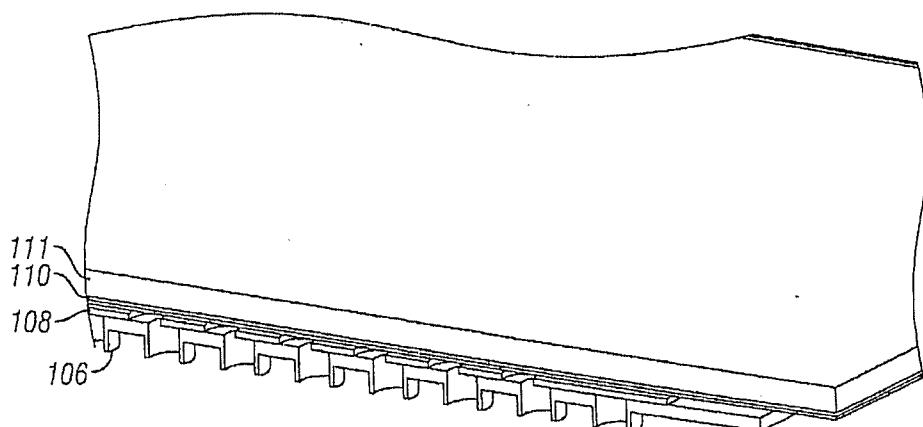


FIG. 19B

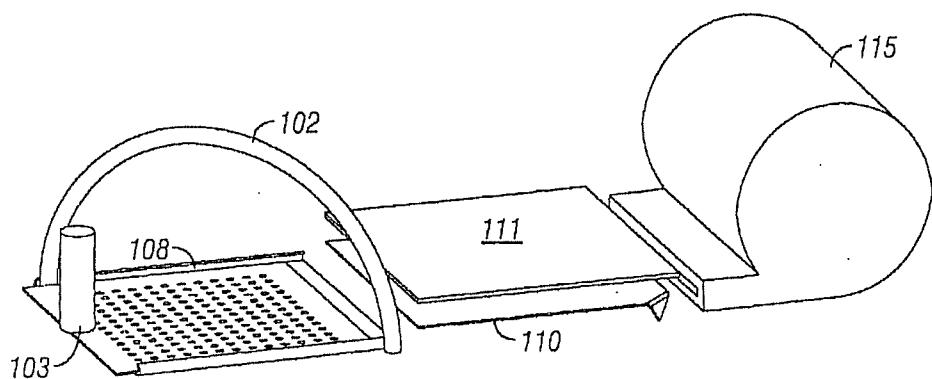


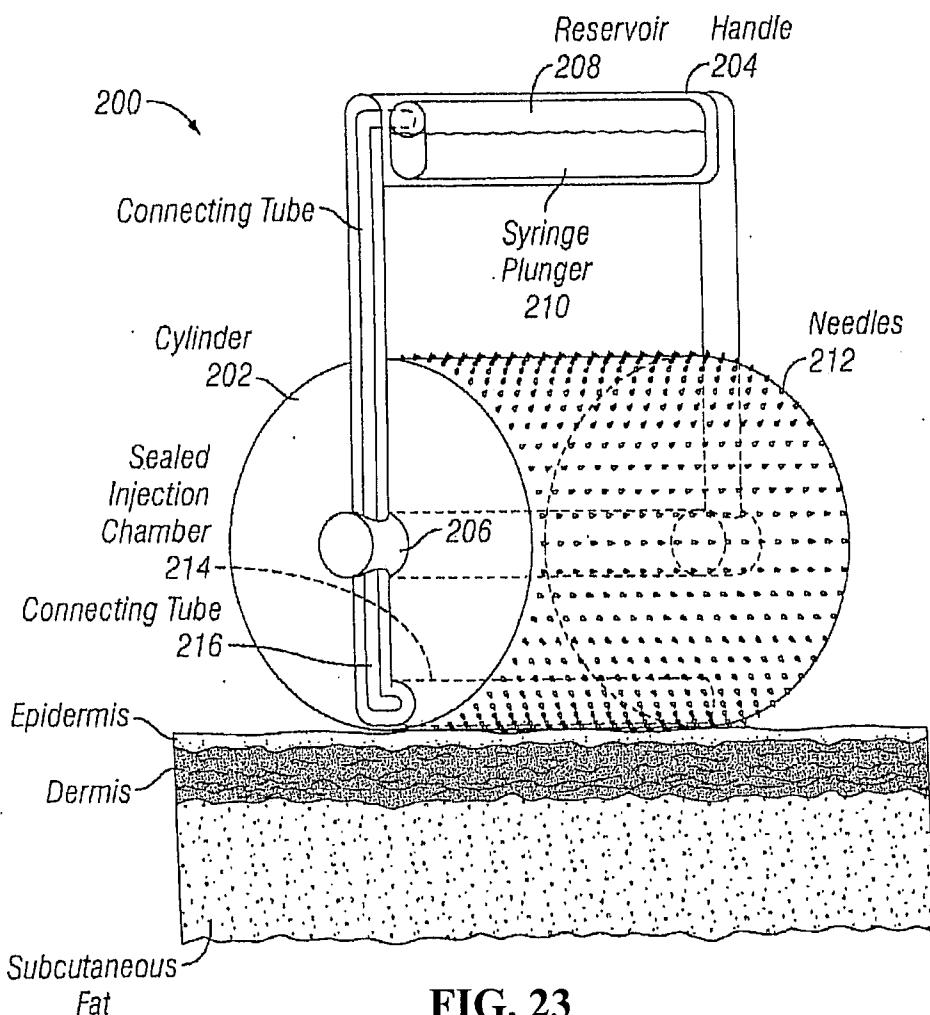
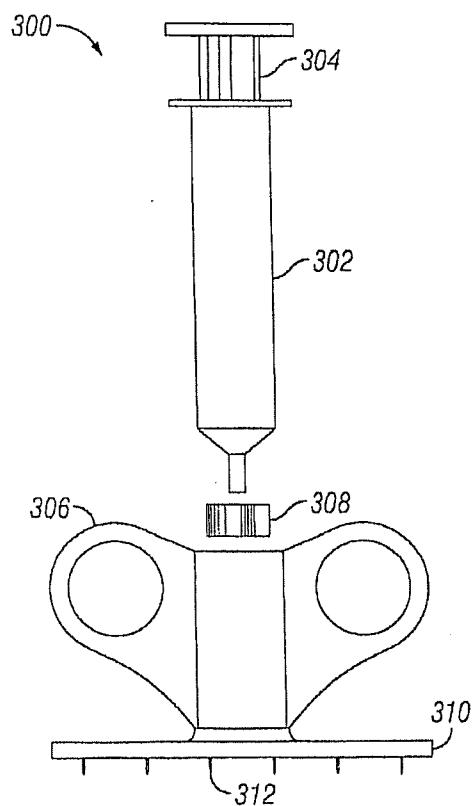
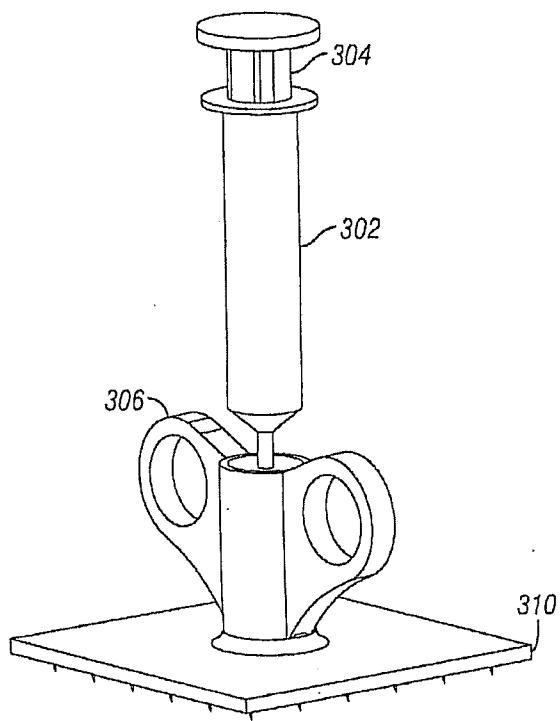
FIG. 20

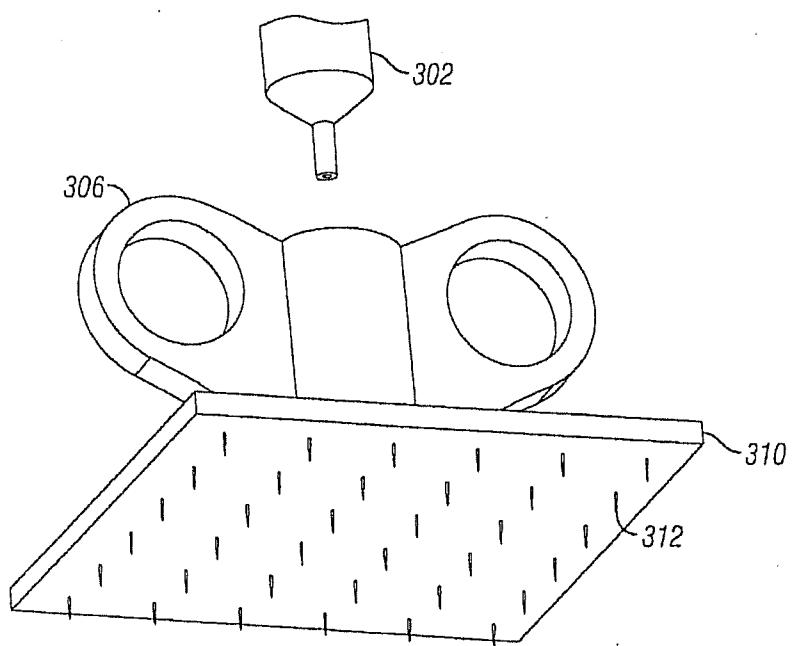
FIG. 21A**FIG. 21B**

FIG. 21C

FIG. 21D

FIG. 22


FIG. 23

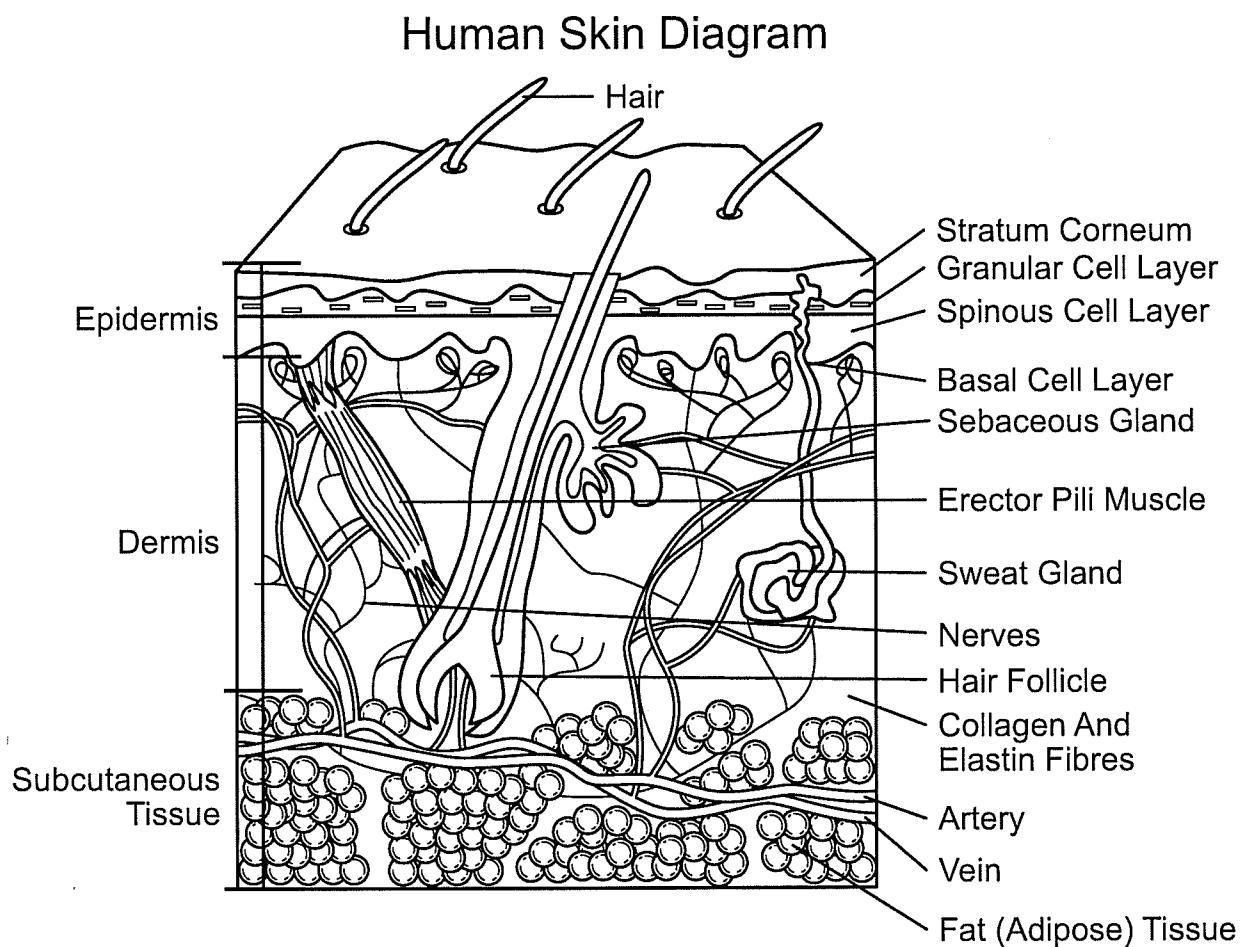

FIG. 24A

FIG. 24B

FIG. 24C

FIG. 25

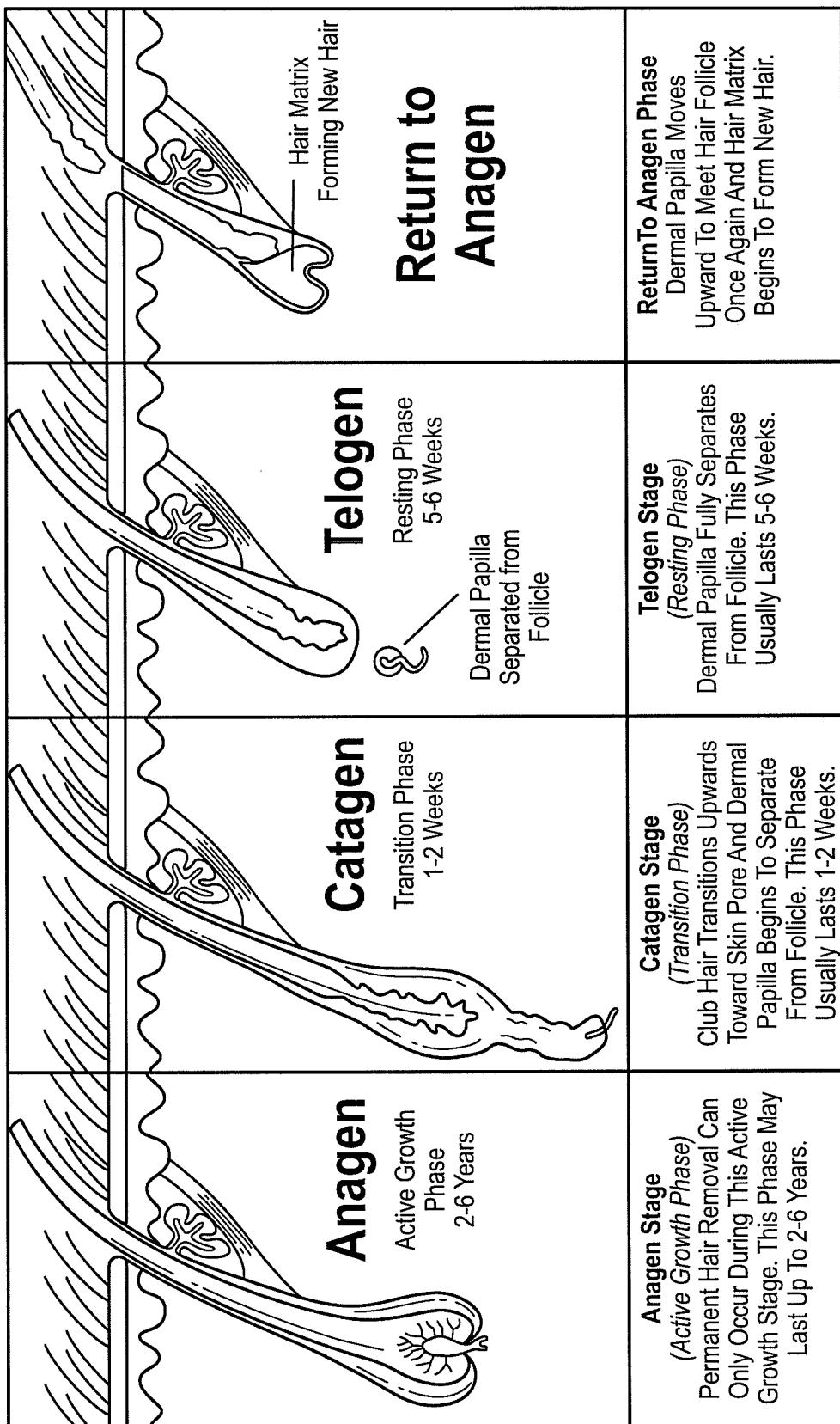
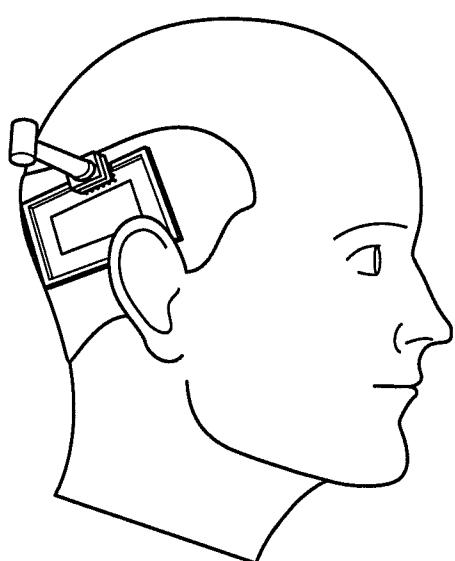
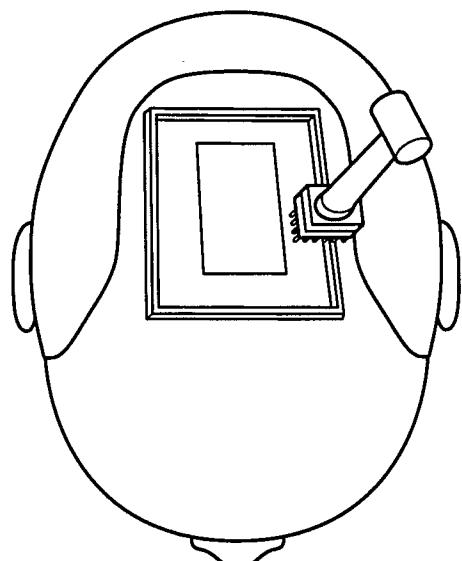
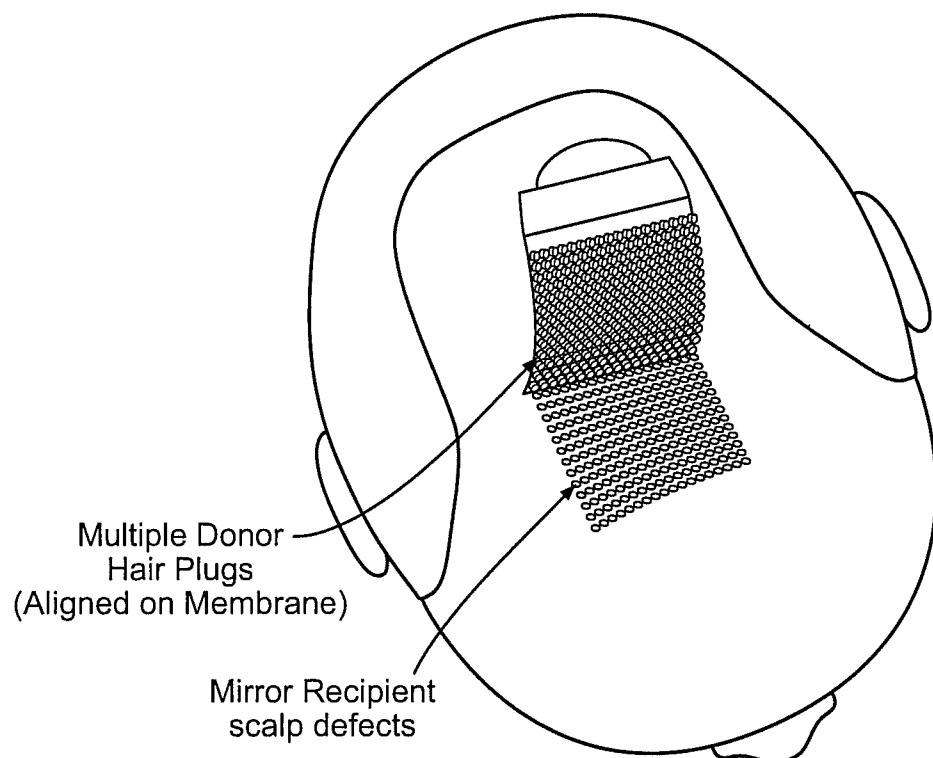
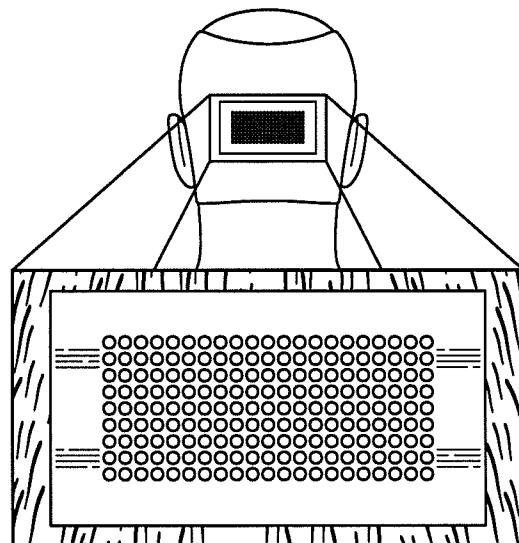
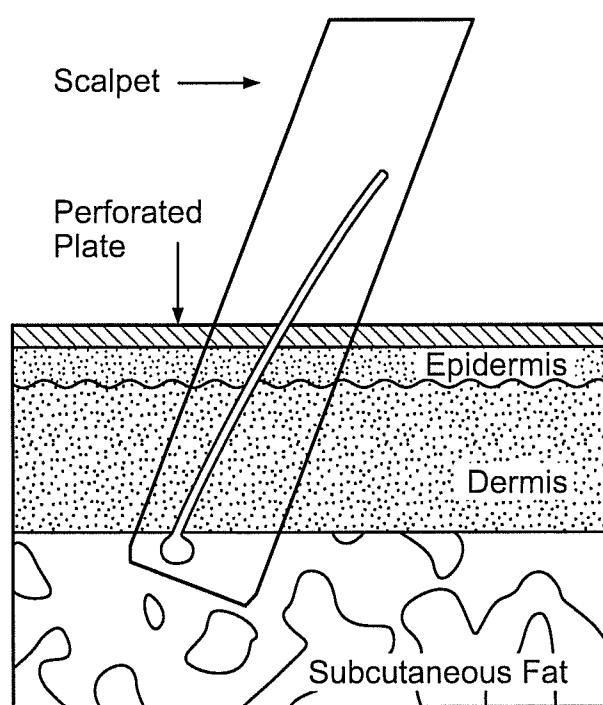
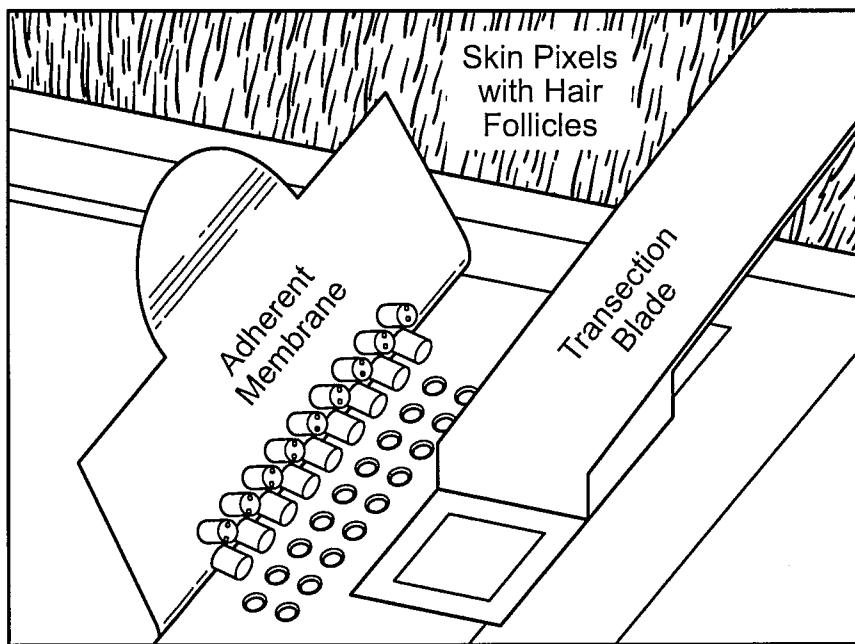
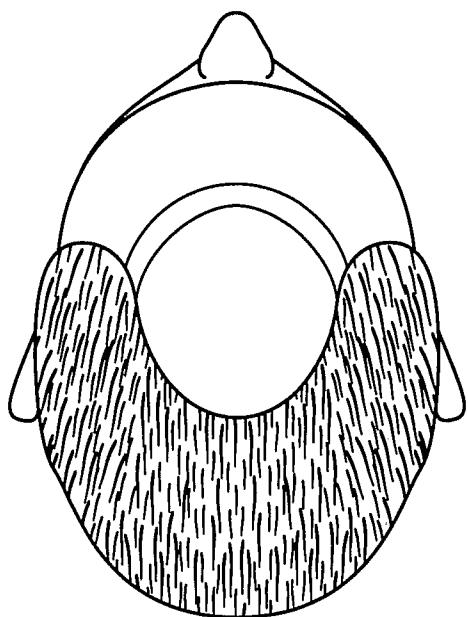
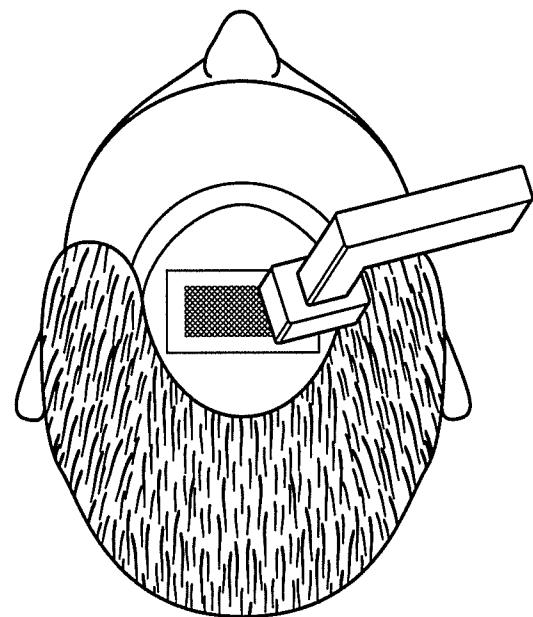




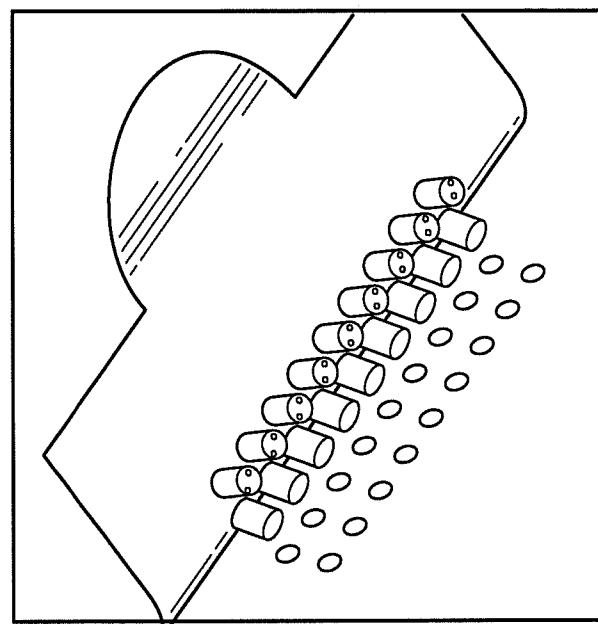
FIG. 26



Donor Hair Transplant Site



FIG. 27




Recipient Hair Transplant Site


FIG. 28

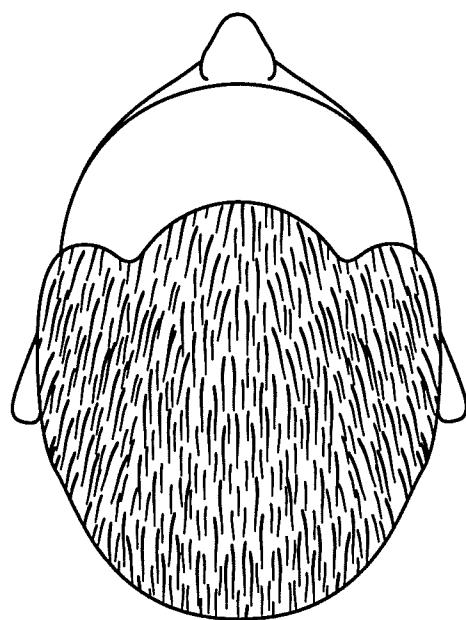

FIG. 29

FIG. 30**FIG. 31**

FIG. 32**FIG. 33****FIG. 34**

FIG. 35

FIG. 36

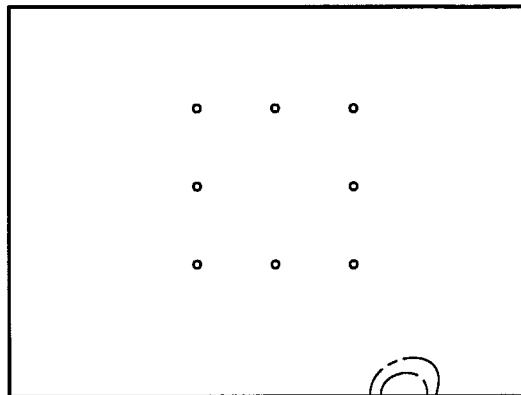


FIG. 37

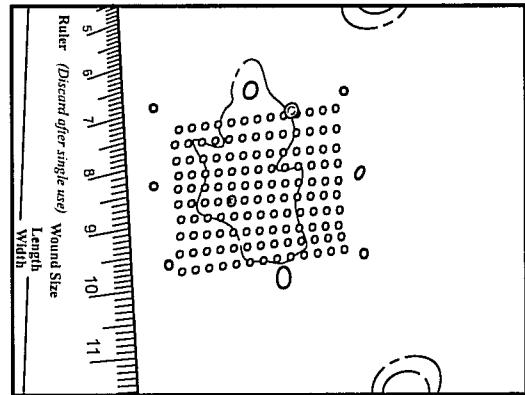


FIG. 38

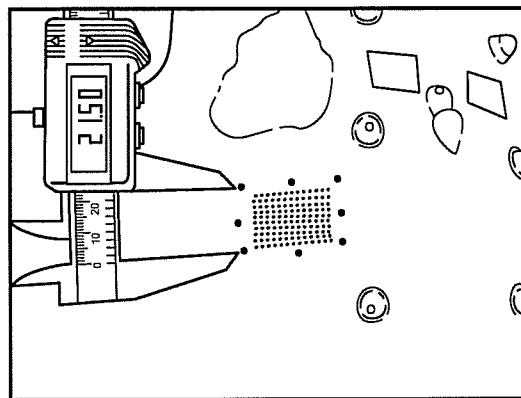


FIG. 39

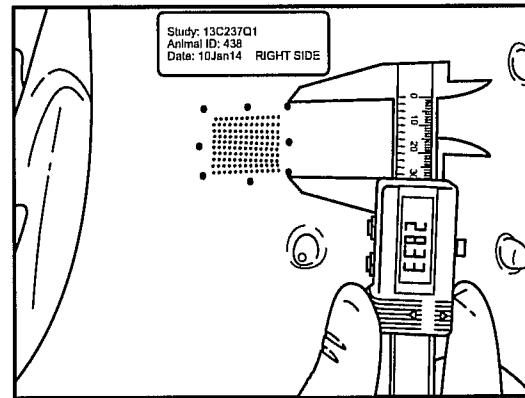


FIG. 40

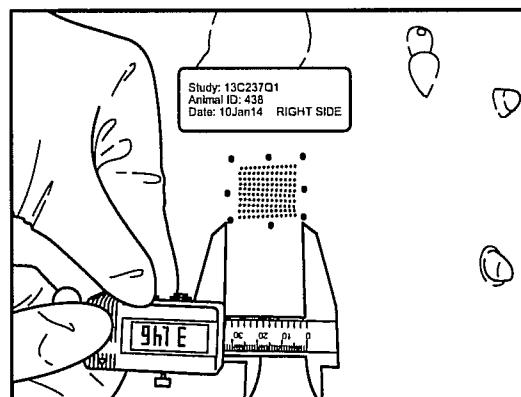
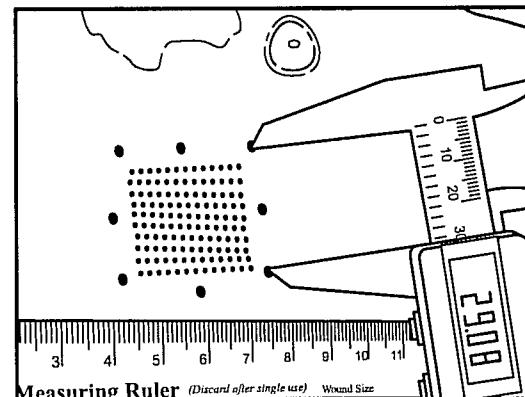
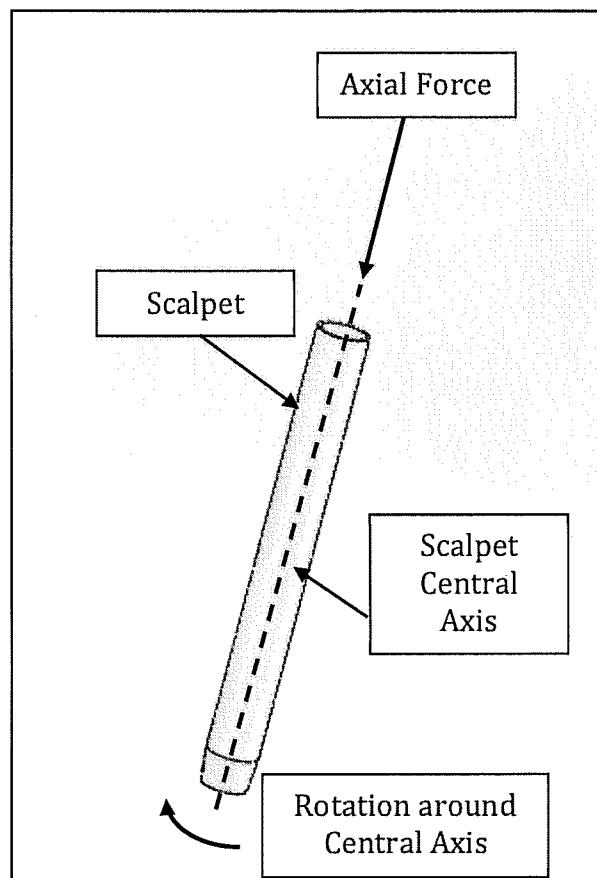
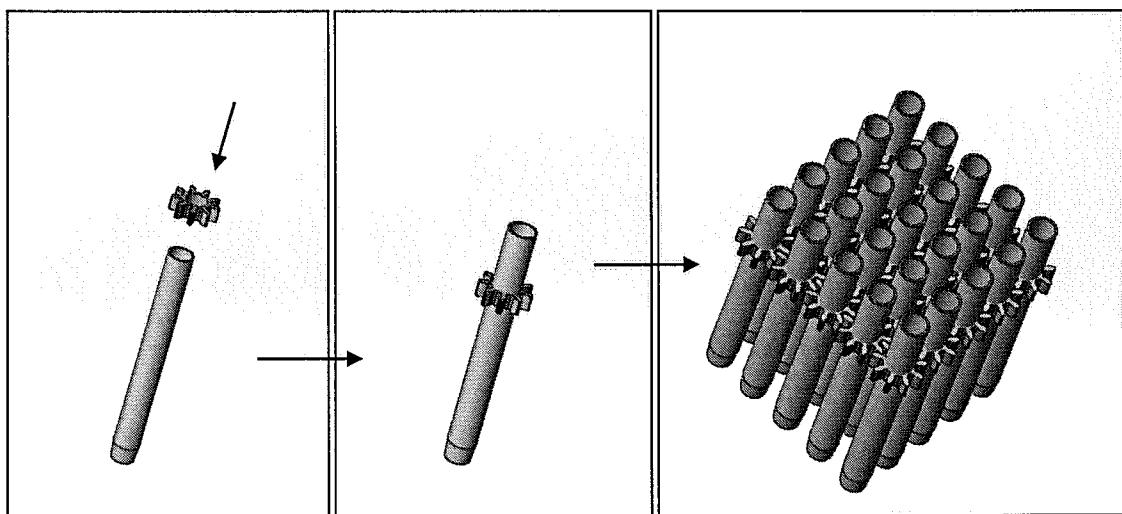
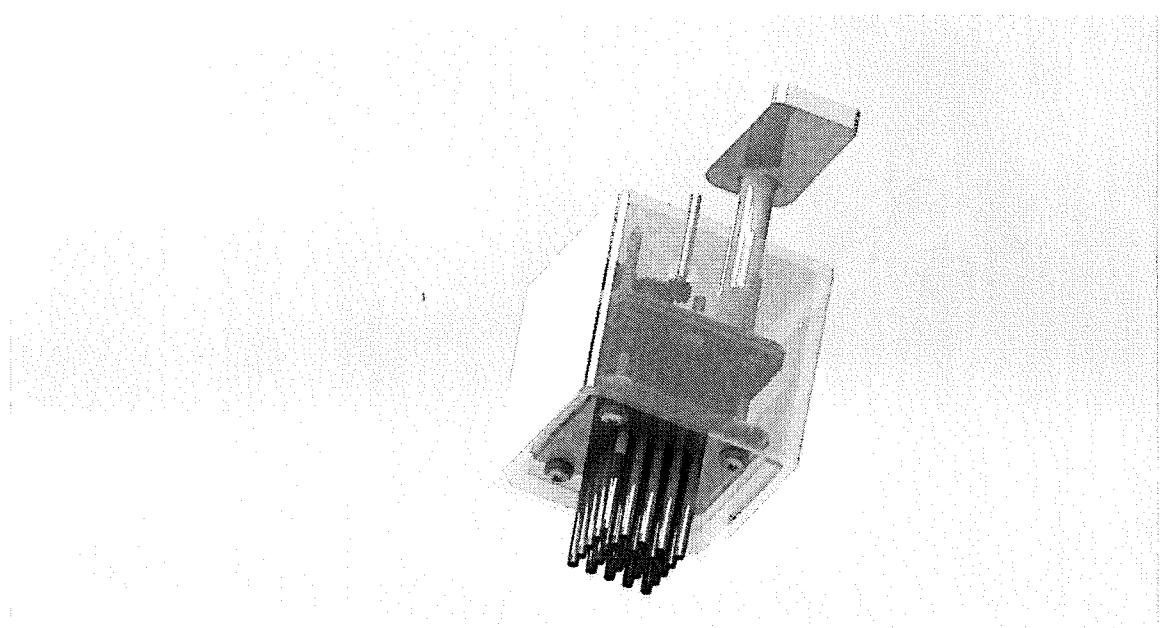
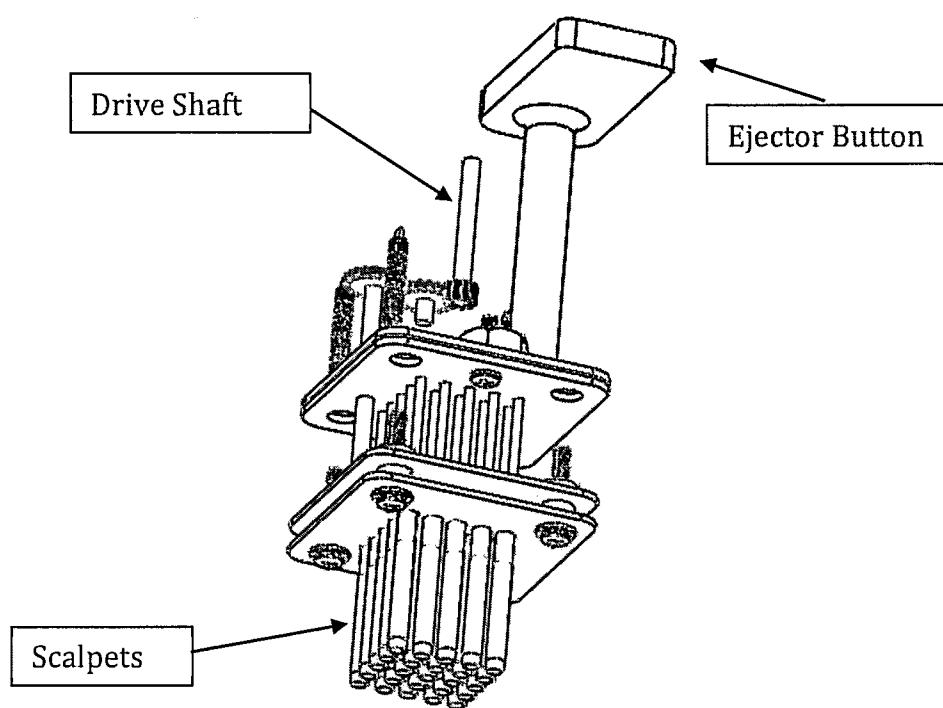
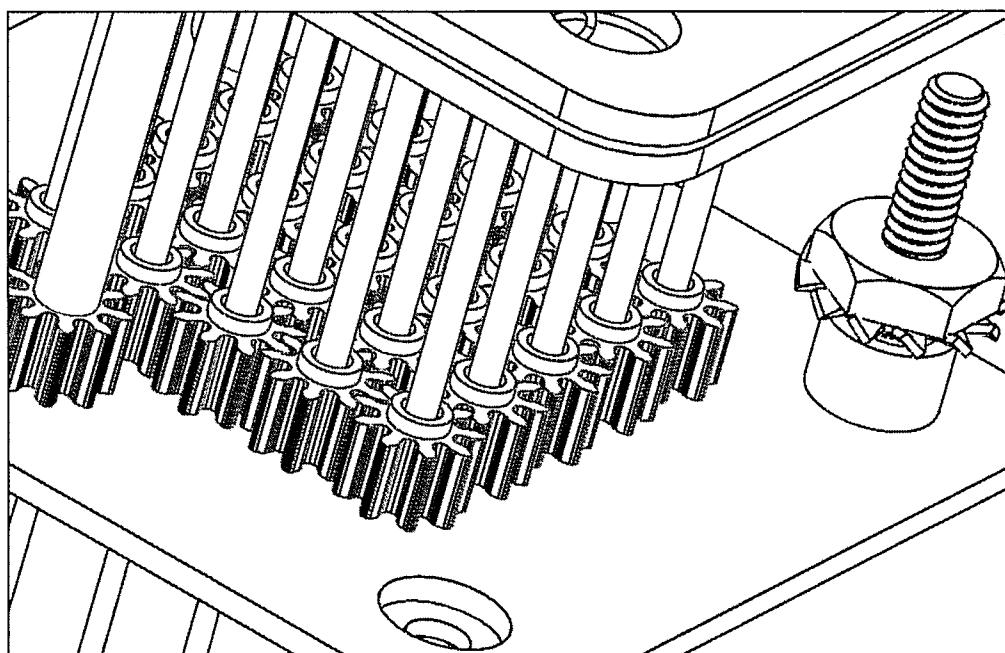


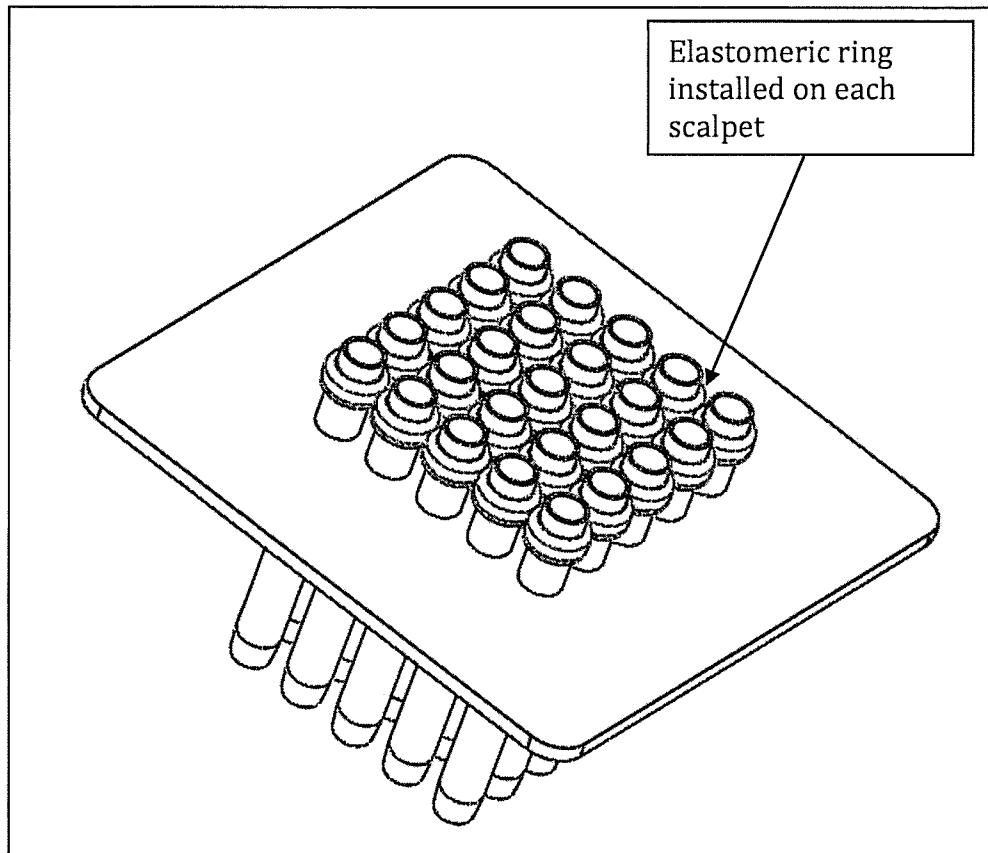
FIG. 41

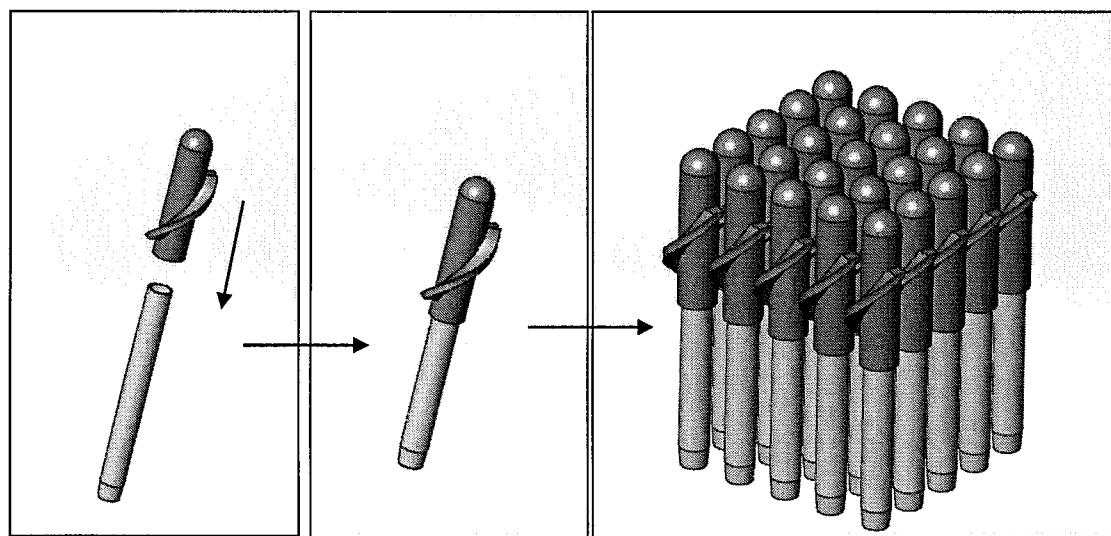




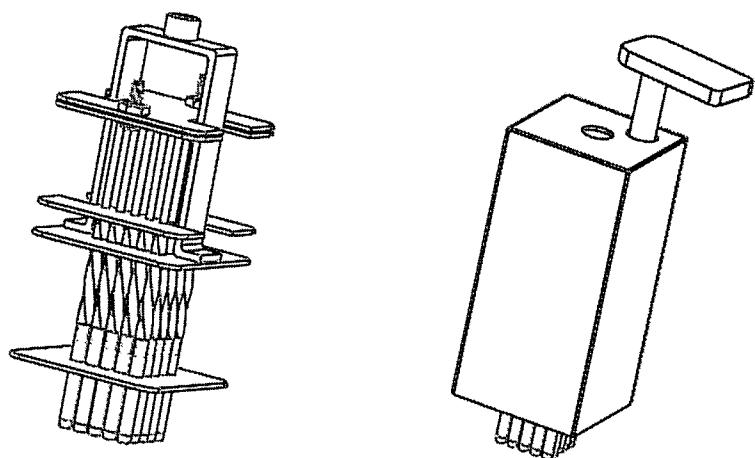

FIG. 42

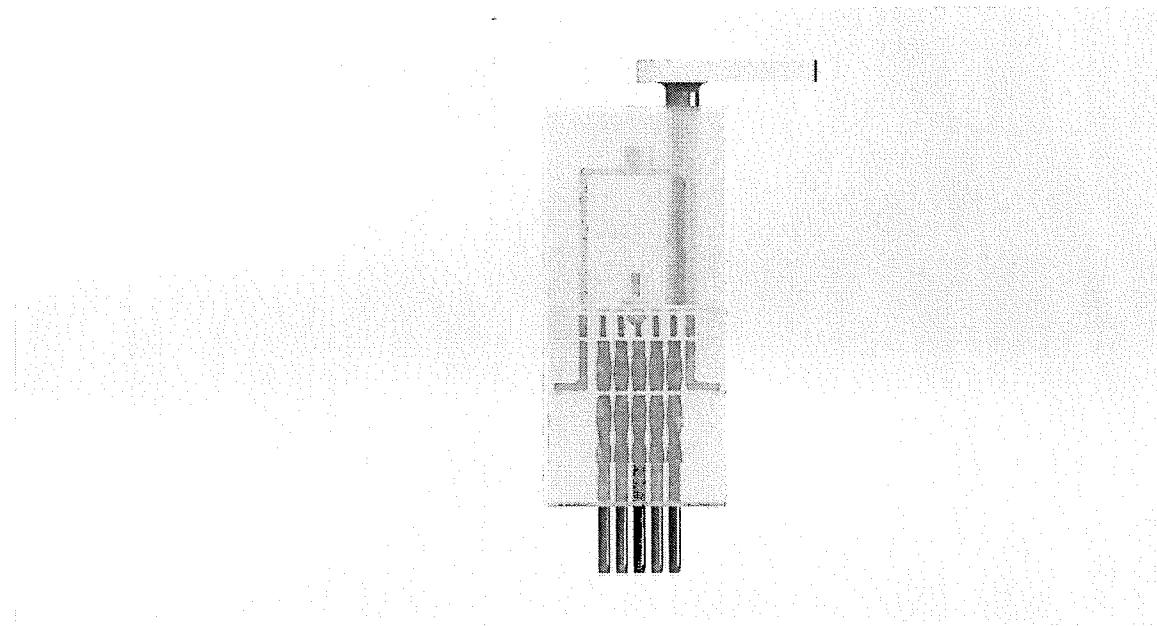

FIGURE 43

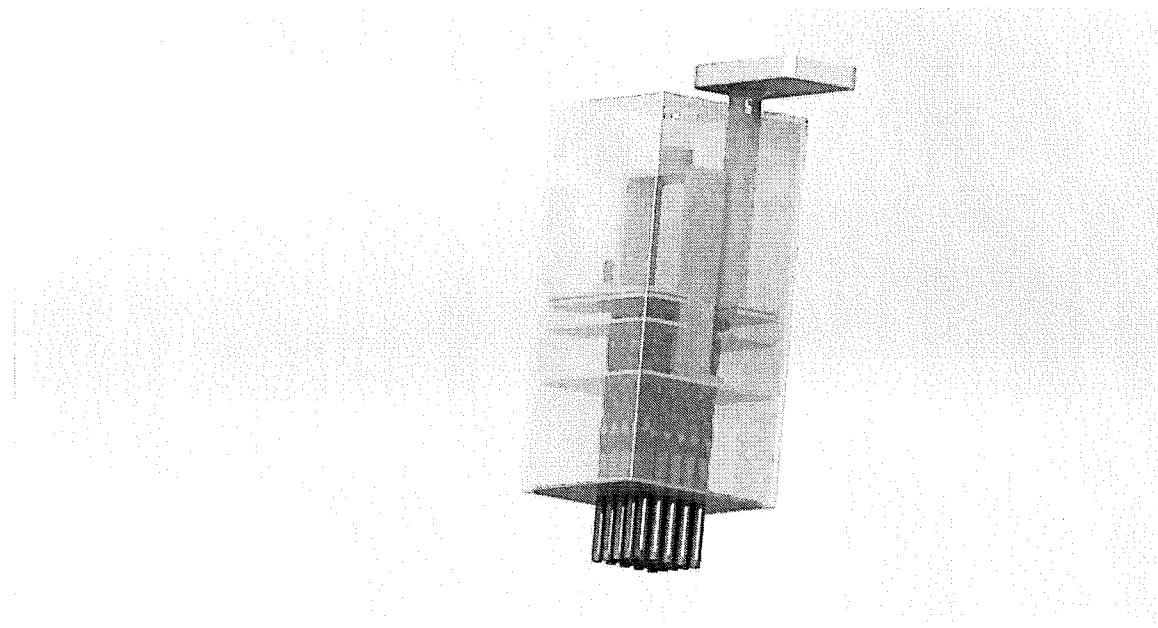

FIGURE 44

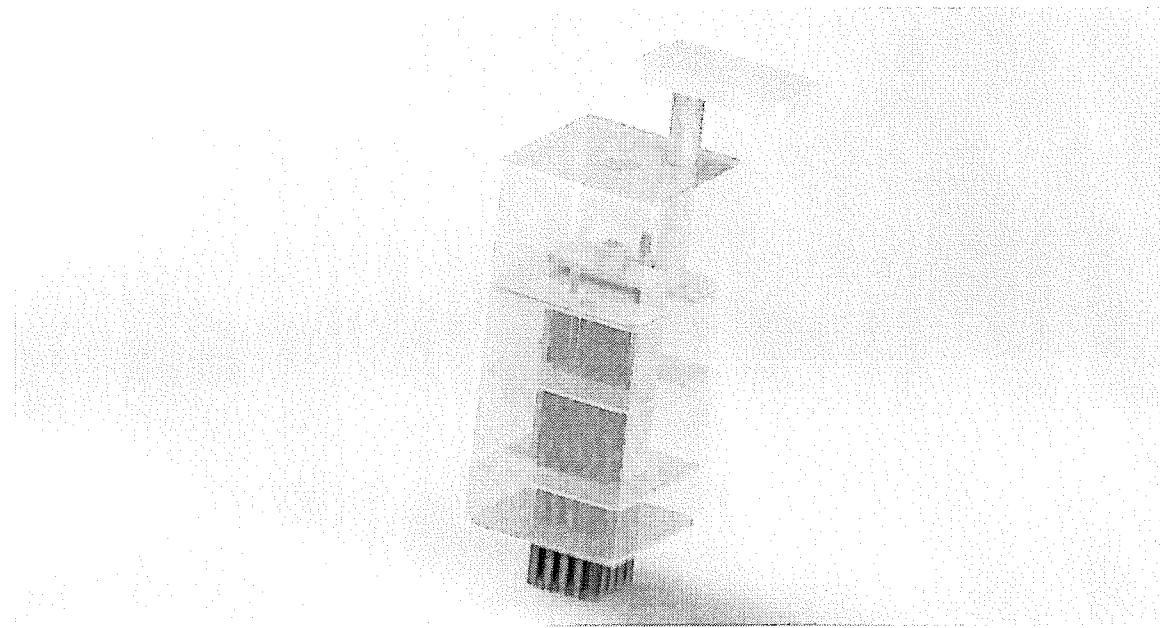

FIGURE 45

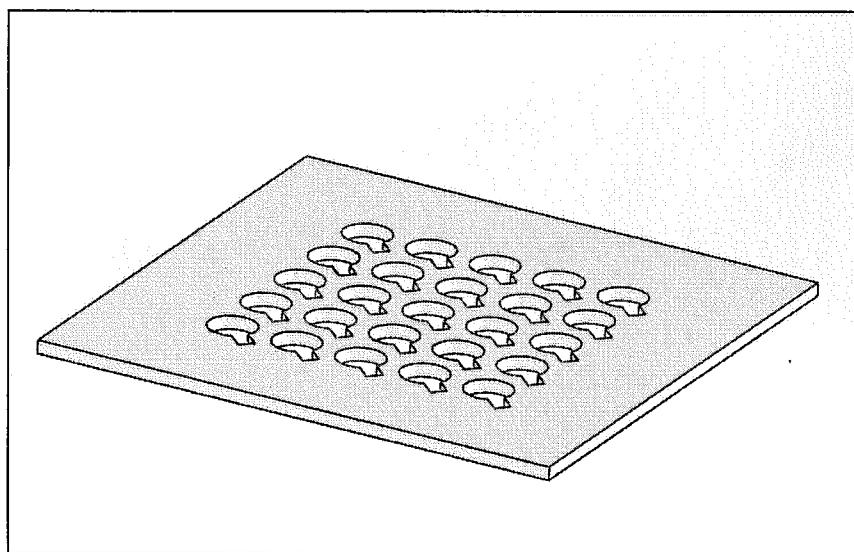

FIGURE 46

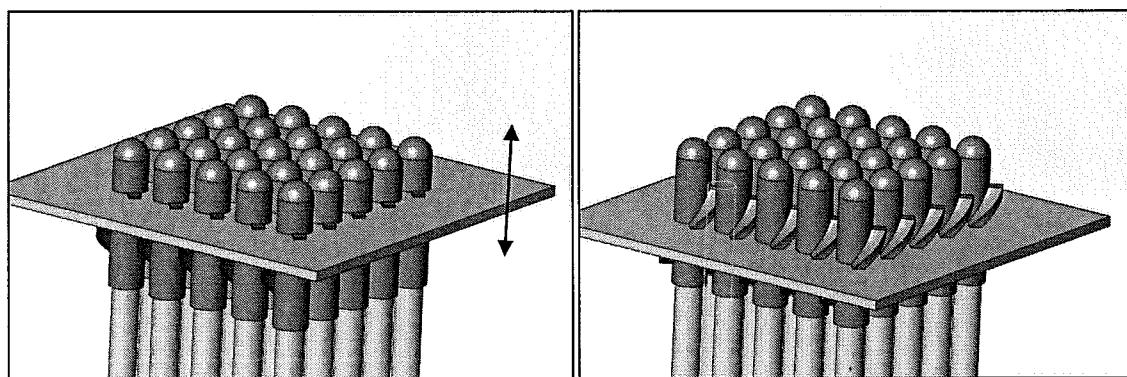

FIGURE 47

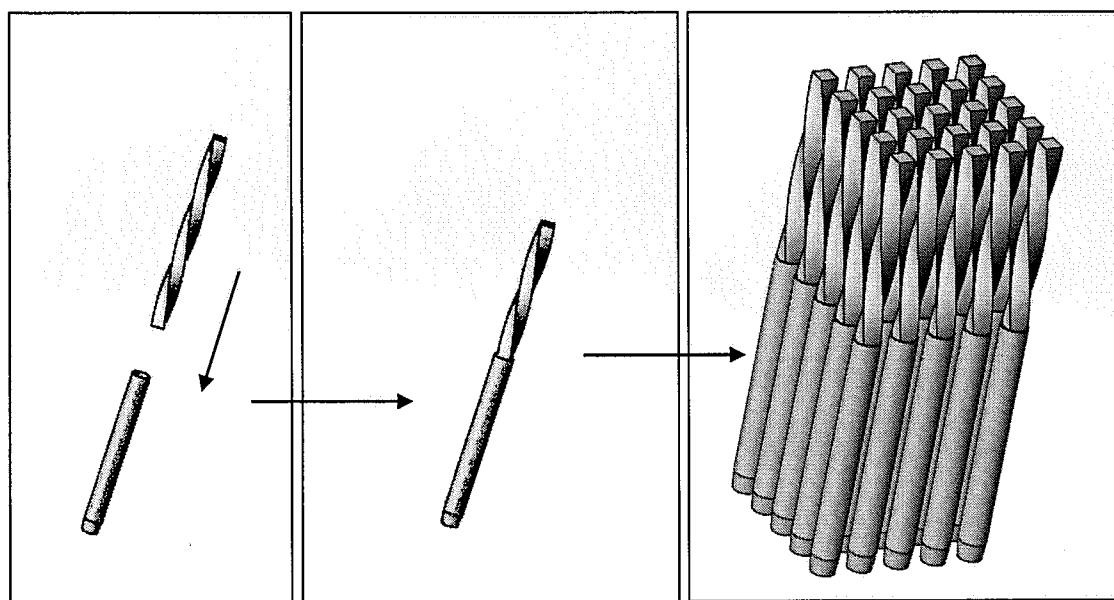

FIGURE 48

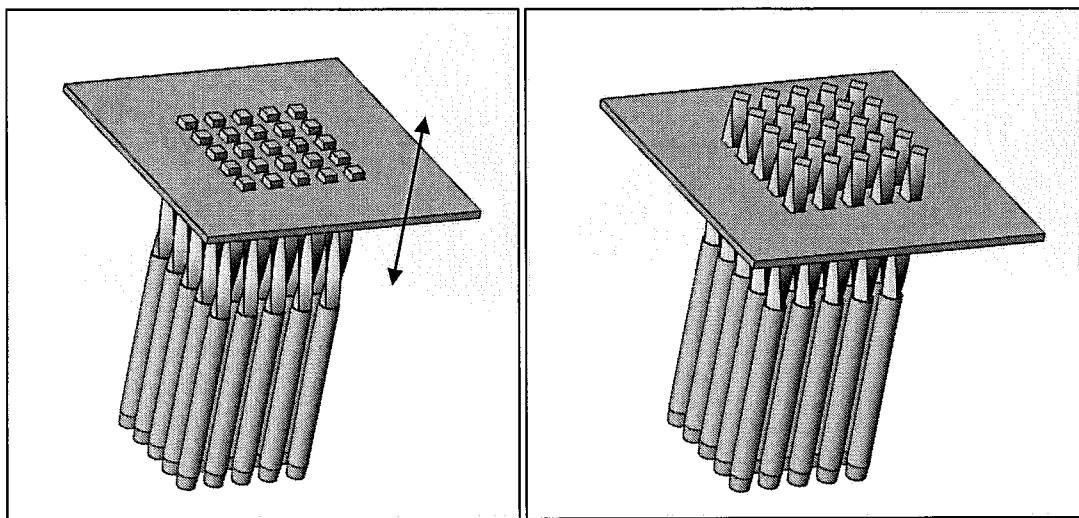

FIGURE 49

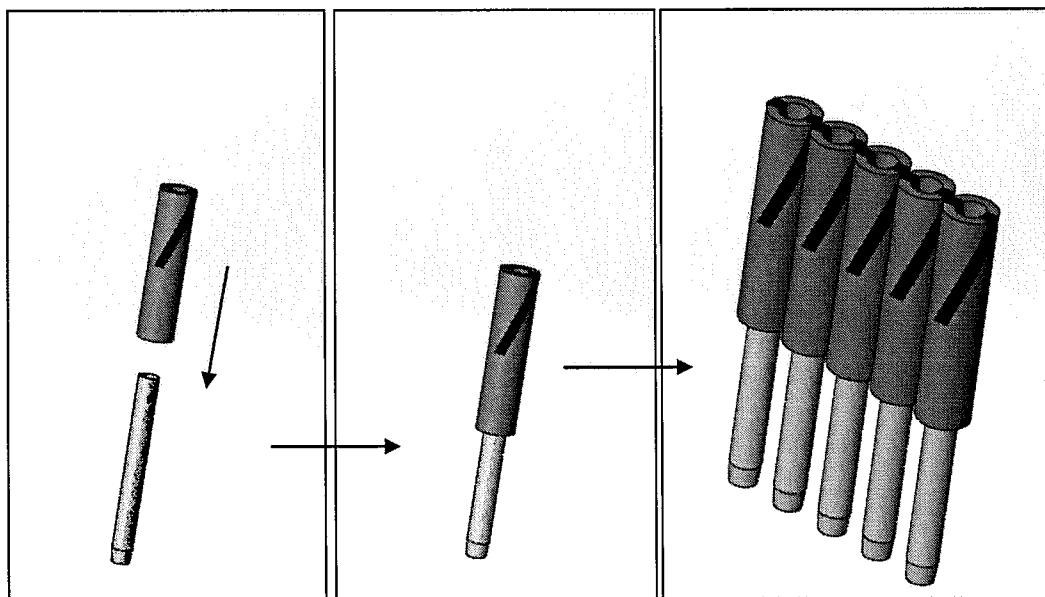

FIGURE 50

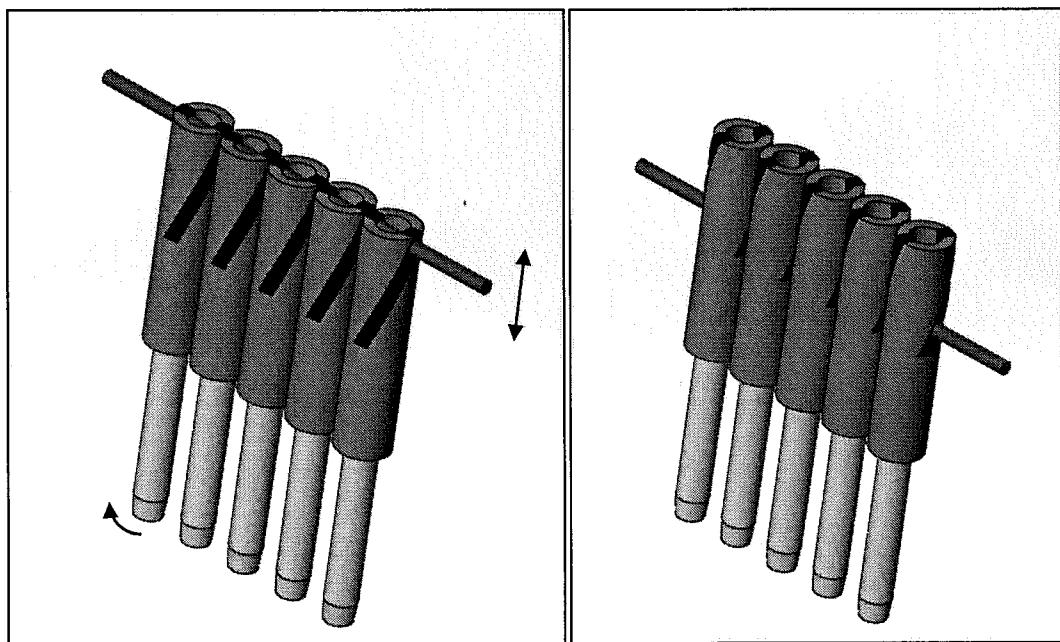

FIGURE 51

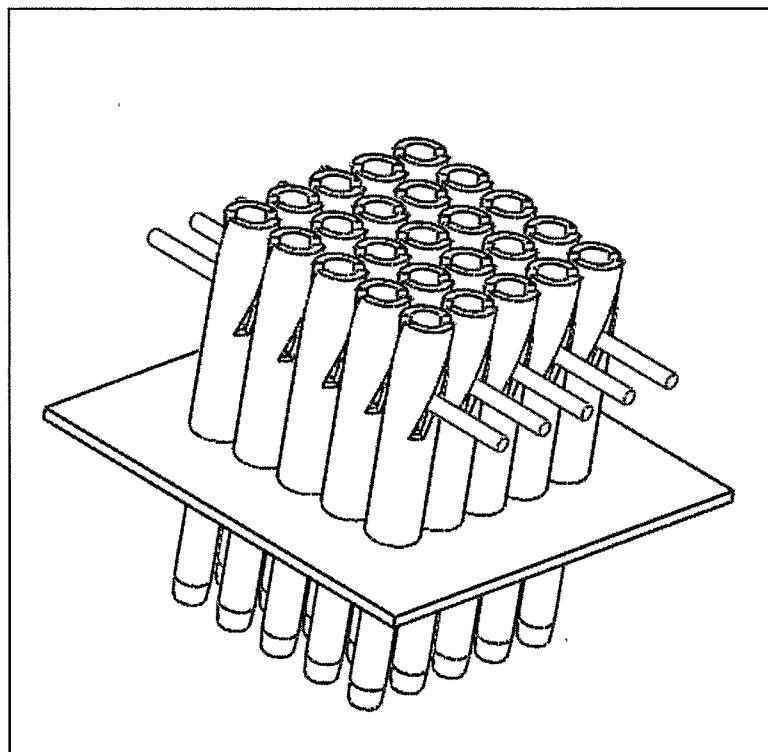

FIGURE 52

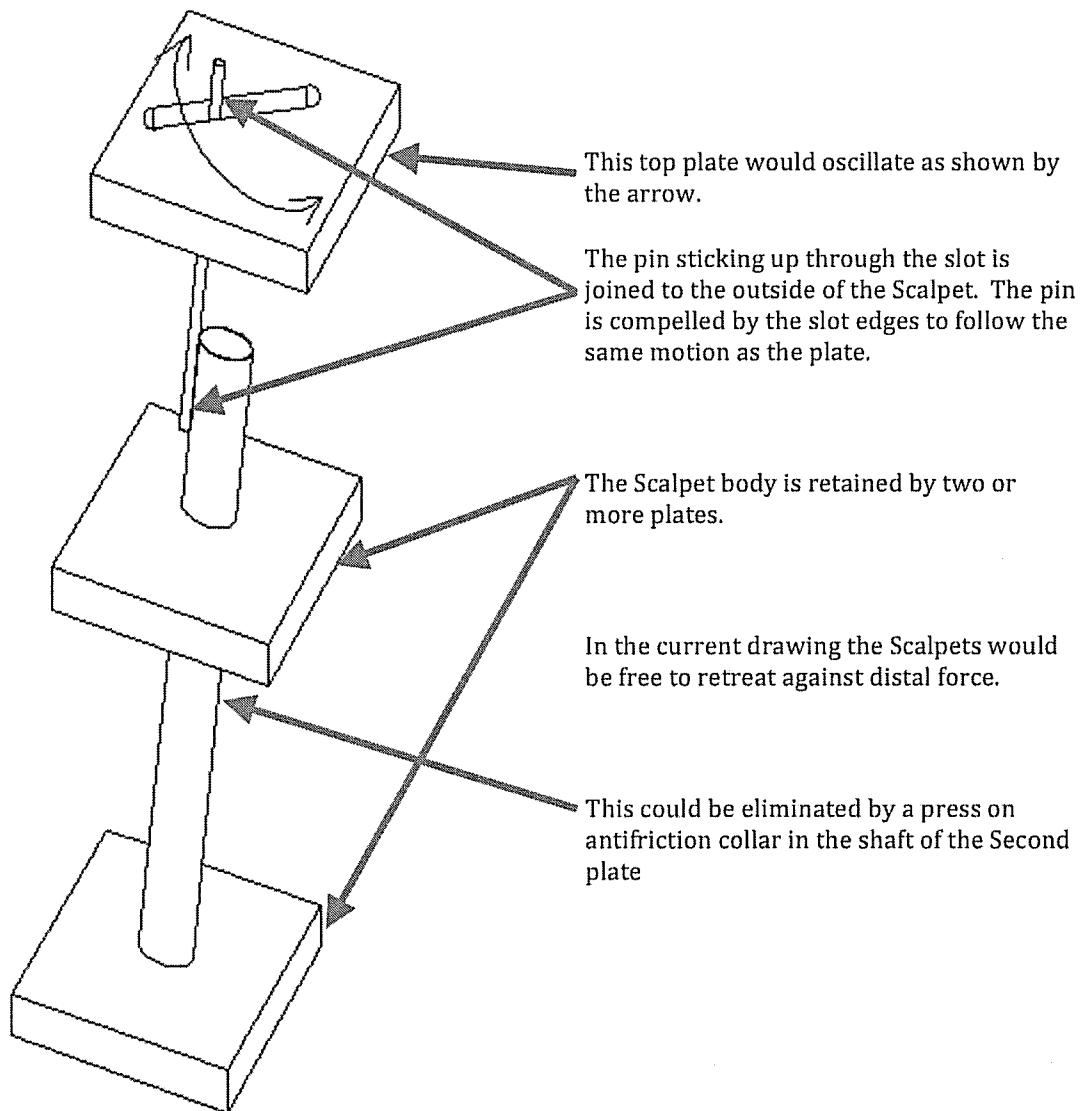

FIGURE 53

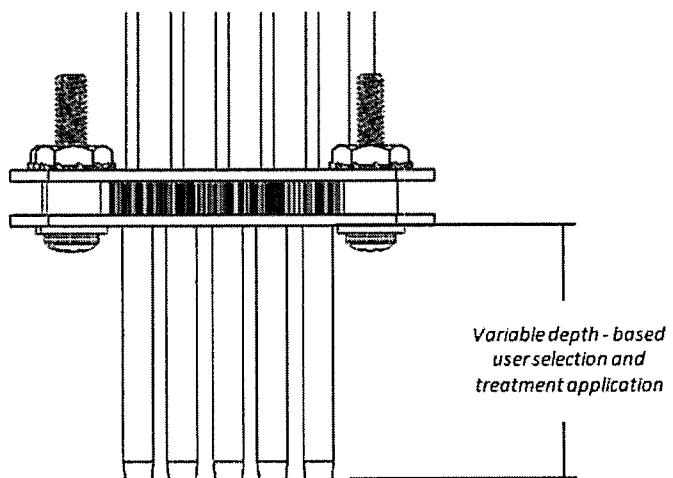

FIGURE 54

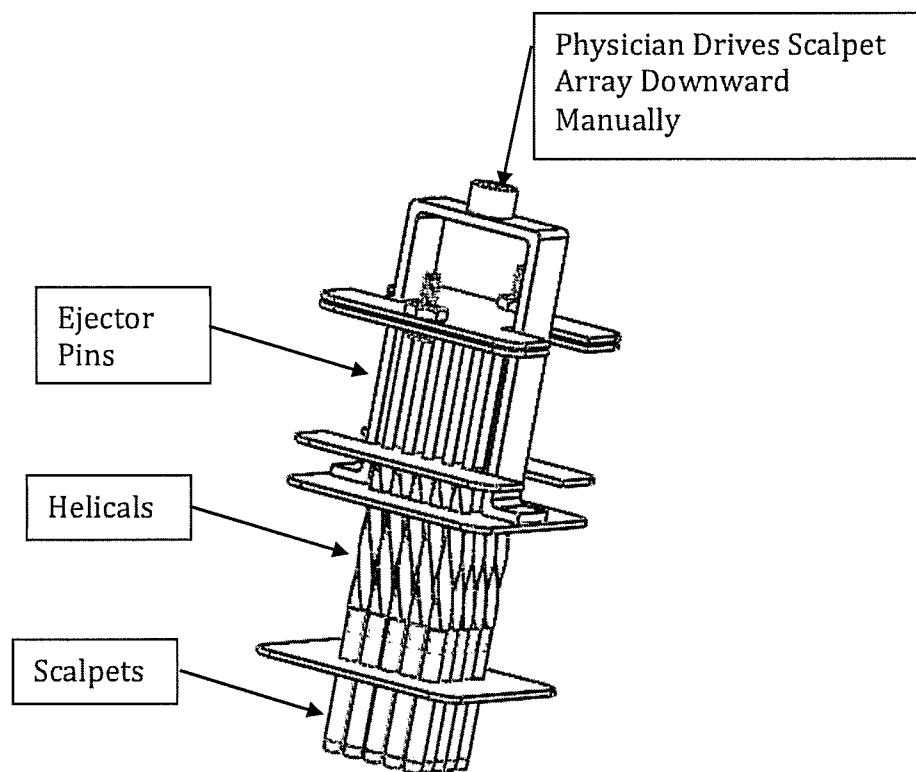

FIGURE 55

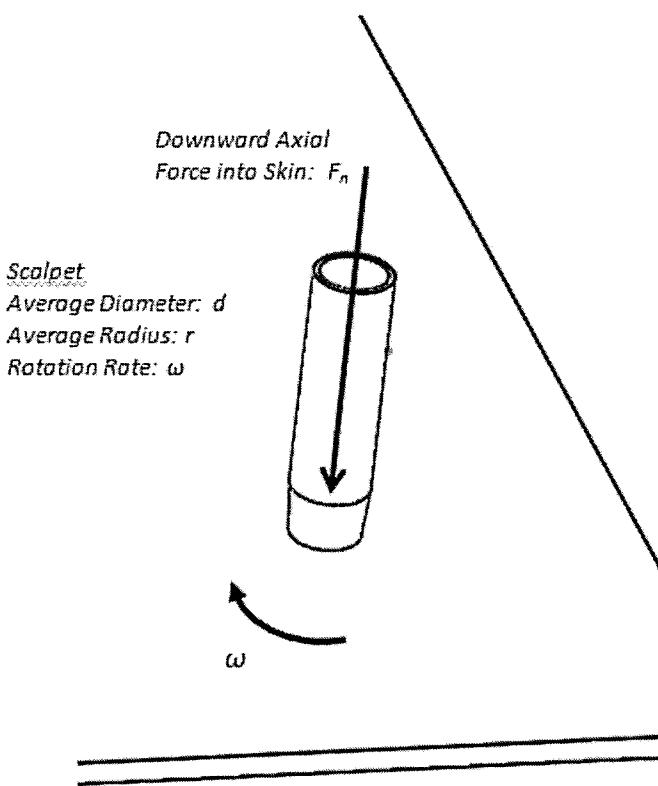

FIGURE 56

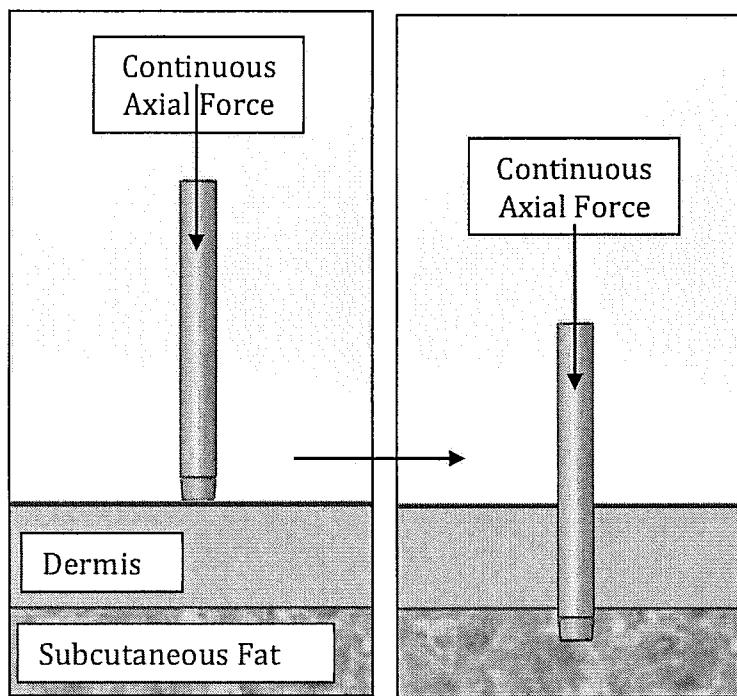

FIGURE 57

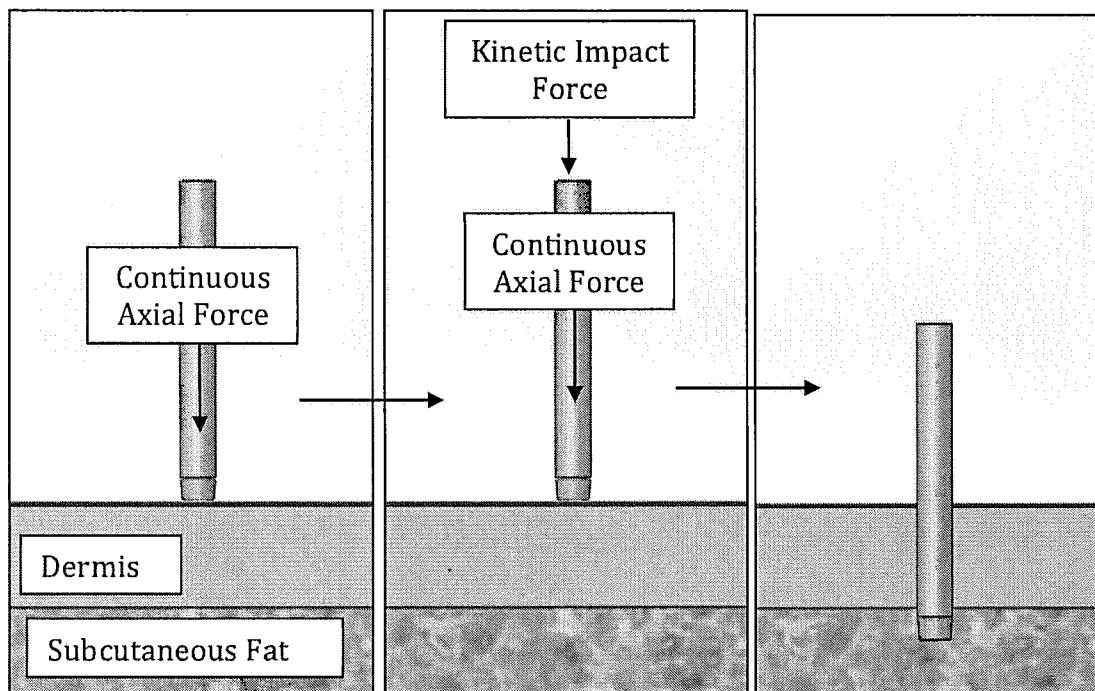

FIGURE 58

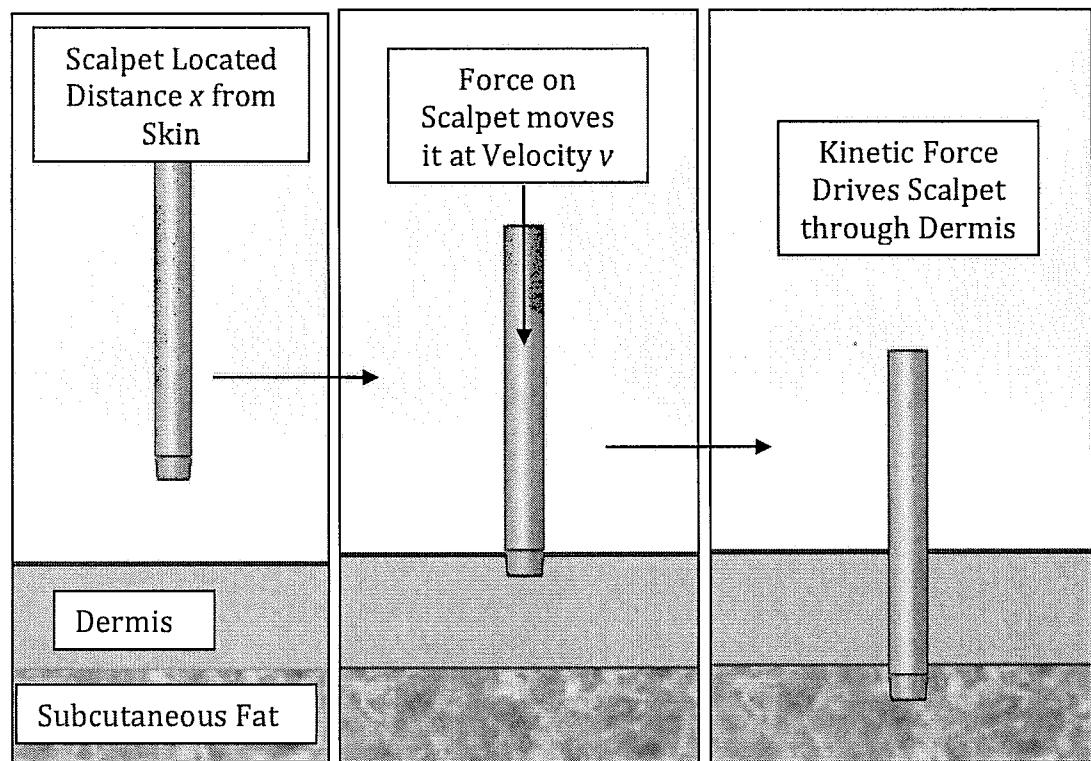

FIGURE 59

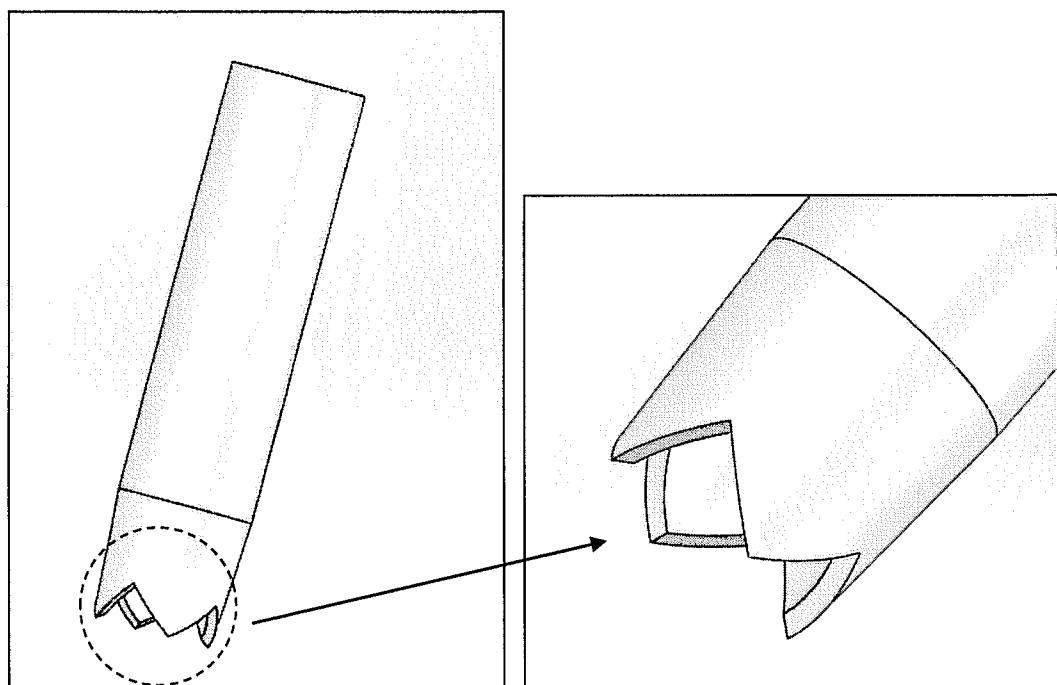

FIGURE 60

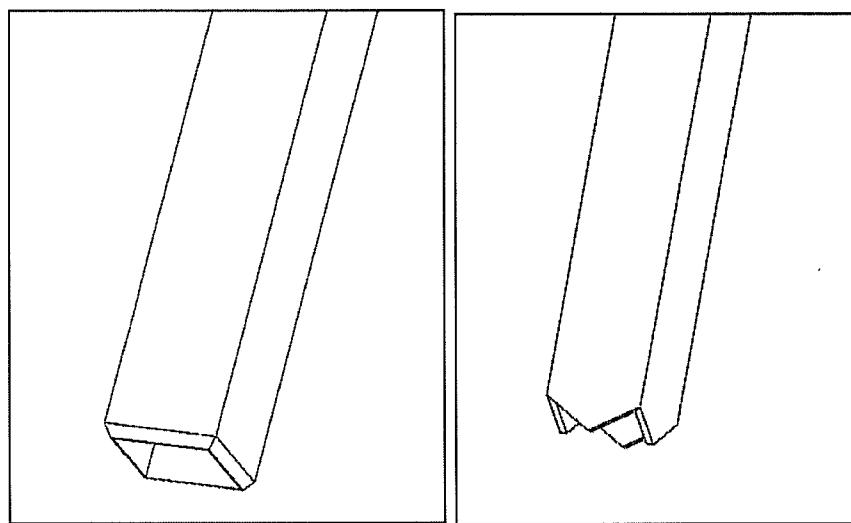

FIGURE 61

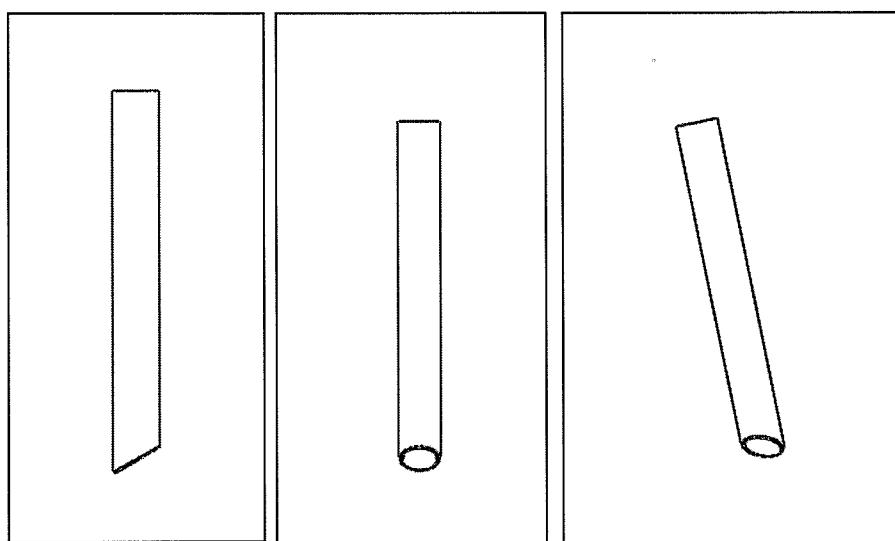

FIGURE 62

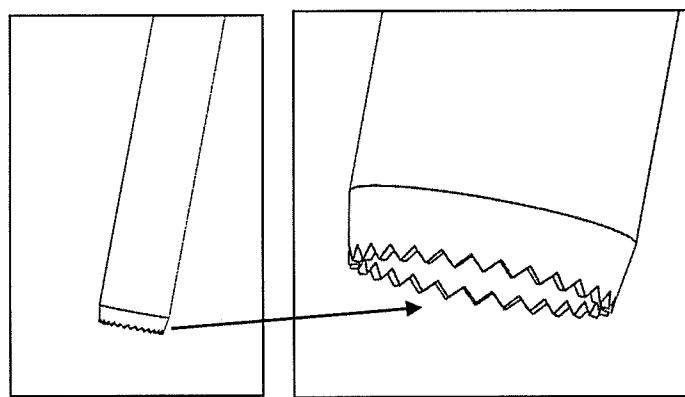

FIGURE 63

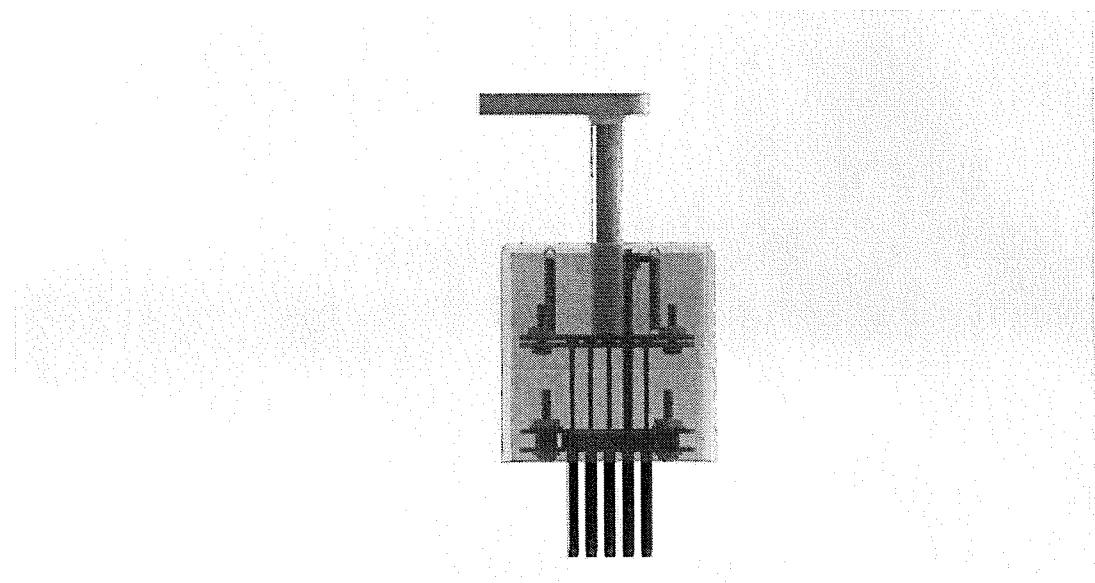

FIGURE 64

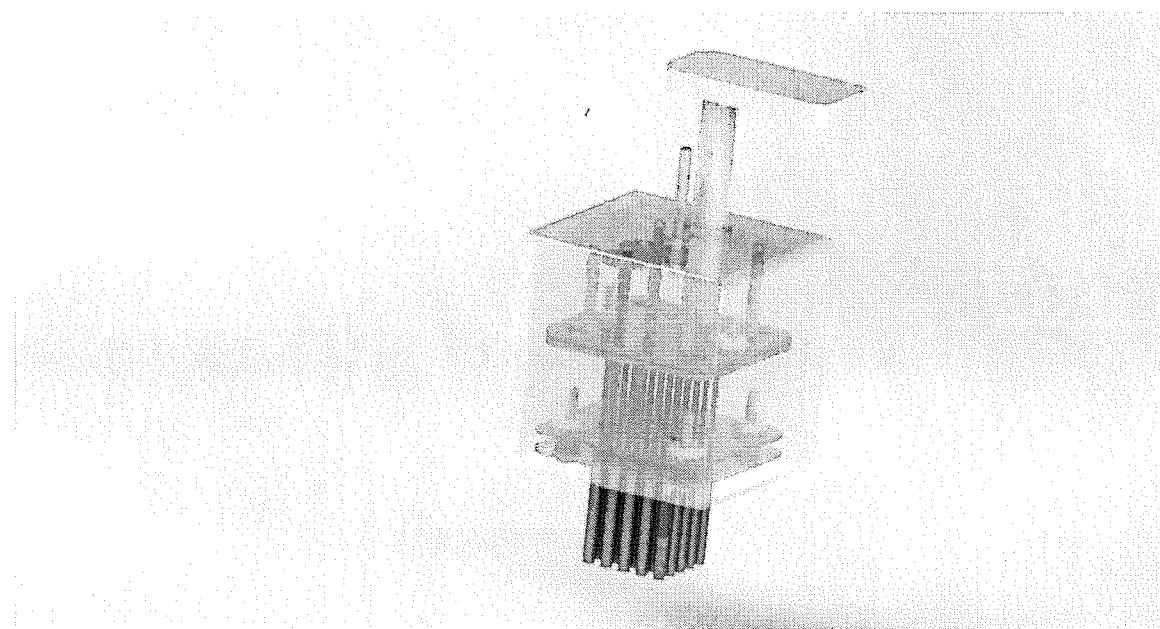

FIGURE 65


FIGURE 66


FIGURE 67


FIGURE 68


FIGURE 69


FIGURE 70

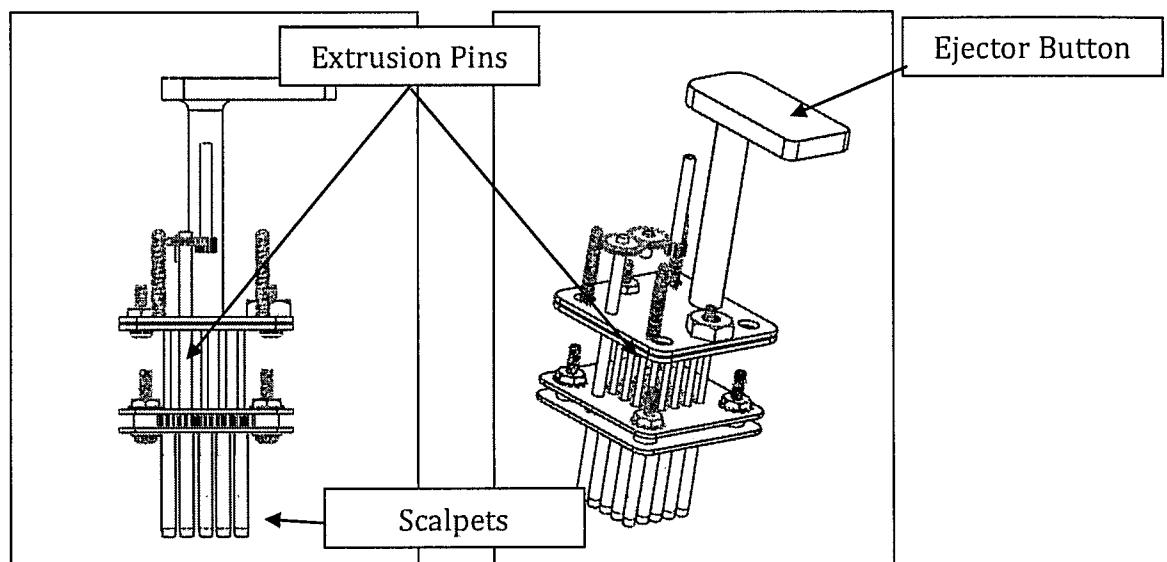
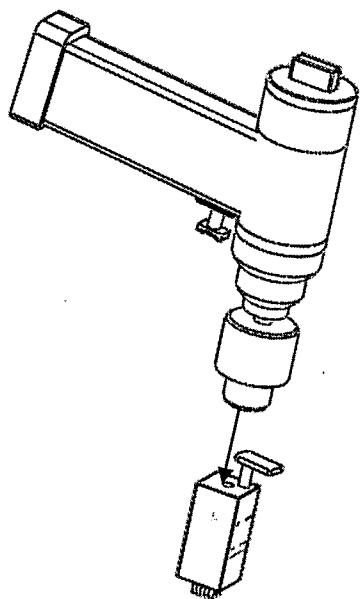
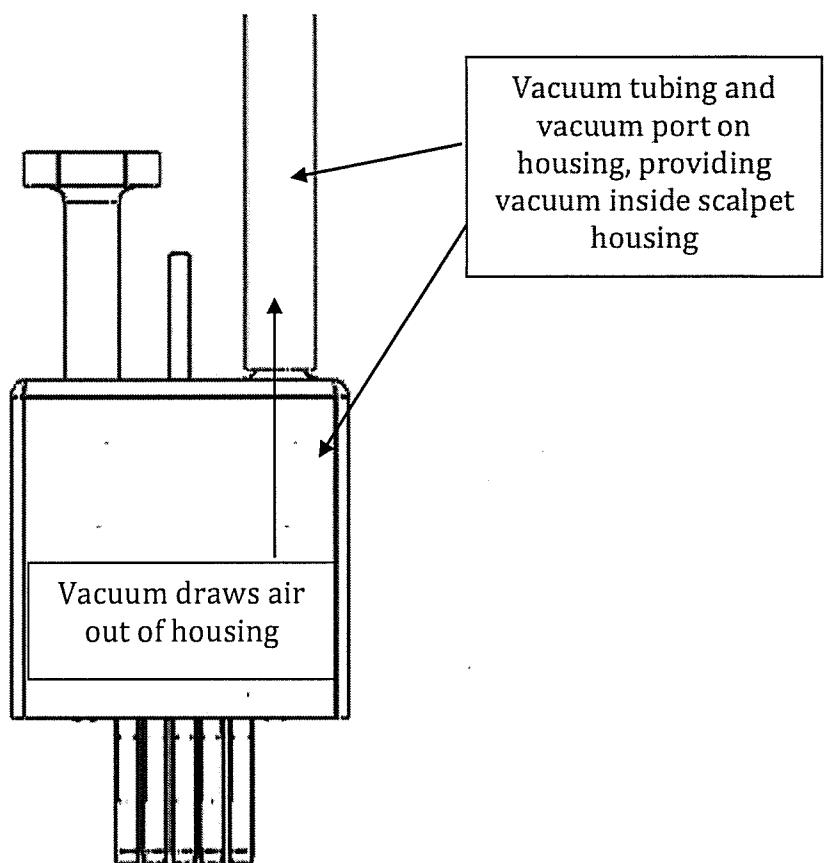
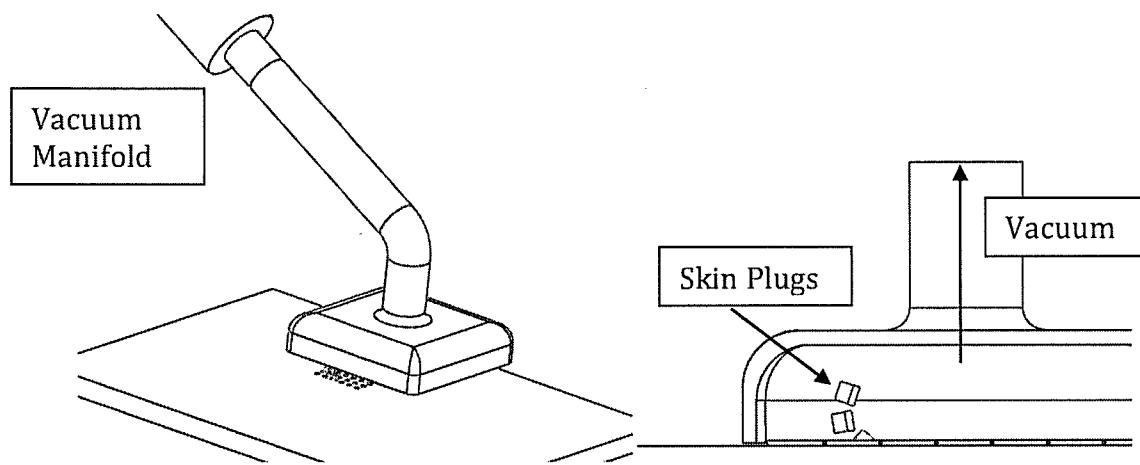
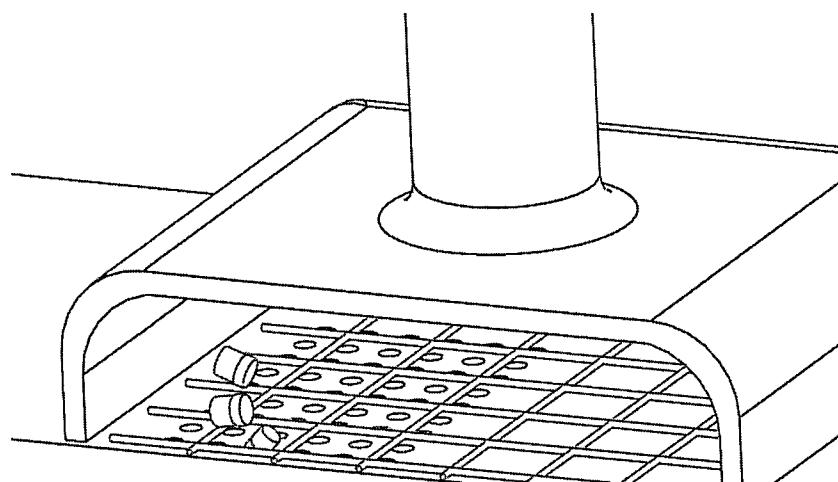

FIGURE 71

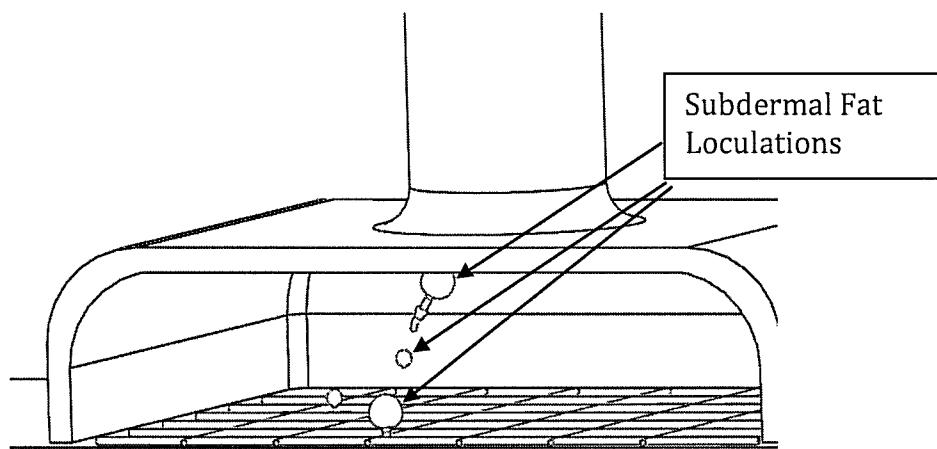
FIGURE 72

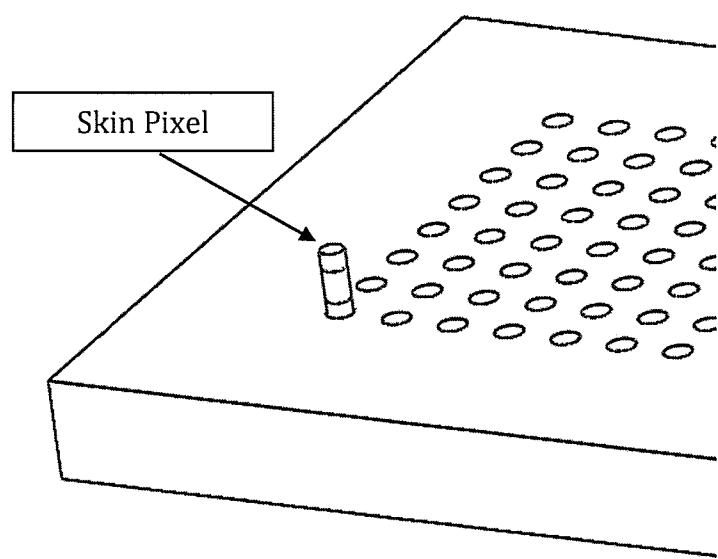

FIGURE 73


FIGURE 74


FIGURE 75


FIGURE 76


FIGURE 77


FIGURE 78

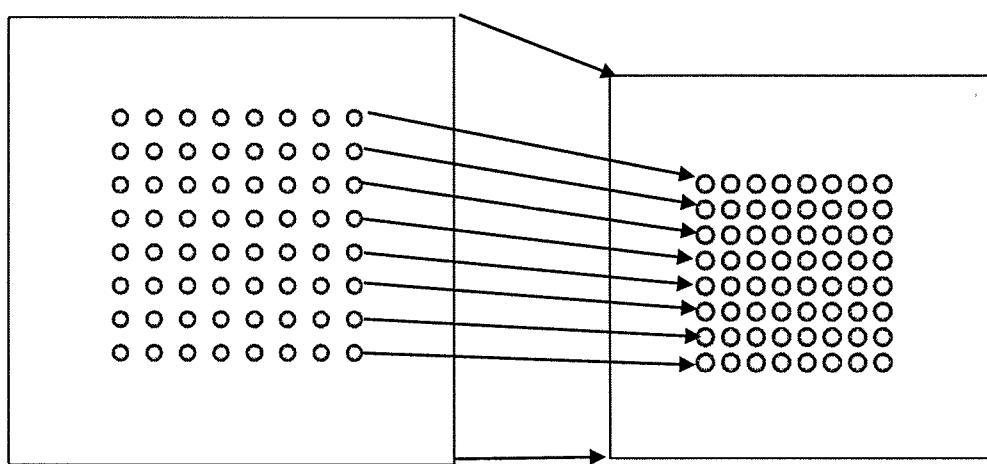

FIGURE 79

FIGURE 80

FIGURE 81

FIGURE 82

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 16/16834

A. CLASSIFICATION OF SUBJECT MATTER

IPC(8) - A61B 17/322, A61B 17/00, A61B 17/32, A61B 17/3209 (2016.01)

CPC - A61B 17/32053, A61B 17/32, A61B 17/3205, A61B 17/3209, A61B 17/3211, A61B 17/322, A61B 2017/320064

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC(8) : A61B 17/322 (2016.01)

CPC : A61B 17/32053

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

IPC(8) : A61B 17/00, 17/32, 17/3205, 17/3209, 17/3211 (2016.01)

CPC: A61B 17/00, 17/32, 17/3205, 17/3209, 17/3211, 17/322, 17/32093, 2017/320064, 2017/00747

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
Patbase, Google Patent, Google Scholar: blade or cutter or cutting or punch or plug or scalpel, scalpet, array, plural or multiple or several, guide or align or position, plate or support or structure, rotate or rotary or revolve or spin, axial or longitudinal or extend, drive or force, skin or dermis or epidermis or dermal or follicle or core or c

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 3,867,942, A (BELLANTONI et al) 08 June 1972 (08.06.1972) see especially col 2, ln 25-54, 3, ln 16-31, col 4, ln 31-44, fig 1-8	1-214
A	US 2005/0283141 A1 (GIOVANNOLI) 22 Decmeber 2005 (22.12.2005) see especially para [0041], [0045], [0046], [0047], [0052], fig 4, 5, 6	1-214
A	US 2014/0303648 A1 (KNOWLTON) 09 October 2014 (09.10.2014) see whole document	1-214
A	US 2012/0271320 A1 (HALL et al) 25 October 2012 (25.10.2012) see whole document	1-214
A	US 5,417,683 A (SHIAO) 23 May 1995 (23.05.1995) see whole document	1-214
A	US 4,476,864 A (TEZEL) 16 October 1984 (16.10.1984) see whole document	1-214

Further documents are listed in the continuation of Box C.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

21 April 2016

Date of mailing of the international search report

17 MAY 2016

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Faxsimile No. 571-273-8300

Authorized officer:

Lee W. Young

PCT Helpdesk: 571-272-4300

PCT OSP: 571-272-7774