An N-domino register has a domino stage, a write stage, an inverter, a high keeper path, a low keeper path, and an output stage. The domino stage evaluates a logic function based on at least one input data signal and a pulsed clock signal. The pulsed clock signal lags a symmetric clock signal. The domino stage pre-charges a precharged node high when the symmetric clock signal is low and opens an evaluation window when the pulsed clock signal goes high, and pulls the precharged node low if it evaluates, and keeps the precharged node high if it fails to evaluate. The output stage provides an output signal based on states of the precharged node and a second preliminary output node.
FIG. 1

NON-INVERTING N-DOMINO REGISTER

FIG. 2

NON-INVERTING N-DOMINO REGISTER TIMING

CLK DATAN TOP QII QI Q
FIG. 3

NON-INVERTING N-DOMINO REGISTER – ALTERNATIVE EMBODIMENT
FIG. 4
NON-INVERTING N-DOMINO REGISTER WITH IMPROVED STORAGE STAGE

[Diagram of a non-inverting n-domino register with improved storage stage]
FIG. 5

NON-INVERTING N-DOMINO REGISTER WITH IMPROVED STORAGE STAGE - ALTERNATIVE EMBODIMENT
FIG. 6

NON-INVERTING N-DOMINO REGISTER PULSED CLOCK TIMING
FIG. 7

N-DOMINO LATCH TIMING

TIME
FIG. 8

NON-INVERTING N-DOMINO REGISTER WITH ACCELERATED NON-DISCHARGE PATH
FIG. 9

NON-INVERTING N-DOMINO REGISTER WITH ACCELERATED NON-DISCHARGE PATH TIMING

TIME

TOP

QII

QI

Q

DATAN

PLSCLK

PH1CLK

T0 T1 T2 T3 T4 T5 T6 T7

TIME
N-DOMINO REGISTER WITH ACCELERATED NON-DISCHARGE PATH
CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is related to the following U.S. Patent Applications, each having a common assignee and common inventors.

<table>
<thead>
<tr>
<th>SERIAL NUMBER</th>
<th>FILING DATE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/640,369</td>
<td>Aug. 13, 2003</td>
<td>NON-INVERTING DOMINO REGISTER</td>
</tr>
<tr>
<td>11/023,145</td>
<td>Dec. 27, 2004</td>
<td>NON-INVERTING DOMINO REGISTER</td>
</tr>
<tr>
<td>11/2,251,517</td>
<td>Oct. 14, 2005</td>
<td>N-DOMINO OUTPUT LATCH</td>
</tr>
<tr>
<td>11/2,251,539</td>
<td>Oct. 14, 2005</td>
<td>P-DOMINO OUTPUT LATCH</td>
</tr>
<tr>
<td>11/424,762</td>
<td>Jun. 16, 2006</td>
<td>P-DOMINO REGISTER WITH ACCELERATED NON-CHARGE PATH</td>
</tr>
<tr>
<td>11/2,251,538</td>
<td>Oct. 14, 2005</td>
<td>P-DOMINO REGISTER</td>
</tr>
<tr>
<td>11/465,976</td>
<td>Aug. 11, 2006</td>
<td>ACCELERATED N-CHANNEL DYNAMIC REGISTER</td>
</tr>
<tr>
<td>11/465,980</td>
<td>Aug. 11, 2006</td>
<td>ACCELERATED P-CHANNEL DYNAMIC REGISTER</td>
</tr>
</tbody>
</table>

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

The present invention relates to dynamic logic and register functions, and more particularly to an N-domino output register with an accelerated non-discharge path for registering the outputs of complex logic circuits where speed and size are important factors.

[0003] 2. Description of the Related Art

Integrated circuits use a remarkable number of registers, particularly those having a synchronous pipeline architecture. Register logic is employed to hold the outputs of devices and circuits for a period of time so that these outputs can be received by other devices and circuits. In a clocked system, such as a pipeline microprocessor, registers are used to latch and hold the outputs of a given pipeline stage for a period of one clock cycle so that input circuits in a subsequent stage can receive the outputs during that period while the given pipeline stage is concurrently generating new outputs.

[0004] In the past, it has been common practice to precede and follow complex logical evaluation circuits, such as multiple input multiplexers (muxes), multi-bit encoders, etc., with registers to hold the inputs to and the outputs from the evaluation circuits. Generally, these registers have associated setup and hold time requirements, both of which constrain the evaluation circuits in the preceding stage. In addition, registers have corresponding data-to-output time characteristics, which constrain the evaluation circuits in subsequent stages. The "speed" of a register is typically judged in terms of its data-to-output time, that is, the sum of its setup time and clock-to-output time.

[0005] Preceding and following a logical evaluation circuit with traditional register circuits introduces delays into a pipeline system whose cumulative effect results in significantly slower operating speeds. More specifically, one notable source of these delays is the data-to-output time requirements that must be satisfied by logical evaluation circuits in order to ensure stable registered outputs. It is desired to reduce these delays to provide additional time in each stage and to thereby increase overall speed of the pipeline system.

SUMMARY OF THE INVENTION

[0012] In one embodiment, a non-inverting domino register is provided. The non-inverting domino register has a domino stage, a write stage, an inverter, a high keeper path, a low keeper path, and an output stage. The domino stage evaluates a logic function based on at least one input data signal and a pulsed clock signal. The pulsed clock signal lags a symmetric clock signal. The domino stage pre-charges a pre-charged node high when the symmetric clock signal is low and opens an evaluation window when the pulsed clock signal goes high, and pulls the pre-charged node low if it evaluates, and keeps the pre-charged node high if it fails to evaluate. The write stage is coupled to the domino stage. The write stage is responsive to the pulsed and symmetric clock signals, which pulls a first preliminary output node high if the pre-charged node goes low, and which pulls the first preliminary output node low when the pre-charged node and
symmetric clock signal are high. The inverter has an input coupled to the first preliminary output node and an output coupled to a second preliminary output node. The high keeper path keeps the first preliminary output node high when enabled, where the high keeper path is enabled when the symmetric clock signal and the second preliminary output node are both low and which is otherwise disabled. The low keeper path keeps the first preliminary output node low when enabled, where the low keeper path is enabled when the second preliminary output node and the pre-charged node are both high and which is otherwise disabled.

The output stage provides an output signal based on states of the pre-charged node and the second preliminary output node.

In another embodiment, a domino register is contemplated. The domino register includes an evaluation circuit, a write circuit, an inverter, a keeper circuit, and an output circuit. The evaluation circuit pre-charges a first node while a symmetric clock signal is low and evaluates a logic function for controlling a state of the first node when a pulsed clock signal goes high. The pulsed clock signal is derived from the symmetric clock signal. The write circuit is coupled to the first node and receives the symmetric clock signal. The write circuit drives a second node high if the first node is low, and drives the second node low if the first node stays high when the symmetric clock signal goes high. The inverter has an input coupled to the second node and an output coupled to a third node. The keeper circuit is coupled to the second and third nodes and the write circuit. The keeper circuit keeps the second node high while the third node and the symmetric clock signal are both low, and keeps the second node low while the third node and first node are both high. The output circuit provides an output signal based on states of the first and third nodes.

In a further embodiment, a method registering a logic function and generating a non-inverted output are comprehended. The method includes providing a symmetric clock signal and a pulsed clock signal that lags the symmetric clock signal; pre-charging a first node high while the symmetric clock signal is low; evaluating a logic function to control the state of the first node when the pulsed clock signal goes high; controlling the state of a second node with the state of the first node when the symmetric clock signal goes high; defining the state of a third node as the inverted state of the second node; enabling a low state keeper path to keep the state of the second node low when the first and third nodes are both high, and otherwise disabling the low state keeper path; enabling a high state keeper path to keep the state of the second node high when the symmetric clock signal and the third node are both low, and otherwise disabling the high state keeper path; and determining the state of an output node based on the states of the first and third nodes.

BRIEF DESCRIPTION OF THE DRAWINGS

The benefits, features, and advantages of the present invention will become better understood with regard to the following description, and accompanying drawings where:

FIG. 1 is a schematic diagram of a non-inverting N-domino register implemented according to a prior disclosure which is incorporated by reference;

FIG. 2 is a timing diagram illustrating operation of the non-inverting N-domino register of FIGS. 1, 3-4, and 5;

FIG. 3 is a schematic diagram of a non-inverting N-domino register implemented according to an alternative embodiment of the register of FIG. 1;

FIG. 4 is a schematic diagram of another non-inverting N-domino register exhibiting an improved storage stage;

FIG. 5 is a schematic diagram of a non-inverting N-domino register employing the improved storage stage and implemented according to an alternative embodiment of the register of FIG. 4;

FIG. 6 is a timing diagram illustrating operation of the non-inverting N-domino registers of FIGS. 1, 3-4, and 5 according to a pulsed clock embodiment that is preferred to minimize hold time;

FIG. 7 is a timing diagram illustrating operation of a non-inverting N-domino latch embodiment that employs the circuits of FIGS. 1, 3-4, and 5;

FIG. 8 is a schematic diagram of a non-inverting N-domino register according to an exemplary embodiment of the present invention which exhibits an accelerated non-discharge path; and

FIG. 9 is a timing diagram illustrating operation of the non-inverting N-domino register of FIG. 8.

DETAILED DESCRIPTION

The following description is presented to enable one of ordinary skill in the art to make and use the present invention as provided within the context of a particular application and its requirements. Various modifications to the preferred embodiment will, however, be apparent to one skilled in the art, and the general principles defined herein may be applied to other embodiments. Therefore, the present invention is not intended to be limited to the particular embodiments shown and described herein, but is to be accorded the widest scope consistent with the principles and novel features herein disclosed.

The inventors of the present application have recognized the need for providing registered outputs for logic circuits in which speed, size and stability are critical factors, which are flexible with regard to the evaluation logic, which may be used in high leakage or high noise environments, and which moreover exhibit accelerated clock-to-output times for specific data input states. They have therefore developed non-inverting N-domino registers that have a faster data-to-output time than that which has heretofore been provided without compromising the stability of the output, that are flexible with regard to the evaluation logic implementation, and that may be used in a high leakage or high noise environment, as will be further described below with respect to FIGS. 1-9. When employed in a pipeline architecture that relies heavily on registers and dynamic logic to transfer data from stage to stage, a non-inverting N-domino register according to embodiments of the present invention enables overall device operating speed to be significantly increased. Consequently, the overall device may be implemented using faster and smaller devices in a high leakage or high noise process without compromising speed.

FIG. 1 is a schematic diagram of a non-inverting N-domino register 100 implemented as is disclosed in U.S. Patent Application Publication No. 2005/0127952A1. The non-inverting domino register 100 includes a logic evaluation input stage, or domino stage, which consists of stacked P-channel and N-channel devices P1 and N2 and evaluation...
logic 104. The P1 and N2 devices are a complementary pair of evaluation devices coupled on either side of evaluation logic 104 in the stack. The evaluation logic 104 may be as simple as a single N-channel device or may be significantly more complex for evaluation any desired logic function. The source of P1 is coupled to a voltage source VDD and its drain is coupled to node 105 providing a pre-charge signal TOP. The evaluation logic 104 is coupled between node 105 and the drain of N2, having its source coupled to ground. A clock signal CLK is provided via node 101 to the gates of P1 and N2. A set of N nodes 103 provide N input data signals DATA to the evaluation logic 104, where N is any positive integer.

[0028] The domino stage of the non-inverting N-domino register 100 is followed by a stage which includes devices P2, N3, and N4 and a weak keeper circuit 109. The devices P2, N3, and N4 may be considered as a “write stage” and the keeper circuit 109 as a keeper circuit within the storage stage. Node 101 is coupled to the gate of N3 and node 105 is coupled to the gates of P2 and N4. The source of P2 is coupled to VDD and its drain is coupled to a first intermediate output node 107 providing a first intermediate output signal Q1. Node 107 is coupled to the drain of N3, to the input of an inverter 109A and to the output of another inverter 109B. The output of the inverter 109A is coupled to a second intermediate output node 111 providing a second intermediate output signal Q1, which is coupled to the input of the inverter 109B. The inverters 109A and 109B are cross-coupled between nodes 107 and 111 and collectively form the weak keeper circuit 109. The source of N3 is coupled to the drain of N4, which has its source coupled to ground.

[0029] The storage stage of the non-inverting domino register 100 is followed by an additional output stage, which includes P-channel devices P3 and P4 and N-channel devices N5 and N6. Node 105 is coupled to the gates of P4 and N6, and node 111 is coupled to the gates of P3 and N5. The sources of P3 and P4 are coupled to VDD and their drains are coupled together at an output node 113 providing an output signal Q. Output node 113 is coupled to the drain of N5, which has its source coupled to the drain of N6, which has its source coupled to ground. The P-channel devices generally operate as pull-up devices and the N-channel devices generally operate as pull-down devices.

[0030] FIG. 2 is a timing diagram illustrating operation of the non-inverting N-domino register 100, in which the CLK, DATAN, TOP, Q1, Q1 and Q signals are plotted versus time. For clarity, the relative transitions times are estimated and delays are ignored. The DATAN signal is shown as a single signal representing the collective set of N DATA signals. The DATAN signal is shown asserted high for the case where the collective state of the data signals causes the evaluation logic 104 to “evaluate,” thereby pulling the pre-charge signal TOP low, and is shown asserted low for the case where the evaluation logic 104 fails to evaluate, which keeps the pre-charge signal TOP high. Thus, when the evaluation logic 104 evaluates, it causes signal TOP to transition from its pre-charged high state to a low state. When the evaluation logic “fails to evaluate,” TOP remains at its pre-charged high state. In other words, when the evaluation logic causes TOP to discharge, the level of signal TOP transitions from its pre-charged high state to a logic low level. When TOP remains at its pre-charged high logic level due to the evaluation logic 104 failing to evaluate, such is referred to as a “non-discharge” event.

[0031] Hence, at time T0, when the CLK signal is initially low, N2 is turned off and P1 is turned on, so that the domino stage pre-charges the TOP signal high. The TOP signal is pre-charged high in preparation for evaluation of the DATAN signal by the evaluation logic 104 upon the rising edge of CLK, where the DATAN signal is initially high. The pre-charged TOP signal turns on N4 and N5. The Q1 signal remains at its former state (shown initially in a low logic state) and is held there by the keeper circuit 109. The Q1 signal is initially high turning on N5, so that the Q output signal is initially pulled low via the N5 and N6 devices.

[0032] At time T1 the CLK signal goes high, which causes the TOP signal to discharge to a logic low level since the DATAN signal is high. In particular, N2 is turned on and the evaluation logic 104 pulls TOP low via N2 to ground. The Q1 signal is pulled high via P2 and the output signal Q is pulled high via P4. The Q1 and Q signals are both pulled high at about the same time T1, and the Q1 signal is pulled low by the inverter 109A. The inverted state of the Q1 signal at the output of the keeper circuit 109 drives the devices P3 and N5. When Q1 is high, P3 is off and N5 is on; and when Q1 is low, P3 is on and N5 is off. At subsequent time T2 when the CLK signal goes down, the TOP signal is once again pre-charged high. P2 and N3 are turned off so that node 107 is not driven to either state. The respective states of the Q1 and Q1 signals remain unchanged, however, via operation of the keeper circuit 109, so that the Q and Q1 signals remain high and the Q1 signal remains low throughout the remainder of the half cycle of CLK.

[0033] The DATAN signal is shown going low at time T3 while the CLK signal is still low, and the CLK signal is next asserted high at time T4 while the DATAN signal is low. The evaluation logic 104 fails to evaluate, so that TOP remains high (i.e., a “non-discharge”) while DATAN is low and CLK is high. The CLK and TOP signals turn on devices N3 and N4, respectively, so that the Q1 signal is asserted low at about time T4, and the Q1 signal is consequently pulled high by the inverter 109A. The TOP signal being high keeps N6 on. The Q1 signal turns N5 on and P3 off, so that the Q signal is pulled low via N5 and N6. The CLK signal next goes low at time T5 pulling TOP high again. The respective states of the Q1 and Q1 signals remain unchanged via operation of the keeper circuit 109. The Q signal remains low throughout the remainder of the cycle of CLK since Q1 keeps N5 on and TOP keeps N6 on.

[0034] The output signal Q1 transitions from low to high relatively quickly in response to a rising edge of the CLK signal when the evaluation logic 104 discharges the TOP signal to a low level. There is a delay through devices N2 and P4 (i.e., the discharge path) causing the output transition. The output signal Q transitions from high to low after a delay through devices N3, N5, and the inverter 109A (i.e., the non-discharge path) in response to a rising edge of the CLK signal when the evaluation logic 104 fails to evaluate, leaving the TOP signal high. The delay through the inverter 109A is minimized by being implemented as a relatively small device (with minimal capacitance) since it does not need to have the size nor perform the function of a buffer. In another embodiment, the delay can be minimized by employing ratioed logic (i.e., large P device and small N device) for the inverter 109A. It is appreciated by those of
ordinary skill in the art that transitions of the output signal Q of the non-inverting N-domino register 100 are very fast in response to transitions of the CLK signal. If a non-inverting output is necessary or otherwise desired, the non-inverting N-domino register 100 provides superior data-to-output speed compared to conventional designs among other benefits and advantages. The non-inverting N-domino register 100 may be converted to an inverting N-domino register simply by adding an output inverter/buffer (not shown).

[0035] As operation of the circuit 100 of FIG. 1 has been described, one skilled in the art will appreciate that since the function of the evaluation logic 104 is to rapidly transition signal TOP from its pre-charged high level to a low level, one embodiment of the present invention employs ratioed P and N devices to configure the evaluation logic 104. In this embodiment, strong N devices and weak P devices are employed, resulting in faster operation.

[0036] Prior disclosure U.S. Patent Application Serial No. 20040034681A1 (Docket: CNTR-2200), which is herein incorporated by reference, discloses AND logic and OR logic (not shown herein), which may be used as the evaluation logic 104. It was described therein that any suitable combination of the AND and OR logic circuits are contemplated, and that any other complex logical evaluation circuit are contemplated, including, for example, multiple input multiplexers (muxes), multi-bit encoders, etc. Any desired simple to complex evaluation logic can be substituted for the evaluation logic 104 without adversely impacting the speed or associated power constraints of the non-inverting N-domino register 100. The AND and OR logic circuits were exemplary only and were provided to illustrate that the evaluation logic 104 may be any complex logical evaluation circuit as appreciated by those having ordinary skill in the art. A possible limitation of the inverting N-domino register 100, however, is that it is not particularly flexible with respect to the evaluation logic 104, which typically had to be implemented as N-channel logic. N-channel logic, in some configurations, does not provide optimal levels of input noise margin.

[0037] FIG. 3 is a schematic diagram of a non-inverting N-domino register 300 implemented according to an alternative embodiment of the register of FIG. 1, and is also disclosed in U.S. Patent Application Serial No. 2005/0127952A1. The non-inverting N-domino register 300 is substantially similar to the non-inverting N-domino register 100 of FIG. 1, except that the evaluation logic input stage, or domino stage, comprising the stacked P-channel and N-channel devices P1 and N2 and evaluation logic 104, is reordered and the evaluation logic 104 is replaced with evaluation logic 301. The P1 and N2 devices are a complementary pair of evaluation devices coupled together at the node 105 providing the TOP signal. In this case, the drain of N2 is coupled to node 105 and its source is coupled to the top or upper end of the evaluation logic 301. The lower or bottom end of the evaluation logic 301 is coupled to ground. In this manner, the evaluation logic 301 is located below the P1/N2 stack as opposed to being coupled between P1 and N2. Operation is substantially similar to the non-inverting N-domino register 100 of FIG. 1 and the timing diagram of FIG. 2 remains equally valid for the non-inverting domino register 300 of FIG. 3.

[0038] The evaluation logic 301 could be configured in substantially the same manner as the evaluation logic 104. As understood by those skilled in the art, however, the evaluation logic 301 may alternatively be embodied using complementary metal-oxide semiconductor (CMOS) logic rather than N-channel logic, where again, the timing diagram of FIG. 2 remains valid. CMOS logic provides significantly better input level noise margin over N-channel logic so that the non-inverting N-domino register 300 provides significantly better input level noise margin over the non-inverting N-domino register 100 when using CMOS logic in the domino stages.

[0039] The non-inverting N-domino registers 100 and 300 both experience leakage effects when embodied in a high leakage or high noise process, such as 90 nm SOI and the like. Scaling circuits down to 90 nm introduces issues related to leakage. Scaled processes exhibit higher leakage because channel lengths are shorter. Consequently, in order to write a new state to node 107 of the storage stage for either of the registers 100 and 300, a weak device must be overcome within the feedback inverter (e.g., within the inverter 109B, a weak P-channel device to change to a low state and a weak N-channel device to change to a high state). The cost of overcoming a device is speed and current. In addition, in processes in which there is either high leakage or high noise, the weak N and P devices within the feedback inverter 109B must be made larger in order to maintain the state of the output node in the presence of leakage or noise.

[0040] Note, for example, that the storage node 107 (signal Q11) is isolated from the input stage when CLK is low. There is nothing driving the Q11 signal except the keeper feedback inverter 109B, which includes internal weak N and P devices (not shown). Yet, because of increased leakage associated with a scaled process, a larger amount of leakage current flows through the P2 and N3 devices. So, the N and P devices in the inverter 109B have to be large enough to overcome that leakage. For instance, if the Q11 signal is high, leakage occurs to ground through the N3 and N4 devices, so that the P device within the inverter 109B has to be large enough to supply enough current to overcome that leakage to keep the Q11 signal high. In processes in which there is high leakage or high currents and the devices are off, wider and wider devices are needed to hold state. And the use of wider devices substantially reduces performance because when a new state is written, the wider device that is keeping the state must be overcome. To compensate for the reduction in speed, the storage stage devices P2, N3, and N4 are made larger to drive the new state to overcome that held by the large devices in the keeper feedback inverter 109B. Larger devices consume valuable space on an integrated circuit (IC).

[0041] FIG. 4 is a schematic diagram of another non-inverting N-domino register 400 exhibiting and improved storage stage and employing an improved keeper circuit. The non-inverting N-domino register 400 includes an input domino stage followed by a storage stage and an output stage. The domino stage and the initial portion of the storage stage of the register 400 are similar to those of the register 100. The keeper circuit of the register 400, however, is modified to improve performance by eliminating the need to overcome devices and reduce cost in terms of speed and current. The domino stage includes stacked P-channel and N-channel devices P1 and N2 and evaluation logic 104. As before, the P1 and N2 devices are a complementary pair of evaluation devices coupled on either side of evaluation logic 104 between the voltage source VDD and ground. The
source of P1 is coupled to VDD and its drain is coupled to node 105 providing the TOP signal. The evaluation logic 104 is coupled between node 105 and the drain of N2 and the source of N2 is coupled to ground. The input clock signal CLK is provided via node 101 to the gates of P1, N2 and N3. A set of N nodes 103 provide N input data signals DATA to the evaluation logic 104. As before, the node 105 providing the TOP signal is coupled to the gates of devices P2 and N4. The initial portion of the storage stage is substantially the same write stage including the stacked devices P2, N3 and N4. The source of P2 is coupled to VDD and its drain is coupled to node 107 developing the first intermediate output signal QII. The drain of N3 is coupled to node 107 and its source is coupled to the drain of N4, having its source coupled to ground.

[0042] The storage stage of the non-inverting N-domino register 400 has the write stage including devices P3, P4, and N5 and a keeper stage including devices P3, P4, N3, and an inverter 401. The storage stage is followed by an output stage, which comprises a two-input NAND gate 403 in the embodiment illustrated. In this case, the source of P3 is coupled to VDD and its drain is coupled to the source of P4, having its drain coupled to the drain of N5 at the node 107. The source of N5 is coupled to the drain of N further coupled to the source of N3. Node 101, providing the CLK signal, is coupled to the gate of P4. Node 107, developing the QII signal, is coupled to the input of the inverter 401, having its output coupled to node 111 developing the second intermediate output signal QII. Node 111 is coupled to the gates of P3 and N5 and is coupled to one input of the NAND gate 403. Node 105, providing the TOP signal, is coupled to the other input of the NAND gate 403, and the output the NAND gate 403 provides the output Q signal.

[0043] The timing diagram of FIG. 2 is applicable for the non-inverting domino register 400 for this situation with only minor differences in timing, where such timing differences and small delays are ignored (e.g., delays through the inverter 401 and the NAND gate 403 are ignored for purposes of illustrating functionality in the timing diagram 200). Again, suppose that the QII signal is initially low and is to be asserted high. With reference to FIG. 2, at time T0, the CLK, Q and QII signals are initially low and the Q signal is high. Since CLK is low, P1 is turned on and TOP is pre-charged high turning on N4. Since Q1 and TOP are both high, the Q signal at the output of the NAND gate 403 is initially low. While CLK is low and Q is high, N5 is on, P3 is off, and P4 is on. In this case, therefore, N5 and N4 are both on providing a “low” state keeper path for the node 107 to ground which keeps the QII signal low. The low keeper path is enabled whenever the second preliminary output node 111 and the pre-charged node 105 are both high, and is otherwise disabled.

[0044] When the CLK signal goes high at time T1, N2 is turned on initiating evaluation of the DATA operands by the evaluation logic 104. As before, the DATAN signal, representing the input DATA operands, is shown initially high which causes the evaluation logic 104 to couple node 105 to the drain of N2. This causes the TOP signal to discharge to a low level through N2. TOP going low causes the NAND gate 403 to assert Q high at about time T1 (after a short delay through the NAND gate 403). Discharging TOP to a low level turns off N4, thereby disabling the low keeper path from N5 through N4 down to ground. And TOP going low turns P2 on so that the QII signal is pulled high at about time T1. When the QII signal goes high at time T1, the inverter 301 pulls the QI signal low, which turns P3 on and N5 off. The Q output signal stays low while the QI signal is low.

[0045] In this example, the low keeper path through N5 is disabled because N4 is turned off when the TOP signal goes low. And since N4 is turned off, P2 does not have to overcome N5 to pull the QII signal high. Whenever the QII signal is low and is to be pulled high in response to evaluation (pulled TOP low), the low keeper path is always disabled (because N4 is off) so that the write stage of the storage stage does not have to overcome a keeper device.

[0046] At time T2 when CLK next goes low, TOP is once again pre-charged high. Also at time T2, P4 is turned on providing a “high” state keeper path from node 107 to VDD via P4 and P3, thereby keeping the QII signal high. The high keeper path is enabled whenever the pre-charged node 105 and the second preliminary output node 111 are both low, and otherwise disabled. Thus, the QII signal is kept high, which in turn keeps Q1 low to maintain the state of the Q output signal while TOP goes high at time T2. The TOP signal going high turns N4 back on at about time T2, but since the Q signal is low, N5 is off thereby keeping the low keeper path turned off or disabled for the remainder of the cycle.

[0047] The DATAN signal goes low at time T3 and the CLK signal next goes high at time T4 while the DATAN signal is still low so that the evaluation logic 104 does not cause TOP to discharge. Accordingly, TOP remains high at time T4 so that N4 remains turned on. The CLK signal going high turns P4 off and N3 on. The high keeper path from node 107 to VDD is disabled since P4 is turned off, and N3 and N4 are both on pulling the QII signal low. Since P4 is off, N3 and N4 do not have to overcome any devices, including weak keeper devices, to pull QII low. Whenever the QII signal is high and is to be pulled low in response to failure of evaluation (in which TOP stays high), the high keeper path is always disabled (because P4 is off) so that the write stage of the storage stage does not have to overcome a keeper device. The inverter 401 pulls QI high at about time T4 in response to QII going low. Since QI and TOP are both high, the NAND gate 403 pulls Q low at about time T4. Also, QI going high turns N5 on and P3 off, so that the high keeper path is disabled and the low keeper path via N5 and N4 is re-enabled. When CLK next goes low at time T5, N5 is turned off but QI is kept low through the low keeper path since N5 and N4 are kept on. TOP and QI both remain high, so that Q remains low for the remainder of the CLK cycle.

[0048] The non-inverting N-domino register 400 of FIG. 4 employs an improved technique to disable the weak keeper feedback devices, so that when a new state is being written, a strong device internal to a keeper device does not have to be overcome. Consequently, the P3 and N5 devices are made wider to overcome leakage in order to maintain state, but without affecting speed because those same devices P3 and N5 are disabled when a new state is written to the storage node 107 (the QII signal). When writing a new state of the QII signal, a feedback keeper circuit does not have to be overcome, so that the devices P2 and N3 can be normal-sized devices. The “keeper” of the non-inverting domino register 400 is only enabled to store the state. In particular, the feedback devices are enabled to keep the state and disabled when writing a new state.

[0049] FIG. 5 is a schematic diagram of another non-inverting N-domino register 500 employing the improved...
keeper stage of the register 400 and implemented according to alternative embodiment. The non-inverting domino register 500 is substantially similar to the non-inverting domino register 400, except that the logic evaluation input stage, or domino stage, comprising the stacked P-channel and N-channel devices P1 and N2 and evaluation logic 104, is reordered, and the evaluation logic 104 is replaced with evaluation logic 501. The change to register 500 from register 400 is analogous to the change to register 500 from register 100. In this manner, the evaluation logic 501 of the non-inverting N-domino register 500 may be implemented with CMOS logic rather than N-channel logic, where again, the timing diagram of FIG. 2 remains applicable. As previously described, CMOS logic provides significantly better input level noise margin over N-channel logic so that the non-inverting N-domino register 500 provides somewhat better input level noise margin over the non-inverting N-domino register 400 when using CMOS logic in the domino stage.

A non-inverting N-domino register implemented according to embodiments thus described has a faster clock-to-output time than conventional approaches without compromising the stability of its output, Q. In addition, the storage stage may further be improved to allow for smaller, faster devices to be employed in a high leakage environment beyond those which would otherwise be required to overcome strong keeper devices. This enables the non-inverting N-domino register to be embodied in a high leakage or high noise process, such as 90 nm SOI and the like, without causing performance degradation caused by leakage factors. Thus, the benefits of a scaled process, including reduced size, voltage, power consumption, etc., may be attained without causing the performance degradation associated with such scaled processes.

The present inventors note that operation of the various embodiments of the non-inverting N-domino register as discussed above with reference to FIGS. 2-5 still have data hold time requirements that are a function of the duty cycle of clock signal CLK shown at node 101. More specifically, the data signals DATAN at node 103 must be held at the desired level for the duration of the time when clock signal CLK is high. If DATAN changes state(s) during the interval when CLK is high, then the state change will propagate through to the output Q. The present inventors also have observed that it is desirable in many register applications to provide embodiments of the non-inverting N-domino register that minimize hold time requirements for DATAN. Accordingly, a pulsed clock embodiment will now be discussed with reference to FIG. 6, wherein the embodiment is configured to minimize data hold time.

Turning to FIG. 6, a timing diagram 600 is presented illustrating operation of the non-inverting N-domino register of FIGS. 1, 3-4 and 5 according to a pulsed clock embodiment that is preferred to minimize hold time. Like the timing diagram 200 discussed above with reference to FIG. 2, the timing diagram 600 of FIG. 6 depicts the CLK, DATAN, TOP, QII, Q1 and Q signals are plotted versus time. For clarity, relative transitions times are estimated and delays are ignored. The DATAN signal is shown as a single signal representing the collective set of N DATA signals. The DATAN signal is shown asserted high for when the collective state of the data signals causes the evaluation logic 104 to evaluate thereby pulling the TOP signal low, and is shown asserted low for when the evaluation logic 104 fails to evaluate, which keeps the TOP signal high. At time T0 when the CLK signal is initially low, N2 is turned off and P1 is turned on, so that the domino stage pre-charges the TOP signal high. The TOP signal is pre-charged high in preparation for evaluation of the DATAN signal by the evaluation logic 104 upon the rising edge of CLK, where the DATAN signal is initially high. The pre-charged TOP signal turns on N4 and N6. The QII signal remains at its former state (shown initially in a low logic state) and is held there by the keeper circuit 109. The Q1 signal is initially high turning on N5, so that the Q output signal is initially pulled low via the N5 and N6 devices.

At time T1 the CLK signal goes high, which causes the TOP signal to discharge to a low level since the DATAN signal is high, and the state of DATAN propagates through the discharge path to the output Q. In particular, N2 is turned on and the evaluation logic 104 evaluates pulling TOP low via N2 to ground. The QII signal is pulled high via P2 and the Q output signal is pulled high via P4. The QII and Q signals are both pulled high at about the same time T1, and the Q1 signal is pulled low by the inverter 109A. The inverted state of the Q1 signal at the output of the keeper circuit 109 drives the devices P3 and N5. When Q1 is high, P3 is off and N5 is on; and when Q1 is low, P3 is on and N5 is off. At subsequent time T2 when the CLK signal next goes low, the TOP signal is once again pre-charged high. P2 and N3 are turned off so that node 107 is not driven to either state. The respective states of the QII and Q signals remain unchanged, however, via operation of the keeper circuit 109, so that the Q and QII signals remain high and the Q1 signal remains low throughout the remainder of the half cycle of CLK.

The DATAN is shown going low at time T3 while the CLK signal is still low and the CLK signal is next asserted high at time T4 while the DATAN signal is low. The evaluation logic 104 fails to evaluate, so that TOP remains high while CLK is high, and the state of DATAN propagates through the non-discharge path to the output Q. More specifically, the CLK and TOP signals turn on devices N3 and N4, respectively, so that the QII signal is asserted low at about time T4, and the QI signal is consequently pulled high by the inverter 109A. The TOP signal being high keeps N6 on. The QI signal turns N5 on and P3 off, so that the Q signal is pulled low via N5 and N6. The CLK signal next goes low at time T5 pulling TOP high again. The respective states of the QII and Q signals remain unchanged via operation of the keeper circuit 109. The Q1 signal remains low throughout the remainder of the cycle of CLK since QI keeps N5 on and TOP keeps N6 on.

The Q signal transitions from low to high relatively quickly in response to a rising edge of the CLK signal when the evaluation logic 104 evaluates discharging the TOP signal low. There is a negligible delay through devices N2 and P4 causing the output transition. The Q signal transitions from high to low after a delay through devices N3, N5, and the inverter 109A in response to a rising edge of the CLK signal when the evaluation logic 104 fails to evaluate leaving the TOP signal high. The delay through the inverter 109A is minimized by being implemented as a relatively small device (with minimal capacitance) since it does not need to have the size nor perform the function of a buffer. It is appreciated by those of ordinary skill in the art that transitions of the output Q signal of the non-inverting N-domino register 100, 300, 400, 500 are very fast in
response to transitions of the CLK signal. If a non-inverting output is necessary or otherwise desired, the non-inverting N-domino register 100, 300, 400, 500 provides superior data-to-output speed compared to conventional designs among other benefits and advantages. The non-inverting N-domino register 100, 300, 400, 500 may be converted to an inverting N-domino register simply by adding an output inverter/buffer (not shown).

[0056] It is noted that the only difference between the timing diagram 200 of FIG. 2 and the timing diagram 600 of FIG. 6 is that node 103 of the non-inverting N-domino registers 100, 300, 400, 500 of FIGS. 1, 3-4, and 5 are each coupled to a pulsed clock signal CLK rather than being coupled to an approximately symmetric clock signal CLK. Accordingly, the hold time requirement for data signal DATAN is reduced significantly over the embodiments discussed with reference to FIG. 2. In one embodiment, the duty cycle of the pulsed clock signal CLK is less than or equal to 10 percent. In comparing the embodiments of FIGS. 2 and 6, it is noted that the time from T1 (when CLK goes high) until T3 (when the state of DATAN is allowed to change) is markedly less than the comparable period of FIG. 2. Such an embodiment of the non-inverting N-domino register is preferred for minimizing hold time.

[0057] It is additionally noted that since the state of DATAN is allowed to propagate through to output Q when CLK is high, the configurations discussed with reference to FIGS. 1, 3-4, and 5 can also be embodied as an N-domino latch when node 101 is coupled to an approximately symmetric latch clock CLK and where node 103 receives latch data DATAN. The latch data DATAN may be provided by a preceding domino circuit for which a latching function is desired. The circuits 100, 300, 400, 500 of FIGS. 1, 3-4, and 5 are advantageous when used as N-domino latch embodiments because of an accelerated discharge path through node 105 to the output signal Q, thus allowing for more domino circuits in series to precede node 103 than has heretofore been provided for. The N-domino latch embodiments will now be discussed with reference to FIG. 7.

[0058] Turning to FIG. 7, a timing diagram 700 is presented illustrating operation of N-domino latch embodiments. To employ the circuits 100, 300, 400, 500 of FIGS. 1, 3-4, and 5 as N-domino latch embodiments, it is desirable to couple node 101 to an approximately symmetric latch clock signal CLK. In one embodiment, the latch clock signal CLK exhibits a 40 percent to a 60 percent duty cycle. By way of overview, it is noted that during the period when CLK is high, an evaluation window is opened where DATAN is allowed to change and the output Q follows DATAN. But when CLK goes low, the state of DATAN is latched until CLK goes back high. Hence, at time T0, CLK is low and TOP is pre-charged. The previous state (i.e., the state prior to CLK going low) of DATAN is latched through signals QII, QI, and through to the output Q. At time T1, CLK goes back high, opening up a window in which the state of DATAN is allowed to propagate though to the output Q. Since DATAN is low, the output Q remains low. At time T2, DATAN goes high causing signal TOP to discharge, thus turning on P2 and causing the output Q to go high. But at time T3, CLK goes back low, closing the evaluation window and latching the state of DATAN, thus keeping Q high during this period. DATAN also goes back low at T3, reflecting the state of a preceding domino stage whose output is coupled to node 803. TOP precharges at time T3, setting up for the next evaluation window when CLK goes high at time T4. Since DATAN is low at time T4, TOP does not discharge. Thus at time T4, N3 and N4 are on, driving QII low and QI high. Because both QI and TOP are high at time T4, Q is driven low. At time T5, because DATAN is still low (i.e., the preceding domino stage did not evaluate), TOP remains high and the low state remains at the output Q. At time T6, CLK goes back low, latching in the state of DATAN at the output Q during the period when CLK is low.

[0059] One skilled in the art will also appreciate that, in some configurations, DATAN is embodied as a “return-to-zero” signal group, generally returning to a low logic level when CLK goes low. Consequently, device N2 can be entirely removed from the circuit 100, 300, 400, 500 in an N-domino latch embodiment, which increases the speed of the circuit 100, 300, 400, 500. When device N2 is removed, such a configuration is referred to a “footless” N-domino latch.

[0060] Reference is made in the above discussion to propagation of the state of DATAN when the clock signal CLK goes high, through either the discharge path or the non-discharge path, to the output Q. More specifically, when the clock signal CLK goes high, if the output Q is initially low (i.e., QI is high and QII is low) and DATAN is high, TOP discharges through N2 and the evaluation logic 104, 301, 501 and propagates through either P4 in FIGS. 1 and 3, or the NAND gate 403 in FIGS. 4-5 to the output Q. However, a longer delay is encountered through the non-discharge path in the case were Q is initially high (i.e., QI is low and QII is high) and DATAN is low upon the rising edge of CLK. In particular, the delay for the non-discharge path includes propagation delays through N3, the inverter 109A (FIGS. 1 and 3), 401 (FIGS. 4 and 5), and either N5 (FIGS. 1 and 3) or the NAND gate 403 (FIGS. 4 and 5). The present inventors have observed that this non-discharge path delay is limiting in some cases and that it is desirable to minimize the clock-to-output time in the case where the evaluation logic 104, 301, 501 does not cause TOP to discharge. To reduce the non-discharge path delay, an exemplary embodiment of the present invention will now be presented with reference to FIGS. 8-9.

[0061] Turning to FIG. 8, a schematic diagram is presented of a non-inverting N-domino register 800 according to an exemplary embodiment of the present invention which exhibits an accelerated non-discharge path. The non-inverting N-domino register 800 has an evaluation stage including stacked devices P1, N2, and evaluation logic 501, which are configured to operate in substantially the same manner as the corresponding devices of the non-inverting N-domino register 500 described above with reference to FIG. 5. A pulsed clock signal PLSDKL is provided via a node 822 to the gate of N2 and a local clock signal PH1CLK, from which the pulsed clock signal PLSDKL is derived, is provided via a node 821 to the gate of P1. As one skilled in the art will appreciate, it is common practice to derive a pulsed clock signal PLSDKL for use with dynamic logic circuits, such as the register 800 of FIG. 8, from a local clock signal PH1CLK. The local clock signal PH1CLK is an approximately symmetric signal in duty cycle and the pulsed clock signal PLSDKL has a relatively short duty cycle in comparison. In addition, the pulsed clock signal PLSDKL, because it is derived from the local clock signal PH1CLK, lags the local clock signal PH1CLK by approximately two gate delays. In a current technology embodiment, the local
clock signal PH1CLK is asserted high for approximately 200 picoseconds and the pulsed clock signal PLSCLK is asserted high for a time period according to configuration that allows for propagation of a true state of N input data signals DATA from previous logic stages. One embodiment of the present invention contemplates a pulsed clock signal PLSCLK that is at a logic high level for a range of 40 to 70 picoseconds. In addition, the pulsed clock signal PLSCLK lags the local clock signal PH1CLK by typically a value commensurate with the number of gate delays exhibited by the logic employed to generate the pulsed clock signal PLSCLK. In one embodiment, the lag is approximately 20 picoseconds. Although these embodiments are presented as typical, the present invention contemplates other embodiments as well.

[0062] The non-inverting N-domino register 800 is shown in FIG. 8 in a configuration that allows for implementation of the evaluation logic 501 with CMOS logic rather than N-channel logic as previously described, thus providing significantly better input level noise margin. However, it is noted that embodiments of the present invention also comprehend configurations of the evaluation stage (or “domino stage”) where N2 and the evaluation logic are reordered as is depicted for the register 400 of FIG. 4 and the evaluation logic 501 is replaced with evaluation logic 104.

[0063] In the embodiment shown in FIG. 8, the domino stage includes stacked P-channel and N-channel devices P1 and N2 and evaluation logic 501. The P1 and N2 devices are a complementary pair of evaluation devices coupled together between the voltage source VDD and the evaluation logic 501. The source of P1 is coupled to VDD and its drain is coupled to node 105 providing a pre-charge signal TOP. The drain of N2 is coupled to node 105 and the source of N2 is coupled to the evaluation logic 501. The evaluation logic 501 is coupled between the source of N2 and ground. As noted above, the local clock signal PH1CLK is provided via node 821 to the gate of P1, and also to the gates of devices N3 and P4. A set of N nodes 103 provide N input data signals DATA to the evaluation logic 501. As before, the node 105 providing the TOP signal is coupled to the gates of devices P2 and N4. The initial portion of the storage stage is substantially the same as described above including the stacked devices P2, N3, and N4. The source of P2 is coupled to VDD and its drain is coupled to node 107 developing the first intermediate output signal Q1. The drain of N3 is coupled to node 107 and its source is coupled to the drain of N4. The source of N4 is coupled to ground.

[0064] The storage stage of the non-inverting N-domino register 800 has a write stage including devices P2, N3, and N4, and a keeper stage including devices P3, P4, N5, and an inverter 401. The storage stage is followed by an output stage, which comprises a two-input NAND gate 403 in the embodiment illustrated. In this case, the source of P3 is coupled to VDD and its drain is coupled to the source of P4, having its drain coupled to the drain of N5 at the node 107. The source of N5 is coupled to the drain of N4 further coupled to the source of N3. Node 821, providing the local clock signal PH1CLK, is coupled to the gate of P4. Node 107, developing the Q1 signal, is coupled to the input of the inverter 401, having its output coupled to node 111 developing the second intermediate output signal Q. Node 111 is coupled to the gates of P5 and N5 and is coupled to one input of the NAND gate 403. Node 105, providing the TOP signal, is coupled to the other input of the NAND gate 403, and the output the NAND gate 403 provides the output signal Q.

[0065] The pre-charge node 105 is additionally coupled to a low keeper circuit including devices N6 and an inverter 823. Node 105 couples to the input of inverter 823 and to the drain of N6. The output of inverter 823 is coupled to the gate of N6. The low keeper is required for the period of time between when PLSCLK goes low until PH1CLK goes low. The pre-charged node 105 is additionally coupled to a high keeper circuit comprising devices P5 and P6. Node 105 couples to the drain of P5 and the source of P6 is coupled to the drain of P5. The source of P5 is coupled to VDD. The output of inverter 823 is coupled to the gate of P5. The pulsed clock signal PLSCLK is coupled to the gate of P6, thus enabling the high keeper circuit when PLSCLK is low.

[0066] Now tuning to FIG. 9, a timing diagram 900 is presented illustrating operation of the non-inverting N-domino register 800 of FIG. 8. Like the timing diagrams 200, 600 discussed above with reference to FIGS. 2 and 6, the timing diagram 900 of FIG. 8 depicts the DATAN, TOP, Q1, QI and Q signals plotted versus time. In addition, the local clock signal PH1CLK and the pulsed clock signal PLSCLK are shown plotted versus time. For clarity, relative transitions times are estimated and delays are ignored, except that the delay from PH1CLK going high to PLSCLK going high is depicted in order to illustrate how the non-inverting N-domino register 800 according to the present invention provides for substantial acceleration of clock-to-output time for the case in which the pre-charged node TOP does not discharge (i.e., the non-discharge path). The DATAN signal is shown as a single signal representing the collective set of N DATA signals. The DATAN signal is shown asserted high for the case when the collective state of the data signals DATA causes the evaluation logic 501 to evaluate thereby pulling the TOP signal low, and is shown asserted low for when the evaluation logic 501 fails to evaluate, which keeps the TOP signal high.

[0067] At time T0, when the PHICLK signal and PLSCLK signal are initially low, N2 is turned off and P1 is turned on, so that the domino stage pre-charges the TOP signal high. In addition, a low state on PLSCLK turns on P6. Since TOP is pre-charged high, this drives the output of inverter 823 low, which turns on P5. Since both P5 and P6 are on, the high keeper circuit is enabled. This will keep TOP high in the absence of any other drivers as needed. The TOP signal is pre-charged high in preparation for evaluation of the DATAN signal by the evaluation logic 501 upon the rising edge of PLSCLK, where the DATAN signal is initially high. The pre-charged TOP signal turns on N4 and turns off P2. The Q1 signal thus remains at its former state (shown initially in a low logic state) and is held there by the keeper stage. The Q1 signal is consequently high, turning on N5 so that the Q output signal is initially pulled low via the NAND gate 403.

[0068] At time T1 the PH1CLK signal goes high, which turns on N3 and turns off P4. Since TOP is high and N4 is already on, turning on N3 provides a direct path to ground for Q1 through N3 and N4. Since Q1 was previously low, the output Q remains unchanged at this point.

[0069] At time T2, the PLSCLK goes high opening up an evaluation window for DATA, which causes the TOP signal to discharge to a low level since the DATAN signal is high, and the state of DATAN propagates through the discharge path to the output Q. In particular, N2 is turned on and the
evaluation logic 104 evaluates pulling TOP low through N2 to ground. This state is sensed by the NAND gate 403, which drives Q high. In parallel, the QII signal is pulled high via P2 which drives QI low through inverter 401, thus providing another low input to the NAND gate to keep Q high. A low level on QI turns on P3 and turns off N5, which sets up state for when PH1CLK goes back low. Also, in parallel, the output of inverter 823 is driven high, turning on low keeper N6 which keeps TOP low in the absence of any other drivers.

At subsequent time T3 when the PLSCCLK signal next goes low, the evaluation window is closed by turning off N2. In this manner, the length of the PLSCCLK signal establishes hold time requirements for input data DATA. Now, low keeper N6 keeps TOP low until PH1 CLK goes low.

PH1CLK goes low at time T4, causing the TOP signal to once again be pre-charged high. P2 and N3 are turned off so that node 107 is not driven to either state. Thus, the respective states of the QII and QI signals remain unchanged, so the Q and QII signals remain high and the QI signal remains low throughout the remainder of the half cycle of PH1 CLK.

The DAFTAN signal is shown going low at time T4 while the PHI CLK signal is still low, and the PH1CLK signal is now asserted high at time T5 while the DAFTAN signal is low. The advantages of clocking the non-discharge path with the local clock signal PH1CLK, but enabling the evaluation window with the derived pulsed clock signal PLSCCLK are exhibited for the following case where Q is initially high and DAFTAN is low, as is the case at time T5. Rather than waiting for the pulsed clock signal PLSCCLK to open the evaluation window by turning on N2, a non-discharge path acceleration scenario is initiated when PHI CLK goes high at T5. This turns off N3, and since N4 is already on due to TOP being high, QII is driven high and Q goes high. Since both TOP and QI are high, the NAND gate 403 trips, providing a low state on Q—prior to when PLSCCLK goes high at time T6. Thus, the clock-to-output time when DATA propagates through the non-discharge path is accelerated due to clocking N3 and P4 with PH1CLK, prior to opening up the evaluation window with the derived pulsed clock PLSCCLK.

At time T6, PLSCCLK goes high, turning on N2 and turning off P6. Since DATA is low, TOP does not discharge, and since QII is already low, the output Q remains unchanged. One skilled in the art will appreciate that if DATA were to have been high rather than low at time T6, a low glitch would have been seen between times T5 and T6.

At time T7, PLSCCLK goes back low, turning off N2 and closing the evaluation window for DATA. In summarizing the embodiment illustrated by the timing diagram of FIG. 900 of FIG. 9, it is noted that the time to propagate a low state on DATA through to the output (i.e., the clock-to-output time) when Q is initially high (time T5 of FIG. 9) is markedly less than other embodiments discussed herein. Such an embodiment of the non-inverting N-domino register 800 is preferred for accelerating the clock-to-output time for cases where TOP does not discharge.

A non-inverting N-domino register with accelerated non-discharge path implemented according to an embodiment of the present invention is faster by at least two gate delays as compared to that which has heretofore been provided under conditions in which the output Q changes state from a high level to a low level. The improved design with reduced delay is very useful in critical timing paths. Note that in the improved design, the non-discharge path is no longer the critical delay. Since the clock-to-output delay for the non-discharge path may become shorter than the clock-to-output delay for the discharge path, the former path may be intentionally slowed down to match the latter delay, if desired. This can be achieved by downsizing the devices in the group P2, N3, N4, and inverter 401. Thus, an overall saving in layout area may be achieved. Another benefit of the improved design according to the present invention is a reduction in input hold requirements due to a reduced PLSCCLK width requirement. Now, PLSCCLK, when in a high logic state, need only be wide enough to pull TOP down in the discharge path case. In the non-discharge path case, PLSCCLK effectively plays no role.

Although the present invention has been described in considerable detail with reference to certain preferred versions thereof, other versions and variations are possible and contemplated. For example, although the present disclosure contemplates implementations and is described herein with regard to MOS type devices, including CMOS devices and the like, such as, for example, NMOS and PMOS transistors, it may also be applied in a similar manner to different or analogous types of technologies and topologies, such as bipolar devices or the like. In addition, those skilled in the art should appreciate that they can readily use the disclosed conception and specific embodiments as a basis for designing or modifying other structures for providing out the same purposes of the present invention without departing from the scope of the invention as defined by the appended claims.

What is claimed is:

1. A non-inverting domino register, comprising:
a domino stage, for evaluating a logic function based on
at least one input data signal and a pulsed clock signal,
said pulsed clock signal lagging a symmetric clock
signal, wherein said domino stage pre-charges a
pre-charged node high when said symmetric clock signal is
low and opens an evaluation window when said pulsed
clock signal goes high, and pulls said pre-charged node
low if it evaluates, and keeps said pre-charged node
high if it fails to evaluate;
a write stage, coupled to said domino stage and responsive
to said pulsed and symmetric clock signals, which pulls
a first preliminary output node high if said pre-charged
node goes low, and which pulls said first preliminary
output node low when said pre-charged node and
symmetric clock signal are high;
an inverter, having an input coupled to said first prelimi-
nary output node and an output coupled to a second
preliminary output node;
a high keeper path, which keeps said first preliminary
output node high when enabled, wherein said higher
keeper path is enabled when said symmetric clock
signal and said second preliminary output node are both
low and which is otherwise disabled;
a low keeper path, which keeps said first preliminary
output node low when enabled, wherein said low
keeper path is enabled when said second preliminary
output node and said pre-charged node are both
high and which is otherwise disabled; and
an output stage, which provides an output signal based on
states of said pre-charged node and said second pre-
liminary output node.
2. The non-inverting domino register of claim 1, wherein said domino stage comprises:
a P-channel device having a gate receiving said symmetric clock signal, and a drain and source coupled between a source voltage and said pre-charged node; an N-channel device having a gate receiving said pulsed clock signal, a drain coupled to said pre-charged node, and a source; and evaluation logic coupled between ground and said source of said N-channel device.
3. The non-inverting domino register of claim 2, wherein said evaluation logic comprises complementary metal-oxide semiconductor logic.
4. The non-inverting domino register of claim 1, wherein said write stage comprises:
a first P-channel device having a gate coupled to said pre-charged node, and a drain and source coupled between a source voltage and said first preliminary output node; a first N-channel device having a gate receiving said symmetric clock signal, a drain coupled to said first preliminary output node, and a source; and a second N-channel device having a gate coupled to said pre-charged node, a drain coupled to said source of said first N-channel device, and a source coupled to ground.
5. The non-inverting domino register of claim 4, wherein said high keeper path comprises:
a second P-channel device having a gate coupled to said second preliminary output node, a source coupled to said source voltage and a drain; and a third P-channel device having a gate receiving said symmetric clock signal, and a drain and source coupled between said drain of said second P-channel device and said first preliminary output node.
6. The non-inverting domino register of claim 5, wherein said low keeper path comprises said second N-channel device and a third N-channel device having a gate coupled to said second preliminary output node, and a drain and source coupled between said first preliminary output node and said drain of said second N-channel device.
7. The non-inverting domino register of claim 1, wherein said output stage comprises a NAND gate.
8. The non-inverting domino register of claim 1, wherein said domino stage, said write stage, said inverter, said high and low keeper paths, and said output logic are fabricated using a scaled 90 nanometer silicon-on-insulator process.
9. A domino register, comprising:
an evaluation circuit that pre-charges a first node while a symmetric clock signal is low and that evaluates a logic function for controlling a state of said first node when a pulsed clock signal goes high, wherein said pulsed clock signal is derived from said symmetric clock signal; a write circuit, coupled to said first node and receiving said symmetric clock signal, that drives a second node high if said first node is low, and that drives said second node low if said first node stays high when said symmetric clock signal goes high; an inverter having an input coupled to said second node and an output coupled to a third node; a keeper circuit, coupled to said second and third nodes and said write circuit, that keeps said second node high while said third node and said symmetric clock signal are both low, and that keeps said second node low while said third node and first node are both high; and an output circuit providing an output signal based on states of said first and third nodes.
10. The domino register of claim 9, wherein said evaluation circuit comprises:
a P-channel device, coupled to said first node and receiving said symmetric clock signal, that pre-charges said first node high while said symmetric clock signal is low; an N-channel device, coupled to said first node and receiving said pulsed clock signal; and
a logic circuit, coupled between said N-channel device and ground, that evaluates said logic function based on at least one input data signal; wherein said P-channel device and said N-channel device collectively enable said logic circuit to control said state of said first node when said symmetric and pulsed clock signals are high.
11. The domino register of claim 10, wherein said logic circuit comprises complementary metal-oxide semiconductor devices.
12. The domino register of claim 11, wherein said write circuit comprises:
a first P-channel device, coupled to said first and second nodes, that pulls said second node high if said first node goes low; a first N-channel device, coupled to said second node and receiving said symmetric clock signal; and a second N-channel device, coupled to said first N-channel device and to said first node, wherein said first and second N-channel devices collectively pull said second node low if said first node remains high in response to said symmetric clock signal going high.
13. The domino register of claim 11, wherein said keeper circuit comprises:
second and third P-channel devices, coupled together and to said second and third nodes, that collectively form a high state keeper path which is enabled to pull said second node high when said third node and said symmetric clock signal are both low and which is otherwise disabled; and a third N-channel device, coupled to said second and third nodes and to said second N-channel device, wherein said second and third N-channel devices collectively form a low state keeper path which is enabled to pull said second node low when said first and third nodes are both high, and which is otherwise disabled.
14. The domino register of claim 11, wherein said evaluation circuit comprises a NAND gate.
15. A method of registering a logic function and generating a non-inverted output, comprising:
providing a symmetric clock signal and a pulsed clock signal that lags the symmetric clock signal; pre-charging a first node high while the symmetric clock signal is low; evaluating a logic function to control the state of the first node when the pulsed clock signal goes high;
controlling the state of a second node with the state of the first node when the symmetric clock signal goes high;

16. The method of claim 15, wherein said evaluating a logic function to control the state of the first node comprises pulling the first node low when the logic function evaluates and keeping the first node high when the logic function fails to evaluate.

17. The method of claim 16, wherein said controlling the state of a second node with the state of the first node comprises pulling the second node high if the first node is pulled low and pulling the second node low if the first node remains high when the symmetric clock signal goes high.

18. The method of claim 15, wherein said enabling a low state keeper path and otherwise disabling the low state keeper path comprises controlling first and second series-coupled pull-down devices with the first and third nodes, respectively.

19. The method of claim 15, wherein said enabling a high state keeper path and otherwise disabling the high state keeper path comprises controlling first and second series-coupled pull-up devices with the symmetric clock signal and the third node, respectively.

20. The method of claim 15, wherein said determining the state of an output node comprises logically combining the states of the first and third nodes with a NAND function.