PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 97/15942
HO01J 13/00, GO6F 11/00 Al

J ’ (43) International Publication Date: 1 May 1997 (01.05.97)

(21) International Application Number: PCT/US96/16997 | (81) Designated States: JP, European patent (AT, BE, CH, DE, DK,

(22) International Filing Date: 23 October 1996 (23.10.96)

(30) Priority Data:

08/547,565 Us

24 October 1995 (24.10.95)

(71) Applicant: SEACHANGE TECHNOLOGY, INC. [US/US];
6th floor, Damonmill Square, Concord, MA 01742 (US).

(72) Inventors: MANN, Bruce, E.; 330 Valley Road, Mason, NH
03048 (US). TRASATTI, Philip, J.; 3 Birch Hill Road,
Brookline, NH 03133 (US). CARLOZZI, Michael, D.; 31
Fencourt Road, Canton, MA 02021 (US). YWOSKUS,
John, A.; 22 Hansom Road, Memrimack, NH 03054 (US).
MCGRATH, Edward, J.; 68 Old Connecticut Path, Way-
land, MA 01778 (US).

(74) Agent: WALPERT, Gary, A.; Fish & Richardson P.C., 225
Franklin Street, Boston, MA 02110-2804 (US).

ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

(54) Title: LOOSELY COUPLED MASS STORAGE COMPUTER CLUSTER

(57) Abstract

A method and apparatus redundantly store data,
in particular video data objects, in a distributed com-
puter system having at least three processor systems,
each processor system (items 138, 140, 152) being
connected in point to point two way channel intercon-
nection with each other processor system. The data
is stored in a redundant fashion both at the computer
system level as well as the processor system level. Ac-
cordingly, the failure of a single processor does not ad-
versely affect the integrity of the data. The computer
system can also overlay a switching system (items 142,
144, 154) connected in a ring fashion for providing a
fault tolerant to the failure of a single connected pro-
cessor system at the switch level. Accordingly, there
results a fault tolerant data distribution system.

- T T T 13y
Peoc€30e S¥s. X
S [}
L LS
e,
. ! Our,
SwiTcho? z ’
Sysrom
‘ 19¢

- - — ——

wl — - — — i

+—{ PRoCessen SYs k]'___l
=3¢

ite ¥ e

13
.
J 9 Sl TCUEP louz,
4l sYSTom™
'3
IS Bt T
[L4]
e
LPROCEYS0R SyS,
NNTEN e
] (178, |
S 7CYM !
Z y3rom

applications under the PCT.

AM
AT
AU
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
Cl
CM
CN
Cs
Cz
DE
DK
EE
ES
FI
FR
GA

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Armenia
Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada
Central African Republic
Congo
Switzerland
Cdte d'Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Estonia

Spain

Finland

France

Gabon

GB
GE

GR
HU
IE
IT
Jp
KE
KG

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Italy

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia
Mauritania

Malawi

Mexico

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Sencgal

Swaziland

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

10

15

20

25

30

WO 97/15942 PCT/US96/16997

LOOSELY COUPLED MASS STORAGE COMPUTER CLUSTER

The invention relates generally to mass storage
device interconnections and in particular, to a method
and apparatus for increasing delivery bandwidth,
providing fault tolerance, and input/output load
balancing in a multiprocessor computer cluster.

Background of the Invention

Modern reliable computer systems require a large
capacity mass storage, and large bandwidth access to that
mass storage. While disk sizes have increased
substantially, for example a typical personal computer
today can be configured with over a gigabyte of storage,
the bandwidth available to access the storage has
improved, but not significantly. Thus, while large
volumes of information can be stored, the rate at which
the storage can be accessed has not generally changed in
the past few years. In particular, considering the
requirements of a digital video system for the delivery
of constant bit rate video streams such as MPEG-2 digital
video streams, it is important to provide a high
bandwidth to accommodate the data requirements of the
digital video network, for example an ATM OC-3 network
interface.

While various methods have been employed to
provide sufficient guantities of data in a reliable
configuration, perhaps one of the more popular, and least
expensive, approaches is the use of RAID-5 striping and
parity techniques to organize data in a fault tolerant
and efficient manner. The RAID (Redundant Array of
Inexpensive Disks) approach is well described in the
literature and has various levels of operation, including
RAID-5, and the data organization can achieve data
storage in a fault tolerant and load balanced manner.

10

15

20

25

30

35

WO 97/15942

PCT/US96/16997

-2 -

In particular, RAID-5 provides that the stored
data is spread among three or more disk drives, in a
redundant manner, so that even if one of the disk drives
fails, the data stored on the drive can be recovered in
an efficient and error free manner from the other storage
locations. This method also advantageously, using RAID-5
striping, makes use of each of the disk drives in
relatively equal and substantially parallel operations.
Accordingly, if one has a six gigabyte cluster volume
which spans three disk drives, each disk drive would be
responsible for servicing two gigabytes of the cluster
volume. Each two gigabyte drive would be comprised of
one-third redundant information, to provide the
redundant, and thus fault tolerant, operation required
for the RAID-5 approach.

Consider a processor reading a video data object
from a local RAID-5 array. In normal operation, using a
RAID-5 approach, when the processor needs to access a
video data object which is spread across all of the disk
drives connected to the processor, the processor reads a
portion of the video data object in a round robin fashion
from each of the disk drives. For example, a first 64
kilobyte block of the video data object can be stored and
read on a first drive, the next 64 kilobyte block being
stored on the second drive, and so on. In addition,
however, the parity check (actually an EXCLUSIVE-OR
function), also a 64 kilobyte block, is stored so that if
there were n disk drives there would be one parity block
written for each n-1 blocks of data.

The processor reading the disk drives, however, is
still "stuck" with a relatively narrow bandwidth.
Accordingly, the amount of data which can be read is
limited by the bus to which the drives are connected.

For example, a SCSI bus which, while providing

substantial improvements over buses from years ago, is

10

15

20

25

30

WO 97/15942 PCT/US96/16997

-3 -

still relatively slow compared to the needs of video
applications. Also, the use of a local RAID-5 controller
can combine the outputs of multiple local SCSI buses, but
is subject to the failure of the local processor. Such a
failure eliminates access to all the data.

Accordingly, objects of the invention are a method
and apparatus having improved and increased mass storage
read and write bandwidth (delivery bandwidth), operating
using a reliable and fault tolerant protocol in a novel
topology and enabling large quantities of data to be read
and written in accordance with well known and accepted
techniques. Other objects of the invention include a
method and apparatus which is relatively inexpensive,
reliable, simple to build, and easy to maintain.

Summary of the Invention

The invention relates to a method and apparatus
for redundantly storing data in a distributed computer
system having at least three processor systems, each
processor system having at least one central processing
unit and at least one mass storage sub-system. The
method features the steps of interconnecting each one of
the processor systems in a point to point two way channel
interconnection with each other one of the processor
systems and storing input data across the processor
systems according to a distributed, redundant storage
process. Thereby, data is stored at each mass sub-
storage system and some of a redundant representation of
the data is stored also at each processor mass storage
sub-systen.

In particular aspects of the invention, the method
features storing data across the processor systems
according to a RAID-5 process and, further, storing data
within each processor system according to a RAID-5

process.

10

15

20

25

30

35

WO 97/15942 PCT/US96/16997

-4 -

The method further features the step of reading
data from the computer system, in the absence of a
failure of any of the processor systems, over respective
ones of the data channel interconnections, whereby the
reading step establishes a load balance across the
processor systems. In the presence of a failure of one
of the processor systems, the reading of data from the
computer system features the steps of reading data from
each non-failed processor system storing the data, and
reading redundant data from the non-failed processor
systems in place of the data stored at the failed
processor system. Thereafter, the needed data stored at
the failed processor system can be recreated using the
redundant data and the data read from the non-failed
processor systems. In some embodiments of the invention,
during the time when a failure has occurred at any
processor system, the method may prevent the writing of
any data at any processor system until the failed
processor system is brought back on line.

In another aspect, the invention further features
the limiting case wherein there are only two processor
systems initially. In accordance with this aspect of the
invention, the system continues, in the absence of a
failure, to provide increased bandwidth by reading
succeeding blocks of data from alternate processors in
sequence; and, in this manner, effects a load balancing
and provides increased read bandwidth compared to a
typical so-called "mirrored" system. 1In a typical
mirrored system, data 1s read from one processor only,
the other processor acting as a backup. Thus, in
accordance with the invention, data is read from all of
the processors thereby providing an increased read
bandwidth and load balancing. As noted hereinafter,
therefore, the two processor version of the invention,

while not providing all of the advantages of the system

10

15

20

25

30

35

WO 97/15942 PCT/US96/16997

-5 —

with a larger number of processors, does allow easy
scalability to a processor system having greater
capacity, less overhead, and greater bandwidth.

In various aspects of the storage step, the
method, in some embodiments of the invention wherein data
storage is modelled at a disk abstraction level, feature
either designating one processor system to effect all
write functions for the computer system, designating one
processor for allocating files for each data input and
enabling all processor systems to write input data to
each of its associated and allocated files, or
arbitrating write operations among the processor systems
using a distributed lock manager.

In another aspect of the storage step, however,
the data input is stored as named fragment files, or
named files, in each processor system. When stored as
named fragment files, or named files, they can be
accessed and reconstructed, for example even when a
process or system is added to the distributed computer
system. The system continues to deliver stored data as
an output stream even as the number of processor systems,
network interfaces, and amount of storage is changed.
This is possible because the method uses file names to
distinguish, modulus "N", data fragments from modulus
"N+1" data fragments, even as these modulus "N+1" data
fragments are created from the modulus "N" fragments.
Further, the method features the step of reconstructing a
failed processor system by reconstructing only the data
objects which were written while the processor system was
in a failed state.

The distributed computer system in accordance with
the invention has at least three processor systems for
redundantly storing data, each processor system having at
least one central processing unit and at least one mass
storage system. The distributed computer system features

10

15

20

25

30

35

WO 97/15942 PCT/US96/16997

-6 -

interconnecting channels providing a point to point two
way channel interconnection from each one of the
processor systems to each other one of the processor
systems, and a data storage controller at each processor
system. The controllers act to store data input at any
one of the processor systems according to a distributed
redundant storage process whereby data is stored at each
of the computer processors and some of a redundant
representation of the data is stored also at each of the
processors. In a preferred embodiment, the storage
controllers store data across the processing systems
according to a RAID-5 process, and further, can store
data at each processor system in its associated mass
storage sub-system according to a RAID-5 process.

The apparatus of the invention further features a
system in which the controllers read data from the
computer system, in the absence of a failure of any
processor system, so as to maintain and establish a load
balance across the computer system. In the presence of a
failure of one of the processor systems, the controllers
read data from each non-failed processor system storing
the data (over the appropriate dedicated network
connection) and read redundant data from each non-failed
processor system in place of the data stored at the
failed processor system. The requesting processor system
can then recreate the data stored at the failed processor
using the read data and the redundant data. 1In a
preferred embodiment, an "external" processor can be
employed to recreate the data stored at the failed
processor, thereby preserving the delivery bandwidth of
the system even in the face of a failed processor.

In another aspect, the apparatus features a
storage controller which stores the input data as named
fragment files, or named files, in the distributed
computer system.

10

15

20

25

30

35

WO 97/15942 PCT/US96/16997

-7 -

The apparatus of the invention also relates to a
redundant switch having at least n interruptible inputs,
n interrupting inputs, and n outputs. The redundant
switch features n+l1 switched systems, each switched
system having at least two control inputs, a first input,
a second input, a third input, and a fourth input, and a
first and a second output. Each switched system is
connected at its second output to n interrupting signal
generator, n interrupting output of the associated signal
generator being connected to the second input of the
connected switched system. The switched systems are
interconnected in a ring structure so that each switched
system further has n interruptible input signal connected
to the first input, the second input of a first neighbor
switched system in the ring being connected to the third
input, the interruptible input from the other neighbor
switched system on the ring being connected to the fourth
input, and each switched system having switching
circuitry responsive to the control input for switching
any of its inputs to at least its first output and for
connecting either of its first and fourth inputs to its
second output. The controller provides the control
signals to the control inputs of the switched system to
enable the cross-bar operation.

In another aspect, the redundant switch has n+l
switched systems each switched system having at least two
control inputs, four signal inputs, and two signal
outputs. Each switched system is connected at one of its
outputs to an associated interrupting signal generator
and n interrupting output of the associated signal
generator is connected to an input of the connected
switched system. The switched systems are interconnected
in a ring structure so that each switched system is
connected to a first and a second nearest neighbor. Each

switched system has switching circuitry responsive to the

10

15

20

25

30

35

WO 97/15942 PCT/US96/16997

- 8 -

control input for the switched system for selectively
switching its inputs to its outputs. A controller
provides the control inputs to the switched systems to
enable the switched systems to effectively rotate signal
switching functions one position in one or both
directions around the ring. Thereby, a failed signal
generator can be bypassed and the signals on the n first
outputs continue uninterrupted.

In another aspect, the invention relates to a
distributed data delivery system having at least three
processor systems for redundantly storing data, each
processor system having at least one central processing
unit and one mass storage system. Interconnecting data
channels provide a point to point, two way, channel
interconnection from each one of the processor systems to
each other one of the processor systems. A data storage
controller at each processor system stores data input
from any one of the processor systems according to a
distributed, redundant storage process whereby data is
stored at each of the processor systems and some of a
redundant representation of the data is stored at each of
the processors as well. A switching circuit having n
interruptible input ports, at least n+1 interrupting
input ports, and at least n+l1 output ports, has n
interruptible input signals connected to respective
primary processor systems, each primary processor system
having an output connected to a respective interrupting
input. A switching controller, connected to the
switching circuit for selectively interrupting each of
the n interruptible input ports with the signal
information available from a respective one of the
processor systems, in the event of a failure at a
processor, and using a previously unused processor system
in that process, causes the switching circuit to connect
the interruptible input port of the failed processor

10

15

20

25

30

WO 97/15942 PCT/US96/16997

-9 -

system to a different processor system, and to replace
the output of the failed processor system with the output
of another processor systemn.

Brief Description of the Drawings
other objects, features, and advantages of the

invention will be apparent from the following drawings
taken together with the description of a particular
embodiments in which:

Fig. 1 is a schematic block diagram of an
interconnected computer system according to the
invention;

Fig. 2 is a more detailed block diagram of a
processor system according to the invention;

Fig. 3 is a table illustrating an index file in
accordance with the invention;

Fig. 4 is a diagram illustrating the software
architecture in accordance with the invention;

Fig. 5 illustrates the cluster volume arrangement
according to the invention;

Fig. 6 describes the cluster volume HomeBlock
format in accordance with the invention;

Fig. 6A is a table defining the HomeBlock format
of Fig. 6;

Fig. 6B shows a data object broken into a
plurality of blocks;

Fig. 6C shows the relationship of a data object to
its stored named fragment files;

Fig. 6D is a table defining the header block of a

named fragment file according to one embodiment of the

invention;
Fig. 6E is a table defining the data object format
of Fig. 6D;

Fig. 6F illustrates reading a video object from

the cluster members;

10

15

20

25

30

35

WO 97/15942 PCT/US96/16997

- 10 -

Fig. 7 illustrates the data and parity
organization for a data object according to a RAID-5
striping protocol;

Fig. 8 is a table describing the terminology used
in connection with the flow chart of Fig. 9;

Figs. 9A-9C are flow charts for determining data
and ParityBlock locations according to the invention;

Fig. 10 illustrates a cluster volume both before
and after reformatting in accordance with the invention;

Fig. 11 illustrates a 2n x n switch;

Fig. 12 illustrates n 2 x 1 switches in a circuit
arrangement;

Fig. 13 illustrates a 2n x n system in accordance
with the invention;

Fig. 14 is a more detailed block diagram of the
switched system of Figure 13;

Fig. 15 illustrates a video system in a ring
configuration accordance with an alternate embodiment of
the invention;

Fig. 16 illustrates, in more detail, the switched
system of Figure 15; and

Fig. 17 illustrates a truth table for the switched
system of Figure 16 in accordance with the invention.

Description of the Preferred Particular Embodiments

Referring to Fig. 1, a redundant distributed
computer system 10 has a plurality of processor systems
l2a, 12b, 12c, 12d, 12e, in the illustrated embodiment,
which are interconnected by interconnecting channels 14a,
14b, 14c,...14j in a plurality of point to point channel
interconnections. Thus, each processor system 12 is
directly connected in a point to point connection to each
other processor system. In other embodiments of the
invention, more or less processor systems can be used,
although a practical upper limit may be between nine and

thirteen and the lower limit is three. (As noted

10

15

20

25

30

35

WO 97/15942 PCT/US96/16997

- 11 -

earlier, a two processor system, can be used, to effect
some of the advantages of the invention; however, for
purposes of description hereinafter, the three or more
processor embodiment will be detailed.)

Referring in more detail to each processor system
12, and referring to Fig. 2, each processor system 12 has
a CPU 20 connecting, in the illustrated embodiment, to an
internal data communications bus 22, to which are
connected at least a memory and communications controller
24 and a mass memory storage unit 26. The mass storage
unit typically has a plurality of disk drive units 28.
controller 24 is also connected to a plurality of channel
interface units 30, each of which is connected to a
different interconnecting channel 14 for establishing the
point to point communications with other processor
systems through their respective channel interface units
30.

In the illustrated embodiment of the invention,
the interconnecting channels 14 use a protocol running on
Fast Ethernet datalink devices. This protocol provides a
relatively high efficiency and enables communications
between processors, in the illustrated embodiment, at a
bandwidth on the order of 100 megabits/sec. Accordingly,
referring to Fig. 1, each processor 12, being connected
to four interconnecting channels, has a bandwidth to the
external processor memories of approximately 400
megabits/sec. (less overhead), in addition to its own
capabilities with regard to its local mass storage 26.

In one particular application of the computer
system illustrated in Figure 1, video input information
and data is provided to one or more processor systems 12
over external feedlines, for example, network feeds 32
which require high bandwidth storage of the substantial
data needed to represent and store even small durations
of video data (including audio). 1In particular, for

10

15

20

25

30

35

WO 97/15942 PCT/US96/16997

- 12 -

example, one minute of video data can require sixty-six
megabytes of storage. Fortunately, the particular
embodiment described herein and displayed in Figure 1 has
substantial bandwidth to enable the video information to
be distributed among the various processor systems so
that in a preferred embodiment of the invention the video
data input to one of the processor systems 12 is actually
stored along many, and preferably all of the video
processor systems 12.

In accordance with a particular embodiment of the
invention, the controllers 24 of the processor systems 12
individually and collectively act to store data across
the entire computer system 10 network in a redundant
fashion so that if any one processor system 12 fails the
remaining processor systems can nevertheless reconstruct
all the data available in the entire system. 1In
addition, this approach, as will be described in more
detail below, provides, in the illustrated embodiment,
load balancing across the various processing systems as
well as enabling any one processor system requiring
either to read or write data the capability of a very
large bandwidth memory communication channel.

In the preferred embodiment of the invention, a
RAID-5 architecture is implemented, for the first time,
at the system level to provide the redundancy, load
balancing, and bandwidth necessary to meet the objectives
of the distributive computer system. In a particular
application, assuming that video data is to be received
by processor system 12e on input line 30, the computer
system 10 will have, before receipt of the data,
allocated storage in each of the processor systems in one
of a plurality of different ways. In one method, but not
the preferred method which will be described hereinafter,
a storage cluster volume having a specified capacity will
be deployed among the processor systems 12. For example,

10

15

20

25

30

35

WO 97/15942 PCT/US96/16997

_13—

if the storage cluster volume was 10 gigabytes, in the
embodiment of Figure 1, each processor system would be
responsible for servicing two gigabytes of the cluster
volume for use not only for itself, but for the other

processor systems or members of the cluster.

Under normal operating conditions therefore the
systems will have preestablished a protocol for both
writing and reading data. According to one protocol, the
systems will have selected one system for writing of all
data for the cluster volume. In another aspect of the
invention, a distributed lock may be used to arbitrate
write operations among the processor systems. 1In a third
embodiment, one processor system can allocate files for
each data input and thereafter enable each of the
processor systems to write input data to its associated
allocated files.

The cluster volume described above is a collection
of logical disk blocks (some local and some remote) that
are shared between cluster members (the different
processor systems of the cluster). 1In this design, each
cluster member has an instance of a file system running,
and each node would have access to the entire set of
logical blocks. While this solution works, it has
several problems. First, only one system can write to
the cluster volume; second, the integrity of the cluster
volume has to be strictly managed; and third, changes to
the file system structure (the creation or deletion of
files) has to be replicated in each instance of the file
system running on each cluster member.

Rather than use the cluster volume structure
identified above, in a preferred embodiment of the
invention, the cluster architecture provides access to
data objects and named fragment files, much in the way a
file server provides "files" to network clients. Since

the cluster members keep their file system private and

i0

15

20

25

30

35

WO 97/15942 PCT/US96/16997

- 14 -

only export access to the data objects, each cluster
member can read, write, or delete files from its local
file system without disrupting the other members of the
cluster. There is no significant penalty for this method
and it reduces the complexity of the cluster software.
Data objects are then fragmented and written to the
members of a cluster using the RAID-5 striping and parity
techniques, allowing each individual data object to be
read, recovered, or written independently of all other
data objects. 1In addition, because all data objects are
stored independently, only the data objects written while
a cluster member is down need be recovered. In the
cluster volume method, as will be described below, the
entire local cluster volume has to be reconstructed. The
reconstruction of the entire cluster volume can take
anywhere from several hours to several days depending
upon the size of a volume. When only the data objects
are stored, only a small subset of the data will need to
be reconstructed if written during the time when a
cluster member is down.

In order to achieve a redundant, and hence fault
tolerant, storage system, each of the processors 12 is
viewed, even though they exist at the system level, in a
RAID-5 context, with striping, as follows. Assuming that
each processor writes in 64 kilobytes blocks, a first
block will be sent to and written by processor 12a, a
second block by processor 12b, a third block by processor
12c, a fourth block by processor 12d, and a fifth block,
a redundancy block or ParityBlock by processor 1l2e. 1In
accordance with the RAID-5 approach, the redundancy block
or ParityBlock to be written by processor 12e in its mass
storage will be the EXCLUSIVE-OR of the blocks sent to
processors l1l2a, 12b, 12c, and 12d. Clearly, other
redundancy methods can be used including various forms

of, for example, Huffman coding and other redundant

10

15

20

25

30

35

WO 97/15942 PCT/US96/16997

- 15 =

coding methods so that not only may one failure of a
processor be taken into account but multiple processor
failures can be taken into account. The cost, of course,
is increased processing in both the writing and perhaps
reading of data. Further, and importantly, because each
processor is connected in a point to point two way
connection to each other processor, it is possible to
write all five blocks of data substantially in parallel,
thus making full use of the bandwidth available to the
writing controller and, at the same time, distributing
substantially equally, the writing load across the entire
computer system.

After the first four data blocks (and one
redundancy block) have been written, the next block of
data (a DataBlock) can be written to, for example,
processor system 12b, the sixth block to processor system
12c, the seventh block to processor system 12d, and the
eighth block to processor system 12e. Then, the parity
or redundancy block would be written in processor system
12a. In accordance with this practice, each of the
redundant blocks would be written in a determined and
round robin, rotating manner, in accordance with the
RAID-5 processing protocol. The location of the blocks
is illustrated in Fig. 3. A short algorithm can be
employed to determine the location of a particular block,
as described in more detail below.

Further, within each processor system itself, the
processors can use a RAID-5 protocol, in its ordinary and
well known sense, to store data among its plurality of
disk drive devices 26 associated with that processor.
Thus, there is provided the novel circumstance of
employing the RAID-5 technology twice, both at the
storage level as is well known, but also at the system
level, which is new, to achieve a high reliability, lower

cost, computer system.

10

15

20

25

30

35

WO 97/15942 PCT/US96/16997

- 16 -

The structure of Figure 1 as described herein has
a number of constraints in order to maintain its proper
functionality. First, each cluster volume must have at
least three members. Second, a cluster cannot continue
to operate, if it uses the RAID-5 protocol, if more than
one cluster member should fail. (The use of other, more
complex protocols, can relax, somewhat this constraint.)
Third, it appears that a practical limit, under current
operating parameters, is nine to thirteen cluster
members. When more cluster members are employed, the
point to point wiring becomes progressively more
difficult and expensive. 1Indeed, nine cluster members
would require thirty-six interconnecting channels while
thirteen cluster volumes would have 78 interconnecting
channels.

Referring now to Figure 4, the major software
components of a single processor system 12 (also called a
"cluster member") include a port driver 50, a class
driver 52, a remote file provider 54 a local file
provider 56, a file system 58 (SeaFile, FAT, NTFS), a
SCSI driver 60, a RAID controller 62, a fast Ethernet
adapter 64, and a SeaNet transport 66.

The cluster architecture utilizes RAID-5
technology to build a fault tolerant distributed system.
The data objects are stored as named fragment files
across the members of the cluster. Data objects are
striped (in accordance with RAID-5 protocol) and stored
with parity information to allow a missing named fragment
file to be reconstructed if a cluster member fails. This
is described in more detail below.

In order to provide transparent data object
access, a RAID port driver masks the fact that the data
object exists as a set of named fragment files. It
provides the multiplexing and demultiplexing services to
merge the named fragment files into a data object byte

10

15

20

25

30

WO 97/15942

PCT/US96/16997

_17-

stream. The RAID port driver registers as both a
provider and a consumer. When the class driver attempts
to open a data object, it calls all the provider port
drivers in the system. Upon being called, the RAID port
driver becomes a consumer and uses the class driver to
open each of the data fragments that comprise the data
object. Once a session has been established to each of
the named fragment files, that is, once access has been
provided to each named fragment file, the RAID port
driver performs an open call back to notify the class
driver that the data object is available.

In the particular application of accessing the
data (video) objects, the port driver accesses the data
(video) objects stored on the cluster. The video named
fragment files are read or written using RAID-5 methods
from the local and remote providers. It masks other port
drivers (for example, video decoders or ATM links) from
any failures, since it will reconstruct missing data
fragments in real time. The remote file provider
represents any third party application or device driver
that might use the cluster technology. Examples include
Lotus Notes, medical applications, or database systems.
The on-disk structure of the cluster volume (file system
54) can be either NTFS, FAT, SeaFile or raw disk access,
in the illustrated embodiment. The file system component
is responsible for storing and retrieving the named
fragment files.

The Transport component 66 provides an efficient
network service to other cluster members. It detects and
reports failures in real-time to the RAID driver. The
fast Ethernet Adapter provides a 100 Mb/second full
duplex link between each cluster member through interface
units 30. The SCSI driver, for example a DAC960,

provides access to local disk storage and allows the

10

15

20

25

30

WO 97/15942 PCT/US96/16997

cluster RAID driver to read or write data for local file
system managers.

A RAID controller provides efficient access to the
named fragment files. The local portion of a data object
is read or written by the RAID controller. The RAID
controlled volume can be configured, to either a RAID-0,
RAID-1, RAID-5, RAID-6 or RAID-7 level in the illustrated
embodiment, and as noted above, configuring a volume in a
RAID-5 protocol allows a cluster member to continue even
when a single disk fails to perform properly.

As described above, when cluster volumes are used,
a cluster volume is a logical disk volume that spans
multiple cluster members or processor systems.
Considering a specific application, such as the storage
and retrieval of video data objects, the design principal
for a cluster volume is to utilize a fraction of each
processor system memory for each video stream thus
creating a balanced and scalable system. Since the video
data stored in the cluster volumes is mission critical,
the integrity of the cluster volume must be carefully
maintained. Accordingly, a set of checks are used to
ensure that the cluster members agree on a consistent
view of the cluster volume and that only one cluster
member writes to the cluster volume.

In the illustrated embodiment of the invention,
and referring to Figure 5, each cluster member of a
cluster volume that is, each processor system 12,
maintains and verifies its cluster volume "HomeBlock" to
ensure the integrity of the cluster volume. When a
cluster member processor system boots, it checks the
cluster volume HomeBlock incarnation and volume
identifier against the other cluster member processor
systems HomeBlocks to ensure that the cluster volume was
not modified while it was down. If the cluster volume

10

15

20

25

30

35

WO 97/15942 PCT/US96/16997

- 19 -

was modified, a rebuild process can repair the out of
date cluster member.

Accordingly, therefore, each cluster member 35, in
the illustrated embodiment of the invention, has one
cluster volume HomeBlock 37 for each cluster volume.
Referring to Figures 6 and 6A, the various offsets and
byte identifications are detailed for the preferred
embodiment of the invention. The cluster volumes are
organized using the RAID-5 protocol across the processor
systems which are the members of the cluster. (Note that
a cluster volume need not extend across all processors 12
of the system 10, but must extend across at least three
processors, or two if mirroring is permitted.) The
controllers organize the data and the writing controller
writes blocks of data in a round robin fashion, as
described above, across the cluster members participating
in the cluster volume.

As noted above, in the preferred embodiment, data
objects are employed. Each data object in this system is
stored as a set of named fragment files. Each fragment
file contains a header block that allows the named
fragment file to be self describing. Data objects are
fragmented when they are written to the cluster. Figures
6B and 6C illustrate the relationship of a data object to
its named fragment files. As illustrated, a fragment
file written on any individual cluster member includes
the named fragment header and the plurality of blocks
comprising the fragment file. 1In the example, the data
object is fragmented into three files.

The amount of data in a block is called the volume
stripe size. In the illustrated embodiment of the
invention the default stripe size is 64 kilobytes. 1In
addition to striping, the RAID-5 protocol uses a
ParityBlock to recover from a single fault. The
ParityBlock is written for every n minus 1 blocks where n

10

15

20

25

30

35

WO 97/15942 PCT/US96/16997

- 20 -

is the number of cluster processor system members. This
technique, as noted above, thus allows for the
reconstruction of the cluster volume data when any one
cluster member fails. In the preferred embodiment of the
invention, parity blocks are created by EXCLUSIVE-OR’ing
the n-1 DataBlocks forming a stripe level. For the
preferred embodiment of the invention, wherein data is
stored as data objects, Figure 6D describes the named
fragment file header format. As noted above, the header
block describes the content of the fragment. Figure 6E
describes, in table form, the particular components of
the header for one particular embodiment of the
invention.

Figure 6F illustrates reading the DataBlocks of a
single video object spread across the members of a
cluster. To play this video object, a cluster member
opens each named fragment file and reads the first block
from cluster member 0, for example, the second block from
cluster member 1, and the third block, assuming no parity
block, from cluster member 2. At this point the read
process would cycle back to cluster member 0. The
complexity of this process is hidden, as noted above,
from the consumer by the RAID port driver. Since, in the
above description, the parity blocks which are stored
with the named fragment files were ignored, in fact when
the video data object is read the parity blocks are
skipped and only the actual data is read. The
organization of the parity blocks thus introduces an
additional complexity which must be attended to. The
parity DataBlocks are also written, as noted above, in a
round robin fashion to avoid a single set of disk heads
from being left idle during the read process.

Accordingly, therefore, referring to Figure 7,
there is illustrated the organization wherein parity

blocks are stored in each named fragment file on each

10

15

20

25

30

35

WO 97/15942 PCT/US96/16997

- 21 -

cluster member. During a failure, the blocks associated
with a missing block are read to reconstruct the missing
block. For example, if cluster member 2 were
unavailable, and block 7 was requested, parity block 6|7
and block 6 would be read and EXCLUSIVE OR‘d to generate
the missing block. While it would certainly be possible
to determine the location of a DataBlock using tables, in
a preferred embodiment of the invention a algorithmic
process is preferred and operates more guickly. In this
illustrated embodiment, integer arithmetic is employed to
locate data and parity blocks stored in named fragment
files.

Referring to Figure 8, there is illustrated a list
of the variables used in a computer software program used
to determine the location of a block. A flow chart of
the program will now be described in connection with
Figure 9A. Initially, at 300, the number of parity
blocks is first determined by dividing the block number
to be located, by the cluster size minus 1. This, in
essence, provides the number of parity blocks up to and
but not including the row in which the block to be found
resides. The division is integer division and the
remainder is discarded. Thus, PBC provides the number of
parity blocks up to and including the last complete row
of blocks. Next, the so-called adjusted block number is
set equal to the total number of blocks which have been
stored, including the parity blocks within complete rows,
up to the block to be found. This is indicated at 302.

The optional parity block count is determined
next. To determine whether the parity block, in the row
of the block to be found, is located before or after the
block to be located, a gquantity ABN;, equal to the total
number of blocks modulo the number of cluster members
squared, is generated at 364. The optional parity count
is set to "zero" at 306, and, if ABN, divided by the

10

15

20

25

30

35

WO 97/15942 PCT/US96/16997

- 22 -

number of clusters is less than or equal to ABN; modulo
the number of clusters at 308, the optional parity count
is set to "one" at 310. A '"zero" optional parity count
indicates that the block is before the parity block in
the row while a "one" optional parity count indicates
that the block is after the parity block of the row.
This assumes that the parity is configured as described
in Figure 6C.

The final block number is then the adjusted block
number plus the value of OPC. This is indicated at 320.
Then, the cluster member can be calculated by taking the
final block number modulo the number of clusters. This
is indicated at 330. The local block number within that
cluster is then the final block number divided by the
number of clusters. This is indicated at 340. (Recall
that the first block number is zero.)

If a failure has occurred, the parity block number
for the binary block number must be determined. This is
performed as illustrated below, referring to the flow
chart of Figure 9B. First, a parity block number is
determined by multiplying the number of clusters by the
integer portion of a division, the numerator of which is
the final block number and the denominator of which is
the number of clusters. This is indicated at 400. Next,
the parity block offset within the repeating pattern is
determined and added to the parity block number (PBN)
previously determined. This is accomplished by taking
the final block number modulo the number of cluster
members squared and dividing that number by the number of
clusters. That value is then added to the parity block
number to obtain the final value of the parity block
number. This is indicated at 420.

It may also be necessary to locate the DataBlocks
associated with a parity block. Referring to Fig. 9C,
this is determined by finding the row in which the parity

10

15

20

25

30

35

WO 97/15942 PCT/US96/16997

block number (PBN) is to be found. The row is determined
by taking the integer value of the division of the parity
block number and the number of clusters and multiplying
that value times the number of clusters. This is
indicated at 430. The parity block location is equal to
the parity block number modulo the number of cluster
members squared, that quantity divided by the number of
cluster members. This is indicated at 440. The
following subroutine (written in C) is then employed to
determine the blocks associated with the parity blocks:

for (i = 0; i < CS; i++)
if (PBN.,, + i ! = PBN)
FBN = PBN__, + i

W

If a cluster processor system member fails, the
reading controller for the data object implements the
preceding steps to recover a missing DataBlock. The
output of this operation yields the missing (failed)
DataBlock.

When cluster volumes are employed, as noted above,
the cluster volume master controls access to each block
of the cluster volume. The computer system 10 provides a
protocol to determine the cluster volume master for each
volume. Each cluster volume, in the illustrated and
preferred embodiment, is controlled by a different
processor system member (to the extent possible) to
distribute the write load across all of the cluster
members. When a cluster volume master detects that a
cluster processor system member has failed, it instructs
the remaining cluster members to advance the cluster
volume incarnation (in the HomeBlock) and to clear the
cluster volume "dirty bit" in the cluster volume state.
The next write operation to the cluster volume will cause
the dirty bit to be set, indicating that the failed
cluster member must execute a rebuilding process before
it can rejoin the cluster volume. If the implemented
cluster protocol prevents a write to the cluster volume

10

15

20

25

30

35

WO 97/15942 PCT/US96/16997

- 24 -

while a cluster member is in a failed state, the failed
member may not need to rebuild.

The cluster volume does not have to be write
locked during the rebuilding operation. Write operations
to already rebuilt DataBlocks simply update the
DataBlock. Write operations to DataBlocks not yet
rebuilt can simply be ignored and they will be
reconstructed at a later time. Special care however is
required when handling a write operation for the current
DataBlock being reconstructed. In this case,
reconstruction should be completed and the write
operation should be executed after, and only after, the
reconstructed data is written.

On the other hand, when the system operates upon
data objects, the system can continue to operate,
modifying data objects as necessary. When the failed
member has been restored, it executes a rebuilding
process only for the data objects which have been
changed. The remaining objects are not affected. 1In
this way, even during a failure, writing can continue to
be implemented and the failure becomes transparent to the
user or consumer. Importantly, also, since the
rebuilding occurs object by object, it can be done at a
more leisurely pace since not all of a cluster volume
will be adversely affected by writing any of file within
the volume.

Once a cluster processor system member has failed,
the failure of any other cluster processor system member
will cause the cluster volume to become unreadable in
this illustrated embodiment. Only after the failed
cluster member has been reconstructed, therefore, can
another failure be handled for this embodiment of the
invention. However, as noted above, in other embodiments
of the invention, two or even more failures could be

handled, however, more complex, and hence more lengthy

10

15

20

25

30

35

WO 97/15942 PCT/US96/16997

- 25 -

reconstruction and encryption processes would need to be
employed.

When expansion of a cluster is required, for
example when cluster volumes become full or when the
capacity of the cluster needs to be increased, the method
and apparatus of the invention provide a process for
increasing the storage capacity "on line". For example,
to add storage to a cluster, disk drives are added to
each cluster member (that is, each processor system 12)
and a new cluster volume or new data objects can be
created. This is a simple operation and the existing
cluster volumes or data objects remain fault tolerant
during the upgrade. Cluster members may have to be
rebooted however in order to "see" (that is, recognize)
the new disk drives.

However, the method and apparatus of the invention
can further provide for the addition of a new cluster
processor system (and its associated storage) during
operation. This is a much more complex operation and can
proceed as follows.

The new cluster processor system member is
inserted into the cluster by networking the new cluster
member to each of the original cluster processor system
members 12 as illustrated in Fig. 1. Each cluster volume
is then "write locked" so that writing to any portion of
the volume is not allowed. Each cluster volume is
reformatted by initiating a change in the current cluster
volume format to a new format. This operation is in
essence a translation from an n member cluster volume to
an n+l1 member cluster volume. Each DataBlock is read and
rewritten, new ParityBlocks are generated, and the
progress is check-pointed in case a system failure occurs
during the reformatting operation. The size of any one
cluster volume is not increased by this operation;

rather, each local cluster volume size is decreased and

10

15

20

25

30

WO 97/15942 PCT/US96/16997

the residual disk space from the operation can be
configured into yet additional cluster volume(s).
Finally, as cluster volume reformatting is completed, the
"write lock" is removed from the cluster volume.
Referring to Fig. 10 in a typical system, the various
sizes of the cluster volume within each of the cluster
processor system members is illustrated both before and
after reformatting.

When a new cluster member is added to a system
wherein the format of the stored data is in data objects,
the existing data objects need to be refragmented from n
named fragment files to n+l1 named fragment files. This
operation can occur as a background activity allowing
access to the original data object until the new named
fragment files have been created. Once the new fragment
files exist the old fragment files can be deleted. This
process takes place, therefore, at "leisure" and at no
time is the named fragment unavailable for use.

Referring now to Figs. 11-13, there is illustrated
a switching system useful in conjunction with the
structure of Fig. 1, and in which a fault tolerant
operation provides resiliency and robustness, as well as
relatively low cost for the described system.

In a most general sense, in a video insertion
system, to which the invention is particularly
applicable, it is desirable to have a 2n x n cross-bar
system wherein any one of 2n inputs can be placed on any
of n outputs. Such a cross-bar system 100, referring to
Fig. 11, might have, for example, n (interruptible)
network feeds 102 and n advertising or other interrupting
feeds 104 which are to be used to selectively replace the
network feeds. Each of the n output selections 106
represents one of the network feeds which is switchably
replaced, from time to time by one of the interrupting

10

15

20

25

30

35

WO 97/15942 PCT/US96/16997

- 27 -

feeds 104. The n outputs connect to output channels for
transmission over, for example, a cable network.

A simpler approach, though less flexible and hence
to some extent less desirable, is illustrated in Fig. 12
wherein the 2n x n switch 108 is replaced by n two by one
switches 110. 1In this configuration, a network input 112
is provided to each 2 x 1 switch 110 and an interrupting
or other input 114 is also provided to each 2 x 1 switch
110. This system works well provided that none of the
interrupting feeds is lost. (The interrupting feeds over
lines 114 are typically generated by a processor system
12 and it is implicitly assumed that the network feeds
are reliable and always present.) If an interrupting
feed is lost, by failure of a processor system 12, then
the output over lines 116 will be incorrect since there
is no provision for an alternate source of the
interrupting feed. In summary then, in a typical system,
the network feeds over lines 112 are considered reliable
and available at all times. Thus, it is only the
interrupting feed over lines 114 which may fail. The
interrupting feeds are typically provided by, for
example, a processor system 12, and thus if the processor
system 12 fails, there is no flexibility or robustness in
the switches 110, as configured in Fig. 12, (or even the
crossbar switch provided in Fig. 11, since the failed
source cannot be replaced) to recover.

In accordance with the invention, however, a
nspare" switched system is provided which can be used to
replace a failed interrupting feed in the Figure 12
embodiment, in a robust and flexible manner. Thus,
referring to Fig. 13, the invention provides a method and
apparatus for compensating for a failed insertion feed
from a system processor by providing a complete spare
system. The spare system interconnects with the active
systems in a ring structure, to create a robust and

10

15

20

25

30

35

WO 97/15942 PCT/US96/16997

- 28 -

fault-tolerant signal, for example video, delivery
system. Figure 13 illustrates a limited video delivery
system in which there are two network feeds and two
interrupting feeds generated by local processor systems.
In other embodiments more network interruptible and
interrupting feeds can be used and the system can be
accordingly scaled. The network feeds over lines 130 and
132, designated NETO and NET1 are input to respective
video insertion and feed systems 134 and 136,
respectively. Each video system has a processor system
138, 140 (these can be the same as processor systems 12
described in connection with Fig. 1) and a switched
system 142, 144 which is able to place, in a controlled
manner, as described below, ones of its four inputs, on
its output lines.

The switched systems provide a network feed output
signal on lines 146, 148, designated as OUTO and OUT1,
respectively. 1In the illustrated embodiment, a spare
video insertion and feed system 150, which has a
processor system 152 and a switched system 154 mirroring
the interconnection of the processor system and switched
system of video systems 134 and 136, provides a fault
tolerance under the conditions described below.

The processor systems 138, 140, and 152 are
interconnected by point-to-point communications and
operate in a manner, with respect to each other, which is
identical to that described for the larger computer
system illustrated in connection with Fig. 1. Thus, any
processor system 138, 140, 152 has access to the video
stored by the other processor systems, and the video is
stored at the processor level preferably according to a
RAID-5 protocol. 1In the illustrated embodiment, the
video objects are stored in a processor’s local disk
array also in accordance with a RAID-5 protocol. Each
processor system receives an output feed (typically a

10

15

20

25

30

35

WO 97/15942 PCT/US96/16997

- 29 -

network feed) from its associated switched system over
lines 160, 162, and 164 and provides n interrupting
output in response to the input feed, for example an
advertisement, to its associated switched system over
lines 166, 168, and 170. The signals carried over lines
160, 162, 164, 166, 168 and 170 are video signals as will
be described in more detail below.

The video systems 134, 136 and 150 are
interconnected in a ring structure through their switched
systems. Thus, each switched system provides an output,
labelled 172, 174, 176, which becomes an input to a
neighboring video system in the ring configuration; and
the network input line of video systems 134 and 136 is
connected as another input to that other neighboring
switched system on the ring which, as described above,
received an input signal from its other neighboring
system. Thus, the NET1 input is provided to both
switched system 144 and switched system 142 while the
NETO input is provided to switched system 142 and
switched system 154. Outputs 173, 174, 176 are connected
respectively as inputs to systems 144, 154, and 142.
Each processor system also provides, either from the
processor itself or through an on-board controller 12a,
typically controlled by the processor CPU, two switch
control signals as described in more detail below.

Referring now to Fig. 14, there is illustrated a
preferred embodiment of the video system which allows,
referring to the orientation of Fig. 13, the video
systems to switch in a downward round robin direction
(meaning that spare video system 150 can replace the
operation of video system 134 should video system 134 or
video system 136 fail). Thus, as noted above, should
video system 134 fail due to a processor failure (it is
assumed that the switched system will not fail), the

spare video system 150 replaces it and provides the

10

15

20

25

30

35

WO 97/15942 PCT/US96/16997

- 30 -

correct interrupting feed to the switched system 142.
Should the video system 136 fail due to a processor
system failure, in a chain reaction, video system 134
will act to provide the correct interrupting feed to
switched system 144 and video system 150 will thereafter
operate to provide the correct interrupting feed to the
switched system 142 of video system 134. This "downward"
movement can be extended to a larger operating system
having, for example, nine network feeds in which case
there would be the nine network video systems like
circuitry 134 plus a spare video system corresponding to
system 150. In other embodiments, the ring can be
reconfigured to move upward or as will be hereinafter
described, the switched systems can be structured so that
the motion of the ring can be directed in either the
upward or downward direction as viewed in Fig. 13. 1In
this latter configuration, the interconnecting structure
is more complex as will be described hereinafter.

Referring now to Fig. 14, in the illustrated
embodiment, each switched system of Fig. 13 has two
multi-input single output controlled switch elements 190,
192. In Fig. 14, the reference numbers correspond to the
reference numbers of Fig. 13 and, in particular, the
illustrated video system 134.

In normal operation, the network feed over line
130 is directed to the default or number 1 position of
each of switches 190 and 192. Thus, the signal on line
130 is fed through switch 192 and is output over line
146. Simultaneously that signal is also fed through
switch 190 and is output over line 160 to the processor
system 138. The processor system, analyzes the input
signal and provides, over line 166, at the correct time,
an insert which interrupts the signal over line 130 and
replaces it. This is effected by switch element 192
which changes the signal over line 146 from that

10

15

20

25

30

35

WO 97/15942 PCT/US96/16997

- 3] -

connected at its number 1 position to that connected at
its number 3 position. (The controller (and control
lines) for switching the outputs of switches 190 and 192
have been omitted for clarity of presentation. However,
each processor has two (or three) control lines for
controlling the switching functions of its associated
switch and at least one neighboring switch, depending
upon whether the ring will fail up, fail down, or
optionally fail in either direction. The processors are
further, preferably, interconnected through a further
communications line, such as an Ethernet bus, so that
each processor is aware of the status, and actions, taken
by each other processor. This allows an orderly
compensation for a failed processor as described herein.)
When the insert (interrupting) video over line 166 ends,
the switch element 192 returns to its "default" number 1
position. Thus, in normal operation, switch 192, under
the control of a controller, switches back and forth as
processor system 138 generates the correct interrupting
video in accordance with the processor interconnections
illustrated in Fig. 13 (as an example of a simpler
version of the more complex system illustrated in Fig.
1).

If the processor 140, referring now to Fig. 13, of
video system 136 were to fail, the first step of the
fault-tolerant system would provide that the video system
of 134 would be modified so that it generates the
necessary insert video signals for switched system 144
and provides those insert signals to switched system 144
over line 172. Accordingly, in this failure mode of
operation, referring now also to Fig. 14, the network
feed for video system 136, that is NET1 over line 132,
connects to video system 134, is switched by switch
element 190 of video system 134 and is placed on the
output of switch element 190, that is on line 160. The

10

15

20

25

30

35

WO 97/15942 PCT/US96/16997

- 32 -

processor system 138 in response to this new video
generates an insert video over line 166 which is also
available over line 172. That insert video signal is
thus provided to the switched system 144 and its switch,
which corresponds to switch 192 of switched system 142,
then connects the input on its corresponding line input 4
to line 146, and outputs it over line 146 as "OUT1".

In this replacement process, however, video system
134 has lost use of its processor system 138. It thus
turns to the spare video system 150 and its processor
system 152 which, in combination with switched system 154
provides the appropriate insert video over line 176
(along with the correct insert control signals). Switch
192, thus, at the correct time, switches to place the
insert video available over line 176 at its output, over
line 146, to become OUTO. After the insert ends, switch
192 returns to its default value to place NETO, its
network input, at switch position 1, as its output. 1In
this manner, the video systems 134, 136, and 150 "cover"
redundantly for each other so that a failure of one
processor system will not adversely affect operation of
the delivery systenmn.

This ringed redundancy operates not only because
the switched systems 142, 144, 154 are interconnected in
a ring structure, but also because the processor systems
themselves are interconnected and operate in a redundant
fashion in accordance with the embodiment of Fig. 1.
Thus, each processor system is capable of fully acquiring
the necessary insert video objects stored redundantly in
the collective system memory, for any of the network
feeds.

The embodiment illustrated in Figs. 13 and 14
fails in an "up direction". By simply modifying the
"neighboring connections" so that, for example, video

system 136 provides its network input not to video system

WO 97/15942 PCT/US96/16997

10

15

20

25

30

35

- 33 =

134 but to spare video system 150 and accordingly
provides its output over line 174 not to spare video
system 150 but to video system 134, the system would fail
in the reverse direction.

In a second particular embodiment of the video
distribution system, there is provided a more complex
video switched system which is capable of shifting "in
either direction" in response to a failed system. By
this is meant that the ring connection, depending upon
the proximity of the failure to the spare, will fail
either up or down to reduce the time delay for correcting
the failed situation. It will be seen, however,
referring to Figs. 13 and 14, that it is not necessary to
use this system, but that single direction failure system
will work substantially as well in most failure
situations.

Accordingly, referring to Figures 15 and 16, there
is illustrated a 3 element ringed system which can fail
in either direction. This system operates in a manner
corresponding to that of the video delivery system
illustrated in connection with Figures 13 and 14, and
accordingly, its detailed operation need not be
described. The ringed system has two video systems 200
and 202, each of which has a video processor 204, 206,
and a switched system 208, 210 respectively. 1In addition
there is a spare video system 212 having a video
processor 214 and a switched system 216. (The point to
point, two way, interconnecting channels between the
processors 204, 206, 214, and the processor controllers,
have not been shown for purposes of more clearly
illustrating the other connections in the figure.) 1In
operation, if a failure occurs, the failed system can be
replaced by a shift upward by one closest "lower"
neighbor or a shift downward by its other closest
neighbor. The direction of the shift will depend

10

15

20

25

30

35

WO 97/15942 PCT/US96/16997

primarily upon where the failure occurred in the ring.
Accordingly, the fewer shifts needed to achieve full
operation of the video distribution system will determine
the direction of shift along the ring.

Independent of the direction of the shift, and
referring to Figure 15, the processor system 214 of the
spare video processor 212 will, in this illustrated
embodiment, replace the processor system which has
failed. The switch elements of the switched systems for
the spare system and the failed system will reconfigure
the switches to provide the network input for the failed
system to the spare system, which will provide that
network input to its processor system. The video insert
output of the processor system will then be routed
through the spare switched system to the switch system
corresponding to the failed processor for delivery, at
the correct time, to its output. When more than two
input network feeds are used, a larger element ringed
system can be employed, and, as with the embodiment of
Figures 13, and 14, the video systems will chain with a
first nearest neighbor replacing the failed processor and
a next second nearest neighbor then acting to replace the
processor of the first nearest neighbor, etc., until the
spare video system is used.

Referring to Figure 16, a typical switched system
has four multi-input switches 180, 182, 184, and 186
connected as illustrated in Figure 16, in one particular
embodiment of the invention, in order to enable the
switching described hereinabove to take place. Referring
to Figure 17, there is provided a truth table indicating,
for each switch of Figure 16, its status depending upon
whether the switch is operating in a "normal" mode, in a
failed-up mode, or a failed-down mode. The number within
the matrix identifies, for a switch of Figure 16, which

input to direct to the output. (An "x" indicates a

WO 97/15942 PCT/US96/16997

- 35 =

"don’t care" condition.) For switch 4 (reference number
186) the selected input depends upon whether the switch
is expected to place the interruptible input ("NO
INSERT") or the interrupting input ("INSERT") at its
output port. As with the circuitry of Figures 13 and 14,
the processor controller and the control lines to each of
the switches 180, 182, 184, and 186 are not detailed in
order to be able to understand better the operation of
the systemn.

Additions, subtractions, and other modifications
of the preferred embodiments of the invention will be
apparent to those practiced in the art and are within the
scope of following claims.

What is claimed is:

10

15

20

25

30

WO 97/15942

- 36 -

1. A method for redundantly storing data in a
distributed computer system having at least three
processor systems, each processor system comprising at
least one central processing unit and at least one mass
storage sub-system, comprising the steps of:

interconnecting each one of said processor systems
in a point-to-point two way channel interconnection with
each other one of said processor systems; and

storing data input at any one of said processor
systems according to a distributed, redundant storage
process whereby data is stored at each of said processor
systems and some of a redundant representation of the

data is stored at each of said processors.

2. The method of claim 1 wherein said storing
step comprises the step of storing data across said

processor systems according to a RAID-5 process.

3. The method of claim 2 further comprising the
step of storing data at each processor system according
to a RAID-5 process.

4. The method of claim 1 further comprising the
step of

reading data from said computer system, in the
absence of a failure of any of said processor systems,
from each of said processor systems over respective ones
of said data channel interconnections, whereby said
reading step establishes a load balance across said

processor systems.

5. The method of claim 4 further comprising the
steps of
reading data from said computer system, in the

presence of a failure of one of said processor systems,

PCT/US96/16997

WO 97/15942 PCT/US96/16997

10

15

20

25

30

- 37 -

said reading step, in the presence of failure, comprising
the steps of

reading data from each non-failed processor
system storing said data, and

reading redundant data from said non-failed
processor systems in place of said data stored at said
failed processor system, and

recreating said data stored at said failed
processor system using said redundant data and data read

from said non-failed processor systems.

6. The method of claim 5 wherein said data input
storing step comprises the step of storing said input

data according to a RAID-5 process.

7. The method of claim 6 wherein each said
processor system stores data on its associated mass

storage sub-system according to a RAID-5 process.

8. The method of claim 5 further comprising the
step of

preventing, during the presence of the failure of
any of said processing systems, the writing of any data
in the mass storage sub-system of any of said processor

systems.

9. The method of claim 1 wherein said storing

step comprises the step of
designating one processor system to effect all

write functions for said computer system.

10. The method of claim 1 wherein said storing

step comprises the steps of
one processor system allocating files for each

data input, and

WO 97/15942 PCT/US96/16997

- 38 -~

enabling all processor systems to write input data

to its associated allocated files.

11. The method of claim 1 wherein said storing
step comprises the step of
5 arbitrating write operations among said processor
systems using a distributed lock manager.

12. The method of claim 1 wherein said data input
storing step comprises the step of
storing said input data as named fragment files in

10 each said processor system.

13. The method of claim 12 wherein said data
input storing step further comprises the step of
storing said input data according to a RAID-5

process.

15 14. The method of claim 13 further comprising the
steps of
adding a processor system to said distributed
computer system, and
reconstructing said named fragment files to extend
20 over all the processor systems while said distributed
computer system continues to actively deliver stored data

as an output stream.

15. The method of claim 14 further comprising the
step of
25 reconstructing a failed processor system by
reconstructing only data objects which were written while

the processor system was in a failed state.

16. A distributed computer system having at least

three processor systems for redundantly storing data,

WO 97/15942 PCT/US96/16997

10

15

20

25

30

- 39 -

each processor system comprising at least one central
processing unit and at least one mass storage sub-systen,
comprising

interconnecting channels providing a point-to-
point two way channel interconnection from each one of
said processor systems to each other one of said
processor systems; and

a data storage controller at each processor
system, said controller storing data input at any one of
said processor systems according to a distributed,
redundant storage process whereby data is stored at each
of said processor systems and some of a redundant

representation of the data is stored at each of said

processors.

17. The apparatus of claim 16 wherein said
storage controllers store data across said processor

systems according to a RAID-5 process.

18. The apparatus of claim 17 further wherein
each said storage controller stores data at each

processor system according to a RAID-5 process.

19. The apparatus of claim 16 further comprising

said controllers reading data from said computer
system, in the absence of a failure of any of said
processor systems, from each of said processor systems
over respective ones of said interconnecting channels,
whereby said controllers establish a load balance across

said processor systems.

20. The apparatus of claim 19 further comprising

said controllers reading data from said computer
system, in the presence of a failure of one of said
processor systems, said controllers reading data from

10

15

20

25

WO 97/15942 PCT/US96/16997

- 40 -

each non-failed processor system storing said data, and
reading redundant data from said non-failed processor
systems in place of said data stored at said failed
processor system, and

the requesting processor system recreating said
data stored at said failed processor system using said
read data and said redundant data.

21. The apparatus of claim 18 wherein said data
storage controllers store said input data among the

processors according to a RAID-5 process.

22. The apparatus of claim 21 wherein each said
processor system controller stores data on its associated

mass storage according to a RAID-5 process.

23. The apparatus of claim 20 further wherein
said storage controllers prevent, during the presence of
a failure of any of said processing systems, writing of
any data to the mass storage sub-system of any of said

processor systens.

24. The apparatus of claim 16 wherein
one processor system is designated to effect all

write functions for said computer system.

25. The apparatus of claim 16 wherein

one processor system allocates files for each data
input, and

each processor system is enabled to write input
data to its associated allocated files.

26. The apparatus of claim 16 wherein said
controllers arbitrate write operations among said
processor systems using a distributed lock.

10

15

20

25

30

WO 97/15942 PCT/US96/16997

- 41 -

27. The apparatus of claim 16 further wherein
said storage controllers store said input data as

named fragment files in said distributed computer system.

28. The apparatus of claim 27 wherein said
storage controllers store said data objects as named
fragment files across said processor systems according to

a RAID-5 process.

29. A redundant switch having n interruptible
inputs, n interrupting inputs and n outputs comprising

(n + 1) switched systems, each switched system
having at least two control inputs, a first input, a
second input, a third input, and a fourth input, and a
first output and a second output, each switched system
being connected at its second output to an interrupting
signal generator, an interrupting output of said
associated signal generator being connected to the second
input of said connected switched system,

said switched systems being interconnected in a
ring structure so that each switched system further has
an interruptible input signal connected to the first
input, the second input of a first neighbor switched
system connected to the third input, and the
interruptible input from the other neighbor switched
system on the ring connected to the fourth input,

each said switched system having switching
circuitry responsive to said control inputs for switching
any of its inputs to at least its first output, and for
connecting either of its first and fourth inputs to its
second output, and

a control system providing said control inputs of

sald switched system.

10

15

20

25

30

WO 97/15942 PCT/US96/16997

- 42 -

30. A redundant switch having n interruptible
inputs, n interrupting inputs and n outputs comprising

(n + 1) switched systems, each switched system
having at least two control inputs, four signal inputs,
and two signal outputs, each switched system being
connected at one of its outputs to an associated
interrupting signal generator, and an interrupting output
of said associated signal generator being connected to an
input of said connected switched systemn,

said switched systems being interconnected in a
ring structure so that each switched system is connected
to a first and a second neighbor switched system,

each said switched system having switching
circuitry responsive to said control inputs for
selectively switching its inputs to its outputs, and

a control system for providing said control inputs
to said switched systems to enable said switched systems
to effectively rotate signal switching functions one
position in either direction around the ring whereby a
failed signal generator can be bypassed and the signals
on said n first outputs continue uninterrupted.

31. The redundant switch of claim 30 wherein said
control system can effectively rotate switching signal
functions in either direction around the ring.

32. A distributed data delivery system comprising

at least three processor systems for redundantly
storing data, each processor system comprising at least
one central processing unit and at least one mass storage
sub-systemn,

interconnecting data channels providing a point-
to-point two way channel interconnection from each one of
said processor systems to each other one of said

processor systems,

10

15

20

25

30

WO 97/15942 PCT/US96/16997

- 43 -

a data storage controller at each processor
system, said controller storing data input at any one of
said processor systems according to a distributed,
redundant storage process whereby data is stored at each
of said processor systems and some of a redundant
representation of the data is stored at each of said
processors,

a switching circuit having n interruptible input
ports, at least n+l1 interrupting input ports, and at
least n+1 output ports, said n interruptible input ports
being connected to a respective primary processor systen,
each said primary processor system having an output
connected to a respective interrupting input port, and

each said processor system connected to two of
said switching circuits and able to selectively interrupt
one of the n interruptible input ports with the signal
information available from a respective one of said
processor systems, and

said processor systems, in the event of a failure
at one processor system, using a previously unused one of
said processor systems, and causing said switching
circuit to connect the interruptible input port of the
failed processor system to a different processor system,
and to replace the output of said failed processor system

with the output of said different processor system.

33. A distributed data delivery system comprising

at least three processor systems for redundantly
storing data, each processor system comprising at least
one central processing unit and at least one mass storage
sub-systen,

interconnecting data channels providing a point-
to-point two way channel interconnection from each one of
said processor systems to each other one of said

processor systems,

10

15

20

25

30

WO 97/15942 PCT/US96/16997

a data storage controller at each processor
system, said controller storing data input at any one of
said processor systems according to a distributed,
redundant storage process whereby data is stored at each
of said processor systems and some of a redundant
representation of the data is stored at each of said
processors,

(n + 1) switched systems, each switched system
having at least two control inputs, a first input, a
second input, a third input, and a fourth input, and a
first output and a second output, each switched system
being connected at its second output to a processor
system, an interrupting output of said associated
processor system being connected to the second input of
said connected switched systenm,

said switched systems being interconnected in a
ring structure so that each switched system further has
an interruptible input signal connected to the first
input, the second input of a first neighbor switched
system connected to the third input, and the
interruptible input from the other neighbor switched
system on the ring connected to the fourth input,

each said switched system having switching
circuitry responsive to switch control signals at said
control inputs for switching any of its inputs to at
least its first output, and for connecting either of its
first and fourth inputs to its second output, and

said processor systems for providing said switch

control input signals to said switched systems.

34. A distributed data delivery system comprising

at least three processor systems for redundantly
storing data, each processor system comprising at least
one central processing unit and at least one mass storage

sub-systen,

10

15

20

25

30

WO 97/15942 PCT/US96/16997

- 45 -

interconnecting data channels providing a point-
to-point two way channel interconnection from each one of
said processor systems to each other one of said
processor systems,

a data storage controller at each processor
system, said controller storing data input at any one of
said processor systems according to a distributed,
redundant storage process whereby data is stored at each
of said processor systems and some of a redundant
representation of the data is stored at each of said
processors,

(n + 1) switched systems, each switched system
having at least two control inputs, four signal inputs,
and two signal outputs, each switched system being
connected at one of its outputs to an associated
processor system, and an interrupting output of said
associated processor system being connected to an input
of said connected switched systemn,

said switched systems being interconnected in a
ring structure so that each switched system is connected
to a first and a second neighbor switched system,

each said switched system having switching
circuitry responsive to switch control signals at said
control inputs for selectively switching its inputs to
its outputs, and

said processors providing said switch control
input signals to said switched systems to enable said
switched systems to effectively rotate signal switching
functions one position around the ring whereby a failed
signal processor system can be bypassed and the signals

on said n first outputs continue unimpaired.

35. The distributed data delivery system of claim

24 further wherein said processors effectively rotate

10

15

20

25

30

WO 97/15942 PCT/US96/16997

- 46 -

signal switching functions in either direction around the
ring.

36. A method for redundantly storing data in a
distributed computer system having at least two processor
systems, each processor system comprising at least one
central processing unit and at least one mass storage
sub-system, comprising the steps of:

interconnecting each one of said processor systems
in a point-to-point two way channel internconnection with
each other one of said processor systens;

storing data input at any one of said processor
systems according to a distributed, redundant storage
process whereby data is stored at each of said processor
systems and some of a redundant representation of the
data is stored at each of said processors; and

reading data from said computer system, in the
absence of a failure of any of said processor systems,
from each of said processor systems over repsective ones
of said data channel interconnections, whereby said
reading step establishes a load balance across said

processor systems .

37. The method of claim 36 further comprising the
step of storing data at each processor system according

to a RAID-5 process.

38. A distributed computer system having at least
two processor systems for redundantly storing data, each
processor system comprising at least one central
processing unit and at least one mass storage sub-system,
comprising

interconnecting channels providing a point-to-
point two way channel interconnection from each one of

10

15

20

25

30

WO 97/15942 PCT/US96/16997

- 47 -

said processor systems to each other one of said
processor systems;

a data storage controller at each processor
system, said controller storing data input at any one of
said processor systems according to a distributed,
redundant storage process whereby data is stored at each
of said processor systems and some of a redundant
representation of the data is stored at each of said
processors; and

said controllers reading data from said computer
system, in the absence of a failure of any of said
processor systems, from each of said processor systems
over respective ones of said interconnecting channels,
whereby said controllers establish a load balance across

said processor systems.

39. The apparatus of claim 38 further wherein
each said storage controller stores data at each

processor system according to a RAID-5 process.

40. A method for redundantly storing data in a
distributed computer system having at least three
processor systems, each processor system comprising at
least one central processing unit and at least one mass
storage sub-system, comprising the steps of:

interconnecting each one of said processor systems
through a network for data communications with each other
one of said processor systems; and

storing data input at any one of said processor
systems according to a distributed, redundant storage
process whereby data is stored at each of said processor
systems and some of a redundant representation of the

data is stored at each of said processors.

10

15

20

25

30

WO 97/15942 PCT/US96/16997

41. The method of claim 40 wherein said storing
step comprises the step of storing data across said

processor systems according to a RAID-5 process.

42. The method of claim 41 further comprising the
step of storing data at each processor system according
to a RAID-5 process.

43. The method of claim 40 further comprising the
step of

reading data from said computer system, in the
absence of a failure of any of said processor systems,
from each of said processor systems over said data
communications network whereby said reading step

establishes a load balance across said processor systems.

44. The method of claim 43 further comprising the
steps of
reading data from said computer system, in the
presence of a failure of one of said processor systems,
said reading step, in the presence of failure, comprising
the steps of
reading data from each non-failed processor
system storing said data, and
reading redundant data from said non-failed
processor systems in place of said data stored at said
failed processor system, and
recreating said data stored at said failed
processor system using said redundant data and data read
from said non-failed processor systems.

45. The method of claim 44 wherein said data
input storing step comprises the step of storing said
input data according to a RAID-5 process.

10

15

20

25

WO 97/15942 PCT/US96/16997

- 49 -

46. The method of claim 45 wherein each said
processor system stores data on its associated mass
storage sub-system according to a RAID-5 process.

47. The method of claim 44 further comprising the
step of

preventing, during the presence of the failure of
any of said processing systems, the writing of any data
in the mass storage sub-system of any of said processor

systems.

48. The method of claim 40 wherein said storing
step comprises the step of
designating one processor system to effect all

write functions for said computer system.

49. The method of claim 40 wherein said storing
step comprises the steps of

one processor system allocating files for each
data input, and

enabling all processor systems to write input data

to its associated allocated files.

50. The method of claim 40 wherein said storing
step comprises the step of
arbitrating write operations among said processor

systems using a distributed lock manager.

51. The method of claim 40 wherein said data
input storing step comprises the step of
storing said input data as named fragment files in

each said processor system.

52. The method of claim 51 wherein said data
input storing step further comprises the step of

10

15

20

25

30

WO 97/15942 PCT/US96/16997

- 50 -

storing said input data according to a RAID-5

process.

53. The method of claim 52 further comprising the
steps of

adding a processor system to said distributed
computer system, and

reconstructing said named fragment files to extend
over all the processor systems while said distributed
computer system continues to actively deliver stored data

as an output stream.

54. The method of claim 53 further comprising the
step of

reconstructing a failed processor system by
reconstructing only data objects which were written while

the processor system was in a failed state.

55. A distributed computer system having at least
three processor systems for redundantly storing data,
each processor system comprising at least one central
processing unit and at least one mass storage sub-system,
comprising

an interconnecting data communications network
providing communications from each one of said processor
systems to each other one of said processor systems; and

a data storage controller at each processor
system, said controller storing data input at any one of
said processor systems according to a distributed,
redundant storage process whereby data is stored at each
of said processor systems and some of a redundant
representation of the data is stored at each of said

processors.

10

15

20

25

30

WO 97/15942

PCT/US96/16997

51
56. The apparatus of claim 55 wherein said

storage controllers store data across said processor

systems according to a RAID-5 process.

57. The apparatus of claim 56 further wherein
each said storage controller stores data at each

processor system according to a RAID-5 process.

58. The apparatus of claim 55 further comprising

said controllers reading data from said computer
system, in the absence of a failure of any of said
processor systems, from each of said processor systems
over said interconnecting data communications network,
whereby said controllers establish a load balance across

said processor systems.

59. The apparatus of claim 58 further comprising

said controllers reading data from said computer
system, in the presence of a failure of one of said
processor systems, said controllers reading data from
each non-failed processor system storing said data, and
reading redundant data from said non-failed processor
systems in place of said data stored at said failed
processor system, and

the requesting processor system recreating said
data stored at said failed processor system using said

read data and said redundant data.

60. The apparatus of claim 57 wherein said data
storage controllers store said input data among the

processors according to a RAID-5 process.

61. The apparatus of claim 60 wherein each said
processor system controller stores data on its associated

mass storage according to a RAID-5 process.

10

15

20

25

WO 97/15942 PCT/US96/16997

52

62. The apparatus of claim 59 further wherein
said storage controllers prevent, during the presence of
a failure of any of said processing systems, writing of
any data to the mass storage sub-system of any of said

processor systems.

63. The apparatus of claim 55 wherein
one processor system is designated to effect all write

functions for said computer system.

64. The apparatus of claim 55 wherein

one processor system allocates files for each data
input, and

each processor system is enabled to write input
data to its associated allocated files.

65. The apparatus of claim 55 wherein said
controllers arbitrate write operations among said

processor systems using a distributed lock.

66. The apparatus of claim 55 further wherein
said storage controllers store said input data as
named fragment files in said distributed computer system.

67. The apparatus of claim 66 wherein said
storage controllers store said data objects as named
fragment files across said processor systems according to
a RAID-5 process.

68. A distributed data delivery system comprising

at least three processor systems for redundantly
storing data, each processor system comprising at least
one central processing unit and at least one mass storage
sub-system,

10

15

20

25

30

WO 97/15942 PCT/US96/16997

- 53 -

an interconnecting data communications network
providing interconnection from each one of said processor
systems to each other one of said processor systems,

a data storage controller at each processor
system, said controller storing data input at any one of
said processor systems according to a distributed,
redundant storage process whereby data is stored at each
of said processor systems and some of a redundant
representation of the data is stored at each of said
processors,

a switching circuit having n interruptible input
ports, at least n+l1 interrupting input ports, and at
least n+1 output ports, said n interruptible input ports
being connected to a respective primary processor system,
each said primary processor system having an output
connected to a respective interrupting input port, and

each said processor system connected to two of
said switching circuits and able to selectively interrupt
one of the n interruptible input ports with the signal
information available from a respective one of said
processor systems, and

said processor systems, in the event of a failure
at one processor system, using a previously unused one of
said processor systems, and causing said switching
circuit to connect the interruptible input port of the
failed processor system to a different processor system,
and to replace the output of said failed processor system
with the output of said different processor system.

69. A distributed data delivery system comprising

at least three processor systems for redundantly
storing data, each processor system comprising at least
one central processing unit and at least one mass storage

sub-systen,

WO 97/15942 PCT/US96/16997

an interconnecting data communications network
providing interconnection from each one of said processor
systems to each other one of said processor systems,

a data storage controller at each processor
system, said controller storing data input at any one of
said processor systems according to a distributed,
redundant storage process whereby data is stored at each
of said processor systems and some of a redundant
representation of the data is stored at each of said
processors,

(n + 1) switched systems, each switched system
having at least two control inputs, a first input, a
second input, a third input, and a fourth input, and a
first output and a second output, each switched system
being connected at its second output to a processor
system, an interrupting output of said associated
processor system being connected to the second input of
said connected switched system,

said switched systems being interconnected in a
ring structure so that each switched system further has
an interruptible input signal connected to the first
input, the second input of a first neighbor switched
system connected to the third input, and the
interruptible input from the other neighbor switched
system on the ring connected to the fourth input,

each said switched system having switching
circuitry responsive to switch control signals at said
control inputs for switching any of its inputs to at
least its first output, and for connecting either of its
first and fourth inputs to its second output, and

said processor systems for providing said switch

control input signals to said switched systems.

70. A distributed data delivery system comprising

at least three processor systems for redundantly

10

15

20

25

30

WO 97/15942

- 55 -

storing data, each processor system comprising at least
one central processing unit and at least one mass storage
sub-systen,

an interconnecting data communications network
providing interconnection from each one of said processor
systems to each other one of said processor systems,

a data storage controller at each processor
system, said controller storing data input at any one of
said processor systems according to a distributed,
redundant storage process whereby data is stored at each
of said processor systems and some of a redundant
representation of the data is stored at each of said
processors,

(n + 1) switched systems, each switched system
having at least two control inputs, four signal inputs,
and two signal outputs, each switched system being
connected at one of its outputs to an associated
processor system, and an interrupting output of said
associated processor system being connected to an input
of said connected switched system,

said switched systems being interconnected in a
ring structure so that each switched system is connected
to a first and a second neighbor switched system,

each said switched system having switching
circuitry responsive to switch control signals at said
control inputs for selectively switching its inputs to
its outputs, and

said processors providing said switch control
input signals to said switched systems to enable said
switched systems to effectively rotate signal switching
functions one position around the ring whereby a failed
signal processor system can be bypassed and the signals

on said n first outputs continue unimpaired.

PCT/US96/16997

10

15

20

25

30

WO 97/15942 PCT/US96/16997

71. The distributed data delivery system of claim
70 further wherein said processors effectively rotate
signal switching functions in either direction around the

ring.

72. A method for redundantly storing data in a
distributed computer system having at least two processor
systems, each processor system comprising at least one
central processing unit and at least one mass storage
sub-system, comprising the steps of:

interconnecting each one of said processor systems
through a data communications network for communicating
with each other one of said processor systems;
storing data input at any one of said processor systems
according to a distributed, redundant storage process
whereby data is stored at each of said processor systems
and some of a redundant representation of the data is
stored at each of said processors; and

reading data from said computer system, in the
absence of a failure of any of said processor systems,
from each of said processor systems over said data
communications channel whereby said reading step

establishes a load balance across said processor systems.

73. The method of claim 72 further comprising the
step of storing data at each processor system according
to a RAID-5 process.

74. A distributed computer system having at least
two processor systems for redundantly storing data, each
processor system comprising at least one central
processing unit and at least one mass storage sub-systenmn,
comprising

an interconnecting data channel communications

network providing communications from each one of said

5

10

15

WO 97/15942 PCT/US96/16997

- 57 -

processor systems to each other one of said processor
systens;

a data storage controller at each processor
system, said controller storing data input at any one of
said processor systems according to a distributed,
redundant storage process whereby data is stored at each
of said processor systems and some of a redundant
representation of the data is stored at each of said
processors; and

said controllers reading data from said computer
system, in the absence of a failure of any of said
processor systems, from each of said processor systems
over said data communications channel, whereby said
controllers establish a load balance across said

processor systems.

75. The apparatus of claim 74 further wherein
each said storage controller stores data at each

processor system according to a RAID-5 process.

PCT/US96/16997

WO 97/15942

1/23

jte
3

WO 97/15942

2/23

PCT/US96/16997

- Fic. 2 _

WO 97/15942

PCT/US96/16997

3/23
PROCT T PRET T Pra PRec—— - Proe ==
e 2 4 /ze i2d /ze _
Block Bloctk 3| Block ¢

) Llock 2

lﬂar/'f)/ (""’) _[

Fnr[ly (5-' -?)

Block 5= | Block ¢

Block $ /

6/oc/< 9.

Pan'ry (9-/9

B/o c,é_ /?

Bloc k 13

)

—_——_—— —

)f’ /_g_, 3

WO 97/15942 PCT/US96/16997

4/23

v S — -3¢
. . Vstrm RAID Port Driver-: ;. . . s]

Vst Class Drivcr.-i::s»-;{a}_‘#}.: R N N W R

" Locai File Providess . 4 56
SaFde | FAT | NiEs [<5 3
—DAC960 SCSI Driver .~ +— 6 €
. Mylex RAID Controller -—Jv— (2

P O X

gq \-‘L- Remote File Providers
62 —l\ ScaNet Transport .
é:.t —_— .. Fast Ethernet Adapter-

l

WO 97/15942

Video Cluster

PCT/US96/16997

5
Home Block
Chuster Vol | L
: —>7
Chuster Votumse |
Dats

Horne Biock 4
Chuster Vol |

Cluster Vohurme: |
Duta

}bmoalock{_}';)
Cluster Vol |

Chuster Volume |
- Data

Cluster Volume

PCT/US96/16997

WO 97/15942
6/23
Offset Bvte 3 Byte 2 Byte | Byte 0

0 Logical Id Member Count Minor Version Major Version
4 Cluster Volume Id

8 Cluster Volume Incarnation

12 Cluster Volume Creation Time (Low)
16 Cluster Volume Creation Time (High)
20 Cluster Volume State

24 Cluster Volume Name

28 Cluster Volume Name

32 Cluster Volume Name

36 Cluster Volume Name

40 Cluster Volume Name

44 Cluster Volume Name

48 Cluster Volume Name

52 Cluster Volume Name

56 MBZ

60 MBZ

64 MBZ

68 MBZ

72 MBZ

76 MBZ

80 Cluster Home Block Checksum

fig.‘

PCT/US96/16997

WO 97/15942
7/23
Field Name Length | Defauit | Description
Value

Major Version Number 1 Byte 1 The major version defines the format of the
cluster volume.

Minor Version Number 1 Byte 0 The minor version of the cluster volume
format.

Member Count 1 Byte NA | Defines the number of cluster members
participating in this cluster volume.

Logical 1d 1 Byte NA | Defines the unit id of the local cluster volume
within the cluster volume.

Cluster Volume Id 4 Bytes NA | This is the identifier for the cluster volume. It
is assigned when the volume is created and is
never modified.

Cluster Volume Incarnation | 4 Bytes NA | This incarnation is used to detect cluster
members with stale cluster volume data.

Cluster Volume Creation 8 Bytes NA | The time and date the cluster volume was

Time created.

Cluster Volume State 4 Bvtes NA | The current state of the cluster volume. TBS.

Cluster Volume Name 32 Bvtes NA | The name of the cluster volume.

MBZ 24 Bvtes NA Reserved. Must be zero.

Cluster Home Block 4 Bytes NA | Checksum of the Cluster Volume Home

Checksum Block.

Fic. ‘A

WO 97/15942 PCT/US96/16997
8/23

Data Object

Biock 0 .
64KB NARGED Fragmens [ileS

Block |
64KB

Block 2

Block 3
64KB

Block 4
64KB

\

Block $

64KB F,‘s ‘C

PCT/US96/16997

WO 97/15942
9/23
Offset Byte 3 Byte 2 Byte | Byte O
0 RAID Level Fragment Count Minor Version Maior Version
4 Data Obiect Stripe Size
8 Data Obiect Incarnation
12 nvAMED FRAGmeNT Fil€ Creauon Time (Low)
16 NAmew FRAGmenT FKE (Creation Time (High)
20 Data Obiect Name
24 Data Object_Name
28 Data Obiect Name
32 Data Obiect Name
36 Data Obiect Name
40 Data Obiect Name
44 Data Obiect Name
48 Data Obiect Name
504 MBZ
508 Header Block Checksum

PCT/US96/16997

WO 97/15942
10/23

Field Name - " ... | Length Defmlt Description . wdo

Major Version Number 1 Byte 1 The major version defines the format of the
cluster volume.

Minor Version Number 1 Byte 0 The minor version of the cluster volume
format.

Fragment Count 1 Byte NA | Defines the total number of fragments
composing the data obiect.

RAID Level 1 Bvte 5 RAID 0 (0) or RAID 5 (5)

Data Object Stripe Size 4 Bytes 64KB | Stores the stripe size of the data object in
bytes.

Data Object Incarnation 4 Bytes NA | This incarnation is used to detect cluster
members with stale cluster volume data.

Data Object Creation Time | 8 Bytes NA | The time and date the cluster volume was
created.

Data Obiect Name 32 Bvtes NA | The name of the cluster volume.

MBZ 24 Bvtes NA | Reserved. Must be zero.

Header Block Checksum | 4 Bytes NA | Checksum of the Cluster Volume Home
Block.

F 9.

6€

WO 97/15942 PCT/US96/16997

11/23

9090\

Cluster Member 0

il

oocaacogedobosssasccdoiacana
OOOOOO0000000000000000000000000000

Video Object

WO 97/15942 PCT/US96/16997
12/23
Local Block | Cluster Memper O Cluster Member 1 Cluster Member 2
Number
0 Pantv Block 0| 1 Block 0 Block 1!
1 Block 2 Paritv Block 2] 3 Block 3
2 Block 4 Block § Pantv Block 41 5
3 Pantv Block 61 7 Block 6 Block 7

Fig.')

WO 97/15942 PCT/US96/16997

13/23
Variable Acronym | Description
Block Number BN Block Number to be located
Panty Block Count PBC Parity Block Count up to the last row
Adjusted Block Number ABN Block Number plus Parity Block Count
Optional Paritv Count OPC Optional Paritv Block in last row
Final Block Number FBN Adjusted Block Number plus Optional Panty

Count

Cluster Member CM Cluster member storing final block number
Local Block Number LBN Cluster Member Local Block Number
Panitv Block Number PBN Paritv Block Number for Block Number
Cluster Size CS Number of Cluster Members

Fig. 8

WO 97/15942 PCT/US96/16997

14/23

— T~

300 pge. 8K N
_ cs-1)
_____/
/_"P\
goz—\//-)axw B/JH’BC\
< —
_— d
U~ AN, = ABr D cs® O\

J

I
an% / 15 \

S Aol < AEK D o os >
K 2 / [

\/ b Pe - (},-_,/o

i S

320 7Y FBN = AEN + OFc

)

330—] om = FEN cS
o

37° Y Ler: Fér/cs |

flecwe 9 A

WO 97/15942 PCT/US96/16997

15/23

7 o0 —}kaplj/‘-jl < S « (FJJIJ/C':>]/
|

Gz | PBr= PErt ((Férg cot) e5) |
i ~
F/'j- 75

-)

B

p {
’730/‘1{ LBNe,. = (pores) = cs]

4 Y

440 PR, = (Nw 0, CS")/CJ f
) |

Fie. qC

WO 97/15942 PCT/US96/16997

16/23
After Reformat

Before Reformat e— -
a . v -,
L S

~o U n '

pOpsE m—

6GB Cluster Volume

across 3 cluster members 6GB Cluster Volume 2GB Cluster Volume
acrass 4 cluster members across 4 cluster members

Fis. /0

WO 97/15942

17/23

PCT/US96/16997

9 =
’oL % : A t | |
——— f—_ o —— —.__1_;--—- —_ —_— . ——— —_— —_
o § T3 = — == i
b\———--_a'—- r ’ - -_— - - o L ~ o
I — R
a zl .. n
...... - - ——————— e —— —— i ot ——————
W
—_ - R LO6_ e —e— . — e e— e e
- — e _FI—.S__,” ——— A .

WO 97/15942 PCT/US96/16997

18/23

e

———— e —— . o— e+t e ———— i ¢ = ————— - ¢ ——— e+ s

WO 97/15942

19/23

PCT/US96/16997

fRocCcssor SYS

\
< 190

i 36

7
L ,

louz

-——___J)_L/ y .
— 1 Sl TCHED.
2 - sysrom™m

— _—‘J—I—VL-
49 _
- - — — =77
PRocES 50k SYS. —
N rstu E"YU - o
e |- :
St 7:;6;5“.. o o e — — -
.}__ -

WO 97/15942

PCT/US96/16997

20/23 _ /139
j L0, — — — o —
- ;) :' Ff‘CC))uf S)/J‘Tt’ﬁ“ - 7
- !
’—'\‘ . - \"I-.'}° . [N -
it e

/7ﬁ -

. e
2y o

WO 97/15942 PCT/US96/16997

21/23

| -2 09 tos

jngoré 0

el ws @ul lkﬂj p——O evl |

—— AT N

200> ———tave cw =

1V lewe old e 3 é . ot 2
netsowe (=10 o _—1 Sw3
g sve = —_— : ,l
5 Swy teny owt

206 2/0
ore n______,L ’“,
_‘rl"n—‘

ol vm sue bt pre—ugy @ &1
S AT T T R —
SVl
21

————{tise v} 0 [!

et /oue (P0) @ut rJ N | -t 2
nPi/ous I-) n J joJ

202 7

> s sue “ﬁ
oy ety eut
jngort n
' Jon
el v OUY { t : waed out |
peeS o al]
SU>
212 — ove vo o - i 2
™
———ire \ Jowe §54) OV] o0e ot 2
o (1) n S«
(0 Gwe =) ‘l
SwY 1oty et

WO 97/15942

PCT/US96/16997

22/23

L "3 ogocesyok S yszem | I
//; g —

MCT avk .

el ave

Z"L‘O__O.yr(l.)_”i‘_.‘_ > —_ -
] _ S
- I ; _.JE/ ¢ /6 . _

WO 97/15942 PCT/US96/16997

INTERNATIONAL SEARCH REPORT International applicetion No.
PCT/US96/16997

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :HO1J 13/00; GO6F 11/00
US CL :395/ 182.04, 182.08, 200.01, 200.02; 370/53
According to Intermmational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documeantation searched (classification system followed by classification symbols)
U.S. : Pleasc Sec Extra Sheet.

Documentation searched other than minimum documentation to the extent that such documents are included in the ficlds searched
NONE

Electronic data base consulted during the international search (name of data base and, where practicable, scarch terms used)
APS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US, A, 5,303,244 (WATSON ET AL.) 12 April 1994, see the| 2,3, 6,7,17,
abstract, entire document. 18,21,22,3
7,39,41,42,
45,46,56,57,6
0,61,67,73,75
Y US, A, 5,093,826 (LEICHUM) 03 March 1992, see the| 1-75

abstract, also col. 6, lines 21-36.

Y, P US, A, 5,471,615 (AMATSU ET AL.) 28 November 1995, | 1-75
see the abstract, figure 4.

@ Further documents are listed in the continuation of Box C. D Sec patent family annex.

hd Special calegories of cited documents: T later document published afier the international filing date or priority
‘At document defining the gencral state of the art which is ot considered e s wiortying T roennn bt clted 10 wndortnad the
to be past of particular relevance priciple or ertying
e carlior document published 0a or after the international filing date X dooument of particular relevance; e ol v ""."“‘.:
°L* dw‘vhnhmylhmdoubmonpmmychm(a)ofwm- when the document is taken alone
cited 10 establ date o or other | . of particular rel - claimed i v
Mm(-wﬁd) idesed to imvolve an & e sicp wham the document is
*0" document referring 0 an oral disclosure, use, exhibition or other combimed with coe or more ~*her such documents, such combésation
means being obvious (0 a person skilled in the art
P document published prior 1o the internatioaal filing date but later than +g ¢ document member of the same patont family
the priority date ciaimed
Date of the actual compietion of the international search Date of mailing of the international search report
10 DECEMBER 1996 31 JM(\997
Name and mailing address of the ISA/US Aut.honzcd “
Commissioner ongllenl.l and Trademarks BR,A(’:A% HARDEN
Box PCT Bﬁ
Washington, D.C. 20231 AL DECADY L—v GROU SPEO%MUST
Facsimile No. (703) 305-3230 Telephone No. (703) 305-3800

Form PCT/ISA/210 (sccond sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

PCT/US96/16997
C (Coatinuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category® Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US, A, 5,410,667 (BELSAN ET AL.) 25 April 1995, see the 2,3,6,7,17,18,21,
abstract. 22,37,39,41,42,4
5,46,56,57,60,61
,62,67,73,75
Y US, A, 4,905,145 (SAUBER) 27 February 1990, see the abstract, |1-75
see also figure 1, also col. 2, lines 51-61.
Y US, A, 5,228,127 (IKEDA ET AL.) 13 July 1993, , see figure 3, |1-75
col. 3, lines 8-39.
Y US, A, 5,251,299 (MASUDA et al.) 05 October 1993, see the 1-75
abstract, also figures 3A and 3B, see also col. 4, line 66 to col.6,
line 38.
Y US, A, 5,202,980 (MORITA et al.) 13 April 1993, see the 1-75
abstract, figure 4, see also col. 6, lines 18-29.
Y US, A, 5,008,882 (PETERSON ET AL.) 16 April 1991, see the 1-75
abstract, ffigures 1-3, 5, col. 3, lineee 30 to col. 14, line 54.
Y US, A, 5,072,371 (BENNER ET AL.) 10 December 1991, see the {1-75
abstract, figure 4, see col. 2, lines 60 to 65.
Y US, A, 4,868,818 (MADAN ET AL.) 19 September 1989, see the |1-75
abstract, figure 6, col. 3, lines 30 et seq.
Y,P US, A, 5,544,163 (MADONNA) 06 August 1996, see the 29, 30, 31, 68,

abstract, see all the fifures and the entire document.

69, 70, 71

Form PCT/ISA/210 (continuation of second sheet)(July 1992)«

INTERNATIONAL SEARCH REPORT International application No.
PCT/US96/16997

B. FIELDS SEARCHED
Minimum documeatation searched
Classification System: U.S.

395/ 180, 181, 182.01, 182.02 182.03, 182.04, 182.08, 200.01, 200.02, 200.03, 200.08, 200.21; 370/16, 42, 53, 57,
58.1, 58.3, 60.1, 85.15; 364/229, 229.4

Form PCT/ISA/210 (extra sheet)(July 1992)»

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

